
D2.4.1
TClouds Prototype Architecture, Quality

Assurance Guidelines, Test Methodology and
Draft API

Project number: 257243

Project acronym: TClouds

Project title:
Trustworthy Clouds - Privacy and Re-
silience for Internet-scale Critical Infras-
tructure

Start date of the project: 1st October, 2010

Duration: 36 months

Programme: FP7 IP

Deliverable type: Report

Deliverable reference number: ICT-257243 / D2.4.1 / 1.0
Activity and Work package contributing
to deliverable: Activity 2 / WP 2.4

Due date: September 2011 – M12

Actual submission date: 3rd October, 2011

Responsible organisation: POL

Editor: Emanuele Cesena

Dissemination level: Public

Revision: 1.0

Abstract:

This report describes quality assurance
guidelines, common use cases, initial
architecture, preliminary API and test
methodology for the TClouds integrated
proof of concept prototype. Moreover, it
provides a list of subsystems that shall be
developed in next years to demonstrate the
results of our research.

Keywords: Cloud computing, architecture, API, proto-
type, testing

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Editor

Emanuele Cesena (POL)

Contributors

Sören Bleikertz, Christian Cachin, Thomas Groß, Michael Osborne (IBM)

Mina Deng (PHI)

Michael Gröne, Norbert Schirmer (SRX)

Alysson Bessani, Miguel Correia, Marcelo Pasin (FFCUL)

Imad M. Abadi (OXFD)

Emanuele Cesena, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia, Davide Vernizzi (POL)

Johannes Behl, Klaus Stengel (FAU)

Ilaria Baroni, Marco Nalin (HSR)

Paulo Jorge Santos (EFA)

Sven Bugiel, Stefan Nürnberger (TUDA)

Disclaimer
This work was partially supported by the European Commission through the FP7-ICT program
under project TClouds, number 257243.

The information in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. The opinions expressed in this
deliverable are those of the authors. They do not necessarily represent the views of all TClouds
partners.

TClouds D2.4.1 I

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Executive Summary

TClouds, and specifically WP2.4, aims to design a resilient cloud-of-clouds infrastructure, that
will be demonstrated by building an integrated proof of concept prototype of a trustworthy cloud
environment.

This deliverable reports the work done in the first year within WP2.4 and is organized in
two main parts.

The first part describes our methodology and outlines the main results in defining the TClouds
architecture and building the TClouds proof-of-concept prototype. In more details, we define
actors and common use cases for a cloud infrastructure; describe our efforts to evaluate and
decide on an open source cloud computing framework as starting point for our technical devel-
opment; introduce the initial TClouds architecture; draft the preliminary API of the TClouds
platform; define a test methodology to be applied to the TClouds design and development.

The second part contains the set of subsystems that will be developed by partners as part
of the integrated proof-of-concept prototype. For each subsystem an overview, including its
security goals, selected use cases that define its functional requirements, preliminary high-level
architecture and draft API are provided.

The main outcomes of this work are a consistent design of 15 subsystems that will be de-
veloped by partners and an initial TClouds platform v0, i.e. an unmodified instance of Open-
Stack [opeb] – the selected open source cloud computing framework – on top of which a proto-
type application from Activity 3 is currently running.

TClouds D2.4.1 II

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Contents

1 Introduction 1
1.1 Outline of the Work Done in Y1 . 1
1.2 Structure of This Report . 2

I TClouds Prototype Architecture, Quality Assurance Guidelines,
Test Methodology and Draft API 4

2 Quality Assurance Guidelines 5
2.1 Quality Criteria . 5

2.1.1 Quality for TClouds Users . 5
2.1.2 Quality for TClouds Developers . 6

2.2 Software Engineering Process . 6
2.2.1 Use Cases Selection and Analysis . 7
2.2.2 Architecture Definition and Related API 8
2.2.3 Test Methodology . 9

3 Use Case Selection 10
3.1 Actors . 10
3.2 Common Use Cases . 11

3.2.1 Computing . 11
3.2.2 Image and Volume Storage . 13
3.2.3 Object Storage . 14
3.2.4 Administration . 14

4 Initial Prototype High-Level Architecture 15
4.1 Framework Evaluation and Selection . 15

4.1.1 OpenNebula . 16
4.1.2 OpenStack . 19
4.1.3 Evaluation and Final Selection . 24

4.2 TClouds Prototype High-level Architecture 25
4.2.1 TClouds Deployment Alternatives . 25
4.2.2 Initial Architecture Specification . 27
4.2.3 Prototype Subsystems . 29

5 Preliminary API Definition 34
5.1 Introduction to Application Programming Interface 34

5.1.1 Openstack API . 34
5.1.2 Trusted Infrastructures API . 35
5.1.3 Cloud of Clouds middleware API . 35

5.2 TClouds Subsystems Preliminary API . 35

TClouds D2.4.1 III

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

5.2.1 Kind of API . 35
5.2.2 Functionality of API . 36
5.2.3 Clients of API . 36
5.2.4 Deployment of API . 36
5.2.5 Standards used or extended . 36
5.2.6 Possible Groups of API . 37

5.3 TClouds Subsystems Preliminary API Table 37

6 Test Methodology 39
6.1 Introduction to Software Testing . 39
6.2 Component tests . 40
6.3 API tests . 40
6.4 Application tests . 41

6.4.1 Application Test Plan . 41
6.4.2 Details on Testing TClouds Healthcare Scenario 41

6.5 TClouds Subsystems Test Plan . 44

II Selected Subsystems 47

7 Trustworthy Cloud Infrastructure (WP 2.1) 48
7.1 Resource-efficient BFT (CheapBFT) . 48

7.1.1 Overview . 48
7.1.2 Requirements . 49
7.1.3 Architecture . 52
7.1.4 API . 55

7.2 Simple Key/Value Store . 56
7.2.1 Overview . 56
7.2.2 Requirements . 57
7.2.3 Architecture . 59
7.2.4 API . 60

7.3 Secure Block Storage (SBS) . 63
7.3.1 Overview . 63
7.3.2 Requirements . 65
7.3.3 Architecture . 66
7.3.4 API . 67

7.4 Secure VM Instances . 69
7.4.1 Overview . 69
7.4.2 Requirements . 70
7.4.3 Architecture . 72
7.4.4 API . 72

7.5 TrustedServer . 75
7.5.1 Overview . 75
7.5.2 Requirements . 76
7.5.3 Architecture . 81
7.5.4 API . 83

7.6 Log Service . 85
7.6.1 Overview . 85

TClouds D2.4.1 IV

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.6.2 Requirements . 86
7.6.3 Architecture . 90
7.6.4 API . 95

8 Cloud of Clouds Middleware for Adaptive Resilience (WP 2.2) 99
8.1 State Machine Replication . 99

8.1.1 Overview . 99
8.1.2 Requirements . 100
8.1.3 Design . 103
8.1.4 Implementation . 104

8.2 Fault-tolerant Workflow Execution (FT-BPEL) 106
8.2.1 Overview . 106
8.2.2 Requirements . 107
8.2.3 Architecture . 110
8.2.4 API . 113

8.3 Resilient Object Storage . 114
8.3.1 Overview . 114
8.3.2 Requirements . 115
8.3.3 Design . 117
8.3.4 Implementation . 117

8.4 Confidentiality Proxy for S3 . 121
8.4.1 Overview . 121
8.4.2 Requirements . 122
8.4.3 Architecture . 126
8.4.4 API . 127

9 Cross-layer Security and Privacy Management (WP 2.3) 129
9.1 Access Control as a Service (ACaaS) . 129

9.1.1 Overview . 129
9.1.2 Requirements . 131
9.1.3 Architecture . 134
9.1.4 API . 134

9.2 TrustedObjects Manager (TOM) . 136
9.2.1 Overview . 136
9.2.2 Requirements . 137
9.2.3 Architecture . 138
9.2.4 API . 143

9.3 Trusted Management Channel . 144
9.3.1 Overview . 144
9.3.2 Requirements . 144
9.3.3 Analysis . 147
9.3.4 Architecture . 153
9.3.5 API . 160

9.4 Ontology-based Reasoner to Check TVD Isolation 163
9.4.1 Overview . 163
9.4.2 Requirements . 164
9.4.3 Architecture . 168
9.4.4 API . 171

TClouds D2.4.1 V

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.5 Automated Validation of Isolation of Cloud Users 174
9.5.1 Overview . 174
9.5.2 Requirements . 174
9.5.3 Architecture . 176
9.5.4 API . 179

III Appendix 180

A First-round Analysis of Cloud Frameworks 181
A.1 Template for the Analysis of Cloud Frameworks 181
A.2 Eucalyptus . 182
A.3 OpenNebula . 185
A.4 OpenStack . 189
A.5 Nimbus . 191

B List of Tools and Projects Referred 194
B.1 Open Source Cloud Frameworks . 194
B.2 Testing Tools and Frameworks . 194
B.3 Public Cloud Services . 195

Bibliography 195

TClouds D2.4.1 VI

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

List of Figures

2.1 TClouds prototype in the system lifecycle . 7

4.1 Framework evaluation: excerpt of decision matrix 15
4.2 OpenNebula architecture overview (source: OpenNebula web site [opea]) . . . 16
4.3 OpenStack Nova Architecture (source: OpenStack Nova web site [Oped]) . . . 20
4.4 OpenStack Swift Architecture . 22
4.5 TClouds high-level architecture . 25
4.6 TClouds deployment in a diverse ecosystem (source: D2.2.1, Figure 4.7) 26
4.7 TClouds architecture (source D2.2.1, Figure 4.2) with block diagram (left) and

TClouds Information Switch (right) . 27
4.8 Local architecture of a TClouds node (see D2.2.1, Figure 4.8 for comparison) . 28
4.9 TClouds subsystems and their placement within the local architecture 33

6.1 Healthcare scenario: ActiWatch . 42
6.2 Healthcare scenario: simplified data flow . 43
6.3 Healthcare scenario: calltrace for retrieving recordings 44

7.1 A minimal configuration of CheapBFT consisting of two active and one passive
replica. 53

7.2 Setting up CheapBFT . 54
7.3 Processing of a request by CheapBFT . 54
7.4 Sequence diagram for instantiation of component 61
7.5 Transparent en-/decryption of block storage attached to a VM by the SBS com-

ponent. 63
7.6 Sequence Diagram of the Setup Phase (key provisioning) for the SBS component 68
7.7 Sequence Diagram of SBS component writing encrypted data 69
7.8 Sequence Diagram of the Boot Phase (Hypervisor starts image) 73
7.9 Sequence Diagram of the key migration . 74
7.10 Setup of TrustedServer. 82
7.11 Start of compartment on TrustedServer. 82
7.12 Compartment Management API. 83
7.13 Use case diagram to demonstrate the Log Service at cloud infrastructure level. . 87
7.14 High-level architecture of Log Service. 91
7.15 Sequence diagram for Log Service init. 92
7.16 Sequence diagram for log entry creation. 93
7.17 Sequence diagram for retrieve and verity log entries. 93
7.18 Sequence diagram for dumping large logs. 94
7.19 Low-level architecture of Log Service: internals of Computing Node. 95

8.1 State machine in action . 103
8.2 Replicated state machines . 103
8.3 Sequence diagram for an Invoke call. 104

TClouds D2.4.1 VII

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.4 Architecture of FT-BPEL . 111
8.5 Sequence diagrams for FT-BPEL . 112
8.6 Client software accessing (a) a legacy object storage and (b) a cloud-of-clouds

trusted object storage. 115
8.7 Sequence diagram for an Read call. 118
8.8 Sequence diagram for an Write call. 119
8.9 Overview of Confidentiality proxy for S3. 121
8.10 Sequence diagram for setup of Confidentiality proxy for S3. 127
8.11 Sequence diagram for /UC 390/ use case. 127
8.12 Sequence diagram for /UC 400/ use case. 128

9.1 OpenStack Components (Source [Opec]) . 135
9.2 Access Control as a Service Sequence Diagram 136
9.3 Overview of the TOM building blocks . 139
9.4 Overview of the most important TOM domain objects. Arrows indicate a 0..n–1

relationship. 141
9.5 Setup of TOM. 142
9.6 Start of VM instance (compartment) in TVD by TOM. 143
9.7 Example PKI . 148
9.8 Data to be included in the client certificate for key-based TLS 151
9.9 Data to be included in the client certificate for token-based TLS 152
9.10 Component overview . 153
9.11 TPM-based connection . 155
9.12 Token-based Connection . 156
9.13 Sequence diagram for a successful key-based authentication 157
9.14 Sequence diagram for a successful token-based authentication 158
9.15 Class diagram of the Trusted Management Channel library design 159
9.16 Classes related to the TrustedChannel . 159
9.17 Public interface of the TrustedChannel . 160
9.18 Sequence diagram for TrustedChannel usage 161
9.19 Simple ”Hello world” with the Trusted Management Channel 162
9.20 Use case diagram for the ontology-based reasoner (and enforcer) to check TVD

isolation. 165
9.21 High-level architecture of the Ontology-based Reasoner. 168
9.22 Sequence diagram for Ontology-based reasoner ‘Input Model’ use case. 170
9.23 Sequence diagram for Ontology-based reasoner ‘Analyze Model (Normal Flow)’

use case. 170
9.24 Sequence diagram for Ontology-based reasoner ‘Analyze Model (Alternative

Flow with Cloud Admin)’ use case. 171
9.25 Sequence diagram for Ontology-based reasoner ‘Analyze Model (Alternative

Flow with Project Manager, optional)’ use case. 171
9.26 Architecture Overview of Discovery Component 176
9.27 Architecture Overview of Analysis Component 177
9.28 Sequence Diagram for Discovery . 178
9.29 Sequence Diagram for Analysis . 179

TClouds D2.4.1 VIII

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

List of Tables

4.1 Vote on platform choice . 24

5.1 TClouds subsystems preliminary API . 38

6.1 Test plan for applications from Activity 3 . 42
6.2 TClouds subsystems test plan (Component and Internal API) 45
6.3 TClouds subsystems test plan (TClouds API and Application/User iface) 46

TClouds D2.4.1 IX

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

TClouds D2.4.1 X

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 1

Introduction

TClouds, and specifically WP2.4, aims to design a resilient cloud-of-clouds infrastructure, that
will be demonstrated by building an integrated proof of concept prototype of a trustworthy cloud
environment.

The main objectives of WP2.4 can be summarized in designing an architecture for a resilient
cloud-of-clouds and building an integrated prototype platform, as a result of the combination of
subsystems developed by partners.

More concretely, in the first year of the project, these long term objectives can be better
specified as:

� Building a suitable software engineering methodology and devising quality criteria to
address the future development.

� Designing the initial high-level TClouds architecture, in conjunction with other WPs, and
specifically the high-level TClouds prototype architecture.

� Selecting an open source framework for cloud computing as a common platform to be
extended by the subsystems.

� Defining a set of subsystems, originating from the research done in WP2.1, WP2.2 and
WP2.3, that will be part of the integrated prototype.

� Providing a consistent, high-level design of each subsystem.

In the next section we outline the work done in Y1 within WP2.4 to achieve these objectives.
The main outcomes of this work, extensively described in this deliverable, are a consistent
design of 15 subsystems that will be developed by partners and an initial TClouds platform v0,
i.e. an unmodified instance of OpenStack [opeb] – the selected open source cloud computing
framework – on top of which a prototype application from Activity 3 is currently running.

1.1 Outline of the Work Done in Y1
The work done in Y1 within WP2.4 has been organized in phases ended at M2, at M4 (technical
meeting in Lisbon), at M8 (technical meeting in Turin) and at M12. In each phase, one or
more activities have been carried on, where usually the majority of the partners was involved.
Each activity ended with a written report (or activity paper) to consolidate the results, that are
collected in this deliverable.

By M2, we drafted the software engineering methodology and we performed a first-round
analysis of four open source frameworks for cloud computing, to select a common platform for
building the TClouds prototype (Appendix A).

TClouds D2.4.1 Page 1 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

By M4, we consolidated the methodology (Report R2.4.1.1 and Chapter 2), performed an
extended analysis of the two most promising frameworks out of the four ones, and selected
OpenStack as reference platform (Chapter 4). In addition, a first version of the TClouds archi-
tecture has been drafted (Report R2.2.1.1).

By M8 we performed two main activities: the definition of the subsystems and related
use cases (Report R2.4.1.2 and Chapter 3) and a preliminary architecture including sequence
diagrams (Report R2.4.2.1 and Chapter 4).

Finally, by M12 we finalized the TClouds architecture (Chapter 4), we designed a prelimi-
nary API (Report R2.4.2.2 and Chapter 5) and we defined a test methodology (Report R2.4.5.1
and Chapter 6).

All the work on the use cases selection, design of the high-level architecture, draft API
and test methodology has been done by each partner on his subsystems, following the com-
mon methodology shared along the project. This iterative process led to the description of the
subsystems that forms Part II of this deliverable.

1.2 Structure of This Report
This deliverable is organized in three parts: Part I describes our methodology and outlines the
main results achieved in Y1, in designing the TClouds architecture and building the TClouds
proof-of-concept prototype; Part II collects the list of the subsystems that each partner will
deliver as part of the integrated prototype; Part III contains the appendixes.

In more details, Part I is organized as follows. Chapter 2 defines a software engineering
process that includes the systematic development, evaluation, and maintenance of cloud com-
ponents, and discusses the quality criteria that this process has to fulfill. This serves as an
introduction to the following chapters that detail the main phases of the development process.

Chapter 3 defines actors and common use cases for a cloud infrastructure. These are the
foundation for defining functional requirements of the TClouds prototype, and are extended in
several directions by the subsystems detailed in Part II.

Chapter 4 describes our approach towards the high-level architecture for the TClouds plat-
form. It consists of two parts. First, in Section 4.1 we describe our efforts to evaluate and decide
on an open source cloud computing framework as a starting point for our technical development.
Second, in Section 4.2 we introduce the initial TClouds architecture (see also D2.2.1, Chapter 4)
and the subsystems that partners plan to contribute for the TClouds prototype.

Chapter 5 introduces the preliminary API of the TClouds platform. We provide an overview
of the OpenStack API, Trusted Infrastructures API and Cloud-of-Clouds API as starting points
for our technical development. Moreover, we classify the APIs of the subsystems that constitute
the TClouds prototype according to different relevant parameters (type, functionality, client,
deployment, ...).

Chapter 6 introduces basic concepts of software testing and explains how they will be ap-
plied to the TClouds design and development, in order to meet the functional requirements and
to match the desired quality level. We define four layers of testing, namely component, internal
API, TClouds API, and application/user interface and we propose a preliminary test plan for
each subsystem that constitute the TClouds prototype (for the application/user interface layer,
we also provide an overview of the test plan from Activity 3).

In Part II, each chapter describes a subsystem that will be developed as part of the integrated
proof-of-concept prototype and it is organized with: an overview of the subsystem, including its

TClouds D2.4.1 Page 2 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

security goals; selected use cases that define its functional requirements; preliminary high-level,
and possibly low-level, architecture; draft API.

Finally, Part III is organized as follows. Appendix A contains the template and results of the
first-round analysis performed to select an open source cloud computing framework as common
platform for building the TClouds prototype.

Appendix B contains a list of open source cloud frameworks, testing tools and frameworks,
and public cloud services that are referenced within this deliverable.

For a glossary of the technical terms used within this report, we refer to D2.1.1.

TClouds D2.4.1 Page 3 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Part I

TClouds Prototype Architecture,
Quality Assurance Guidelines,

Test Methodology and Draft API

TClouds D2.4.1 Page 4 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 2

Quality Assurance Guidelines

Chapter Authors:
Emanuele Cesena, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia, Davide Vernizzi (POL)

In this chapter we define a software engineering process that includes the systematic devel-
opment, evaluation, and maintenance of cloud components, and we discuss the quality criteria
that this process has to fulfill. For a more ample discussion on software and system engineering
we refer to Endres and Rombach’s book [ER03].

2.1 Quality Criteria
The quality of the TClouds platform cannot be expressed with a single parameter or a simple
statement, but is the combination of several factors, which include dependability and security
properties, as well as legal and economical aspects. For the last ones, we refer to the work done
in Activity 1, in more details to D1.2.2 for legal aspects and to D1.3.1 for business requirements.

In the context of this report, we define the quality of the TClouds platform as the degree
to which it meets stakeholders’ requirements. Stakeholders include of course cloud (TClouds)
users, but also developers, as the TClouds platform will be built upon an existing open source
framework, thus part of its contribution may be released to the community in the future.

In the following we introduce the main quality criteria that will be used to evaluate the
TClouds platform.

2.1.1 Quality for TClouds Users
The quality of the TClouds platform from a user’s point of view can be expressed as the fulfill-
ment of several properties:

Availability: High degree of access.

Reliability: Low failure rate.

Efficiency: Economic resource consumption.

Usability: Well adapted to skills and preferences of user.

Robustness: Safe reaction to user errors and hardware failures.

Security: Low damage in case of negligent/malicious use.

TClouds D2.4.1 Page 5 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Since security is the distinguish feature of TClouds with respect to commodity clouds, we
further refine it by defining the following properties:

Fault tolerance: Operational continuity (or graceful degradation) in case of failure of some
components.

Data integrity: Guarantee that data has not been altered (modified, deleted, duplicated...) by
unauthorized users.

Data confidentiality: Guarantee that data cannot be accessed by unauthorized users.

Data authenticity: Guarantee that data has been created by an identified user.

Privacy protection: Guarantee that sensitive data is not exposed to undesired parties.

2.1.2 Quality for TClouds Developers
As already mentioned, the TClouds prototype will build upon an existing open source frame-
work for cloud computing, and one of the possible outcomes of the project is to enhance the
features of the base framework with security-enhanced and/or privacy-enabled components.

Thus, next to the user’s criteria, also developer-oriented properties can be considered:

Installability: Easy and fast setup.

Testability: Good documentation and structure.

Maintainability: High readability and modifiability.

Portability: Low dependency on technical environment.

Localizability: Adaptable to national and regional requirements.

Reusability: High modularity, completeness and low coherence. This is especially important
to allow integrating different components (and models) in a single prototype (see Sec. 2.2
for more details).

2.2 Software Engineering Process
The TClouds prototype should go through a lifecycle of its own, which proceeds in parallel to
the system lifecycle as shown in Figure 2.1.

Each partner will provide technical contributions that we shall refer to as subsystems (of the
TClouds prototype). We will use the term component to refer to parts of each subsystem or of
the cloud framework more in general.

We now describe the software engineering process that guided and will guide the devel-
opment of the subsystems. Firstly, a subset of the use cases originating from the application
scenarios has to be selected and analyzed, and this will represent the set of functionality demon-
strated by the prototype. Secondly, an architecture and the related sequence diagrams and API
will be defined, based on the selected use cases. Next, the prototype will be developed, building
upon a selected open source framework for cloud computing. The subsystems that will be part
of the prototype will be developed by each partner independently as part of the research activity,

TClouds D2.4.1 Page 6 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Design

Use case

Development
& integration

Testing

Requirements
definition

Design Development
P

ro
to

ty
p

e
 l
if

e
c
y
c
le

System lifecycle

Selection

Figure 2.1: TClouds prototype in the system lifecycle

and will be integrated in the TClouds prototype. Finally, the prototype will be evaluated, i.e.
tested, and this requires the definition of a suitable methodology.

The prototype will follow an iterative project cycle. As an overall development strategy,
we agreed on the following timeline. By the end of Y1, we will have a TClouds platform v0,
i.e. an unmodified instance of the selected open source framework. A few subsystems will be
shown to demonstrate the effectiveness of the research developed in Y1. By Y2, we expect
to incorporate a few application-specific functionalities into the TClouds platform, as a result
of the research activity. This practically means that some subsystems will be integrated in the
selected framework, and this is referred to as first mock-up integration, or TClouds platform
v1. Finally, by the end of the project the final TClouds prototype (TClouds platform v2) will be
implemented, supporting all the functionalities required by the selected use cases.

2.2.1 Use Cases Selection and Analysis
Functional requirements will be specified and detailed by means of use cases. Because of the
complexity of the cloud environment, only a subset of the use cases will be prototyped.

In more detail, we will first define common use cases, derived from application scenarios
and commodity clouds. Next, a subset of these use cases will be selected and detailed, providing
new and/or enhanced functionality. The selection has to meet the following conditions:

� Consistency: the selected use cases must not depend on other, undefined, use cases.

� Coherence: the selected use cases, when read back as a portion of the application scenar-
ios, still have to represent a meaningful application.

TClouds D2.4.1 Page 7 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� Completeness: the selected use cases actually highlight the distinguishing features of
TClouds.

Finally, use cases will be analyzed to guarantee that the properties mentioned above are satisfied.
The resulting set of use cases will form the basis for the specification of the TClouds prototype
architecture.

Functional requirements have to be complemented by non-functional ones, that may address
such quality criteria as reliability, efficiency and usability. Other criteria like portability, testa-
bility and maintainability can be of particular interest when the focus is the cloud framework
as a software product that can, for instance, be released to the open source community. Non-
functional requirements typically conflict with each other, and with the functional requirements.
When this happens, a trade-off possibility should be specified.

A specific class of non-functional requirements concern the safety and the security of a sys-
tem. Security requirements (and security assumptions) are of main importance for the TClouds
project as trustworthiness is the distinguishing feature of the TClouds framework with respect
to other similar products. A clear definition of trustworthiness and detailed security require-
ments will be specified. It is crucial to bound security requirements to use cases and to address
the potential threats and risks.

2.2.2 Architecture Definition and Related API
The TClouds prototype architecture will be designed, based on the selected use cases, and
models for the system and each subsystem will be specified. Use cases will then be mapped
onto the architecture to derive the workflow among components, specified, e.g., with sequence
diagrams.

The architecture will be prototyped building upon an existing open source framework for
cloud computing. A specific activity has been devoted to survey currently available open source
frameworks and select a suitable candidate. The activity is organized in two phases, described
below.

In the first phase, ended on M2, we surveyed the following 4 framework: Nimbus [nim],
Eucalyptus [euc], OpenNebula [opea], OpenStack [opeb]. The template used for this first anal-
ysis is reported in Appendix A. As a result of this phase, we selected 2 candidates for further
analysis: OpenNebula and OpenStack.

In the second phase of the analysis, we installed and tested extensively the two platform
candidates. As a result of this phase, we prepared a tutorial on how to deploy a cloud-oriented
application onto a cloud infrastructure, and two technical talks describing the architecture of
OpenNebula and OpenStack, as well as the supported APIs. The tutorial and the talks have
been presented at the TClouds technical meeting at M4 in Lisbon, where OpenStack was also
selected as reference platform to build TClouds. Further details on these activities are given in
Chapter 4.

The TClouds architecture will be completed by the definition of 2 APIs: the TClouds API
and the internal API. The TClouds API will extend a selected public API, notably by introduc-
ing security enhanced concepts and features. The internal API is used to provide an explicit
interface for relevant functionalities, that can be either related to critical components or use-
ful when more components exist that implements a particular functionality. In all cases, the
internal API is useful for testing purposes, to decouple the test definition and the component
implementation.

TClouds D2.4.1 Page 8 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

2.2.3 Test Methodology
A test methodology will be set to assist the development of the TClouds prototype. Test cases
will be defined for all relevant subsystems and components based on the selected use cases.
Then the test cases will be applied first to the initial mock-up integration, then to the final
platform prototype.

We define four layers of tests: component, internal API, TClouds API and application tests.
Component tests are optional. Each partner may release its components together with a

fully automatic testsuite that, from the perspective of the TClouds project, plays the role of unit
testing. Components testsuites can be integrated in a single testing framework, for instance
Hudson [hud] or Jenkins [jen] (also used by the OpenNebula project).

Internal and TClouds API tests are similar, while they apply to two distinct interfaces. Inter-
nal API tests are black-box tests for TClouds subsystems, while TClouds API tests correspond
to integration tests. The API coverage should be close to 100% in terms of number of functions
tested, for at least one fixed choice of function parameters and a default platform configuration.
These tests will be automatic, e.g. with REST interface and Selenium [sel], with the possible
exception of the platform configuration that may require manual intervention to be changed.

Application tests correspond to the tests of the two prototype applications, that we shall
develop in A3 to demonstrate the functionality of TClouds. These include the interaction with
the TClouds API, that should be a subset of the TClouds API tests, and the graphical user
interface. Both tests should be as automatic as possible, e.g. with Selenium or SIKULI [sik].

TClouds D2.4.1 Page 9 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 3

Use Case Selection

Chapter Authors:
Emanuele Cesena, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia, Davide Vernizzi (POL)

In this chapter we define actors and common use cases for a cloud infrastructure. These
are the foundation for defining functional requirements of the TClouds prototype, and will be
extended in several directions by the subsystems detailed in Part II.

3.1 Actors
Actors and components defined in this report map to OpenStack’s architecture. When possible
or known, the corresponding Amazon Web Services (AWS) names are also given.

� User: The end-user of the cloud services. User can be further specialized in Project
Manager or Developer. The former owns a project, or TVD1, and has administrative
privileges on the project; the latter has access to some resources within a project and his
privileges are defined by the project manager.

� Cloud: A cloud infrastructure. It is useful to look at the cloud as a whole, mainly for
scenarios related to the Cloud of Clouds.

� Cloud Node: A physical node of the cloud infrastructure. A node can be further special-
ized in Computing Node, Storage Node, Network Node, Object Store Node, Image Node
and Management Node.

� Cloud Component: A component of the cloud infrastructure, intended as a service that
can be either provided to the User or internally used by the Cloud itself, i.e. by other
components. It is useful to refer to a Cloud Component when multiple Cloud Nodes
cooperate to provide a service. Here we introduce the following specializations: Storage
Component, Object Store Component, Image Component and Management Component.
Other Cloud Components will be introduced in next sections.

� Management Component: The collection of services used to administrate the cloud in-
frastructure. It includes: Scheduler, Queue, Network Component, API Component and
Management Console (also referred to as Control Panel). This component is crucial in
the TClouds design and will be enhanced in WP 2.3.

1Projects are isolated resource containers forming the principal organizational structure within Nova. In
TClouds, an OpenStack project is usually referred to as Trusted Virtual Domain (TVD).

TClouds D2.4.1 Page 10 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

The Management Component, in general, provides functionality both to the Project Man-
ager and to the Cloud Admin. Whenever necessary, we distinguish between Management
and Administration to denote respectively functionality for the Project Manager or the
Cloud Admin.

� Cloud Admin: The administrator(s) of the cloud infrastructure. More generally, Cloud
Admin MAY also refer to the Management Component when it is not important to distin-
guish between automatic procedures or operations that require human intervention.

3.2 Common Use Cases
We introduce the following terminology:

� VM instance: is a ready-to-run, or running, VM. It can be persistent or not.

� VM image: is a “bundled environment” that includes all the necessary bits to set up and
boot a VM instance. This is usually stored in a object storage for availability reasons and
copied into a disk volume when a VM instance is created. In AWS terminology, this is
called Amazon Machine Image (AMI).

� Volume: is a block level storage for use with a VM instance. Each instance has at least one
volume, which is initially copied from the VM image but, more in general, the instance
can have more volumes attached. A volume can only be attached to a single VM instance.
In AWS terminology, this is called Elastic Block Store (EBS) volume.

For some use cases in the “Alternative Flow (Similar use cases)” box there is a list of com-
plementary use cases (e.g. stop vs. start, etc.), whose description is omitted for simplicity.

3.2.1 Computing
The first use case (Create Instance) is given in detail. In the followings, for simplicity, the
Management Component is not included in the actors and the flow is omitted.

TClouds D2.4.1 Page 11 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 10/ (Create Instance)
DESCRIPTION User creates a new VM instance.
ACTORS User, Management Component, Image Component,

Computing Node. Storage Component and Object
Store Component may also participate.

PRECONDITIONS None.
POSTCONDITIONS A new VM instance owned by User is created on

Computing Node.
NORMAL FLOW

(NON-PERSISTENT) 1. User requests the creation of a new VM in-
stance to Management Component.

2. Management Component schedules a Comput-
ing Node to host the VM instance and relies
on the Image Component to create the instance
from the VM image (template).

3. Image Component copies the VM image (op-
tionally from the Object Store Component) into
the Computing Node.

ALTERNATIVE FLOW

(PERSISTENT) 3’. Image Component copies the VM image (op-
tionally from the Object Store Component) into
the Storage Component.

USE CASE UNIQUE ID /UC 20/ (Start Instance)
DESCRIPTION User starts a VM instance.
ACTORS User and Computing Node. Storage Component and

Network Component may also participate.
PRECONDITIONS User created the VM instance (cf. /UC 10/).
POSTCONDITIONS The VM instance is running on Computing Node.
ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Stop Instance
2. Reboot Instance
3. Terminate Instance (or Destroy Instance)

TClouds D2.4.1 Page 12 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

3.2.2 Image and Volume Storage

USE CASE UNIQUE ID /UC 30/ (Create Image)
DESCRIPTION User creates a new VM image.
ACTORS User and Image Component. Object Store Compo-

nent may also participate.
PRECONDITIONS None.
POSTCONDITIONS A new VM image owned by User is created on Stor-

age Node.
ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Delete Image
2. Retrieve Image
3. Update Image

USE CASE UNIQUE ID /UC 40/ (Create Volume)
DESCRIPTION User creates a new volume.
ACTORS User and Storage Component.
PRECONDITIONS None.
POSTCONDITIONS A new volume owned by User is created on Storage

Component.
ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Delete Volume

USE CASE UNIQUE ID /UC 50/ (Attach Volume)
DESCRIPTION User attaches a volume to a VM instance.
ACTORS User, Computing Node and Storage Component.
PRECONDITIONS User created the VM instance (cf. /UC 10/) and the

volume (cf. /UC 40/).
POSTCONDITIONS The VM instance has a new volume attached.
ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Detach Volume

USE CASE UNIQUE ID /UC 60/ (Access Volume)
DESCRIPTION Attached volume is used by an instance.
ACTORS Computing Node
PRECONDITIONS Volume is attached to the VM instance (cf. /UC 50/).
POSTCONDITIONS The VM instance stores data on or read data from the

attached volume.

TClouds D2.4.1 Page 13 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

3.2.3 Object Storage

USE CASE UNIQUE ID /UC 70/ (Create Name Space)
DESCRIPTION User creates a new name space.
ACTORS User and Object Store Component.
PRECONDITIONS None.
POSTCONDITIONS A new name space owned by User is created on Ob-

ject Store Component.
ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Delete Name Space

USE CASE UNIQUE ID /UC 80/ (Write Object)
DESCRIPTION User writes an object.
ACTORS User and Object Store Component.
PRECONDITIONS User owns a name space (created via /UC 70/).
POSTCONDITIONS A new object within the name space is created on Ob-

ject Store Component.
ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Read Object
2. Delete Object

3.2.4 Administration

USE CASE UNIQUE ID /UC 90/ (Login)
DESCRIPTION Cloud Admin logs in to a Cloud Node, e.g. via SSH.
ACTORS Cloud Admin and Cloud Node.
PRECONDITIONS None.
POSTCONDITIONS Cloud Admin has root access to Cloud Node.

USE CASE UNIQUE ID /UC 100/ (Migrate Instance)
DESCRIPTION Cloud Admin migrates a VM instance from Comput-

ing Node X to Computing Node Y.
ACTORS Cloud Admin, Computing Node X and Computing

Node Y. Storage Component and Network Compo-
nent may also participate.

PRECONDITIONS The VM instance is running on Computing Node X.
POSTCONDITIONS The VM instance is running on Computing Node Y.

TClouds D2.4.1 Page 14 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 4

Initial Prototype High-Level Architecture

Chapter Authors:
Sören Bleikertz (IBM)
Michael Gröne, Norbert Schirmer (SRX)
Emanuele Cesena, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia, Davide Vernizzi (POL)

This chapter describes our approach towards the high-level architecture for the TClouds
platform. It consists of two parts. First, in Section 4.1 we describe our efforts to evaluate
and decide on an Open Source Cloud Computing framework as starting point for our technical
development. Second, in Section 4.2 we introduce the initial TClouds architecture (see also
D2.2.1, Chapter 4) and the technical artifacts, i.e. subsystems, that partners plan to contribute
for the TClouds prototype. Details on each subsystem are then given in Part II.

4.1 Framework Evaluation and Selection
The TClouds architecture will be prototyped building upon an existing open source framework
for cloud computing. A specific activity is devoted to survey currently available open source
frameworks and select a suitable candidate. The activity is organized in two phases, described
below.

In the first phase, ended on M2, we surveyed the following 4 framework: Nimbus [nim],
Eucalyptus [euc], OpenNebula [opea], OpenStack [opeb].

Table 4.1 shows minimal criteria used for the decision. The outcome of the this first analysis
is reported in Appendix A.

Storage Support Cloud of Cloud Support Driving Community

Eucalyptus x academic
OpenNebula x academic
OpenStack x industry
Nimbus x academic

Figure 4.1: Framework evaluation: excerpt of decision matrix

As a result of this phase, we selected 2 candidates for further analysis: OpenNebula and

TClouds D2.4.1 Page 15 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

OpenStack. The former represents an academic project which already supports a cloud of cloud
scenario, the latter is an industry driven approach which already offers an object store API.

In the second phase of the analysis, we installed and tested extensively the two platform
candidates. As a result of this phase, we prepared a tutorial on how to deploy a cloud-oriented
application onto a cloud infrastructure, and two technical talks describing the architecture of
OpenNebula and OpenStack, as well as the supported APIs. The tutorial and the talks have
been presented at the TClouds technical meeting at M4 in Lisbon, where OpenStack was also
selected as reference platform to build TClouds.

In the following we describe in more detail the evaluation process performed to select the
platform candidate.

The criteria used for the evaluation are:

� Deployment: this evaluates the simplicity of the platform installation in common Linux
distributions using the provided documentation.

� Modularity: this evaluates the internal software structure (monolithic or modular), in
order to verify if the platform can be extended with TClouds developed services and
existent components can be replaced without breaking any functionality.

� API Interface: this evaluates the API available for developers to create their applications.

� Community Activity: this evaluates if the software is currently maintained and how
useful is the support provided by developers through common channels (web site, mailing
lists).

4.1.1 OpenNebula

4.1.1.1 Architecture and Installation

We evaluated OpenNebula v2.0.1, whose architecture is depicted in Figure 4.2.

Figure 4.2: OpenNebula architecture overview (source: OpenNebula web site [opea])

TClouds D2.4.1 Page 16 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

At the highest level there tools distributed with OpenNebula, such as the Command Line
Interface (CLI), the scheduler, or the Cloud RESTful interfaces (currently Amazon EC2 and
OCCI APIs are supported). All these tools communicate with the OpenNebula core through the
XML-RPC interface or the new OpenNebula Cloud API (OCA).

At lower level, the OpenNebula core is split into several functional components which are
responsible to implement methods defined for the above mentioned objects. The Request Man-
ager handles client requests, the Virtual Machine Manager manages and monitors virtual ma-
chines, the Transfer Manager manages virtual machine images, the Virtual Network Manager
manages virtual networks, the Host Manager manages and monitors physical resources and,
finally, the Database persistently stores OpenNebula data structures. The interaction between
these components and a particular hypervisor or a file transfer mechanism is possible through a
set of modules called Drivers.

The OpenNebula core exposes a rich object-oriented interface, the OCA, to manage all
cloud resources. The objects defined are: image, virtual machine, virtual network, user, host
and cluster, each with a set of specific methods. A new virtual machine, for instance, can be
started by calling the methods allocate and deploy on the instantiated object, or can be migrated
to another cluster node by invoking the method migrate.

The installation process was performed using the documentation located at the OpenNeb-
ula’s website [opea] upon several Linux distributions, either from packages, when available, or
compiling from the sources in the other cases. While the installation process has been straight-
forward, the requirements in terms of other system components such as libvirt and KVM were
critical. In particular, the Linux distributions Debian Lenny, CentOS 5.5 and Ubuntu 10.10
contain a version of these components that is not compatible with OpenNebula. In the end, we
chose RedHat Enterprise 6 beta2 Linux as distribution to perform extended tests.

During the installation we found a critical issue using the EC2 interface, as all commands
sent were rejected with an authentication failure message [Smi11]. The problem was caused by
an incompatibility between the client-side library (shipped with the RHEL6 distribution) and the
OpenNebula EC2 server, as they used different digest algorithms for authenticating messages.

4.1.1.2 Extended Evaluation

The test cloud used in this evaluation consists of 3 nodes: one node acting as frontend and
containing the OpenNebula software plus the SQL server (MySQL); two other nodes, called
generically nodes, executing virtual machines, that rely on libvirt and a hypervisor (only the
KVM hypervisor has been tested).

One goal of the test installation is to evaluate the Transfer Manager component, in particular
the driver that implements the Logical Volume Manager (LVM) support for the virtual machines
storage. The current version of OpenNebula supports only a basic scenario were virtual machine
images are stored into LVM logical volumes of each cluster node.

OpenNebula supports two options for the storage management: a shared storage and a non-
shared storage. In the former solution virtual machine image templates and instances are stored
in a centralized storage repository which can be accessed concurrently by the front end and
other cluster nodes. In the latter, an image instance is transferred from the front end, which
contains all templates, to the target node before the virtual machine is started.

These two options present advantages and disadvantages in term of performance and fault
tolerance. The former solution offers good performance during the virtual machine deployment
because there is no data transfer between nodes but only a little I/O overhead during its life
cycle. The latter solution introduces a noticeable delay in the virtual machine deployment,

TClouds D2.4.1 Page 17 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

because its image is transferred across the network to the target node, but no additional I/O
overhead occurs during the life cycle. Regarding the fault tolerance, the shared storage has the
issue that there is one point of failure, which means that all virtual machine image templates and
instances become unavailable if the node providing this service goes down. In the other case,
virtual machines can be still used in the event of a node failure. Further, if the front end is not
available new virtual machines cannot be created but those already deployed can still provide
their services.

In order to verify the flexibility of the OpenNebula architecture, a new Transfer Manager
driver has been developed to support LVM on top of a shared storage repository. We chose to use
the snapshot feature of LVM to decrease the creation time of a virtual machine image instance
from the template and to optimize the storage usage by recording only modified data. We note
that there exists a version of LVM specifically designed to run in a cluster environment. The
system service called clvmd [Red10], in conjunction with a distributed locking mechanism,
offers the necessary support to concurrent writes on LVM metadata. However, when used with
the clustering extension, LVM currently does not support the snapshot feature.

The access model implemented by OpenNebula permits to make some assumptions about
the usage of LVM in a cluster environment that can make the distributed locking mechanism
not necessary. First, LVM is configured only by one actor (the front end node), which means
that metadata can be safely modified because there is only one writer. Second, image templates
(origin of the snapshots) are never modified when virtual machines are executed on cluster
nodes. This avoids metadata corruption because the origin of the snapshot and the snapshot
itself cannot be modified at the same time.

The storage repository used in the test cloud is shared through iSCSI, by configuring one
cluster node as iSCSI target and letting the others access it with an iSCSI initiator client [Tim09].
In order to add fault tolerance to the storage repository the exported block device is also repli-
cated to another cluster node using the Distributed Replicated Block Device (DRBD) [Lin08].

The implemented driver (tm sharedlvm), written in BASH, issues LVM commands to
the front end node, in order to create or remove LVM logical volumes, and to other cluster
nodes to update the LVM configuration. This new driver was submitted to the mailing list
Opennebula Users. The introduction of this new Transfer Manager driver does not break any
existent functionality, and it can be easily disabled or removed without modifying the original
OpenNebula code.

Another goal of the evaluation activity has been to inspect the OpenNebula internal API,
called OpenNebula Cloud API (OCA), and to verify how simple is to develop an application
upon it. One important aspect of the API is that it can be used regardless the programming
language used, because messages between the application and OpenNebula are encoded using
the XML-RPC transport mechanism. Currently there exists two language bindings for the OCA:
Java and Ruby.

One limitation discovered in these API was that images could not be uploaded and stored as
LVM logical volume, as only the files were currently supported. However we were able to fix
this issue by slightly modifying the OpenNebula code, without affecting the API.

As a final comment on the mailing lists activity, in about two months of testing and ex-
perimenting with OpenNebula, we submitted about 25 messages to the developers and always
received prompt responses (in this period, the mailing list counted more than 500 messages).

TClouds D2.4.1 Page 18 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

4.1.1.3 Tutorial on OpenNebula

The TClouds project organized an OpenNebula Hands-on during its meeting in Lisbon with the
main goal of introducing this cloud resource manager, through a cloud user perspective.

In the beginning, the OpenNebula main components, their interactions and interfaces were
presented. The participants were then invited to request the creation of virtual machines, as
well, using and removing them from the virtual machines pool. For this hands-on was created a
cloud infrastructure with one front-end node and seven physical hosts available to allocate the
virtual machines.

4.1.2 OpenStack
OpenStack is an open source Infrastructure as a Service (IaaS) cloud computing platform ini-
tiated by RackSpace and NASA. The initiative is joined by other major vendors and startups
in the field of cloud computing, such as Citrix, Dell, Cloudkick, AMD, and Intel. The code
base of the platform is written in Python (about 70k LOC) and is licensed under the Apache
open source license. The mantra of this initiative is that it “strives to become the open source
standard for building cloud infrastructures everywhere”.

4.1.2.1 Community

The OpenStack project started in July 2010 and already consists of an active and diverse com-
munity as represented in the OpenStack Design Summit 2010 where 250 people from 12 coun-
tries participated. The development cycles of the project are very short and new releases are
planned every 3 to 6 month. In February 2010 a stable version was released that is suitable
for mid-sized deployments with regard to compute resources and production ready for storage
resources. The April 2010 release is planned to be production ready for large scale service
providers.

The community is very diverse and consists of contributors from a variety of organiza-
tion. There seems to be no single organization behind the project, although it was initiated by
RackSpace and NASA that are still major drivers in the project. Over 25 companies are sup-
porting the project and they adopted an open integration process for changes to the code base,
i.e., improvements to the code base from new contributors are welcomed and accepted.

The project incorporates professional development practices in order to ensure good quality
of the software. Among these practices are unit tests, code reviews, code documentation, and
continuous integration. Furthermore, the development and planning of the project are transpar-
ently conducted on the open source software collaboration platform launchpad.net, which is
also used for the development of the popular Ubuntu Linux distribution.

4.1.2.2 Nova: Compute Cloud

Nova contains all the management components that are required to build a compute cloud. It is
similar to Amazon EC2 and is based on NASA’s cloud project.

Installation: In our evaluation we performed a test installation of Nova on a single machine
with a local object store for the virtual machine images. Ubuntu Linux 10.04 and 10.10 contains
packages for Nova that can easily be installed. We only encountered minor problems during
the installation and we were able to start and log into a virtual machine within 30 minutes.

TClouds D2.4.1 Page 19 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

However, our single-machine installation is much simpler than a multi-machine installation
that is required in a real production use case and which would require more work to set up.

Architecture Overview: Figure 4.3 gives an overview of the architecture of Nova. Three
controllers manage the resources such as compute, network, and storage: compute worker,
network controller, and volume worker. API endpoints collect requests from cloud consumers
and a scheduler dispatches requests to the appropriate controller or worker. A queue is used for
all message-based communication between the services.

Figure 4.3: OpenStack Nova Architecture (source: OpenStack Nova web site [Oped])

Service Communication: The communication of the services in the Nova architecture is re-
alized using message queues. Running all the services separated from each other and only
allow communication using queues reflects the design principles of the Nova architecture: A
shared-nothing and messaging-based architecture, the state is held in a distributed data store,
and asynchronous calls with call-backs. The message queues are based on the Advanced Mes-
sage Queuing Protocol (AMQP) and Nova uses the RabbitMQ implementation of these queues,
which is written in Erlang and supports high availability and clustering. Within Nova, message
queues are used in a Publish-and-subscribe fashion, where services listen on specific channels,
and other services can write to these channels. Furthermore, it is possible to send message to
specific hosts, e.g., in order to start a VM on a specific host X.

Cloud API: Nova currently supports two APIs: Amazon EC2 and OpenStack. For EC2, a
subset of the API is implemented and the open source management tools, such as euca2ools,
can be re-used for managing a Nova compute cloud. Furthermore, the Open Cloud Computing

TClouds D2.4.1 Page 20 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Interface (OCCI) API is planned to be implemented. The web service providing the APIs is
also responsible for authentication and authorization of cloud consumers and their requests.
The API server dispatches requests via message to the appropriate services in the architecture.

Scheduler: The scheduler is responsible to choose a host to run instances on when the API
server dispatches a message that a VM is requested to be started. After selecting a host, the
scheduler will forward the request to the selected host, which then can start the requested VM.
Currently, multiple scheduler drivers exists: Chance, which randomly selects a host; Simple,
which chooses the host with the least load. A few problems exists with the current scheduler
implementation, which will be addressed by the OpenStack developers in the feature. Namely,
that only a single scheduler can exist in the Nova architecture, which forms a single point of
failure, and that the state is kept in a central data store. For the future, a distributed scheduler is
planned, which overcomes these scalability and availability problems.

Compute Worker: The compute worker handles the compute resources on a physical ma-
chine. The worker builds disk images for VMs, launches or terminates VMs using a virtualiza-
tion driver (currently LibVirt and Xen are supported), monitors VM states, attaches or detaches
persistent storage volumes to VMs, and provides console outputs from VMs.

Network Controller: The network controller manages the network resources on a host. It
basically configures networks and VLANs on a physical machine, but it is not able to configure
the network infrastructure such as switches, e.g., in order to setup VLANs on the switch. There
exist three different modes for fixed IP addresses: Flat Mode, which is a bridged setup that stat-
ically allocates IP addresses; Flat DHCP Mode, which is also bridged but uses DHCP instead of
static IP addresses; VLAN DHCP Mode, which uses VLANs in order to provide stronger isola-
tion and provides a VPN gateway to the cloud consumer. Besides fixed IP addresses, there also
exists the concept of floating IP addresses that can be dynamically assigned to virtual machines,
e.g., in order to assign a static public IP address to a VM.

Volume Worker: The volume worker manages persistent storage volumes that are exported
to other hosts. The worker can create and delete LVM-based volumes on a physical host. These
volumes can be exported using either iSCSI or ATA over Ethernet (AoE) to hosts, which are
running VMs that requested a volume to be attached. Machines hosting volumes for other
machines are a single point of failure, and a distributed block storage is needed for resilience.
OpenStack developers are looking into adopting Sheepdog, a distributed storage system for
QEMU, for this purpose.

Security Goals & Features: OpenStack aims at providing a redundant shared-nothing archi-
tecture for scalability and fault tolerance, which is realized except for the central scheduler.
Furthermore, OpenStack currently provides a variety of security features. Security groups are
a firewall concept introduced by Amazon EC2 that allows to group virtual machines together,
e.g., based on functionality, and protect this group with a set of firewall rules. A VLAN-based
network setup allows stronger isolation of virtual machines on the network level, and VPN
provides a secure access for the cloud consumer to these instances. Authentication is realized
using access and secret keys for signing web service calls and X509 certificates for bundling
images. Authentication can also be integrated with LDAP. Role-based Access control is imple-
mented for web service calls. Quotas limit the resource usage of cloud consumers and audit

TClouds D2.4.1 Page 21 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

logs are planned to be implemented in the future. Images can be uploaded in an encrypted and
authenticated form, in order to prevent manipulation and eavesdropping while transferring the
image.

4.1.2.3 Swift: Storage Cloud

Swift is a distributed data blob storage system similar to Amazon S3. This component of Open-
Stack originates from RackSpace’s production cloud storage system and is also used in produc-
tion. With regard to the CAP theorem, Swift only provides eventual consistency.

Installation: Similar to Nova, we performed a single-machine installation using Ubuntu Linux
and we used the Ubuntu packages from the developer repository of Swift. Since these packages
do not come with default configuration files, setting up Swift took considerably more time than
setting up Nova, i.e., about 2 hours.

Architecture Overview: The architecture of Swift is illustrated in Figure 4.4. We can identify
three components related to storage: Account, Container and Object servers with their associ-
ated rings. The servers store the actual content and the rings are acting as an address book in
order to locate the server hosting specific content. For the servers we observe a hierarchy in the
stored content, namely that accounts indexes containers and they contain the actual data objects.
A Proxy mediates all requests and responses between the servers and the users, and furthermore
it uses an authentication and authorization service to validate the user’s API calls. Memcache is
used to cache certain responses within the system.

Figure 4.4: OpenStack Swift Architecture

Proxy & Auth: The Proxy exposes a ReSTful API to the client and dispatches all incom-
ing requests to the corresponding servers. The API is not S3-compatible, although a S3 API
middleware is developed that provides such compatibility. Objects, which are requested by the
client, are streamed through the proxy from the object server to the client. For authorization

TClouds D2.4.1 Page 22 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

and authentication, there currently exists two services: DevAuth and Swauth. The former al-
lows external auth services to be plugged in, and the later is a scalable auth service based on
Swift itself.

Rings: A Ring is a mapping of an entity name to its physical location. In the Swift architecture
we have separate rings for the different content types, i.e., account, container, and object. Any
action on an entity requires to query the ring in order to locate it. The mapping takes into
account zones, devices, partitions, and replicas. Each replicate resides in a different zone, which
could be a server, rack, or data center. Partitions are replicated and balanced across the cluster.
Devices are used for handoff in failure scenarios and partitions are assigned to devices. A ring
is a statically constructed data structure (using the ring-builder) and distributed to the servers.
In case the configuration of the Swift system changes, rings are recreated and distributed.

Account & Container Server: The functionality of the account and container servers are
very similar. Both store an index of the containers or objects respectively in sqlite database
files. Replication of these files to other physical locations is performed by first performing a
hash comparison between the source and destination files. If the hashes differ, the records added
since a last synchronization point are shared.

Object Server: The object server stores the actual simple data blobs. Objects are stored as
binary files with metadata in the file system’s extended attributes (xattr). The path of the object
file is a combination of the object name’s hash and a timestamp. In case an object gets deleted, a
special “tombstone” file is placed instead of the file, which is also replicated to the other servers,
therefore ensuring that other replica do not serve the deleted file. In case a new version of an
object is stored, the older version will be deleted. Large objects are supported with basically
infinite size (although depending on the storage cloud capacity) by using client-side chunking
that splits the large object into smaller (up to 5 GB) chunks. Replication is done by using
rsync and pushing data to replica servers. For efficiency reasons, a partial rsync based on hash
invalidation is performed.

Updaters & Auditors: There exist two processes which are performed periodically: Updater
and Auditor. The updater updates the index of account or container servers, in case a new con-
tainer or object is added respectively. Such an update might fail and the update task is queued for
later processing, which leads to an eventual consistency window. For example, during this win-
dow, a newly added object can be retrieved, but will not be listed in the container. The auditor is
responsible for checking the integrity of objects, containers, and accounts. The integrity check
is based on a hash comparison for objects, and trying to obtain database information from the
sqlite files in case of container and account servers. In case of corruption, the corrupted entity
is quarantined and replaced with one from a replica.

Security Features: The main security goal of Swift is to be fault tolerant and it uses replica-
tion to achieve this goal. Furthermore, access control lists (ACL) provide fine-grained autho-
rization, and a pluggable authentication framework is integrated in Swift.

TClouds D2.4.1 Page 23 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

4.1.2.4 Conclusion

OpenStack is an active project that has a lively community and a lot of momentum. Nova, the
compute cloud service, is currently still a young component. However, it is expanding fast in
terms of features, and an aggressive release schedule aims at providing scalability and robust-
ness for large scale deployments in the near future. Swift, the storage cloud, is already pro-
duction ready and powers RackSpace’s commercial storage cloud offering CloudFiles, which
stores petabyte of data and billions of objects. The development environment is professional
and attractive, because of readable code, documentation, active and open developers, a trans-
parent development process, and unit tests. The overall focus of OpenStack is scalability and
fault tolerance, therefore opportunities for TClouds exists to have an impact on other security
goals such as confidentiality and integrity.

4.1.3 Evaluation and Final Selection

4.1.3.1 Brief Comparison: OpenNebula vs. OpenStack

Comparing the communities of both projects shows that OpenStack features a diverse com-
munity consisting of contributors of different organization, whereas OpenNebula is mainly de-
veloped by the University of Madrid and the associated spin-off company. OpenStack has a
more commercial-driven community, since it is used by RackSpace in their commercial cloud
offering and all the supporting organizations are enterprises or startups. OpenNebula originates
from a academic and research background, and it is mostly used in other research projects and
organizations.

From a technical point of view, there are a number of differences between these two cloud
computing platforms. OpenStack aims for a decentralized approach, as manifested by their
shared-nothing and message-based architecture, whereas OpenNebula has a more centralized
approach (i.e. the OpenNebula daemon). OpenStack is written purely in Python, and OpenNeb-
ula’s code base consists of mainly C++ code with minor parts written in Java and Ruby. Open-
Stack is the combination of compute (Nova) and storage (Swift) cloud components, whereas
OpenNebula does not provide a storage service. Possibly Swift can also be integrated with
OpenNebula. The paradigm of managing multiple clouds with the same platform is only sup-
ported by OpenNebula. OpenStack is only able to build isolated single clouds.

4.1.3.2 Final Vote

During the Technical Meeting in Lisbon in M4, after discussing the results of our evaluation,
we had no clear winner based on the criteria described in Section 4.1. Hence we decided to
vote, with each partner having one vote. Table 4.1 shows the result of the vote.

OpenNebula OpenStack Abstain

POL, SRX IBM, FAU, TUDA FFCUL, HSR, OXFD, ULD

Table 4.1: Vote on platform choice

We decided to use OpenStack as a starting point for our technical development in the project.

TClouds D2.4.1 Page 24 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

4.2 TClouds Prototype High-level Architecture
In this section we review the initial TClouds architecture specification as detailed in D2.2.1,
Chapter 4, and we define the initial prototype architecture as a subset of the overall specification.

Figure 4.5 presents a bird’s-eye view of the TClouds architecture. A Trustworthy Cloud

Figure 4.5: TClouds high-level architecture

Infrastructure (focus of WP 2.1) can be realized through a resilient cloud or a resilient layer
on top of a commodity cloud. This provides users with Trusted Infrastructure services (T-
IaaS). On the other hand, adaptive resilience from cloud of clouds (focus of WP 2.2) can be
obtained extending such a T-IaaS API or be built directly on top of commodity clouds. Within
the context of cloud of clouds, we discovered that some functionality can not be provided at
infrastructure level, but requires the provision of Trusted Platform services (T-PaaS). Another
important achievement of Y1 with respect to the initial plans concerns Cross-layer Security and
Privacy Management (focus of WP 2.3). We recognized that a central management component
is not suitable for our architecture (mainly to allow users and especially providers to pick up
only the TClouds functionality they require), therefore we plan to integrate the management
directly within each subsystem.

In the following, we provide additional details on the initial architecture specification and
we introduce the subsystems that will be developed as part of the integrated prototype. First, in
Section 4.2.1, we review deployment alternative for TClouds, showing how it addresses several
realistic scenarios of resilient cloud computing and putting in evidence those most relevant for
the TClouds prototype. Next, in Section 4.2.2 we recall the key architecture aspects and the
main building blocks, providing details on the local architecture of TClouds nodes. Finally, in
Section 4.2.3 we introduce the subsystems that will constitute the TClouds prototype and we
discuss how they are placed within the TClouds architecture.

4.2.1 TClouds Deployment Alternatives
The final and overall goal of TClouds is to be able to supply a cloud systems architect with as
many deployment alternatives as possible.

In particular, our architecture supports implementations of TClouds functionality preserv-
ing the use of legacy commodity clouds IaaS, either by resorting to client-side software, or to

TClouds D2.4.1 Page 25 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

server-side software. We call them respectively TClouds Information Agent (TIA) and TClouds
Information Switch (TIS), we shall give more details in the following. Moreover, the architec-
ture allows for more ambitious steps, those considering that commodity cloud providers will
eventually adhere to a model such as TClouds, directly providing resilient cloud computing.

The rich infrastructure depicted in Figure 4.6 prefigures a true ecosystem capable of offering
the best possible tradeoffs to clients and providers of resilient cloud services, either end-clients
or mediators.

Figure 4.6: TClouds deployment in a diverse ecosystem (source: D2.2.1, Figure 4.7)

From left to right, we can observe end-clients from an organization (Org. A), that access na-
tive TClouds or TClouds-enabled cloud providers (i.e. infrastructures local to a cloud provider,
using TCLOUDS protocols and mechanisms). The same clients – that we stress are unmodi-
fied – can access resilient cloud services implemented on top of commodity clouds through a
TClouds-enabled mediator. Finally, another way to achieve resiliency from commodity clouds
is via TClouds-enabled client-resident software, as shown by users from the other organization
(Org. B) in the figure. For more details on these deployment alternatives, including security
and dependability problems that arise in each scenario, we refer to D2.2.1, Chapter 4.

Concerning the TClouds prototype which is the focus of this report, the two extreme alterna-
tives will be demonstrated, providing examples of native TClouds infrastructures and TClouds-
enabled client-resident software.

4.2.1.1 Native TClouds Infrastructure

This infrastructure uses native TClouds protocols and mechanisms in the design of the data
centers from scratch. This alternative is bound to achieve the product with the highest trustwor-
thiness level and the best performance, that is, ultimately trustworthy IaaS and PaaS for a single
cloud provider, but at the loss of diversity.

4.2.1.2 TClouds-enabled Client-resident Software

Client-resident software is composed of add-on modules allowing direct implementation of
some secure services over commodity clouds, by organization’s clients. This is the simplest

TClouds D2.4.1 Page 26 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

TClouds implementation, not requiring additional machinery, but implying modifications in all
client machines wanting to access resilient cloud services. The major point of strength of this
solution is the total absence of single points-of-failures.

4.2.2 Initial Architecture Specification
TClouds could be described, in short, as a resilient cloud-of-clouds infrastructure providing
automated computing resilience against attacks and accidents, in complement or in addition
to commodity clouds. This enhanced functionality will be achieved through specialized mid-
dleware standing between low-level, basic multi-cloud untrusted services, and the applications
requiring security and dependability.

The TClouds architecture provides applications with a wealth of interfaces to produce incre-
mental resilience solutions with single or multiple clouds: TClouds Trusted Platform services
(T-PaaS) on top of the middleware layer; TClouds Trusted Infrastructure services (T-IaaS) from
within the middleware layer; Infrastructure services (IaaS) from available commodity untrusted
clouds.

The main building blocks of the architecture that implement this functionality, illustrated in
Figure 4.7 (a), are reviewed in the following (for details, we refer to D2.2.1, Chapter 4).

Figure 4.7: TClouds architecture (source D2.2.1, Figure 4.2) with block diagram (left) and
TClouds Information Switch (right)

Basic multi-cloud untrusted services represent the available standard functionality, at IaaS
level, offered by commodity market players.

Trusted infrastructure services represent trusted-trustworthy versions of IaaS services, namely
storage and processing power. The idea is to offer file systems, and low-level virtual machines,
resilient to attacks and faults, by combinations of fault/intrusion prevention and tolerance mech-
anisms and protocols which build a resilience layer on top of the corresponding untrusted stor-
age and processing systems.

Trusted platform services represent trusted-trustworthy services at a higher level of abstrac-
tion, provided through extensions of the resilience layer implemented by the TClouds middle-
ware, built on top of either or both the IaaS and the T-IaaS. These services normally deploy
a semantics useful to build complex reliable and distributed applications. Examples are: state
machine replication, consistent service execution, etc. Once more, these services are imple-
mented by combinations of fault/intrusion prevention and tolerance mechanisms and protocols,
for example, Byzantine fault-tolerant (protocols).

In order to support the deployment alternatives described above, we introduce the notions
of TClouds Information Switch and TClouds Information Agent.

TClouds D2.4.1 Page 27 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

TClouds Information Switch (TIS) is a conceptual “box” which runs the middleware pro-
tocols and mechanisms implementing the resilience components already mentioned, see also
Figure 4.7 (b). Each TIS instantiation encapsulates the services in use by that configuration,
which are all or part of the services defined in the TClouds architecture. TIS implementation
depends on the particular incarnation, ranging from dedicated machine to fault and intrusion
tolerant appliance box containing several TIS replicas implemented as virtual machines. The
TIS can be built with incremental levels of resilience, depending on its criticality. Trustworthy
TIS-TIS interconnection through TClouds communication services secures information flows
in the architecture.

TClouds Information Agent (TIA) can be seen as a particular implementation of a TIS, as
a software appliance residing with end clients. Like the TIS, it runs different sets of functions,
depending on specific protocols being used on the client side. TIAs require no additional hard-
ware as a general rule. However, running in the client space, they are subject to a great level of
threat. This can mitigated by configurations where the TIA logic is aware of the existence of
minimal additional hardware (e.g., trusted components) to improve its resilience. On the other
hand, the TIA option requires client modifications to achieve the desired TClouds functional-
ity. Whenever needed, trustworthy TIA-TIS interconnection through TClouds communication
services secures information flows in the architecture.

We conclude this section with details on the local architecture of TClouds nodes. The de-
scription here slightly extends the one in D2.2.1, Chapter 4, but is limited to the cloud node and
does not cover other components for adaptive resilience.

A snapshot of the local architecture of TClouds detailing a node and its interconnection
methods is depicted in Figure 4.8. This architecture is suitable for TIS but also for nodes in
native TClouds data center.

Hardware
Computing
Framework

Service
VM

VM
Operating

System

APPL
AS
CS

NET

Cloud Infrastructure

Local Software

Application

Distribuited
Software

Figure 4.8: Local architecture of a TClouds node (see D2.2.1, Figure 4.8 for comparison)

Firstly, there is the hardware dimension, which includes the node and networking devices
that make up the physical distributed system. In general, we assume that most of a node’s opera-
tions run on untrusted hardware, e.g., the usual machinery of a computer, connected through the
normal networking infrastructure. However, some nodes – TIS, for example – may have pieces
of hardware that are trustworthy, i.e., where by construction intruders do not have direct access
to the inside of those components. The types of trustworthy hardware featured in TClouds may
include standard TPMs, or dedicated appliance boards with processor, plugged into the node’s
main hardware.

Secondly, services based on the trustworthy hardware are accessed through the local sup-
port services, or local software. The rationale behind our trusted components is the following:
whilst we let a local node be compromised, we make sure that the trusted component operation

TClouds D2.4.1 Page 28 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

is not undermined (crash failure assumption). Within this layer, we can further distinguish be-
tween cloud infrastructure and cloud application software. The former is composed of a cloud
computing framework (in our prototypes either built upon OpenStack or on SRX Trusted In-
frastructures, cf. D2.1.1, Chapter 12) and Service VMs, i.e. VMs not dedicated to applications
but providing IaaS/PaaS services. The latter consists of the application VM operating system
and basic services.

Thirdly, there is the distributed software provided by TClouds, i.e. middleware layers on
top of which distributed applications run, even in the presence of malicious faults.

4.2.3 Prototype Subsystems
We now introduce the subsystems that shall constitute the TClouds prototype. Each subsystem
is shortly introduced here whereas details are provided in dedicated sections in Part II of this
report.

4.2.3.1 Trustworthy Cloud Infrastructure (WP 2.1)

Improved Availability and Resilience

� Resource-efficient BFT (CheapBFT) [FAU]. Services provided via world-spanning net-
works such as the Internet has been getting more and more important for today’s society.
This becomes evident, when these services are unavailable or, even worse, when they
produce incorrect results. One way to improve the availability and reliability of services
is the usage of replication. However, in the standard variant, replication only regards
outages caused by crashes. Tolerating arbitrary faults, called “Byzantine faults” such as
software bugs, intrusions, viruses, hardware faults etc. and hence ensure correct results is
far more difficult and resource intensive. For this reason, industry is reluctant to consider
Byzantine faults, since it presumably entails relatively high financial costs.

Addressing this problem, FAU will contribute with an approach for Byzantine fault toler-
ance, called CheapBFT, exhibiting a lower resource footprint and thus making its usage
more practical. Among other techniques, CheapBFT will rely on a trusted hardware com-
ponent to meet its objectives.

� Simple Key/Value Store [FAU]. FAU will provide a simple key/value store as an example
for a simple cloud service component. This can be used by other services to cache non-
critical data, i.e. dynamically generated frontend websites. It can also be used as an
minimal example for the downstripped and hardened components we intend to develop
in WP 2.1. Once the basic functionality is in place, the service can be extended with
authentication mechanisms and different access protocols (memcached, REST, SOAP, ...)
to allow better integration and storage of sensitive data.

Root-less Environment

� Secure Block Storage (SBS) [TUDA]. TUDA will contribute Secure Block Storage
(SBS). Block storage is non-linear raw memory attached to VM instances as block device
(virtual hard disk, e.g. iSCSI). SBS will provide a transparent layer that provides security
properties such as confidentiality, integrity and authenticity for block devices. The SBS
is also responsible for user-centric key management.

TClouds D2.4.1 Page 29 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� Secure VM Instances [TUDA]. Based on the Secure Block Storage component (SBS),
TUDA will contribute with a component that allows clients to securely deploy, launch,
and migrate their own VM images. The component ensures that the VM images and data
contained within will be confidentiality and integrity protected when they are at rest in a
image repository or in transit during migration. The authenticity can be ensured using a
secure channel.

� TrustedServer [SRX]. SRX will provide the TrustedServer as the central security plat-
form to run the VM instances (also called compartments). It is based on the TURAYA Se-
curity Kernel and provides isolation of compartments by linking them to TVD s. Domain
specific transparent encryption is applied to prohibit information flow between TVDs.
The focus of this component is to provide (together with the TrustedObjects Manger
(TOM) a trusted platform for cloud applications from the ground up.

Verification and Auditability

� Log Service [POL]. Log Service is the TClouds logging subsystem, mainly used by other
Cloud Components to log their internal events and possibly also used by applications. Log
Service can be used as basis for auditing or reporting SLA compliance to the User (here
the main target of the service is the end user of the cloud, but it may also refer to an
external auditor or to the Cloud Admin). In WP2.1, we concentrate in providing integrity
of logs, privacy-aware and access control mechanisms, whilst in WP2.2, we concentrate
on availability and logging of cloud of clouds events.

4.2.3.2 Cloud of Clouds Middleware for Adaptive Resilience (WP 2.2)

Improved Availability and Resilience

� State Machine Replication [FFCUL]. Server and client are the basic structures used to
implement distributed systems as clouds. The server offers services and the client use
such services by invoking them. An invocation is done by sending a request message
from the client to the server, which sends the corresponding results with a reply message
to the client.

Fault-tolerant distributed systems are implemented by replicating the components prone
to failures, so they can fail independently without compromising the service availability.
An intrusion-tolerant system is commonly modeled as a fault-tolerant system, capable
of defending itself against byzantine failures, in which a component is allowed to fail in
arbitrary ways, including the most common stop and crash failures, but also processing
requests incorrectly, corrupting their local state, or producing incorrect or inconsistent
outputs.

Byzantine fault-tolerant services are implemented using replicated state-machines, that
upon receiving a request deterministically change to a new state and send a reply. All
state-machine replicas start with the same state and requests are sent to them using reli-
able, ordered, broadcasts from clients. Majority (voting) is used in the clients to select
the correct reply among those from all replicas. The section 8.1.3 gives more details on
how this is actually done.

TClouds D2.4.1 Page 30 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� Fault-tolerant Workflow Execution (FT-BPEL) [FAU]. FAU will contribute with a
PaaS infrastructure permitting the fault-tolerant execution of business processes in par-
ticular and workflows in general which are based on and composed of Web services.
The infrastructure will be based on BPEL, an XML-based language for describing such
workflows.

Resilient Storage

� Resilient Object Storage [IBM+FFCUL]. The object model for cloud storage has be-
come extremely popular, after its introduction with Amazon’s Simple Storage Service
(S3) in 2006. It allows reads and writes of simple blobs, each one identified by a unique
name (also called a “key”). A multitude of commercial providers offer such blob storage
services today.

IBM and FFCUL will contribute a system that builds reliable and secure storage through
a federation of object storage services from multiple providers. Multiple clients may con-
currently access the same remote storage provider and operate on the same objects. They
do this through an interface that contains the basic and most common operations of object
cloud storage. (Since every vendor provides the same basic operations but slightly differ-
ent advanced operations, the system only uses the common denominator of all providers.)

The software is a library run by each client before it accesses cloud storage; the manage-
ment and setup is the same as for accessing one storage provider, and the library does not
require client-to-client communication. The library requires some cryptographic creden-
tials (public keys) of all clients to be present.

The storage system provides confidentiality through encryption, integrity through cryp-
tographic data authentication, and reliability through data replication and erasure coding.
Key management for encryption and authentication keys is integrated.

� Confidentiality Proxy for S3 [SRX]. SRX will contribute to the trusted cloud infrastruc-
ture with a confidentiality proxy for S3. The component is implemented as a security
service which is part of the SecurityKernel and managed by TOM. It will transparently
encrypt data of a mounted file system (Linux) according to a TVD and allows to integrate
untrusted Amazon Simple Storage Service (Amazon S3 [amab])-based storage into the
trusted cloud infrastructure. The S3 proxy does not directly expose the S3 interface to the
User. Instead the S3-based storage is mounted as a file system (via s3fs [s3f]). So a User
stores and reads ordinary files through a Linux file system or (optional) a Server Mes-
sage Block (SMB) share instead of accessing the bucket(s) directly, which would mean
interaction with buckets and objects via the SOAP and REST API [amac]. The encryp-
tion happens transparently within the TrustedServer which attaches the S3-based storage
as an encrypted file system to all VM instances belonging to a TVD The encryption key
is derived from the TVD f the VM instance and managed by TOM. The main purpose
of this component is to demo an integrated prototype: Management, TrustedServer, and
untrusted Cloud.

4.2.3.3 Cross-layer Security and Privacy Management (WP 2.3)

High-availability Management

TClouds D2.4.1 Page 31 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� Access Control as a Service (ACaaS) [OXFD]. The provision of automated manage-
ment of Clouds virtual resources is a fundamental requirement for the success of future
Cloud. Such automated management would require understanding the properties of Cloud
infrastructure and its policies, and it would also require understanding Cloud user require-
ments. Matching user requirements and infrastructure properties in normal operations as
well as during incidents would result in ensuring Cloud requirements are continually con-
sidered by Cloud provider. In this part we are planning to develop an Enterprise Rights
Management (ERM) tool, which we refer to as Access Control as a Service (ACaaS).

The objective of ACaaS is to act as a policy decision point to manage the hosting of VM
instances at an appropriate Computing Node. Specifically, ACaaS component verifies
that a Computing Node satisfies User requirements when hosting its VM instance. This
is achieved by matching Cloud’s User requirements and Computing Node infrastructure
policy/properties.

Secure Management of Keys and VM images

� TrustedObjects Manager (TOM) [SRX]. The Trusted Objects Manager (TOM) is the
central management component of the trusted cloud infrastructure. The TOM manages
the physical infrastructure including networks, services and appliances (physical plat-
forms). Since appliances remotely enforce a subset of the overall security policy, a perma-
nent trusted channel between the TOM and its appliances is used for client authentication,
to check their software configuration using attestation, and to upload policy changes and
software updates. Finally, for each TVD efined the TOM creates an independent TVD-
specific Root-CA. SRX will contribute to enhance the TOM to manage the TrustedServers
within the cloud infrastructure. TOM manages TVD s and Inter-TVD information flow
policies, provides key-management and configures the managed TrustedServers accord-
ingly.

As the central TVD Management Component of a TVD-based infrastructure TOM pro-
vides the user interface to define TVDs and corresponding intra-TVD and inter-TVD
information flow policies.

� Trusted Management Channel [SRX]. The Trusted Management Channel allows to
securely connect the TOM with TrustedServers to setup, start and stop VM instances, and
to load configuration and policies. It also could be used to interconnect TOMs.

Verification and Auditability

� Ontology-based Reasoner to Check TVD Isolation [POL]. The ontology-based Rea-
soner is a subcomponent/plugin for the Management Component that, given as input a
service model, an infrastructure model and an allocation of services onto the infrastruc-
ture, makes it possible to verify whether some security properties required by the service
are satisfied by the allocation. Furthermore, it may also provides hints on how to modify
the allocation whenever security requirements are not met.

More specifically, the service model shall describe a TVD as a virtual network and the
main property we shall verify is isolation, in part achieved at “computational” level by
the hypervisor, in part achieved at network level by securing untrusted channels. We rely
on ontology-based reasoning to perform analysis.

TClouds D2.4.1 Page 32 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� Automated Validation of Isolation of Cloud Users [IBM]. SAVE (Security Assurance
for Virtual Environment) is a tool developed at IBM research for extracting configuration
data from multiple virtualization environments, transforming the data into a normalized
graph representation, and subsequent analysis of its security properties. IBM will inte-
grate and adapt this technology for the demonstrator based on OpenStack, in order to
validate isolation of cloud users.

In Figure 4.9 we show how TClouds subsystems are placed withing the local architecture
shown in Figure 4.8. Said in other words, we summarize in a graphical form how, and in which
layer, each subsystem shall provide his enhance security or dependability features.

First we distinguish if the subsystem resides at the Cloud Provider side (TIS) or it is designed
to be integrated at Client side (TIA), or both. For TIS, we further refine according to Figure 4.8
in the cloud infrastructure (hardware, cloud framework, service VM) and cloud application
(VM operating system and basic services, TClouds middleware). In the TIA, we consider the
hardware (HW), the operating system and basic services (OS) and the TClouds middleware.

A dark cell in a subsystem row means that the component implements a feature in the
corresponding layer. A light cell means a possible extension of the subsystem. As none of our
subsystems directly implements hardware solutions, we used that column to specify hardware
requirements.

Subsystem
Cloud Provider side (TIS) Client side (TIA)Cloud infrastructure Cloud application

HW C. Framework Service VM VM OS Middleware HW OS Middleware
Resource-efficient BFT (CheapBFT) [FAU] FPGA
Simple Key/Value Store [FAU]
Secure Block Storage (SBS) [TUDA] TPM
Secure VM Instances [TUDA] TPM
TrustedServer [SRX] TPM
Log Service [POL] TPM
State Machine Replication [FFCUL]
Fault-tolerant Workflow Execution [FAU]
Resilient Object Storage [IBM+FFCUL]
Confidentiality Proxy for S3 [SRX]
Access Control as a Service (ACaaS) [OXFD] TPM
TrustedObjects Manager (TOM) [SRX] TPM
Trusted Management Channel [SRX] TPM
Ontology-based Reasoner [POL]
Automated Validation [IBM]

Figure 4.9: TClouds subsystems and their placement within the local architecture

TClouds D2.4.1 Page 33 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 5

Preliminary API Definition

Chapter Authors:
Michael Gröne, Norbert Schirmer (SRX)

This chapter introduces the preliminary API of the TClouds platform. It consists of two
parts. First, in Section 5.1, we provide an overview of the OpenStack API, Trusted Infrastruc-
tures API and Cloud-of-Clouds API as starting points for our technical development. Moreover,
in Section 5.2, we classify the APIs of the subsystems that constitute the TClouds prototype ac-
cording to different relevant parameters (type, functionality, client, deployment, ...).

5.1 Introduction to Application Programming Interface
The goal of an Application Programming Interface (API) is to give a particular set of rules and
specifications that services, such as software or infrastructure, can follow to communicate with
each other. It serves as an interface between different services and facilitates their interaction,
similar to the way the user interface (e.g. GUI) facilitates the interaction between humans and
computers.

An API can be created for applications, libraries, etc., as a way for defining their “vocab-
ularies” and resource request conventions (e.g., function-calling conventions). It may include
specifications for routines, data structures, object classes, and protocols used to communicate
between the consumer program and the program implementing the API. An API can also be the
definition of a protocol.

5.1.1 Openstack API
The OpenStack API (cf. [Ope10, Ope11]) includes management functions to be used in the
Cloud Infrastructure, built using OpenStack components and relevant for D2.1.1. In that deliv-
erable a security analysis of OpenStack and its API (cf. D2.1.1, Chapter 4) is described.

5.1.1.1 OpenStack REST API

Each core project (Nova, Swift and Glance) exposes one or more RESTful interfaces to interact
with the outside world. These RESTful interfaces may be used by the public (Public API),
or operators (Management API). Orchestration and higher level systems should also use these
APIs. Projects may also expose notification interfaces. These should also be based on the REST
principles. The RESTful APIs have a minimum set of standards and capabilities (they will all
be versioned, they should all be extensible and support rate limiting, etc., cf. [Ope11]).

TClouds D2.4.1 Page 34 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

5.1.1.2 Dev APIs (Internal APIs)

DevAPIs help developers in building OpenStack components. These APIs are targeted exclu-
sively to project developers. They need not to be RESTful (though they can be), they might
leverage other protocols, they may be Python based or whatever. DevAPIs should not be
exposed outside a project’s boundary. For example, if Nova needs to interact with Swift, it
should interact via the OpenStack API, never via the DevAPI, that is restricted to developers
(cf. [Ope11]).

5.1.1.3 Design Notes

The Openstack API (cf. [Ope11]) should be a superset of Rackspace APIs:

� Rackspace APIs currently have the goal: “Launch and control Cloud Servers program-
matically using a RESTful API”

� OpenStack API has a similar goal: “Launch and control Cloud Systems programmatically
using a RESTful API”

� Needs higher levels abstractions for datacenter/Cloud System, composite application and
so forth

� Introduces Storage and Network layer abstractions.

5.1.2 Trusted Infrastructures API
As shown in D2.1.1, Chapter 12, Trusted Infrastructures consist of SRX components of which
the central management component, the TOM, manages all appliances, such as TrustedServer.
The API consists of the GUI of the TOM, the protocol and the libraries for management.

5.1.3 Cloud of Clouds middleware API
Currently, there is no preliminary API targeting the Cloud of Clouds (CoC) middleware ap-
proach yet. First approaches to the CoC middleware are shown in D2.2.1, Chapter 5.

5.2 TClouds Subsystems Preliminary API
In this section we give a brief overview of the parts of the TClouds subsystems preliminary API.

5.2.1 Kind of API
TClouds API mostly consists of public subsystems APIs. These may be of the kind:

� GUI

� RESTful (conforming to the REST constraints)

� SOAP

� Protocol (implementation of a protocol)

� Library.

TClouds D2.4.1 Page 35 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

5.2.2 Functionality of API
Functionality, such as:

� Infrastructure hardening

� Compute

� Storage

� Image mgnt

� Extensions.

5.2.3 Clients of API
Clients of the API of the subsystems may be:

� Other Cloud subsystems

� Cloud Admin (GUI)

� Users (GUI)

� Developers.

5.2.4 Deployment of API
Another part of the preliminary API is the information about where subsystems are deployed.
The deployments of API are:

� OpenStack

� Trusted Cloud (SRX) / Trusted Infrastructure

� Cloud-of-Clouds.

5.2.5 Standards used or extended
The TClouds API covers a range of standards used by components and subsystems, such as
Amazon S3, OpenStack, and introduces extensions of them and new ones:

� Amazon AWS (EC2, S3, etc.)

� OpenStack

� Other standards (e.g. TLS, BPEL, syslog, memcached, ZooKeeper, etc.)

� Extension of a standard

� New one.

TClouds D2.4.1 Page 36 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

5.2.6 Possible Groups of API
Components and their API could be grouped into 4 groups:

� Infrastructure extensions, such as logging, trusted infrastructure, fault tolerance

� Audit components, such as reasoner and automated validation

� Middleware (such as S3 proxy or BPEL)

� Storage (such as key/value/object store).

5.3 TClouds Subsystems Preliminary API Table
The following table shows the TClouds subsystems public APIs.

TClouds D2.4.1 Page 37 of 197

Kind Clients Deployment Standard
CheapBFT (FAU) protocol Other Cloud subsystems OpenStack Smart-BFT

Simple Key/Value Store (FAU) protocol Other Cloud subsystems OpenStack memcached

Secure Block Storage (TUDA) REST Users, OpenStack Extension of OpenStack
other Cloud subsystems

Secure VM Instances (TUDA) REST Other Cloud subsystems OpenStack Extension of OpenStack

TrustedServer (SRX) protocol, Other Cloud subsystems Trusted Cloud Extension of infrastructure
libraries

Log Service (POL) REST, Other Cloud subsystems OpenStack Extension of syslog,
GUI Extension of OpenStack

State machine replication (FFCUL) protocol Other Cloud subsystems Cloud-of-Clouds Smart-BFT

FT-BPEL (FAU) SOAP, Users, OpenStack, BPEL process,
other protocol other Cloud subsystems Cloud-of-Clouds ZooKeeper

Object Storage (IBM+FFCUL) REST Other Cloud subsystems Cloud-of-Clouds Extension of S3

Confidentiality proxy for S3 (SRX) GUI, Other Cloud subsystems Trusted Cloud Linux file system
other

Access Control as a Service (OXFD) GUI Users, Cloud Admin OpenStack Extension of OpenStack

TrustedObjects Manager (SRX) GUI Other Cloud subsystems, Trusted Cloud Extension of infrastructure
Cloud Admin

Trusted Management Channel (SRX) protocol, Other Cloud subsystems Trusted Cloud Extension of infrastructure,
libraries Extension of TLS

Ontology-based Reasoner (POL) GUI, Cloud Admin OpenStack New
Java

Automated Validation of Isolation (IBM) REST Cloud Admin OpenStack New

Table 5.1: TClouds subsystems preliminary API

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 6

Test Methodology

Chapter Authors:
Emanuele Cesena, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia, Davide Vernizzi (POL)
Mina Deng (PHI)
Ilaria Baroni, Marco Nalin (HSR)
Paulo Jorge Santos (EFA)

Testing is essential to guarantee the quality of software components. In order to meet the
functional requirements and to match the desired quality level, TClouds subsystems will be
evaluated as standalone components as well as group of components that cooperate to form the
cloud infrastructure.

This chapter introduces basic concepts of software testing and explains how they will be
applied to the TClouds design and development.

6.1 Introduction to Software Testing
The goal of testing is to detect software failures so that defects may be discovered and corrected.
Testing cannot establish that a product functions properly under all conditions, however it can
evidence those specific conditions that make the software not working properly. Software test-
ing often includes examination of code as well as execution of that code in various environments
and conditions.

Even if multiple different techniques for software testing are available, it is possible to group
them into two main categories:

� White-box: this testing (also known as clear box testing) employs the knowledge of the
internals of the software being tested to exercise different paths within the module, loop
boundaries and data structures.

� Black-box: in this testing approach, there is no knowledge about the internal structure of
the component to be tested. Here, test cases are built around specifications and require-
ments, i.e., what the application is supposed to do.

In both the cases, the tester chooses inputs to stimulate code and determine the appropriate
outputs. Then the inputs are fed to the component to be tested and the outputs are examined. If
the obtained output are equal to the expected ones, the test is passed, otherwise the test fails.

White-box and black-box testing can be used to test different aspects of software compo-
nents:

TClouds D2.4.1 Page 39 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� Unit test: these tests verify if the software units (i.e., the smallest software elements
identifiable into a software component) work properly. In practice, the programmer can
write unit tests to verify that the methods (or functions) of his program are correct. These
tests make it possible to identify bugs in the implementation or errors in the logic of
the single components. These test can only be white-box since it is necessary to have a
deep knowledge of the internal code for testing all the possible code branch or the loop
boundaries.

� Integration test: these tests are used to verify how a single component works when put
together with other components. Usually these tests identify errors across the interfaces
of the components. These tests can be both white-box or black-box and usually are per-
formed by the programmers of the components.

� Functional test: these tests aims to ensure that the functionality specified in the require-
ment specification works.

� System test: these tests are similar to functional tests, but they try to verify how TClouds
subsystems work when they are composed together into the cloud and act as a single
integrated system. Functional and system tests are usually black-box and may help in
finding incorrect or missing functionality, interface errors or errors in data structures used
by interfaces, and behavior or performance errors.

� Regression test: these tests are run through all the other testing phases and verify that
modifications to components (which may pass single unit tests) do not have side effects
on the rest of the system. Regression test can be thought as a spot-examination of the
whole system which is run often. Any strange result of the regression test may indicate
that there are problems due to recent modifications.

Since it is impractical to run all the tests too often, in practice regression tests are a subset
of the original test cases which can be completely automated.

6.2 Component tests
In TClouds, each partner may release a testsuite together with its components. This testsuite, if
completely automated, can be used, from the perspective of the TClouds project, as unit testing
for that component. Whenever possible, components testsuites can be integrated in a single
testing framework, for instance Hudson [hud] (also used by the OpenNebula project), so to
makes it possible a continuous integration test methodology.

6.3 API tests
Internal and TClouds API tests are similar, while they apply to two distinct interfaces. Internal
API tests are functional tests for TClouds subsystems, while TClouds API tests correspond to
integration tests of the TClouds subsystems with applications, both performed as black-box
tests. The internal API tests aim to ensuring that the functionality specified in the requirement
specification works. Moreover, this test may involve putting the subsystem in many different
environments to ensure it works under different conditions. The TClouds API tests verify how
TClouds subsystems work when they are composed together into the cloud and act as a single
integrated system.

TClouds D2.4.1 Page 40 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

The API tests should cover the totality of the functions exposed by the subsystems, at least
for one fixed condition (i.e., function parameters) and for the default platform configuration.
These tests will be automatic, e.g. with REST interface and Selenium [sel], with the possible
exception of the platform configuration that may require manual intervention to be changed.

6.4 Application tests
Application tests correspond to the tests of the two prototype applications, that we shall develop
in Activity 3 to demonstrate the functionality of TClouds. These tests should be as automatic as
possible, e.g. by using Selenium or SIKULI [sik], and must cover at least the interactions with
the infrastructure, through the TClouds API, and the graphical user interface.

However, some tests cannot be performed automatically, but require an human to check
whether data provided are handled correctly by the application and the latter returns the desired
results.

A common set of criteria that should be taken in account during the tests definition are
the performance and the resources usage. The first is important because applications are ex-
pected to process data in real-time and should not be affected by bottlenecks. The second
because an intensive usage of CPU, memory or storage media may severely impact in the costs
required to run the application in the cloud. Developers should verify that their applications
have good performances and low requirements in terms of resources usage using existing tech-
niques, like the software profiling. Software profiling is a program optimization task that runs
a performance analysis tool called a profiler with an application under study. A profile of the
program’s dynamic behavior under a variety of inputs is presented by the profiler and represents
the program’s behavior from invocation to termination. Profiling is a form of dynamic program
analysis that measures, for example, the usage of memory, the usage of particular instructions,
or frequency and duration of function calls. Modifications to the programmer’s code or to the
compiler’s settings can serve as the experimental variable in an effort to increase efficiency
(speed or memory requirements) of the program under study.

6.4.1 Application Test Plan
Applications will be tested on three different levels. First the internal behavior of the com-
ponents that belong to the applications is tested. Then, the interaction among components
is evaluated. Finally, a typical usage of the application is perfomed. This last test are par-
ticularly interesting since they triggers interactions among many application components and,
consequently, they also involves many interaction among TClouds internal components. The
next table present a preliminary test plan for the two applications from Activity 3 (we refer to
D3.1.1, Chapter 5, and to D3.2.2, Chapter 4 for the architecture of the two applications).

6.4.2 Details on Testing TClouds Healthcare Scenario
At a very basic level, in the TClouds Healthcare scanario, a patient health related information
must be retrieved from a Philips Actiwatch and sent to the cloud for further processing. A
Philips Actiwatch is a wrist-worn hardware device which captures various health related metrics
such as patient activity and environment lighting. The ActiWatch that is used in this proof-of-
concept is the ActiWatch Spectrum (Figure 6.1), which is the most functional device from the
Philips Respironics ActiWatch family [?]. It can capture data at 60, 30 or 15 seconds intervals.

TClouds D2.4.1 Page 41 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Home Healthcare Smart Lighting System
Component PHR Service: None SL Server: None

H&W Service: None SL Gateway: None
Components PHR – H&W: Manual SL Server – SL Gateway: None
interaction PHR Service – TClouds: Manual

(Firefox REST client)
GUI Web GUI: Manual Web GUI: Manual

Table 6.1: Test plan for applications from Activity 3

Figure 6.1: Healthcare scenario: ActiWatch

The simplified data flow of the Healthcare scenario is shown in Figure 6.2. For a more
complete description of the application, refer to D3.1.1, Chapter 5.

6.4.2.1 Testing functionality

Informally, the following workflow is very suited for testing the software:

1. Start the middle-tier and front-end services. Start up the client software.

2. On the client, drop one of the .csv files from the Useful Auxiliaries into the watch
directory.

3. Verify that the client application detects the new file and starts uploading.

4. Verify that the client completes this upload without any exceptions.

5. With a browser, view the front-end page.

6. Log into the front-end with your credentials and verify that no exceptions were encoun-
tered (if there were, the page displays this).

7. Select the week for the data that was uploaded. Verify that the “loading...” image is
displayed.

8. Verify that the loading image is interchanged for the graph that you want to see.

9. If there are more graphs in this week-range, verify that they all have been generated.

TClouds D2.4.1 Page 42 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Actiwatch
Actiware
software

USB

TC Client

M
an

u
al

exp
o

rt

MiddleTier
SOAP Services

Store
A

u
to

m
atic

u
p

lo
ad

Browser

FrontEndPHR

Figure 6.2: Healthcare scenario: simplified data flow

10. Verify that refreshing the page and looking at the graphs again now loads the graphs
instantly from the cache.

11. Use the data inspector (drag a frame in an image) and verify that it pops up a new window
with the correct data.

Even though unit testing is a common practice in software engineering, we do not use it for
this project because the effort involved in unit testing costs us more than we can gain.

6.4.2.2 Testing performance

We applied profiling extensively in this application to measure performance. To do this, we
used a Python profile module which exports profiling data to a file. We collected this data
for all our components. This profiling data is raw and needs conversion. For this we use our
dot.sh and gprof2dot.py scripts. The output of these are dot files, which we feed to the
dot application to generate PNGs of the trace calls.

An example is the retrieving of recordings from the database. See Figure 6.3. What you see
here is as follows. The top-most line gives the name of the method involved. The second line
indicates the percentage of the whole computing time that is taken up by this function. Between
brackets in the third line you find the percentage that is actually taken up by this specific function
(as compared to its total time which also takes into account the function calls in levels lower).
On the fourth line you see the invocation count showing how many times thus function has been
called.

Furthermore, you also see outgoing arrows to other functions calls. These work intuitively
and on the arrows you see percentage taken up as well as invocation count. The colors on the
method blocks are merely a helpful feature that gives the most redish color to the most CPU

TClouds D2.4.1 Page 43 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

intensive methods. Note that this graph is indicative of relative time only, and not absolute
time. So one can only learn anything from these graphs by looking at which functions take up
the most time relative to the entire trace.

Figure 6.3: Healthcare scenario: calltrace for retrieving recordings

6.5 TClouds Subsystems Test Plan
The tables 6.2 and 6.3 show the tests methodology for each component of the TClouds subsys-
tem and contain the software required for the tests execution when applicable.

TClouds D2.4.1 Page 44 of 197

Component Internal API
CheapBFT (FAU) Client library N/A

Replica library N/A
Simple Key/Value Store (FAU) Generic Runtime: auto/manual Local config: manual

Key/Value store: auto none
Secure Block Storage (TUDA) OpenStack Extensions verbose logging & pyUnit

NOVA Extensions verbose logging
Secure Block Storage CppUnit, Valgrind

Secure VM Instances (TUDA)
TrustedServer (SRX) TMC: manual (TOM) Not applicable
Log Service (POL) libsklog: Auto (CMockery) Enhanced Logging in OS Nova: Auto (PyUnit)

Syslog Module for libsklog: None
State machine replication (FFCUL) Client library N/A

Replica library N/A
FT-BPEL (FAU) output proxy, input proxy, Java bindings: Auto (JUnit)

transformator: Auto (JUnit)
BPEL engine, Web services:
Integrated tests only

Object Storage (IBM+FFCUL) Client library N/A
Confidentiality proxy for S3 (SRX) StorageProxy: auto (TURAYA Manager) file system interface (eCryptfs): auto (TURAYA Manager)
Access Control as a Service (OXFD) VerifyComputingNode(ComputingNode) N/A
TrustedObjects Manager (SRX) TMC: manual Sys parts: none

GUI: manual
Trusted Management Channel (SRX) TMC binary protocol: manual/auto Not applicable
Ontology-based Reasoner (POL) Reasoner: jUnit Reasoner API (Java): jUnit

libvirt module for Sec Tunnels: Auto (CMockery) Enforcer API (libvirt): manual
Automated Validation of Isolation (IBM) Discovery: JUnit and manual tests N/A

Analysis: JUnit and test data set

Table 6.2: TClouds subsystems test plan (Component and Internal API)

TClouds API Application/User iface
CheapBFT (FAU) N/A Java bindings: Auto (JUnit)

Java bindings: Auto (JUnit) N/A
Simple Key/Value Store (FAU) none Remote config: auto

none Usage: auto
Secure Block Storage (TUDA) protocol:manual N/A

N/A N/A
Key Provisioning: Depends on Client language (e.g. jUnit) Small test group

Secure VM Instances (TUDA)
TrustedServer (SRX) Not applicable Mgmt Interface: manual (TOM)
Log Service (POL) Log Core REST API: Auto (Selenium) Log Console: Manual

Log Storage REST API: Auto (Selenium)
Log Storage Syslog API: Manual

State machine replication (FFCUL) N/A invoke: automated test battery
join, leave, deployment: specific test battery execute: client test battery

FT-BPEL (FAU) Auto (JUnit) N/A

Object Storage (IBM+FFCUL) N/A automated test battery
Confidentiality proxy for S3 (SRX) file system interface (SMB, s3fs): manual Mgmt Interface: manual (TOM)
Access Control as a Service (OXFD) N/A Mgmt Interface: manual (GUI)
TrustedObjects Manager (SRX) TMC: manual Mgmt Interface: manual (GUI)

Trusted Management Channel (SRX) protocol: manual (TrustedServer) Mgmt Interface: manual (TOM)
Ontology-based Reasoner (POL) N/A GUI: Manual

Automated Validation of Isolation (IBM) N/A test scripts

Table 6.3: TClouds subsystems test plan (TClouds API and Application/User iface)

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Part II

Selected Subsystems

TClouds D2.4.1 Page 47 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 7

Trustworthy Cloud Infrastructure (WP 2.1)

Improved Availability and Resilience

7.1 Resource-efficient BFT (CheapBFT)
Authors:
Johannes Behl, Klaus Stengel (FAU)

7.1.1 Overview

7.1.1.1 Description

Services provided via world-spanning networks such as the Internet has been getting more and
more important for today’s society. This becomes evident, when these services are unavailable
or, even worse, when they produce incorrect results. One way to improve the availability and
reliability of services is the usage of replication. However, in the standard variant, replication
only regards outages caused by crashes. Tolerating arbitrary faults, called “Byzantine faults”
such as software bugs, intrusions, viruses, hardware faults etc. and hence ensure correct results
is far more difficult and resource intensive. For this reason, industry is reluctant to consider
Byzantine faults, since it presumably entails relatively high financial costs.

Addressing this problem, FAU will contribute with an approach for Byzantine fault toler-
ance, called CheapBFT, exhibiting a lower resource footprint and thus making its usage more
practical. Among other techniques, CheapBFT will rely on a trusted hardware component to
meet its objectives.

7.1.1.2 Goals (Security, Privacy, Resilience)

� Resilience of services hosted in a trusted cloud

Description: CheapBFT will be designed in order to ensure availability, reliability and
integrity of services hosted in a trusted cloud even in the presence of arbitrary faults. It
will be a Byzantine fault-tolerant variant of CheapPAXOS (proposed by Lamport) and
will require a trusted hardware module that implements trusted signed counters (see re-
lated work form FFCUL, e. g. MINBFT and EBAWA).

Techniques/research problems: Normally, Byzantine fault-tolerant state machine repli-
cation requires 3f +1 replicas. CheapBFT will use only f +1 replicas which are actively
involved in the execution state as well as in the agreement stage during error free op-
eration. If any kind of misbehavior is detected or suspected, f further replicas will be
activated rapidly. Together with a trusted hardware module, the resulting 2f + 1 replicas
are suffice to tolerate f faulty members among them.

TClouds D2.4.1 Page 48 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Assumptions: Services using CheapBFT have to be deterministic and platforms contain
and provide a special trusted hardware module.

7.1.1.3 Required External Components

An FPGA is required as trusted hardware module to implement trusted counters.

7.1.1.4 Relationship with Activity3

To a limited extend, A3 can use CheapBFT to implement Byzantine fault-tolerant services.
However, due to a finite number of trusted counters, using CheapBFT for internal services of a
trusted cloud seems to be more natural.

7.1.2 Requirements
In order to demonstrate how CheapBFT behaves in practice two byzantine fault-tolerant ver-
sions of Apache ZooKeeper1 are implemented: one based on a customary consensus protocol
and one on the basis of CheapBFT. These two implementations and the standard implementa-
tion of ZooKeeper, whose underlying Zab protocol tolerates crash-stop failures only, are then
compared in terms of performance and resource demand.

7.1.2.1 Selected Use Cases

1http://zookeeper.apache.org/

TClouds D2.4.1 Page 49 of 197

http://zookeeper.apache.org/

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 110/ (Start VM instances)
DESCRIPTION A User starts a number of VM instances which will

execute the ZooKeeper service. In doing so VM
instances have to be only created on Computing
Node which possess the hardware module needed by
CheapBFT.

ACTORS User and Computing Node X1 . . . Xf .
PRECONDITIONS VM instances were created (cf. /UC 10/) on Comput-

ing Node equipped with the trusted hardware module
needed by CheapBFT.

POSTCONDITIONS The VM instances are running on Computing Node
X1 . . . Xf and their IP addresses are known.

NORMAL FLOW
1. The User starts the VM instances based on a

image which contains all three implementations
of ZooKeeper (standard, customary protocol,
CheapBFT).

2. Since the IP addresses of the instances are
needed within the set-up stage, beforehand con-
figured addresses are assigned to the started
VM instances.

3. All VM instances are started and are prepared
to execute the ZooKeeper service.

ALTERNATIVE FLOW

(OTHER WAYS TO CONNECT

STARTED VM INSTANCES)

1. Instead of configuring the IP addresses of the
VM instances beforehand, they could be dy-
namically assigned while the starting proce-
dure. In this case, some kind of mechanism has
to be provided which can be used to obtain the
IP addresses of the started instances.

ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Stop, reboot or terminate one or more VM in-
stance.

TClouds D2.4.1 Page 50 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 120/ (Set up and start ZooKeeper service)
DESCRIPTION The User sets up and starts a ZooKeeper service.
ACTORS User and Computing Node X1 . . . Xf .
PRECONDITIONS VM instances are running on Computing Node

equipped with the trusted hardware module needed by
CheapBFT.

POSTCONDITIONS The Zookeeper service is up and running.
NORMAL FLOW

1. One VM instance, let’s assume Computing
Node X1, is selected to act as coordinator.

2. It is ensured that the coordinator instance has
access to a list containing the IP addresses of
all other VM instances (e. g. by means of a
simple text file).

3. Set-up scripts are executed on the coordina-
tor in order to initialize all other VM in-
stances (running at Computing Node X2 to Xf)
and to start the desired implementation of the
ZooKeeper service (standard, customary proto-
col, CheapBFT).

USE CASE UNIQUE ID /UC 130/ (Retrieve the number of active replicas)
DESCRIPTION A user retrieves the numbers of all active replicas.
ACTORS User and Computing Nodes X1 . . . Xf .
PRECONDITIONS The ZooKeeper service was set up and is running.
POSTCONDITIONS The number of active replicas is available.
NORMAL FLOW

1. The coordinator instance is used to get the num-
ber of all replicas currently active.

2. The coordinator connects to the other VM in-
stances and collects their current status.

3. The number of active replicas are presented to
the user.

TClouds D2.4.1 Page 51 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 140/ (Performing Benchmark)
DESCRIPTION The User runs a benchmark on the fault-tolerant

Zookeeper service.
ACTORS User and Computing Node X1 . . . Xf .
PRECONDITIONS A ZooKeeper service was set up and is running.

(/UC 120/)
POSTCONDITIONS Benchmark results are available.
NORMAL FLOW

1. The User starts the benchmark on the coordina-
tor (Computing Node X1, cf. /UC 120/).

2. During the benchmark a predetermined set of
operations is performed on the selected imple-
mentation of the ZooKeeper service (executed
by Computing Node X2 to Xf) and a set of mea-
surements is taken such as elapsed time, trans-
mitted messages, memory demand etc.

3. The results of the benchmark are presented to
the User.

7.1.2.2 Demo Storyboard

First a standard Zookeeper installation using the original Zab protocol is started on a set of vir-
tual machines in the cloud and a benchmark is used to measure its performance and resource de-
mand. Then the original ZooKeeper implementation is replaced with a byzantine fault-tolerant
version based on a customary consensus protocol and the benchmark is conducted against this
version. Finally, the same benchmark is carried out against the CheapBFT version and the
results of all three runs are compared.

7.1.3 Architecture

7.1.3.1 High-level Design

CheapBFT provides an efficient consensus protocol which is intended to be used as basis for
replicated, byzantine fault-tolerant systems. The efficiency gain compared to customary imple-
mentations of consensus protocols is achieved by means of a small trusted hardware module
and other strategies to reduce the number of active replicas involved in the process as well as
the number of transmitted messages.

Figure 7.1 gives an overview of the architecture of CheapBFT. As stated before, every
replica requires access to a trusted hardware module (TSS) implementing trusted signed coun-
ters. These counters are used during the protocol executed between the replicas to reach agree-
ment over certain states, for instance the order in which requests of clients are processed.

For that purpose, the trusted modules have to be initialized with a secret key shared by all
replicas and used to authenticate messages. Moreover, the modules can be uniquely identified
and counters can only be modified from the modules themselves. This way, the counters allow
to prevent equivocation, that is, the ability of a faulty or malicious party to make conflicting
statements for a single action in the protocol. Without the possibility of equivocation only
2f + 1 replicas instead of 3f + 1 are required to tolerate f arbitrary faults.

TClouds D2.4.1 Page 52 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

C3 C5

C4

C2

C1 !"#$%&'(

)*$+,-.%(

/01$$2$%&(C1 C3 C2 ...

)*$+,-.%(

(active) (passive)

344(

)*$+,-.%(

Active Replica Active Replica Passive Replica

344(344(

(State Updates)

Figure 7.1: A minimal configuration of CheapBFT consisting of two active and one passive
replica.

To further reduce the resource demand, CheapBFT distinguishes between active and passive
replicas. If a replica is passive, it doesn’t participate in the agreement and execution phases.
Instead, they are regularly updated with state changes from the active members, which suppos-
edly requires less resources than executing client requests actively. Since only f + 1 replicas
are needed to detect errors, f replicas out of 2f + 1 can stay passive. Here, the state updates
ensures, that at the occurrence of errors passive replicas can be turned into active ones without
greater delay.

The partitioning of the replicas in f + 1 active and f passive ones can be used for another
optimization. By dynamically mixing the sets of active and passive replicas, load caused by the
agreement and execution stage can be distributed over all replicas.

7.1.3.2 Sequence Diagrams

The sequence executed for setting up a CheapBFT system is depicted in Figure 7.2: The system
administrator starts the initialization by providing all replicas with the necessary information
such as the connection endpoints of the replicas. After that, the replicas connect to each other
and exchange further initial data required to shared starting point all replicas agree on.

Figure 7.3 shows the processing of a request under normal, that is error-free circumstances:
A user or client sends a request to all, in this example 3, replicas. However, only the two active
replicas execute the agreement protocol, process the request and reply to the user. The third, the
passive replica gets only the state changes caused by the request.

TClouds D2.4.1 Page 53 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Admin CheapBFT1 CheapBFT2 CheapBFT3 (passive)

Start init phase

Start init phase

Start init phase

Initial connection

Initial connection

Initial connection

Initial connection

Initial connection

Initial connection

SetupSetup

Figure 7.2: Setting up CheapBFT

User CheapBFT1 CheapBFT2 CheapBFT3 (passive)

Send Request

Send Request

Send Request

Prepare

Commit

Update

Update

Reply

Reply

Process RequestProcess Request

Figure 7.3: Processing of a request by CheapBFT

TClouds D2.4.1 Page 54 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.1.4 API
The API of CheapBFT is similar to the API of FFCUL’s subsystem presented in section 8.1.

CreateProxy()

ServiceProxy(ServiceProxy (int processId, String configHome)

Description.
The client creates a proxy object, passing a unique process id and a path pointing to a
directory the configuration files.

InvokeService()

byte[](invoke (byte[] command, boolean readOnly)

Description.
When the proxy has been initialized, the client can invoke the service by passing a
command and a indicator whether this command doesn’t lead to state changes.

CreateReplica()

ServiceReplicas(ServiceReplica (int processId, String configHome)

Description.
Services which are based on CheapBFT have to inherit from an abstract class provid-
ing the same information as the client when creating the proxy object:

So far, the API doesn’t differ from the API implemented by FFCUL’s subsystem. However,
realizing a service on the basis of CheapBFT requires a slightly different API:

ExecuteCommand()

CmdResult(execute (long timestamp, byte[] nonces, byte[] command, Context ctx)

GetServiceState()

ServiceState(getState ()

SetServiceState()

void(setState (ServiceState state)

UpdateServiceState()

void(updateState (StateUpdate upd)

Description.
Although there are also methods for executing commands and getting and setting the
whole service state, some additional steps are needed in the case of CheapBFT. To
update the state of passive replicas, the execute command must return not only the
actual result of the operation but also the state changes. Furthermore, services have to
implement a method which adjusts the state of passive replicas according to the state
changes returned by the active replicas.

TClouds D2.4.1 Page 55 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.2 Simple Key/Value Store
Authors:
Johannes Behl, Klaus Stengel (FAU)

7.2.1 Overview

7.2.1.1 Description

FAU will provide a simple key/value store as an example for a simple cloud service component.
This can be used by other services to cache non-critical data, i.e. dynamically generated fron-
tend websites. It can also be used as an minimal example for the downstripped and hardened
components we intend to develop in WP 2.1. Once the basic functionality is in place, the service
can be extended with authentication mechanisms and different access protocols (memcached,
REST, SOAP, ...) to allow better integration and storage of sensitive data.

7.2.1.2 Goals (security/privacy/resilience)

� Integrity of data

Description: The service and stored data should be safe from unintended modifications.

Techniques/research problems: We try to achieve these goals by (static) language level
checks and runtime integrity checks. Additionally the amount of code running in the
system should be minimized. Open Research question is, how to integrate both techniques
and find the required lower level operating system parts for a given application scenario.

Assumptions: Corrupted data or failure of the service is a problem for the application
using it.

� Avoid unauthorized access

Description: In order to store sensitive data or to prevent unauthorized modifications
from outside an additional authentication scheme is probably necessary.

Techniques/research problems: Provide simple enough access control scheme for stor-
age services.

Assumptions: The application may want to store sensitive data in the cache and needs
additional measures to prevent unauthorized access.

� Improved resilience

Description: It should be possible to improve the resilience of the service for mission-
critical data.

Techniques/research problems: Generate necessary extensions for service replication
and data distribution from application description/annotations.

Assumptions: The application may want to store important data in the provided cloud
component.

TClouds D2.4.1 Page 56 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.2.1.3 Required External Components

� x86 Virtual Machine

Description: Requires a secure Intel x86 virtual machine environment as basis for the
implementation.

Features (security/privacy/resiliency): Should provide isolation from other VMs on
the same host. Paravirtualized networking and disk access would be nice to improve
performance and make development of low-level components easier.

Required API (provided by the external component): x86 ABI

7.2.1.4 Relationship with Activity3

The key/value store can be used by Activity 3 to accelerate rendering for Web pages and save
temporary data.

7.2.2 Requirements

7.2.2.1 Selected Use Cases

7.2.2.1.1 Terminology

� Generic VM image: A VM image containing a generic version of our key/value store
implementation and operating system stack. It can be started in most Intel x86 virtual
machine environment commonly provided by infrastructure clouds.

� Key/value store: The specialized operating system and application stack, that was adapted
to the specific virtual machine environment and needs of the application that will use the
key/value store.

7.2.2.1.2 Actors

� Web service application: A web-based service application that was designed to use the
key/value store to accelerate recurrent operations. It may run on the same host as the
virtual machine containing the key/value store, or alternatively on some other physical
machine that is located close to the computer hosting the key/value store.

TClouds D2.4.1 Page 57 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 150/ (Instantiation of tailored key/value store)
DESCRIPTION In this use case, the Cloud Admin sets up the key/-

value store and a web service application to use it in
order to cache results of some expensive operation.
The details regarding the instantiation of individual
virtual machines works according to the description
in /UC 10/.

ACTORS
Cloud Admin

Computing Node X, Y

Web service application using the key/value store
PRECONDITIONS A generic VM image of the key/value store was cre-

ated at Computing Node X (cf. /UC 10/. An instance
containing the web service application is running at
Computing Node Y (cf. /UC 20/). The web service
application itself wasn’t started yet.

POSTCONDITIONS The web service application is up and running and is
ready to use the key/value store component to accel-
erate recurrent computations.

NORMAL FLOW
1. The Cloud Admin starts the web service appli-

cation at Computing Node Y.
2. When the web service application starts, it

starts the instance of the generic VM image
containing the key/value store component at
Computing Node X and configures the instance
parameters to provide enough resources for the
typical usage pattern.

3. When the generic VM image has finished boot-
ing, the web service application will be notified
and start to specify additional parameters to the
generic VM, which describe the expected usage
pattern, e.g. which transport protocols are sup-
ported and how many key/value pair are going
to be stored.

4. The instance of the generic VM image finally
collects information about the virtual machine
environment and uses it together with the ex-
pected usage profile gathered from the previous
step to form the tailored system.

5. Once the tailored system is compiled, the
generic image will replace itself with the im-
age of the tailored system containing the actual
key/value store.

6. The web application now connects to the actual
key/value store in order to be able to cache com-
putation results.

TClouds D2.4.1 Page 58 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 160/ (Run benchmark test for the key/value
store)

DESCRIPTION The web service application is used to test the perfor-
mance of the key/value store implementation.

ACTORS
Computing Node X running the key/value store im-
plementation

Computing Node Y running the Web service applica-
tion

PRECONDITIONS
The web service application is up and running and
connected to the tailored system with the key/value
store.

POSTCONDITIONS Benchmark results are available.
NORMAL FLOW

1. The web service application determines the cur-
rent time (wall clock) and saves it for future ref-
erence.

2. A predetermined set of read and write opera-
tions is performed on the implementation of the
key/value store

3. After each operation, the current time is
recorded to determine the latency and through-
put of the key/value store

4. The resource usage on the key/value store im-
plementation is monitored

7.2.2.2 Demo Storyboard

In the first step, the example web service application is first configured to use a traditional
implementation of the memcached. The benchmark in from use case /UC 160/ is run and the
results are collected. Afterwards, FAU’s tailored key/value store component is set up as outlined
in use case /UC 150/ and the benchmark is executed again. Parallel to the benchmark, some
slides with the development model are shown to explain some of the security advantages of our
approach. Finally the results of the benchmark runs are compared.

7.2.3 Architecture

7.2.3.1 High-level Design

The general architecture is based on a classic client/server model. The only noticeable differ-
ence concerns the initialization of the server: In the traditional model, the server that provides
services to the client (i.e. other Web application for our demo use case) is typically available
when the virtual machine instance hosting it starts. In our model we only start a intermediary
service that gathers information about the usage scenario first, so that we can tailor and harden
the service componend before we actually start it. Otherwise it behaves almost exactly like any
other network service hosted inside a VM. The tailoring process is generic enough, so that it

TClouds D2.4.1 Page 59 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

can be adopted to other services than just key/value stores. The key/value store just serves as a
minimal useful example how such services can be implemented.

7.2.3.2 Sequence Diagrams

The sequence diagram in Figure 7.4 shows the control flow required to create a new instance
of a service. In the first step, the Cloud Admin triggers the start of a VM image containing the
generic hardened service component. After a short initialization phase (2), in which a generic
runtime environment is booted, the component notifies the application that wants to use the
service that it is ready to receive the configuration for tailoring process (3). In step 4, the
application sets service-specific properties that describe how the application is going to use
the service. Typical examples for such properties are the kind of authentication that should
be supported, if any encryption should be, or what specific protocols can be used to access
the service. When the set of required properties is transmitted, the runtime confirms that the
configuration is valid (5), or aborts the process here in case of conflicting requirements. After
the application requrements are determined, the generic runtime of the hardened component
gathers information about the Hypervisor it is running on (6 and 7). Now we have all data that
is required for the tailoring process, which is finally started in step 8. When the process has
finished, the hardened service component replaces the generic runtime system and notifies the
application in step 9, that it is ready to be used.

Finally steps 10 and 11 illustrate the typical Request/Response usage pattern for the hard-
ened component. Each time the application needs to interact with the service, it sends an request
to the hardened component, which is anwering it eventually. We do not intend to support oper-
ations that are initiated by the hardened component itself, nor requests that don’t, at least, issue
any confirmation message as a reply.

7.2.3.3 Low-level Design

Language
First implementation on small Java system, later ported to safe static language (e.g. AT-

S/Haskell/...) and annotations for improved run-time integrity checks and simplified replication.

7.2.4 API
Public or private? All APIs are public. The cloud user, which can also be a cloud administra-
tor, has the option to restrict access to the management APIs to internal managment infrastruc-
ture.

New or extended? The basic API offers the same functions as memcached. Additionally to
the custom binary-only protocol, we intend to offer authentication and a HTTP based interface
to make the service easier to use. There are new API calls for configuration and tailoring the
runtime system.

7.2.4.1 Authentication

In order to access any of the functions, an optional authentication step may be necessary, de-
pending on the configuration of the service. Otherwise it isn’t possible to execute any of the
functions below. Depending on the provided token, access to certain functions or keys may be
restricted.

TClouds D2.4.1 Page 60 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Hardened Component Hypervisor Application Cloud Admin

1. Trigger VM start

Start

2. Initialization

3. Query requirements

4. Requirements

5. Confirm requirements

6. Query properties

7. Properties

8. Tailoring

9. Ready notification

SetupSetup

10. Request

11. Reply

UsageUsage

Figure 7.4: Sequence diagram for instantiation of component

int authenticate(String token);

7.2.4.2 Generic VM image API

In order to tailor the specific service, we provide a interface to set properties of the service
instance. This is intentionally completely generic, because the available properties depend en-
tirely on the service application that needs to be tailored.

int setProperty(String property, String value);

7.2.4.3 key/value store interface

The API proposal for the key/value store sample application closely mirrors the original mem-
cached protocol. It works on CacheEntry objects which are comprised of the following items:

TClouds D2.4.1 Page 61 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� key: String

� flags: int

� data: byte[]

� expires: int

� casUnique: long

The key entry holds a text string under which the corresponding data array should be saved.
The flags field is also stored along with the data and can be used by the application for any
purpose. The expires field allows the definition of a timeout in seconds, when the entry will be
automatically removed from the cache. When retrieving an entry from the key/value store, it
also gets a ”casUnique” tag assigned that is used by the cas operation to determine if the entry
was changed since its retrieval.

We intend to support at least the following operations:
ModifyCacheEntry()

int(set (CacheEntry entry)

int(add (CacheEntry entry)

int(replace (CacheEntry entry)

int(cas (CacheEntry entry)

Description.
The functions set, add, replace, and cas can be used to set and/or modify values
in the key/value store and they return a value that indicates whether the operation was
successful. The set operation stores the data unconditionally, while add will fail
if the key already exists. All other storage functions require the key to be already
existant. The cas function will perform the store operation only if the casUnique
values of the already stored item and the new entry to be stored also match.

GetCacheEntries()

CacheEntry(get (String key)

CacheEntry[](gets (String[] keys)

Description.
The get functions allow retrieval of the previously stored data and flags value. It also
returns the casUnique tag required for the cas operation. The gets operation allows
batched retrieval of multiple keys at once.

DeleteCacheEntry()

int(delete (String key)

Description.
The delete operation immediately removes the specified key from the key/value
store.

TClouds D2.4.1 Page 62 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.3 Secure Block Storage (SBS)
Authors:
Sven Bugiel, Stefan Nürnberger (TUDA)

7.3.1 Overview
TUDA will contribute Secure Block Storage (SBS). Block storage is non-linear raw memory
attached to VM instances as block device (virtual hard disk, e.g. iSCSI). SBS will provide a
transparent layer that provides security properties such as confidentiality, integrity and authen-
ticity for block devices. The SBS is also responsible for user-centric key management.

For TClouds two types are relevant:

1. Public Clouds: The infrastructure of public clouds cannot be changed. Hence, the se-
curity properties must be provided by means established inside the VM. This can for
example be achieved by encrypting the blok device, e.g. encryption of Amazon’s EBS2

using TrueCrypt in EC2 instances.

2. TClouds – OpenStack: As the infrastructure can be modified, transparent security proper-
ties can be added to e.g. the hypervisor in order to provide legacy VM with confidential,
integrity-protected and authentic block storage.

We will focus on the latter scenario, because we cannot influence either the storage backend or
VM images deployed to a public cloud. The latter solution furthermore has the advantage, that
legacy VMs (i.e. VMs not aware of security objectives) can be used, as the modfied hypervisor
then functions as a translation layer between ciphertext and plaintext.

Hypervisor

Block
Storage

VM VM VM

SBS Decrypt/
Encrypt

Figure 7.5: Transparent en-/decryption of block storage attached to a VM by the SBS compo-
nent.

2Elastic Block Store

TClouds D2.4.1 Page 63 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.3.1.1 Goals (Security, Privacy, Resilience)

� Confidentiality

Description: The data stored on block devices inside the VM shall be transparently en-
crypted by the hypervisor so that the stored data at rest cannot be eavesdropped.

Techniques: Using encryption the stored data (that is mounted as a file system inside the
VM) is only accessible in plaintext by those authorized to have access.

Assumptions: Secure and attestable hypervisor. Otherwise it must be blindly trusted.

� Integrity/Authenticity

Description: The data stored on block devices inside the VM shall be transparently
integrity-protected by the hypervisor so that tampering with the stored data can be de-
tected.

Techniques: Using digital signatures (or Message Authentication Codes, MACs) the
stored data3 can be checked for authenticity and tampering.

Assumptions: Secure and attestable hypervisor.

� Version Control/Replay Attacks Prevention

Problem Description: Even though an adversary cannot read encrypted data, it is possi-
ble for her to replay previously saved encrypted data. Possible adversaries are: Local/re-
mote administrators of the cloud provider.

Techniques: Using hardware/virtual counters (e.g. provided by the TPM) it is possible
to enable ’version’ control for encrypted data chunks.

Assumptions: Secure and attestable hypervisor.

7.3.1.2 Required External Components

� Trusted Platform.

Name/description: SBS will rely on a trusted platform with a hardware root of trust. The
platform shall provide a hardware Trusted Platform Module (TPM).

Features (security/privacy/resiliency): Standard TPM features [tcg, tpm].

Required API (provided by the external component): TPM Interface

� Hypervisor to build on

Name/description: A Hypervisor that is avaiable in source code, like Xen [xen] or
Nova [nov].

Features (security/privacy/resiliency): Isolation of gues VMs/compartments so that no
eavesdropping can occur. As covert channels are currently still subject of research, it
unfortunately cannot be assumed that they can be avoided.

Required API (provided by the external component): Start/Stop VM instances,
Trusted Computing enabled, block storage.

3to be more precise: a hash thereof

TClouds D2.4.1 Page 64 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.3.1.3 Relationship with Activity3

As SBS is transparent, it will not influence Activity3. However, a slightly modified interaction
with the actors from A3 is necessary, because they have to additionally provide a cryptographic
key.

7.3.2 Requirements

7.3.2.1 Selected Use Cases

USE CASE UNIQUE ID /UC 170/ (Provision Encryption Key)
DESCRIPTION User securely provisions his encryption key to the

SBS component
ACTORS User
PRECONDITIONS User has a secret encryption key K

POSTCONDITIONS Only legitimate Storage Node and User have knowl-
edge of K

NORMAL FLOW
1. User calls ProvisionKey(k) function of SBS via

interface
2. K together with user-related meta-information

are encrypted such that only a legitimate SBS
component can decrypt it and provisioned to the
cloud infrastructure

3. SBS component of legitimate Storage Node
decrypts K and the related meta-information
and inserts them into the local management
database

USE CASE UNIQUE ID /UC 180/ (Create Encrypted Volume)
DESCRIPTION User creates a new encrypted volume. This use case

extends /UC 40/.
ACTORS User and Computing Node
PRECONDITIONS User provisioned his key K (cf. /UC 170/)
POSTCONDITIONS A new encrypted volume owned by User is created on

Storage Node.
NORMAL FLOW

1. A new volume is created (cf. /UC 40/) and
flagged with forced de-/encryption using the
provisioned key K.

TClouds D2.4.1 Page 65 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 190/ (Use Encrypted Volume)
DESCRIPTION User, inside a VM instance, uses an encrypted vol-

ume.
ACTORS User, Computing Node and Storage Node
PRECONDITIONS User created the VM instance (cf. /UC 10/) and the

volume (cf. /UC 180/). User attached the encrypted
volume to the VM instance (cf. /UC 50/). User provi-
sioned his encryption key K (cf. /UC 170/).

POSTCONDITIONS The VM instance, that has an encrypted volume at-
tached, is able to securely read from and write to the
block storage.

NORMAL FLOW
1. VM reads from/writes to the attached block

storage
2. SBS component transparently de-/encrypts the

data read from/written to the block storage by
the VM

7.3.2.2 Demo Storyboard

A user Bob provides a service in the cloud that deals with extremely sensitive data, which is
stored persistently on block storage provided by the cloud. To guarantee the confidentiality and
integrity of its persistent data, e.g., at rest when the block storage volume is detached, the user
leverages the SBS component.

First, the user has to provision his encryption key to the SBS component by invoking the
DeployDataKey function of management interface (cf. /UC 170/). Hence, his key is now de-
ployed such, that a legitimate SBS component can use it and also identify to which user the key
belongs.

Afterwards, the user creates a new secure block storage volume, which is upon access trans-
parently de-/encrypted.

In order to make his VM use the secure block storage volume, he has to attach it to his VM
(cf. /UC 190/). All data read from or written to this volume by the user’s VM is transparently
de-/encrypted with the user’s key by the SBS component.

7.3.3 Architecture

7.3.3.1 High-level Design

Is the component required by other A2 components? Yes, by the secure VM image compo-
nent, which is build on top of this component.

7.3.3.1.1 Hints on implementation

Language mainly C for the hypervisor and Python for OpenStack extension

Existing SW OpenStack; secure Hypervisor for Cloud infrastructure (e.g., Turaya, Nova,...)

TClouds D2.4.1 Page 66 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.3.3.2 Sequence Diagrams

Sequence diagram for the key provisioning phase (cf. /UC 170/).
Summary: The Client wants to securely provision a key to the SBS component, so that it

can be used in by the SBS component only. In order to do so, the SBS component generates a
wrapped key, that is, a “capsule” which certifies, that a secret can only be used in a pre-defined
environment and platform configuration (PCRuse). The client can then encrypt (“encapsu-
late”) the secret with the public key of this wrapper. The clients key is then sealed to a known
platform configuration for later use.

Predefined functions:

CREATEWRAPKEY(PCRuse) Creates a certificate that this wrapped can only be unwrapped
in a certain platform configuration (PCR). The wrapping certificate also contains a public
key (:pk) with wich a secret information can be encrypted. The secret key necessary to
decrypt the information again, is only available in the platform configuration (PCR during
use – PCRuse) specified a priori.

ENCRYPT(x; pk) Encrypts the message x under asymmetric public key pk

Asymmetric keys (pk; sk) are implied to have already been generated.

7.3.4 API
Public or private? Mainly private, since mainly transparent. However, a minimal API is
public to enable clients to deploy encrypted data and supply the corresponding key securely to
the infrastructure.
New or extended? The interface to the client is an extension to the OpenStack API.

7.3.4.1 SBS API

PrepareProvisioning()

ProvisionStruct(PrepareProvisioning ()

Description.
The function PrepareProvisioning sets up a trusted channel between the Client
and the SBS component. It requests a Certified Binding Key in order for the Client to
be able to securely deploy his secret key to the SBS component. The function returns
an object of type ProvisionStruct.

The struct ProvisionStruct is composed of:

bindKey A TPM WrapKey structure that holds

� Public key: In order for the client to encrypt his key (k in Figure 7.6).

� Encrypted Secret Key: Only available to the TPM to decrypt encrypted data sup-
plied by the Client.

� Meta Information: Platform state at time of creation and allowed usage

TClouds D2.4.1 Page 67 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

:Client :SBS :TPM

PrepareProvisioning()

CreateWrapKey(PCRuse)

bindkey

CertifyKey(bindingkey)

certbindkey

bindkey, certbindkey

verify certbindkey

k ← KeyGen()

kenc ← EncryptRSA(k, bindkey)
ProvisionKey(kenc)

KeyID

SetupSetup

Figure 7.6: Sequence Diagram of the Setup Phase (key provisioning) for the SBS component

certificate A certificate created by the TPM that certifies the bindingkey was created by a
legitimate TPM chip.

ProvisionKey()

void(ProvisionKey (KeyStruct key)

Description.
After the client has verified the legitimate origin of the bind key (using the certificat)
it can confirm the usage of the bindingkey using the Meta Information. The client can
then encrypt its key using the bindingkey and deploy it using the ProvisionKey
function.

Functions to actually deploy data to block storage are inherited from the OpenStack API.

TClouds D2.4.1 Page 68 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

:Hypervisor :Block Driver :SBS :TPM

EncryptAndWriteBlock(x, data)

EncryptBlock(data)

DecrypRSA(kenc)

k

dataenc ← AuthEnc(k, data)

dataenc

WriteBlock(x, dataenc)

Write BlockWrite Block

Figure 7.7: Sequence Diagram of SBS component writing encrypted data

7.4 Secure VM Instances
Authors:
Sven Bugiel, Stefan Nürnberger (TUDA)

7.4.1 Overview
Based on the secure block storage component (SBS), TUDA will contribute with a compo-
nent that allows clients to securely deploy, launch, and migrate their own VM images. The
component ensures that the VM images and data contained within will be confidentiality and
integrity protected when they are at rest in a image repository or in transit during migration.
The authenticity can be ensured using a secure channel.

7.4.1.1 Goals (Security, Privacy, Resilience)

� Confidentiality

Description VM images, especially data contained within, must be protected against
eavesdropping, e.g., by a remote administrators at the cloud service provider. The key
used to encrypt the images at client-side is bound to a trusted hypervisor configuration.

Techniques/research problems The secure block storage component will be used and
extended with corresponding interfaces and functionality.

Assumptions Secure and attestable hypervisor (as for SBS).

� Integrity

Description Modifications to the VM images at rest must be detected.

Techniques/research problems The secure block storage component will be used and
extended with corresponding interfaces and functionality.

TClouds D2.4.1 Page 69 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Assumptions Secure and attestable hypervisor (as for SBS).

7.4.1.2 Required External Components

� Component1

Name/description Secuer block storage (SBS)

Features (security/privacy/resiliency) Confidential, integrity protected, and authenti-
cated block storage

Required API (provided by the external component) API to store and retrieve VM
images from an image repository

7.4.1.3 Relationship with Activity3

Actors from A3 can securely deploy their VM images to an image repository in the cloud and
deploy the necessary encryption in the cloud infrastructure.

7.4.2 Requirements
We assume that

1. The cloud administrator does not eavesdrop the VM memory, as it may contain plaintext

2. A trusted path to the client in order to securely deploy the key

7.4.2.1 Selected Usecases

USE CASE UNIQUE ID /UC 200/ (Create Secure Image)
DESCRIPTION User deploys his VM image securely in the cloud.

This use case extends /UC 30/.
ACTORS User
PRECONDITIONS None.
POSTCONDITIONS User’s VM image securely deployed in the cloud in-

frastructure
NORMAL FLOW

1. User encrypts his VM image with key K

2. User deploys the encrypted im-
age by calling the interface function
RegisterImage(Data, KeyID).

TClouds D2.4.1 Page 70 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 210/ (Create Instance)
DESCRIPTION User starts his VM image. This use case ex-

tends /UC 10/.
ACTORS User, SBS component, hypervisor
PRECONDITIONS User has provisioned his key K to the SBS compo-

nent (cf. /UC 170/) and deployed his encrypted image
(cf. /UC 200/).

POSTCONDITIONS User’s VM image is instantiated as VM instance
NORMAL FLOW

1. User issues the VM start command to the cloud
management interface

2. The hypervisor starts the user’s VM image
3. The SBS component de-/encrypts the VM im-

age during execution

USE CASE UNIQUE ID /UC 220/ (Migrate Instance)
DESCRIPTION The user’s VM instance is migrated to a new phys-

ical host in the cloud infrastructure. This use case
extends /UC 100/.

ACTORS Hypervisor, SBS component, (optional: User)
PRECONDITIONS User has provisioned his key K to the SBS compo-

nent
POSTCONDITIONS User’s VM is migrated to a new host
NORMAL FLOW

(AUTOMATIC MIGRATION) 1. The hypervisor currently executing the user’s
VM instance initiates the migration of the in-
stance to a new host

2. The SBS component on the original host mi-
grates the user’s encryption key K to the new
host (if the key is not yet available there).

3. The VM is migrated and executes on the new
host, whose hypervisor has access to the VM
instance via its SBS component and the previ-
ously migrated key K.

ALTERNATIVE FLOW

(USER INITIATED MIGRA-
TION)

1. The user initiates the migration of his VM
2. Identical to the normal flow

7.4.2.2 Demo Storyboard

To extend the storyboard from 7.3.2.2, the user additionally wants to protect sensitive infor-
mation within his VM when this VM is “at rest”, i.e., the VM image. Those credentials are
protected at run-time by, e.g., a root-less and trusted hypervisor, but are at rest prone to tamper-
ing.

The user re-uses his previously deployed encryption key (cf. /UC 170/). However, the user
is first required to provision his encrypted VM image, that shall run in the cloud (cf. /UC 200/).

TClouds D2.4.1 Page 71 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

The image is encrypted with the previously deployed user’s key. Afterwards, the user can
instantiate his VM image (cf. /UC 210/) as a new instance. The SBS component transparently
de-/encrypts the image during execution with the user’s key.

If the VM instance has to be migrated to a new host in the cloud, e.g., due to load-balancing,
the new host requires the user’s key in order to access the VM instance. The key is thus migrated
previously to the VM instance (cf. /UC 220/).

7.4.3 Architecture

7.4.3.1 High-level Design

Is the component required by other A2 components? Probably not.

7.4.3.1.1 Hints on implementation

Language Mostly C for the extension of SBS, Python for the extension of OpenStack with the
new public API

Existing SW same as for SBS

7.4.3.2 Sequence Diagrams

Sequence diagram for VM image access/booting (cf. /UC 190/).
Summary: The Client wants to start a VM that belongs to him/her. Therefore, the Hypervi-

sor issues a VM Boot Phase. The corresponding block device driver is re-routed to decrypt the
raw blocks before they are sent to the hypervisor in order to access the image/boot the image.
The Client’s key k that is used inside the SBS is only available if the SBS’s code base matches
the one the client has verified (see key wrapping and PCRuse in Sequence Diagram depicted
in Figure 7.6). After the integrity, authenticity and freshness has been verify (DecV erify) the
message can be decrypted and is relayed to the Hypervisor.

Predefined functions:

DECRYPTKEY(kenc) Can decrypt a wrapped key (kenc) when the platform configuration of its
use (PCRuse, see subsubsection 7.3.3.2) is met.

DECRYPT(sk; x) Decrypts the ciphertext x given the secret key sk.

DECVERIFY(k; x) Decrypts the ciphertext x using the symmetric key k, if and only if the
verification of the embedded MAC succeeded. That means, that the authenticity and
integrity could be verified. DECVERIFY is the opposite of AUTHENC, the authenticated
encryption.

Asymmetric keys (pk; sk) are implied to have already been generated.

7.4.4 API
Public or private? The API to the necessary extensions to SBS is public.
New or extended? Extension of SBS
Public or private? Mainly private, since mainly transparent. However, a minimal API is
public to enable clients to deploy encrypted data and supply the corresponding key securely to
the infrastructure.
New or extended? The interface to the client is an extension to the OpenStack API.

TClouds D2.4.1 Page 72 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

:Hypervisor :Block Driver :SBS :TPM

ReadAndDecryptSector(x)

dataenc ← ReadSector(x)

DecryptBlock(dataenc)

DecryptRSA(kenc, bindkey)

k

(data, intact)← DecVerify(k, dataenc)

if (not intact) abort

data

data

Boot ImageBoot Image

Figure 7.8: Sequence Diagram of the Boot Phase (Hypervisor starts image)

7.4.4.1 VM Image API

RegisterImage()

ImageID(RegisterImage (Data, KeyID)

Description.
In general the APIs for VM Image management (e.g. register images, instantiate im-
ages, delete images) are inherited from the OpenStack API. However, the registration
of a new image requres the client to encrypt the image before deployment and to asso-
ciate it with the corresponding and already provisioned key. The registration returns
an ImageID identifying the image, which can later be used to refer to that image.

TClouds D2.4.1 Page 73 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

:SBS :TPM1 :TPM2

DecryptRSA(kenc, bindkey)

k

CreateWrapKey(PCRuse)

bindkey

CertifyKey(bindingkey)

certbindkey

verify certbindkey

k′enc ← EncryptRSA(k, bindkey)

save k′enc

MigrateMigrate

Figure 7.9: Sequence Diagram of the key migration

TClouds D2.4.1 Page 74 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.5 TrustedServer
Authors:
Michael Gröne, Norbert Schirmer (SRX)

7.5.1 Overview
This section provides an overview of the TrustedServer (TS) component. In the following we
describe the overall goals and requirements, and provide an analysis of its security.

7.5.1.1 Description

SRX will provide the TrustedServer as the central security platform to run the VM instances
(also called compartments). It is based on the TURAYATM SecurityKernel and provides iso-
lation of compartments by linking them to TVD s. Domain specific transparent encryption is
applied to prohibit information flow between TVDs. The focus of this component is to provide
(together with TrustedObjects Manger (TOM; cf. 9.2)) a trusted platform for cloud applications
from the ground up.

7.5.1.2 Goals (Security, Privacy, Resilience)

� TVD enforcement for VM instances

� Integrity: remote attestation of server configuration via TPM.

� Confidentiality: transparent encryption of data to prohibit undesired information flow
between TVDs.

� Restricted administrator rights: no almighty root account on server. Server is managed
remotely via TOM (cf. 9.2). Security Services provided by server only have the necessary
rights needed for their task. Description: With restricted administrator rights combined
with the Component ’Secure VM Instances’ (cf. 7.4), we aim at a ’black-box’ view of
VM instances for the cloud provider.

� Optional: Integration with OpenStack Description: The main goal is to provide a re-
placement for OpenStack. However, we have to evaluate if and how OpenStack compo-
nents can be integrated / extended. Simply putting OpenStack on top of a TrustedServer
is definitely not enough. Currently we use VirtualBox as virtualization layer, which is
not supported by OpenStack right now. Moreover the management layers (TOM and
OpenStack) have to be integrated.

7.5.1.3 Required External Components

The platform the component is installed on shall provide a hardware Trusted Platform Module
(TPM), which could be replaced by a Hardware Security Module (HSM) in the future.

7.5.1.4 Relationship with Activity3

A TrustedServer is a core infrastructure element of a trusted cloud, and hence used by any ap-
plication. In year 3 we should be capable to run the applications on this platform (as alternative
to OpenStack).

TClouds D2.4.1 Page 75 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.5.2 Requirements
This section gives an overview of the requirements for the TrustedServer component.

7.5.2.1 Preconditions

Requirements that have to be fulfilled already, because they were needed for the development
process.

/PR 10/ Trusted bootloader
A bootloader with TPM-support is required.

/PR 20/ TIS-Driver
A TIS-Driver is required to use TPMs of version 1.2.

7.5.2.2 Execution Environment

This section specifies software and hardware the user requires at least to run the component
successfully.

7.5.2.2.1 Hardware
� TPM 1.2 Platform

7.5.2.2.2 Software
� TrustedServer

7.5.2.2.3 Infrastructure
� TrustedObjects Manager
� Trusted Management Channel

7.5.2.3 Security Environment

This section describes the security aspects of the environment in which the component is in-
tended to be used and the manner in which it is expected to be employed.

7.5.2.3.1 Assumptions A description of assumptions shall describe the security aspects of
the environment in which the component will be used or is intended to be used.

/A 10/ Trusted Organization Administrator
The organization administrator of the managed IT infrastructure is non-malicious.

/A 20/ Trusted Administrator
The security administrator of the system is non-malicious.

/A 30/ Correct hardware
The underlying hardware (e.g., CPU, devices, TPM) does not contain backdoors, is non-malicious,
and behaves as specified.

TClouds D2.4.1 Page 76 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

/A 40/ Attestation
The IT-environment provides a mechanism that allows the component to convince remote par-
ties about its trustworthiness. Example mechanisms are to perform an attestation protocol based
on an environment providing authenticated boot. Another example would be a tamper-resistant
hardware environment that can uniquely by identified as such be a remote party, e.g., based on
a signature key stored inside.

/A 50/ TOE Binding
The IT-environment offers a mechanism that allows the component to store information such
that it cannot be accessed by another component configuration. Example mechanisms are the
sealing function offered by a TPM as specified by the TCG in combination with an authenticated
bootstrap architecture, or a tamper-resistant storage in combination with a secure bootstrap
architecture.

/A 60/ No man-in-the-middle attack
A physical attack that relays the whole communication between a local user and the I/O devices
to another device does not happen.

/A 70/ Untrusted Cloud Administrator
The Cloud Admin of the system may be malicious.

7.5.2.3.2 Assets This section defines the sensitive information the security kernel is operat-
ing on.

/AS 10/ Identity Key
The identity key is created during the production process and used during the whole lifetime to
identify the component.

/AS 20/ Encryption Key
The encryption key is created during the production process and used, e.g., to decrypt firmware
updates.

/AS 30/ Trusted Virtual Domain Keys
The Trusted Virtual Domain key is created during the instantiation of a compartment and is
used, e.g. for the transparent file encryption.

7.5.2.4 Security Objectives

The security objectives address all of the security environment aspects identified. The security
objectives reflect the stated intent and shall be suitable to counter all identified threats and cover
all identified organizational security policies and assumptions. A threat may be countered by
one or more objectives for the component, one or more objectives for the environment, or a
combination of these.

7.5.2.4.1 Security Objectives of the IT-Environment

TClouds D2.4.1 Page 77 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

/OE 10/ TrustedServer Integrity Prove
The IT-environment provides a mechanism that allows the TrustedServer to convince remote
parties and local users about its integrity. Common examples of such a mechanism are a secure
bootstrap architecture as used, e.g., by the AEGIS architecture [SCG+03], or an authenticated
bootstrap architecture as specified by the TCG [tpm].

/OE 20/ Backup
The IT-environment ensures that the information stored by the TrustedServer is backuped in
regular intervals.

7.5.2.4.2 Security Objectives for the TrustedServer

/O 10/ TrustedServer Identity
Using functionalities offered by the IT-Environment, the TrustedServer should be able to prove
its identity to both remote parties and local users.

/O 20/ TrustedServer Integrity
Using the functionalities offered by the IT-Environment, the TrustedServer should be able to
convince remote parties and local users that the integrity of the TrustedServer is not violated.

Changes in the TrustedServer must be detectable by both the user and remote parties. Such
changes can drastically affect the security properties of the system, and therefore mechanisms
must be put in place to prevent entrusting sensitive data to such a compromised system.

/O 30/ Strong Isolation
The TrustedServer should strongly isolate compartments from each other. The isolation has
to be enforced on the address-space level and on the data level. More concretely: the use of
different compartments has to be at least as secure as the execution of the same applications on
physically separated computing platforms connected via network.

/O 40/ Admin Authentication
The TrustedServer should always identify and authenticate administrators before granting ac-
cess to management functions of the TrustedServer.

/O 50/ User Authentication
Depending on the underlying security policy, the TrustedServer should be able to identify and
authenticate users before granting access to compartments.

/O 60/ Trusted Channel Between Compartments
The TrustedServer should provide a trusted communication channel between compartments,
i.e., a channel providing integrity, confidentiality, and authenticity of the compartment’s config-
uration.

TClouds D2.4.1 Page 78 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

/O 70/ Trusted Path to Users
The TrustedServer should provide a trusted communication channel, i.e., a channel providing
integrity, confidentiality, and authenticity of the compartment’s configuration, between com-
partments and local users. Moreover, the TrustedServer should provide a trusted communica-
tion channel between itself and local users.

/O 80/ Secure Persistent Storage
The TrustedServer should provide data containers to persistently store information providing
(at least) the following list of security properties:

� Integrity: Allow the compartment to detect an integrity violation.

� Confidentiality:

– TrustedServer: Allow a compartment to bind information to the TrustedServer.

– Compartment: Allow a compartment to bind information to a compartment config-
uration.

– Role: Allow a compartment to bind information to a specific user role.

Freshness: Allow compartments to store information such that a replay attack can be
detected.

/O 90/ Data Availability after TrustedServer Update
The TrustedServer should ensure the availability of user data not bound to a specific Trusted-
Server version after a TrustedServer update providing the same security properties.

/O 100/ Data Availability after Compartment Update
The TrustedServer should ensure the availability of user data not bound to a specific compart-
ment version after a compartment update providing the same security properties.

/O 110/ Data Availability after TrustedServer migration
The TrustedServer should ensure the availability of user data not bound to a specific Trusted-
Server version after a migration to another TrustedServer providing the same security properties.

/O 120/ Data Availability after IT-environment migration
The TrustedServer should ensure the availability of user data not bound to a specific IT- Envi-
ronment after a migration to another IT-Environment providing the same security properties.

� an update of the TrustedServer,

� an update of a Compartment,

� a migration to another TrustedServer,

� a migration to another IT-environment

TClouds D2.4.1 Page 79 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.5.2.5 Security Requirements

This part defines the security requirements that have to be satisfied by the component. The
statements shall define the functional and assurance security requirements that the component
and the supporting evidence for its evaluation need to satisfy in order to meet the security
objectives.

/SR 10/ Integrity of the TCB
The TCB should be protected from manipulations to guarantee the enforcement of security
policies. No modification of the TCB must be allowed, except for changes that have been
authorized by the Admin.

/SR 20/ Confidentiality and Integrity of Application Data
Application data should remain confidential and integer during execution and storage.

/SR 30/ Trusted Path to User
The inputs/outputs of the application a user interacts with should be protected from unautho-
rized access by other applications.

/SR 40/ Trusted Channel between Trusted Compartment and External Parties
Trusted channels must be provided to allow remote parties to interact with the TrustedServer
system while being assured of its well-behavior and its willingness to conform to their security
policy.

/SR 50/ Information Flow
Information flow should only be possible where allowed by the security policy4. Primarily,
evesdropping on another, non-cooperating compartment must be foiled.

7.5.2.6 Selected Usecases

4Covered channels may still exist, but due diligence must be taken to minimize their impact.

TClouds D2.4.1 Page 80 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 230/ ((Semi-)Initial Connect To TOM)
DESCRIPTION The TrustedServer is booted and connects to TOM
ACTORS Cloud Admin, TrustedChannel, TOM
PRECONDITIONS TrustedServer is installed and registered at TOM,

TOM is configured for managing this TrustedServer,
TOM is running

POSTCONDITIONS TrustedServer is connected to TOM via a Trusted-
Channel

NORMAL FLOW
1. Cloud Admin boots a TrustedServer
2. TrustedServer is booted
3. After booting TrustedServer tries to connect to

TOM
4. TrustedServer initiates connection to TOM
5. Remote Attestation succeeds
6. Connection is established (via TrustedChannel)

7.5.2.7 Demo Storyboard

Here we demonstrate how a Cloud Admin initially connects a TrustedServer to TOM:

1. Cloud Admin opens TOM’s Management Interface within a web-browser

2. Status of pre-registered TrustedServer is ’offline’

3. Cloud admin starts the TrustedServer

4. The TOM-log shows the (plaintext) objects, transmitted via the TrustedChannel

5. After a successful Remote Attestation, the predefined configuration for the TrustedServer
sent by TOM can be seen in the log-file of the TrustedServer

6. The log of TrustedServer shows the successful application of the configuration

7. TOM’s Management interface shows an ’online’ status of the TrustedServer

7.5.3 Architecture
In this section the high-level design and sequence diagrams of the TrustedServer component are
described.

7.5.3.1 High-level Design

� Big picture and relations with other components

– The component is managed by TOM (WP 2.3).

– Integration of ’Secure VM Instances’ component is desired.

� Hints on implementation

– none

TClouds D2.4.1 Page 81 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.5.3.2 Sequence Diagrams

The following sequence diagrams describe the interactions between the (sub)components in-
volved when using the TrustedServer component. They implement the use cases /UC 230/ de-
fined in section 7.5.2.6 and the common use case /UC 20/ . The functions used in the sequence
diagrams comes from the API discussed in section 7.5.4.

7.5.3.2.1 Setup (Figure 7.10). To setup TrustedServer the Cloud Admin will download a
configuration from the TOM and then start the TrustedServer (cf. Figure 7.10) to bind it to
TOM.

Cloud Admin TOM TrustedServer

DownloadConfigForTS()

config

StartTS()

PowerOn()

ack

ack

BindToTOM(config)

ack

TrustedServer SetupTrustedServer Setup

Figure 7.10: Setup of TrustedServer.

7.5.3.2.2 Start Compartment (Figure 7.11). To start a compartment on a TrustedServer
the TOM sends a start command to TURAYATM Manager which is part of secure hypervisor
and will boot the VM instance (cf. Figure 7.11). This is an instance of Usecase /UC ??/. k

TOM CompartmentManager

StartCompartment(CompartmentID)

Boot VM instance

ack

done

Start CompartmentStart Compartment

Figure 7.11: Start of compartment on TrustedServer.

TClouds D2.4.1 Page 82 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.5.4 API
In this section we describe high-level API for the TrustedServer compartment management
functions 7.12).

� Public interface via TrustedChannel for remote connection(s) to TOM(s).

� (Binary) Management protocol (within TrustedChannel) for management tasks.

Compartment

- setDownloadProgress :

+ remove()

+ getName() : string

+ getID() : CompartmentID

+ getTaskID() : TaskID

+ getDomain() : Domain [Domain Management]

+ getStatus() : Compartment::Status

+ start()

+ stop()

+ getComment() : string

+ signalStatusChanged(in compartment : Compartment, in status : status)

+ getDate() : string

+ getVersion() : CompartmentVersion

+ update(in : CompartmentData) : void

+ setVirtualDiskImage(in filePath : Path) : void

+ setDownloadProgress(in : UInt32) : void

+ signalProgressChanged(in : UInt32) : void

CompartmentList

Domain

+ remove()

+ getName() : string

+ getID() : DomainID

+ getColor() : Domain::Color

+ encrypt(in : ByteVector) : ByteVector

+ decrypt(in : ByteVector) : ByteVector

Both, Compartment and CompartmentData have similar attributes, but they

are not identical: While CompartmentType.getName() only returns the

concrete name, Compartment::getType() has to return a unique identifier,

altough more than one compartment is installed.

CompartmentDataList

CompartmentID and TaskID have to be different, since

a suspended compartment still needs an identifier.

<<singleton>>

CompartmentManager

+ installCompartment(in : CompartmentData) : Compartment

+ getAllCompartments() : CompartmentList

+ getCompartment(in cid : CompartmentID) : Compartment

+ getCompartmentByTaskID(in tid : TaskID) : Compartment

+ hasCompartment(in compartmentID : CompartmentID) : bool

+ signal_onCompartmentInstalled(in compartmentID : CompartmentID)

+ signal_onCompartmentRemoved(in compartmentID : CompartmentID)

CompartmentData

+ getDomain() : Domain

+ getName() : string

+ getTypeID() : CompartmentTypeID

+ getVersion()

+ getDescription() : string

+ getImageHash() : ByteVector

*

1

1
*

*

*

1

1

1

Figure 7.12: Compartment Management API.

7.5.4.1 CompartmentManager

This section comprised CompartmentManager sub-component interface for Install-Compartment
/ Remove-Compartment / Start-Compartment / Stop-Compartment.

install()

installResult(install (CompartmentImage, CompartmentConfig)

Description.
The install API is called by the Cloud Admin to install a Compartment on Trust-
edServer.

TClouds D2.4.1 Page 83 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

remove()

removeResult(remove (CompartmentID)

Description.
The remove API is called by the Cloud Admin to delete an installed Compartment-
instance on TrustedServer.

start()

startResult(start (CompartmentID)

Description.
The start API is called by the Cloud Admin to start an installed Compartment-
instance on TrustedServer.

stop()

stopResult(stop (CompartmentID)

Description.
The stop API is called by the Cloud Admin to stop an Compartment-instance on
TrustedServer.

7.5.4.2 API Parameters and Return Values

Parameter Description

CompartmentID An unique identifier for this compartment (int)

CompartmentImage Path/to/filename of VM-image-file (vdi)

CompartmentConfig

The configuration to be applied to the CompartmentImage-
instance: Name:string ; Description:string ; Im-
ageHash:ByteVector ; Domain:DomainObject ;
TypeID:CompartmentTypeID

Return Values Description

installResult Represents the result related to the performed installation.

removeResult Represents the result related to the performed deletion.

startResult Represents the result related to the performed start operation.

stopResult Represents the result related to the performed stop operation.

TClouds D2.4.1 Page 84 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Verification and Auditability

7.6 Log Service
Authors:
Emanuele Cesena, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia, Davide Vernizzi (POL)

7.6.1 Overview
Log Service is the TClouds logging subsystem, mainly used by other Cloud Components to log
their internal events and, possibly, by applications. Log Service can be used as basis for auditing
or reporting the Service Level Agreement (SLA) compliance to the User (here the main target
of the service is the end user of the cloud, but it may also refer to an external auditor or to the
Cloud Admin). In WP2.1, we concentrate in providing integrity and privacy of logs through
access control mechanisms, whilst in WP2.2, we concentrate on ensuring their availability and
logging of cloud of clouds events.

7.6.1.1 Goals (Security, Privacy, Resilience)

� Integrity of log entries.
Description: Log Service will protect log entries with strong cryptographic methods so
that the User will immediately detect tampering of log entries.
Techniques/research problems: Log Service will employ techniques such as those pro-
posed by Schneier and Kelsey [SK99] or Ma and Tsudik [MT09].
Assumptions: Log Service does not need a secure storage for protecting log entries.

� Privacy and access control of log entries.
Description: Log Service will create log entries with privacy enforced by design, i.e.
with all the sensitive information already removed or protected. Moreover, mechanisms
for ensuring access control on log entries will be used.
Techniques/research problems: Log Service will employ techniques such as k-anonymity
or broadcast encryption.
Assumptions: Log Service does not need a secure storage for protecting log entries.

� Availability of logs.
Description: Log Service will be capable of guaranteeing availability of logs, also for
long periods of time.
Techniques/research problems: still to be defined.
Assumptions: Log Service requires a resilient storage.

� Policies on log entries.
Description: Log Service will be capable of applying policies on log entries that define
their usage. For instance, a policy may specify that personal data must be kept at most 6
months, while medical records must be kept at least 10 years.
Techniques/research problems: still to be defined.
Assumptions: Log Service requires a resilient storage.

TClouds D2.4.1 Page 85 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.6.1.2 Required external components

� Resilient storage (cf. Section 8.3).
Name/description: the resilient storage is needed because log entries are supposed to be
available and to last for long time. To the opposite, Log Service will protect the integrity
and the confidentiality of log entries by itself without relying on a secure storage for such
a task.
Features (security/privacy/resiliency): the storage must be resilient.
Required API (provided by the external component): Log Service does not require
any specific API and will use the one defined for storage.

� Trusted platform.
Name/description: Log Service will rely on a trusted platform with a hardware root of
trust.
Features (security/privacy/resiliency): the trusted platform must provide isolation of
critical components of Log Service from the rest of the (untrusted) system. Moreover, it
must be equipped with a hardware root of trust capable of securely store and use crypto-
graphic keys (a TPM should suffice). Moreover, if the platform is capable or reporting its
integrity is a plus.
Required API (provided by the external component): Log Service will be based on
TSS, but we will probably also use the TPA [CCS+11, see also D2.1.1, Chapter 13].

7.6.1.3 Relationship with Activity3

Actors from A3 act as end users of the cloud and therefore can access the Log Service. For
instance, an A3 Project Manager may want to check if his application deployment complies
with the SLA, using the Management Console provided by TClouds.

The current API is only intended to be used by Cloud Components (i.e., by A2 components),
but this can be extended to be used by applications as well.

7.6.2 Requirements
The use cases are depicted in Figure 7.13. We define the following terminology:

� log entry: a record containing information about an event. The log entry may give only a
partial view of the event. Moreover (part of) the data may be sensitive.

� event log: a (usually small) set of log entries all related to a single event. This is the
smallest set that provides the overall view on the event.

� log (or registry log): a set of log entries, usually all related to a single object or actor.
Note that a single log entry may be added to several log registries.

7.6.2.1 Selected Use Cases

TClouds D2.4.1 Page 86 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

User Computing Node X

Computing Node Y

Start Instance

Create event log
‘Start Instance’

Migrate Instance

Create event log
‘Migrate Intance’

Create log entry
‘Send Instance’

Create log entry
‘Receive Instance’

Retrieve logs

Retrieve logs
(VM)

Retrieve logs
(Infrastructure)

«extend»

«extend»

Figure 7.13: Use case diagram to demonstrate the Log Service at cloud infrastructure level.

USE CASE UNIQUE ID /UC 240/ (Create event log ‘Start Instance’)
DESCRIPTION A new event log is created to track the event of start-

ing a VM instance.
ACTORS Computing Node X.
PRECONDITIONS User started a VM instance (e.g., VMA1) on Comput-

ing Node X, cf. /UC 20/.
POSTCONDITIONS None.
NORMAL FLOW

1. Computing Node X creates a new log entry
for the VM instance being started containing
“started instance VMA1”.

2. Computing Node X adds the log entry to its log.
3. Computing Node X adds the log entry to the log

of VMA1.

TClouds D2.4.1 Page 87 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 250/ (Create event log ‘Migrate Instance’)
DESCRIPTION A new event log is created to track the event of mi-

grating a VM instance.
ACTORS Computing Node X and Computing Node Y.
PRECONDITIONS Migration of VMA1 from Computing Node X to Com-

puting Node Y has been triggered, cf. /UC 100/
POSTCONDITIONS None.
NORMAL FLOW

1. Before sending VMA1, Computing Node X:

(a) creates a new log entry for the VM in-
stance migration containing “Sent VMA1

from Computing Node X to Computing
Node Y”.

(b) adds the log entry to its log.

(c) adds the log entry to the log of VMA1.

2. Upon successfully receiving VMA1, Computing
Node Y:

(a) creates a new log entry for the VM
instance migration containing “Received
VMA1 from Computing Node X to Com-
puting Node Y”.

(b) adds the log entry to its log.

(c) adds the log entry to the log of VMA1.

TClouds D2.4.1 Page 88 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 260/ (Retrieve logs)
DESCRIPTION A log is retrieved by the User.
ACTORS User.
PRECONDITIONS None.
POSTCONDITIONS None.
NORMAL FLOW

(LOG OF A VM) 1. The log of the requested VM instance is pro-
vided to the User together with data neces-
sary to authenticate the log (e.g. cryptographic
keys).

ALTERNATIVE FLOW

(LOG OF THE INFRASTRUC-
TURE)

1. Log Service collects logs from the portion of in-
frastructure that pertains to User (e.g. Comput-
ing Nodes where his VM instances have been
executed). Note that parts of these logs may be
sensitive for the Cloud (e.g. detailed informa-
tion about the physical node) or for other users
that have been using the infrastructure (e.g. in-
formation about their VM instances). In this
case, the confidentiality of sensitive data must
be guaranteed.

2. The logs of the infrastructure are provided to
User together with data necessary to authenti-
cate the log (e.g. cryptographic keys).

In use case /UC 250/ a single event log is composed of two log entries (one created by Com-
puting Node X, the other one by Computing Node Y). Moreover, there are three log registries
and only the VMA1 log registry contains the whole event log.

7.6.2.2 Demo Storyboard

The following storyboard shows how Log Service can be used to spot infringements to the SLA,
while preserving the privacy of all the actors involved. In particular, we have a User (Alice)
who requires to always have a physical machine wholly dedicated to her VM instances and we
show that, in case of migration on an already busy Computing Node (Computing Node 2), the
infringement is noticed by Alice. Moreover, Alice will notice the infringement, in respect of
the privacy of the owner(s) of the VM instance running on Computing Node 2.

1. User Alice creates an instance of her VMA1 on Computing Node 1.

2. A new log entry is created for the start of VMA1 (cf. /UC 240/):

(a) A log entry is added to the log of Computing Node 1.

(b) A log entry is added to the log of VMA1.

3. User Bob creates an instance of her VMB1 on Computing Node 2.

TClouds D2.4.1 Page 89 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

4. A new log entry is created for the start of VMB1 (cf. /UC 240/):

(a) A log entry is added to the log of Computing Node 2.

(b) A log entry is added to the log of VMB1.

5. VMA1 is migrated from Computing Node 1 to Computing Node 2.

6. New log entries are created for the migration of VMA1 (cf. /UC 250/):

(a) A log entry (sent VMA1 from Computing Node 1 to Computing Node 2) is added to
the log of Computing Node 1.

(b) A log entry (sent VMA1 from Computing Node 1 to Computing Node 2) is added to
the log of VMA1.

(c) A log entry (received VMA1 from Computing Node 1 to Computing Node 2) is
added to the log of Computing Node 2.

(d) A log entry (received VMA1 from Computing Node 1 to Computing Node 2) is
added to the log of VMA1.

7. Alice retrieves the log of VMA1 (cf. /UC 260/, normal flow) and, after checking the life
cycle of the VM instance, she sees that the VM instance has been started and migrated.

8. Alice retrieves the log of cloud infrastructure (cf. /UC 260/, alternative flow) and notices
that another VM instance is running on Computing Node 2, hence breaking her SLA.
For privacy reasons, Alice will see that “another VM instance” is running, but not “Bob’s
VMB1” is.

7.6.3 Architecture

7.6.3.1 High-level Design

The high level architecture is depicted in Figure 7.14. The current architecture is based on the
Schneier-Kelsey scheme [SK99, see also D2.1.1, Chapter 7, for an overview of the scheme],
which provides the security features required by a logging system. Despite this scheme lacks
the protection against particular attacks, namely truncation attack and delayed deletion, it has
been used as a foundation by most of the subsequent secure logging systems, which use a similar
structure but with different cryptographic primitives (mainly public key instead of symmetric
key cryptography). Therefore we consider it as a good candidate for designing the preliminary
architecture of Log Service.

7.6.3.1.1 Log Core
The core component of the Log Service. This corresponds to the trustworthy actor of the
Schneier-Kelsey scheme. Its main feature is to maintain the cryptographic material necessary to
the User to verify the integrity of log entries. Because of this, this is the most critical component
in terms of security and it must be kept as minimal as possible.

The Log Core is accessed by Cloud Components to initialize the Schneier-Kelsey scheme
(cf. Section 7.6.3.2.1). It also support a notification indicating when a new log entry has been
created, useful to keep a consistent state with the Log Storage (cf. Section 7.6.3.2.2).

Finally the Log Core is directly accessed by the User for the integrity verification (cf. Sec-
tion 7.6.3.2.3).

TClouds D2.4.1 Page 90 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Log Console

Cloud
Component

Cloud
Component

Cloud
Component

Log Core

Log Storage

user

Dump

Verify

Log

Init / Notify

Retrieve / Dump

Retrieve

Init / Verify

Figure 7.14: High-level architecture of Log Service.

7.6.3.1.2 Log Storage
The storage component. This is a resilient storage that provides the necessary availability of logs
stored. This component has been separated from the Log Core to keep the critical part of the
Log Service as minimal as possible. The Log Storage does not need to provide confidentiality or
integrity of data since they are guaranteed by design, i.e. log entries are immediately protected
when created.

This component will be built upon a resilient storage such as the resilient object storage
described in Section 8.3. However, Log Storage should also provide functionality such as in-
dexing, search or access control lists on log entries.

Log Storage provides the following functionality to the Cloud actors:

� log: allows a Cloud Component to store a new log entry (cf. Section 7.6.3.2.2).

� download logs: allows the User to download a (usually large) list of log entries (cf. Sec-
tion 7.6.3.2.4).

Moreover, Log Storage is accessed by the Log Core and the Log Console to retrieve log
entries (cf. Section 7.6.3.2.3).

7.6.3.1.3 Log Console
The enhancement to the Management Console to support log visualization. This is the main
entry point for the User and allows to:

� retrieve logs: visualize a (relatively short) list of log entries (cf. Section 7.6.3.2.3).

� dump logs: download a (usually large) list of log entries (cf. Section 7.6.3.2.4). This
triggers the creation of an archive on Log Storage and returns to the User the location of
this archive.

In both cases the User must validate the integrity of the log entries, relying on the Log Core.

TClouds D2.4.1 Page 91 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.6.3.2 Sequence Diagrams

The following sequence diagrams describe the interactions between the components of Log
Service. After the generic sequence diagrams, we discuss how to implement the use cases
/UC 240/ and /UC 260/. The functions used in the sequence diagrams come from the API
discussed in Section 7.6.4.

7.6.3.2.1 Init (Figure 7.15)
Before starting using Log Service it is necessary to initialize a new log registry. This operation
must be done only once for each registry. To do this, the Cloud Component contacts the Log
Core which will contact the Log Storage to create the appropriate log registry. The Log Core
replies to the Cloud Component indicating the URI of the log registry.

Cloud Component Log Core Log Storage

InitLog(logReq, securityParams)

InitLog(logReq)

logUri

logUri

InitInit

Figure 7.15: Sequence diagram for Log Service init.

7.6.3.2.2 Log (Figure 7.16)
Log Service provides a functionality for creating log entries. The Cloud Component locally
creates a log entry5and then sends it to the Log Storage. The Log Storage response indicates
whether the log entry was saved successfully. One single notification can be sent for multiple
log entries, to reduce the network load.

Moreover, to keep a consistent state between Log Core and Log Storage, the Cloud Compo-
nent notifies the Log Core that a new log entry was successfully created.

7.6.3.2.3 Retrieve and Verify (Figure 7.17)
Log Service provides functionality for retrieving and verifying log entries. The User requests
the desired log entries to the Log Console which in turn contacts the Log Storage to retrieve
them. Log Console sends the log entries back to the User.

The User can then access the Log Core to verify the integrity of logs. To reduce the network
load, the Log Core directly retrieves the necessary log entries from the Log Storage.

5According to the Schneier-Kelsey scheme, the log entry must be protected to ensure integrity. This is done
using the libsklog, described in Section 7.6.3.3.1.

TClouds D2.4.1 Page 92 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Cloud Component Log Core Log Storage

Create Log Entry

logEntry

Log(logUri, logEntry)

logResult

NotifyLog(logReq, logRange, notify)

notifyResult

LogLog

Figure 7.16: Sequence diagram for log entry creation.

User Log Console Log Core Log Storage

RetrieveLog(logReq, logRange)

RetrieveLog(logReq,logRange)

logList

logList

VerifyLog(logReq, logRange)

RetrieveLog(logReq, logRange)

logList

Verification Process

verifyResult

VerifyVerify

RetrieveRetrieve

Figure 7.17: Sequence diagram for retrieve and verity log entries.

TClouds D2.4.1 Page 93 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.6.3.2.4 Dump and Download (Figure 7.18)
Log Service provides a functionality for retrieving a large quantity of log entries, called log
dump. The User requests the log dump to the Log Console which in turn trigger the creation of
an archive of logs on the Log Storage. The Log Console also indicates to the User the location
from where he will download the archive. The User can poll the Log Console to know whether
the archive creation process has finished.

When the Log Storage has finished to create the archive, it makes it possible for the User
to start the download. After successful retrieval of the log dump, the User should perform a
verification of the logs integrity.

User Log Console Log Storage

DumpLog(logReq, logRange)

DumpLog(logReq, logRange)

dumpResult

dumpResult

DownloadLog(logDumpUri)

logDump

DownloadDownload

DumpDump

Figure 7.18: Sequence diagram for dumping large logs.

7.6.3.2.5 Selected Use Cases Implementation

7.6.3.2.5.1 Create event log ‘Start Instance’ /UC 240/. This use case uses the sequence
diagram “Log” 7.6.3.2.1 to log the event. Before using this sequence diagram, it is necessary
to use the sequence diagram “Init” 7.6.3.2.2 for initializing a new log registry. Note that the
initialization is required only once.

7.6.3.2.5.2 Retrieve logs /UC 260/. This use case uses the sequence diagram “Retrieve
and Verify” 7.6.3.2.2. Note that this use case implies not only “retrieving” the list of log entries
from the Log Console, but also “verifying” the integrity of log entries with the Log Core.

TClouds D2.4.1 Page 94 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.6.3.3 Low-level Design

A preliminary low level architecture is depicted in Figure 7.19. This section anticipates some
of the internals of a Computing Node that uses the Log Service.

Computing Node

OS Nova

libsklog

REST

Syslog

Log Core

Syslog

Log Storage

Enhanced Logging
Server
libsklog

Syslog Module
for

libsklog

Figure 7.19: Low-level architecture of Log Service: internals of Computing Node.

7.6.3.3.1 libsklog
C library implementing the Schneier-Kelsey scheme. This library takes as input the string of a
log to be saved and creates a log entry protected according to the Schneier-Kelsey scheme.

7.6.3.3.2 Syslog Module for libsklog
A module for rsyslog that integrates the functionality provided by libsklog. This module
transforms a standard string sent to syslog into a log entry (as defined by the Schneier-Kelsey
scheme), using libsklog. The log entry is then encoded as Base64 buffer and forwarded to
syslog for standard handling.

7.6.3.3.3 Enhanced Logging in OS Nova
Enhancement of OS Nova to use the Python logging library, that provides a more detailed
logging wherever necessary. In details, this enhancement provides a logging functionality that
implements the Schneier-Kelsey scheme and an advanced access control mechanism.

7.6.4 API
Here the API of the components defined in the high level architecture is discussed, while the
parameters and return values are described in Section 7.6.4.4.

7.6.4.1 Log Core

InitLog()

logUri(InitLog (logReq, securityParams)

Description.
The InitLog API is called by the Cloud Components to initialize a new logging
session.

TClouds D2.4.1 Page 95 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

NotifyLog()

notifyResult(NotifyLog (logReq, logRange, notify)

Description.
The NotifyLog API is called by the Cloud Components to notify the Log Core of
the writing of one or more new log entries.

VerifyLog()

verifyResult(VerifyLog (logReq, logRange, securityParams)

Description.
The VerifyLog API is called by the Users to verify the integrity of a range of
previously stored log entries.

7.6.4.2 Log Storage

InitLog()

logUri(InitLog (logReq)

Description.
The InitLogAPI is called by the Log Core during the initialization of a new logging
session.

Log()

logResult(Log (logUri, logEntry)

Description.
The Log API is called by the Cloud Components when a new event has to be logged.

RetrieveLog()

logList(RetrieveLog (logReq, logRange)

Description.
The RetrieveLog API is called by the Log Console when a User wants to retrieve
some log entries or by the Log Core when a User needs to verify a range of log entries.

DumpLog()

dumpResult(DumpLog (logReq, logRange)

TClouds D2.4.1 Page 96 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Description.
The DumpLog API is called by the Log Console during the dump process. The return
value can be the progress of the dumping process or a logDumpUri.

DownloadLog()

logDump(DownloadLog (logDumpUri)

Description.
The DownloadLog API is called by the Users to download a compressed archive
which contains a huge range of log entries.

7.6.4.3 Log Console

RetrieveLog()

logList(RetrieveLog (logReq, logRange)

Description.
The RetrieveLog API is called by the Users to retrieve a list of previously stored
log entries.

DumpLog()

dumpResult(DumpLog (logReq, logRange)

Description.
The DumpLog API is called by the Users to request a huge list of previously stored
log entries.

AnalyzeLog()

analyzeResult(AnalyzeLog (logReq, logRange, function, functionParams)

Description.
The AnalyzeLog API is called by the Users to request the execution of certain kind
of analysis about a range of log entries.

TClouds D2.4.1 Page 97 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

7.6.4.4 API Parameters and Return Values

Parameter Description

function
Specifies the function which has to be used to execute the anal-
ysis of a range of log entries

functionParams
Includes one or more parameters for the function used to per-
form the analysis of the log entries

logEntry
Includes the log entry priority and a string which describes the
event to log

logRange Defines a range of log entries

logReq
Includes a log registry identifier and some authorization cre-
dentials

logUri
Specifies the URI of the remote log entries collector (Log Stor-
age)

notify Specifies the event which has to be notified

securityParams Includes some security elements (e.g. session keys)

Return Values Description

analyzeResult Represents the result related to the performed analysis

dumpResult
Represents the progress of the dumping process or the URI for
dump downloading

logDump
Is a compressed archive which contains a huge number of log
entries.

logDumpUri Is the URI which has to be used for the dump downloading.

logList Is a list of log entries.

logResult
Is a boolean value which represents the result of the Log pro-
cedure (success or failure)

logUri Is the URI on where the remote logging has to be executed

notifyResult
Is a boolean value which represents the result of the Notify-
Log() function.

verifyResult
Represents the result of the VerifyLog() function; it contains a
boolean values and, only if the verification success, a pool of
keys which can be used to decrypt a range of log entries

TClouds D2.4.1 Page 98 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 8

Cloud of Clouds Middleware for Adaptive
Resilience (WP 2.2)

Improved Availability and Resilience

8.1 State Machine Replication
Authors:
Alysson Bessani, Miguel Correia, Marcelo Pasin (FFCUL)

8.1.1 Overview
To build trustworthy clouds, security measures are clearly necessary to prevent malicious in-
trusions. But considering the enormous complexity of cloud infrastructures, platforms and ser-
vices, it is unlikely that 100% of the programming errors (that lead to vulnerabilities) of such
systems will be ever corrected. Any secure system can be deceived by exploiting its known de-
fects, so measures that allow for tolerating intrusions must also be addressed when building the
trustworthy clouds. To cope with this problem FFCUL is providing a state machine replication
library that ensures integrity and availability of replicated services as long as at most a fraction
of the replicas (usually less than a third) are compromised.

8.1.1.1 Description

Server and client are the basic structures used to implement distributed systems as clouds. The
server offers services and the client uses such services by invoking them. An invocation is done
by sending a request message from the client to the server, which returns the corresponding
results as a reply message to the client.

Fault-tolerant distributed systems are implemented by replicating the components prone to
failures and making them process message in a coordinated way, so they can fail independently
without compromising the service availability and integrity. An intrusion-tolerant system is
commonly modeled as a fault-tolerant system, capable of defending itself against Byzantine
failures, in which a component is allowed to fail in arbitrary ways, including the most common
stop and crash failures, but also processing requests incorrectly, corrupting their local state, or
producing incorrect or inconsistent outputs.

Byzantine fault-tolerant services are implemented using replicated state-machines, that upon
receiving a request deterministically change to a new state and send a reply. All state-machine
replicas start with the same state and requests are sent to them using reliable, ordered, broad-
casts from clients. The clients wait for a quorum of replies from different replicas and extract

TClouds D2.4.1 Page 99 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

the result that a majority of them produced, ignoring thus results from faulty replicas. The
Section 8.1.3 gives more details on how this is actually done.

8.1.1.2 Goals (Security, Privacy, Resilience)

The system will ensure the following properties:

� Availability by exploiting replication and diversity to run the replicas of the service on
several clouds, thus allowing access to it as long as a subset of them is reachable.

� Integrity of the service executed as long as the majority (at least) of the clouds are correct
and run the correct service code.

8.1.1.3 Required External Components

The State Machine Replication system is essentially middleware. It requires a set of individual
replicas running the same software (typically four, to tolerate a single fault or intrusion) hosted
on different operating systems and clouds in order to increase diversity and avoid common
model faults (e.g., the same vulnerability is exploited in replicas).

8.1.1.4 Relationship with Activity 3

The system can be used to run critical services in multiple clouds. It is able to protect their
availability and integrity even if some of the clouds used are offline or compromised.

8.1.2 Requirements

8.1.2.1 Selected Usecases

In this section we present some selected use cases for the state machine replication component.
As a final note, we would like to remark that the general character of the use cases are a direct
consequence of the generality of the components (i.e., in theory it can be used to provide fault
tolerance to any deterministic service).

USE CASE UNIQUE ID /UC 270/ (Invoke)
DESCRIPTION User invokes an operation on a service
ACTORS User
PRECONDITIONS User client-side library knows enough service replicas
NORMAL FLOW

1. Client-side library sends a request to the server-
side part of the library

2. Service libraries agree on request order
3. Service libraries deliver the request
4. State-machine processes the request and replies

to the User
5. Service libraries deliver replies
6. Client library vote on the result of the request
7. Client library deliver result to the user code

TClouds D2.4.1 Page 100 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 280/ (Start replicated service)
DESCRIPTION Starts several replicas for a replicated service
ACTORS Project manager or an automated replica manager
PRECONDITIONS The actor has privileges for the operation (not a com-

mon user)
POSTCONDITIONS The replicated service exists
NORMAL FLOW

1. Set up an initial group (configuration file with
IP and port of each replica) plus their public and
private keys

2. Start multiple processes running the service
(can be done by requesting image deployments)

3. Replica processes establish connection among
them

USE CASE UNIQUE ID /UC 290/ (Add a Replica to a Replicated Service)
DESCRIPTION Starts a replica for a replicated service and adds it to

the group
ACTORS Project manager or an automated replica manager
PRECONDITIONS The replicated service exists
PRECONDITIONS The actor has privileges for the operation (not a com-

mon user)
POSTCONDITIONS A new replica is up, running, and belongs to the group
NORMAL FLOW

1. Start a new process running the replicated ser-
vice (can be done by requesting an image de-
ployment)

2. Add a replica to the replicated service (issue an
invoke to the replicas asking to join the group).
This operation can only be made by clients with
special privileges

TClouds D2.4.1 Page 101 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 300/ (Remove a Replica from a Replicated
Service)

DESCRIPTION Stops a replica of a replicated service and removes it
from the group

ACTORS Project manager or an automated replica manager
PRECONDITIONS The replicated service exists
PRECONDITIONS The actor has privileges for the operation (not a com-

mon user)
POSTCONDITIONS A replica is appropriately shut down, after leaving the

group
NORMAL FLOW

1. Remove a replica from the replicated service
(issue an invoke to the replicas asking to leave
the group). This operation can only be made by
clients with special privileges.

2. Stop the process running the replicated service
(can be done followed by an image shutdown)

8.1.2.2 [Optional] Non-functional Requirements

The effectiveness of any fault- and intrusion-tolerant solution requires a deployment that mini-
mizes the probability of correlated failures. To achieve this goal for a Byzantine fault-tolerant
(BFT) state machine replication service, we expect the system replicas to be deployed on differ-
ent operating systems, Java virtual machines and hypervisors to avoid common-mode software
faults and shared vulnerabilities and, additionally, to be hosted in different clouds (or, at least,
different availability zones of the same cloud) to ensure provider-related outages and security
related events do not affect more than one replica.

8.1.2.3 Demo Storyboard

1. Start a replicated service (for example, an in-memory key-value storage)

2. Start X clients that use the service every Y seconds

3. Manually kill a replica

4. Manually restart a replica, showing that it recovers its correct state

5. Trigger a malicious replica

� Stop a good replica and start a malicious one

� Malice can be done in the protocol or with a corrupted state

6. Show that the service keeps working

7. (optional) Replace the malicious replica with a good one

8. (optional) Show that the service keeps working

TClouds D2.4.1 Page 102 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.1.3 Design

8.1.3.1 Architecture

Byzantine Fault Tolerant (BFT) services are commonly implemented using replicated state-
machines. Figure 8.1 shows a state machine that upon receiving (1) a message deterministically
changes (2) to a new state and sends (3) a reply. All state-machine replicas start with the same
state and requests are sent to them using reliable, ordered, broadcasts from clients. Majority
(voting) is used within the clients to select the correct reply among those from all replicas. It
has been shown that to tolerate f byzantine faults, one usually needs 3f + 1 replicas, but it can
be done with only 2f + 1 replicas, for instance if they have a local trusted component to sign
the exchanged messages.

CLIENT

1
2

3 STATE
MACHINE

Figure 8.1: State machine in action

Figure 8.2 illustrates the behaviour of byzantine fault-tolerant replicated state machines in
its main use case: service invocation. It starts (a) when a client program issues a request (1)
which is sent by a client library to the service libraries (2). The service libraries agree (3), using
any suitable protocol, upon the order in which messages are delivered to the state machines. The
call to the service (b) then happens between the service library and the state machines. Finally
(c), the service libraries send (1) each replica’s replies to the client library, which collects (2)
replies and vote, returning (3) the result to the client program.

CLIENT
PROGRAM

CLIENT
LIBRARY

STATE MACHINE

SERVICE
LIBRARY

STATE MACHINE

SERVICE
LIBRARY

STATE MACHINE

SERVICE
LIBRARY

STATE MACHINE

SERVICE
LIBRARY R

E
P

LI
C

A
T

E
D

 S
TA

T
E

 M
A

C
H

IN
E

1 2

3

(a)

SERVICE
LIBRARY

SERVICE
LIBRARY

SERVICE
LIBRARY

SERVICE
LIBRARY

1 2

3

1 2

3

1 2

3

1 2

3

CLIENT
PROGRAM

CLIENT
LIBRARY

STATE MACHINE

SERVICE
LIBRARY

STATE MACHINE

SERVICE
LIBRARY

STATE MACHINE

SERVICE
LIBRARY

STATE MACHINE

SERVICE
LIBRARY R

E
P

LI
C

A
T

E
D

 S
TA

T
E

 M
A

C
H

IN
E

1

1

1

123

(b) (c)

Figure 8.2: Replicated state machines

Prior to invoking a service, the client library must establish a means for addressing messages
to the service libraries, which boils down to finding out the replicas addresses. It can be done
in different ways, from a runtime variable or a file to a trusted configuration service containing
the replicas addresses.

In order to get the replicas running, the main management operations are deployment and
shutdown. They are implemented using the cloud PaaS deployment services existing. An initial
deployment must be done, with a starting group of replicas. Later, single-replica deployments
and shutdowns can be done individually. For doing so, the entity adding or removing replicas

TClouds D2.4.1 Page 103 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

must also invoke the current replicas to join or to leave a replica group. None of these oper-
ations can be invoked by regular clients, only by the project manager or a by a trusted replica
management service.

8.1.3.2 Sequence diagrams

Figure 8.3 describes how a message is processed in a service made fault tolerant using our BFT
state machine replication.

Computing Node Client lib BFT Lib1 Replica1 BFT Lib2 Replica2 BFT Lib3 Replica3 BFT Lib4 Replica4

Invoke(function, data)

Invoke(function, data)

Agreement Protocol

Invoke(function, data)

result1

Invoke(function, data)

result2

Invoke(function, data)

result3

Invoke(function, data)

result4

result1

result2

result3

result4

result

InvokeInvoke

Figure 8.3: Sequence diagram for an Invoke call.

8.1.4 Implementation
The component defined in this section is being implemented in Java as an open-source program-
ming library called BFT-SMART1.

8.1.4.1 API

At client side, the client needs to create a ServiceProxy object with a constructor with the
following signature:

ServiceProxy(int processId, String configHome)

In this constructor it is informed the process Id of the client (should be unique, and ideally
associated with a public key available to the servers, if two-way authentication is used) and the
local directory containing the configuration files. After that, there is only one simple operation:

byte[] invoke(byte[] command, boolean readOnly)

1Available at http://code.google.com/p/bft-smart/.

TClouds D2.4.1 Page 104 of 197

http://code.google.com/p/bft-smart/

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

The client gives a byte array with a command and inform the library if this command is read-
only or not. If a request is read-only the replication library will tentatively execute it without
running a consensus among the replicas to establish total order.

At the server side, there is also a constructor of the ServiceReplica abstract class that
needs to be extended by the service to be replicated. The parameters are exactly like the service
proxy.

ServiceReplica(int processId, String configHome)

The class is abstract, and there are at least four operations that need to be implemented by
each replicated service.

byte[] executeUnordered(byte[] command,
MessageContext ctx)

byte[] executeOrdered(byte[] command,
MessageContext ctx)

ServiceState getState()

void setState(ServiceState state)

The executeUnordered method is called by the replication library when a read-only mes-
sage is delivered. The executeOrdered is a similar method called for processing normal re-
quests (that are invoked with read-only = false). The replication library assigns timestamps,
nonces, and statistics to each processed request and this information are available in an mes-
sage context object. The getState and setState calls are used by the library to save and restore
the state of the replica. These methods are fundamental for implementing replica recovery (after
a failure) and dynamic reconfigurations (joining replicas need to obtain their states from other
correct replicas).

TClouds D2.4.1 Page 105 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.2 Fault-tolerant Workflow Execution (FT-BPEL)
Authors:
Johannes Behl, Klaus Stengel (FAU)

8.2.1 Overview

8.2.1.1 Description

FAU will contribute with a PaaS infrastructure permitting the fault-tolerant execution of busi-
ness processes in particular and workflows in general which are based on and composed of Web
services. The infrastructure will be based on BPEL2, an XML-based language for describing
such workflows.

In order to provide a highly available fault-tolerant BPEL infrastructure, the FT-BPEL sub-
system comprises a group of replicated BPEL engines which execute business processes de-
scribed in the BPEL language. In the context of BPEL, business processes are expressed as
a procedure which combines several Web services fulfilling single tasks. Since the business
processes depend on the Web services they use, all of these Web services also have to be repli-
cated. Furthermore, within the presented system ZooKeeper is used by replicas of the replica-
tion groups in order to conduct the necessary coordination.

8.2.1.2 Goals (Security, Privacy, Resilience)

� Availability, reliability and integrity in the presence of arbitrary faults

Description: Business processes are usually critical tasks. If a business process could
not be executed, crashes while it is executed or produces incorrect results for whatever
reason, normally money would be lost and reputation would be damaged. Same holds for
workflows in general, which can, for instance, provide crucial tasks within a Cloud infras-
tructure such as setting up VMs or carrying out maintenance work. Therefore, outages of
business processes have to be avoided as much as possible.

Techniques/research problems: By tolerating Byzantine, that is, arbitrary failures on the
basis of state machine replication, high degrees of availability, reliability and integrity of
Web-service-based workflows shall be achieved. In doing so, all used mechanisms should
be as little invasive as possible to current BPEL infrastructures, on which the solution will
be based on. Furthermore, existing Cloud services shall be used whenever suitable and
the entire subsystem shall be highly configurable and adaptable.

Assumptions: Web services used have to be deterministic.

8.2.1.3 Required External Components

� External coordination service

The provided subsystem will make use of an external coordination service, namely Apache
ZooKeeper3.

2See “Web Services Business Process Execution Language Version 2.0” http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

3http://zookeeper.apache.org/.

TClouds D2.4.1 Page 106 of 197

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://zookeeper.apache.org/

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.2.1.4 Relationship with Activity3

The provided infrastructure can be used by A3 to execute crucial business processes or work-
flows in order to ensure high availability, reliability and integrity. The provided subsystem could
be an alternative approach to traditional solutions based on, for example, Java servlets.

8.2.2 Requirements

8.2.2.1 Selected Use Cases

USE CASE UNIQUE ID /UC 310/ (Start VM instances)
DESCRIPTION A user starts all VM instances which will be part of

the fault-tolerant BPEL infrastructure. It is possible
to create the instances within different Clouds.

ACTORS User and Clouds C1 . . . Cf .
PRECONDITIONS User created the VM instances (cf. /UC 10/) on each

Cloud Ci.
POSTCONDITIONS The VM instances are running on Clouds C1 . . . Cf

and their IP addresses are known.
NORMAL FLOW

1. The images distributed to the different Clouds
contain all necessary software packages needed
to act as ZooKeeper, BPEL or service replica or
as a client. However, the actual role of the VM
instance will be only determined at the set-up
stage (see /UC 320/).

2. The user starts the VM instances based on the
distributed image.

3. Since the IP addresses of the instances are
needed within the set-up stage, beforehand con-
figured addresses are assigned to the started
VM instances.

4. All VM instances are started and are prepared
to run the different parts of the fault-tolerant
BPEL infrastructure.

ALTERNATIVE FLOW

(OTHER WAYS TO CONNECT

STARTED VM INSTANCES)

1. Instead of configuring the IP addresses of the
VM instances beforehand, they could be dy-
namically assigned while the starting proce-
dure. In this case, some kind of mechanism has
to be provided which can be used to obtain the
IP addresses of the started instances.

ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Stop, reboot or terminate one or more VM in-
stance, for instance to simulate crashes.

TClouds D2.4.1 Page 107 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 320/ (Set up a fault-tolerant BPEL infrastruc-
ture)

DESCRIPTION A user sets up all parts of a fault-tolerant BPEL in-
frastructure including replicas of the BPEL engines,
replicas of a ZooKeeper service, replicas of the ser-
vices used by the business process and a client which
also acts as the configurator of the test installation.

ACTORS User and Clouds C1 . . . Cf .
PRECONDITIONS Prepared VM instances are running on Clouds C1

. . . Cf and their IP addresses are known.
POSTCONDITIONS Each VM instance hosts either a ZooKeeper, a BPEL

or service replica and the whole system is ready for
usage.

NORMAL FLOW
1. One VM instance is selected to act as client and

also as configurator.
2. It is ensured that the client instance has access

to a list containing the IP addresses of all other
VM instances (e. g. by means of a simple text
file).

3. Set-up scripts are executed on the client in order
to initialize all other VM instances. During this
process a role is assigned to each instance. That
is, on each VM instance either a ZooKeeper, a
BPEL or a service replica is started. Further-
more, all instances are provided with the nec-
essary configuration data needed to connect the
corresponding replication group.

USE CASE UNIQUE ID /UC 330/ (Retrieve the number of active replicas)
DESCRIPTION A user retrieves the numbers of all active replicas.

The total number comprises the numbers of BPEL,
ZooKeeper and service replicas.

ACTORS User, client VM instance
PRECONDITIONS A BPEL infrastructure was set up and is ready for us-

age.
POSTCONDITIONS —
NORMAL FLOW

1. The user gets the number of all replicas cur-
rently active within the BPEL infrastructure by
means of the client.

2. The client connects to the other VM instances
and collects their current status.

3. The numbers are presented to the user.

TClouds D2.4.1 Page 108 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 340/ (Execute a normal business process)
DESCRIPTION A user starts a business process by using the client

VM instance. The process is carried out by the BPEL
infrastructure without problems and the correct re-
sults are returned to the user.

ACTORS User, client VM instance
PRECONDITIONS A BPEL infrastructure was set up and is ready for us-

age.
POSTCONDITIONS The BPEL infrastructure is still ready for usage.
NORMAL FLOW

1. The user starts a simple business process by
means of the client.

2. The business process is carried out by the BPEL
infrastructure.

3. The correct result of the business process is pre-
sented to the user.

USE CASE UNIQUE ID /UC 350/ (Execute a business process in the pres-
ence of a outage)

DESCRIPTION A user starts a business process by using the client
VM instance. While the process is carried out by the
BPEL infrastructure a crash of one BPEL replica is
simulated by terminating the corresponding VM in-
stance. Nevertheless, the correct results are returned
to the user.

ACTORS User, client VM instance
PRECONDITIONS A BPEL infrastructure was set up and is ready for us-

age.
POSTCONDITIONS The BPEL infrastructure is still ready for usage.
NORMAL FLOW

1. The user starts a simple business process by
means of the client.

2. While the business process is carried out by the
BPEL infrastructure, the VM instance of one
BPEL replica is terminated.

3. Nevertheless, the correct results of the business
process are presented to the user.

ALTERNATIVE FLOW

(SIMILAR USE CASES) 1. Instead of terminating the VM instance of a
BPEL replica, an instance of a ZooKeeper or
service replica could be terminated.

TClouds D2.4.1 Page 109 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.2.2.2 Demo Storyboard

The intention of this story is to show how business processes can be carried out even in the
presence of outages. For that purpose a FT-BPEL infrastructure is built up comprising a repli-
cated BPEL engine, one single replicated Web service and a ZooKeeper service which utilizes
replication as well. Within this story, the management of the infrastructure is carried out by a
single client. The client is responsible for the configuration of the infrastructure, as well for
starting requests and presenting the results to the user.

1. A user creates several VM instances distributed over different Clouds (cf. /UC 310/).

2. After one VM instances has been selected as the client, this client is used to set up the
BPEL infrastructure (cf. /UC 320/).

3. In order to show the status of the built up infrastructure, the number of all active compo-
nents can be retrieved at any time (cf. /UC 330/).

4. The execution of business processes can be started by means of the client (cf. /UC 340/).
It is possible to terminate single VM instances while a business process is being executed.
Such simulated outages of single components are tolerated by the infrastructure, so that
the user gets correct results even in this situation.

8.2.3 Architecture

8.2.3.1 High-level Design

As stated before, BPEL is a language for describing business processes. These business pro-
cesses are not only composed of Web services but they are provided as Web services themselves.
This is done by so-called BPEL engines responsible for executing process definitions written in
BPEL. In that way, clients can invoke business processes in the same manner as they would
invoke customary Web services. Called by a client, the BPEL engines carry out the appropriate
process, whose definition has been imported before. In particular, the engines invoke all Web
services necessary to fulfill the request.

Existing BPEL engines usually log changes of state during the execution in order to tol-
erate crashes. However, this solution has several drawbacks: The execution is slowed down
significantly, the business process is not available during recovery and the solution depends on
a reliable storage. Furthermore, the reliability of the Web services used has not been addressed
at all by existing implementations.

FT-BPEL addresses these problems by actively replicating not only the BPEL engines but
(optionally) also the Web services in a combined architecture. As depicted in Figure 8.4 a
transformation process is installed which transparently prepares process definitions before they
are imported into the engines. The transformation process is mainly used to redirect invocations
to proxies responsible for the replication. Theses proxies make use of an external Apache
ZooKeeper service for coordination, dynamic retrieval of system information, configuration,
crash detection and request ordering.

8.2.3.2 Sequence Diagrams

Figure 8.5 shows the sequences of messages exchanged while setting up a demo system and
processing a single request.

TClouds D2.4.1 Page 110 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

ZooKeeper
BPEL

Engine

IP

OP

Client

OP

BPEL
Engine

IP

OP

BPEL
Engine

IP

OP

1

6 6 6

Web Srv. A

IP
13

Web Srv. A

IP
13

Web Srv. A

IP
13

7 7 7

R1 R2 R3

2
3

5

4

8

9
10

11 11 11

12

BPEL
<process>

…
<invoke WS A>
<invoke WS B>
<reply>

…

BPEL
<process>

…
<invoke IPs A>
<invoke IPs B>
<reply>

…

imports

Transformation

Figure 8.4: Architecture of FT-BPEL

For the set-up process, the client acts as coordinator. When the system shall be set up, it
reads the IP addresses of all other computing nodes eventually executing the replicas, either of
the replicated BPEL engine, the Web services of ZooKeeper. First, the ZooKeeper replicas are
initialized. For that purpose, the client sends the IP addresses of all computing nodes dedicated
for executing ZooKeeper replicas to each of these nodes. After the replicas are up and running
they send an acknowledgment to the client. Now, the client is able to store further configuration
data within ZooKeeper. This way, when the BPEL and the Web service replicas are initialized
by the client, by sending the ZooKeeper connection endpoints to the computing nodes, they can
retrieve necessary information from ZooKeeper.

The second part of Figure 8.5 depicts the sequence of a normal request processing. In that
case, the client is nothing more than a usual client invoking services. This is done by firstly
sending the data of a request to all BPEL replicas. Then, the request has to be registered in
ZooKeeper to obtain a global ordering of requests. ZooKeeper informs the BPEL replicas about
the request ordering via callbacks registered before. Subsequently, the BPEL replicas elect a
new leader, if necessary, responsible for invoking the Web services. Invocation of Web services
is analog to the invocation of BPEL engines. If all steps of a business workflow are processes,
a reply is sent to the client.

TClouds D2.4.1 Page 111 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Client BPEL Engine1−k Service1−l ZooKeeper1−m

Read IP addresses

Send IPs of ZK replicas

Start up ZK replicas

ACK

Store config

Send ZK connection enpoints

Start up BE replicas

Get config

ACK

Send ZK connection enpoints

Start up SRV replicas

Get config

ACK

SetupSetup

Send request data

Register request

Notify

Elect leader

Send request data

Register request

Notify

Reply

Reply

Process RequestProcess Request

Figure 8.5: Sequence diagrams for FT-BPEL

TClouds D2.4.1 Page 112 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.2.4 API
In the following, the APIs and protocols used by FT-BPEL are presented in groups according
to three different views of the system: The internal view describes the internal behavior of
the system, especially the incoming and outgoing communication of the proxies. The service
provider utilizes FT-BPEL to provide high available, fault-tolerant Web services or to provide
a platform for the reliable execution of business processes as PaaS. Clients, in turn, use the
services offered by the service provider.

Internal Proxies communicate between each other over a TCP-based protocol, make use of
ZooKeeper via its Java library and interact with the BPEL engines by means of SOAP.
Since these are internal protocols, encapsulated from service providers and clients, they
are not further specified and potentially subject to change.

Service Provider Service provider describe business processes by means of BPEL4 and import
the definitions into the system. Here, it has to be noted, that currently only deterministic
BPEL processes are supported. In particular, BPEL flows must no be used, yet. Further-
more, service providers can configure the system via provided tools. How this is done in
detail is not decided yet, but tools will come with a short manual describing their usage.

Client Usually, clients communicate with Web services with the help of libraries. These li-
braries have to be adjusted if FT-BPEL is used. Currently, only implementations of JAX-
WS 2.x5, a JAVA API normally used for this purpose, is supported. Clients have to be
configured, so that they use the adjusted FT-BPEL implementation of this API. However,
this affects only the configuration phase of the clients, the actual Web service invocation
does not change, at least not from the viewpoint of the clients.

4The BPEL API specification can be found here: http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.html.

5See http://jax-ws.java.net/.

TClouds D2.4.1 Page 113 of 197

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://jax-ws.java.net/

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Resilient Storage

8.3 Resilient Object Storage
Authors:
Sören Bleikertz, Christian Cachin, Thomas Groß, Michael Osborne (IBM)
Alysson Bessani, Miguel Correia, Marcelo Pasin (FFCUL)

8.3.1 Overview

8.3.1.1 Description

The object model for cloud storage has become extremely popular, after its introduction with
Amazon’s Simple Storage Service (S3) in 2006. It allows reads and writes of simple blobs, each
one identified by a unique name (also called a “key”). A multitude of commercial providers
offer such blob storage services today.

In collaboration with FFCUL, we will contribute a system that builds reliable and secure
storage through a federation of object storage services from multiple providers. Multiple clients
may concurrently access the same remote storage provider and operate on the same objects.
They do this through an interface that contains the basic and most common operations of object
cloud storage. (Since every vendor provides the same basic operations but slightly different
advanced operations, the system only uses the common denominator of all providers.)

The software is a library run by each client before it accesses cloud storage; the management
and setup is the same as for accessing one storage provider, and the library does not require
client-to-client communication. The library requires some cryptographic credentials (public
keys) of all clients to be present.

The storage system provides confidentiality through encryption, integrity through crypto-
graphic data authentication, and reliability through data replication and erasure coding. Key
management for encryption and authentication keys is integrated.

8.3.1.2 Goals (Security, Privacy, Resilience)

The system ensures the following security/resilience properties:

� Availability: Through exploiting replication and diversity to store the data on several
clouds, it allows access to the data as long as a subset (generally, a large enough majority)
of them is reachable.

� Integrity: Data can be retrieved correctly even if some of the clouds corrupt data, lose
it, or adversarially manipulate it. The system builds on so-called Byzantine fault-tolerant
replication that stores data on several providers.

� Confidentiality: By encrypting the stored data, it protects the confidentiality of the data
against disclosure to one or more cloud providers. The system may use a novel secret
sharing scheme, whereby encryption keys are maintained collaboratively by a (suffi-
ciently large) majority of the cloud providers. No (small enough) faulty minority can
learn anything about the stored data, not even by colluding.

TClouds D2.4.1 Page 114 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USER
PROGRAM

STORAGE
LIBRARY

SAME USER PROGRAM

STORAGE LIBRARY (NOW TRUSTED)

(a) user program accessing
a cloud object storage

(b) user program accessing a trusted
cloud-of-clouds object storage

nononono
nononono
nononono

nonononononono

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

CREDENTIALS

Figure 8.6: Client software accessing (a) a legacy object storage and (b) a cloud-of-clouds
trusted object storage.

8.3.1.3 Required External Components

At its basic form, the system is essentially a middleware, requiring a set of individual clouds
(typically four or more). It uses JClouds (http://www.jclouds.org) or a library pro-
vided by Amazon for accessing Amazon S3 (http://aws.amazon.com/documentation/s3/).

We are currently discussing the possibility of providing it as a proxy server offering a de-
pendable object storage service to a set of clients inside a private cloud. At this point it is still
not clear which interface this proxy should support: S3, CloudStack
(http://www.openstack.org/projects/storage/) or OGF/SNIA CDMI (Cloud
Data Management Interface - http://www.snia.org/cdmi).

8.3.1.4 Relationship with Activity 3

The system can be used to store data that is critical in terms of availability, integrity and con-
fidentiality. Moreover, this data can be shared by multiple (trusted) parties using the untrusted
clouds as coordination media.

8.3.2 Requirements

8.3.2.1 Selected Usecases

TClouds D2.4.1 Page 115 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 360/ (Write Object)
DESCRIPTION A user A writes an object to the object storage
ACTORS

User
PRECONDITIONS Local file contains an object
PRECONDITIONS User has a number of credential (several clouds)
POSTCONDITIONS Object is stored encrypted, with parts spread an repli-

cated on several clouds
NORMAL FLOW

1. User collects a number of credentials for multi-
ple object storage systems (e.g., S3)

2. User writes object X
3. The library linked to the user code transparently

encrypts and splits X
4. Encrypted object is stored on multiple object

storages

USE CASE UNIQUE ID /UC 370/ (Read Object)
DESCRIPTION A user B (different from user A) reads an object from

the object storage
ACTORS

User
POSTCONDITIONS Object is stored encrypted, with parts spread and

replicated on several clouds
PRECONDITIONS User has the credential for those clouds
POSTCONDITIONS Local file contains the object
NORMAL FLOW

1. User sees object X on an object storage
2. User reads object X
3. Object is readable in a local file

TClouds D2.4.1 Page 116 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance
Guidelines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 380/ (Delete Object)
DESCRIPTION A user C (different from users A and B) removes a

object from the object storage
ACTORS

User
POSTCONDITIONS Object is stored encrypted, with parts spread an repli-

cated on several clouds
PRECONDITIONS User has the credential for those clouds
POSTCONDITIONS Object is no longer in the clouds
NORMAL FLOW

1. User sees object X on a object storage
2. User deletes object X
3. Object disappears!

8.3.2.2 Demo Storyboard

1. Data objects are stored through the object store interface.

2. Clients repeatedly write an object.

3. Clients repeatedly read an object.

4. No single storage cloud and no small enough coalition of storage clouds may violate the
availability, integrity, and confidentiality guarantees applied to the stored objects.

8.3.3 Design

8.3.3.1 Architecture

A container or a bucket groups one or more objects together. An object is a file of arbitrary
length. An ACL (access control list) contains information about who can read/write in an object
or a bucket. Authorization is a credential that authenticates the requester.

8.3.3.2 Sequence diagrams

8.3.4 Implementation
The implementation provides a library that can be accessed by applications according to the
jclouds blobstore interface, which is available at http://code.google.com/p/jclouds/
and with source code from git://github.com/jclouds/jclouds.git.

8.3.4.1 API

The following interface is offered by the component. The API represents a subset of the jclouds
blobstore interface.

1 /**
2 * Synchronous access to a BlobStore such as Amazon S3
3 */

TClouds D2.4.1 Page 117 of 197

http://code.google.com/p/jclouds/
git://github.com/jclouds/jclouds.git

D2.4.1 – TClouds Prototype Architecture, Quality Assurance
Guidelines, Test Methodology and Draft API

Computing Node Cloud-of-Clouds Storage Storage Cloud1 Storage Cloud2 Storage Cloud3 Storage Cloud4

Read(nameX , c1, c2, c3, c4)

Read(metanameX , c1)

Read(metanameX , c2)

Read(metanameX , c3)

Read(metanameX , c4)

meta4

meta3

meta2

meta1

Read(nameX , c1)

Read(nameX , c2)

Read(nameX , c3)

Read(nameX , c4)

X4

X3

X2

X1

X

ReadRead

Figure 8.7: Sequence diagram for an Read call.

4 public interface BlobStore {
5 /**
6 * determines if a service-level container exists
7 */
8 boolean containerExists(String container);
9

10 /**
11 * Creates a namespace for your blobs
12 *
13 * @param location
14 * some blobstores allow you to specify a location, such as US

-EAST, for where this
15 * container will exist. null will choose a default location
16 * @param container
17 * namespace. Typically constrained to lowercase alpha-numeric

and hyphens.
18 * @return true if the container was created, false if it already

existed.
19 */
20 boolean createContainerInLocation(@Nullable Location location, String

container);
21

22 /**
23 * Lists all resources in a container non-recursive.
24 *
25 * @param container
26 * what to list
27 * @return a list that may be incomplete, depending on whether PageSet#

getNextMarker is set
28 */

TClouds D2.4.1 Page 118 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance
Guidelines, Test Methodology and Draft API

Computing Node Cloud-of-Clouds Storage Storage Cloud1 Storage Cloud2 Storage Cloud3 Storage Cloud4

Write(nameX , X, c1, c2, c3, c4)

Read(metanameX , c1)

Read(metanameX , c2)

Read(metanameX , c3)

Read(metanameX , c4)

meta4

meta3

meta2

meta1

Write(nameX , X1, c1)

Write(nameX , X2, c2)

Write(nameX , X3, c3)

Write(nameX , X4, c4)

Write(metanameX ,metaX1, c1)

Write(metanameX ,metaX2, c2)

Write(metanameX ,metaX3, c3)

Write(metanameX ,metaX4, c4)

WriteWrite

Figure 8.8: Sequence diagram for an Write call.

29 PageSet<? extends StorageMetadata> list(String container);
30

31 /**
32 * This will delete the contents of a container at its root path without

deleting the container
33 *
34 * @param container
35 * what to clear
36 */
37 void clearContainer(String container);
38

39 /**
40 * This will delete everything inside a container recursively.
41 *
42 * @param container
43 * what to delete
44 */
45 void deleteContainer(String container);
46

47 /**
48 * Determines if a blob exists
49 *

TClouds D2.4.1 Page 119 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

50 * @param container
51 * container where the blob resides
52 * @param directory
53 * full path to the blob
54 */
55 boolean blobExists(String container, String name);
56

57 /**
58 * Adds a {@code Blob} representing the data at location {@code

container/blob.metadata.name}
59 *
60 * @param container
61 * container to place the blob.
62 * @param blob
63 * fully qualified name relative to the container.
64 * @return etag of the blob you uploaded, possibly null where etags are

unsupported
65 * @throws ContainerNotFoundException
66 * if the container doesn’t exist
67 */
68 String putBlob(String container, Blob blob);
69

70 /**
71 * Retrieves a {@code Blob} representing the data at location {@code

container/name}
72 *
73 * @param container
74 * container where this exists.
75 * @param name
76 * fully qualified name relative to the container.
77 * @return the blob you intended to receive or null, if it doesn’t exist

.
78 * @throws ContainerNotFoundException
79 * if the container doesn’t exist
80 */
81 Blob getBlob(String container, String name);
82

83 /**
84 * Deletes a {@code Blob} representing the data at location {@code

container/name}
85 *
86 * @param container
87 * container where this exists.
88 * @param name
89 * fully qualified name relative to the container.
90 * @throws ContainerNotFoundException
91 * if the container doesn’t exist
92 */
93 void removeBlob(String container, String name);
94

95 /**
96 * @return a count of all blobs in the container, excluding directory

markers
97 */
98 long countBlobs(String container);
99

100 }

TClouds D2.4.1 Page 120 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.4 Confidentiality Proxy for S3
Authors:
Michael Gröne, Norbert Schirmer (SRX)

8.4.1 Overview
Integrating untrusted Amazon Simple Storage Service (Amazon S3 [amab]) -based storage into
the trusted cloud infrastructure is another approach to reach resilient storage. Therefore the
trusted cloud infrastructure needs a middleware component this section gives an overview of.

8.4.1.1 Description

SRX will contribute to the trusted cloud infrastructure with a confidentiality proxy for S3. The
component is implemented as a security service which is part of the security kernel (cf. Deliver-
able D2.1.1, Chapter 12) and managed by TOM. It will transparently encrypt data of a mounted
file system (Linux) according to a TVD cf. Deliverable D2.1.1, Chapter 12), and allows to
integrate untrusted S3-based storage into the trusted cloud infrastructure (cf. Figure 8.9). The
S3 proxy does not directly expose the S3 interface to the User. Instead the S3-based storage
is mounted as a file system (via s3fs [s3f]). So a User stores and reads ordinary files through
a Linux file system or (optional) a Server Message Block (SMB) share instead of accessing
the bucket(s) directly, which would mean interaction with buckets and objects via the SOAP
and REST API [amac]. The encryption happens transparently within the TrustedServer which
attaches the S3-based storage as an encrypted file system to all VM instances belonging to a
TVD. The encryption key is derived from the TVD of the VM instance and managed by TOM.

Trusted Cloud Provider

Trusted Management Channel

TrustedObjects Manager

TrustedServer

Security Kernel

Virtualization and Isolation

Security Kernel

SMB

Storage Manager (S3 support)

TVD Manager

eCryptfs

Public Cloud Provider

S3 proxy

SMB
Policy Enforcement

OS

App

s3fs
(TVD 2)

TLS (authentication and data)

(TVD 1)

fs

TVD 1

OS

App

fs

TVD 2

...

Simple Storage Service (S3)

SOAP

REST

Trusted Infrastructure

Bucket(s)

Figure 8.9: Overview of Confidentiality proxy for S3.

8.4.1.2 Goals (Security, Privacy, Resilience)

The system will provide confidentiality based on transparent TVD wide encryption. The key’s
are managed by TOM. The main purpose of this component is to demo an integrated proto-
type: TOM (including TVD Management), TrustedServer, untrusted (Public) Cloud. At a later
point the component may be replaced by a more sophisticated storage component, e.g.’Resilient
Object Storage’ designed by partners IBM and FFCUL (cf. 8.3).

TClouds D2.4.1 Page 121 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.4.1.3 Required External Components

The system requires the following external components:

� S3-based storage component. For now this is Amazon S3, part of Amazon Web Services
(AWS).

� a FUSE file system that allows mounting an Amazon S3 bucket as a local file system. For
now this is s3fs [s3f] which stores files natively and transparently in S3.

8.4.1.4 Relationship with Activity3

The system can be used to store data that is critical in terms of integrity, confidentiality and
privacy. Moreover, this data can be shared by multiple trusted parties if they belong to the same
TVD using the untrusted cloud (Amazon AWS) as coordination media.

8.4.2 Requirements
This section gives an overview of the requirements for the S3 proxy component.

8.4.2.1 Preconditions

Requirements that have to be fulfilled already, because they are needed for the development
process.

/PR 30/ TrustedServer component
A TrustedServer component is required (cf. section 7.5).

8.4.2.2 Execution Environment

This section specifies the minimal hardware, software and infrastructure requirements for the
user to run our product successfully.

8.4.2.2.1 Hardware

� TPM 1.2 Platform

8.4.2.2.2 Software
� TrustedServer (cf. section 7.5)
� Operating System which supports an SMB file system and has network access to internal

network infrastructure.

8.4.2.2.3 Infrastructure
� TrustedObjects Manager (cf. section 9.2)
� Trusted Management Channel (cf. section 9.3)
� access to an cloud storage infrastructure (e.g. Amazon S3). Generally these are valid S3

credentials, as today from AWS, and a (fast) internet connection.

TClouds D2.4.1 Page 122 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8.4.2.3 Security Environment

This section describes the security aspects of the environment in which the product is intended
to be used and the manner in which it is expected to be employed.

8.4.2.3.1 Assumptions A description of assumptions describe the security aspects of the
environment in which the component will be used or is intended to be used.

/A 80/ Trusted Organization Administrator
The organization administrator of the managed IT infrastructure is non-malicious.

/A 90/ Correct hardware
The underlying hardware (e.g., CPU, devices, TPM) does not contain backdoors, is non-malicious,
and behaves as specified.

/A 100/ Security of eCryptfs
Certain security objectives of the appliance and the file system are delegated to eCryptfs6, the
cryptograhpic file system layer we employ. Hence, the system relies on eCryptfs to achieve its
security objectives in handling the necessary secrets, and controlling the encryption layers, so
it does not contain backdoors, is non-malicious, and behaves as specified.

/A 110/ Trusted Domain
The internal network infrastructure the S3 proxy is connected to is a well controlled environment
based on security policies and therefor a trusted domain.

8.4.2.4 Security Objectives

The security objectives address all of the security environment aspects identified. The security
objectives reflect the stated intent and are suitable to counter all identified threats and cover all
identified organizational security policies and assumptions.

8.4.2.4.1 Security Objectives of the S3 proxy The S3 proxy transparently encrypts S3-
based storage with eCryptfs. The encryption/decryption key is only known by the TOM so the
cloud provider (e.g. U.S.-based Amazon) only has data in encrypted form.

8.4.2.4.2 Security Objectives of the IT-Environment S3 proxy Integrity Prove The IT-
environment provides a mechanism that allows the S3 proxy to convince remote parties and
local users about its integrity. Common examples of such a mechanism are a secure bootstrap
architecture as used, e.g., by the AEGIS architecture [SCG+03], or an authenticated bootstrap
architecture as specified by the TCG [tpm].

8.4.2.4.3 Security Objectives for the S3 proxy

6https://launchpad.net/ecryptfs

TClouds D2.4.1 Page 123 of 197

https://launchpad.net/ecryptfs

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

/O 130/ S3 proxy Integrity
Using the functionalities offered by the IT-Environment, the S3 proxy should be able to prove to
remote parties and local users that the integrity of the S3 proxy is not violated. Changes in the
S3 proxy must be detectable by both the user and remote parties. Such changes can drastically
affect the security properties of the system, and therefore mechanisms must be put in place to
prevent entrusting sensitive data to such a compromised system.

/O 140/ Integrity of User Data
User data should remain integer during storage.

/O 150/ Confidentiality of User Data
User data should remain confidential during storage.

8.4.2.5 Security Requirements

This subsection defines the security requirements that have to be satisfied by the S3 proxy. The
statements shall define the functional and assurance security requirements that the product and
the supporting evidence for its evaluation need to satisfy in order to meet the security objectives.

/SR 60/ TPM protected encryption keys and credentials
The credentials material used for S3 authentication and encryption keys must be protected by a
TPM. The confidentiality and integrity of user data relies on this assumption.

8.4.2.6 Selected Usecases

USE CASE UNIQUE ID /UC 390/ (Write File)
DESCRIPTION A user writes a file to the S3 file system
EXTENDS /UC 80/
ACTORS

User, TrustedServer
PRECONDITIONS VM instance in TVDA is running on TrustedServer,

S3 is mounted into VM instance.
POSTCONDITIONS File is stored encrypted on S3
NORMAL FLOW

1. User writes file X on a mounted S3 storage
within a VM instance

2. TrustedServer transparently encrypts file X ac-
cording to TVD policy

3. Encrypted file X is stored on S3

TClouds D2.4.1 Page 124 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 400/ (Read File From TVD)
DESCRIPTION A User opens a file from the S3 file system (from the

TVD the file was encrypted for)
EXTENDS /UC 80/
ACTORS

User, TrustedServer
PRECONDITIONS VM instance in TVDA is running on TrustedServer,

S3 is mounted into VM instance, file X is stored on
S3 and belongs to the same TVD.

POSTCONDITIONS File is readable in plain text
NORMAL FLOW

1. User sees file X on a mounted S3 storage
2. User opens file X for reading
3. File X is readable in plain text

ALTERNATIVE FLOW
1. cf. /UC 410/

USE CASE UNIQUE ID /UC 410/ (Optional: Read File From Other TVD)
DESCRIPTION A User tries to open a file from S3 (from another

TVD)
ACTORS

User, TrustedServer
PRECONDITIONS Users VM instance in TVDB is running on Trusted-

Server, S3 is mounted into Users VM instance, file X
is stored on S3 and belongs to TVDA.

POSTCONDITIONS File X is not readable in plain text
NORMAL FLOW

1. Depending on the TVD policy the user can see
the file name X or even the name is encrypted.

2. When user opens the file he can only see en-
crypted data

8.4.2.7 Demo Storyboard

The following story shows how the S3 proxy can be used to: (1) Write and read files in a TVD
(in a public Cloud storage scenario (cf. /UC 80/)); (2) assist the User/ infrastructure to guarantee
confidentiality/privacy of data if written to a file storage.

User Alice and Bob are assigned to different TVDs because of their roles in the organization.
They are able to use the same storage system through a SMB share to save and read data. This
data may contain sensitive information, related to privacy or confidentiality aspects. Alice and
Bob have to trust the infrastructure that privacy and confidentiality concerns are always fulfilled.
Both do not know where data is stored and if it is encrypted or not.

1. Files are stored through the standard file system (SMB) interface.

TClouds D2.4.1 Page 125 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

2. S3-based storage (objects, placed buckets) is mounted as a file system (via s3fs) into a
TVD and transparently encrypted.

3. User Alice writes a file in a TVDA which is then encrypted transparently (cf. /UC 390/).

4. User Alice reads a file in a TVDA which is decrypted transparently (cf. /UC 400/).

5. User Bob reads a file in a TVDB which stays encrypted.

6. No storage cloud may violate the confidentiality/privacy guarantees applied to the stored
files.

8.4.3 Architecture

8.4.3.1 High-level Design

The high-level architecture of the S3 proxy component is described here.

� Big picture and relations with other components:
Is the component required by other Activity 2 components? No.
Does the component require an other Activity 2 components? Yes. It requires

– TOM (cf. 9.2) and Trusted Management Channel (cf. 9.3) for configuration.

– TrustedServer (cf. 7.5) as a platform to be integrated into as a service within the
SecurityKernel.

� Hints on implementation:
Language: C, bash, C++.
Existing SW: s3fs, eCryptfs, SMB protocol.

8.4.3.2 Sequence Diagrams

The following sequence diagrams describe the interactions between the (sub)components in-
volved when using the S3 proxy as a security service as part of the secure hypervisor of an
TrustedServer component. They implement the use cases /UC 390/ and /UC 400/ defined in
section 8.4.2.6 and how to setup the S3 proxy. The functions used in the sequence diagrams
come from the API discussed in section 8.4.4. The TURAYA Manager is the entry point in
the Security Kernel which is in charge to apply the configurations and commands received by
TOM. Preconditions are:

� Project Manager has added S3 configuration (AWS / S3 credentials) on TOM.

� Compartment and its configuration (in particular TVD and S3 configuration) is installed
on a TrustedServer managed by TOM.

8.4.3.2.1 Setup (Figure 8.10). To setup the S3 proxy the TURAYA Manager service within
the SecurityKernel create and mount s3fs. After this is done the S3 proxy cryptomounts it in
eCryptfs. Then TURAYA Manager attaches the S3 to all TVD compartments as configured in
TOM.

TClouds D2.4.1 Page 126 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

TURAYA Manager S3-Proxy eCryptfs TVD compartments s3fs

CreateS3FS(TVDconfig,S3config,mountpoint)

MountS3FS(S3config,mountpoint)

ack

CryptoMount(TVDconfig,mountpoint)

ack

ack

attach to all TVD compartments

ack

S3-Proxy SetupS3-Proxy Setup

Figure 8.10: Sequence diagram for setup of Confidentiality proxy for S3.

User Compartment

WriteDataToFile
(buffered data,filename)

ordinary file IO to
file system

ack

ack

Write FileWrite File

Figure 8.11: Sequence diagram for /UC 390/ use case.

8.4.3.2.2 Write File (Figure 8.11). If a User saves data to a file in her actual compartment
(and assigned TVD(s)) it is transparently encrypted and saved on S3.

8.4.3.2.3 Read File From TVD (Figure 8.12). If a User saves data to a file in her actual
compartment (with TVD(s) assigned through TOM) it is transparently encrypted and saved on
S3.

8.4.4 API
The API of the Confidentiality proxy for S3 is quite straightforward since it uses standardized
file system (Linux) and SMB (optional) semantics and protocols on the one hand and s3fs on
the other hand.

Public or private? Public.

TClouds D2.4.1 Page 127 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

User Compartment

ReadFile (filename)

ordinary file IO to
file system

Present(file)

ack

Read FileRead File

Figure 8.12: Sequence diagram for /UC 400/ use case.

Standard It will be mounted into the file system (Linux) within the VM instance.
Sketch of API Standard Linux file system and (optional) SMB file system [smb] semantic

and file accesses on the one hand, s3fs [s3f] semantic on the other, with the limitations imposed
by the Amazon S3 back-end / API [amac] (eventual consistency [eve]). For the public interface
we just have the standard file system (Linux) interface and semantics. Setup and configuration
of the component is done via GUI of TOM and processed internally as depicted in Figure 8.10.

TClouds D2.4.1 Page 128 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Chapter 9

Cross-layer Security and Privacy Manage-
ment (WP 2.3)

High-availability Management

9.1 Access Control as a Service (ACaaS)
Authors:
Imad M. Abadi (OXFD)

9.1.1 Overview

9.1.1.1 Description

The provision of automated management of clouds virtual resources is a fundamental require-
ment for the success of future cloud computing. Such automated management would require
understanding the properties of cloud infrastructure and its policies, and it would also require
understanding cloud user requirements. Cloud user requirements should be continually consid-
ered by cloud provider by matching user requirements and infrastructure properties in normal
operations as well as during incidents. We are planning to develop an Enterprise Rights Man-
agement (ERM) tool, which we refer to as Access Control as a Service (ACaaS). In this section
we describe one component of the ACaaS which is our planned contribution to TClouds project.

The objective of ACaaS is to act as a policy decision point to manage the hosting of VM
instances at an appropriate Computing Node. Specifically, it extends /UC 10/ and /UC 100/ —
ACaaS component verifies that a Computing Node satisfies User requirements when hosting its
VM instance. This is achieved by matching cloud’s User requirements and Computing Node
infrastructure policy/properties which are as follows:

User Requirements (Dynamic Properties) — A cloud user interacts with the cloud provider
via cloud webpage and supplied APIs. This enables users to define user requirements. User
requirements include technical properties, QoS/SLA requirements (e.g. system availability, re-
liability measures, and lower/upper resource limits), and security and privacy requirements (e.g.
location of data distribution and processing). How complex such requirements would be based
on the type of user.

Infrastructure Properties (Static Properties) — clouds’ physical infrastructure are very
well organized and managed by multiple parties, e.g. Cloud Admin. Those people define the
physical infrastructure properties which would cover: components reliability and connectivity,
components distribution across cloud infrastructure (e.g. how far components are from each
other), redundancy types, servers clustering and grouping, network speed, etc.

TClouds D2.4.1 Page 129 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Infrastructure Policy — Policies are defined by authorized employees to control the man-
agement of cloud environment.

9.1.1.2 Goals (security/privacy/resilience)

� Provide a component that consider user requirements during normal operations as well
as in incidents. Example of user requirements includes the following: enforce location
restrictions, manage the hosting of dependent applications (e.g. group a set of applications
to be hosted within physical proximity and, simultaneously ensure they do not run on
the same Computing Node), and exclude certain physical properties from hosting a user
application.

Techniques/research problems We believe that establishing trust in the cloud starts by
establishing trust in the clouds’ operational management. This would require building
trustworthy automated management services that can automatically manage clouds’ in-
frastructure and consider security and privacy by design. ACaaS is the initial step in this
direction.

Assumptions We make the following assumptions:

– Although, we do not assume that all cloud employees are trusted, we assume that
cloud provider trust a partial set of employees who interact and manage the ACaaS.

– We assume that moving physical Computing Node across physical locations is con-
trolled by the set of trusted cloud Admin who are trusted to reflect such movement
in the ACaaS.

– We assume that the hardware of Computing Node are secure and trusted. We also
require that they incorporate a Trusted Platform Module chip (TPM).

9.1.1.3 Required external components (relationship with Activity2)

� Resilient database management system.

Name/description: A resilient database management system is required to store user
requirements, infrastructure properties and policies.

Features (security/privacy/resiliency): The database must be resilient to not to be a
single point of failure.

Required API (provided by the external component): SetUserProperties(), GetUser-
Properties(), SetInfrastructureProperties(), and GetInfrastructureProperties().

� Trusted platform.

Name/description: ACaaS will rely on a trusted platform with a hardware root of trust.

Features (security/privacy/resiliency): The trusted platform must be equipped with a
hardware root of trust capable of securely store and use cryptographic keys. It should be
capable of reporting its integrity.

Required API (provided by the external component): jTSS

� Others

Name/description Research at this subsystem is still at early stage and it is very likely
that we will require other components that could be provided by WP2.1

TClouds D2.4.1 Page 130 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.1.1.4 Relationship with Activity3

Managing clouds’ hosting environment based on real user requirements is one of the fundamen-
tal A3 security and privacy requirements.

9.1.2 Requirements

9.1.2.1 Selected Use Cases

USE CASE UNIQUE ID /UC 420/ (Set User Requirements)
DESCRIPTION User securely provisions his requirements to the

ACaaS using a proper interface.
ACTORS User
PRECONDITIONS User has a set of requirements.
POSTCONDITIONS Only ACaaS has access to User requirements.
NORMAL FLOW

1. User connects to the ACaaS using a provided
GUI and then uploads his requirements by fill-
ing a form.

2. ACaaS securely stores User requirements into
a database such that only a ACaaS can access
them.

USE CASE UNIQUE ID /UC 430/ (Set Infrastructure Properties)
DESCRIPTION Cloud Admin securely provisions cloud’s infrastruc-

ture properties and policies to the ACaaS using a
proper interface. This process can be automated
by using client agents running on Computing Node
which collect such properties and pass them over to
the ACaaS.

ACTORS Cloud Admin. Client agents could also be involved.
PRECONDITIONS Cloud Admin has the infrastructure properties and

policies, or an agent collects such information on be-
half of Cloud Admin and provides them to the ACaaS.

POSTCONDITIONS Only ACaaS has access to infrastructure properties
and policies.

NORMAL FLOW
1. Cloud Admin or an agent connects to the

ACaaS using a provided GUI and then uploads
the cloud’s infrastructure properties and poli-
cies.

2. ACaaS securely stores the properties and poli-
cies into a database such that only a ACaaS can
access them.

TClouds D2.4.1 Page 131 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 440/ (Secure VM Creation)
DESCRIPTION This use case extends /UC 10/. Specifically, before

creating a VM instance either ACaaS suggests an ap-
propriate hosting Computing Node or Cloud Admin
provides the Computing Node. In either case ACaaS
verifies whether the Computing Node could satisfy
User requirements.

ACTORS Computing Node, User, and Management Compo-
nent.

PRECONDITIONS User set his requirements using /UC 420/. Cloud Ad-
min set the infrastructure properties using /UC 430/.

POSTCONDITIONS The new VM instance is hosted on a Computing Node
that can satisfy User properties.

NORMAL FLOW
1. A User sends a requests to the Management

Component to create a VM, as described
in /UC 10/.

2. Cloud Admin using the Management Compo-
nent could either suggest a Computing Node to
host the VM instance or the ACaaS can suggest
one.

3. The Management Component must coordinate
with the ACaaS to ensure that the Computing
Node satisfies User requirements.

4. If the Computing Node was provided by the
Cloud Admin, ACaaS would then return true if
the Computing Node satisfies user properties,
and false otherwise. If no Computing Node has
been provided, ACaaS would then suggest one.

5. Finally, the Management Component would
proceed as discussed in /UC 10/.

TClouds D2.4.1 Page 132 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 450/ (Secure VM Migration)
DESCRIPTION This use case extends /UC 100/ when migrating a

VM instance from Computing Node X to Comput-
ing Node Y. Specifically, ACaaS could either suggest
an alternative Computing Node Y that satisfies User
requirements, or it can verifies whether Computing
Node Y provided by Cloud Admin satisfies User re-
quirements.

ACTORS Computing Node, Cloud Admin, and Management
Component.

PRECONDITIONS User created a VM instance and set his requirements
using /UC 420/. Cloud Admin set the infrastructure
properties using /UC 430/. A VM instance is securely
created using /UC 440/.

POSTCONDITIONS The VM instance is migrated to a Computing Node
that can satisfy User properties.

NORMAL FLOW
1. In this case a User VM is needed to be mi-

grated to a new destination Computing Node,
say Computing Node Y. This can be automated
or explicitly instructed by a Cloud Admin.

2. If Computing Node Y is provided by Cloud
Admin, the Management Component must first
check with the ACaaS whether Computing
Node Y satisfies User requirements. Alterna-
tively, ACaaS would suggest a new destination
Computing Node that can satisfies the User re-
quirements.

3. In the latter case ACaaS would return to the
Management Component the Computing Node
that could host the VM instance. In the former
case ACaaS would return true if Computing
Node Y satisfies User requirements and false
otherwise.

4. The Management Component would then pro-
ceed as discussed in /UC 100/.

9.1.2.2 Demo Storyboard

In this part we discuss a scenario using the above use cases on TClouds application context. We
have the following assumptions:

� We assume that Cloud Admin has already defined the infrastructure properties as dis-
cussed in /UC 430/. One of these properties is the physical location of Computing Node.
Cloud Admin uniquely identifies Computing Node using their endorsement keys.

� We assume that moving physical Computing Node across physical locations is controlled

TClouds D2.4.1 Page 133 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

by the set of Cloud Admin who are trusted to reflect such movement in the ACaaS.

A hospital system defines their requirements using a provided GUI (see, for example, /UC 420/).
One of the hospital requirements is to ensure that their data is processed in UK. Our scenario
starts by a cloud insider who is not trusted and instructs the migration of the hospital VM in-
stance to a different physical server outside UK. Now, our use case /UC 450/ should reject such
a migration process. This is because the hosting Computing Node does not satisfy the defined
User requirements.

9.1.3 Architecture
In this section we briefly outline our implementation architecture. We use OpenStack Compute
as management framework. OpenStack Compute is composed of many components as illus-
trated in Figure 9.1. We mainly discuss the ones related to our framework (see [Opec] for de-
tailed discussion about OpenStack components): nova-api intermediates the communications
between OpenStack and cloud users, nova-database is the central repository for OpenStack
management data, nova-schedule manages the hosting of VM instances at cloud physical layer,
and nova-compute creates and terminates VMs.

We are planning to provide policy management by proposing mechanisms which matches
user properties with infrastructure properties. In this case the policy will be enforced at client
side by the calling agent. In our prototype we plan to use nova-database to securely store user
properties and the structure of the cloud (i.e. physical properties). We build a relational database
to hold, for example, the following: i) physical layer components, their infrastructural proper-
ties, their membership, and the policy governing them; ii) virtual layer components, associated
user properties; and iii) management policies.

We are planning to provide two interfaces to interact with nova-database via nova-api: the
first is related to managing users’ properties and the second is for managing clouds infrastruc-
tural properties and policies. At this stage the infrastructure properties would be provided by
administrators. These data should only be accessed and managed using cloud server agent run-
ning as part of nova-schedule. Future implementation will consider the utilization of cloud
client agents running at Computing Node to collect such properties and securely push them to
nova-database.

Nova-schedule is the central component of our scheme which controls the hosting of VMs at
physical resources. Current implementations of nova-schedule do not consider the entire cloud
infrastructure neither they consider the overall user and infrastructure properties.

The way the proposed component works is as follows (see Figure 9.2): the Cloud Admin add
the infrastructure properties using a proper GUI. The infrastructure properties are stored inside
nova-database. The user request a server he provides his requirements using a provided GUI.
These are also stored using nova-database. Subsequently, a VM instance is created based on
the provided user requirements. Nova-compute when starting a VM instance it sends a request
to nova-schedule. Nova-schedule then decides on Computing Node to host the VM instance by
considering both of the infrastructure properties and user requirements.

9.1.4 API
The proposed component API is composed of the following main functions (see Figure 9.2).

� int SetUserRequirements(String[] User Requirements) — Allow users to add their re-
quirements in secure way. This is to be implemented in a form of a GUI, where users

TClouds D2.4.1 Page 134 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Figure 9.1: OpenStack Components (Source [Opec])

insert their requirements in a predefined form. After the user submits the request “User
Requirements” are added to a predefined database schema using nova-database. The
function returns UserRequirementID that uniquely identifies User Requirements in the
database.

� SetInfrastructureProperties(String[] Infrastructure Properties) — Allow cloud Admin to
add clouds’ infrastructure properties in secure way. This is to be implemented in a form of
a GUI, where a system admin insert the “Infrastructure Properties” in a predefined form.
These are inserted into a predefined database schema using nova-database.

� String GetComputingNode(int UserRequirementID) — This is one of the core functions
which takes as input a unique identification of the user requirements UserRequirementID.
It finds the best Computing Node that can serve User Requirements.

� boolean VerifyComputingNode(int UserRequirementID, String Computing Node) — This
is one of the core functions which takes a unique identification of the user requirements
UserRequirementID, and the suggested Computing Node. It then verifies whether the
suggested Computing Node matches user requirements as identified using the identifier
UserRequirementID.

TClouds D2.4.1 Page 135 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Figure 9.2: Access Control as a Service Sequence Diagram

Secure Management of Keys and VM images

9.2 TrustedObjects Manager (TOM)
Authors:
Michael Gröne, Norbert Schirmer (SRX)

9.2.1 Overview

9.2.1.1 Description

The Trusted Objects Manager (TOM) is the central management component of the trusted cloud
infrastructure (cf. Deliverable D2.1.1, Chapter 12). The TOM manages the physical infras-
tructure including networks, services and appliances (physical platforms). Since appliances
remotely enforce a subset of the overall security policy, a permanent trusted channel [GPS06],
[AGS+08] between the TOM and its appliances is used for client authentication, to check their
software configuration using attestation, and to upload policy changes and software updates.

Finally, for each Trusted Virtual Domain (TVD) defined the TOM creates an independent
TVD-specific Root-CA. SRX will contribute by enhancing the TOM to manage the Trusted-
Servers within the cloud infrastructure. TOM manages TVDs and inter-TVD information flow
policies, provides key-management and configures the managed TrustedServers accordingly.

As the central TVD Management Component of a TVD-based infrastructure TOM provides
the user interface to define TVDs and corresponding intra-TVD and inter-TVD information flow
policies.

TClouds D2.4.1 Page 136 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.2.1.2 Goals (Security, Privacy, Resilience)

� Integrity via TPM based remote attestation Description: The TPM is used during secure
boot of the TOM to ensure its integrity. Moreover, via remote attestation the integrity can
be proven to remote parties (like the TrustedServers)

� Confidentiality / integrity of key’s via TPM Description: Private keys of the PKI infras-
tructure used by the TVD concepts are stored within the TPM (cf. Deliverable D2.3.1,
Chapter 6).

� Web-based GUI to define Inter-TVD information flow policies and configurations De-
scription: The TOM is accessed via a Web-Interface for the administrator. In Particular
the allowed information flows between TVD can be defined here.

� Optional: REST based API as extension of ’standard’ API like S2.

� Basic cloud API (image management, VM management)

Description: TOM together with WP2.1 TrustedServer is planned as a replacement for
OpenStack Nova. Currently TOM does not offer any cloud like API. We have to provide
the API which is needed to deploy the demo applications. We have to consider if and how
components of OpenStack can be reused / integrated / extended within our setting.

� Resilience / scalability via replication.

Description: TOM provides a database of security policies (TVD based), keys, and ap-
pliances it manages, and provides the proper configurations to the appliances. TOM cur-
rently runs on a single machine and can thus only scale up to the resources of this machine
and is a single point of failure. To remedy this situation replication techniques should be
considered.

9.2.1.3 Required External Components

The platform shall provide a hardware Trusted Platform Module (TPM).

9.2.1.4 Relationship with Activity3

Secure management of the cloud infrastructure is a core feature of a trusted cloud, and hence
needed by any application.

9.2.2 Requirements
This section gives an overview of the requirements for the TOM component.

9.2.2.1 Selected Use Cases

This use case extends /UC 20/. One can create an VM instance and select to which TVD it
belongs to.

TClouds D2.4.1 Page 137 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 460/ (Start VM instance within TVD)
DESCRIPTION User starts a VM instance via the TOM management

interface.
ACTORS

User
PRECONDITIONS TOM and at least one TrustedServer are up and run-

ning, TVD and VM instance are configured
POSTCONDITIONS VM instance is deployed and started on a Trusted-

Server
NORMAL FLOW

1. The user selects a VM instance and a TVD and
triggers the start of the VM

2. TOM selects a TrustedServer and deploys the
instance on the server

3. The TrustedServer starts the VM instance

Other use cases of TOM are the definition of TVDs and of security policies. However, at
this point of the project it is not yet clear what these security policies look like and how to demo
them.

9.2.2.2 Demo Storyboard

Here we demonstrate the whole infrastructure and TVD concept working together.

1. Start up VM1 in TVDA with S3 storage attached to it (cf. /UC 460/).

2. Start up VM2 in TVDA with S3 storage attached to it (cf. /UC 460/).

3. Start up VM3 in TVDB with S3 storage attached to it (cf. /UC 460/).

4. Write a file X in VM1 to S3 storage (cf. /UC 390/).

5. Read file X from VM2 from S3 storage. It should be visible in plain text as TVD encryp-
tion is transparently applied and VM1 as well as VM2 belong to the same TVD namely
TVDA (cf. /UC 400/).

6. Try to read file X from VM3. The file name as well as the content is only visible encrypted
within VM3 as it belongs to another TVD (cf. /UC 400/).

9.2.3 Architecture
This section describes the main components of the TOM and their respective relationships in an
architectural sense.

9.2.3.1 High-level Design

The high-level design describes the architecturally significant parts of the design model, such
as its decomposition into subsystems and packages. And for each significant package, its de-
composition into classes and class utilities.

TClouds D2.4.1 Page 138 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Appliance

Appliance

Appliance

Appliance

...

ApplianceTrusted Object Manager (TOM)

Linux

Firebird
(DB-Server)

osiris4-

Schema
Tomcat

osiris4

TOM-Manager

GUI

Backend

Memory-DB

TOM-Plugin

GUI

Backend

Memory-DB

TOM-Plugin

GUI

Backend

Memory-DB

TOM-Plugin

GUI

Backend

Memory-DB

...

Pr
og

ra
m

 st
ar

t

co
nt

in
uo

us
ly

Browser

Trusted Channel

https

Trusted Channel

Trusted Channel

Trusted Channel

Trusted Channel

Figure 9.3: Overview of the TOM building blocks

9.2.3.1.1 Overview Internally, the TOM consists of standard PC hardware components, es-
pecially a Trusted Platform Module and two Ethernet interfaces. One for the appliances it
manages and one for the management interface. The TOM runs a Linux operating system
which is tied to the TPM: the hard drive is encrypted and will only decrypt with the original
TPM. Moreover, the TPM is employed to generate a Public Key Infrastructure for the TVDs
(cf. Deliverable D2.3.1, Chapter 6).

The TOM is running a Debian GNU Linux derivative. Inside the Linux system runs a
Tomcat application server which, again, runs a web application framework called osiris4, and a
Firebird database server as database backend for osiris4.

The TOM software resides as application inside osiris4: The Java part runs alongside and
managed by osiris4 inside Tomcat and all persistent data is held inside the osiris4 DB.

An overview of the involved components can be found in figure 9.3.

9.2.3.2 Architecturally Significant Design Packages/Components

9.2.3.2.1 osiris4 Technically, osiris4 is used for the TOM software as an Web application
framework. Many building blocks discussed below are implemented as basic functionality in
osiris4. As such, osiris4 is both a manager for the TOM software (i. e. the TOM software
is started by osiris4 and Web requests are handled by Tomcat, then osiris4 and then passed
to the TOM software) and a library for many basic and advanced functionalities used in the
TOM software. For instance, the TOM software initiates listening on the Trusted Channel, but
uses osiris4 library functions for that.

Examples of library components used by the TOM software are

� declarative GUI definition,

� JSON handling,

� network access,

TClouds D2.4.1 Page 139 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� binary encoding (for network messages and configuration files)

9.2.3.2.2 TOM software The TOM software is logically separated into a core component,
the Manager, which handles the common infrastructure, domain objects and GUI needed by
more than one security solutions (e.g. TrustedServer), and plugins that implement anything
specific to a single security solution.

9.2.3.2.3 TOM Manager The TOM manager implements two network connection ”ports”:
the Management Port is the interface to appliances deployed into the customers infrastructure,
the Administration Port is the interface for an administrator to change the configuration of the
TOM to change the configuration of connected appliances or to do other available administrative
actions.

Management Port Through the Management Port the TOM controls and configures the
connected appliances. Additionally, the TOM can provide the appliances with firmware updates
through this channel. The TOM is always the configuration master that holds all information
necessary to configure the appliances.

The Management Port runs a protocol called ”Trusted Channel” (cf. 9.3). The Trusted
Channel is a TLS secured TCP/IP connection (bound to eth0 on a production TOM), that allows
message based communication between two endpoints. The appliance has to demonstrate its
integrity (through a TPM). Typically, the Trusted Channel is meant to be persistent. When an
appliance goes offline, the semantics depend on the security solution.

The messages on the Trusted Channel are encoded in a compact binary format to facilitate
frequent messages with minimum overhead. The message format can be extended for the dif-
ferent security solutions; an extension is provided to the TOM software by a plugin that hooks
itself into the configuration data composing.

Administration Port The Administration Port is implemented as a HTTPS Web interface
(bound to eth1 on a production TOM). The implementation tries to mimic desktop applications
in function and appearance wherever possible. The browser runs a JavaScript application that
communicates with the GUI component inside the TOM through AJAX calls (actually the ”X”
part isn’t XML but JSON). Real time feedback from the server side GUI component to the
browser is provided by osiris4.

Any change in the TOM configuration made through the Administration Port is instantly
active and, where necessary, reflected onto the connected appliances. For this, in many cases
the new valid configuration for all appliances has to be recomputed and compared to the last
configuration sent to the respective appliances.

Data persistence All TOM configuration data is held in memory while the TOM software
is running. On start-up all available configuration data is loaded, later on the config data in-
side the database is used write only: All configuration changes are instantly persisted into the
database. The in-memory database is an optimization to be able to compute at thousands of
configurations within seconds. This is reasonable since each configuration depends on many
different domain objects and since the total data size easily fits into RAM.

The database may contain additional data (e.g. log data) which isn’t held in RAM.
Firmware packages, which the TOM provides to appliances, are stored on disk and held

neither in the DB nor in RAM.

TClouds D2.4.1 Page 140 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Company

Appliance

Site

Server

Network

ApplianceNetwork

User

Figure 9.4: Overview of the most important TOM domain objects. Arrows indicate a 0..n–1
relationship.

Domain objects The TOM manager handles basic configuration for the following domain
objects (see figure 9.4):

Organization The TOM is multi-customer capable with organization as the domain object rep-
resenting the customer. Each customer’s configuration data is conceptually independent
from all other customer’s data in the same TOM: it is linked to the organization (directly
or indirectly).

Site Geographical or organizational location of one of the other domain objects. Essentially
only a tag, used for grouping and filtering in the GUI and some constraint checking.
Also, the link of other domain objects may go through the location.

Appliance Generic appliance connected to the TOM. Specific appliances in a security solution
specialize this generic appliance.

Network An IP network (i.e. IP address, network mask et al.)

Server A server (i.e. a single IP) that resides inside a given network.

Users Administrators for the TOM (and all companies), administrators within and restricted to
one organization as well as end users of a security solution.

TClouds D2.4.1 Page 141 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Additionally, the following concepts reside inside the TOM manager:

Firmware Firmware software installable to the TOM or to appliances.

Deployment Group Collection of Appliances. Needed for the deployment of new firmware to
the appliance.

Profiles Routing and access rules on the IP layer within one network for one class of services.

Policies Grouping of different profiles.

CertificateStore Central place for all certificates needed by the TOM.

A central organizing point inside the TOM manager is the Manager class. This class pro-
vides common functionality to the domain objects, like database connectivity, transport encod-
ing and object registry.

Hooks for plugins The TOM software provides a plugin concept for the TOM manager.
Typically, the TOM manager domain objects provide an extension interface, that can be imple-
mented by the extending plugin. Instances, implementing such an interface register themselves
with their parent object.

The trusted channel is implicitly extended to handle the configuration of the extension. Ad-
ditionally, a plugin may decide to send any kind of plugin specific messages through the trusted
channel.

9.2.3.3 Sequence Diagrams

TOM is shipped as a combined hardware / software appliance. To set up TOM only means to
power it on (cf. Figure 9.5).

Cloud Admin TOM

Turn on

Boot

ack

ack

SetupSetup

Figure 9.5: Setup of TOM.

To start a compartment in a TVD through TOM, the Project Manager has to connect to the
TOM Web interface and select the compartment. TOM will choose the TrustedServer, start the
compartment and get the SSH credentials for this compartment (cf. Figure 9.6).

TClouds D2.4.1 Page 142 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

User (Project Manager) TOM TrustedServer

connect via web-interface

ack

SelectCompartment(compartment-
ID,TVD-ID)

ChooseTS(compartment-ID,TVD-ID)

ack

StartCompartment(compartment-
ID,TVD-ID)

GenerateSSHCredential()

ack

retrieve SSH credential

ack

TrustedServer SetupTrustedServer Setup

Figure 9.6: Start of VM instance (compartment) in TVD by TOM.

9.2.4 API
In order to access any of the API-like functions, the GUI is needed (see High-level Design).
To access any functionality of the GUI, a strong multi-factor authentication is mandatory, with
factors depending on the configuration of the service. Otherwise it isn’t possible to execute any
of the user-level functions. Depending on the provided authentication token, access to certain
functions is restricted.

TClouds D2.4.1 Page 143 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.3 Trusted Management Channel
Authors:
Michael Gröne, Norbert Schirmer (SRX)

9.3.1 Overview
This section provides an overview of the Trusted Management Channel (TMC) component. In
the following we describe the overall goals and requirements, and provide an analysis of its
security.

9.3.1.1 Description

The Trusted Management Channel allows to securely connect the TOM with TrustedServers
to set-up, start and stop VM instances, and to load configuration and policies. It also could
be used to interconnect TOMs. The Trusted Management Channel is part of the overall se-
curity concept of of Trusted Infrastructures (also referred to as TrustedInfrastructure (Sirrix))
(cf. deliverable D2.1.1, chapter 12) and all Sirrix components and products based on the TU-
RAYA TMSecurityKernel.

9.3.1.2 Goals (Security, Privacy, Resilience)

The goal to be reached by the Trusted Management Channel is a confidential, integer, and au-
thentic channel between management console and server using TPM based remote attestation.
Its primary goal is to realize a communication channel between a client and a server that pro-
vides all required communication features (cf. subsubsection 9.3.2.3) while satisfying certain
security aspects (cf. subsubsection 9.3.2.4).

9.3.1.3 Required External Components

The platform the component is installed on shall provide a hardware Trusted Platform Module
(TPM) which could be replaced by a Hardware Security Module (HSM) in the future.

9.3.1.4 Relationship with other Activity2 components

The Trusted Management Channel is required by other A2 components, which are TOM, Trust-
edServer and Confidentiality Proxy for S3.

9.3.1.5 Relationship with Activity3 (A3)

Secure management of the cloud infrastructure is a core feature of a trusted cloud, and hence
needed by any application.

9.3.2 Requirements
This section includes the requirements specification for the Trusted Management Channel com-
ponent. This includes the execution/security environment, the functional requirements and the
security objectives/requirements/assets.

TClouds D2.4.1 Page 144 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.3.2.1 Execution Environment

This section specifies software and hardware required at least to run this component success-
fully.

9.3.2.1.1 Hardware The Trusted Management Channel does not rely on special hardware
in general. To be able to use certain features though, a device containing a Trusted Platform
Module (TPM) is required for the Trusted Management Channel Client.

9.3.2.1.2 Software The Trusted Management Channel is designed to be operating system
independent. Certain client features, such as TPM support, are currently only available on
Linux platforms though.

9.3.2.2 Security Environment

This section describes the security aspects of the environment in which the component is in-
tended to be used and the manner in which it is expected to be employed.

9.3.2.2.1 Assumptions There are three assumptions to the security aspects of the environ-
ment in which the component will be used or is intended to be used.

/A 120/ Trusted Administrator
The security administrator (a management user or the project manager) of the Trusted Manage-
ment Channel Server is non-malicious.

/A 130/ Correct Hardware
The underlying hardware (e.g., CPU, devices, TPM) does not contain backdoors, is non-malicious,
and behaves as specified.

/A 140/ Untrusted Cloud Administrator
The Cloud Admins of the Trusted Management Channel Client may be malicious.

9.3.2.3 Functional Requirements

Component functions that are mandatory for successful completion. Please note that security-
related functions are listed in the Security Objectives (cf. subsubsection 9.3.2.4).

9.3.2.3.1 Functions Overview In the following, the identified functions are discussed grouped
according to the related functional packages:

� Compatibility with TLS
� Extensibility

TClouds D2.4.1 Page 145 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Compatibility with TLS

FUNCTION UNIQUE ID /F 10/ (Compatiblity with TLS)
DESCRIPTION The channel should be compatible with the TLS pro-

tocol to achieve the best results with application layer
firewalls and proxies. Furthermore, it is desirable
to be compatible with existing TLS implementations,
i.e. to prevent modifications to TLS libraries.

Extensibility

FUNCTION UNIQUE ID /F 20/ (Protocol Extensibility)
DESCRIPTION The Trusted Management Channel should not be fixed

to a single protocol method but provide an extendable
interface to allow several protocol methods to coexist.

9.3.2.4 Security Objectives

The security objectives address all of the security environment aspects identified. They reflect
the stated intent and shall be suitable to counter all identified threats and cover all identified
organizational security policies and assumptions.

9.3.2.4.1 Security Objectives for the Trusted Management Channel

/O 160/ Mutual Authentication
The Trusted Management Channel should be able to perform mutual authentication using either
a key provided by a TPM (identity key) or a shared secret (token). Authentication should take
place as early as possible.

/O 170/ Remote Attestation
The Trusted Management Channel shall provide the ability to perform remote attestation within
the key-based authentication scheme, to allow the server to validate the integrity of the client
platform.

/O 180/ Message Secrecy and Integrity
The channel must provide message secrecy and integrity against passive and active attackers.

9.3.2.5 Security Requirements

This part of the specification defines the security requirements that have to be satisfied by the
component. The statements shall define the functional and assurance security requirements that
the component and the supporting evidence for its evaluation need to satisfy in order to meet
the security objectives.

/SR 70/ Trust Relationship Server ! Client
For the key-based authentication approach, there must be some sort of trust relationship between
the identity key of each client and the server.

TClouds D2.4.1 Page 146 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

/SR 80/ Trust Relationship Client ! Server
For any authentication approach, the client must also know if the server it is communicating
with is trustworthy.

/SR 90/ TPM protected key
The key material used for key-based authentication must be protected by a TPM. The trust
relationship described in /SR 70/ relies on this assumption.

/SR 100/ Security of TLS
Certain security objectives of the Trusted Management Channel are delegated to TLS. Hence,
the Trusted Management Channel relies on the TLS protocol to achieve its security objectives.

9.3.2.6 Security Assets

9.3.2.6.1 Primary Assets

Communication All communication after the channel has been successfully established

Authentication Secret (Token) The token used during token-based authentication

Authentication Key (Identity Key) The identity key used during key-based authentication

Version Information (PCRs) Information about the state of the client (PCRs) might leak lim-
ited information about the client hard-/software and might hence pose a privacy problem.

9.3.2.6.2 Secondary Assets

TLS session key The key used for symmetric encryption during the TLS session

9.3.2.6.3 Threats A description of threats include all threats to the assets against which
specific protection within the component or its environment is required.

/T 10/ TLS Session Key Leakage
An attacker may try to obtain the TLS session key. Using the session key, the attacker can
violate the integrity and confidentiality of the channel communication.

/T 20/ Authentication Replay
An attacker may try to use previously seen information to replay authentication.

/T 30/ Session Hijacking
An attacker may try to hijack the TLS session during its authentication step.

9.3.3 Analysis
The analysis section collects analysis results, discusses relevant design alternatives, and ex-
plains the design decisions.

TClouds D2.4.1 Page 147 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.3.3.1 Security Requirements

9.3.3.1.1 Ensuring /SR 70/ and /SR 90/ To provide the /SR 70/ and /SR 90/, the trust rela-
tionship between the server and the identity key of the client is established by a trusted admin-
istrator. Each device containing an identity key is labeled with a serial number that uniquely
identifies the identity key through the use of a cryptographic hash function. The production pro-
cess ensures that the serial number identifies the identity key of the device and that the referred
identity key is stored within the TPM. The administrator provides the serial number to the server
(using a management interface) prior to any communication. With this step, the administrator
ensures for the server that the specified serial number belongs to a TPM protected identity key.

9.3.3.1.2 Ensuring /SR 80/ In regular TLS, the client usually has one or more certificates
issued by a certificate authority (CA) that are trusted to sign either the server certificate directly,
or through a chain, in order to allow the client to verify the server’s authenticity. In Trusted
Management Channel, we use a more strict client verification that can however be used to
achieve the same behavior as in regular TLS.

Usually, the assumption about a Public-Key-Infrastructure (PKI) is that all (sub) certificate
authorities in the PKI are trusted. The Trusted Management Channel relaxes this requirement
by allowing only one or more subtrees of a PKI to be considered as trusted.

CA

Sub CA 2

Lock

Sub CA 1

Server Certificate

Figure 9.7: Example PKI

Assuming we have a PKI such as in Figure 9.7 and the client has to validate the server cer-
tificate, then in regular TLS, the server certificate could be signed by any of the three authorities.
In our example, we would like to trust only Sub CA 2 and everything below it (even other CAs
that could be below Sub CA 2, unlike in our example). We call this certificate a lock certifi-
cate. During the TLS handshake, the server does not only send its server certificate but also a
certificate chain up to the CA of the PKI (this is part of regular TLS). In our verification, we
must now ensure that the trust chain from the CA down to the server certificate contains a lock
certificate. With this additional check, no certificates signed by CA or Sub CA 1 are accepted
anymore (although regular TLS would do this). Note that the CA itself can be a lock certificate
(in this case, the system behaves like regular TLS verification) and also the server certificate
can be a lock (in this case, only exactly this server certificate is accepted).

TClouds D2.4.1 Page 148 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

To allow the Trusted Management Channel library to perform the additional verification,
the caller must supply one or more chains, each starting with the lock certificate and ending in
a CA certificate. See also 9.3.4.6.1.1 of the low-level design API for information how exactly
the chains are supplied.

9.3.3.2 Functional Requirements

9.3.3.2.1 TLS Compatibility To meet the requirement /F 10/, the Trusted Management
Channel uses TLS as a base for the communication channel. However, the additional secu-
rity objectives, e.g. /O 170/ require further information to be transferred between the client and
the server. For this purpose, the client certificate can be used, as TLS and the X.509 standard
allow arbitrary extensions to be added to certificates for exactly this purpose. Furthermore,
TLS provides already cryptographically secure nonces from both parties which can be used
whenever such nonces are required.

Another problem is that TLS with client authentication (i.e. client certificate) requires a
client key that can be used to generate the signature required by the Certificate Verify mes-
sage at the end of the TLS handshake. This message consists of a non-standard signature
scheme that is not compliant with PKCS1-SHA1 (the signature is PKCS1 with MD5+SHA1
concatenated instead). The only key type that is capable of performing such a signature is a
TPM SS RSASSAPKCS1v15 DER key.

The security objective ’remote attestation’ though requires an attestation identity key (AIK)
to perform secure attestation actions. These two key constraints are incompatible.

Result The Trusted Management Channel design with key-based authentication will al-
ways require two different keys.

Solution We may assume that the identity key is authenticated to the server by its serial
number. Attestation identity keys cannot only be used for remote attestation but also for certi-
fication of other keys. Using this technique, the client can authenticate the second key (called
TLS key) using the identity key. The required for certification must be shipped within the client
certificate itself like any other authentication data.

9.3.3.2.2 Extensibility The Trusted Management Channel must provide ways to support
multiple authentication modes according to /F 20/. For this purpose, the client certificate must
indicate what kind of authentication mode is to be used. The server must act accordingly during
client certificate validation.

Result for Design The design must support multiple handlers for different client certifi-
cate types that represent different authentication modes.

9.3.3.3 Security Objectives

9.3.3.3.1 Mutual Authentication /O 160/)

Key-Based Authentication In this authentication mode, the client has an attestation iden-
tity key (AIK) which is an identity keypair K = (pK; sK). The secret key sK resides within a
TPM (/SR 90/) and can be used for remote attestation and key certification. The public key pK
is well known. Furthermore, the client has a TLS keypair TK = (pTK; sTK) as described in

TClouds D2.4.1 Page 149 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

paragraph 9.3.3.2.1. The secret key sTK also resides in the TPM. This keypair can be generated
on-the-fly or kept statically and is not known to the server beforehand.

Prior to any communication between the server and the client, the serial number (or fin-
gerprint) S of the public key pK must be authorized within the server (e.g. through a system
administrator) as described in paragraph 9.3.3.1.1.

Once this step is complete, the serial number S and hence the keypair (pK; sK) is consid-
ered trustworthy by the server. Furthermore, the client has a list of certificate chains that are
trusted for signing server certificates as described in paragraph 9.3.3.1.2.

With these prerequisites, mutual authentication can be achieved with standard TLS using
client and server certificates.

In the following, the different steps of the TLS handshake are explained in detail.

(1) Client/Server Hello To establish a connection between the client and the server, the client
first issues a TLS Client Hello to the server. The server responds with a TLS Server Hello.
By the TLS specification, both messages contain a certain amount of random data (28
byte randomness + 4 byte timestamp). By nonceS we denote certain amount of bits (at
least 160) of the randomness included in the server hello message.

(2) Server Authentication The server sends its certificate to the client, including the server
public key pKS . This certificate is signed by a trusted authority and can hence be validated
by the client. Furthermore, the server sends the ServerKeyExchange message, which in
general contains all necessary parameters for a key exchange. In our case, we perform the
key exchange using RSA and this message contains the necessary RSA parameters (e.g.
modulus, exponent). This message is signed by the server.

(3) Client Authentication The server now requests a certificate from the client for authentica-
tion. At this point, the client obtains the secondary keypair TK = (pTK; sTK) residing
in the TPM and constructs an X509 certificate, including the information as described in
table 9.8. The certificate is self-signed.

(4) Handshake Completion In order to complete the handshake, the client must now encrypt
a pre-master secret using pKS and send it to the server. After the handshake is com-
pleted, both parties can use this to derive the master secret. Finally, the client sends the
CertificateVerify message. This message contains a signature over all previous handshake
messages and is performed using sTK. The client performs this message both to prove
that it possesses the secret key that matches the public key shown in the client certificate
and to ensure the integrity of all previous client messages.

By ci(pK; pTK) we denote the output of a TPM CertifyKey call to authenticate the key
pTK through the known TPM key pK. Without this call, there would be no binding between
these two keys and no assurance that the key pTK is really in possession of the client.

Inclusion of remote attestation specific data (Trusted/Actual Version Information) is op-
tional. The server may enforce the presence of this data for certain types of clients (e.g. appli-
ances). For more information about these fields, see ’remote attestation’.

The presence of the nonceS within the client certificate makes the whole certificate unique
for this session and prevents replay attacks on the certificate (/T 20/).
Important: The primary keypair K = (pK; sK) must be an attestation identity key (AIK). If
a TPM SS RSASSAPKCS1v15 SHA1 signing key would be in use, the attacker could fake the

TClouds D2.4.1 Page 150 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Information Purpose
Public Key pTK Public key of X509 Certificate S (signing)
Public Key Info/Signature
ci(pK; pTK)

Certification for pTK by pK (key authentication)

Public Key pK Allow the server to derive the serial number S (identity)

Trusted Version Information
Allow the server to validate our configuration during remote
attestation (PCRs)

Actual Version Information
Provide the server with information about current configura-
tion (PCRs) (remote attestation).

nonceS
The nonce that is used during the handshake and for quote
(informative, additional replay protection)

sign(sTK,
Hash(ClientCertificate))

Prove that the certificate originates from the client and was not
altered (part of X509, integrity)

Figure 9.8: Data to be included in the client certificate for key-based TLS

output of TPM Quote using this key, as there is no way to distinguish the output of TPM Sign
and TPM Quote with this key type.

Token-Based Authentication In this authentication mode, the client knows some token
and in order to succeed in authentication, the client has to prove the server that it knows a valid
token.

Because the client has nothing except the token to prove its identity, we must not only ensure
that the token is kept secret during transmission, but also that the token submission is bound to
the client and the session (see /T 20/ and /T 30/).

The respective steps in the TLS handshake are identical to the steps in the key-based au-
thentication, except for the client authentication step:

(3) Client Authentication The client generates an asymmetric key K = (pTK; sTK) and
constructs a client certificate, including the information as described in table 9.9. The
certificate is again self-signed.

After seeing the client certificate, the server knows what token the client is referring to by
decrypting Enc(pKS; token). The correctness of the HMAC value can then be easily verified
by the server. The presence of the nonceS in the HMAC prevents replay attacks (/T 20/).

The handshake is then completed with step 4 which is identical again to the key-based
authentication.

9.3.3.3.2 Remote Attestation /O 170/ Remote attestation can only be supported in the key-
based authentication scheme. To perform remote attestation, the server needs two additional
datasets that must be included in the client certificate:

Trusted Version Information The server needs to know, what configurations are allowed.
This information could be hardcoded within the server but this approach is inflexible and does
not scale. A better approach is to let the client possess a proof that a certain configuration is
trusted. This can be realized by using a PCR Certificate Authority (PCR CA) to sign trusted

TClouds D2.4.1 Page 151 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Information Purpose
Public Key pTK Allow the server to validate the client signature later

(integrity)
Encrypted Token Enc(PKS; token) Let the server know which token we have
HMAC(token, nonceS k pTK) Provide the server with evidence about the client cur-

rently knowing the token and bind pTK to the token
(identity/integrity)

nonceS The nonce that is used during the handshake and for
HMAC (informative, additional replay protection)

sign(sTK, Hash(ClientCertificate)) Prove that the certificate originates from the client and
was not altered (integrity)

Figure 9.9: Data to be included in the client certificate for token-based TLS

configurations. The server can verify that the information is valid only by knowing the PCR
CA.

Actual Version Information The server needs to know the actual configuration of the
client. This can be achieved using TPM Quote(sK, nonceS , PCRSel) on the client. This will
yield non-replayable evidence about the state of the clients’ PCR registers (simplified sign(sK,
PCRs k nonceS)). The actual PCR selection to use is fixed by the trusted version information
which the client possesses. To verify the signature, we also need to include the PCRs in question
though. As described in paragraph 9.3.2.6.1, this information might violate the privacy of the
client under certain circumstances. The information is hence to be encrypted with the server
public key pkS .

9.3.3.3.3 Message Secrecy and Integrity /O 180/ As described in paragraph 9.3.3.2.1, the
Trusted Management Channel uses TLS to establish the secure channel. The desired secrecy
and integrity properties are therefor provided by the TLS layer itself, given that TLS is secure
(/SR 100/). The security of TLS also depends on the ciphersuite used. For the purposes of
Trusted Management Channel, both the server and the client shall be using AES128-SHA as
ciphersuite.

This mode uses RSA to exchange a pre-master secret which is then used by server and client
to derive a 128 bit master secret. The master secret is used with the symmetric AES algorithm,
providing sufficient secrecy. To provide integrity, TLS uses a Message Authentication Code
(MAC) with a given hash algorithm, in this case SHA1.

9.3.3.4 Demo Storyboard

There is no direct interaction of an user (User, Cloud Admin, Developer) with the TrustedChan-
nel. Demo is included in demo of TOM (cf. 9.2, section 9.2.2.2), TrustedServer (cf. 7.5, section
7.5.2.7) and Confidentiality proxy for S3 (cf. 8.4, section 8.4.2.7) components.

TClouds D2.4.1 Page 152 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.3.4 Architecture

9.3.4.1 High-level Design

The following section gives a brief overview of the high-level design.

9.3.4.2 Components

Figure 9.10 provides a simplified version of the component relations within the Trusted Man-
agement Channel. We will now briefly describe the purpose of each component/subsystem.Client <<component>>X509 Handlers <<subsystem>>TLS Library<<subsystem>>TLS Subsystem <<component>>TrustedChannel Interface <<component>>TPM Engine<<subsystem>>TLS LibraryNetworkServer <<component>>Server TSSTPMCommands CryptoCertificatesTLSConnection TrustedChannelConfiguration X509TLSX509TLSTCPConnection

Figure 9.10: Component overview

Trusted Software Stack (TSS)

The Trusted Software Stack (TSS) is an external library that provides an interface to the TPM
itself. This component is required for all operations that require a TPM.

TClouds D2.4.1 Page 153 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

TLS Library

This TLS library is another external library providing several TLS/Crypto related functions.
This includes amongst others X509 related functionality, cryptographic algorithms and an im-
plementation of the TLS network protocol.

Engine

The Engine component has two main purposes. First, it serves as an abstracted interface be-
tween the TLS Library and the TSS by providing certain methods related to cryptographic
purposes (RSA and randomness) in a form specific for the TLS library. Secondly, the engine
provides additional commands that perform certain actions with the TPM and can be used di-
rectly by other components within the Trusted Management Channel Client. The engine concept
allows the design to stay independent from the underlying TSS library.

X509 Handlers

The X509 handlers provide everything related to X509 certificates within the Trusted Manage-
ment Channel. This especially includes the different authentication forms the Trusted Man-
agement Channel must be able to support. Adding a new authentication form can simply be
achieved by implementing an additional X509 handler that provides the required authentication
certificate.

TLS Subsystem

The TLS Subsystem provides the TLS connection by involving the TLS library together with
certificates provided by the X509 handlers. This component also establishes the connection to
the Trusted Management Channel Server.

TrustedChannel Interface

The TrustedChannel is the public interface available to the developer. It requires system-
dependent configuration and provides the channel itself.

9.3.4.3 TPM-based Connection

With the TPM-based authentication, the channel object is first instantiated with a configuration
(containing TPM-related settings such as key files or NVRAM indices). Then, the daemon may
open the channel, specifying the host, port and CA certificate to use for this step. The library
opens a connection to the specified server and obtains the server certificate. It then performs
certain steps with the TPM engine to collect the necessary data for certificate generation and
then submits a client certificate. Finally, the TLS handshake is continued and the connection is
open if the handshake succeeded (cf. figure 9.11).

9.3.4.4 Token-based Connection

The Token-based connection is similar to the TPM-based connection. Instead of TPM-related
data, the configuration during instantiation contains the token to be used. When the daemon

TClouds D2.4.1 Page 154 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

:Server

(Hostname, Port, CA)

:ExternalDaemon :TrustedChannel :TPMEngine :TPM

Continued TLS Handshake

Open Connection

Load Keys

Open with Parameters

Certify Key

Instantiate with Configuration

Sign

Server Certificate

Quote

Client Certificate

Generate Client Certificate

Figure 9.11: TPM-based connection

opens the channel, the library performs different steps (encrypt/HMAC token) to produce the
client certificate and continue the handshake (cf. figure 9.12).

9.3.4.5 Sequence Diagrams

The TMC is an internal component and thus has no direct interaction with the User. It is used
for communication of TOM (server) and an appliance (client) in our case a TrustedServer. The
TMC is accessed via a library at both ends. We describe mutual authentication which is used as
a first step to establish an communication channel.

9.3.4.5.1 Mutual Authentication - Key-Based Authentication (Figure 9.13) The whole
process of a a successful key-based authentication as described in key-based authentication is
depicted in Figure 9.13 for an appliance that also performs remote attestation.

TClouds D2.4.1 Page 155 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

:Server

(contains Token)

(Hostname, Port, CA)

:ExternalDaemon :TrustedChannel

Continued TLS Handshake

Instantiate with Configuration

Open with Parameters

Open Connection

Server Certificate

Client Certificate

Encrypt/HMAC Token

Generate Client Certificate

Figure 9.12: Token-based Connection

9.3.4.5.1.1 Mutual Authentication - Token-Based Authentication (Figure 9.14) The
whole process of a a successful token-based authentication as described in token-based authen-
tication is depicted in Figure 9.14.

9.3.4.6 Low-Level Design

This chapter provides a more detailed specification of the Trusted Management Channel design
with regards to the structures/certificates used as well as the Trusted Management Channel
Client library design and a functional specification of the Trusted Management Channel Server.
Implementation languages are C++ and Java.

9.3.4.6.1 Client Library Design In this section we give a more detailed description for the
classes used in the Trusted Management Channel library. Figure 9.15 gives an overview of the
classes. We will describe their purpose now in detail.

9.3.4.6.1.1 Client TLS Library For the client design, the OpenSSL TLS library seems
to be the best choice because it is widely supported and provides the necessary engine interface
for supporting the TPM.

Engine Requirements The engine must provide certain features in order to fulfill the re-
quirements of this design. In terms of OpenSSL engines, the engine must provide a RAND METHOD
as well as parts of the RSA METHOD (encryption with the private key, i.e. signing). Further-
more, it must provide a mechanism to load the key from file and from NVRAM and provide it
as an EVP PKEY object to the OpenSSL API. Finally, the engine should supply control com-
mands to perform TPM Quote() and TPM CertifyKey() with the key(s) provided. Later versions

TClouds D2.4.1 Page 156 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API:Client :ServerStep 1Step 4Step 3 Secure ChannelStep 2 Client HelloServerCertificate(pK_S)Server Hello (nonce)ClientKeyExchange (Enc(pK_S, secret))CertificateVerify (sign(sTK, Handshake))ServerKeyExchange (RSAParams, Signature)validate ServerCertificate validateClientCertificate(pTK, pK, TPM_Certify(pK, pTK, nonce), TrustedVersionInformation, TPM_Quote(sK, nonce, PCRSel), sign(sTK,Hash(ClientCertificate))) validate - Serial(pK) - TPM_CertifyKey - PCR values (TPM_Quote) - SignatureClient Certificate Requestgenerate ClientCertificateobtain TLS key (pTK, sTK)

Figure 9.13: Sequence diagram for a successful key-based authentication

of both engines furthermore introduce a ENGINE VERSION control command which returns a
hard-coded version number to check if the engine is compatible with the Trusted Management
Channel.

TrustedChannel The TrustedChannel is an abstract base class that is derived by classes
implementing the Trusted Channel, e.g. BinaryTrustedChannel which implements the Trusted
Channel for binary transmission. Every implementation of this class implements a constructor
which takes a ChannelConfig containing the configuration parameters for the channel. Further-
more, they provide an open() method, expecting server hostname/port and one or more trust
chains for creating a connection. Trust chains are supplied as single files, each file containing
one or more certificates in PEM format. The first certificate in each file is considered to be the
lock certificate, the last certificate must be the CA (see paragraph 9.3.3.1.2 for a documentation
on trust chain semantics). Finally a close() method is provided for closing the connection again.

TClouds D2.4.1 Page 157 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft APIClientCertificate(pK, Enc(pK_S, token), HMAC(token, nonce || pK), sign(sK,Hash(ClientCertificate))) validate - HMAC using Enc(pK_S, token) - Signaturevalidate:Client :ServerStep 2Step 4Step 3Step 1 Secure ChannelClient HelloServerCertificate(pK_S)Client Certificate RequestServer Hello (nonce)validate ServerCertificategenerate Keypair (pK,sK)ClientKeyExchange (Enc(pK_S, secret))CertificateVerify (sign(sK, Handshake))ServerKeyExchange(RSAParams, Signature)

Figure 9.14: Sequence diagram for a successful token-based authentication

Figure 9.16 also gives an overview of the related classes.
During the open() call, several exceptions may occur due to external circumstances:

Exception Meaning Possible Reason(s)
CException The connection failed on the

socket level
The host/port is unreachable
or closed

SSLConnectionException The connection failed on the
handshake level

The server rejected the client
(e.g. certificate, other pol-
icy)

SSLSecurityViolationException The connection succeeded
but the verification of the
server failed

Invalid server certificate

BinaryTrustedChannel The BinaryTrustedChannel implements the TrustedChannel for
binary transmission and implements a binary stream.

TClouds D2.4.1 Page 158 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API BinaryTrustedChannel EnhancedExceptionEngineKey GenericKey TrustedChannelX509Handler NotImplementedExceptionNotCompletedException CExceptionCFileException CSocketExceptionSSLExceptionFileX509Handler SSLSecurityViolationExceptionTPM_QuoteResult myStreambufengineClassInstance CACert mySocketLibraryInstance ConfCertsIdentityKey keyHandle TLS_BufferChannelConfigEngine PCRConfigurationX509Handler <<:auto_ptr>><<friend>>SSL_Library SocketTokenChannelConfigTPM_X509Handler TPMChannelConfig<<:vector>>

Figure 9.15: Class diagram of the Trusted Management Channel library design

BinaryTrustedChannel

stateOpen : bool

~BinaryTrustedChannel()

BinaryTrustedChannel(inout config : ChannelConfig)

open(in hostname : std::string, in port : int, in CAfile : std::string) : void

close() : bool

ChannelConfig

getHandler() : std::auto_ptr<X509Handler>

ChannelConfig()

~ChannelConfig()

TrustedChannel

open(in hostname : std::string, in port : int, in CAfile : std::string) : void

close() : bool

~TrustedChannel()

sirrix::utils::BinaryStream X509HandlerCertHandler

<<friend>>

<<:auto_ptr>>

CAHandler

<<:auto_ptr>>

Figure 9.16: Classes related to the TrustedChannel

9.3.4.6.1.2 ChannelConfig The ChannelConfig is an abstract class that represents a con-
figuration for the TrustedChannel. Every implementation of this class represents a possible
configuration mode. There are currently two configurations.

TClouds D2.4.1 Page 159 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

TPMChannelConfig The TPMChannelConfig takes two keys (one key that should be
used for Identity/Remote Attestation and another key to perform the TLS handshake) and one
or more filenames referring to either configuration certificates (PCR values) or intermediate CA
certificates used as trusted chain for the configuration certificates.

The keys can either be in the form of files (sealed keyblobs) or indices referring to key slots
in the NVRAM of the TPM.

When passing this configuration object to the TrustedChannel, the channel will run the key-
based authentication protocol.

TokenChannelConfig The TPMChannelConfig only takes a token (a string). When pass-
ing this configuration object to the TrustedChannel, the channel will run the token-based au-
thentication protocol.

9.3.5 API
The Trusted Management Channel is an internal protocol which mainly consists of the TLS
protocol API and internal extensions. It is integrated into TOM component and has one public
interface.

� TLS plus TPM-based extensions

� Management protocol for RPC.

9.3.5.1 Public Interface

The Trusted Management Channel library can be used by instantiating a subclass of Trusted-
Channel, for example BinaryTrustedChannel for binary transmission.

Figures 9.17 and 9.18 describe the public interface:ChannelConfig# getHandler() : std::auto_ptr<X509Handler>+ ChannelConfig()+ ~ChannelConfig()TokenChannelConfig# getHandler() : std::auto_ptr<X509Handler>+ TokenChannelConfig(in token : std::string)+ ~TokenChannelConfig() BinaryTrustedChannel+ ~BinaryTrustedChannel()+ BinaryTrustedChannel(inout config : ChannelConfig)+ open(in hostname : std::string, in port : int, in CAfile : std::string) : void+ close() : void<<friend>>TPMChannelConfig# getHandler() : std::auto_ptr<X509Handler>+ TPMChannelConfig(in TPM_KeyFile : std::string, in ConfCerts : std::vector<std::string>)+ TPMChannelConfig(in TPM_KeyIndex : uint, in ConfCerts : std::vector<std::string>)+ ~TPMChannelConfig() TrustedChannel+ open(in hostname : std::string, in port : int, in CAfile : std::string) : void+ close() : void+ ~TrustedChannel()
Figure 9.17: Public interface of the TrustedChannel

TClouds D2.4.1 Page 160 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API :BinaryTrustedChannel:TPMChannelConfig:DeveloperTPMChannelConfig(keyFile, ConfCerts)configBinaryTrustedChannel(config)channelopen(host, port, cafile)operator<<(msg)operator>>responseclose()

Figure 9.18: Sequence diagram for TrustedChannel usage

9.3.5.1.1 Example Usage of the Public Interface Figure 9.19 shows a small program that
opens a channel using the TPM and sends ”Hello World!” to the server. It also shows the main
steps to use the TrustedChannel:

� Create a configuration (based on what type of channel you need)

� Create the channel with the given configuration

� Open the channel with the specified connection parameters

� Send/receive data using the streaming operators (flush() if required)

� Close the channel

TClouds D2.4.1 Page 161 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

1 #include <Sirrix/TrustedChannel/BinaryTrustedChannel.hxx>
2 #include <Sirrix/TrustedChannel/TPMChannelConfig.hxx>
3

4 using namespace sirrix;
5 using namespace tc;
6

7 int main() {
8 /* Get us a vector of PCR Certificates (PEM Format) */
9 std::vector<std::string> PCRCerts;

10

11 PCRCerts.push_back("./myPCRCert1.pem");
12 PCRCerts.push_back("./myPCRCert2.pem");
13 PCRCerts.push_back("./myPCRCert3.pem");
14

15 /* Create the configuration object */
16 TPMChannelConfig config("./myIdentityKeyFile", "./myTLSKeyFile",

PCRCerts);
17

18 /* Create the channel */
19 BinaryTrustedChannel tc(config);
20

21 /* Open the channel */
22 try {
23 tc.open("localhost", 4433, "./myCACert.pem");
24 } catch (CException &cexc) {
25 std::cerr << "Connection failed on socket level" << std::endl;
26 return 1;
27 } catch (SSLConnectionException &sslcexc) {
28 std::cerr << "Connection failed on handshake level" << std::endl;
29 return 1;
30 } catch (SSLSecurityViolationException &sslsvexc) {
31 std::cerr << "Server certificate verification failed" << std::endl;
32 return 1;
33 }
34

35 /* Send hello world and flush the channel (it has a 4k buffer) */
36 tc << "Hello world!";
37 tc.flush();
38

39 /* Close the channel */
40 tc.close();
41 }

Figure 9.19: Simple ”Hello world” with the Trusted Management Channel

TClouds D2.4.1 Page 162 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Verification and Auditability

9.4 Ontology-based Reasoner to Check TVD Isolation
Authors:
Emanuele Cesena, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia, Davide Vernizzi (POL)

9.4.1 Overview
The ontology-based Reasoner is a subcomponent/plugin for the Management Component that,
given as input a service model, an infrastructure model and an allocation of services onto the
infrastructure, makes it possible to verify whether some security properties required by the
service are satisfied by the allocation. Furthermore, it may also provides hints on how to modify
the allocation whenever security requirements are not met.

More specifically, the service model shall describe a TVD as a virtual network and the main
property we shall verify is isolation, in part achieved at “computational” level by the hypervisor,
in part achieved at network level by securing untrusted channels. We rely on ontology-based
reasoning to perform analysis.

9.4.1.1 Goals (Security, Privacy, Resilience)

� Isolation (focus on network level).
Description: The ontology-based Reasoner should be able to verify that all communica-
tions inside a service are kept isolated (focus on confidentiality and integrity) from other
TVDs deployed on the same cloud infrastructure. Otherwise, the tool should be able to
provide a new configuration, e.g. by requiring to establish some secure channels, that
meets the requirements. We also plan to work on dynamic (re)configuration.
Techniques/research problems: Ontology-based reasoning. Define a model for services
(TVDs), infrastructure, allocation, and a consistent attacker model.
Assumptions: N/A.

� Description of security services (optional)
Description: Optionally, in our service model we would like to capture some of the
security services provided by TClouds, e.g. a resilient storage. This means that the
service model shall describe at higher level something like “service A requires the re-
silient(params) storage service B”, this description is translated in a precise allocation
(e.g. service B is mapped onto (sub)services B1; � � � ; B2f with a description of the inter-
actions among them) and finally the tool perform the analysis.
Techniques/research problems: ontology-based description of security services.
Assumptions: The model of the security services provided by TClouds is statically in-
cluded into the reasoner.

9.4.1.2 Required external components

� Management Component (if integration is needed).
Name/description: If integration is required, we plan to plug our tool into the existing
OS Management Component.

TClouds D2.4.1 Page 163 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Features (security/privacy/resiliency): N/A.
Required API (provided by the external component): XML-based format for system
model, e.g. the libvirt XML format (not really an API).

� Infrastructure capable of securing channels among, e.g., cluster nodes.
Name/description: We expect our tool to be able to decide if a secure channel must be
added (or can be removed if it is redundant). The infrastructure should be able to change
the configuration. We plan to add support to libvirt to establish secure channels
(IPsec) among Cloud Nodes.
Features (security/privacy/resiliency): N/A.
Required API (provided by the external component): libvirt.

9.4.1.3 Relationship with Activity3

Actors from A3 act as end users of the cloud and therefore can access the Log Service. For
instance, an A3 Project Manager may want to verify the isolation of his TVD with respect to
other TVDs sharing the same resources.

9.4.2 Requirements
The use cases are depicted in Figure 9.20. The Reasoner is a component that will be included
in the Management Component, while the Enforcer is a component that shall extend libvirt
inside the Computing Nodes.

This subsystem also requires to discover the low-level configuration of the cloud infrastruc-
ture, i.e. of all Cloud Nodes and all the VMs running on Computing Nodes. For this functional-
ity we rely on another subsystem, namely the Automated Validation described in Section 9.5.4.

9.4.2.1 Selected Use Cases

USE CASE UNIQUE ID /UC 470/ (Discovery)
DESCRIPTION The low-level configuration of the Cloud Nodes and

the running VMs is fecthed from the Management
Component. This use cases is detailed in /UC 520/,
in Section 9.5.4.

USE CASE UNIQUE ID /UC 480/ (Input model)
DESCRIPTION The Management Component provides the system

model as input to the reasoner.
ACTORS Management Component.
PRECONDITIONS Management Component performed a discovery, cf.

/UC 470/.
POSTCONDITIONS The reasoner updates its internal model.
NORMAL FLOW

1. The Management Component fetches the con-
figuration/state from a data collector.

2. The Management Component feeds the rea-
soner with the configuration.

TClouds D2.4.1 Page 164 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

User

Cloud Admin

Cloud

Reasoner

Input model

Modify model

Analyse model

Analyse
TVD isolation

Enforcer

Establish
IPsec channel

Input model

Modify model

Analyse model

Analyse
TVD isolation

Establish
IPsec channel

<<include>>

Figure 9.20: Use case diagram for the ontology-based reasoner (and enforcer) to check TVD
isolation.

TClouds D2.4.1 Page 165 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 490/ (Analyze model)
DESCRIPTION The reasoner performs an analysis of the model.
ACTORS Management Component or Cloud Admin or User.
PRECONDITIONS User is authorized to analyze the requested TVD (i.e.

User owns that TVD).
POSTCONDITIONS None.
NORMAL FLOW

(TVD ISOLATION) 1. The Management Component requests the
TVD isolation analysis for a specific TVD.

2. The reasoner performs the analysis to check
TVD isolation.

3. Optionally, the result of this analysis can be
used by the Management Component (e.g., by
the Scheduler) to make decisions under some
circumstances (e.g., creation of a new VM in-
stance in a TVD).

ALTERNATIVE FLOW

(TVD ISOLATION/CLOUD

ADMIN)

1. The Cloud Admin, via Management Console,
may request the analysis of specific system con-
figurations (e.g., to make simulations).

ALTERNATIVE FLOW

(TVD ISOLATION/USER–
OPTIONAL)

1. The User, via Management Console, can re-
quest to check the isolation of his TVD.

USE CASE UNIQUE ID /UC 500/ (Modify model)
DESCRIPTION The system model is modified.
ACTORS Management Component or Cloud Admin.
PRECONDITIONS None.
POSTCONDITIONS The reasoner updates its internal model.
NORMAL FLOW

(NEW VM IN A TVD) 1. In the model, a new VM instance is added to a
TVD and deployed on a Computing Node (i.e.
a physical host).

ALTERNATIVE FLOW

(NEW IPSEC CHANNEL) 1. In the model, a new IPsec channel is established
between two Computing Nodes, and the net-
work of a TVD is “deployed” onto this channel.

TClouds D2.4.1 Page 166 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 510/ (Establish IPsec Channels)
DESCRIPTION An IPsec channel is established between two Com-

puting Nodes (i.e. physical nodes).
ACTORS Management Component or Cloud Admin.
PRECONDITIONS None.
POSTCONDITIONS An IPsec channel is established between two Com-

puting Nodes.
NORMAL FLOW

1. The actor requests the establishment of an IPsec
channel between two hosts (i.e. the Computing
Nodes) to the infrastructure management.

2. The infrastructure management connects to the
two hosts and instructs libvirt to setup the
IPsec channel.
Note: libvirt will be modified to support
IPsec channel between hosts. The behaviour
of the infrastructure management will be better
specified in a future report.

9.4.2.2 Demo Storyboard

The following story shows how the ontology-based reasoner (and enforcer) can be used to: (1)
verify the correct deployment of a TVD; (2) assist the administrator/infrastructure to guarantee
isolation while modifying the structure of the TVD (e.g. adding a new VM to the TVD).

1. VMA1 and VMA2 in TVDAqua are running on the Computing Node X (i.e. the same
physical host X).

2. The reasoner takes as input a model of the system from the cloud infrastructure (cf.
/UC 480/).

3. The reasoner is run in order to verify that the TVDAqua is properly isolated (cf. /UC 490/).

We now begin a simulated phase:

4. User wants to add a new VMA3 to the TVDAqua. We assume that VMA3 will run on the
Computing Node Y, distinct from X.

5. We (possibly manually) feed the reasoner with this new information (cf. /UC 500/, normal
flow), run the reasoning (cf. /UC 490/) and discover that the channel between X and Y
must be secured, and that now it is not secure.

6. We (possibly manually) add an IPsec channel between X and Y in the model (cf. /UC 500/,
alternative flow), re-run the reasoning (cf. /UC 490/) and check that in this solution the
TVD is now isolated.

Finally, we go back to the real world:

7. Cloud Admin issues a command to libvirt at X and Y to setup an IPsec channel
between the Computing Nodes (cf. /UC 510/).

TClouds D2.4.1 Page 167 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

8. User adds a new VMA3 to the TVDAqua on Y.

9. We go back to steps 2-3 and verify on the real world that the TVD is properly isolated.

Note that step 7 is optional, in the sense that it could be automatically performed by the
Management Component during the creation of VMA3 (step 8).

9.4.3 Architecture

9.4.3.1 High-level Design

The high level architecture is depicted in Figure 9.21.

Data
Collector

System
Model
Repo.

Computing
Node

Computing
Node

Computing
Node

Enforcer

Management
ComponentReasoner

libvirt
module

sectunnel

Config
Repo.

libvirt
module

sectunnel

libvirt
module

sectunnel

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

configs

enrichment
modules

Establish IPsec channel

discovery
data

System model
input/

analyze / modify model

new configs

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

Figure 9.21: High-level architecture of the Ontology-based Reasoner.

9.4.3.1.1 Data Collector. It collects data from the infrastructure and makes it available for
the components/subsystems that need it. This component is developed within the Automatic
Audit subsystem, cf. Section 9.5.4. The “interface” between the Data Collector and the Rea-
soner is represented by a common format for the infrastructure, virtual, service and security
models, that we collectively refer to as System Model.

9.4.3.1.2 Reasoner. This is the core of the Ontology-based Reasoner and allows automatic
analysis on the system model, based on ontology reasoning. For details on the underlying
ontology we refer to D2.3.1, Chapter 7.

The Reasoner functionalities include:

TClouds D2.4.1 Page 168 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� Input model: to read the system model and map and import it in the internal ontology (cf.
Section 9.4.3.2.1).

� Analyze model: to run an analysis on the current ontology (cf. Section 9.4.3.2.2).

� Modify model: for the Cloud Admin to manually alter the loaded ontology in order to
perform other analysis.

Given a system model describing a set of TVDs and the underlying physical infrastructure,
we support two specific analysis:

� Verify TVD isolation: outputs a list of possible network flows between TVDs.

� Find Secure Tunnels: outputs a list of required secure tunnels to avoid network flows
between TVDs.

Sometimes the input model is not sufficiently detailed for the current analysis, thus it is
necessary to add information (that can be either automatically computed, retrieved from the
Management Component or requested to the Cloud Admin). For this reason, the Reasoner
supports the addition of modules called Enrichment Modules.

Whenever an analysis outputs new configurations for the cloud infrastructure, such config-
urations are stored in a central Configuration Repository, that can be accessed by other compo-
nents, e.g. the Enforcer.

The Reasoner does not directly interact with the Data Collector or the Enforcer, whilst the
“interface” among these components is represented by a shared common format for the system
model and the configuration repository. This design choice has been made to simplify future
development and extensions.

9.4.3.1.3 Enforcer. It is a component able to reconfigure Cloud Nodes, in particular to let
them establish new IPsec channels. The Enforcer reads configurations from the Configuration
Repository and reconfigures Cloud Nodes via libvirt.

9.4.3.1.4 libvirt Module for Secure Tunnels. This is a module that extends libvirt
to support the establishment of secure tunnels via IPsec.

9.4.3.2 Sequence Diagrams

The following sequence diagrams implement two use cases defined in Section 9.4.2 (specifically
the Input model and the Analyze model use cases). The functions used in the sequence diagrams
comes from the API discussed in Section 9.4.4.

9.4.3.2.1 Input model (Figure 9.22). The Management Component interacts with the Data
Collector to collect the system model. When the data is available, the Management Component
notifies this to the Reasoner.

TClouds D2.4.1 Page 169 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Management Component Reasoner

InputModel()

Update Cloud Config

ack

ack

Input ModelInput Model

Figure 9.22: Sequence diagram for Ontology-based reasoner ‘Input Model’ use case.

9.4.3.2.2 Analyze Model. In the normal flow of the use case (Figure 9.23), the Management
Component requests the Reasoner to check the cloud configuration or a specific property. An
example can be TVD isolation: in this case the functions RequestCheckConfig() and Check-
Config() will accept the TVD identifier as parameter. These actions can be triggered within
the Management Component, e.g. when a new VM instance must be started. The sequence of
actions defined for the normal flow are a subset of actions for the alternative flows of this use
case.

Management Console Reasoner

AnalyzeModel()

Check Configuration

ack

ack

Analyze Model (normal flow)Analyze Model (normal flow)

Figure 9.23: Sequence diagram for Ontology-based reasoner ‘Analyze Model (Normal Flow)’
use case.

In one alternative flow (Figure 9.24), the Cloud Admin interacts with Management Compo-
nent to request the the checking of the cloud configuration or of a specific property.

In the other alternative flow (Figure 9.25), the Project Manager interacts with Management
Component to request the checking of the isolation of its TVD.

TClouds D2.4.1 Page 170 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Cloud Admin Management Console Reasoner

AnalyzeModel()

AnalyzeModel()

Check Configuration

ack

ack

ack

Analyze Model (alt. flow)Analyze Model (alt. flow)

Figure 9.24: Sequence diagram for Ontology-based reasoner ‘Analyze Model (Alternative Flow
with Cloud Admin)’ use case.

Project manager Management Console Reasoner

AnalyzeModel()

AnalyzeModel()

Check Configuration

ack

ack

ack

Analyze Model (alt. flow, opetional)Analyze Model (alt. flow, opetional)

Figure 9.25: Sequence diagram for Ontology-based reasoner ‘Analyze Model (Alternative Flow
with Project Manager, optional)’ use case.

9.4.4 API

9.4.4.1 Reasoner

We present a preliminary API for the Reasoner that exposes its main functionality. The API
is preliminary in the sense that we are investigating the possibility to implement notifications
among our components and the Management Component following the event/listener paradigm.

InputModel()

void(InputModel (void)

Description.
The InputModel function is called by the Management Component when the Rea-
soner should update the internal ontology according to the system model.

AnalyzeModel()

TClouds D2.4.1 Page 171 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

result(AnalyzeModel (query)

Description.
The AnalyzeModel function is called by the Management Component to run an
analysis. The query parameter defines the specific analysis and in our proof of con-
cept implementation it shall be chosen among a set of prefixed queries. The result
depends on the actual analysis and it is expected to be in the final format required by
the caller (specific modules may take care of the translation to the final format). Fi-
nally, we note that this function may have side effects, for instance a new configuration
may be written in the configuration repository.

ModifyModel()

void(ModifyModel (modelDiff)

Description.
The ModifyModel function is called by the Management Component (usually the
Management Console after request from the Cloud Admin) to modify the internal
ontology without reading it from the system model.

9.4.4.2 Secure Tunnelling in libvirt

We present a proposal to extend the libvirt XML format to support secure tunnelling via
IPsec.

9.4.4.2.1 Tunneling Networks. To ensure the separation of the information flows which are
present on the same connection infrastructure, L2-technologies like VLAN may be used. In a
virtual environment, if domains are running on the same physical host or are running on L2-
adjacent hosts, they can communicate at L2 level, hence an efficient separation (e.g. VLAN)
may be ensured.

When domains are running on different hosts which are not L2-adjacent, an L2 tunnel over
L3 network is necessary. Tunnel employment makes possible, thanks to the encapsulation, the
propagation of Ethernet frames via routed network as if the bridges where L2-adjacent.

An example of XML definition file that describe a virtual network which use a tunnel is
showed below (Listing 9.4.1). The <tunnel> elements has been added to the <network>
part of the standard libvirt configuration. This element specifis that a tunnel have to be
used for communication with domains which are not directly connected through a bridge. More
tunnels are possible, once for each physical host to be reached.

1 <network>
2 <name>TVD_Aqua</name>
3 <uuid>3e3fce45...</uuid>
4 <bridge name="virbr0" />
5 <forward mode="nat" dev="eth0"/>
6 ...
7 <tunnel name="sectun0" />
8 </network>

Listing 9.4.1: Virtual Network XML definition

TClouds D2.4.1 Page 172 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.4.4.2.2 Secure Tunnels. The <tunnel> element defines a new driver called sectunnel
which describes a generic secure tunnel that will be established using several technologies.

Note that when the two domains connected are executed on different physical nodes, the us-
age of secure connections is necessary to integrity and the confidentiality of the data transferred.
In the other case, the confidentiality is provided by the isolation guaranteed by the hypervisor.

In the following example, a tunnel protected with IPsec is presented. The configuration file
defines a name for the tunnel, a uuid and then the tunnel type together with all the additional
information necessary to create it (which may depend on the type of the tunnel).

1 <tunnel>
2 <name>sectun0</name>
3 <uuid>8b7fd1b0-4463-43b7-8b6e-8006344aeb66</uuid>
4 <type>ipsec</type>
5 <ipsec>
6 <sa>
7 <!-- here the Security Association definition -->
8 </sa>
9 <sp>

10 <!-- here the Security Policy definition -->
11 </sp>
12 </ipsec>
13 </tunnel>

Listing 9.4.2: Secure Tunnel XML definition

9.4.4.2.3 Hooks Definition. The security of the TVD framework may be enhanced by ap-
plying SELinux policies to the virtual domains (cf. sVirt). Such a procedure may be executed
automatically by defining a proper hook.

TClouds D2.4.1 Page 173 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

9.5 Automated Validation of Isolation of Cloud Users
Authors:
Sören Bleikertz, Christian Cachin, Thomas Groß, Michael Osborne (IBM)

9.5.1 Overview

9.5.1.1 Description

SAVE (Security Assurance for Virtual Environment) is a tool developed at IBM research for
extracting configuration data from multiple virtualization environments, transforming the data
into a normalized graph representation, and subsequent analysis of its security properties. IBM
will integrate and adapt this technology for the demonstrator based on OpenStack, in order to
validate isolation of cloud users.

9.5.1.2 Goals (security/privacy/resilience)

� Isolation of Tenants

Description: The automated audit mechanism will validate that isolation of different
tenants in the cloud infrastructure is given by analyzing the current configuration.

Techniques/research problems: An information flow analysis on the virtualized infras-
tructure topology will be employed that forms the basis for a isolation breach diagnosis.

Assumptions: The automated validation requires access to the configuration information
on the physical nodes or through a central management interface. Perhaps, the OpenStack
infrastructure itself can be extended and used to extract these information.

9.5.1.3 Required external components (relationship with Activity2)

None

9.5.1.4 Relationship with Activity3

None

9.5.2 Requirements
The automated audit can validate an isolation security goal against the current cloud infras-
tructure configuration. We share the use cases: /UC 480/, /UC 490/, and /UC 500/ with the
ontology-based reasoner.

9.5.2.1 Selected Use Cases

TClouds D2.4.1 Page 174 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

USE CASE UNIQUE ID /UC 520/ (Discovery)
DESCRIPTION The audit tool will obtain the low-level configuration

of the Cloud Nodes and their VMs from the Manage-
ment Component.

ACTORS Management Component and Cloud Nodes.
PRECONDITIONS

POSTCONDITIONS The complete low-level configuration of the Cloud In-
frastructure was obtained and provided to the audit
tool.

NORMAL FLOW
1. Audit tool will query the Cloud Infrastructure

for the low-level configuration.
2. Configuration is provided to the audit tool.

USE CASE UNIQUE ID /UC 530/ (Isolation Analysis)
DESCRIPTION Based on a security policy given by the Cloud Ad-

min, the isolation of a User on the Cloud is analyzed
and validated with regard to the policy. Isolation can
be described for storage, network, and compute re-
sources.

ACTORS Cloud Admin
PRECONDITIONS A security policy describing the isolation goals is

given. The Discovery was completed successfully.
POSTCONDITIONS The isolation described in the policy is either vali-

dated or a violation alert will be given.
NORMAL FLOW

1. Security policy is read by the audit tool.
2. The policy is validated against the configuration

data obtained in the Discovery.
3. Security policy is either satisfied or a violation

will be shown.

9.5.2.2 Demo Storyboard

With use case /UC 520/, the auditor can obtain the current configuration of the cloud infras-
tructure. The audit tool will read the discovery data and update its internal model according to
/UC 480/. A high-level security goal, such as zone isolation, will be validated against the model
by the audit tool (cf. /UC 530/ and /UC 490/). In case a violation of the security goal is found,
the audit tool will provide an example for such a security breach. Changes to the configuration
will be reflected in model according to /UC 500/. Furthermore, the audit tool can simulate dy-
namic aspects of the infrastructure, such as virtual machine migrations, which will affect the
internal model.

TClouds D2.4.1 Page 175 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Figure 9.26: Architecture Overview of Discovery Component

9.5.3 Architecture

9.5.3.1 High-level Design

SAVE is structured into two components: Discovery and Analysis.

9.5.3.1.1 Discovery The data discovery phase is used to collect virtualization data from a
number of heterogeneous environments (cf. Figure 9.26). It is configured with the set of hosts
to query and basic authentication information required to access the data. The tool uses simple
heuristics to identify the environment in which each host is situated. Based on the environment
(HMC, VMware, XEN, libvirt) the appropriate probe is selected. The tool outputs a single
XML file containing all of the virtualization information that was discovered. This XML file is
used as input into the data analysis components.

9.5.3.1.2 Analysis The analysis component takes discovery XML format as input, in addi-
tion to a specification of traversal rules and a security policy (cf. Figure 9.27). The traversal
rules are formulated in XML and specify the information flow and trust assumptions about el-
ements of the virtualized infrastructure in general. The security policy is specified in a logical
term language called VALID, which expresses attack states that violate the high-level security
goals, in a nutshell. VALID is language developed with a formal methods background and
based on the AVISPA Intermediate Format (IF) and ASlan, two languages that widely used in
model checking.

For the validation of the discovered infrastructure against the security policy SAVE will
compile problem statements for model checkers in their respective language, such as IF, ASlan
or First-Order Logic (FOL). It also takes proprietary output format of the model checkers as
feedback and evaluates their output with respect to the realization model to find alarm states.

TClouds D2.4.1 Page 176 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Figure 9.27: Architecture Overview of Analysis Component

The general persistent output of the SAVE analysis may be textual, as fault logs, or a stan-
dard graph format (GEXF), in order to render big-picture views on the topology and fine-grained
views on problem areas for diagnosis.

9.5.3.2 Sequence Diagrams

9.5.3.2.1 Discovery The sequence diagram for the Discovery component is illustrated in
Figure 9.28. We distinguish between three sub-phases: Setup, Discovery, and Output. In Setup,
the cloud administrators configures the validation program SAVE, i.e., he provides the hosts (in-
dividual compute nodes or the management host) that should be discovered and corresponding
access credentials. Discovery concerns the use case /UC 520/ and performs an iterative discov-
ery over the hosts while trying different discovery probes. The gathered data from the probes
are stored in an XML file and returned to the administrator in sub-phase Output.

9.5.3.2.2 Analysis Figure 9.29 illustrates the sequence diagram for the Analysis component.
It is also structured into three sub-phases: Setup, Analysis, and Output. In Setup the admin
provides the previously obtained discovery XML file as well as a security policy that will be
used for the analysis. In the Analysis, the discovery XML file is transformed into an internal
model (cf. /UC 480/), an information flow graph is derived, and the validation of the policy is
performed (cf. /UC 490/ and /UC 530/). A report of the analysis is generated and returned to
the administrator in Output.

9.5.3.3 Low-level Design

Language: Audit technology is written in Java and can be packaged as a jar file. A simple wrap-
per for providing an API can be written in a language such as Python. The policy is specified in
a language designed by IBM. Existing SW: Our prototype is mainly used for VMware based
virtual environments, but other virtualization technologies such as Xen and LibVirt (KVM) are
supported as well.

TClouds D2.4.1 Page 177 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Cloud
Infrastructure

SAVE Cloud Admin

S
e
t
u
p

D
is
c
o
v
e
r
y

O
u
t
p
u
t

1. Provide Hosts and Credentials

2. Connect to Host

3. Try Discovery Probes

4. Return Discovery Data for Probes

6. Store Data in Discovery XML

7. Discovery next Host (Step 2)

8. Return Discovery XML

Figure 9.28: Sequence Diagram for Discovery

TClouds D2.4.1 Page 178 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

SAVE Cloud Admin

S
e
t
u
p

A
n
a
ly

si
s

O
u
t
p
u
t

1. Provide Discovery XML

2. Provide Security Policy

3. Load Discovery XML & Build internal Model

4. Load (default) Traversal Rules & Build Information Flow Graph

5. Validate Model against Security Policy

6. Generate Analysis Report

7. Return Analysis Report

Figure 9.29: Sequence Diagram for Analysis

9.5.4 API
We following API is considered public, i.e., accessible not only by internal components, but
restricted. Typically a cloud administrator should be able to analyze the complete infrastructure,
while cloud consumers might only be able to analyze a subset.

Analyze()

Analysis ID(Analyze (Security policy written in VALID)

Description.
Analyze infrastructure with given policy (i.e. isolation of tenants policy)

Query()

Status(Query (Analysis ID)

Description.
Query analysis status

Results()

URI for report(Results (Analysis ID)

Description.
Obtain diagnosis and report about possible isolation breaches

TClouds D2.4.1 Page 179 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Part III

Appendix

TClouds D2.4.1 Page 180 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Appendix A

First-round Analysis of Cloud Frameworks

A.1 Template for the Analysis of Cloud Frameworks
Summary
A brief summary of the framework

Core use of the framework
Essentially, why the framework has been designed?
Who is the main target?

Support and Community
Is the framework commercially used (in a large scale)?
Is there an industry player backing it?
How alive is the open source community?

Cloud model
Is it a IaaS? Or What?
Does it have specific components for, e.g., storage?

Installation How easy is (did you find) it to install?
On which platform have you installed it?
Which other platform are supposed to work?

Running applications
How easy is to run applications/create VMs instances?
Is there any GUI/web interface?

Virtualization environments and system configurations
Which VMM are supported?
Which storage system is used?
What about networking?

Programming languages
How is the framework written?

Clouds of clouds
Does it support hybrid clouds?
Which public clouds are actually supported?

TClouds D2.4.1 Page 181 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Standard interfaces
Which API does it provides? Is it standard?
Which standard APIs are also supported/used?

Distribution license
Under which licence is it distributed?

Other information
Any other interesting point?
What TClouds could add to this project?

A.2 Eucalyptus
Summary
Eucalyptus’ primary purpose is to build and manage private clouds within single organizations.
It provides Infrastructure as a Service (IaaS) for VM-based computing (“Eucalyptus”) and stor-
age (“Walrus”). The external APIs for users of the infrastructure are mostly compatible with
the services offered by Amazon. Eucalyptus doesn’t provide any support for managing virtual
machine images running on other providers (Cloud-of-Cloud infrastructure).

A typical Eucalyptus installation consists of several services working together. The “Node
Controller” is responsible for managing the virtual macines on a virtual node. The “Cluster
Controller” is responsible for scheduling and monitoring the execution of virtual machines on
a set of cluster nodes. The “Walrus” service provides a storage facility which is compatible
with Amazon S3 and hosts the virtual machine images for distribution to the individual nodes.
Finally the “Cloud Controller” coordinates all the previously listed services and provides the
interfaces for the end-user.

Core use of the framework

� Essentially, why the framework has been designed?
The framework was designed to provide an alternative to the Cloud services offered by
Amazon’s EC2 and S3.

� Who is the main target?
The main target are small/medium companies that want to build their own cloud infras-
tructure for their private use.

Support and Community

� Is the framework commercially used (in a large scale)?
There are some well known organizations that seem to use it, e.g. NASA, Unisys, Trend
Micro. We didn’t find any numbers on how many nodes there are currently running,
except for the public accessible Eucalyptus Community Cloud, which runs on 60 nodes.

� Is there an industry player backing it?
Eucalyptus Inc., which sells the commercial editions of the cloud platform and has some
cooperation with smaller companies that provide additional services like training and
consulting.

TClouds D2.4.1 Page 182 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� How alive is the open source community?
Development happens mostly on launchpad1. The launchpad statistics say, that there
were 99 commits to the source code repository by 10 different people in the month of
evaluation. So it seems to be only a small community which is working actively on the
project.

Cloud model

� Is it a IaaS? Or What?
It provides the infrastructure for setting up virtual machines running Linux in different
configurations. No applications specific services (except the S3 compatible storage called
“Walrus”) are offered, so it can be characterized mostly as Infrastructure as a Service
(IaaS).

� Does it have specific components for, e.g., storage?
Yes, it offers a Storage service “Walrus” that is mostly compatible to Amazon’s S3. Un-
fortunately, there is no built-in support for redundancy or distributed storage. The Walrus
service is used as a the central repository and storage for virtual machine images.

Installation

� How easy is (did you find) it to install?
The installation and initial configuration works quite easy. Major issues arised because
the network environment for testing wasn’t entirely under control of the Eucalyptus in-
frastructure (e.g. external DHCP servers, no VLANs) and required customized firewall
rules.

� On which platform have you installed it?
Ubuntu LTS 10.04

� Which other platform are supposed to work?
Pre-built packages are available for every major Linux distribution, sometimes with extra
features for integration with additional services offered by the distributor (e.g. Ubuntu
Enterprise Cloud). Eucalyptus Systems Inc. also offers to test drive the software from a
user’s perspective on a small cluster available to the community.

Running applications

� How easy is to run applications/create VMs instances?
Quite easy. Disk Images and kernels can be packaged, uploaded and started on the com-
mand line using the euca2ools, which is available for every major Linux distribution and
just a set of Python scripts.

� Is there any GUI/web interface?
Yes, there is a Firefox Plugin “Hybridfox”, which shows an quick overview of running
virtual machine instances, what disk/kernel images are available and allows starting/stop-
ping instances in various configurations, as well as SSH integration to connect to running
instances. Eucalyptus features a Web-Interface for many daily administrative tasks, like
adding user accounts and managing resources limits.

1https://launchpad.net/eucalyptus

TClouds D2.4.1 Page 183 of 197

https://launchpad.net/eucalyptus

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Virtualization environments and system configurations

� Which VMM are supported?
Virtual machines are handled by “libvirt”. Xen and Linux KVM are actively supported,
with KVM being the recommended choice. The free open-source edition only supports
Linux as guest operating system. Commercial version can also run Windows Servers and
use VMware on the virtualization layer.

� Which storage system is used?
Disk images and other files for the infrastructure are managed on the node running the
Walrus service. They are stored in the Linux filesystem and made available via an inter-
face that is mostly compatible with Amazon’s S3.

� What about networking?
Eucalyptus wants most of the networking under it’s own control. There are different
networking models available: SYSTEM, STATIC and MANAGED. Our tests with Euca-
lyptus 1.6.2 from Ubuntu Lucid showed that the simpler SYSTEM and STATIC modes
don’t seem to work properly in some cases and are hard to manage. The MANAGED
mode where Eucalyptus does most of the networking configuration (DHCP, VLANS, ipt-
ables...) should be used if possible.

Programming languages

� How is the framework written?
The services are mostly written in Java and Groovy. Some system-level components were
implemented in C and exposed as web services using the Apache Axis2C server.

Clouds of clouds

� Does it support hybrid clouds?
Only as a client. There is no support for moving virtual machines to external cloud service
providers or managing machines running on another cloud platform.

� Which public clouds are actually supported?
N/A

Standard interfaces

� Which API does it provides? Is it standard, which standard APIs are also supported/used?
From a user’s perspective, Eucalyptus works the same way as Amazon’s Web Services
for all basic features. Unfortunately there are some minor API differences, like for ex-
ample different escaping of file paths in Walrus compared to Amazon S3. So in practice
some tools need minor patching to work reliable with Eucalyptus instead of Amazon’s
implementation of the services.

Other features, like the user management, monitoring and administration work entirely
different compared to Amazon’s services.

TClouds D2.4.1 Page 184 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Distribution license

� Under which licence is it distributed?
The open source edition is distributed under the terms of GPLv3 (no earlier version).
Some minor parts have a simplfied BSD-License. A commercial cloused-source, version
with more features is also available.

Other information

� Any other interesting point? What TClouds could add to this project?
The cloud-of-clouds components and distribution needs to be added, e.g. by combining
with another solution like OpenNebula.

A.3 OpenNebula

Summary 2

OpenNebula is an open-source project that intends to build a comprehensive, scalable and adapt-
able tool to manage distributed infrastructures as found in cloud computing. It has been devel-
oped to address the requirements of multiple business use cases in the context of some research
projects in cloud computing. It is being used as an open platform for innovation in several
research projects and also as an industrial production-ready tool.

To address the requirements of business use cases (Hosting, Telecom, eGovernment, Utility
Computing, etc.), OpenNebula’s design principles are:

� Openness of the architecture, interfaces, and code

� Adaptability to manage any hardware and software combination, and to integrate with
any product and service in the cloud and virtualization ecosystem

� Interoperability and portability to prevent vendor lock-in

� Stability for use in production enterprise-class environments

� Scalability for large scale infrastructures

� Standardization by leveraging and implementing standards

OpenNebula is open and flexible, and fits into the data center environment to build any type of
IaaS cloud. It manages storage, network, virtualization, monitoring, and security technologies
to enable the dynamic placement of multi-tier services (groups of interconnected virtual ma-
chines) on distributed infrastructures, combining both data center resources and remote cloud
resources, according to allocation policies. OpenNebula can manage a virtual infrastructure
in a cluster (private cloud), provides interfaces to expose its functionality for virtual machine,
storage and network management (public clouds) and can combine local infrastructures with
public cloud-based infrastructures (hybrid clouds). Its features include:

� Cloud management: It contains features for cloud management of users, images, services,
infrastructures, storage, virtual machines and networks, and a policy-oriented match-
maker and workload allocator (scheduler). It is capable of combining private and public
clouds and federating different clouds to build a hierarchy (scalability).

2Compiled from the project website: http://www.opennebula.org

TClouds D2.4.1 Page 185 of 197

http://www.opennebula.org

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

� Cloud integration: Open, flexible and extensible architecture, interfaces and components.
It offer also an infrastructure abstraction layer independent of its underlying services for
virtualization, networking, security and storage.

� Production environment: Scalability and performance tested on large infrastructures. It
uses an authentication framework based on passwords, ssh/RSA keypairs or LDAP. It
performs external and internal communications through SSL, secure multi-tenancy, or
isolated networks.

OpenNebula was established as a research project in 2005 by Ignacio M. Llorente and Rubn
S. Montero in the Complutense University of Madrid. It had its public release in 2008, and now
operates as an open source project managed by C12G, a privately-held, self-funded, spin-off
research lab and technology provider.

Core use of the framework

� Essentially, why the framework has been designed / Who is the main target?
OpenNebula aims to lead innovation in enterprise-class cloud computing management. It
is intended to be the most-advanced, highly-scalable and adaptable software toolkit for
cloud computing management.

The project owners intend to assure the stability and quality of their software and to
collaborate with demanding users of cloud management tools. They want to support an
ecosystem of open-source components around the project as well as user and developer
communities.

Support and Community

� Is the framework commercially used (in a large scale)?
N/A

� Is there an industry player backing it?
N/A

� How alive is the open source community?
N/A

Cloud model

� Is it a IaaS? Or What?
OpenNebula is built upon a hybrid, compositional, cloud model. It offers tools for manag-
ing private clouds, to offer public clouds from the managed ones, and to integrate public
clouds with private clouds in a hierarchy of clouds.

� Does it have specific components for, e.g., storage?
No.

TClouds D2.4.1 Page 186 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Installation

� How easy is (did you find) it to install?
OpenNebula is easy to install. It is done in two steps: front-end and node installation. The
front-end is easily installed from the source using Scons (software construction tool) and
has well documented special requirements. There is an Ubuntu distribution that contains
all packages for this installation. The nodes require a virtual machine monitor (as Xen
or KVM), Ruby, SSH, and a user to be used by the front-end scripts. In the nodes,
installing and configuring the virtual machine monitor is usually more complicated than
the OpenNebula related requirements.

� On which platform have you installed it?
c.f. 4.1.1

� Which other platform are supposed to work?
c.f. 4.1.1

Running applications

� How easy is to run applications/create VMs instances? Is there any GUI/web interface?
It’s easy also to run and use OpenNebula, mainly using the command line interface pro-
vided (script named oneXXX). Some examples:

– Initialise OpenNebula ($ one start)

– Create a virtual network, based on a template ($ onevnet create)

– Add hosts to OpenNebula control ($ onehost create)

– Start virtual machines ($ onevm create)

Virtualization environments and system configurations

� Which VMM are supported?
OpenNebula can work with the following virtual machine monitors:

– Xen

– KVM

– VMWare

� Which storage system is used?
N/A

� What about networking?
N/A

Programming languages

� How is the framework written?
OpenNebula’s core was developed in C++ and many modules are made in Ruby. Remote
interfaces are implemented using XML-RPC and it offers interfaces for Shell scripts,
Ruby and Java.

TClouds D2.4.1 Page 187 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Clouds of clouds

� Does it support hybrid clouds? Which public clouds are actually supported?
OpenNebula offers the possibility to combine private cloud with resources from one or
several public cloud providers. The remote provider can be a commercial cloud service,
such as Amazon EC2 or ElasticHosts, or a partner’s private infrastructure running a dif-
ferent OpenNebula instance. It is fully transparent to infrastructure users. Users continue
using the same private and public cloud interfaces. It is the infrastructure administrator
who takes decisions about the scale out of the infrastructure according to infrastructure
or business policies.

To use public clouds OpenNebula needs a number of cloud service adaptors configured.
Service adaptors are like drivers, and there are different adaptors for Amazon EC2 and
ElasticHosts, although the same interface can be used to produce new adaptors as needed.

Standard interfaces

� Which API does it provides? Is it standard?
OpenNebula provides the OpenNebula Cloud API (OCA) and implemented over it some
standard interfaces, namely:

– OGF OCCI - Open Grid Forum Open Cloud Computing Interface

– Amazon EC2 - Elastic Compute Cloud

– vCloud Express API

– XML-RPC

– Libvirt XML

� Which standard APIs are also supported/used?
Other interfaces are implemented in OpenNebula to integrate and create hybrid clouds,
namely:

– Amazon EC2

– Elastic Hosts

Distribution license

� Under which licence is it distributed?
The OpenNebula is licensed for use under the terms of the Apache License, Version 2.0,
with Copyrights (2002-2010) to OpenNebula Project Leads.

It is open-source code, not open-core, which development is restricted to major con-
tributors and acceptance of patches for bugfixes, features and documentation, are made
through virtualization and cloud ecosystems.

TClouds D2.4.1 Page 188 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Other information

� Any other interesting point? What TClouds could add to this project?
OpenNebula incorporates a pluggable scheduler module. Two implementations currently
exist, one using Haizea (Univ. Chicago), to support advance reservation of resources and
queuing best-effort requests, and another from the OpenNebula project. The OpenNeb-
ula Basic Scheduler has an easy-of-use and extensible scheduling policy based in host
requirements and rankings. It means that always a VM is created, it’s possible to define
some mandatory requirements to filter hosts that are not desirable and rank the remaining
ones based in other expressions or heuristics. TClouds can extend the policies to include
trust requirements.

A.4 OpenStack
Summary
OpenStack consists of two components: an object storage system called ‘swift’, which is similar
to Amazon S3, and a compute system called ‘nova’ (similar to Amazon EC2). Swift is actually
used in its current form at RackSpace (the second largest/popular public IaaS provider), and
Nova was developed at NASA and will be deployed at RackSpace in the future to replace their
current system. NASA currently uses Eucalyptus in their IaaS project Nebula, but developed
Nova due to scalability issues with Eucalyptus. Details are in Section 4.1.2.

Core use of the framework

� Essentially, why the framework has been designed? Who is the main target?
Open source replacement of EC2 and S3 that you can use to set up your own cloud
(on your own hardware). One strong focus seems to be scalability (via non blocking
asynchronous processing) and modularity.

Support and Community

� Is the framework commercially used (in a large scale)?
Unknown

� Is there an industry player backing it?
Yes. Rackspace, NASA, Intel, etc.

� How alive is the open source community?
Although OpenStack only had two official releases, the code base is derived from RackSpace’s
production systems and NASA’s new IaaS project. The community is organized around
LunchPad, a opensource project management system popularized by Ubuntu Linux, and
gained support by major vendors and startups in the cloud infrastructure space, such as
RackSpace, NASA, Intel, and Opscode (founded by creators of Amazon EC2).

Cloud model

� Is it a IaaS? Or What?

� Does it have specific components for, e.g., storage?

TClouds D2.4.1 Page 189 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Installation cf. 4.1.2

Running applications cf. 4.1.2

Virtualization environments and system configurations

� Which VMM are supported?
Xen, KVM, QEMU, User Mode Linux Support, Hyper-V

� Which storage system is used?
A storage system is compatible to Amazon S3 and is also developed within OpenStack.

� What about networking?
cf. 4.1.2

Programming languages

� How is the framework written?
The main programming language is Python. For Swift there are bindings for PHP, Python,
Java, Ruby and .NET (C#).

Clouds of clouds

� Does it support hybrid clouds?
No.

� Which public clouds are actually supported?
N/A

Standard interfaces

� Which API does it provides? Is it standard?
Its own API, Swift and Nova.

� Which standard APIs are also supported/used?

– Subset of EC2

– Subset of Rackspace API

– Subset S3 API

Distribution license

� Under which licence is it distributed?
Apache 2.0 license.

TClouds D2.4.1 Page 190 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Other information

� Any other interesting point?
OpenStack has multiple security features: Nova supports Amazon EC2’s firewall concept
of Security Groups, which allows scalable firewalling for virtual machines. Furthermore,
the networking in Nova can be based on VLANs for strong isolation. RBAC is supported
for the Nova API and ACLs are provided for the Swift object storage system. For a
production-grade system like OpenStack’s Swift, it is essential to have strong security in
order to provide customer isolation.

� What TClouds could add to this project?
Resilience, Privacy, Cloud of Clouds.

A.5 Nimbus
Summary
A IaaS framework for science that has been spawned by the Globus toolkit community (’the
grid toolkit’). Nimbus clouds are offered by five Universities in the USA. The toolkit follows
a linux-like approach where many small tools are loosely coupled to provide the look-and-feed
of a cloud.

The documentation is good and (while complex) the installation seems to be straightforward.

Core use of the framework

� Essentially, why the framework has been designed? Who is the main target?
Nimbus is a set of open source tools that together provide an ”Infrastructure-as-a-Service”
(IaaS) cloud computing solution. Its mission is to evolve the infrastructure with emphasis
on the needs of science, but many non-scientific use cases are supported as well.

Support and Community

� Is the framework commercially used (in a large scale)?
N/A

� Is there an industry player backing it?
N/A

� How alive is the open source community?
N/A

Cloud model

� Is it a IaaS? Or What?
IaaS for arbitrary clouds. It also claims to support federation of multiple clouds (e.g. a
private cloud augmented with Amazon EC2 resources).

� Does it have specific components for, e.g., storage?
N/A

TClouds D2.4.1 Page 191 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Installation

� How easy is (did you find) it to install?
Medium: Since it follows the linux paradigm of many collaborating tools, it is non-trivial
to understand. However, the documentation seems good and since it’s growing since 2008
it may have reached some maturity.

� On which platform have you installed it?
N/A

� Which other platform are supposed to work?
N/A

Running applications

� How easy is to run applications/create VMs instances?
N/A

� Is there any GUI/web interface?
N/A

Virtualization environments and system configurations

� Which VMM are supported?
It supports the Xen and KVM hypervisors via the libvirt API.

� Which storage system is used?
N/A

� What about networking?
N/A

Programming languages

� How is the framework written?
N/A

Clouds of clouds

� Does it support hybrid clouds?
There is something like a ’context handler’ that allows to establish security contexts be-
tween different clouds. However, I expect that this will be fairly simple.

� Which public clouds are actually supported?
N/A

Standard interfaces

� Which API does it provides? Is it standard?
The APIs seem to be REST. It allows controlling EC2 instances.

� Which standard APIs are also supported/used?
N/A

TClouds D2.4.1 Page 192 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Distribution license

� Under which licence is it distributed?
Open Source.

Other information

� Any other interesting point?

� What TClouds could add to this project?

TClouds D2.4.1 Page 193 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Appendix B

List of Tools and Projects Referred

B.1 Open Source Cloud Frameworks
OpenNebula [opea] OpenNebula.org is an open-source project aimed at building the industry
standard open source cloud computing tool to manage the complexity and heterogeneity of
distributed data center infrastructures. Fully open source (not open core), thoroughly tested,
customizable, extensible and with unique features and excellent performance and scalability to
manage hundreds of thousands of VMs.

OpenStack [opeb] OpenStack is a collection of open source technology products delivering
a scalable, secure, standards-based cloud computing software solution. OpenStack is currently
developing two interrelated technologies: OpenStack Compute and OpenStack Object Storage.
OpenStack Compute is the internal fabric of the cloud creating and managing large groups
of virtual private servers and OpenStack Object Storage is software for creating redundant,
scalable object storage using clusters of commodity servers to store terabytes or even petabytes
of data.

Nimbus [nim] Nimbus is an open source toolkit that allows you to turn your cluster into an
Infrastructure-as-a-Service (IaaS) cloud.

Eucalyptus [euc] Eucalyptus Systems delivers private cloud software. This is infrastructure
software that enables enterprises and government agencies to establish their own cloud com-
puting environments. With Eucalyptus, customers make more efficient use of their computing
capacity, thus increasing productivity and innovation, deploying new applications faster, and
protecting sensitive data, while reducing capital expenditure.

B.2 Testing Tools and Frameworks
Hudson [hud] Hudson monitors executions of repeated jobs, such as building a software
project or jobs run by cron. Hudson provides an easy-to-use continuous integration system,
making it easier for developers to integrate changes to the project, and making it easier for users
to obtain a fresh build. Also allows monitoring executions of externally-run jobs, such as cron
jobs and procmail jobs, even those that are run on a remote machine.

Selenium [sel] Selenium has many projects that combine to make a versatile testing system,
including the followings.

TClouds D2.4.1 Page 194 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Selenium Core is the original Javascript-based testing system. It’s now used primarily as
a component of Selenium Remote Control, but it can also be used as a pure Javascript/HTML
testing system.

Selenium IDE is a Firefox add-on that makes it easy to record and playback tests in Firefox
2+. You can even use it generate code to run the tests with Selenium Remote Control.

Selenium Remote Control is a client/server system that allows you to control web browsers
locally or on other computers, using almost any programming language and testing framework.

SIKULI [sik] Sikuli is a visual technology to automate and test graphical user interfaces
(GUI) using images (screenshots). Sikuli includes Sikuli Script, a visual scripting API for
Jython, and Sikuli IDE, an integrated development environment for writing visual scripts with
screenshots easily. Sikuli Script automates anything you see on the screen without internal
API’s support. You can programmatically control a web page, a desktop application running on
Windows/Linux/Mac OS X, or even an iphone application running in an emulator.

B.3 Public Cloud Services
Amazon EC2 [amaa] Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizable compute capacity in the cloud. It is designed to make web-scale computing
easier for developers.

Amazon EC2’s simple web service interface allows you to obtain and configure capacity
with minimal friction. It provides you with complete control of your computing resources
and lets you run on Amazon’s proven computing environment. Amazon EC2 reduces the time
required to obtain and boot new server instances to minutes, allowing you to quickly scale
capacity, both up and down, as your computing requirements change. Amazon EC2 changes
the economics of computing by allowing you to pay only for capacity that you actually use.
Amazon EC2 provides developers the tools to build failure resilient applications and isolate
themselves from common failure scenarios.

Amazon S3 [amab] Amazon S3 is storage for the Internet. It is designed to make web-scale
computing easier for developers.

Amazon S3 provides a simple web services interface that can be used to store and retrieve
any amount of data, at any time, from anywhere on the web. It gives any developer access to
the same highly scalable, reliable, secure, fast, inexpensive infrastructure that Amazon uses to
run its own global network of web sites. The service aims to maximize benefits of scale and to
pass those benefits on to developers.

Microsoft HealthVault [hea] HealthVault is a free online service that stores your health
records in a central location, then lets you use the information with online health tools to manage
health conditions, create fitness plans, prepare for doctor visits, and more.

TClouds D2.4.1 Page 195 of 197

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

Bibliography

[AGS+08] Frederik Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin
Unger, Gianluca Ramunno, and Davide Vernizzi. An efficient implementation of
trusted channels based on openssl. In Proceedings of the 3rd ACM workshop on
Scalable trusted computing, STC ’08, pages 41–50, New York, NY, USA, 2008.
ACM.

[amaa] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/
ec2.

[amab] Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/
s3.

[amac] Amazon Simple Storage Service (Amazon S3) API Reference. http://docs.
amazonwebservices.com/AmazonS3/latest/API/.

[CCS+11] Giovanni Cabiddu, Emanuele Cesena, Roberto Sassu, Davide Vernizzi, Gianluca
Ramunno, and Antonio Lioy. The trusted platform agent. IEEE Software, 28:35–
41, 2011.

[ER03] Albert Endres and Dieter Rombach. A Handbook of Software and System Engineer-
ing. Addison Wesley, 2003.

[euc] Eucalyptus Open Source. http://open.eucalyptus.com.

[eve] Read-After-Write Consistency in Amazon S3. http://shlomoswidler.
com/2009/12/read-after-write-consistency-in-amazon.
html.

[GPS06] Kenneth Goldman, Ronald Perez, and Reiner Sailer. Linking remote attestation to
secure tunnel endpoints. In Proceedings of the first ACM workshop on Scalable
trusted computing, STC ’06, pages 21–24, New York, NY, USA, 2006. ACM.

[hea] Microsoft HealthVault. http://www.healthvault.com.

[hud] Hudson – continuous integration system. http://java.net/projects/
hudson.

[jen] Jenkins – an extendable open source continuous integration server. http://
jenkins-ci.org/.

[Lin08] Linbit. DRBD: What is DRBD, 2008. http://www.drbd.org.

[MT09] Di Ma and Gene Tsudik. A new approach to secure logging. Trans. Storage, 5:2:1–
2:21, March 2009.

[nim] Nimbus. http://www.nimbusproject.org.

TClouds D2.4.1 Page 196 of 197

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://aws.amazon.com/s3
http://docs.amazonwebservices.com/AmazonS3/latest/API/
http://docs.amazonwebservices.com/AmazonS3/latest/API/
http://open.eucalyptus.com
http://shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html
http://shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html
http://shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html
http://www.healthvault.com
http://java.net/projects/hudson
http://java.net/projects/hudson
http://jenkins-ci.org/
http://jenkins-ci.org/
http://www.drbd.org
http://www.nimbusproject.org

D2.4.1 – TClouds Prototype Architecture, Quality Assurance Guide-
lines, Test Methodology and Draft API

[nov] NOVA Microvisor. http://os.inf.tu-dresden.de/˜us15/nova/.

[opea] OpenNebula. http://www.opennebula.org.

[opeb] OpenStack. http://www.openstack.org.

[Opec] OpenStack Administration Guide. http://docs.openstack.org/.

[Oped] OpenStack. Openstack architecture. http://nova.openstack.org/
service.architecture.html.

[Ope10] OpenStack. Easyapi, 2010. http://wiki.openstack.org/EasyApi.

[Ope11] OpenStack. Openstack rest api, 2011. http://wiki.openstack.org/
OpenStackRESTAPI.

[Red10] RedHat. LVM administrator guide - edition 1, 2010. http://docs.redhat.
com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_
Volume_Manager_Administration/.

[s3f] s3fs - FUSE-based file system backed by Amazon S3. https://code.
google.com/p/s3fs/wiki/FuseOverAmazon.

[SCG+03] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas De-
vadas. Aegis: architecture for tamper-evident and tamper-resistant processing. In
ICS ’03: Proceedings of the 17th annual international conference on Supercomput-
ing, pages 160–171, New York, NY, USA, 2003. ACM.

[sel] SeleniumHQ. http://seleniumhq.org.

[sik] Sikuli. http://www.sikuli.org.

[SK99] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics.
ACM Transactions on Information Systems, 2:159–176, May 1999.

[smb] SMB: The Server Message Block Protocol. http://ubiqx.org/cifs/SMB.
html.

[Smi11] Paolo Smiraglia. [one-users] EC2 API PROBABLY BUGS.
http://www.mail-archive.com/users@lists.opennebula.org/
msg01451.html, 2011.

[tcg] Trusted Computing Group. http://www.trustedcomputinggroup.com.

[Tim09] Falko Timme. Using iSCSI on Fedora 10 (initiator
and target), 2009. http://www.howtoforge.com/
using-iscsi-on-fedora-10-initiator-and-target.

[tpm] Trusted Platform Module (TPM) Main Specification. http://
www.trustedcomputinggroup.org/resources/tpm_main_
specification.

[xen] Xen Hypervisor. http://www.xen.org.

TClouds D2.4.1 Page 197 of 197

http://os.inf.tu-dresden.de/~us15/nova/
http://www.opennebula.org
http://www.openstack.org
http://docs.openstack.org/
http://nova.openstack.org/service.architecture.html
http://nova.openstack.org/service.architecture.html
http://wiki.openstack.org/EasyApi
http://wiki.openstack.org/OpenStackRESTAPI
http://wiki.openstack.org/OpenStackRESTAPI
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_Volume_Manager_Administration/
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_Volume_Manager_Administration/
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_Volume_Manager_Administration/
https://code.google.com/p/s3fs/wiki/FuseOverAmazon
https://code.google.com/p/s3fs/wiki/FuseOverAmazon
http://seleniumhq.org
http://www.sikuli.org
http://ubiqx.org/cifs/SMB.html
http://ubiqx.org/cifs/SMB.html
http://www.mail-archive.com/users@lists.opennebula.org/msg01451.html
http://www.mail-archive.com/users@lists.opennebula.org/msg01451.html
http://www.trustedcomputinggroup.com
http://www.howtoforge.com/using-iscsi-on-fedora-10-initiator-and-target
http://www.howtoforge.com/using-iscsi-on-fedora-10-initiator-and-target
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.xen.org

	Introduction
	Outline of the Work Done in Y1
	Structure of This Report

	I TClouds Prototype Architecture, Quality Assurance Guidelines,Test Methodology and Draft API
	Quality Assurance Guidelines
	Quality Criteria
	Quality for TClouds Users
	Quality for TClouds Developers

	Software Engineering Process
	Use Cases Selection and Analysis
	Architecture Definition and Related API
	Test Methodology

	Use Case Selection
	Actors
	Common Use Cases
	Computing
	Image and Volume Storage
	Object Storage
	Administration

	Initial Prototype High-Level Architecture
	Framework Evaluation and Selection
	OpenNebula
	OpenStack
	Evaluation and Final Selection

	TClouds Prototype High-level Architecture
	TClouds Deployment Alternatives
	Initial Architecture Specification
	Prototype Subsystems

	Preliminary API Definition
	Introduction to Application Programming Interface
	Openstack API
	Trusted Infrastructures API
	Cloud of Clouds middleware API

	TClouds Subsystems Preliminary API
	Kind of API
	Functionality of API
	Clients of API
	Deployment of API
	Standards used or extended
	Possible Groups of API

	TClouds Subsystems Preliminary API Table

	Test Methodology
	Introduction to Software Testing
	Component tests
	API tests
	Application tests
	Application Test Plan
	Details on Testing TClouds Healthcare Scenario

	TClouds Subsystems Test Plan

	II Selected Subsystems
	Trustworthy Cloud Infrastructure (WP 2.1)
	Resource-efficient BFT (CheapBFT)
	Overview
	Requirements
	Architecture
	API

	Simple Key/Value Store
	Overview
	Requirements
	Architecture
	API

	Secure Block Storage (SBS)
	Overview
	Requirements
	Architecture
	API

	Secure VM Instances
	Overview
	Requirements
	Architecture
	API

	TrustedServer
	Overview
	Requirements
	Architecture
	API

	Log Service
	Overview
	Requirements
	Architecture
	API

	Cloud of Clouds Middleware for Adaptive Resilience (WP 2.2)
	State Machine Replication
	Overview
	Requirements
	Design
	Implementation

	Fault-tolerant Workflow Execution (FT-BPEL)
	Overview
	Requirements
	Architecture
	API

	Resilient Object Storage
	Overview
	Requirements
	Design
	Implementation

	Confidentiality Proxy for S3
	Overview
	Requirements
	Architecture
	API

	Cross-layer Security and Privacy Management (WP 2.3)
	Access Control as a Service (ACaaS)
	Overview
	Requirements
	Architecture
	API

	TrustedObjects Manager (TOM)
	Overview
	Requirements
	Architecture
	API

	Trusted Management Channel
	Overview
	Requirements
	Analysis
	Architecture
	API

	Ontology-based Reasoner to Check TVD Isolation
	Overview
	Requirements
	Architecture
	API

	Automated Validation of Isolation of Cloud Users
	Overview
	Requirements
	Architecture
	API

	III Appendix
	First-round Analysis of Cloud Frameworks
	Template for the Analysis of Cloud Frameworks
	Eucalyptus
	OpenNebula
	OpenStack
	Nimbus

	List of Tools and Projects Referred
	Open Source Cloud Frameworks
	Testing Tools and Frameworks
	Public Cloud Services

	Bibliography

