

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 1 of 74

Specific Targeted Research Project

FLAVIA

FLexible Architecture for Virtualizable wireless future
Internet Access

Deliverable Report

D 4.1.2 – Revision of 802.11 architecture and interfaces

specification

Deliverable title 802.11 architecture and interfaces specification

Version 1.0

Due date of

deliverable(month)
M24

Actual submission date of the

deliverable (dd/mm/yyyy)
02/07/2012

Start date of project

(dd/mm/yyyy)
01/07/2010

Duration of the project 36 months

Work Package WP4

Task Task 4.1

Leader for this deliverable IMDEA

Other contributing partners CNIT, NEC, TID, MOBIMESH, NUIM, AGH, IITP

Authors

Pablo Serrano, Vincenzo Mancuso, Pablo Salvador (IMD),

Ilenia Tinnirello, Pierluigi Gallo, Pierpaolo Loreti,

Francesco Gringoli, Claudio Pisa (CNIT), Antonio Capone,

Stefano Paris (MOBI), Xavier Pérez Costa (NEC), Eduard

Gomà, Yan Grunenberger (TID), Ken Duffy, David Malone,

Paul Patras (NUIM), Marek Natkaniec, Szymon Szott,

Krzysztof Loziak, Janusz Gozdecki, Marek Sikora (AGH),

Artem Krasilov (IITP)

Deliverable reviewer
Paul Patras (NUIM), Francesco Gringoli (CNIT), Yan

Grunenberger (TID)

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 2 of 74

Deliverable abstract

The Document reviews the specification of the FLAVIA

architecture (modules, functionality and interfaces) for

the case of 802.11 technologies

Keywords
802.11, architecture, interface, services, specification,

flexibility, modularity, virtualization

Project co-funded by the European Commission within the Seventh

Framework Programme

DISSEMINATION LEVEL

PU Public X

PP Restricted to other programme participants (including the

Commission Services)

RE Restricted to a group specified by the consortium (including the

Commission Services)

CO Confidential, only for members of the consortium (including the

Commission Services)

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 3 of 74

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the FLAVIA consortium. Neither this document nor the
information contained herein shall be used, duplicated or communicated by any means to any third party, in whole or
in parts, except with the prior written consent of the FLAVIA consortium. This restriction legend shall not be altered or

obliterated on or from this document.

STATEMENT OF ORIGINALITY

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of
previously published material and of the work of others has been made through appropriate citation, quotation or
both.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 4 of 74

TABLE OF CONTENT

EXECUTIVE SUMMARY .. 9

1 INTRODUCTION ... 10

2 FLAVIA ARCHITECTURE OVERVIEW ... 11

3 WIRELESS MAC PROCESSOR .. 13

3.1 API FOR CONTENTION-BASED SYSTEMS ... 13

3.2 INTERACTIONS BETWEEN LOWER AND UPPER MAC ... 17

4 802.11 ARCHITECTURE: SERVICE & FUNCTION MODULES 20

4.1 CONTAINERS .. 20

4.1.1 Service Scheduler .. 20

4.1.2 Function Container ... 22

4.2 SERVICES ... 26

4.2.1 Advanced Data Transport .. 27

4.2.2 Extended Passive Monitoring ... 30

4.2.3 Misbehaviour Detection and Reaction ... 33

4.2.4 SuperSense .. 38

4.2.5 Power Saving .. 42

4.2.6 Rate Adaptation ... 43

4.3 FUNCTIONS ... 45

5 802.11 ARCHITECTURE: CONTROL & MANAGEMENT ... 49

5.1 CONSISTENCY MANAGER .. 49

5.2 INFORMATION BASE ... 53

5.2.1 Data Collector ... 54

5.2.2 Data Gateway ... 54

5.2.3 Functional Data Manager .. 55

5.2.4 Memory management ... 55

5.3 VIRTUALIZATION ... 57

6 INTERFACE SPECIFICATION .. 60

6.1 INTRA-NODE .. 61

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 5 of 74

6.1.1 Application Interface (IAP6) .. 61

6.1.2 Inter-services Interface (IAP5) .. 61

6.1.3 Control & Management Interface (IAP4) ... 62

6.1.4 Services - Functions Interface (IAP3) ... 62

6.1.5 WMP - MAC Interface (IAP1) ... 62

6.2 INTER-NODE .. 62

6.2.1 Inter-entity Interface (IAP2) ... 63

6.3 SUMMARY OF PRIMITIVES ... 65

7 CONCLUSIONS ... 67

REFERENCES ... 68

APPENDIX A: SERVICE BUILDING EXAMPLE ... 70

A.1 FUNCTIONAL ARCHITECTURE ... 70

A.2 MAC PROGRAMS ... 73

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 6 of 74

LIST OF FIGURES

Figure 1: FLAVIA high-level view: framework architecture .. 11

Figure 2: FLAVIA high-level view: 802.11 framework architecture 12

Figure 3: MSC loading operation .. 18

Figure 4: MSC starting operation ... 18

Figure 5: MSC synchronizing operation ... 19

Figure 6: MSC verifying operation .. 19

Figure 7: Service Scheduler architecture .. 21

Figure 8: Sequence diagram of a service instantiation through the Service Scheduler 22

Figure 9: Function Container architecture ... 23

Figure 10: Tasks performed upon the occurrence of the event FRAME_RECEPTION 25

Figure 11: 802.11 service modules overview ... 27

Figure 12: Queue scheme of a contention-based system .. 28

Figure 13: FLAVIA contention-based traffic architecture ... 29

Figure 14: MONI module components and interfaces .. 32

Figure 15: MONI module operation message sequence chart ... 32

Figure 16: Overview of MDR operation ... 34

Figure 17: Message sequence chart of the MDR module ... 35

Figure 18: MDR module components and interfaces ... 35

Figure 19: Distribution of IFS .. 36

Figure 20: High TX power detection algorithm ... 37

Figure 21: SPS Information Element .. 39

Figure 22: SPS super-frame .. 39

Figure 23: SPS message exchange .. 41

Figure 24: H-RCA operation .. 44

Figure 25: Component diagram of the CM... 49

Figure 26: Parameter Configuration Change use case ... 51

Figure 27: Service Consistency Check use case ... 52

Figure 28: Remote Parameter Change use case ... 53

Figure 29: Data Gateway .. 54

Figure 30: Write operation of a value ... 56

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 7 of 74

Figure 31: Read operation of a value ... 56

Figure 32: Update operation of a value .. 57

Figure 33: Life cycle of the virtualization module ... 59

Figure 34: FLAVIA entities interaction .. 61

Figure 35: GAS operation ... 64

Figure 36: ANQP element format ... 64

Figure 37: Functional architecture of Data Transport with Parameterized QoS service 72

Figure 38: DCF state machine ... 73

Figure 39: RX state machine ... 74

Figure 40: MCCA state machine ... 74

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 8 of 74

LIST OF TABLES

Table 1: List of WMP events to define contention-based MAC programs 14

Table 2: List of WMP conditions to define contention-based MAC programs 15

Table 3: List of WMP actions to define contention-based MAC programs 16

Table 4: Events generated by the 802.11 MAC protocol and their corresponding hooks 24

Table 5: FLAVIA 802.11 modules ... 26

Table 6: 802.11a TXOP Parametrization ... 44

Table 7: FLAVIA 802.11 functions .. 48

Table 8: Interface Access Points Identifiers ... 60

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 9 of 74

Executive summary

This report reviews the architecture specified for a FLAVIA-based 802.11 [1] system.

This document does not aim to be a self-contained description of the final design, but
an update on D4.1.1 [2] building on the “intra-workpackage” feedback described in
D4.2 [3], and the work carried out in WP2, described in D2.1.1 [4], D2.2.1 [5] and

their corresponding updates D2.1.2 [6] and D2.2.2 [7].

The FLAVIA design addresses the structure and functionality of an 802.11 framework

able to support the following key features: modularity, in terms of defining different
802.11 MAC services; flexibility, in terms of dynamic or static configurability of the

802.11 MAC; and virtualization, in terms of managing parallel independent 802.11
MACs accessing the same system resources. Based on these three principles, we
outline in Section 2 how basic elements defined by the FLAVIA architecture can be

instantiated to deploy an 802.11 MAC node. Then, in Section 3 we introduce the
Wireless MAC Processor (WMP) entity, key component of the FLAVIA architecture,

which enables developing and extending the 802.11 MAC low-level functionalities. We
focus on the specification of the set of primitives and, the events, conditions and
actions that specify the APIs for contention-based systems. Consequently, Section 4

describes the 802.11 Service and Function modules. First, we expose the functionality
of the Service Scheduler and the Function Container, which provide modularity by

means of the composition and instantiation of different 802.11 service modules.
Second, we present an update on some existing services and add new ones, such as,
Misbehaviour Detection and Reaction. Third, we introduce the most representative

functions of this 802.11 architecture.

While the above sections deal with the “data plane” of the 802.11 architecture, in

Section 5 we outline the 802.11 control subsystem, which builds on three elements:
the Consistency Manager, the Information Base and the Virtualization manager. The
Consistency Manager coordinates the access by several running services to common

resources, avoiding possible inconsistencies. The Information Base is the common
knowledge base that stores the configuration parameters and exposes the possible

supported values. The Virtualization manager enables the execution of various MAC
instances on each virtual interface by scheduling the access to the hardware.

The intra- and inter-node communication is presented in Section 6, fostering the

exchange of information among the 802.11 FLAVIA components and nodes. More
specifically, we provide a detailed description of an inter-node communication scheme

that builds on existing technology, and describe the architectural components that are
interfaced to the MAC services (e.g., the instantiation of a FLAVIA control subsystem
specifically meant for 802.11).

Finally, in Appendix A we provide a detailed specification of an Advanced Data
Transport service (with backwards compatibility), in order to illustrate the interaction

between the different entities in the FLAVIA architecture.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 10 of 74

 1 Introduction

FLAVIA defines a new architecture supporting modularity, flexibility and virtualization.

This is achieved through the specification of new services, functions and
programmable interfaces that make the medium access control adaptable, easily and
fast reconfigurable. In addition, it also enables the possibility to dynamically load and

customize MAC services during real-time operation of the wireless devices.

One main contribution of WP4 is that of “instantiating” the architecture specified in

WP2 for the case of 802.11 MAC, that is, to specify and prototype a programmable
MAC framework for contention-based technologies based on 802.11 MAC.

Following the work specified in D4.1.1 [2], and after the intra- and inter-WP feedback
(within WP4 and from WP2, respectively), we review the FLAVIA architecture to
enable full 802.11 MAC support and present the main updates with the aim of

providing a more complete report on the final architecture design. Therefore this
document is not a “stand-alone” deliverable, but concentrates on the main updates

over the previous architectural document.

In this second deliverable of WP4 we analyse an 802.11 node extended with some
exemplificative non-standard functionalities. We specify how the different 802.11-

based MAC services are decomposed into smaller functions and further commands. In
addition, we specify the interfaces required to support MAC operation and to control

the behaviour of the wireless device. By considering both “legacy” services, like power
saving or MAC management, and “innovative” services like e.g., SuperSense or
Misbehaviour Detection and Reaction, we illustrate how the FLAVIA architecture allows

to orchestrate existing and new 802.11-like MAC features. Moreover, we describe in
detail the MAC services and control plane of contention-based technologies, providing

message sequence charts (MSCs) that illustrate the operation and interactions among
modules. A detailed specification for each module considered for prototyping and
demonstration was provided in D4.2 [3].

As an update, we include in this document the specification of the FLAVIA control
subsystem for 802.11 MAC, presenting the set of primitives and interfaces that

command and organize the desired system behaviour.

In addition, we include herein the description of the interface to support the inter-
node communication, which is based on the Generic Advertisement Service (GAS)

protocol defined in the 802.11u standard [8].

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 11 of 74

 2 FLAVIA architecture overview

The 802.11 Architecture proposed is aligned with the general FLAVIA architecture

(Figure 1), which has been designed according to the three already known principles:
modularity, flexibility and virtualization.

Figure 1: FLAVIA high-level view: framework architecture

The FLAVIA-alike architecture depicted in Figure 2 has been tuned for an 802.11 node

that is compound of five main elements:

Wireless MAC processor: The architecture envisioned by FLAVIA could not evolve
without hardware support. The Wireless MAC Processor (WMP) is an essential

component of the FLAVIA architecture that handles hardware events and executes
medium access programs in terms of loadable Finite State Machines. It is responsible

for the direct interaction with the hardware modules that represent the lowest level of
functional resources of the system. It also works as a kind of function container
accelerator, for instantiating the functions heavily interacting (under strict time

constraints) with the hardware. An example of these functions is the scheduling of the
medium access instants.

Service scheduler: Architecture element in charge of instantiating services, which
are composed of functions. A service implements MAC-layer functionalities. New
services are specified compared to an 802.11 legacy node, such as SuperSense or

Misbehaviour providing to our framework with a higher modularity.

Function container: Architecture element handling the set of running instances of

functions. The loading and execution of the functions is done by means of the FLAVIA

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 12 of 74

control subsystem. A function, as well, makes use of the commands supplied by the
hardware. Therefore, the set of functions designed and implemented in the

architecture builds on the features already supported by existing hardware, but it also
foresees extra capabilities that could enhance contention-based communications in

the future.

The existence of the separate sets of services and functions increases the modularity
of the architecture, as several instances of the same service are allowed to coexist

and each of them may access the function container independently. Moreover,
different services may utilize common functions, differentiated by a set of parameters

or state variables, which proves the flexibility of the model, and coordinated by the
control subsystem.

FLAVIA Control: Entity that manages the loading and changes of context of the

different services and functions. It is composed of two entities: the Consistency
Manager (CM) and the Virtualization module. The first one is responsible for intra- and

inter-node configuration and parameter detection, whereas the last one allows
creating and executing several medium access control machines running on top of a
unique physical device.

Information Base: Architecture component responsible for managing different
data/parameters shared by different services. The data gateway shares the data

among the different FLAVIA modules and keeps it consistent. The data collector is the
responsible of collecting and gathering different data types, such as system state or
hardware parameters. This information is obtained directly from the hardware of by

interacting with the WMP.

Figure 2: FLAVIA high-level view: 802.11 framework architecture

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 13 of 74

 3 Wireless MAC Processor

The Wireless MAC Processor (WMP) [9][10] is the architecture component devised to

run the low-level MAC operations defined in terms of state machines strictly
interacting with the hardware. Starting from an initial (default) state, the WMP waits
for events that trigger state transitions. The actual transition can be enabled or

disabled by the verification of a Boolean condition, and a transition can trigger the
execution of one hardware action before moving to the new state. Multiple state

machines can be loaded on the WMP in order to simultaneously support different MAC
programs(i.e., virtualization) by means of code-switching techniques (as described in

D2.2.2 [7]).

This approach supports flexibility in the creation of ad-hoc systems tailored for specific
applications, network topologies and environment conditions, without requiring

expensive hardware platforms. Indeed, in D4.2 [3] we proved that a WMP can be
implemented even on commercial WiFi cards, and that significant performance

gain can be obtained by simply programming the hardware parameterized
control (the configuration registers) and the action scheduling rather than the full
hardware system (as in the case of software-defined radio). Therefore, the WMP is

particularly important for contention-based systems, where:

 Nodes usually have a limited complexity.

 The inter-node coordination and signalling may dramatically change from a
network configuration to another (because they are mostly based on peer-to-
peer relationships).

 The spectrum availability and medium conditions are very heterogeneous in
absence of any centralized planning. For these reasons, the design of the WMP

API has originally started from the analysis of contention-based systems and
has been lately extended to the scheduled system.

 3.1 API for contention-based systems

Although in D2.2.2 [7] we enumerated the list of events, conditions and actions
envisioned for a generic programmable radio system, in this report we make such list

specific for contention-based systems based on the analysis of DCF lower-MAC
operations.

Events

Events are signals generated by the hardware and trigger the execution of actions on
the WMP. Starting from the general events defined in the FLAVIA architecture, we

specialize and extend some events as shown in Table 1.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 14 of 74

General Events 802.11 Events

END_TIMER END_TIMER

 ACK_TIMEOUT

CH_UP CH_UP

CH_DOWN CH_DOWN

RCV_PLCP RCV_PLCP

RCV_END RCV_COMPLETE

RCV_DATA

RCV_ACK

COLLISION RX_ERR

 TX_READY

MED_DATA_CONF TX_ERROR

MED_DATA_START TX_IN_PROGRESS

MED_DATA_END TX_END

 TX_10us_ELAPSED

QUEUE_OUT_UP QUEUE_OUT_UP

QUEUE_IN_OVER QUEUE_IN_OVER

Table 1: List of WMP events to define contention-based MAC programs

Most of these events have a meaning that can be immediately associated to the event
name as described in D4.2 [3]. Comparing the two columns we observe that for
defining the DCF low-level operations, we prefer to explicitly specialize a new timer

expiration event in terms of ACK timeout, to interpret the collision event as a
reception error, and to slightly rename the events describing the signals from the

transmitter sub-system (MED_DATA_CONF/ START/ END) for including the event
source explicitly.

Note that we also introduce the TX READY event, for signalling the DCF low-level

operations to be performed before any transmission have been completed.
Specifically, each transmission requires running four different phases:

 Confirm the presence of a frame in the queue and validate the hardware
configuration according to the transmission parameters.

 Set up the correct inter-frame space (SIFS, PIFS, DIFS, AIFS) and the backoff

when necessary.

 Wait for this time to expire.

 Prepare the frame for actual transmission.

At this point the event TX_READY is generated, activating the transmitter. In addition,
the event corresponding to the transmission end is mapped into two events: a signal

generated at the end of transmission (TX_END) and a signal generated after a time
interval that guarantees that noise measurements at the receiver side are not affected

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 15 of 74

by the transmitter switch off (TX_10us_ELAPSED).

Conditions

Conditions are applied to state registers that are not explicitly included in the protocol

states. These registers correspond both to the hardware configuration and to
additional global parameters. Therefore, for the DCF low-level operations we specify
all the envisioned global parameters to be explicitly considered for enabling or not

state transitions. Note that, the concept of condition actually includes the logical
operation to be applied to the relevant register, which is usually expressed in terms of

a threshold or a value comparison.

General Conditions 802.11 Conditions

dstaddr == value dstaddr == value

 srcaddr == value

myaddr == value

 timer(i) == on

queue_length > value queue_length > value

queue_type == value

cw < value cw < value

cwmin == value cwmin == value

cwmax == value cwmax == value

backoff == 0 backoff == 0

frame_length > value

frame_type == value rx_frame == value

channel == value channel == value

power > value

ACK_on == value need_wait_ack == true

 need_send_ack == true

 incoming_packet == good

Table 2: List of WMP conditions to define contention-based MAC programs

As in the previous case, the 802.11 conditions list presents differences with respect to
the general WMP condition list (see Table 2). For example, the conditions on the

queue type or the queue length (used for supporting QoS or enabling the RTS/CTS
handshake) are not included in the core of DCF operations, since standard DCF does
not support QoS. As well, we add a condition on the source address and, specify the

values of each possible register (e.g., the frame type: ACK, BEACON, DATA), and
differentiate the ACK activation condition at the receiver and transmitter sides. We

also include a condition on the state of the enqueued packets. As the WMP may rely
on multiple timers, an explicit register is dedicated to signal the state (activated or
not) of each timer.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 16 of 74

Actions

Actions are the hardware-specific operations performed by the WMP during state

transitions. As well as in previous cases, actions, presented in Table 3, are specialized
by considering a reference 802.11 transceiver (e.g.: the Broadcom card used during

the prototyping activities).

The set/get configuration actions have been currently limited to the selection of the
operating channel (mapped into a dedicated set_channel() action) and to the

configuration of the transmission rate according to the parameters indicated by the
descriptor associated to each outgoing packet (tx_info_update()). In addition, we add

an explicit action for performing noise measurements, noise_measurement(), as most
of the transceivers allow a similar operation that can be useful for many applications,
e.g.: setting gain control. The actions related to the reception process have been

divided into two phases:

 The reception of the PLCP (rx_PLCP()) dedicated to the identification of a valid

preamble and to the preparation of the MPDU demodulation.

 The demodulation of the MPDU during which the ACK frame should be prepared in
case the received packet requires it (rx_complete()).

General Actions 802.11 Actions

set/get(reg,value) tx_info_update()

 set_channel(value)

switch_RX()

 rx_plcp()

 rx_complete()

 noise_measurement()

tx_frame(type) tx_frame(type)

switch_TX()

set_timer(value) set_timer(value, i)

set_bk() set_bk()

freeze_bk()

update_retry()

 contention_params_update()

more_frag()

prepare_header() rx_frame == value

 report_TX_to_host()

 manage_rx_error()

 manage_tx_error()

 remove_frame()

Table 3: List of WMP actions to define contention-based MAC programs

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 17 of 74

The implementation of the update_retry() action and the setting up of the contention

window are embedded into a single contention_params_update() to be invoked at the
end of each transmission for updating (according to the DCF exponential backoff

rules) the contention parameters as a function of the transmission outcome.
Moreover, we add some error management functions for dealing with transmission
and reception errors performing the necessary reset operations, and errors on the

format of the enqueued packets (remove_frame()). Finally, a report action is included
for notifying the outcome of each frame transmission to the FLAVIA Information Base,

assuming that this type of events is always subscribed by the upper DCF operations.

 3.2 Interactions between Lower and Upper MAC

Different MAC machines can be loaded on the WMP and enabled/disenabled according
to some switching events programmed by the user (by means of the FLAVIA Control
System interface, IAP4) or by upper services. This feature allows to immediately

extend DCF for supporting PCF (or HCCA), by loading DCF and PCF state machines
and by opportunistically triggering the state machine switching (e.g. starting PCF at

each beacon reception and switching back to DCF after the reception of the CF-END
packet and CF period expiration). The WMP exposes a set of primitives to the FLAVIA
control system for uploading the state machines, specifying the activating conditions

and enabling code switching.

The diagrams depicted from Figure 3 to Figure 6 summarize the message sequences

for performing these operations.

Loading

A new state machine can be loaded by means of the write(bytecode,i) primitive,

whose parameters are the machine bytecode representation and the program slot.
The Wireless MAC Processor confirms the success (or not) of the loading operation,

confirm(ready_code, i), according to the state of the machine slot indicated by the
write primitive.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 18 of 74

Microinstruction
Memory

WMPFLAVIA Control

write(bytecode, i)

confirm(ready_code, i)

accept_codei == 0,1

ready_codei = 0,1

Figure 3: MSC loading operation

Starting

The MAC machine loaded on the i-th slot is started by means of the run(i) primitive,

whose effect is updating the program pointer memory_slot and calling the bootstrap(i)
primitive for the initialization of the machine. A confirmation message is sent back to

the FLAVIA control system.

Microinstruction
Memory

WMPFLAVIA Control

run(i)

confirm(1, i)

ready_codei == 1

memory_slot == 0

memory_slot = i
bootstrap(i)

Microinstruction
Memory

WMPFLAVIA Control

run(i)

confirm(0, i)

memory_slot == 0

ready_codei == 0

Figure 4: MSC starting operation

Switching

The switching operation is similar to the starting operation, but in this case the run(i)

primitive triggers the update of the program pointer from a non-null condition (i.e.,
the pointer was containing a valid program slot). Alternatively, the switching signal

can be generated internally by the machine under execution.

Synchronizing

The FLAVIA Control system can register an event for triggering a code switching by

means of the write_sync(event) primitive, whose parameter represents the desired
synchronization signal.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 19 of 74

WMPFLAVIA Control

write_sync(event)

Figure 5: MSC synchronizing operation

Verifying

Optionally, the WMP can internally run the verify() primitive before accepting an

incoming bytecode for recognizing trusted bytecode sources.

Microinstruction
Memory

WMPFLAVIA Control

write(bytecode, i)

confirm(ready_code, i)

accept_codei == 1

verify(bytecode)==OK

ready_codei = 0,1

Figure 6: MSC verifying operation

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 20 of 74

 4 802.11 Architecture: Service & Function Modules

In this section we describe two essential architectural containers that enable to

develop and extend the MAC functionalities of the 802.11 node, the Service Scheduler
and the Function Container. As well, we comment on the set of modules, compound of
services and functions, which are developed within this project extending the

modularity and flexibility of the 802.11 MAC.

 4.1 Containers

Motivated by the necessity to provide an integrated middleware to easily develop new
services and functionalities operating at the MAC layer, we design two components of

the FLAVIA architecture that are liable for managing the scheduling of new services
(Service Scheduler) and the registration of enhanced functions (Function Container)
that permit to easily extend the basic functionalities provided by the 802.11 DCF. In

the following sections, we describe the architecture of these two containers, detailing
their static interfaces that permit accessing their services and the interactions with

other entities that may occur during their execution.

 4.1.1 Service Scheduler

The Service Scheduler is the architectural entity that allows the instantiation and the
execution of new services, like monitoring, advanced data transport, misbehaviour

detection and power saving. Specifically, this entity schedules the synchronous or
asynchronous execution of the functions registered by any FLAVIA service during its

initialization phase.

The registration and the execution of the main services procedures (i.e., the main
entry point of the service’s flow control) represent therefore the core functionalities

provided by the Application Programming Interface of this component, since they
enable the modular and flexible configuration of new services within the FLAVIA

framework, focusing only on the development of the main service functionalities.
Indeed, the Service Scheduler permits to divide the configuration and consistency

control of the service from its execution, thus simplifying considerably their
development.

Furthermore, this approach enables the maintenance and the optimization of any

single component, which contributes to the implementation and execution of a FLAVIA
service, removing the need of a costly redesign of the entire system for the support of

more sophisticated functionalities.

As illustrated in Figure 7, the Service Scheduler is composed of three main
components: the Controller, which provides the interfaces for the registration, the

configuration and the consistency control of a new service, the Container, which

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 21 of 74

stores the services that have been registered for their utilization and composition, and
the Scheduler, which implements all the functionalities necessary to schedule the

execution of the services according to a particular policy (e.g., based on the priority,
the estimated execution time, etc.).

Figure 7: Service Scheduler architecture

Figure 8 illustrates the typical instantiation and execution of a new service within the

FLAVIA architecture. The module implementing a FLAVIA service invokes the
registration function provided by the Service Scheduler (i.e.,

flavia_register_service_tsf_sync() and flavia_register_service() called by services that
require, or not, the synchronization with the Time Synchronization Function,

respectively), passing as arguments the handler of the main service function that
must be executed synchronously or asynchronously and a list of parameters used for
the configuration of the service, e.g.: the scheduling period (interval between two

consecutive executions of the service function), the events, whose occurrence cause
the start and the termination of the service execution, the priority of the service, and

the parameters used to set the internal configuration of the service.

Upon the registration of the service function, the Controller invokes the Consistency
Manager to verify the correct configuration of the service (correctness of the

parameters provided during the registration) and of the entire system (existence of
the services and functions necessary to execute the loaded service). In case of a

successful registration, the Controller replies with a positive acknowledgment to the
module that is loading the service. Then, this module invokes the execution of the
main service function (i.e., the entry point of the service defined by the service

designer), according to the scheduling policy provided as argument at the registration.

Finally, at the occurrence of the termination condition configured at the registration,

the Scheduler stops the execution of the main service function and informs the calling

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 22 of 74

module of the service termination, in order to perform all the operations necessary to
correctly terminate/unload the service (flush out the memory, reconfiguration of the

hardware, termination of the scheduled transmissions, etc.). Note that the termination
phase might never occur.

Service Service Scheduler Consistency Manager

Registration

Consistency Check

Start Execution

Stop Execution

Figure 8: Sequence diagram of a service instantiation through the Service Scheduler

The Scheduler component coordinates the execution of all services registered through
the FLAVIA framework. More specifically, this element implements the data structures

and procedures that handle the concurrent execution of the main service functions
according to the policy configured at the registration. Indeed, the Scheduler
guarantees that the main service function of synchronous services is called within the

configured time constraints in a real-time fashion. Further, it prevents the occurrence
of race conditions due to the concurrency among the services (e.g.: deadlocks,

starvation, misconfiguration of the hardware resources), by coordinating the access to
the set of available resources used by the services.

 4.1.2 Function Container

The Function Container represents the entity of the FLAVIA architecture that handles

the set of functional resources, which extends the basic functionalities of standard
contention-based MAC protocols. Note that the functions use the set of commands

defined and implemented by the underlying hardware. Therefore, the set of functions
designed and implemented through the FLAVIA architecture must be based on the
features supported by the hardware.

The Function Container, whose architecture is depicted in Figure 9, is composed of
two main elements: the Controller, which provides the interfaces for the configuration

of new functions and their registration on the occurrence of events generated by the

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 23 of 74

MAC protocol (implemented using the corresponding software hooks), and the
Container, which stores all the functions for their utilization and composition in order

to implement enhanced services.

In addition, the Controller implements the procedures required to execute the

functions at the occurrence of the corresponding events.

Figure 9: Function Container architecture

Table 4 summarizes the list of events that occur during the execution of the 802.11

MAC protocol and the corresponding FLAVIA hooks on which can be registered new
functions to extend the functionalities of the basic MAC protocol.

Event Hook Description

Frame Reception ieee80211_rx This event occurs when a frame is

received by the MAC protocol of a

wireless interface.

Frame Queuing ieee80211_tx This event is raised after the frame

has been created, just before to be

sent to the queues of the underlying

hardware.

BSS Association ieee80211_associated When an 802.11 entity (e.g. a STA)

gets associated to a BSS, the BSS

association event is generated.

BSS Disassociation ieee80211_disassociated When an 802.11 entity (e.g. a STA)

receives a disassociation frame, the

BSS disassociation event is

generated.

Probe Request

Reception

ieee80211_req_rx This event occurs within the MAC

protocol at the reception of an

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 24 of 74

802.11 Probe Request.

Probe Request

Transmission

ieee80211_req_tx This event is generated after the

creation of a probe request frame,

just before its delivery to the driver

for the successive transmission.

Probe Response

Reception

ieee80211_res_rx This event occurs within the MAC

protocol at the reception of an

802.11 Probe Response.

Probe Response

Transmission

ieee80211_res_tx This event is generated after the

creation of a probe response frame,

just before its delivery to the driver

for the successive transmission.

Beacon Reception ieee80211_beacon_rx The reception of a beacon frame

triggers the Beacon Reception

event.

Beacon Creation ieee80211_beacon_set After the creation of a beacon

frame, just before its delivery to the

driver for the successive

transmission, the Beacon Creation

event is raised.

Beacon Creation IE ieee80211_beacon_set_ie This event is generated when the

MAC protocol begins the creation of

the Information Elements, which are

used to advertise auxiliary

functionalities supported by the BSS

Table 4: Events generated by the 802.11 MAC protocol and their corresponding hooks

Upon the occurrence of an event, the Controller of the Function Container triggers the
execution of all functions that have been registered on the corresponding hook,
according to the execution policy and the function priority defined at the registration.

Illustrative Example

To better clarify the execution process of a function defined within the FLAVIA
architecture, let us refer to the scenario depicted in Figure 10, which shows the

sequence diagram of the tasks performed when a new frame is received by the MAC
protocol. In this example, we assume that two FLAVIA services, Monitoring and SPS,

have been loaded to extend the basic functionalities of the 802.11 DCF. Furthermore,
we assume that the two services register the functions parse() and stats() on the
occurrence of the events FRAME_RECEPTION and SPS_PROBE, respectively.

When a new frame is received, the MAC protocol triggers the FRAME_RECEPTION
event that is captured by the Controller of the Function Container. The Controller

inquires the Container to get the list of functions that have been registered on the
corresponding hook (i.e., ieee80211_rx()). In the figure, the Container returns the
identifier Mon.parse(), namely the frame parsing function registered by the Monitoring

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 25 of 74

service. Then, the Container executes the function Mon.parse() that performs the
parsing of the received frame, detecting that is a probe packet generated by the SPS

service. Therefore, the function Mon.parse() triggers the custom event SPS_PROBE on
which the SPS service has previously registered the function SPS.stats(), which

according to the information contained in the probe packet updates the information
about the link quality. Note that the execution of SPS.stats() is performed by the
Function Container after the occurrence of the SPS Probe event, similarly to the

execution of Mon.parse().

The events are represented with capital letters, whereas the invocation of the function

registered on the corresponding event is denoted with the calls Mon.parse() and
SPS.stats().

MAC protocol Controller Container Monitoring SPS

FRAME_RECEPTION

Mon.parse()

SPS_PROBE

SPS.stats()

Figure 10: Tasks performed upon the occurrence of the event FRAME_RECEPTION

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 26 of 74

 4.2 Services

In this section we present the representative set of service modules, and their
characteristic services, that an 802.11 node provides to achieve the basic

functionality, as well as some new features inline with FLAVIA vision. Table 5
summarizes this set of modules with their corresponding acronym and a short

description.

Module Short
name

Description

Advanced

Transport

ATRAN It provides extended operations for sending and receiving the

MPDU across the driver and the wireless processor, and for

managing multiple virtual queues.

Extended

Passive

Monitoring

MONI It analyses the available radio spectrum, collecting information

on the quality of each link, in order to choose the best available

one for transmission.

PHY Resource

Management

PHYR It allows the configuration and query of basic PHY layer

parameters, as well as enabling the rate adaptation service.

SuperSense SPS SPS coordinates active and passive monitoring activities among

several devices, in order to minimize the interference and select

the best network configuration.

Misbehaviour

Detection and

Reaction

MDR The MDR module detects and handles the misconfiguration of

802.11 parameters, avoiding possible selfish behaviours of the

nodes.

MAC

Management

MGMT It performs the basic set of management operations, depending

on the node operation, such as: beaconing, authentication and

association.

Power Saving PS The power saving service enables the configuration of different

power save modes and policies, according to user and

application requirements, including tuning on/off the radio.

Table 5: FLAVIA 802.11 modules

The modules are composed of different services that implement, extend and improve
certain functionality. At the same time, the services invoke functions, such as

frame_forging() or listen_channel(), which send the appropriate commands to the
hardware. Part of these services will interact directly with the upper layers, as in the

case of advanced transport or power saving, whereas other services configure
MAC/PHY and collect statistics. Additional services can be added for dealing with

technology-specific capabilities of different platforms.

Figure 11 gives a more detailed perspective of the different modules proposed and the
corresponding services envisioned for each of them. In the following, we describe the

operation of the new modules and services, and of those which have experienced a
substantial change with respect to the previous deliverable. For legacy modules, such

as MAC Management, for the sake of clarity, the details can be found in the previous

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 27 of 74

deliverable 4.1.1 [2].

Figure 11: 802.11 service modules overview

 4.2.1 Advanced Data Transport

Data transport with parameterized QoS service allows traffic with special MAC layer
transmission requirements to be accommodated. For example, multimedia traffic,
such as a VoIP or Video traffic, usually requires low and stable end-to-end delay and

low packet loss probability. The service is provided both in single-hop and multi-hop
networks. The FLAVIA framework allows to define different functionalities to be

composed for the creating of a given data transport service (as illustrated in Appendix
A for the definition of a multi-hop data transport service).

An important aspect to be considered for the data transport definition is the packet

classification and queuing process. For common contention-based systems we follow
the queue scheme depicted in Figure 12. All the packets have to be ultimately

transmitted in the air according to the MAC rules. The MAC transmission rate (which
depends on many factors including network load, channel quality, retransmissions,
etc.), corresponds to the rate at which the packets are drained in the so called “air-

queue”, i.e. the queue from which the MAC protocol takes the packets to be passed to
the trans-receiver.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 28 of 74

Figure 12: Queue scheme of a contention-based system

On top of the air queue, a hierarchical tree of queues may be defined for prioritizing a
given type of traffic and controlling different traffic flows. In order to perform this

packet sorting, a classifier must be introduced.

In FLAVIA, thanks to the multi-thread capability of the WMP, multiple air queues

(generally linked to different MAC machines and corresponding to multiple logical
wireless interfaces) can be available as depicted in Figure 13. A data transport service
can therefore be defined by exposing N air queues to the upper layers. A

straightforward exploitation of this capability is the definition of the EDCA queue
structure of the IEEE 802.11e protocol [11]. Air queues can be used by independent

MAC machines or by a multi-queue MAC machine as indicated in Figure 13.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 29 of 74

Figure 13: FLAVIA contention-based traffic architecture

Packet Scheduling Service

An important module of the data transport is the packet scheduling service, since it
allows to define the queuing policy for each interface and to bind the upper queues to

the physical air queues. This module provides functionalities for creating/destroying
the queues, binding filters to the queues for accepting packets matching specific
conditions, or linking the queues to the air queues.

The basic element of the scheduling service is the queue that stores the packets while
they wait for being processed. Different kind of queues can be defined, exposing each

of them the following set of functionalities: module initialization, packet enqueue,
packet dequeue and packet drop. The diverse queues are organized in a tree

hierarchy to perform traffic classification. Each queue has a unique identifier and can
be inserted in the tree or removed from it. In order to manage the queues, the service
allows tree traversing. Besides, storing a packet in a specific queue is achieved by

means of the filters defined for each of the tree leafs. Filters can be attached to or
removed from a queue, being also configurable the parameters of the filter.

Interaction with the air-queue

Each queue hierarchy is connected to the air queue by a direct connection. The air
queue can control the rate at which packets are sent from the upper queues. To

accomplish this, the queue tree must support the functionalities of stopping packet

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 30 of 74

dequeue or resuming it.

The direct connection between the tree and the air queue assures that: i) the air

queue does not lose packets, relaying the control of dropping packets to the packet
scheduling service; ii) the draining rate of the air queue is controlled by the specific

air interface of the MAC.

 4.2.2 Extended Passive Monitoring

The FLAVIA Monitoring (MONI) module provides a set of passive monitoring services

able to measure several parameters related to radio channel conditions, capabilities of
neighbouring nodes and also provide estimation of MAC 802.11 parameters based on

measurements. Each node performs PHY/MAC layer measurements within the time-
scale of microseconds, based on all types of 802.11 frames (data, management, and
control). The passive measurements are performed along with the normal activity of

the wireless card and reported periodically to the Information Base. The MONI module
supports multiple network interfaces per node. The results of MONI measurements are

utilized mainly by the following modules:

 Misbehaviour Detection and Reaction.

 Consistency Manager.

The results are made available to all FLAVIA framework modules and user space
applications through the Information Base module.

The MONI module works on a frame level – this means that all frames sent and
received by each network interface can be examined by the MONI module functions.

This imposes high requirements on the MONI module on the effectiveness of the
frame analysis (i.e., limited computational power available at the nodes should be
taken into account).

The measurement functions require access to the header of each frame and to frame
timing information, to discover the following parameters per each neighbouring

station interface:

 Sender/receiver MAC address

 Operation mode

 Service Set Identifier (SSID)

 Channel

 Supported rates

 Frame type

 Preamble type

 Priority of received frame

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 31 of 74

 Frame length

 Timestamp of RX/TX frame

 Correctness of received frame

 RX power and RX noise

 Duration field

Based on the above listed parameters the following parameters are obtained:

 Number of active nodes in the neighbourhood

 Number of received frames

 Number of transmitted frames

 Frame Error Rate (FER)

 Bit Error Rate (BER)

 Per AC and overall uplink delay

 L1, L2, and L3 throughput

 Percentage of channel occupancy

 The approximate remaining L1/L2/L3 link capacity

 Number of retransmissions

 NAV

 Backoff

 IFS

The MONI component consists of following sub-modules, depicted in Figure 14:

 Passive scan.

 Capability discovery.

 Timeline generation to allow the extraction of EDCA parameters (cf. Section
4.2.3).

MONI implements the following interfaces:

 To the Service Scheduler, that is used to load and unload the service.

 To the Information Base, utilized to store monitoring results.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 32 of 74

Figure 14: MONI module components and interfaces

The MONI modules are described in detail in D4.2 [3]. In Figure 15, the message

exchange diagram corresponding to the MONI service operation is presented.

User Control module Service container Function container Information base

run MONI

load MONI service REQ

load MONI service RSP

MONI enabled Passive scan REQ

Passive scan RSP

Capability discovery REQ

Capability discovery RSP

MAC parameters calculation RSP

MAC parameter calculation REQ

Update DB REQ

Update DB REQ

Update DB RSP

Update DB RSP

Stop MONI

Stop MONI service REQ

Stop MONI service RSP

MONI disabled

repeat

Figure 15: MONI module operation message sequence chart

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 33 of 74

 4.2.3 Misbehaviour Detection and Reaction

The Misbehaviour Detection and Reaction (MDR) module is responsible for handling

the misconfiguration of 802.11 parameters. As described in Annex A of D4.2 [3], its
operation is based on network measurements obtained from the monitoring module

(MONI) and stored in the Information Base (IB), as well as detailed timestamps
obtained from the Wireless MAC Processor (WMP). Based on these measurements, it
detects misbehaving nodes and applies methods to encourage such nodes to

cooperate. These methods are then applied by configuring the medium access control
function in WMP.

In this section we provide a revision of the MDR architecture proposed in Annex A of
D4.2 [3]. First, we describe the overall module architecture, its interoperability with
other modules including message sequence charts. Second, we describe the operation

of MDR in four cases:

 Incorrect setting of EDCA parameters.

 Setting the TX power above the allowed limits.

 Sending false management frames.

 Reacting to misbehaviour.

MDR interoperates with two modules. In order to detect misbehaviour it obtains from
IB measurements of the wireless channel made by MONI and detailed timestamp

information from WMP. To appropriately react to misbehaviour it modifies the medium
access function in WMP. Figure 16 presents a general overview of the data exchanged

between the abovementioned modules (the arrows indicate the flow of data).

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 34 of 74

Monitoring
(MONI)

Misbehaviour
Detection and

Reaction (MDR)

Store measured data

Wireless
Processor

(WP)

Apply configuration profile

Information Base
(IB)

Retrieve measured data

Check for misbehaviour

Retrieve timestamps

Figure 16: Overview of MDR operation

Figure 17 presents the message exchange diagram corresponding to the operation of

the MDR service, while Figure 18 depicts the components and interfaces of the
module.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 35 of 74

User Control module Service container Information base

run MDR

load MDR service REQ

load MDR service RSP

MDR enabled
Data REQ

Data RSP

Stop MDR

Stop MDR service REQ

Stop MDR service RSP

MDR disabled

repeat

Wireless Processor

select reaction method

update configuration profile REQ

update configuration profile RSP

Data REQ

Data RSP

detect misbehaviour

Figure 17: Message sequence chart of the MDR module

MDR

outMD_pWP

pIB_inMD

outMD_pWP

pIB_inMD

Data From Information Base

Misbehaviour Detection

outMDoutMD

Misbehaviour Reaction

inMRinMR

Misbehaviour
Configuration profile to Wireless Processor

pWP_inMD

Data from Wireless Processor

Figure 18: MDR module components and interfaces

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 36 of 74

EDCA parameter misbehaviour

Based on the data obtained from the IB and WMP, MDR is able to evaluate the IEEE
802.11 EDCA MAC parameters employed by an observed node. This is done by

creating a detailed timeline of events and then extracting relevant information. The
evaluation of certain MAC parameters (e.g., NAV and TXOPLimit) is a straightforward
comparison with the standard values. However, the obtaining the values of AIFS,

CWmin and CWmax require an analysis of the distribution of the inter-frame space
between consecutive transmissions by a given stations, to allow us calculate these

values (Figure 19). The correct setting of the CW values will be detected based on
inter-frame space distribution with the use of any of the following methods: chi-
square test, mean test, and entropy test. The number of employed CW detection

methods can be extended. These methods have configurable parameters, which
determine the number of false positives. The methods can also be configured to

measure either actual or only consecutive backoff [14] as well as take into account all
backoff values or only those for which the frames had their retry bit set to 0 [15].

O
cc

u
ra

n
ce

s

IFS
AIFS CWmin CWmax

Figure 19: Distribution of IFS

High TX power

Not all the cases of operation with abnormally increased transmission power can be
detected. In this implementation of the MDR module only cases when the increased

TX power influences the performance of the network are considered. Such an
approach excludes a set of problems where mobile stations are placed very far from
the access point and use increased TX power and a highly directive antenna.

In this set of problems, the value of the EIRP (Equivalent Isotropic Radiated Power)
can violate regulatory limits; still, from the network point of view, the station can

exhibit no misbehaviour. Detection of the abnormally increased TX power is divided
into two stages. In the first stage, the average RX power of the station under study is
compared to maximum allowable TX power value, which is set according to the

regulations applicable in the particular country. It is defined as a maximum RX power

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 37 of 74

value obtainable for a reference 10-meter long link consisting of transmitter operating
with maximum allowable TX power and a reference receiver equipped with a half wave

dipole antenna. The second stage covers less obvious cases where the average RX
power stays within the limit of allowable values. This stage differs depending on

station operation mode. When the station under study operates in single rate mode,
the difference in the retransmission rate of frames exchanged between the local
station and the station under study is examined. Otherwise, when the examined

station uses a rate adaptation algorithm, misconfigured TX power is detected based
on differences in data rate usage statistics recorded during communication from the

local station to the station under study, and in the reverse direction. Additional
measures may need to be taken into account if the two nodes use antennas with
different gains or the channel is not perfectly symmetric (such as indoors).

Furthermore, due to the nature of the detection algorithm, in most cases stations with
misconfigured TX power can be detected only during active data exchange.

Figure 20: High TX power detection algorithm

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 38 of 74

False management frames

Detecting a high number (flood) of false management frames is based on a

straightforward comparison of the number of their occurrences with predefined
thresholds set for a given time frame. The following frame types will be checked for

flooding attacks: RTS/CTS, beacon, authentication and deauthentication. Additionally,
MAC spoofing may be detected by comparing the measured SNR value of consecutive
frames transmitted from a given MAC with a predefined limit.

Reacting to misbehaviour

The reaction part of the MDR service will apply one of the following three methods to
encourage correct behaviour: dropping acknowledgement (ACK) frames [16][17],
selective frame jamming [18], and applying a game-theoretic strategy of adjusting

the CW values to achieve an efficient operating point [19]. All these methods send
appropriate configurations to the WMP to change its behaviour. The methods are

applied when misbehaviour is detected and are suppressed when the misbehaviour
ceases.

 4.2.4 SuperSense

The virtualization and flexibility features of the FLAVIA architecture foster the

development of SuperSense (SPS), an innovative monitoring service that dynamically
analyses the available wireless spectrum using both passive and active techniques to

estimate the best network configuration. SPS analyses continuously the available
wireless channels to select the set of parameters that provides the best network
performance.

The monitoring activity is performed concurrently to the data TX using two virtual
interfaces operating over a single physical interface. The virtualization module is liable

for scheduling the activities of the different virtual interfaces, representing the two
operation modes, in order to fairly distribute the radio resources. In particular, the
time spent for data transmission and active monitoring tasks is scheduled according to

a time division mechanism implemented using a preemptive weighted round robin
policy.

This module sets and manages the total duration of a SPS period and the specific
length of the operation modes by introducing a new data structure, the super-frame.
The duty-cycle of the super-frame, representing the alternation of transmission and

monitoring phases along with the time assigned to each activity, is broadcast using a
new Information Element (IE) contained in the beacon. As illustrated in Figure 21, the

IE contains two main variables, namely m and e, which are used by all devices to
compute the overall duration of the super-frame, TSPS, and the time spent to perform
the active monitoring, TMON, according to the following equation:

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 39 of 74

msT

sT

MON

e

SPS 2

Figure 21: SPS Information Element

Figure 22 illustrates the super-frame defined by the SPS service. Every super-frame
always starts with an active monitoring period followed by a transmission period, in

which all nodes that belong to the same BSS operate using the same medium access
mechanisms (either CSMA/CA or TDMA) to transmit their data traffic. During an active
monitoring frame, only one node is allowed to send probes on the wireless channel in

order to estimate actively the quality of the wireless links established with nearby
nodes and the interference that might be generated by external sources.

Note that the SPS service requires that all devices are capable of supporting its
functionalities. To this end, SPS nodes communicate the service activation to the rest

of nodes. Therefore, all the nodes should disable the SPS service, if they detect the
presence of nodes that do not support SPS.

Figure 22: SPS super-frame

SPS collects several statistics used to assess the optimal network configuration or
used by other services to optimize their internal configuration according to the
channel conditions. For each available wireless channel and data rate transmission,

SPS measures: (i) frame loss and delivery rate (also known as link quality); (ii)
temporal and spatial frame reception correlations; (iii) expected frame delivery

probability based on RSSI measurements.

The passive monitoring activity, explained in Section 4.2.2, is performed continuously
and thus simultaneously to other activities like data transmission.

Figure 23 presents a comprehensive message exchange diagram corresponding to the
SPS service operation, by indicating the messages and interfaces regarding the

communication between the different modules. Besides, Figure 23 provides the reader

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 40 of 74

with a schematic view about how the service is loaded and set up and, within the
framework, how the service is stopped and unsubscribed.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 41 of 74

Figure 23: SPS message exchange

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 42 of 74

 4.2.5 Power Saving

PS service module enables various power saving algorithms to be easily implemented

through specifying helpful functional blocks and their interactions with other services,
functions or the Information Base. The development of power saving mechanisms can

also benefit from a modular and flexible architecture. FLAVIA offers a framework
whereby tasks such as monitoring, frame forging, or sleep/awake transitions are
exposed as online functional blocks that are provided with a common shared data

space.

We envision two categories of potential PS mechanisms that can be implemented:

 Sleep/awake mechanisms: These mechanisms schedule intervals when a
wireless interface dozes, being in a low-power state, and intervals when it

becomes active by idling, transmitting or receiving.

 PHY/MAC adaptation mechanisms: These mechanisms adapt different PHY
parameters (e.g., transmission power, modulation coding scheme), and/or MAC

parameters (e.g., EDCA parameters, user association policies).

We propose a PS mechanism, named NoA/ASPP, a sleep/awake mechanism. Adaptive

Single Presence Period (ASPP) [12] is a novel power saving algorithm to adaptively
control the Notice of Absence (NoA) protocol specified by the WiFi Alliance. NoA has
been proposed in order to provide energy savings to all devices (including AP-alike

agents) in a WiFi-Direct network, a peer-to-peer wireless communication technology
specified by the WiFi Alliance.

The wireless stack is the reference framework where to incorporate this PS module.
The services that compose this module are liable for handling and loading the
developed PS algorithms, respectively, PS mode management and PS mode policy.

Finally, our PS mechanism requires triggering sleep/awake events. This action is
ultimately performed by hardware through setting the proper hardware registers

accordingly. For that purpose, we specify a primitive to command the hardware to
perform certain atomic and hardware-specific tasks, e.g., change its state to a low
power state (sleep).

 drv_flavia_ps_notify(): This is a notification primitive and requires drivers to
handle it. Thus, we push all the “intelligence” to the upper layer, designing this

way a hardware-agnostic power saving framework.

In order to support sleep/awake transitions, typically required by power saving
algorithms, it is still needed that drivers/firmware support sleep/awake events (issued

by the previously mentioned primitives of the PS service).

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 43 of 74

 4.2.6 Rate Adaptation

An important functionality FLAVIA architecture incorporates is the H-RCA rate

adaptation mechanism [13]. H-RCA is another relevant example of how new
functionality can be incorporated in the wireless stack thanks to the flexibility offered

by FLAVIA, in order to enhance the performance of practical WLAN deployments. Rate
control constitutes a fundamental building block of current devices that seeks to select
the appropriate transmission rate, such that reliable communication is possible even

under suboptimal propagation conditions.

The available rate adaptation solutions only rely on SNR and basic packet loss ratio

(PLR) statistics, and often make inappropriate rate selection decision due to their
inability to distinguish between channel error and collision induced losses. Thus, the

solution adopted in FLAVIA relies on a packet-pair sampling technique to decide the
most appropriate modulation scheme under current conditions, which is able to
minimize the average MAC delay and provide higher and stable throughput.

The H-RCA operation consists of the following steps:

 The supported rates set is retrieved from the Information Base and sorted in

increasing order.
 Rates ri for which the PLR in given channel conditions is higher than the PLR for

a higher rate rj are identified and these rates are excluded from the rate-set.

 Data transport service is requested to configure the transmission opportunity
(TXOP) parameter to permit the observation of packets solely susceptible to

loss through channel noise and distinguish transmission failures that occur due
to collisions.

 For each rate, compute a critical PLR value, the rate-lowering threshold, above

which a lower rate would give higher throughput.
 Employ Bayesian inference on transmission statistics passed by the data

transport service to determine if the PLR of the current rate is above a rate-
lowering threshold.

 Set the rate increase frequency such that the opportunity-cost of sampling a

higher rate is kept below 5%.
 Increase the rate when N successful transmissions not necessarily consecutive

are observed at the current rate, being N larger than the successful
transmission threshold (STh).

Table 6 summarizes the TXOP and STh parameters for the 802.11a PHY corresponding

to each of the rates in the available set, while Figure 24 overviews the H-RCA
operation.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 44 of 74

Rate (Mbps) TXOP (for 1000 B packets) STh

6 0.0030s 361

12 0.0016s 589

18 0.0011s 779

24 0.0009s 893

36 0.0007s 1140

48 0.0006s 1349

54 0.0005s NA

Table 6: 802.11a TXOP Parametrization

H-RCA Data Transport Information Base

get PHY rates REQ

set default rate REQ

get PHY rates RSP

set default rate RSP

set TXOP REQ

set TXOP RSP
Compute rate
lowering PLR

thresholds

select lower rate REQ

select lower rate RSP

set TXOP REQ

set TXOP RSP

Compute STh

select lower rate REQ

select lower rate RSP

set TXOP REQ

set TXOP RSP

Gather TX stats

If PLR > rate lowering
threshold

If # successes > STh

Gather TX stats

Estimate PLR for each rate

Exclude
suboptimal rate

Figure 24: H-RCA operation

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 45 of 74

 4.3 Functions

In this section Table 7 collects the set of functions utilized by the different 802.11
services and the description of their functionality.

Function Description

flavia_service_scheduler_init() It initializes the Service Scheduler

creating a single thread workqueue to

manage the services

flavia_service_scheduler_exit() It unloads the service scheduler,

deleting the auxiliary structures like the

workqueue

flavia_register_service(service_handler,

config_params)
It registers the service into the Service

Scheduler

flavia_register_service_tsf_sync(service_h

andler, config_params)
It registers a service, which must be

synchronized with the TSF, into the

Service Scheduler

flavia_remove_service() It stops the pending timers and deletes

the corresponding work from the

workqueue

flavia_ss_timer_function() It adds the work implementing

flavia_service_hook_container on the

workqueue used by the Service

Scheduler to handle services

flavia_service_hook_container() It invokes the function registered by the

service and reschedules the timer that

executes flavia_ss_timer_function

flavia_service_hook_container_tsf_sync() Like the previous one, but requiring

synchronization with the TSF module

flavia_function_handler_init() It performs consistency checks and

initializes the internal data structures to

fulfil the management task

flavia_function_handler_exit() It removes the functions registered on

all hooks and deletes the structures to

free their memory space

flavia_register_function() It registers a new function on a hook in

the Function Container

flavia_remove_function() It deletes a function registered on a

hook when a service is removed

flavia_function_hook_container() It invokes all functions defined on a

specific hook when triggered to be

executed

frame_forging() It forges the creation of a solicited frame

fetch_defer_params() It loads the transmission parameters,

i.e., SIFS, BO, …

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 46 of 74

defer() It defers the transmission of a frame

when sensing the medium busy

incrementing the BO counter

check_frame() It checks the type of the incoming frame

drop_frame() It drops the frame if there is any error or

the maximum retry limit was reached

PDU_enqueue(MPDU) It adds to the transmission queue a new

packet pending to be transmitted

PDU_dequeue() It dequeues from the transmission

queue a packet ready to be transmitted

PDU_schedule(MPDU) It schedules the transmission of a packet

flavia_sps_init() It initializes SuperSense module

flavia_sps_init_tsf_polling() It starts polling

flavia_sps_exit_tsf_polling() It ends polling

flavia_sps_set_superframe_ie() It configures the Information Element to

be included in Beacons that defines the

SPS superframe

flavia_sps_start_tsf_polling() It starts polling once the station is

associated

flavia_sps_tsf_superframe() It computes the length of the

superframe, according to the

Information Element in the Beacon

frames

flavia_tx_to_mon_mode() It toggles operation from TX/RX to active

monitoring

flavia_enable_active_probe() It enables active monitoring

flavia_mon_to_tx_mode() It toggles operation from active

monitoring to TX/RX

flavia_disable_active_probe() It disables active monitoring

flavia_active_probe_work() It enables active probing for a device to

transmit during active monitoring phase

flavia_send_active_probe() It transmits monitoring frames

flavia_sps_exit() It removes the registered functions and

unloads the service

flavia_fem_int() It initializes the Extended Monitoring

module

flavia_fem_exit() It unloads the Extended Monitoring

service, freeing resources

listen_channel(channel,channel_dwell

time)
It senses the channel for a

channel_dwell time, that is the amount

of time spent on each channel

create_probe_frame(parameters) It creates a probe request/response

frame with the corresponding

parameters

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 47 of 74

send_probe_frame(destination interface) It is responsible for managing the

transmission of a probe frame

set_freq_hopping_sequence(sequence) It configures the sequence for the

frequency hopping when scanning the

different channels

set_network_config(channel, modulation,

parameters)
It sets the configuration for a node when

behaving as an AP

create_dist_estimation_frame(timestamp,

id)
It creates an ad-hoc distance estimation

frame

send_dist_estimation_frame(destination

interface)
It sends an ad-hoc distance estimation

frame

channel_quality_estimation(channel,

channel stats)
It computes the estimation of the

channel quality based on statistical data

measure_collision_stats(statistical

metric,statistical data)
It estimates the collision of the channel

given the statistical data

obtain_measurements() It gets the measurements of the network

being monitored

estimate_CW(MAC address) It estimates the CW from the statistical

data

compare_MAC_parameters_with_std(MAC

address)
It compares the observed 802.11 MAC

parameters with the standard ones

send_configuration() It sends the proper configuration to a

node that is misbehaving

get_phy_possible(param) It queries the IB for supported range of

TX powers

get_phy_param_change_timescale(param) It queries the time-granularity of the

hardware to change PHY parameters, or

if per-packet

transmit(data, params, values) It sets the parameters per-transmission

get_phy(param) Get current/last used value of parameter

set_phy(param, value) Set current/next used value of

parameter

enable_autorate(type) Start/stop an automatic rate adaptation

scheme

disable_autorate() Disable auto rate adaptation

create_mgmt_frame(subtype) It handles the transmission of a mgmt.

frame according to the parameters

recv_mgmt_frame(frame) It handles the reception of mgmt. frame

performing the corresponding operation

create_beacon(SSID,interval) It forges the transmission of a beacon

announcing the specific SSID and the

interval of transmission

check_fcs(frame) It checks the FCS of an incoming frame

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 48 of 74

computeFCS(MAC_header, frame_body) It computes the FCS for a frame to be

transmitted

ps_policy() It specifies the power saving policies,

including beacon reception period and

scheduling event trigger, and stores the

context of the running mechanism

ps_management() It provides management logic to support

the PS mechanisms being implemented

ps_frame_queue(AID, frame) It enables the AP to buffer the frames

for STAs in the PS mode. If the queue is

full it discards the frame

ps_frame_dequeue(AID) It removes the frame from the AP buffer

into the transmission queue upon the

reception of a triggering message

create_PS_frame(subtype) It creates a PS-type frame to trigger the

send of buffered frames in the AP

check_STA_PS_status(AID) Used by an AP station to check the

status of the rest of the stations

event_trigger_scheduling() It triggers the sending of a PS-triggering

frame

Table 7: FLAVIA 802.11 functions

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 49 of 74

 5 802.11 Architecture: Control & Management

The Control and Management modules, envisioned for an 802.11 node, are essential

for the correct operation of the FLAVIA architecture. On one side, the Consistency
Manager is the control entity liable for assuring the consistency and correct access to
the information stored within the Information Base module, which can be accessed by

the different operational modules. On the other side, the Virtualization module enables
the creation of multiple virtual devices over a single PHY interface and manages the

resources shared among these different virtual MAC entities that may be running. In
what follows we detail the aforementioned modules.

 5.1 Consistency Manager

The FLAVIA Consistency Manager (CM) is responsible for intra- and inter-node
configuration and parameter detection. In addition, the analysis and resolution of
potential or existing configuration inconsistencies are ones of its major functionalities.

From the architecture point of view, the CM module is divided into two basic
components: Intra-CM and Inter-CM, as shown in the Figure 25 presenting the

component diagram of the CM. The CM basically relies on data stored in the
Information Base. The most important data for the CM are recorded in the Discovered
Capabilities Data Base. It offers two basic interfaces: Internal Consistency Check and

Remote Consistency for internal and external operational modes, respectively.

Consistency Manager

port_inCM

port_exCM

port_inCM

port_exCM

Information Base

Wireless Processor

CP

REPInternal Consistency Check

Intra CM

Remote Consistency

Inter CM

Discovered Capabilities DB

MAC

Figure 25: Component diagram of the CM

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 50 of 74

In what follows, we present the most typical use cases of the Consistency Manager:

1. Parameter Configuration Change.

2. Service Consistency Check.

3. Remote Consistency Change.

The Parameter Configuration Change use case covers the most common local action of
the CM. At this point, the CM introduces an additional level of modules/services
differentiation, which adds the following configurable features:

 Allow or deny a specified module/service to request a specific parameter value
change.

 Assign priorities to modules to perform specific actions.

 Decide which request is allowed to take precedence over another.

The Intra-CM in case of detection of consistency violation can take the following

actions: force the service generation violation to abort its request, return an error
code or automatically enforce a correction based on the request. The Inter-CM

component upon detection of remote inconsistency is capable of performing remote
consistency change procedure, however remote node resolves the request accordingly
to parameter configuration change scheme.

The Parameter Configuration Change use case is presented in Figure 26.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 51 of 74

Consistency ManagerConfiguration Manager Information Base Wireless MAC Processor

set_parameter_request()

get_configuration_parameter.resp()

get_configuration_parameter.req()

get_consistency_conditions.req()

get_consistency_conditions.resp()

set_parameter_response()

execute_configuration_change()

set_parameter_response()

Service/module registration phase: priorities assignment

Resolve synchronous access, if any

Consistency conditions verified

Apply parameter change
Apply parameter change to the wireless interface

Negative response types:
1. Abort request
2. Error code
3. Enforced parameter correction

Positive response:
Operation succesfully completed

Figure 26: Parameter Configuration Change use case

The Service Consistency Check use case is triggered by the Service Scheduler in order

to verify the correct configuration of the service (especially the verification of the
correctness of the parameters provided during the registration) and of the entire

system (checking the availability of the services and functions necessary to execute
the loaded service). The Service Consistency Check, also considered as the Intra-CM
operational mode, is depicted in Figure 27.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 52 of 74

Service Scheduler Consistency Manager Information Base

service_consistency_check()

get_service_logic.req()

get_service_logic.resp()

get_configuration_parameter.req()

get_configuration_parameter.resp()

service_consistency_check_result()

For each required parameter

Figure 27: Service Consistency Check use case

This last use case of the CM covers the situation when a remote inconsistency is
detected by means of Capabilities Discovery service of the Monitoring module.

Consequently, the CM performs an operation of the remote parameter change. When
a remote node receives the set_remote_parameter.request, it performs a similar
procedure as in the case of the local Parameter Configuration Change. The Remote

Parameter Change use case is shown in Figure 28.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 53 of 74

Node A : Discovered Capabiliti
es DB

Node A : Consostency
Manager

Node B : Consistency
Manager

Node B : Information
Base

get_discovered_capabilities()

send_discovered_capabilities()

check_consistency_conditions

set_remote_parameter.req()

get_configuration_parameter.req()

get_configuration_parameter.resp()

get_consistency_conditions.req()

get_consistency_conditions.resp()

set_remote_parameter.resp()

Measurements

Remote inconsistency discovered

Consistency conditions verification

Figure 28: Remote Parameter Change use case

 5.2 Information Base

The Information Base (IB) as defined for the overall FLAVIA architecture can be
applied directly to the contention-based system architecture. In this section, first we

briefly report the IB architecture as specified in D222. Second, we outline the
information base support for multiple wireless interfaces and the memory

management architecture.

The IB is divided into three subcomponents:

 The low level data collector that acts as a monitoring module interacting with

the wireless processor, on which different data aggregation and filtering
operations can be defined.

 The data gateway manages multiple accesses on the system state parameters
and works in conjunction with the Consistency Manager.

 The functional data manager works on the service/function database in order to

track and save the modules available in the system.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 54 of 74

 5.2.1 Data Collector

For this subcomponent, we envision exploiting the Hardware Abstraction Interface

(HAI) for defining a minimum set of hardware parameters and signals that are stored
as low-level data. Different polling or event-based data reading schemes can be
defined, by taking into account the constraints imposed by the hardware features

(such as the minimum polling time, the hardware measurement quantization, etc.).

 5.2.2 Data Gateway

The data gateway enables the data sharing among FLAVIA modules and is responsible

for managing the possible conflicts arose when multiple FLAVIA modules operate on
the same system state data.

This data can be bound to a specific wireless interface (wif), as depicted in Figure 29,

which can be real or virtual, or have a system-wide visibility to allow inter-interface
storing. Thus, the data gateway acts on each data repository independently.

Figure 29: Data Gateway

The data gateway assumes that all the modules know all the data structures

representing the system state. Moreover, each data field is mapped to a different
Unique Identifier (UID), which is notified to all the operating modules.

The defined interface, wif, supports the following operations:

Reading operations

- get_data(UID, wif): data - read a data value

- on_change_listener(UID, change_listener, wif): outcome - register a change
listener related to a given data field.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 55 of 74

Single writer protection

- create_data(UID, data value, wif): MID - initialize a data field.

- change_data(MID, data value,wif): set a new value for the data field
identified by the MID.

- clear_data(MID, wif): outcome - remove a data field.

Multiple writers with challenge protection

- set_value(UID, data value, wif): outcome - set a data field.

- delete_data(UID, wif): outcome - remove a data field.

- protect_data(UID, consistency_verification, wif): outcome register a

consistency verification operation.

 5.2.3 Functional Data Manager

The Functional Data Manager organizes and interrogates the database containing the
information about the system functional resources. At this design stage, we envision

storing a minimum set of fields for each functional resource:

 Resource name: the name of the service, function or command to be invocated;

 Resource interface: the list of basic or advanced data to be passed to the
functional resource;

 Resource state: the resource availability state that indicates if the resource can

be immediately invocated (running) or if it has to be loaded (unloaded),
initialized (loaded), or started (initialized);

 Resource dependencies: the list of other resources called by the current one;

 Resource advanced data: the aggregation of basic data in data structures used
by the current resource;

 Resource consistency conditions: the list of consistency tests related to the
system state data affected by the current resource.

 5.2.4 Memory management

A sensitive issue in the Information Base is the management of the memory. This
section specifies how the IB deals with the stored values and how the modules must
interact with the IB. Three operations are described to overcome with this issue: the

write, the read and the update operations. All these operations define a clear
distinction between the memory of the IB and the memory of the module. As a result,

the delete process gets simplified and potential issues (such as, memory leaks or
concurrency problems) are avoided.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 56 of 74

The Figure 30 presents the write operation. A Module A passes the Value A to the IB
using the set operation. The IB allocates memory to store that value and the related

metadata. If the operation is completed with success a positive response will be
returned.

Figure 30: Write operation of a value

The read operation is depicted in Figure 31. The Module X needs to access a value
previously stored, thus it allocates the correct memory space to store the value and

inquire about it to the IB using the appropriate key. The IB copies the requested
value, if available, in the allocated space and returns it to the requesting module.

Figure 31: Read operation of a value

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 57 of 74

Figure 32 describes the update operation. Now, a module changes a stored value by
providing it to the IB. If the memory required for the new value is equal to that used

for the old the value, then the value is substituted. On the contrary, if the value
exceeds the memory size, then the memory cell is released and a new allocation for

the new value occurs.

Figure 32: Update operation of a value

 5.3 Virtualization

The virtualization module creates and manages the life cycle of the virtual devices
over a single PHY interface. As previously explained in the D4.1.1 [2], a critical aspect
of the virtualization is the actual sharing of the real physical resources based on

different techniques. In the case of CDMA and FDMA, these modes are controlled by
the MAC layer itself, in a close-to-hardware fashion; though, in case of TDMA scheme

(applicable to the IEEE 802.11a/b/g/n technologies), the virtualization has a role in
controlling the time slice allocation that maps virtual and logical devices on top of the
physical hardware.

Meanwhile, each virtual device is usually managed through the usual and expected
wireless API (typically, on Linux-based system, the mac80211 frameworks offers a

range of standard API to control the behaviour of each IEEE802.11 device in terms of
status, frequency). The standard wireless API offers logical device management (i.e.,
a single card could be used as Access Point and client at the same moment, on the

same channel), but this should be not be confused with virtualization, where each
virtual card can run on a different channel, using TDMA as sharing technology.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 58 of 74

Therefore, the virtualization module needs a dedicated module, which defines the
following set of functions:

 Creation of virtual interfaces, with optional range of parameters. In case of
802.11 and TDMA technology scheme, specification of the time slices, the type

of constraints (min/max of time slice allowance) on them, and also if the
constraint is hard or soft. This range of parameters allows flexibility of self-
management, as the system is able to take decision on periodization based on

this info.

create_vif(name,[phy=physical_device],[duration],[min],[max],[hard|soft])

 Destruction of virtual interfaces. It enables proper destruction of the
interface, equal to physical removal of a device using plug’n’play. This insures
coherence of the entire system (no logical instance running on non-existing

virtual interfaces for example).

delete_vif(name)

 Management of execution parameters (time slices of the TDMA access for
example), where some virtual interfaces can be weighted more than others
according to external parameters, according to the very same set of parameters

defined at the very first item of the present list.

change_vif(name, duration],[min],[max],[hard|soft]).

 Migration of virtual interfaces: this functionality is designed to re-map
existing virtual interfaces to existing or new interfaces, in order to insure
redundancy, safety mechanisms. Important nodes can stay online. This can be

used also when destroying a virtual interface.

migrate_vif(name,newphy)

If the optional parameters are not given, the virtualization control module insures best
effort operations (i.e., duration is based on the remaining free time, the physical
interface is the default interface, soft constraints, no min or max share allocation).

The operation of this module is straightforward. After internal coherence control
through the Consistency Manager, the commands are propagated through the

different elements of the FLAVIA architecture through the various IAP previously
defined.

The typical life cycle is defined with the message exchange diagram depicted in Figure

33.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 59 of 74

Virtualization module Coherency module Queue Management Wireless MAC Processor Hardware

Check

Add queue

Mapping

Alter state machine

Traffic flow from queue to WMP

Traffic flushed

Re-mapping

Unlock queue

Block queue

Check

Buffer queue

Force traffic flushing

Check

Force traffic flushing

Traffic flushed

Free Wireless MAC Processor

Destroy queue

Create Interface

Operating

Migration

Deletion

Figure 33: Life cycle of the virtualization module

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 60 of 74

 6 Interface specification

The Interface Access Points (IAPs) describe general interfaces offering an abstract

framework so that the different FLAVIA entities communicate with each other utilizing
the functionalities provided by the architecture. Following the work carried in the
previous deliverable, D4.1.1 [2], we define the interfaces by means of primitives,

keeping a high degree of flexibility. The primitives are operations requested to an
entity and require a set of parameters to be executed. Note that in this deliverable we

specify the framework for these interfaces, which will be detailed after the
implementation experiences in D4.3.

A complete notation of a primitive over an interface will begin with the interface
identifier, followed by a short operation notation ended with the primitive type:

<Module Name>_<IAP ID>_<Operational Name>_<Primitive Type>

Table 8 shows the identifiers corresponding to each type of interface, according to the
possible interactions among the different FLAVIA components, whereas Figure 34

depicts an overview of these interactions.

ID Interface Description

IAP1 WMP – MAC Interface Control and data transfer between the wireless MAC processor
and MAC layer

IAP2 Inter–entity Interface Interactions between services in different entities (e.g.,

among mobile stations or between the access point and
mobile stations)

IAP3 Services – Functions
Interface

Functionality required by services from functions

IAP4 Control & Mgmt. Interface Configuration and management

IAP5 Inter Services Interface Services interactions within the same entity

IAP6 Application Interface Communication between FLAVIA services and upper layers
(Control and data)

Table 8: Interface Access Points Identifiers

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 61 of 74

FLAVIA
Control

Subsystem

FLAVIA
Mgmt.

Subsystem

Application Level

Wireless MAC Processor

Function Container

Service Container

IAP6

IAP4IAP4

IAP1

IAP3

IAP5

IAP2

Figure 34: FLAVIA entities interaction

 6.1 Intra-node

 6.1.1 Application Interface (IAP6)

IAP6 permits the application layer to exploit the underlying FLAVIA services, accessing
to the functionalities implemented by the lower layers, e.g.: advanced data transport
or monitoring. For example, a user may desire to configure the type of the power

saving policy.

 6.1.2 Inter-services Interface (IAP5)

IAP5 enables the communication among different FLAVIA services, i.e., exchanging

configuration parameters and current status or forwarding network performance
statistics. A use case for this interface is the monitoring service that collects the
network information (channel quality, interference, etc.) that can be used by other

services, such as SPS, to select the best network configuration, or by MDR in order to
detect misbehaving nodes.

Another example, in the case of sending a frame, services such as Monitoring or MAC

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 62 of 74

Management will need to interact with Data Transport service. Data Transport service
does not define a specific primitive for each service, but a common one

(send_frame(type)), so that a general definition is accomplished. This generalization
facilitates adding new services within a future without the need of modifying the

existing framework, since there will be no need of defining additional primitives;
subsequently, being aligned with the FLAVIA vision in terms of flexibility.

 6.1.3 Control & Management Interface (IAP4)

IAP4 provides a common interface to the 802.11 service modules to interact with the

control and management subsystems so they can be reconfigured according to
specific events. This interface is used to set and polled information stored in the

Information Base, guaranteeing always the system consistency. This information
might be relative to the admissible set of configurable parameters or the current
status of variables. This interface also requests the access to common resources

handled by the virtualization manager.

An example to illustrate this case is the activation of power management that triggers

the modification of the configuration other running services, like the data transport
and the monitoring services, which should stop their execution during periods of
inactivity.

 6.1.4 Services - Functions Interface (IAP3)

Services can invoke functions contained in the Function Container through the IAP3

interface. This interface manages the concurrent access of different services to the
same function, avoiding race conditions.

 6.1.5 WMP - MAC Interface (IAP1)

IAP1 enables the configuration of the WMP, as well as the request of WMP
parameters, collected to be used by upper services, such as monitoring, when is

reported with the network scanning results.

 6.2 Inter-node

In this section we introduce the mechanism considered to implement a generic inter-

node communication as required by an 802.11 FLAVIA scenario. Instead of specifying
from scratch a protocol, tailored to FLAVIA needs, we rather rely on the Generic
Advertisement Service (GAS) from the 802.11u standard [8]. This is a mechanism

that provides a flexible interface with some defined primitives, and is readily available
in some Linux-based implementations, although is typically considered for a service

discovery scenario (therefore it will be extended to support the IAP2 implementation).

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 63 of 74

 6.2.1 Inter-entity Interface (IAP2)

The Inter-entity Interface is responsible for the communication among processes

running in different nodes, i.e.: between stations or between an access point and a
station. These processes can be operating services or functions. This interface

provides different primitives in order to allow the transfer of information among these
nodes.

By means of IAP2, a running service of a node can intercommunicate with another

instance of the same service operated in a different node, in order to:

 Keep consistency on some essential configuration parameters. An example of

this case is the announcement of the value of the configure parameters, e.g.,
rate adaptation service.

 Trigger a join reaction towards certain events. For example, in case of link

quality degradation or possible occurrence of interference.

 Decide or negotiate on possible network capabilities, even prior to the

association.

 Disseminate information to assist internode cooperation.

A potential way to implement this communication is given by the standard procedure
defined in 802.11u [8], Generic Advertisement Service (GAS). GAS is used as a
container for Access Network Query Protocol (ANQP) elements sent between clients

and APs.

GAS provides functionality that enables STAs to discover the availability of information

related to desired network services, e.g.:

 Information about services such as provided in an IBSS, local access services,
available Subscription Service Providers (SSP) and/or SSPNs or other external

networks.

GAS uses a generic container to advertise network services' information over an IEEE

802.11 network. Public Action frames are used to transport this information. Its basic
operation is depicted in Figure 35.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 64 of 74

Responding STARequesting STA

GAS Initial Request

GAS Initial Response

Advertisement Server

Query Request

Query Response

Outside the scope of the 802.11u specification

Figure 35: GAS operation

The structure provided by the GAS request and carried within an ANQP element

(depicted in Figure 36) are extendable in order to specify query primitives that are
FLAVIA-aligned. Thus, we can specify new messages in order to extend the
communication among different nodes.

Info ID Length Information

2 2 variable

Figure 36: ANQP element format

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 65 of 74

 6.3 Summary of primitives

Table 8 collects the complete set of primitives proposed for an 802.11 FLAVIA node.

Type Primitives Description

IAP6 TRAN_IAP6_send_frame_REQ

TRAN_IAP6_send_frame_RSP

TRAN_IAP6_receive_frame_IND

TRAN_IAP6_receive_frame_CONF

The transport service exposes its interface to

the upper layers to enable sending packets
through the 802.11 MAC layer.

MONI_IAP6_set_monitype_REQ

MONI_IAP6_set_monitype_RSP

MONI_IAP6 moni_start_REQ

MONI_IAP6_moni_start_RSP

MONI_IAP6 moni_stop_REQ

MONI_IAP6_moni_stop_RSP

MONI_IAP6 estimate_interference_REQ

MONI_IAP6 estimate_interference_RSP

MONI_IAP6_estimate_link_distances_REQ

MONI_IAP6_estimate_link_distances_RSP

The Monitoring service will also expose its
interface so that applications can set up the
type of scanning to be performed and modify
configuration parameters, e.g., the time
spent to perform the active monitoring

PHYR_IAP6_get_phy_REQ

PHYR_IAP6_get_phy_RSP

PHYR_IAP6_set_phy_REQ

PHYR_IAP6_set_phy_RSP

The PHY Resource Management service is
expected to interact with the upper layers to

return or configure an explicit set of PHY,
such as the rate adaptation algorithm to use.

This interface allows the configuration and
inspection of current values for each of the
managed parameters.

PS_IAP6_set_policy_REQ

PS_IAP6_set_policy_RSP

PS_IAP6_get_policy_REQ

PS_IAP6_get_policy_RSP

The power saving service exposes its
interface to the upper layers in order to
return or configure the type of power saving

policies.

IAP5 TRAN_IAP5_send_frame_REQ

TRAN_IAP5_send_frame_RSP

TRAN_IAP5_frame_sent_IND

TRAN_IAP5_frame_sent_CONF

TRAN_IAP5_receive_frame_IND

TRAN_IAP5_receive_frame_CONF

The Transport service interacts with all the

other services, therefore being an essential
service in the FLAVIA architecture. It receives
request commands from other services, in
order to transmit the types of frames
according to the other services’ selection.

PHYR_IAP5_transmit_REQ

PHYR_IAP5_transmit_RSP

PHYR_IAP5_get_phy_REQ

PHYR_IAP5_get_phy_RSP

PHYR_IAP5_set_phy_REQ

PHYR_IAP5_set_phy_RSP

PHYR_IAP5_enable_autorate_REQ

PHYR_IAP5_enable_autorate_RSP

PHYR_IAP5_disable_autorate_REQ

PHYR_IAP5_disable_autorate_RSP

PHYR_IAP5_set_phy_IND

PHYR_IAP5_set_phy_CONF

The PHY Resource Management service is
expected to interact with other FLAVIA

services, e.g., Monitoring and Transport
service. This service can receive an explicit

set of PHY parameters to be utilized for each
packet transmission, but may also request
transmission statistics from the Transport
service when automatic rate adaptation is
performed.

PS_IAP5_dequeue_ps_frame_REQ. The PS service interacts with the Data

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 66 of 74

PS_IAP5_get_psm_status_REQ

PS_IAP5_get_psm_status_RSP

PS_IAP5_buffer_ps_frame_REQ

PS_IAP5_buffer_ps_frame_RSP

PS_IAP5_dequeue_ps_frame_REQ

PS_IAP5_dequeue_ps_frame_RSP

Transport so that the buffered frames are
dequeued or enqueued depending on the
state of the stations.

IAP4 IB_IAP4_get_data_REQ

IB_IAP4_get_data_RSP

IB_IAP4_on_change_listener_REQ

IB_IAP4_on_change_listener_RSP

IB_IAP4_create_data_REQ

IB_IAP4_create_data_RSP

IB_IAP4_change_data_REQ

IB_IAP4_change_data_RSP

IB_IAP4_clear_data_REQ

IB_IAP4_clear_data_RSP

IB_IAP4_set_value_REQ

IB_IAP4_set_value_RSP

IB_IAP4_delete_data_REQ

IB_IAP4_delete_data_RSP

IB_IAP4_protect_data_REQ

IB_IAP4_protect_data_RSP

IB_IAP4_get_service_logic_REQ

IB_IAP4_get_service_logic_RSP

The Information Base (IB) exposes one

interface, wig, with several primitives to
support the operation and interaction with

the rest of FLAVIA modules. Operations such
as reading and single/multiple writing.

CM_ICC_IAP4_set_parameter_REQ

CM_ICC_IAP4_set_parameter_RSP

CM_RC_IAP4_get_consistency_conditions_REQ

CM_RC_IAP4_get_consistency_conditions_RSP

The Consistency Manager presents two

interfaces, Internal Consistency Check and
Remote Consistency, to perform internal and
external operations, respectively.

WMP_IAP4_write_REQ

WMP_IAP4_write_RSP

WMP_IAP4_run_REQ

WMP_IAP4_run_RSP

The WMP exposes an interface to enable the
modification of state machines, specifying the
activating conditions and enabling code

switching.

IAP2 GAS_IAP2_send_request_IND

GAS_IAP2_send_request_CONF

GAS_IAP2_get_parameter_REQ

GAS_IAP2_get_parameter_RSP

The GAS module enables the generic
communication among nodes, exchanging
different information or performing capability

negotiation.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 67 of 74

 7 Conclusions

This deliverable completes the specification of the designed architectural framework

for the implementation of a contention-based FLAVIA node, based on the feedback
received during the revision of WP2 architecture and the module specification.

Based on the evolution of the general framework provided by WP2 and on the

architecture for an 802.11 node presented in D4.1.1, we have reviewed and updated
the set of service and function modules as well as the interface specification. New

services that may be loaded in real-time in a FLAVIA-enable node have been added,
e.g.: Advance Data Transport and Misbehaviour Detection, showing that the FLAVIA

architecture is not tailored to neither the 802.11 standard nor very simple extensions
(these were the focus of the previous deliverable).

In addition, we have detailed the operation of the Service and Function containers

liable for scheduling and managing new services and the registration of enhanced
functions under the premises of a modular and flexible architecture, focusing on the

dynamics of the instantiation of the services and how the FLAVIA functionality
supports the their real-time execution. We have described the architecture of those
two containers, detailing their static interfaces, which permit to access their services

and the interactions with other entities that may occur during their execution.

The Wireless MAC Processor is described extensively in this deliverable from the

architectural perspective. Starting from the description carried out in D.2.2.1 and
D.2.2.2 for a generic programmable radio system, here we specify the set of events,
conditions and actions for contention-based 802.11 systems on the basis of the

analysis of DCF lower-MAC operations, which defines the primitives to support the
different functionalities. We also present how the WMP interacts with other modules in

order to perform its basic operations.

We extend the description for the Control and Manager subsystems, as well as add
new entities that were not included in the previous deliverable, as the Consistency

Manager. The Consistency Manager avoids potential race conditions about the various
pieces of information that will be stored in the shared repository, namely, the

Information Base, which stores the configuration and operation parameters and whose
operation is described in this document. In the case of the virtualization manager, it is
explained how the scheduling process is performed so different MAC instances may

access to common hardware resources and present the set of functions that enable
this management.

Finally, we also describe the intra- and inter-node communication, emphasizing on
this previous one and proposing a mechanism to implement a generic inter-node
communication built on GAS, which is specified in the 802.11u standard.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 68 of 74

References

[1] IEEE 802.11, LAN/MAC Specific Requirements - Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access
Control (MAC). Revision of IEEE Std 802.11-1999, 2007.

[2] FLAVIA Project Deliverable D.4.1.1 – 802.11 architecture and interfaces

specification, June 2011, available at http://www.ict-flavia.eu

[3] FLAVIA Project Deliverable D.4.2 – 802.11 modules specification, November

2011, available at http://www.ict-flavia.eu

[4] FLAVIA Project Deliverable D.2.1.1 - Report on Scenarios, Services and

Requirements, January 2011, available at http://www.ict-flavia.eu

[5] FLAVIA Project Deliverable D.2.1.2 – Revision of Report on Scenarios, Services
and Requirements, January 2012, available at http://www.ict-flavia.eu

[6] FLAVIA Project Deliverable D.2.2.1 - Architecture Specification, May 2011,
available at http://www.ict-flavia.eu

[7] FLAVIA Project Deliverable D.2.2.2 - Revision of Architecture Specification, May
2012, available at http://www.ict-flavia.eu

[8] IEEE 802.11u, Amendment to Standard for Information Technology. LAN/MAC

Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY Specifications Amendment 9: Interworking with

External Networks, IEEE Std. 802.11u, Feb 2011, Supplement to IEEE 802.11
Standard.

[9] Gallo, P., Gringoli, F., and Tinnirello, I., On the Flexibility of the IEEE 802.11

Technology: Challenges and Directions. Future Network and MobileSummit
2011.

[10] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, Wireless
MAC Processors: Programming MAC Protocols on Commodity Hardware, IEEE
INFOCOM 2012, Orlando (FL), USA, March 25-30, 2012.

[11] IEEE 802.11e, Amendment to Standard for Information Technology. LAN/MAC
Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) specifications: Medium Access Control (MAC)
Enhancements for Quality of Service (QoS), IEEE Std. 802.11e, Nov 2005,
Supplement to IEEE 802.11 Standard.

http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 69 of 74

[12] D. Camps-Mur, X. Perez-Costa, S. Sallent-Ribes, Designing energy efficient
Access Points with Wi-Fi Direct, Computer Networks, Volume 55, Issue 13, 15

September 2011.

[13] K. D. Huang, Ken R. Duffy and David Malone, H-RCA: 802.11 Collision-aware

Rate Control, Hamilton Institute technical report, 2011.

[14] Raya, M., Aad, I., Hubaux, J., and El Fawal, A. DOMINO: Detecting MAC layer
greedy behavior in IEEE 802.11 hotspots. IEEE Transactions on Mobile

Computing, 5:1691–1705, 2006.

[15] Serrano, P., Banchs, A., Targon, V., and Kukielka, J. Detecting selfish

configurations in 802.11 WLANs. IEEE Communications Letters, 14:142–144,
2010.

[16] Ahn, Y. w., Cheng, A., Baek, J., and Fisher, P., Detection and punishment of

malicious wireless stations in IEEE 802.11e EDCA network. In Proc. of IEEE
Sarnoff Symposium. 2010.

[17] Dangerfield, I., Malone, D., and Leith, D.J. Incentivising fairness and policing
nodes in WiFi. IEEE Communications Letters, 15:500–502, 2011.

[18] Cagalj, M., Ganeriwal, S., Aad, I., and Hubaux, J.-P., On Selfish Behavior in

CSMA/CA Networks. In Proc. of IEEE INFOCOM. 2005.

[19] Konorski, J. A game-theoretic study of CSMA/CA under a backoff attack.

IEEE/ACM Transactions on Networking, 14:1167–1178, 2006.

[20] IEEE 802.11s, Amendment to Standard for Information Technology. LAN/MAC
Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY Specifications Amendment 10: Mesh Interworking,
IEEE Std. 802.11s, Sept 2011, Supplement to IEEE 802.11 Standard.

[21] FLAVIA Project Deliverable D.6.2. - Novel approaches and solutions for
contention-based technology enhancements, Sep 2011, available at
http://www.ict-flavia.eu

http://www.ict-flavia.eu/

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 70 of 74

APPENDIX A: Service building example

In order to illustrate how services can be built over the proposed architecture, we next

focus on the case of an advanced data transport with parameterized QoS service.
More specifically, we propose to use the IEEE 802.11s [20] mesh reservation-based
channel access method, named called MCCA (Mesh Coordinated Channel Access). The

MCCA is an optional access method that allows stations to access the wireless medium
at selected times with lower contention that otherwise be possible. These times are

called MCCA TXOPs (or MCCAOPs). To obtain MCCAOP (to reserve the channel) the
transmitter (MCCAOP owner) and the receiver(s) (MCCAOP responder(s)) exchange

special management frames. We will further refer to this procedure as the one-hop
reservation procedure (more detailed description of MCCA is presented in D6.2 [21]).

In the multi-hop network case, for each flow with a given QoS requirement, the

service establishes MCCA one-hop reservations along the multi-hop a path found by
path selection protocol (which should take into account the channel access method

used), and then transmits data frames using these reservations.

We first present the high-level, functional architecture required by this advanced
service, and then the low-level, MAC scheme required to support it.

A.1 Functional Architecture

The functional architecture of the proposed service is illustrated in Figure 37. Each

station use two different channel access methods: i) contention-based, DCF, realized
by DCF state machine (in future implementations it can be replaced with EDCA) and ii)
reservation-based, MCCA, realized by MCCA state machine. DCF is liable for the

transmission of background traffic and management frames while MCCA is responsible
for the transmission of QoS-sensitive traffic.

Consider the transmission of a single QoS-sensitive flow. First, all the packets of the
flow enter the Classifier module. When the first packet of the flow arrives at the
source station, using the information from upper layer headers (i.e.: IP, UDP, SIP),

the Classifier module determines the TX parameters (e.g.: packet size, packet inter-
arrival time etc.) and the QoS requirements of this new flow, and also assigns a

Traffic stream Identifier (TsId) to the flow.

Next, the Classifier module sends this information to the Multihop Reservation
Function. For each flow, with a given transmission parameters and QoS requirements,

the Multihop Reservation Function reserves resources for the data transmission along
the whole multi-hop path, namely, multi-hop reservation. Thanks to special

management frames, the Multihop Reservation Function of each station along the path
creates a Software Queue, where packets of the flow are stored before actual

transmission, establishing a one-hop reservation for their TX by means of the OneHop
Reservation Function. Besides, the Multihop Reservation Function forwards the QoS

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 71 of 74

requirements to the next hop along the path. It should be noted that in a one-hop
reservation, only packets of the flow for which this reservation was established can be

transmitted.

The MCCA Scheduler module stores all the information about the MCCA one-hop

reservations of a station and also the reservations of its neighbouring stations. This
module obtains the information via advertisement procedure, i.e.: the information is
sent periodically in beacons or management frames. When the MCCAOP is reserved

for a particular flow, the MCCA Scheduler module calls the function
push_frame_from_queue(i) that pulls the first frame from the i-th Software Queue

corresponding to the flow to the MCCA FIFO hardware queue. Then the command
mccaop_start(duration) is called, generating an MCCAOP_START event. The
parameter duration specifies the duration of the MCCAOP. Upon the reception of an

MCCAOP_START event, the MCCA State machine triggers the transmission of the
frame.

MCCA-capable stations shall support the Reservation Allocation Vector (RAV)
mechanism, which is provided in addition to physical and virtual carrier sense
mechanisms to minimize the probability of collisions within the MCCAOP. The RAV

represents a time interval reserved for the MCCAOP by station or any neighbouring of
this station (i.e., time interval in which station cannot transmit using contention-based

channel access method)

A station is not allowed to start the transmission of a frame using contention-based
channel access method if this transmission intersects with the RAV. To implement

RAV, we propose to use the following commands:

 When RAV starts, the MCCA Scheduler calls the command rav_start(duration)

that generates the event RAV_START. The duration argument indicates the
duration of RAV.

 At the end of RAV, the MCCA Scheduler calls the command rav_end(next_rav)

that triggers the event RAV_END. It also indicates the next_rav time, that is,
when the next RAV will start. A station is not allowed to start a transmission

when the RAV is set (rav==busy) or when the transmission will overlap with
the next RAV.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 72 of 74

Classifier

incoming_packet

So
ft

w
ar

e
Q

u
e

u
e

_
1

So
ft

w
ar

e
Q

u
e

u
e

_
1

So
ft

w
ar

e
Q

u
e

u
e

_
n

Multihop Reservation Function

Onehop Reservation Function

M
C

C
A

FI

FO

q
u

e
u

e

D
C

F

FI
FO

q

u
e

u
e

TX_engine RX_engine

MCCA
State machine

DCF
State machine

RX
State machine

FU
N

C
T

IO
N

C
O

N
T

A
IN

ER
W

IR
EL

ES
S

P
R

O
C

ES
SO

R
H

A
R

D
W

A
R

E

create_onehop_reservation()

find_new_reservation()

...
push_frame_

from_queue(i)

MCCA Scheduler

mccaop_start(dur),
rav_start(dur),rav_end(next_rav)

new_flow(traff_param)

Figure 37: Functional architecture of Data Transport with Parameterized QoS service

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 73 of 74

A.2 MAC Programs

DCF state machine

Figure 38 shows the state machine for the DCF queue (dotted lines illustrate the

difference with respect to the original state machine).

TXWAIT_ACK

WAIT_DIFS_BK

WAIT_MED WAIT_DIFS_NO_BK

BACKOFF

IDLECH_DOWN
set_timer(DIFS)

CH_UP
stop_timer()

CH_UP
stop_timer()

QUEUE_OUT_UP
[medium!=busy]
set_timer(DIFS)QUEUE_OUT_UP

[medium==busy]

CH_UP
freeze_bk()

END_BK
[queue==empty]

END_BK
[queue!=empty]

calculate_tx_time()

END_TIMER
OR

RCV_OTHER
update_cw()

MED_DATA_CONF
Switch_RX

set_timer(ACK_TIMEOUT)

END_TIMER
[backoff==0]

set_backoff()

END_TIMER
[backoff!=0]

resume_backoff()

RCV_ACK

PRE_TX

END_TIMER
calculate_tx_time()

END_CALCULATE
[tx_end_time<next_rav_start &&

rav!=busy]
switch_TX()
TX_start()

END_CALCULATE
[tx_end_time>

next_rav_start ||
rav==busy]

set_backoff()

Figure 38: DCF state machine

To implement the RAV mechanism we add a new state, PRE_TX. When the station is
ready to transmit it will calculate the frame transmission time, by means of the
calculate_tx_time() command, and move to the PRE_TX state. If the station time to

finish its transmission (TX_END_TIME) is less than the next RAV start and RAV is not
set now (rav!=busy), then the station can start its transmission and move to TX state.

Otherwise, the station will defer its transmission and compute a new backoff value,
moving to BACKOFF state.

RX state machine

Figure 39 illustrates the RX state machine. The changes to the RX state machine are

similar to the ones carried out in the DCF state machine. In this case, we define an
additional state, PRE_TX_REPLY. Thus, a station is not allowed to start the

transmission of an ACK frame if the ACK transmission overlaps with the RAV.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.1.2 Version: 1.0 Page 74 of 74

RX_FAILED IDLE

RX

WAIT_SIFS

COLLISION

CH_DOWN

COLLISION
MED_DATA_START

MED_DATA_END
[dst_addr!=myaddr]

MED_DATA_END
[dst_addr==myaddr]

MED_DATA_CONF
switch_RX()

END_SIFS
calculate_tx_time()

END_CALCULATE
[tx_end_time<next_rav_start &&

rav!=busy]
switch_TX()
TX_start()

TX_REPLY
PRE_TX_REPLY

END_CALCULATE
[tx_end_time>

next_mccaop_start ||
rav==busy]

Figure 39: RX state machine

MCCA state machine

The simplified version of the MCCA state machine is presented in Figure 40. In this
case, when an MCCA_START event occurs the station should wait a PIFS and then
start the transmission if the queue is not empty. Once the station receives an ACK

frame or an ACK timeout expired, it should clear the MCCA hardware queue so that
the next packet arrives to the empty queue.

IDLE WAIT_PIFS

TXWAIT_ACK

MCCAOP_START
set_timer(PIFS)

END_TIMER
[queue==empty] END_TIMER

[queue!=empty]
switch_TX()
TX_start()

MED_DATA_CONF
Switch_RX

set_timer(ACK_TIMEOUT)

RCV_ACK
OR

END_TIMER
clear_queue()

Figure 40: MCCA state machine

