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Executive summary 

This report reviews the architecture specified for a FLAVIA-based 802.11 [1] system. 

This document does not aim to be a self-contained description of the final design, but 
an update on D4.1.1 [2] building on the “intra-workpackage” feedback described in 
D4.2 [3], and the work carried out in WP2, described in D2.1.1 [4], D2.2.1 [5] and 

their corresponding updates D2.1.2 [6] and D2.2.2 [7]. 

The FLAVIA design addresses the structure and functionality of an 802.11 framework 

able to support the following key features: modularity, in terms of defining different 
802.11 MAC services; flexibility, in terms of dynamic or static configurability of the 

802.11 MAC; and virtualization, in terms of managing parallel independent 802.11 
MACs accessing the same system resources. Based on these three principles, we 
outline in Section 2 how basic elements defined by the FLAVIA architecture can be 

instantiated to deploy an 802.11 MAC node. Then, in Section 3 we introduce the 
Wireless MAC Processor (WMP) entity, key component of the FLAVIA architecture, 

which enables developing and extending the 802.11 MAC low-level functionalities. We 
focus on the specification of the set of primitives and, the events, conditions and 
actions that specify the APIs for contention-based systems. Consequently, Section 4  

describes the 802.11 Service and Function modules. First, we expose the functionality 
of the Service Scheduler and the Function Container, which provide modularity by 

means of the composition and instantiation of different 802.11 service modules. 
Second, we present an update on some existing services and add new ones, such as, 
Misbehaviour Detection and Reaction. Third, we introduce the most representative 

functions of this 802.11 architecture. 

While the above sections deal with the “data plane” of the 802.11 architecture, in 

Section 5 we outline the 802.11 control subsystem, which builds on three elements: 
the Consistency Manager, the Information Base and the Virtualization manager. The 
Consistency Manager coordinates the access by several running services to common 

resources, avoiding possible inconsistencies. The Information Base is the common 
knowledge base that stores the configuration parameters and exposes the possible 

supported values. The Virtualization manager enables the execution of various MAC 
instances on each virtual interface by scheduling the access to the hardware. 

The intra- and inter-node communication is presented in Section 6, fostering the 

exchange of information among the 802.11 FLAVIA components and nodes. More 
specifically, we provide a detailed description of an inter-node communication scheme 

that builds on existing technology, and describe the architectural components that are 
interfaced to the MAC services (e.g., the instantiation of a FLAVIA control subsystem 
specifically meant for 802.11). 

Finally, in Appendix A we provide a detailed specification of an Advanced Data 
Transport service (with backwards compatibility), in order to illustrate the interaction 

between the different entities in the FLAVIA architecture.  
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 1  Introduction 

FLAVIA defines a new architecture supporting modularity, flexibility and virtualization. 

This is achieved through the specification of new services, functions and 
programmable interfaces that make the medium access control adaptable, easily and 
fast reconfigurable. In addition, it also enables the possibility to dynamically load and 

customize MAC services during real-time operation of the wireless devices. 

One main contribution of WP4 is that of “instantiating” the architecture specified in 

WP2 for the case of 802.11 MAC, that is, to specify and prototype a programmable 
MAC framework for contention-based technologies based on 802.11 MAC. 

Following the work specified in D4.1.1 [2], and after the intra- and inter-WP feedback 
(within WP4 and from WP2, respectively), we review the FLAVIA architecture to 
enable full 802.11 MAC support and present the main updates with the aim of 

providing a more complete report on the final architecture design. Therefore this 
document is not a “stand-alone” deliverable, but concentrates on the main updates 

over the previous architectural document. 

In this second deliverable of WP4 we analyse an 802.11 node extended with some 
exemplificative non-standard functionalities. We specify how the different 802.11-

based MAC services are decomposed into smaller functions and further commands. In 
addition, we specify the interfaces required to support MAC operation and to control 

the behaviour of the wireless device. By considering both “legacy” services, like power 
saving or MAC management, and “innovative” services like e.g., SuperSense or 
Misbehaviour Detection and Reaction, we illustrate how the FLAVIA architecture allows 

to orchestrate existing and new 802.11-like MAC features. Moreover, we describe in 
detail the MAC services and control plane of contention-based technologies, providing 

message sequence charts (MSCs) that illustrate the operation and interactions among 
modules. A detailed specification for each module considered for prototyping and 
demonstration was provided in D4.2 [3]. 

As an update, we include in this document the specification of the FLAVIA control 
subsystem for 802.11 MAC, presenting the set of primitives and interfaces that 

command and organize the desired system behaviour.  

In addition, we include herein the description of the interface to support the inter-
node communication, which is based on the Generic Advertisement Service (GAS) 

protocol defined in the 802.11u standard [8].  
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 2  FLAVIA architecture overview 

The 802.11 Architecture proposed is aligned with the general FLAVIA architecture 

(Figure 1), which has been designed according to the three already known principles: 
modularity, flexibility and virtualization. 

 

Figure 1: FLAVIA high-level view: framework architecture 

The FLAVIA-alike architecture depicted in Figure 2 has been tuned for an 802.11 node 

that is compound of five main elements: 

Wireless MAC processor: The architecture envisioned by FLAVIA could not evolve 
without hardware support. The Wireless MAC Processor (WMP) is an essential 

component of the FLAVIA architecture that handles hardware events and executes 
medium access programs in terms of loadable Finite State Machines. It is responsible 

for the direct interaction with the hardware modules that represent the lowest level of 
functional resources of the system. It also works as a kind of function container 
accelerator, for instantiating the functions heavily interacting (under strict time 

constraints) with the hardware. An example of these functions is the scheduling of the 
medium access instants. 

Service scheduler: Architecture element in charge of instantiating services, which 
are composed of functions. A service implements MAC-layer functionalities. New 
services are specified compared to an 802.11 legacy node, such as SuperSense or 

Misbehaviour providing to our framework with a higher modularity. 

Function container: Architecture element handling the set of running instances of 

functions. The loading and execution of the functions is done by means of the FLAVIA 
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control subsystem. A function, as well, makes use of the commands supplied by the 
hardware. Therefore, the set of functions designed and implemented in the 

architecture builds on the features already supported by existing hardware, but it also 
foresees extra capabilities that could enhance contention-based communications in 

the future. 

The existence of the separate sets of services and functions increases the modularity 
of the architecture, as several instances of the same service are allowed to coexist 

and each of them may access the function container independently. Moreover, 
different services may utilize common functions, differentiated by a set of parameters 

or state variables, which proves the flexibility of the model, and coordinated by the 
control subsystem. 

FLAVIA Control: Entity that manages the loading and changes of context of the 

different services and functions. It is composed of two entities: the Consistency 
Manager (CM) and the Virtualization module. The first one is responsible for intra- and 

inter-node configuration and parameter detection, whereas the last one allows 
creating and executing several medium access control machines running on top of a 
unique physical device. 

Information Base: Architecture component responsible for managing different 
data/parameters shared by different services. The data gateway shares the data 

among the different FLAVIA modules and keeps it consistent. The data collector is the 
responsible of collecting and gathering different data types, such as system state or 
hardware parameters. This information is obtained directly from the hardware of by 

interacting with the WMP. 

 

Figure 2: FLAVIA high-level view: 802.11 framework architecture 
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 3  Wireless MAC Processor 

The Wireless MAC Processor (WMP) [9][10] is the architecture component devised to 

run the low-level MAC operations defined in terms of state machines strictly 
interacting with the hardware. Starting from an initial (default) state, the WMP waits 
for events that trigger state transitions. The actual transition can be enabled or 

disabled by the verification of a Boolean condition, and a transition can trigger the 
execution of one hardware action before moving to the new state. Multiple state 

machines can be loaded on the WMP in order to simultaneously support different MAC 
programs(i.e., virtualization) by means of code-switching techniques (as described in 

D2.2.2 [7]). 

This approach supports flexibility in the creation of ad-hoc systems tailored for specific 
applications, network topologies and environment conditions, without requiring 

expensive hardware platforms. Indeed, in D4.2 [3] we proved that a WMP can be 
implemented even on commercial WiFi cards, and that significant performance 

gain can be obtained by simply programming the hardware parameterized 
control (the configuration registers) and the action scheduling rather than the full 
hardware system (as in the case of software-defined radio). Therefore, the WMP is 

particularly important for contention-based systems, where:  

 Nodes usually have a limited complexity. 

 The inter-node coordination and signalling may dramatically change from a 
network configuration to another (because they are mostly based on peer-to-
peer relationships). 

 The spectrum availability and medium conditions are very heterogeneous in 
absence of any centralized planning. For these reasons, the design of the WMP 

API has originally started from the analysis of contention-based systems and 
has been lately extended to the scheduled system. 

 

 3.1  API for contention-based systems  

Although in D2.2.2 [7] we enumerated the list of events, conditions and actions 
envisioned for a generic programmable radio system, in this report we make such list 

specific for contention-based systems based on the analysis of DCF lower-MAC 
operations.  

Events  

Events are signals generated by the hardware and trigger the execution of actions on 
the WMP. Starting from the general events defined in the FLAVIA architecture, we 

specialize and extend some events as shown in Table 1. 
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General Events 802.11 Events 

END_TIMER END_TIMER  

 ACK_TIMEOUT 

CH_UP CH_UP 

CH_DOWN CH_DOWN 

RCV_PLCP RCV_PLCP 

RCV_END RCV_COMPLETE 

RCV_DATA  

RCV_ACK  

COLLISION RX_ERR 

 TX_READY 

MED_DATA_CONF TX_ERROR 

MED_DATA_START TX_IN_PROGRESS 

MED_DATA_END TX_END 

 TX_10us_ELAPSED 

QUEUE_OUT_UP QUEUE_OUT_UP 

QUEUE_IN_OVER QUEUE_IN_OVER 

Table 1: List of WMP events to define contention-based MAC programs 

Most of these events have a meaning that can be immediately associated to the event 
name as described in D4.2 [3]. Comparing the two columns we observe that for 
defining the DCF low-level operations, we prefer to explicitly specialize a new timer 

expiration event in terms of ACK timeout, to interpret the collision event as a 
reception error, and to slightly rename the events describing the signals from the 

transmitter sub-system (MED_DATA_CONF/ START/ END) for including the event 
source explicitly. 

Note that we also introduce the TX READY event, for signalling the DCF low-level 

operations to be performed before any transmission have been completed. 
Specifically, each transmission requires running four different phases:  

 Confirm the presence of a frame in the queue and validate the hardware 
configuration according to the transmission parameters. 

 Set up the correct inter-frame space (SIFS, PIFS, DIFS, AIFS) and the backoff 

when necessary. 

 Wait for this time to expire. 

 Prepare the frame for actual transmission.  

At this point the event TX_READY is generated, activating the transmitter. In addition, 
the event corresponding to the transmission end is mapped into two events: a signal 

generated at the end of transmission (TX_END) and a signal generated after a time 
interval that guarantees that noise measurements at the receiver side are not affected 
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by the transmitter switch off (TX_10us_ELAPSED). 

 

Conditions 

Conditions are applied to state registers that are not explicitly included in the protocol 

states. These registers correspond both to the hardware configuration and to 
additional global parameters. Therefore, for the DCF low-level operations we specify 
all the envisioned global parameters to be explicitly considered for enabling or not 

state transitions. Note that, the concept of condition actually includes the logical 
operation to be applied to the relevant register, which is usually expressed in terms of 

a threshold or a value comparison. 

General Conditions 802.11 Conditions  

dstaddr == value dstaddr == value 

 srcaddr == value 

myaddr == value  

 timer(i) == on 

queue_length > value queue_length > value 

queue_type == value  

cw < value cw < value 

cwmin == value cwmin == value 

cwmax == value cwmax == value 

backoff == 0 backoff == 0 

frame_length > value  

frame_type == value rx_frame == value 

channel == value channel == value 

power > value  

ACK_on == value need_wait_ack == true 

 need_send_ack == true 

 incoming_packet == good 

Table 2: List of WMP conditions to define contention-based MAC programs 

As in the previous case, the 802.11 conditions list presents differences with respect to 
the general WMP condition list (see Table 2). For example, the conditions on the 

queue type or the queue length (used for supporting QoS or enabling the RTS/CTS 
handshake) are not included in the core of DCF operations, since standard DCF does 
not support QoS. As well, we add a condition on the source address and, specify the 

values of each possible register (e.g., the frame type: ACK, BEACON, DATA), and 
differentiate the ACK activation condition at the receiver and transmitter sides. We 

also include a condition on the state of the enqueued packets. As the WMP may rely 
on multiple timers, an explicit register is dedicated to signal the state (activated or 
not) of each timer. 
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Actions 

Actions are the hardware-specific operations performed by the WMP during state 

transitions. As well as in previous cases, actions, presented in Table 3, are specialized 
by considering a reference 802.11 transceiver (e.g.: the Broadcom card used during 

the prototyping activities).  

The set/get configuration actions have been currently limited to the selection of the 
operating channel (mapped into a dedicated set_channel() action) and to the 

configuration of the transmission rate according to the parameters indicated by the 
descriptor associated to each outgoing packet (tx_info_update()). In addition, we add 

an explicit action for performing noise measurements, noise_measurement(), as most 
of the transceivers allow a similar operation that can be useful for many applications, 
e.g.: setting gain control. The actions related to the reception process have been 

divided into two phases:  

 The reception of the PLCP (rx_PLCP()) dedicated to the identification of a valid 

preamble and to the preparation of the MPDU demodulation. 

 The demodulation of the MPDU during which the ACK frame should be prepared in 
case the received packet requires it (rx_complete()). 

General Actions 802.11 Actions 

set/get(reg,value) tx_info_update() 

 set_channel(value) 

switch_RX()  

 rx_plcp() 

 rx_complete() 

 noise_measurement() 

tx_frame(type) tx_frame(type) 

switch_TX()  

set_timer(value) set_timer(value, i) 

set_bk() set_bk() 

freeze_bk()  

update_retry()  

 contention_params_update() 

more_frag()  

prepare_header() rx_frame == value 

 report_TX_to_host() 

 manage_rx_error() 

 manage_tx_error() 

 remove_frame() 

Table 3: List of WMP actions to define contention-based MAC programs 
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The implementation of the update_retry() action and the setting up of the contention 

window are embedded into a single contention_params_update() to be invoked at the 
end of each transmission for updating (according to the DCF exponential backoff 

rules) the contention parameters as a function of the transmission outcome. 
Moreover, we add some error management functions for dealing with transmission 
and reception errors performing the necessary reset operations, and errors on the 

format of the enqueued packets (remove_frame()). Finally, a report action is included 
for notifying the outcome of each frame transmission to the FLAVIA Information Base, 

assuming that this type of events is always subscribed by the upper DCF operations.  

 

 3.2  Interactions between Lower and Upper MAC  

Different MAC machines can be loaded on the WMP and enabled/disenabled according 
to some switching events programmed by the user (by means of the FLAVIA Control 
System interface, IAP4) or by upper services. This feature allows to immediately 

extend DCF for supporting PCF (or HCCA), by loading DCF and PCF state machines 
and by opportunistically triggering the state machine switching (e.g. starting PCF at 

each beacon reception and switching back to DCF after the reception of the CF-END 
packet and CF period expiration). The WMP exposes a set of primitives to the FLAVIA 
control system for uploading the state machines, specifying the activating conditions 

and enabling code switching.  

The diagrams depicted from Figure 3 to Figure 6 summarize the message sequences 

for performing these operations. 

Loading 

A new state machine can be loaded by means of the write(bytecode,i) primitive, 

whose parameters are the machine bytecode representation and the program slot. 
The Wireless MAC Processor confirms the success (or not) of the loading operation, 

confirm(ready_code, i), according to the state of the machine slot indicated by the 
write primitive.  
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Microinstruction 
Memory

WMPFLAVIA Control

write(bytecode, i)

confirm(ready_code, i)

accept_codei == 0,1

ready_codei = 0,1

 

Figure 3: MSC loading operation 

Starting 

The MAC machine loaded on the i-th slot is started by means of the run(i) primitive, 

whose effect is updating the program pointer memory_slot and calling the bootstrap(i) 
primitive for the initialization of the machine. A confirmation message is sent back to 

the FLAVIA control system. 

Microinstruction 
Memory

WMPFLAVIA Control

run(i)

confirm(1, i)

ready_codei == 1

memory_slot == 0

memory_slot = i
bootstrap(i)

Microinstruction 
Memory

WMPFLAVIA Control

run(i)

confirm(0, i)

memory_slot == 0

ready_codei == 0

 

Figure 4: MSC starting operation 

 
Switching 

The switching operation is similar to the starting operation, but in this case the run(i) 

primitive triggers the update of the program pointer from a non-null condition (i.e., 
the pointer was containing a valid program slot). Alternatively, the switching signal 

can be generated internally by the machine under execution. 

 

Synchronizing 

The FLAVIA Control system can register an event for triggering a code switching by 

means of the write_sync(event) primitive, whose parameter represents the desired 
synchronization signal.  
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WMPFLAVIA Control

write_sync(event)

 

Figure 5: MSC synchronizing operation 

 

Verifying 

Optionally, the WMP can internally run the verify() primitive before accepting an 

incoming bytecode for recognizing trusted bytecode sources. 

Microinstruction 
Memory

WMPFLAVIA Control

write(bytecode, i)

confirm(ready_code, i)

accept_codei == 1

verify(bytecode)==OK

ready_codei = 0,1

 

Figure 6: MSC verifying operation 



 

 

 
FLAVIA  

FLexible Architecture  

for Virtualizable wireless future Internet Access 
 

Grant Agreement: FP7 - 257263 

  
 

 

 

Deliverable 4.1.2  Version: 1.0 Page 20 of 74 
 

 

 4  802.11 Architecture: Service & Function Modules 

In this section we describe two essential architectural containers that enable to 

develop and extend the MAC functionalities of the 802.11 node, the Service Scheduler 
and the Function Container. As well, we comment on the set of modules, compound of 
services and functions, which are developed within this project extending the 

modularity and flexibility of the 802.11 MAC. 

 

 4.1  Containers 

Motivated by the necessity to provide an integrated middleware to easily develop new 
services and functionalities operating at the MAC layer, we design two components of 

the FLAVIA architecture that are liable for managing the scheduling of new services 
(Service Scheduler) and the registration of enhanced functions (Function Container) 
that permit to easily extend the basic functionalities provided by the 802.11 DCF. In 

the following sections, we describe the architecture of these two containers, detailing 
their static interfaces that permit accessing their services and the interactions with 

other entities that may occur during their execution. 

  

 4.1.1  Service Scheduler 

The Service Scheduler is the architectural entity that allows the instantiation and the 
execution of new services, like monitoring, advanced data transport, misbehaviour 

detection and power saving. Specifically, this entity schedules the synchronous or 
asynchronous execution of the functions registered by any FLAVIA service during its 

initialization phase. 

The registration and the execution of the main services procedures (i.e., the main 
entry point of the service’s flow control) represent therefore the core functionalities 

provided by the Application Programming Interface of this component, since they 
enable the modular and flexible configuration of new services within the FLAVIA 

framework, focusing only on the development of the main service functionalities. 
Indeed, the Service Scheduler permits to divide the configuration and consistency 

control of the service from its execution, thus simplifying considerably their 
development. 

Furthermore, this approach enables the maintenance and the optimization of any 

single component, which contributes to the implementation and execution of a FLAVIA 
service, removing the need of a costly redesign of the entire system for the support of 

more sophisticated functionalities. 

As illustrated in Figure 7, the Service Scheduler is composed of three main 
components: the Controller, which provides the interfaces for the registration, the 

configuration and the consistency control of a new service, the Container, which 
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stores the services that have been registered for their utilization and composition, and 
the Scheduler, which implements all the functionalities necessary to schedule the 

execution of the services according to a particular policy (e.g., based on the priority, 
the estimated execution time, etc.). 

 

Figure 7: Service Scheduler architecture 

Figure 8 illustrates the typical instantiation and execution of a new service within the 

FLAVIA architecture. The module implementing a FLAVIA service invokes the 
registration function provided by the Service Scheduler (i.e., 

flavia_register_service_tsf_sync() and flavia_register_service() called by services that 
require, or not, the synchronization with the Time Synchronization Function, 

respectively), passing as arguments the handler of the main service function that 
must be executed synchronously or asynchronously and a list of parameters used for 
the configuration of the service, e.g.: the scheduling period (interval between two 

consecutive executions of the service function), the events, whose occurrence cause 
the start and the termination of the service execution, the priority of the service, and 

the parameters used to set the internal configuration of the service. 

Upon the registration of the service function, the Controller invokes the Consistency 
Manager to verify the correct configuration of the service (correctness of the 

parameters provided during the registration) and of the entire system (existence of 
the services and functions necessary to execute the loaded service). In case of a 

successful registration, the Controller replies with a positive acknowledgment to the 
module that is loading the service. Then, this module invokes the execution of the 
main service function (i.e., the entry point of the service defined by the service 

designer), according to the scheduling policy provided as argument at the registration. 

Finally, at the occurrence of the termination condition configured at the registration, 

the Scheduler stops the execution of the main service function and informs the calling 
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module of the service termination, in order to perform all the operations necessary to 
correctly terminate/unload the service (flush out the memory, reconfiguration of the 

hardware, termination of the scheduled transmissions, etc.). Note that the termination 
phase might never occur. 

Service Service Scheduler Consistency Manager

Registration

Consistency Check

Start Execution

Stop Execution

 

Figure 8: Sequence diagram of a service instantiation through the Service Scheduler 

The Scheduler component coordinates the execution of all services registered through 
the FLAVIA framework. More specifically, this element implements the data structures 

and procedures that handle the concurrent execution of the main service functions 
according to the policy configured at the registration. Indeed, the Scheduler 
guarantees that the main service function of synchronous services is called within the 

configured time constraints in a real-time fashion. Further, it prevents the occurrence 
of race conditions due to the concurrency among the services (e.g.: deadlocks, 

starvation, misconfiguration of the hardware resources), by coordinating the access to 
the set of available resources used by the services. 

 

 4.1.2  Function Container 

The Function Container represents the entity of the FLAVIA architecture that handles 

the set of functional resources, which extends the basic functionalities of standard 
contention-based MAC protocols. Note that the functions use the set of commands 

defined and implemented by the underlying hardware. Therefore, the set of functions 
designed and implemented through the FLAVIA architecture must be based on the 
features supported by the hardware. 

The Function Container, whose architecture is depicted in Figure 9, is composed of 
two main elements: the Controller, which provides the interfaces for the configuration 

of new functions and their registration on the occurrence of events generated by the 
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MAC protocol (implemented using the corresponding software hooks), and the 
Container, which stores all the functions for their utilization and composition in order 

to implement enhanced services. 

In addition, the Controller implements the procedures required to execute the 

functions at the occurrence of the corresponding events. 

 

Figure 9: Function Container architecture 

Table 4 summarizes the list of events that occur during the execution of the 802.11 

MAC protocol and the corresponding FLAVIA hooks on which can be registered new 
functions to extend the functionalities of the basic MAC protocol. 

Event Hook Description 

Frame Reception ieee80211_rx This event occurs when a frame is 

received by the MAC protocol of a 

wireless interface. 

Frame Queuing ieee80211_tx This event is raised after the frame 

has been created, just before to be 

sent to the queues of the underlying 

hardware. 

BSS Association ieee80211_associated When an 802.11 entity (e.g. a STA) 

gets associated to a BSS, the BSS 

association event is generated. 

BSS Disassociation ieee80211_disassociated When an 802.11 entity (e.g. a STA) 

receives a disassociation frame, the 

BSS disassociation event is 

generated. 

Probe Request 

Reception 

ieee80211_req_rx This event occurs within the MAC 

protocol at the reception of an 
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802.11 Probe Request. 

Probe Request 

Transmission 

ieee80211_req_tx This event is generated after the 

creation of a probe request frame, 

just before its delivery to the driver 

for the successive transmission. 

Probe Response 

Reception 

ieee80211_res_rx This event occurs within the MAC 

protocol at the reception of an 

802.11 Probe Response. 

Probe Response 

Transmission 

ieee80211_res_tx This event is generated after the 

creation of a probe response frame, 

just before its delivery to the driver 

for the successive transmission. 

Beacon Reception ieee80211_beacon_rx The reception of a beacon frame 

triggers the Beacon Reception 

event. 

Beacon Creation ieee80211_beacon_set After the creation of a beacon 

frame, just before its delivery to the 

driver for the successive 

transmission, the Beacon Creation 

event is raised. 

Beacon Creation IE ieee80211_beacon_set_ie This event is generated when the 

MAC protocol begins the creation of 

the Information Elements, which are 

used to advertise auxiliary 

functionalities supported by the BSS 

Table 4: Events generated by the 802.11 MAC protocol and their corresponding hooks 

Upon the occurrence of an event, the Controller of the Function Container triggers the 
execution of all functions that have been registered on the corresponding hook, 
according to the execution policy and the function priority defined at the registration. 

 
Illustrative Example 

To better clarify the execution process of a function defined within the FLAVIA 
architecture, let us refer to the scenario depicted in Figure 10, which shows the 

sequence diagram of the tasks performed when a new frame is received by the MAC 
protocol. In this example, we assume that two FLAVIA services, Monitoring and SPS, 

have been loaded to extend the basic functionalities of the 802.11 DCF. Furthermore, 
we assume that the two services register the functions parse() and stats() on the 
occurrence of the events FRAME_RECEPTION and SPS_PROBE, respectively. 

When a new frame is received, the MAC protocol triggers the FRAME_RECEPTION 
event that is captured by the Controller of the Function Container. The Controller 

inquires the Container to get the list of functions that have been registered on the 
corresponding hook (i.e., ieee80211_rx()). In the figure, the Container returns the 
identifier Mon.parse(), namely the frame parsing function registered by the Monitoring 
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service. Then, the Container executes the function Mon.parse() that performs the 
parsing of the received frame, detecting that is a probe packet generated by the SPS 

service. Therefore, the function Mon.parse() triggers the custom event SPS_PROBE on 
which the SPS service has previously registered the function SPS.stats(), which 

according to the information contained in the probe packet updates the information 
about the link quality. Note that the execution of SPS.stats() is performed by the 
Function Container after the occurrence of the SPS Probe event, similarly to the 

execution of Mon.parse().  

The events are represented with capital letters, whereas the invocation of the function 

registered on the corresponding event is denoted with the calls Mon.parse() and 
SPS.stats(). 

MAC protocol Controller Container Monitoring SPS

FRAME_RECEPTION

Mon.parse()

SPS_PROBE

SPS.stats()

 

Figure 10: Tasks performed upon the occurrence of the event FRAME_RECEPTION 
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 4.2  Services 

In this section we present the representative set of service modules, and their 
characteristic services, that an 802.11 node provides to achieve the basic 

functionality, as well as some new features inline with FLAVIA vision. Table 5 
summarizes this set of modules with their corresponding acronym and a short 

description.  
 

Module Short 
name 

Description 

Advanced 

Transport  

ATRAN It provides extended operations for sending and receiving the 

MPDU across the driver and the wireless processor, and for 

managing multiple virtual queues. 

Extended 

Passive 

Monitoring 

MONI It analyses the available radio spectrum, collecting information 

on the quality of each link, in order to choose the best available 

one for transmission. 

PHY Resource 

Management 

PHYR It allows the configuration and query of basic PHY layer 

parameters, as well as enabling the rate adaptation service. 

SuperSense SPS SPS coordinates active and passive monitoring activities among 

several devices, in order to minimize the interference and select 

the best network configuration. 

Misbehaviour 

Detection and 

Reaction 

MDR The MDR module detects and handles the misconfiguration of 

802.11 parameters, avoiding possible selfish behaviours of the 

nodes. 

MAC 

Management 

MGMT It performs the basic set of management operations, depending 

on the node operation, such as: beaconing, authentication and 

association. 

Power Saving PS The power saving service enables the configuration of different 

power save modes and policies, according to user and 

application requirements, including tuning on/off the radio. 

Table 5: FLAVIA 802.11 modules 

The modules are composed of different services that implement, extend and improve 
certain functionality. At the same time, the services invoke functions, such as 

frame_forging() or listen_channel(), which send the appropriate commands to the 
hardware. Part of these services will interact directly with the upper layers, as in the 

case of advanced transport or power saving, whereas other services configure 
MAC/PHY and collect statistics. Additional services can be added for dealing with 

technology-specific capabilities of different platforms.  

Figure 11 gives a more detailed perspective of the different modules proposed and the 
corresponding services envisioned for each of them. In the following, we describe the 

operation of the new modules and services, and of those which have experienced a 
substantial change with respect to the previous deliverable. For legacy modules, such 

as MAC Management, for the sake of clarity, the details can be found in the previous 
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deliverable 4.1.1 [2].  

 

 

Figure 11: 802.11 service modules overview 

 

 

 4.2.1  Advanced Data Transport 

Data transport with parameterized QoS service allows traffic with special MAC layer 
transmission requirements to be accommodated. For example, multimedia traffic, 
such as a VoIP or Video traffic, usually requires low and stable end-to-end delay and 

low packet loss probability. The service is provided both in single-hop and multi-hop 
networks. The FLAVIA framework allows to define different functionalities to be 

composed for the creating of a given data transport service (as illustrated in Appendix 
A for the definition of a multi-hop data transport service).  

An important aspect to be considered for the data transport definition is the packet 

classification and queuing process. For common contention-based systems we follow 
the queue scheme depicted in Figure 12. All the packets have to be ultimately 

transmitted in the air according to the MAC rules. The MAC transmission rate (which 
depends on many factors including network load, channel quality, retransmissions, 
etc.), corresponds to the rate at which the packets are drained in the so called “air-

queue”, i.e. the queue from which the MAC protocol takes the packets to be passed to 
the trans-receiver.  
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Figure 12: Queue scheme of a contention-based system 

 

On top of the air queue, a hierarchical tree of queues may be defined for prioritizing a 
given type of traffic and controlling different traffic flows. In order to perform this 

packet sorting, a classifier must be introduced.  

In FLAVIA, thanks to the multi-thread capability of the WMP, multiple air queues 

(generally linked to different MAC machines and corresponding to multiple logical 
wireless interfaces) can be available as depicted in Figure 13. A data transport service 
can therefore be defined by exposing N air queues to the upper layers. A 

straightforward exploitation of this capability is the definition of the EDCA queue 
structure of the IEEE 802.11e protocol [11]. Air queues can be used by independent 

MAC machines or by a multi-queue MAC machine as indicated in Figure 13.  
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Figure 13: FLAVIA contention-based traffic architecture 

Packet Scheduling Service 

An important module of the data transport is the packet scheduling service, since it 
allows to define the queuing policy for each interface and to bind the upper queues to 

the physical air queues. This module provides functionalities for creating/destroying 
the queues, binding filters to the queues for accepting packets matching specific 
conditions, or linking the queues to the air queues.  

The basic element of the scheduling service is the queue that stores the packets while 
they wait for being processed. Different kind of queues can be defined, exposing each 

of them the following set of functionalities: module initialization, packet enqueue, 
packet dequeue and packet drop. The diverse queues are organized in a tree 

hierarchy to perform traffic classification. Each queue has a unique identifier and can 
be inserted in the tree or removed from it. In order to manage the queues, the service 
allows tree traversing. Besides, storing a packet in a specific queue is achieved by 

means of the filters defined for each of the tree leafs. Filters can be attached to or 
removed from a queue, being also configurable the parameters of the filter. 

Interaction with the air-queue 

Each queue hierarchy is connected to the air queue by a direct connection. The air 
queue can control the rate at which packets are sent from the upper queues. To 

accomplish this, the queue tree must support the functionalities of stopping packet 
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dequeue or resuming it. 

The direct connection between the tree and the air queue assures that: i) the air 

queue does not lose packets, relaying the control of dropping packets to the packet 
scheduling service; ii) the draining rate of the air queue is controlled by the specific 

air interface of the MAC. 
 

 4.2.2  Extended Passive Monitoring 

The FLAVIA Monitoring (MONI) module provides a set of passive monitoring services 

able to measure several parameters related to radio channel conditions, capabilities of 
neighbouring nodes and also provide estimation of MAC 802.11 parameters based on 

measurements. Each node performs PHY/MAC layer measurements within the time-
scale of microseconds, based on all types of 802.11 frames (data, management, and 
control). The passive measurements are performed along with the normal activity of 

the wireless card and reported periodically to the Information Base. The MONI module 
supports multiple network interfaces per node. The results of MONI measurements are 

utilized mainly by the following modules:  

 Misbehaviour Detection and Reaction. 

 Consistency Manager. 

The results are made available to all FLAVIA framework modules and user space 
applications through the Information Base module.  

The MONI module works on a frame level – this means that all frames sent and 
received by each network interface can be examined by the MONI module functions. 

This imposes high requirements on the MONI module on the effectiveness of the 
frame analysis (i.e., limited computational power available at the nodes should be 
taken into account). 

The measurement functions require access to the header of each frame and to frame 
timing information, to discover the following parameters per each neighbouring 

station interface: 

 Sender/receiver MAC address 

 Operation mode 

 Service Set Identifier (SSID) 

 Channel 

 Supported rates 

 Frame type 

 Preamble type 

 Priority of received frame 
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 Frame length 

 Timestamp of RX/TX frame 

 Correctness of received frame 

 RX power and RX noise 

 Duration field 

 

Based on the above listed parameters the following parameters are obtained: 

 Number of active nodes in the neighbourhood 

 Number of received frames 

 Number of transmitted frames 

 Frame Error Rate (FER) 

 Bit Error Rate (BER) 

 Per AC and overall uplink delay 

 L1, L2, and L3 throughput 

 Percentage of channel occupancy 

 The approximate remaining L1/L2/L3 link capacity 

 Number of retransmissions 

 NAV 

 Backoff 

 IFS 

 

The MONI component consists of following sub-modules, depicted in Figure 14: 

 Passive scan. 

 Capability discovery. 

 Timeline generation to allow the extraction of EDCA parameters (cf. Section 
4.2.3). 

 

MONI implements the following interfaces: 

 To the Service Scheduler, that is used to load and unload the service. 

 To the Information Base, utilized to store monitoring results. 
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Figure 14: MONI module components and interfaces 

The MONI modules are described in detail in D4.2 [3]. In Figure 15, the message 

exchange diagram corresponding to the MONI service operation is presented. 

User Control module Service container Function container Information base

run MONI

load MONI service REQ

load MONI service RSP

MONI enabled Passive scan REQ

Passive scan RSP

Capability discovery REQ

Capability discovery RSP

MAC parameters calculation RSP

MAC parameter calculation REQ

Update DB REQ

Update DB REQ

Update DB RSP

Update DB RSP

Stop MONI

Stop MONI service REQ

Stop MONI service RSP

MONI disabled

repeat

 

Figure 15: MONI module operation message sequence chart 
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 4.2.3  Misbehaviour Detection and Reaction 

The Misbehaviour Detection and Reaction (MDR) module is responsible for handling 

the misconfiguration of 802.11 parameters. As described in Annex A of D4.2 [3], its 
operation is based on network measurements obtained from the monitoring module 

(MONI) and stored in the Information Base (IB), as well as detailed timestamps 
obtained from the Wireless MAC Processor (WMP). Based on these measurements, it 
detects misbehaving nodes and applies methods to encourage such nodes to 

cooperate. These methods are then applied by configuring the medium access control 
function in WMP.  

In this section we provide a revision of the MDR architecture proposed in Annex A of 
D4.2 [3]. First, we describe the overall module architecture, its interoperability with 
other modules including message sequence charts. Second, we describe the operation 

of MDR in four cases:  

 Incorrect setting of EDCA parameters. 

 Setting the TX power above the allowed limits. 

 Sending false management frames. 

 Reacting to misbehaviour. 

MDR interoperates with two modules. In order to detect misbehaviour it obtains from 
IB measurements of the wireless channel made by MONI and detailed timestamp 

information from WMP. To appropriately react to misbehaviour it modifies the medium 
access function in WMP. Figure 16 presents a general overview of the data exchanged 

between the abovementioned modules (the arrows indicate the flow of data).  
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Monitoring 
(MONI)

Misbehaviour 
Detection and 

Reaction (MDR)

Store measured data

Wireless 
Processor

(WP)

Apply configuration profile

Information Base 
(IB)

Retrieve measured data

Check for misbehaviour

Retrieve timestamps

 

Figure 16: Overview of MDR operation 

 

Figure 17 presents the message exchange diagram corresponding to the operation of 

the MDR service, while Figure 18 depicts the components and interfaces of the 
module. 
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User Control module Service container Information base

run MDR

load MDR service REQ

load MDR service RSP

MDR enabled
Data REQ

Data RSP

Stop MDR

Stop MDR service REQ

Stop MDR service RSP

MDR disabled

repeat

Wireless Processor

select reaction method

update configuration profile REQ

update configuration profile RSP

Data REQ

Data RSP

detect misbehaviour

 

Figure 17: Message sequence chart of the MDR module 

MDR

outMD_pWP

pIB_inMD

outMD_pWP

pIB_inMD

Data From Information Base

Misbehaviour Detection

outMDoutMD

Misbehaviour Reaction

inMRinMR

Misbehaviour
Configuration profile to Wireless Processor

pWP_inMD

Data from Wireless Processor

 

Figure 18: MDR module components and interfaces 
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EDCA parameter misbehaviour 

 

Based on the data obtained from the IB and WMP, MDR is able to evaluate the IEEE 
802.11 EDCA MAC parameters employed by an observed node. This is done by 

creating a detailed timeline of events and then extracting relevant information. The 
evaluation of certain MAC parameters (e.g., NAV and TXOPLimit) is a straightforward 
comparison with the standard values. However, the obtaining the values of AIFS, 

CWmin and CWmax require an analysis of the distribution of the inter-frame space 
between consecutive transmissions by a given stations, to allow us calculate these 

values (Figure 19). The correct setting of the CW values will be detected based on 
inter-frame space distribution with the use of any of the following methods: chi-
square test, mean test, and entropy test. The number of employed CW detection 

methods can be extended. These methods have configurable parameters, which 
determine the number of false positives. The methods can also be configured to 

measure either actual or only consecutive backoff [14] as well as take into account all 
backoff values or only those for which the frames had their retry bit set to 0 [15]. 

O
cc

u
ra

n
ce

s

IFS
AIFS CWmin CWmax  

Figure 19: Distribution of IFS 

High TX power 

Not all the cases of operation with abnormally increased transmission power can be 
detected. In this implementation of the MDR module only cases when the increased 

TX power influences the performance of the network are considered. Such an 
approach excludes a set of problems where mobile stations are placed very far from 
the access point and use increased TX power and a highly directive antenna. 

In this set of problems, the value of the EIRP (Equivalent Isotropic Radiated Power) 
can violate regulatory limits; still, from the network point of view, the station can 

exhibit no misbehaviour. Detection of the abnormally increased TX power is divided 
into two stages. In the first stage, the average RX power of the station under study is 
compared to maximum allowable TX power value, which is set according to the 

regulations applicable in the particular country. It is defined as a maximum RX power 
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value obtainable for a reference 10-meter long link consisting of transmitter operating 
with maximum allowable TX power and a reference receiver equipped with a half wave 

dipole antenna. The second stage covers less obvious cases where the average RX 
power stays within the limit of allowable values. This stage differs depending on 

station operation mode. When the station under study operates in single rate mode, 
the difference in the retransmission rate of frames exchanged between the local 
station and the station under study is examined. Otherwise, when the examined 

station uses a rate adaptation algorithm, misconfigured TX power is detected based 
on differences in data rate usage statistics recorded during communication from the 

local station to the station under study, and in the reverse direction. Additional 
measures may need to be taken into account if the two nodes use antennas with 
different gains or the channel is not perfectly symmetric (such as indoors). 

Furthermore, due to the nature of the detection algorithm, in most cases stations with 
misconfigured TX power can be detected only during active data exchange. 

 

Figure 20: High TX power detection algorithm 
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False management frames 

Detecting a high number (flood) of false management frames is based on a 

straightforward comparison of the number of their occurrences with predefined 
thresholds set for a given time frame. The following frame types will be checked for 

flooding attacks: RTS/CTS, beacon, authentication and deauthentication. Additionally, 
MAC spoofing may be detected by comparing the measured SNR value of consecutive 
frames transmitted from a given MAC with a predefined limit. 

 
Reacting to misbehaviour 

The reaction part of the MDR service will apply one of the following three methods to 
encourage correct behaviour: dropping acknowledgement (ACK) frames [16][17], 
selective frame jamming [18], and applying a game-theoretic strategy of adjusting 

the CW values to achieve an efficient operating point [19]. All these methods send 
appropriate configurations to the WMP to change its behaviour. The methods are 

applied when misbehaviour is detected and are suppressed when the misbehaviour 
ceases. 

 

 4.2.4  SuperSense 

The virtualization and flexibility features of the FLAVIA architecture foster the 

development of SuperSense (SPS), an innovative monitoring service that dynamically 
analyses the available wireless spectrum using both passive and active techniques to 

estimate the best network configuration. SPS analyses continuously the available 
wireless channels to select the set of parameters that provides the best network 
performance. 

The monitoring activity is performed concurrently to the data TX using two virtual 
interfaces operating over a single physical interface. The virtualization module is liable 

for scheduling the activities of the different virtual interfaces, representing the two 
operation modes, in order to fairly distribute the radio resources. In particular, the 
time spent for data transmission and active monitoring tasks is scheduled according to 

a time division mechanism implemented using a preemptive weighted round robin 
policy. 

This module sets and manages the total duration of a SPS period and the specific 
length of the operation modes by introducing a new data structure, the super-frame. 
The duty-cycle of the super-frame, representing the alternation of transmission and 

monitoring phases along with the time assigned to each activity, is broadcast using a 
new Information Element (IE) contained in the beacon. As illustrated in Figure 21, the 

IE contains two main variables, namely m and e, which are used by all devices to 
compute the overall duration of the super-frame, TSPS, and the time spent to perform 
the active monitoring, TMON, according to the following equation: 
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Figure 21: SPS Information Element 

 

Figure 22 illustrates the super-frame defined by the SPS service. Every super-frame 
always starts with an active monitoring period followed by a transmission period, in 

which all nodes that belong to the same BSS operate using the same medium access 
mechanisms (either CSMA/CA or TDMA) to transmit their data traffic. During an active 
monitoring frame, only one node is allowed to send probes on the wireless channel in 

order to estimate actively the quality of the wireless links established with nearby 
nodes and the interference that might be generated by external sources. 

Note that the SPS service requires that all devices are capable of supporting its 
functionalities. To this end, SPS nodes communicate the service activation to the rest 

of nodes. Therefore, all the nodes should disable the SPS service, if they detect the 
presence of nodes that do not support SPS. 

 

Figure 22: SPS super-frame 

 

SPS collects several statistics used to assess the optimal network configuration or 
used by other services to optimize their internal configuration according to the 
channel conditions. For each available wireless channel and data rate transmission, 

SPS measures: (i) frame loss and delivery rate (also known as link quality); (ii) 
temporal and spatial frame reception correlations; (iii) expected frame delivery 

probability based on RSSI measurements.  

The passive monitoring activity, explained in Section 4.2.2, is performed continuously 
and thus simultaneously to other activities like data transmission. 

Figure 23 presents a comprehensive message exchange diagram corresponding to the 
SPS service operation, by indicating the messages and interfaces regarding the 

communication between the different modules. Besides, Figure 23 provides the reader 
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with a schematic view about how the service is loaded and set up and, within the 
framework, how the service is stopped and unsubscribed. 
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Figure 23: SPS message exchange 
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 4.2.5  Power Saving 

PS service module enables various power saving algorithms to be easily implemented 

through specifying helpful functional blocks and their interactions with other services, 
functions or the Information Base. The development of power saving mechanisms can 

also benefit from a modular and flexible architecture. FLAVIA offers a framework 
whereby tasks such as monitoring, frame forging, or sleep/awake transitions are 
exposed as online functional blocks that are provided with a common shared data 

space. 

We envision two categories of potential PS mechanisms that can be implemented: 

 Sleep/awake mechanisms: These mechanisms schedule intervals when a 
wireless interface dozes, being in a low-power state, and intervals when it 

becomes active by idling, transmitting or receiving. 

 PHY/MAC adaptation mechanisms: These mechanisms adapt different PHY 
parameters (e.g., transmission power, modulation coding scheme), and/or MAC 

parameters (e.g., EDCA parameters, user association policies). 

We propose a PS mechanism, named NoA/ASPP, a sleep/awake mechanism. Adaptive 

Single Presence Period (ASPP) [12] is a novel power saving algorithm to adaptively 
control the Notice of Absence (NoA) protocol specified by the WiFi Alliance. NoA has 
been proposed in order to provide energy savings to all devices (including AP-alike 

agents) in a WiFi-Direct network, a peer-to-peer wireless communication technology 
specified by the WiFi Alliance. 

The wireless stack is the reference framework where to incorporate this PS module. 
The services that compose this module are liable for handling and loading the 
developed PS algorithms, respectively, PS mode management and PS mode policy. 

Finally, our PS mechanism requires triggering sleep/awake events. This action is 
ultimately performed by hardware through setting the proper hardware registers 

accordingly. For that purpose, we specify a primitive to command the hardware to 
perform certain atomic and hardware-specific tasks, e.g., change its state to a low 
power state (sleep). 

 drv_flavia_ps_notify(): This is a notification primitive and requires drivers to 
handle it. Thus, we push all the “intelligence” to the upper layer, designing this 

way a hardware-agnostic power saving framework. 

In order to support sleep/awake transitions, typically required by power saving 
algorithms, it is still needed that drivers/firmware support sleep/awake events (issued 

by the previously mentioned primitives of the PS service).  
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 4.2.6  Rate Adaptation 

An important functionality FLAVIA architecture incorporates is the H-RCA rate 

adaptation mechanism [13]. H-RCA is another relevant example of how new 
functionality can be incorporated in the wireless stack thanks to the flexibility offered 

by FLAVIA, in order to enhance the performance of practical WLAN deployments. Rate 
control constitutes a fundamental building block of current devices that seeks to select 
the appropriate transmission rate, such that reliable communication is possible even 

under suboptimal propagation conditions.  

The available rate adaptation solutions only rely on SNR and basic packet loss ratio 

(PLR) statistics, and often make inappropriate rate selection decision due to their 
inability to distinguish between channel error and collision induced losses. Thus, the 

solution adopted in FLAVIA relies on a packet-pair sampling technique to decide the 
most appropriate modulation scheme under current conditions, which is able to 
minimize the average MAC delay and provide higher and stable throughput. 

The H-RCA operation consists of the following steps: 

 The supported rates set is retrieved from the Information Base and sorted in 

increasing order. 
 Rates ri for which the PLR in given channel conditions is higher than the PLR for 

a higher rate rj are identified and these rates are excluded from the rate-set. 

 Data transport service is requested to configure the transmission opportunity 
(TXOP) parameter to permit the observation of packets solely susceptible to 

loss through channel noise and distinguish transmission failures that occur due 
to collisions. 

 For each rate, compute a critical PLR value, the rate-lowering threshold, above 

which a lower rate would give higher throughput. 
 Employ Bayesian inference on transmission statistics passed by the data 

transport service to determine if the PLR of the current rate is above a rate-
lowering threshold. 

 Set the rate increase frequency such that the opportunity-cost of sampling a 

higher rate is kept below 5%. 
 Increase the rate when N successful transmissions not necessarily consecutive 

are observed at the current rate, being N larger than the successful 
transmission threshold (STh). 

Table 6 summarizes the TXOP and STh parameters for the 802.11a PHY corresponding 

to each of the rates in the available set, while Figure 24 overviews the H-RCA 
operation. 
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Rate (Mbps) TXOP (for 1000 B packets) STh 

6 0.0030s 361 

12 0.0016s 589 

18 0.0011s 779 

24 0.0009s 893 

36 0.0007s 1140 

48 0.0006s 1349 

54 0.0005s NA 

Table 6: 802.11a TXOP Parametrization 

H-RCA Data Transport Information Base

get PHY rates REQ

set default rate REQ

get PHY rates RSP

set default rate RSP

set TXOP REQ

set TXOP RSP
Compute rate 
lowering PLR 

thresholds

select lower rate REQ

select lower rate RSP

set TXOP REQ

set TXOP RSP

Compute STh

select lower rate REQ

select lower rate RSP

set TXOP REQ

set TXOP RSP

Gather TX stats

If PLR > rate lowering 
threshold

If # successes > STh

Gather TX stats

Estimate PLR for each rate

Exclude 
suboptimal rate

 

Figure 24: H-RCA operation 
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 4.3  Functions 

In this section Table 7 collects the set of functions utilized by the different 802.11 
services and the description of their functionality. 

Function Description 

flavia_service_scheduler_init() It initializes the Service Scheduler 

creating a single thread workqueue to 

manage the services 

flavia_service_scheduler_exit() It unloads the service scheduler, 

deleting the auxiliary structures like the 

workqueue 

flavia_register_service(service_handler, 

config_params) 
It registers the service into the Service 

Scheduler 

flavia_register_service_tsf_sync(service_h

andler, config_params) 
It registers a service, which must be 

synchronized with the TSF, into the 

Service Scheduler 

flavia_remove_service() It stops the pending timers and deletes 

the corresponding work from the 

workqueue 

flavia_ss_timer_function() It adds the work implementing 

flavia_service_hook_container on the 

workqueue used by the Service 

Scheduler to handle services 

flavia_service_hook_container() It invokes the function registered by the 

service and reschedules the timer that 

executes flavia_ss_timer_function 

flavia_service_hook_container_tsf_sync() Like the previous one, but requiring 

synchronization with the TSF module 

flavia_function_handler_init() It performs consistency checks and 

initializes the internal data structures to 

fulfil the management task 

flavia_function_handler_exit() It removes the functions registered on 

all hooks and deletes the structures to 

free their memory space 

flavia_register_function() It registers a new function on a hook in 

the Function Container 

flavia_remove_function() It deletes a function registered on a 

hook when a service is removed 

flavia_function_hook_container() It invokes all functions defined on a 

specific hook when triggered to be 

executed 

frame_forging() It forges the creation of a solicited frame 

fetch_defer_params() It loads the transmission parameters, 

i.e., SIFS, BO, … 



 

 

 
FLAVIA  

FLexible Architecture  

for Virtualizable wireless future Internet Access 
 

Grant Agreement: FP7 - 257263 

  
 

 

 

Deliverable 4.1.2  Version: 1.0 Page 46 of 74 
 

 

defer() It defers the transmission of a frame 

when sensing the medium busy 

incrementing the BO counter 

check_frame() It checks the type of the incoming frame 

drop_frame() It drops the frame if there is any error or 

the maximum retry limit was reached 

PDU_enqueue(MPDU) It adds to the transmission queue a new 

packet pending to be transmitted 

PDU_dequeue() It dequeues from the transmission 

queue a packet ready to be transmitted 

PDU_schedule(MPDU) It schedules the transmission of a packet 

flavia_sps_init()  It initializes SuperSense module 

flavia_sps_init_tsf_polling() It starts polling 

flavia_sps_exit_tsf_polling() It ends polling 

flavia_sps_set_superframe_ie() It configures the Information Element to 

be included in Beacons that defines the 

SPS superframe 

flavia_sps_start_tsf_polling() It starts polling once the station is 

associated 

flavia_sps_tsf_superframe() It computes the length of the 

superframe, according to the 

Information Element in the Beacon 

frames 

flavia_tx_to_mon_mode() It toggles operation from TX/RX to active 

monitoring 

flavia_enable_active_probe() It enables active monitoring 

flavia_mon_to_tx_mode() It toggles operation from active 

monitoring to TX/RX 

flavia_disable_active_probe() It disables active monitoring 

flavia_active_probe_work() It enables active probing for a device to 

transmit during active monitoring phase 

flavia_send_active_probe() It transmits monitoring frames 

flavia_sps_exit() It removes the registered functions and 

unloads the service 

flavia_fem_int() It initializes the Extended Monitoring 

module 

flavia_fem_exit() It unloads the Extended Monitoring 

service, freeing resources 

listen_channel(channel,channel_dwell 

time) 
It senses the channel for a 

channel_dwell time, that is the amount 

of time spent on each channel 

create_probe_frame(parameters) It creates a probe request/response 

frame with the corresponding 

parameters 
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send_probe_frame(destination interface) It is responsible for managing the 

transmission of a probe frame 

set_freq_hopping_sequence(sequence) It configures the sequence for the 

frequency hopping when scanning the 

different channels 

set_network_config(channel, modulation, 

parameters) 
It sets the configuration for a node when 

behaving as an AP 

create_dist_estimation_frame(timestamp, 

id) 
It creates an ad-hoc distance estimation 

frame 

send_dist_estimation_frame(destination 

interface) 
It sends an ad-hoc distance estimation 

frame 

channel_quality_estimation(channel, 

channel stats) 
It computes the estimation of the 

channel quality based on statistical data 

measure_collision_stats(statistical 

metric,statistical data) 
It estimates the collision of the channel 

given the statistical data 

obtain_measurements() It gets the measurements of the network 

being monitored 

estimate_CW(MAC address) It estimates the CW from the statistical 

data 

compare_MAC_parameters_with_std(MAC 

address) 
It compares the observed 802.11 MAC 

parameters with the standard ones 

send_configuration() It sends the proper configuration to a 

node that is misbehaving 

get_phy_possible(param) It queries the IB for supported range of 

TX powers 

get_phy_param_change_timescale(param) It queries the time-granularity of the 

hardware to change PHY parameters, or 

if per-packet 

transmit(data, params, values) It sets the parameters per-transmission 

get_phy(param) Get current/last used value of parameter 

set_phy(param, value) Set current/next used value of 

parameter 

enable_autorate(type) Start/stop an automatic rate adaptation 

scheme 

disable_autorate() Disable auto rate adaptation 

create_mgmt_frame(subtype) It handles the transmission of a mgmt. 

frame according to the parameters 

recv_mgmt_frame(frame) It handles the reception of mgmt. frame 

performing the corresponding operation 

create_beacon(SSID,interval) It forges the transmission of a beacon 

announcing the specific SSID and the 

interval of transmission 

check_fcs(frame) It checks the FCS of an incoming frame 
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computeFCS(MAC_header, frame_body) It computes the FCS for a frame to be 

transmitted 

ps_policy() It specifies the power saving policies, 

including beacon reception period and 

scheduling event trigger, and stores the 

context of the running mechanism 

ps_management() It provides management logic to support 

the PS mechanisms being implemented 

ps_frame_queue(AID, frame) It enables the AP to buffer the frames 

for STAs in the PS mode. If the queue is 

full it discards the frame 

ps_frame_dequeue(AID) It removes the frame from the AP buffer 

into the transmission queue upon the 

reception of a triggering message 

create_PS_frame(subtype) It creates a PS-type frame to trigger the 

send of buffered frames in the AP 

check_STA_PS_status(AID) Used by an AP station to check the 

status of the rest of the stations 

event_trigger_scheduling() It triggers the sending of a PS-triggering 

frame 

Table 7: FLAVIA 802.11 functions 
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 5  802.11 Architecture: Control & Management  

The Control and Management modules, envisioned for an 802.11 node, are essential 

for the correct operation of the FLAVIA architecture. On one side, the Consistency 
Manager is the control entity liable for assuring the consistency and correct access to 
the information stored within the Information Base module, which can be accessed by 

the different operational modules. On the other side, the Virtualization module enables 
the creation of multiple virtual devices over a single PHY interface and manages the 

resources shared among these different virtual MAC entities that may be running. In 
what follows we detail the aforementioned modules. 

 5.1  Consistency Manager 

The FLAVIA Consistency Manager (CM) is responsible for intra- and inter-node 
configuration and parameter detection. In addition, the analysis and resolution of 
potential or existing configuration inconsistencies are ones of its major functionalities. 

From the architecture point of view, the CM module is divided into two basic 
components: Intra-CM and Inter-CM, as shown in the Figure 25 presenting the 

component diagram of the CM. The CM basically relies on data stored in the 
Information Base. The most important data for the CM are recorded in the Discovered 
Capabilities Data Base. It offers two basic interfaces: Internal Consistency Check and 

Remote Consistency for internal and external operational modes, respectively. 

Consistency Manager

port_inCM

port_exCM

port_inCM

port_exCM

Information Base

Wireless Processor

CP

REPInternal Consistency Check

Intra CM

Remote Consistency

Inter CM

Discovered Capabilities DB

MAC

 

Figure 25: Component diagram of the CM 
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In what follows, we present the most typical use cases of the Consistency Manager: 

1. Parameter Configuration Change. 

2. Service Consistency Check. 

3. Remote Consistency Change. 

The Parameter Configuration Change use case covers the most common local action of 
the CM. At this point, the CM introduces an additional level of modules/services 
differentiation, which adds the following configurable features: 

 Allow or deny a specified module/service to request a specific parameter value 
change. 

 Assign priorities to modules to perform specific actions. 

 Decide which request is allowed to take precedence over another.  

The Intra-CM in case of detection of consistency violation can take the following 

actions: force the service generation violation to abort its request, return an error 
code or automatically enforce a correction based on the request. The Inter-CM 

component upon detection of remote inconsistency is capable of performing remote 
consistency change procedure, however remote node resolves the request accordingly 
to parameter configuration change scheme.  

The Parameter Configuration Change use case is presented in Figure 26. 
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Consistency ManagerConfiguration Manager Information Base Wireless MAC Processor

set_parameter_request()

get_configuration_parameter.resp()

get_configuration_parameter.req()

get_consistency_conditions.req()

get_consistency_conditions.resp()

set_parameter_response()

execute_configuration_change()

set_parameter_response()

Service/module registration phase: priorities assignment

Resolve synchronous access, if any

Consistency conditions verified

Apply parameter change
Apply parameter change to the wireless interface

Negative response types:
1. Abort request
2. Error code
3. Enforced parameter correction

Positive response:
Operation succesfully completed

 

Figure 26: Parameter Configuration Change use case 

 

The Service Consistency Check use case is triggered by the Service Scheduler in order 

to verify the correct configuration of the service (especially the verification of the 
correctness of the parameters provided during the registration) and of the entire 

system (checking the availability of the services and functions necessary to execute 
the loaded service). The Service Consistency Check, also considered as the Intra-CM 
operational mode, is depicted in Figure 27. 
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Service Scheduler Consistency Manager Information Base

service_consistency_check()

get_service_logic.req()

get_service_logic.resp()

get_configuration_parameter.req()

get_configuration_parameter.resp()

service_consistency_check_result()

For each required parameter

 

Figure 27: Service Consistency Check use case 

  

This last use case of the CM covers the situation when a remote inconsistency is 
detected by means of Capabilities Discovery service of the Monitoring module. 

Consequently, the CM performs an operation of the remote parameter change. When 
a remote node receives the set_remote_parameter.request, it performs a similar 
procedure as in the case of the local Parameter Configuration Change. The Remote 

Parameter Change use case is shown in Figure 28. 
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Node A : Discovered Capabiliti
es DB

Node A : Consostency
Manager

Node B : Consistency
Manager

Node B : Information
Base

get_discovered_capabilities()

send_discovered_capabilities()

check_consistency_conditions

set_remote_parameter.req()

get_configuration_parameter.req()

get_configuration_parameter.resp()

get_consistency_conditions.req()

get_consistency_conditions.resp()

set_remote_parameter.resp()

Measurements

Remote inconsistency discovered

Consistency conditions verification

 

Figure 28: Remote Parameter Change use case 

 5.2  Information Base 

The Information Base (IB) as defined for the overall FLAVIA architecture can be 
applied directly to the contention-based system architecture. In this section, first we 

briefly report the IB architecture as specified in D222. Second, we outline the 
information base support for multiple wireless interfaces and the memory 

management architecture. 

The IB is divided into three subcomponents: 

 The low level data collector that acts as a monitoring module interacting with 

the wireless processor, on which different data aggregation and filtering 
operations can be defined. 

 The data gateway manages multiple accesses on the system state parameters 
and works in conjunction with the Consistency Manager. 

 The functional data manager works on the service/function database in order to 

track and save the modules available in the system. 
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 5.2.1  Data Collector 

For this subcomponent, we envision exploiting the Hardware Abstraction Interface 

(HAI) for defining a minimum set of hardware parameters and signals that are stored 
as low-level data. Different polling or event-based data reading schemes can be 
defined, by taking into account the constraints imposed by the hardware features 

(such as the minimum polling time, the hardware measurement quantization, etc.). 

 

 5.2.2  Data Gateway 

The data gateway enables the data sharing among FLAVIA modules and is responsible 

for managing the possible conflicts arose when multiple FLAVIA modules operate on 
the same system state data.  

This data can be bound to a specific wireless interface (wif), as depicted in Figure 29, 

which can be real or virtual, or have a system-wide visibility to allow inter-interface 
storing. Thus, the data gateway acts on each data repository independently. 

 

Figure 29: Data Gateway 

The data gateway assumes that all the modules know all the data structures 

representing the system state. Moreover, each data field is mapped to a different 
Unique Identifier (UID), which is notified to all the operating modules.  

The defined interface, wif, supports the following operations:  

Reading operations 

- get_data(UID, wif): data - read a data value 

- on_change_listener(UID, change_listener, wif): outcome - register a change 
listener related to a given data field. 
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Single writer protection  

- create_data(UID, data value, wif): MID - initialize a data field. 

- change_data(MID, data value,wif): set a new value for the data field 
identified by the MID. 

- clear_data(MID, wif): outcome - remove a data field. 

Multiple writers with challenge protection 

- set_value(UID, data value, wif): outcome - set a data field. 

- delete_data(UID, wif): outcome - remove a data field. 

- protect_data(UID, consistency_verification, wif): outcome register a 

consistency verification operation. 

 

 5.2.3  Functional Data Manager 

The Functional Data Manager organizes and interrogates the database containing the 
information about the system functional resources. At this design stage, we envision 

storing a minimum set of fields for each functional resource: 

 Resource name: the name of the service, function or command to be invocated; 

 Resource interface: the list of basic or advanced data to be passed to the 
functional resource; 

 Resource state: the resource availability state that indicates if the resource can 

be immediately invocated (running) or if it has to be loaded (unloaded), 
initialized (loaded), or started (initialized); 

 Resource dependencies: the list of other resources called by the current one; 

 Resource advanced data: the aggregation of basic data in data structures used 
by the current resource; 

 Resource consistency conditions: the list of consistency tests related to the 
system state data affected by the current resource. 

 

 5.2.4  Memory management 

A sensitive issue in the Information Base is the management of the memory. This 
section specifies how the IB deals with the stored values and how the modules must 
interact with the IB. Three operations are described to overcome with this issue: the 

write, the read and the update operations. All these operations define a clear 
distinction between the memory of the IB and the memory of the module. As a result, 

the delete process gets simplified and potential issues (such as, memory leaks or 
concurrency problems) are avoided.  
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The Figure 30 presents the write operation. A Module A passes the Value A to the IB 
using the set operation. The IB allocates memory to store that value and the related 

metadata. If the operation is completed with success a positive response will be 
returned. 

 
Figure 30: Write operation of a value 

The read operation is depicted in Figure 31. The Module X needs to access a value 
previously stored, thus it allocates the correct memory space to store the value and 

inquire about it to the IB using the appropriate key. The IB copies the requested 
value, if available, in the allocated space and returns it to the requesting module. 

 
Figure 31: Read operation of a value 
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Figure 32 describes the update operation. Now, a module changes a stored value by 
providing it to the IB. If the memory required for the new value is equal to that used 

for the old the value, then the value is substituted. On the contrary, if the value 
exceeds the memory size, then the memory cell is released and a new allocation for 

the new value occurs. 

 
Figure 32: Update operation of a value 

 5.3  Virtualization 

The virtualization module creates and manages the life cycle of the virtual devices 
over a single PHY interface. As previously explained in the D4.1.1 [2], a critical aspect 
of the virtualization is the actual sharing of the real physical resources based on 

different techniques. In the case of CDMA and FDMA, these modes are controlled by 
the MAC layer itself, in a close-to-hardware fashion; though, in case of TDMA scheme 

(applicable to the IEEE 802.11a/b/g/n technologies), the virtualization has a role in 
controlling the time slice allocation that maps virtual and logical devices on top of the 
physical hardware.  

Meanwhile, each virtual device is usually managed through the usual and expected 
wireless API (typically, on Linux-based system, the mac80211 frameworks offers a 

range of standard API to control the behaviour of each IEEE802.11 device in terms of 
status, frequency). The standard wireless API offers logical device management (i.e., 
a single card could be used as Access Point and client at the same moment, on the 

same channel), but this should be not be confused with virtualization, where each 
virtual card can run on a different channel, using TDMA as sharing technology.  
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Therefore, the virtualization module needs a dedicated module, which defines the 
following set of functions: 

 Creation of virtual interfaces, with optional range of parameters. In case of 
802.11 and TDMA technology scheme, specification of the time slices, the type 

of constraints (min/max of time slice allowance) on them, and also if the 
constraint is hard or soft. This range of parameters allows flexibility of self-
management, as the system is able to take decision on periodization based on 

this info.  

create_vif(name,[phy=physical_device],[duration],[min],[max],[hard|soft])  

 Destruction of virtual interfaces. It enables proper destruction of the 
interface, equal to physical removal of a device using plug’n’play. This insures 
coherence of the entire system (no logical instance running on non-existing 

virtual interfaces for example).  

delete_vif(name) 

 Management of execution parameters (time slices of the TDMA access for 
example), where some virtual interfaces can be weighted more than others 
according to external parameters, according to the very same set of parameters 

defined at the very first item of the present list.  

change_vif(name, duration],[min],[max],[hard|soft]). 

 Migration of virtual interfaces: this functionality is designed to re-map 
existing virtual interfaces to existing or new interfaces, in order to insure 
redundancy, safety mechanisms. Important nodes can stay online. This can be 

used also when destroying a virtual interface.  

migrate_vif(name,newphy) 

If the optional parameters are not given, the virtualization control module insures best 
effort operations (i.e., duration is based on the remaining free time, the physical 
interface is the default interface, soft constraints, no min or max share allocation).  

The operation of this module is straightforward. After internal coherence control 
through the Consistency Manager, the commands are propagated through the 

different elements of the FLAVIA architecture through the various IAP previously 
defined. 

The typical life cycle is defined with the message exchange diagram depicted in Figure 

33. 
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Figure 33: Life cycle of the virtualization module 
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 6  Interface specification 

The Interface Access Points (IAPs) describe general interfaces offering an abstract 

framework so that the different FLAVIA entities communicate with each other utilizing 
the functionalities provided by the architecture. Following the work carried in the 
previous deliverable, D4.1.1 [2], we define the interfaces by means of primitives, 

keeping a high degree of flexibility. The primitives are operations requested to an 
entity and require a set of parameters to be executed. Note that in this deliverable we 

specify the framework for these interfaces, which will be detailed after the 
implementation experiences in D4.3. 

A complete notation of a primitive over an interface will begin with the interface 
identifier, followed by a short operation notation ended with the primitive type: 

<Module Name>_<IAP ID>_<Operational Name>_<Primitive Type> 

Table 8 shows the identifiers corresponding to each type of interface, according to the 
possible interactions among the different FLAVIA components, whereas Figure 34 

depicts an overview of these interactions. 

 

ID Interface Description 

IAP1 WMP – MAC Interface Control and data transfer between the wireless MAC processor 
and MAC layer 

IAP2 Inter–entity Interface Interactions between services in different entities (e.g., 

among mobile stations or between the access point and 
mobile stations) 

IAP3 Services – Functions 
Interface 

Functionality required by services from functions 

IAP4 Control & Mgmt. Interface Configuration and management 

IAP5 Inter Services Interface Services interactions within the same entity 

IAP6 Application Interface Communication between FLAVIA services and upper layers 
(Control and data) 

Table 8: Interface Access Points Identifiers 

 



 

 

 
FLAVIA  

FLexible Architecture  

for Virtualizable wireless future Internet Access 
 

Grant Agreement: FP7 - 257263 

  
 

 

 

Deliverable 4.1.2  Version: 1.0 Page 61 of 74 
 

 

FLAVIA 
Control 

Subsystem

FLAVIA 
Mgmt. 

Subsystem

Application Level

Wireless MAC Processor

Function Container

Service Container

IAP6

IAP4IAP4

IAP1

IAP3

IAP5

IAP2

 

Figure 34: FLAVIA entities interaction 

 

 6.1  Intra-node 

 

 6.1.1  Application Interface (IAP6) 

IAP6 permits the application layer to exploit the underlying FLAVIA services, accessing 
to the functionalities implemented by the lower layers, e.g.: advanced data transport 
or monitoring. For example, a user may desire to configure the type of the power 

saving policy. 

 

 6.1.2  Inter-services Interface (IAP5) 

IAP5 enables the communication among different FLAVIA services, i.e., exchanging 

configuration parameters and current status or forwarding network performance 
statistics. A use case for this interface is the monitoring service that collects the 
network information (channel quality, interference, etc.) that can be used by other 

services, such as SPS, to select the best network configuration, or by MDR in order to 
detect misbehaving nodes. 

Another example, in the case of sending a frame, services such as Monitoring or MAC 
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Management will need to interact with Data Transport service. Data Transport service 
does not define a specific primitive for each service, but a common one 

(send_frame(type)), so that a general definition is accomplished. This generalization 
facilitates adding new services within a future without the need of modifying the 

existing framework, since there will be no need of defining additional primitives; 
subsequently, being aligned with the FLAVIA vision in terms of flexibility. 

 

 6.1.3  Control & Management Interface (IAP4) 

IAP4 provides a common interface to the 802.11 service modules to interact with the 

control and management subsystems so they can be reconfigured according to 
specific events. This interface is used to set and polled information stored in the 

Information Base, guaranteeing always the system consistency. This information 
might be relative to the admissible set of configurable parameters or the current 
status of variables. This interface also requests the access to common resources 

handled by the virtualization manager. 

An example to illustrate this case is the activation of power management that triggers 

the modification of the configuration other running services, like the data transport 
and the monitoring services, which should stop their execution during periods of 
inactivity. 

 

 6.1.4  Services - Functions Interface (IAP3) 

Services can invoke functions contained in the Function Container through the IAP3 

interface. This interface manages the concurrent access of different services to the 
same function, avoiding race conditions. 

 

 6.1.5  WMP - MAC Interface (IAP1) 

IAP1 enables the configuration of the WMP, as well as the request of WMP 
parameters, collected to be used by upper services, such as monitoring, when is 

reported with the network scanning results. 

 

 6.2  Inter-node 

In this section we introduce the mechanism considered to implement a generic inter-

node communication as required by an 802.11 FLAVIA scenario. Instead of specifying 
from scratch a protocol, tailored to FLAVIA needs, we rather rely on the Generic 
Advertisement Service (GAS) from the 802.11u standard [8]. This is a mechanism 

that provides a flexible interface with some defined primitives, and is readily available 
in some Linux-based implementations, although is typically considered for a service 

discovery scenario (therefore it will be extended to support the IAP2 implementation). 
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 6.2.1  Inter-entity Interface (IAP2) 

The Inter-entity Interface is responsible for the communication among processes 

running in different nodes, i.e.: between stations or between an access point and a 
station. These processes can be operating services or functions. This interface 

provides different primitives in order to allow the transfer of information among these 
nodes. 

By means of IAP2, a running service of a node can intercommunicate with another 

instance of the same service operated in a different node, in order to: 

 Keep consistency on some essential configuration parameters. An example of 

this case is the announcement of the value of the configure parameters, e.g., 
rate adaptation service. 

 Trigger a join reaction towards certain events. For example, in case of link 

quality degradation or possible occurrence of interference. 

 Decide or negotiate on possible network capabilities, even prior to the 

association. 

 Disseminate information to assist internode cooperation. 

A potential way to implement this communication is given by the standard procedure 
defined in 802.11u [8], Generic Advertisement Service (GAS). GAS is used as a 
container for Access Network Query Protocol (ANQP) elements sent between clients 

and APs.  

GAS provides functionality that enables STAs to discover the availability of information 

related to desired network services, e.g.: 

 Information about services such as provided in an IBSS, local access services, 
available Subscription Service Providers (SSP) and/or SSPNs or other external 

networks.  

GAS uses a generic container to advertise network services' information over an IEEE 

802.11 network. Public Action frames are used to transport this information. Its basic 
operation is depicted in Figure 35. 
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Responding STARequesting STA

GAS Initial Request

GAS Initial Response

Advertisement Server

Query Request

Query Response

Outside the scope of the 802.11u specification  

Figure 35: GAS operation 

 

The structure provided by the GAS request and carried within an ANQP element 

(depicted in Figure 36) are extendable in order to specify query primitives that are 
FLAVIA-aligned. Thus, we can specify new messages in order to extend the 
communication among different nodes. 

 

Info ID Length Information

2 2 variable  

Figure 36: ANQP element format 
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 6.3  Summary of primitives 

Table 8 collects the complete set of primitives proposed for an 802.11 FLAVIA node. 

Type Primitives Description 

IAP6 TRAN_IAP6_send_frame_REQ 

TRAN_IAP6_send_frame_RSP 

TRAN_IAP6_receive_frame_IND 

TRAN_IAP6_receive_frame_CONF 

The transport service exposes its interface to 

the upper layers to enable sending packets 
through the 802.11 MAC layer. 

MONI_IAP6_set_monitype_REQ 

MONI_IAP6_set_monitype_RSP 

MONI_IAP6 moni_start_REQ 

MONI_IAP6_moni_start_RSP 

MONI_IAP6 moni_stop_REQ 

MONI_IAP6_moni_stop_RSP 

MONI_IAP6 estimate_interference_REQ 

MONI_IAP6 estimate_interference_RSP 

MONI_IAP6_estimate_link_distances_REQ 

MONI_IAP6_estimate_link_distances_RSP 

The Monitoring service will also expose its 
interface so that applications can set up the 
type of scanning to be performed and modify 
configuration parameters, e.g., the time 
spent to perform the active monitoring 

PHYR_IAP6_get_phy_REQ 

PHYR_IAP6_get_phy_RSP 

PHYR_IAP6_set_phy_REQ 

PHYR_IAP6_set_phy_RSP 

 

The PHY Resource Management service is 
expected to interact with the upper layers to 

return or configure an explicit set of PHY, 
such as the rate adaptation algorithm to use. 

This interface allows the configuration and 
inspection of current values for each of the 
managed parameters. 

PS_IAP6_set_policy_REQ 

PS_IAP6_set_policy_RSP 

PS_IAP6_get_policy_REQ 

PS_IAP6_get_policy_RSP 

The power saving service exposes its 
interface to the upper layers in order to 
return or configure the type of power saving 

policies. 

IAP5 TRAN_IAP5_send_frame_REQ 

TRAN_IAP5_send_frame_RSP 

TRAN_IAP5_frame_sent_IND 

TRAN_IAP5_frame_sent_CONF 

TRAN_IAP5_receive_frame_IND 

TRAN_IAP5_receive_frame_CONF 

The Transport service interacts with all the 

other services, therefore being an essential 
service in the FLAVIA architecture. It receives 
request commands from other services, in 
order to transmit the types of frames 
according to the other services’ selection. 

PHYR_IAP5_transmit_REQ 

PHYR_IAP5_transmit_RSP 

PHYR_IAP5_get_phy_REQ 

PHYR_IAP5_get_phy_RSP 

PHYR_IAP5_set_phy_REQ 

PHYR_IAP5_set_phy_RSP 

PHYR_IAP5_enable_autorate_REQ 

PHYR_IAP5_enable_autorate_RSP 

PHYR_IAP5_disable_autorate_REQ 

PHYR_IAP5_disable_autorate_RSP 

PHYR_IAP5_set_phy_IND 

PHYR_IAP5_set_phy_CONF 

The PHY Resource Management service is 
expected to interact with other FLAVIA 

services, e.g., Monitoring and Transport 
service. This service can receive an explicit 

set of PHY parameters to be utilized for each 
packet transmission, but may also request 
transmission statistics from the Transport 
service when automatic rate adaptation is 
performed. 

PS_IAP5_dequeue_ps_frame_REQ. The PS service interacts with the Data 
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PS_IAP5_get_psm_status_REQ 

PS_IAP5_get_psm_status_RSP 

PS_IAP5_buffer_ps_frame_REQ 

PS_IAP5_buffer_ps_frame_RSP 

PS_IAP5_dequeue_ps_frame_REQ 

PS_IAP5_dequeue_ps_frame_RSP 

Transport so that the buffered frames are 
dequeued or enqueued depending on the 
state of the stations. 

IAP4 IB_IAP4_get_data_REQ 

IB_IAP4_get_data_RSP 

IB_IAP4_on_change_listener_REQ 

IB_IAP4_on_change_listener_RSP 

IB_IAP4_create_data_REQ 

IB_IAP4_create_data_RSP 

IB_IAP4_change_data_REQ 

IB_IAP4_change_data_RSP  

IB_IAP4_clear_data_REQ 

IB_IAP4_clear_data_RSP 

IB_IAP4_set_value_REQ 

IB_IAP4_set_value_RSP 

IB_IAP4_delete_data_REQ 

IB_IAP4_delete_data_RSP 

IB_IAP4_protect_data_REQ 

IB_IAP4_protect_data_RSP 

IB_IAP4_get_service_logic_REQ 

IB_IAP4_get_service_logic_RSP 

The Information Base (IB) exposes one 

interface, wig, with several primitives to 
support the operation and interaction with 

the rest of FLAVIA modules. Operations such 
as reading and single/multiple writing. 

CM_ICC_IAP4_set_parameter_REQ 

CM_ICC_IAP4_set_parameter_RSP 

CM_RC_IAP4_get_consistency_conditions_REQ 

CM_RC_IAP4_get_consistency_conditions_RSP 

The Consistency Manager presents two 

interfaces, Internal Consistency Check and 
Remote Consistency, to perform internal and 
external operations, respectively. 

WMP_IAP4_write_REQ 

WMP_IAP4_write_RSP 

WMP_IAP4_run_REQ 

WMP_IAP4_run_RSP 

The WMP exposes an interface to enable the 
modification of state machines, specifying the 
activating conditions and enabling code 

switching. 

IAP2 GAS_IAP2_send_request_IND 

GAS_IAP2_send_request_CONF 

GAS_IAP2_get_parameter_REQ 

GAS_IAP2_get_parameter_RSP 

The GAS module enables the generic 
communication among nodes, exchanging 
different information or performing capability 

negotiation. 
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 7  Conclusions 

This deliverable completes the specification of the designed architectural framework 

for the implementation of a contention-based FLAVIA node, based on the feedback 
received during the revision of WP2 architecture and the module specification. 

Based on the evolution of the general framework provided by WP2 and on the 

architecture for an 802.11 node presented in D4.1.1, we have reviewed and updated 
the set of service and function modules as well as the interface specification. New 

services that may be loaded in real-time in a FLAVIA-enable node have been added, 
e.g.: Advance Data Transport and Misbehaviour Detection, showing that the FLAVIA 

architecture is not tailored to neither the 802.11 standard nor very simple extensions 
(these were the focus of the previous deliverable).  

In addition, we have detailed the operation of the Service and Function containers 

liable for scheduling and managing new services and the registration of enhanced 
functions under the premises of a modular and flexible architecture, focusing on the 

dynamics of the instantiation of the services and how the FLAVIA functionality 
supports the their real-time execution. We have described the architecture of those 
two containers, detailing their static interfaces, which permit to access their services 

and the interactions with other entities that may occur during their execution. 

The Wireless MAC Processor is described extensively in this deliverable from the 

architectural perspective. Starting from the description carried out in D.2.2.1 and 
D.2.2.2 for a generic programmable radio system, here we specify the set of events, 
conditions and actions for contention-based 802.11 systems on the basis of the 

analysis of DCF lower-MAC operations, which defines the primitives to support the 
different functionalities. We also present how the WMP interacts with other modules in 

order to perform its basic operations.  

We extend the description for the Control and Manager subsystems, as well as add 
new entities that were not included in the previous deliverable, as the Consistency 

Manager. The Consistency Manager avoids potential race conditions about the various 
pieces of information that will be stored in the shared repository, namely, the 

Information Base, which stores the configuration and operation parameters and whose 
operation is described in this document. In the case of the virtualization manager, it is 
explained how the scheduling process is performed so different MAC instances may 

access to common hardware resources and present the set of functions that enable 
this management. 

Finally, we also describe the intra- and inter-node communication, emphasizing on 
this previous one and proposing a mechanism to implement a generic inter-node 
communication built on GAS, which is specified in the 802.11u standard. 
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APPENDIX A: Service building example  

In order to illustrate how services can be built over the proposed architecture, we next 

focus on the case of an advanced data transport with parameterized QoS service. 
More specifically, we propose to use the IEEE 802.11s [20] mesh reservation-based 
channel access method, named called MCCA (Mesh Coordinated Channel Access). The 

MCCA is an optional access method that allows stations to access the wireless medium 
at selected times with lower contention that otherwise be possible. These times are 

called MCCA TXOPs (or MCCAOPs). To obtain MCCAOP (to reserve the channel) the 
transmitter (MCCAOP owner) and the receiver(s) (MCCAOP responder(s)) exchange 

special management frames. We will further refer to this procedure as the one-hop 
reservation procedure (more detailed description of MCCA is presented in D6.2 [21]). 

In the multi-hop network case, for each flow with a given QoS requirement, the 

service establishes MCCA one-hop reservations along the multi-hop a path found by 
path selection protocol (which should take into account the channel access method 

used), and then transmits data frames using these reservations. 

We first present the high-level, functional architecture required by this advanced 
service, and then the low-level, MAC scheme required to support it. 

 

A.1 Functional Architecture 

The functional architecture of the proposed service is illustrated in Figure 37. Each 

station use two different channel access methods: i) contention-based, DCF, realized 
by DCF state machine (in future implementations it can be replaced with EDCA) and ii) 
reservation-based, MCCA, realized by MCCA state machine. DCF is liable for the 

transmission of background traffic and management frames while MCCA is responsible 
for the transmission of QoS-sensitive traffic.  

Consider the transmission of a single QoS-sensitive flow. First, all the packets of the 
flow enter the Classifier module. When the first packet of the flow arrives at the 
source station, using the information from upper layer headers (i.e.: IP, UDP, SIP), 

the Classifier module determines the TX parameters (e.g.: packet size, packet inter-
arrival time etc.) and the QoS requirements of this new flow, and also assigns a 

Traffic stream Identifier (TsId) to the flow.  

Next, the Classifier module sends this information to the Multihop Reservation 
Function. For each flow, with a given transmission parameters and QoS requirements, 

the Multihop Reservation Function reserves resources for the data transmission along 
the whole multi-hop path, namely, multi-hop reservation. Thanks to special 

management frames, the Multihop Reservation Function of each station along the path 
creates a Software Queue, where packets of the flow are stored before actual 

transmission, establishing a one-hop reservation for their TX by means of the OneHop 
Reservation Function. Besides, the Multihop Reservation Function forwards the QoS 
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requirements to the next hop along the path. It should be noted that in a one-hop 
reservation, only packets of the flow for which this reservation was established can be 

transmitted. 

The MCCA Scheduler module stores all the information about the MCCA one-hop 

reservations of a station and also the reservations of its neighbouring stations. This 
module obtains the information via advertisement procedure, i.e.: the information is 
sent periodically in beacons or management frames. When the MCCAOP is reserved 

for a particular flow, the MCCA Scheduler module calls the function 
push_frame_from_queue(i) that pulls the first frame from the i-th Software Queue 

corresponding to the flow to the MCCA FIFO hardware queue. Then the command 
mccaop_start(duration) is called, generating an MCCAOP_START event. The 
parameter duration specifies the duration of the MCCAOP. Upon the reception of an 

MCCAOP_START event, the MCCA State machine triggers the transmission of the 
frame. 

MCCA-capable stations shall support the Reservation Allocation Vector (RAV) 
mechanism, which is provided in addition to physical and virtual carrier sense 
mechanisms to minimize the probability of collisions within the MCCAOP. The RAV 

represents a time interval reserved for the MCCAOP by station or any neighbouring of 
this station (i.e., time interval in which station cannot transmit using contention-based 

channel access method)  

A station is not allowed to start the transmission of a frame using contention-based 
channel access method if this transmission intersects with the RAV. To implement 

RAV, we propose to use the following commands: 

 When RAV starts, the MCCA Scheduler calls the command rav_start(duration) 

that generates the event RAV_START. The duration argument indicates the 
duration of RAV.  

 At the end of RAV, the MCCA Scheduler calls the command rav_end(next_rav) 

that triggers the event RAV_END. It also indicates the next_rav time, that is, 
when the next RAV will start. A station is not allowed to start a transmission 

when the RAV is set (rav==busy) or when the transmission will overlap with 
the next RAV.  
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Figure 37: Functional architecture of Data Transport with Parameterized QoS service 
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A.2 MAC Programs  

 

DCF state machine 

Figure 38 shows the state machine for the DCF queue (dotted lines illustrate the 

difference with respect to the original state machine). 

TXWAIT_ACK

WAIT_DIFS_BK

WAIT_MED WAIT_DIFS_NO_BK

BACKOFF

IDLECH_DOWN
set_timer(DIFS)

CH_UP
stop_timer()

CH_UP
stop_timer()

QUEUE_OUT_UP
[medium!=busy]
set_timer(DIFS)QUEUE_OUT_UP

[medium==busy]

CH_UP
freeze_bk()

END_BK
[queue==empty]

END_BK
[queue!=empty]

calculate_tx_time()

END_TIMER
OR

RCV_OTHER
update_cw()

MED_DATA_CONF
Switch_RX

set_timer(ACK_TIMEOUT)

END_TIMER
[backoff==0]

set_backoff()

END_TIMER
[backoff!=0]

resume_backoff()

RCV_ACK

PRE_TX

END_TIMER
calculate_tx_time()

END_CALCULATE
[tx_end_time<next_rav_start &&

rav!=busy]
switch_TX()
TX_start()

END_CALCULATE
[tx_end_time>

next_rav_start ||
rav==busy]

set_backoff()

 

Figure 38: DCF state machine 

To implement the RAV mechanism we add a new state, PRE_TX. When the station is 
ready to transmit it will calculate the frame transmission time, by means of the 
calculate_tx_time() command, and move to the PRE_TX state. If the station time to 

finish its transmission (TX_END_TIME) is less than the next RAV start and RAV is not 
set now (rav!=busy), then the station can start its transmission and move to TX state. 

Otherwise, the station will defer its transmission and compute a new backoff value, 
moving to BACKOFF state.  
 

RX state machine 

Figure 39 illustrates the RX state machine. The changes to the RX state machine are 

similar to the ones carried out in the DCF state machine. In this case, we define an 
additional state, PRE_TX_REPLY. Thus, a station is not allowed to start the 

transmission of an ACK frame if the ACK transmission overlaps with the RAV. 
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Figure 39: RX state machine 

 

MCCA state machine 

The simplified version of the MCCA state machine is presented in Figure 40. In this 
case, when an MCCA_START event occurs the station should wait a PIFS and then 
start the transmission if the queue is not empty. Once the station receives an ACK 

frame or an ACK timeout expired, it should clear the MCCA hardware queue so that 
the next packet arrives to the empty queue. 

IDLE WAIT_PIFS

TXWAIT_ACK

MCCAOP_START
set_timer(PIFS)

END_TIMER
[queue==empty] END_TIMER

[queue!=empty]
switch_TX()
TX_start()

MED_DATA_CONF
Switch_RX

set_timer(ACK_TIMEOUT)

RCV_ACK
OR

END_TIMER
clear_queue()

 

Figure 40: MCCA state machine 


