

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 1 of 92

Specific Targeted Research Project

FLAVIA

FLexible Architecture for Virtualizable wireless future
Internet Access

Deliverable Report

D 4.2 – 802.11 modules specification

Deliverable title 802.11 modules specification

Version 1.0

Due date of deliverable

(month)
M16

Actual submission date of the

deliverable (dd/mm/yyyy)
21/11/2011

Start date of project

(dd/mm/yyyy)
01/07/2010

Duration of the project 36 months

Work Package WP4

Task Task 4.2

Leader for this deliverable IMDEA

Other contributing partners CNIT, NEC, TID, MOBIMESH, BGU, IITP RAS, NUIM, AGH

Authors

Pablo Serrano, Vincenzo Mancuso, Pablo Salvador (IMD),

Ilenia Tinnirello, Pierluigi Gallo, Pierpaolo Loreti, Claudio

Pisa, Francesco Gringoli (CNIT), Antonio Capone,

Stefano Paris, Alberto Pollastro, Domenico Schillaci

(MOBI), David Malone, Paul Patras (NUIM), Eduard

Goma, Yan Grunenberger (TID), Fang-Chun Kuo, Xavier

Pérez Costa (NEC), Marek Natkaniec, Szymon Szott,

Katarzyna Kosek-Szott, Krzysztof Loziak, Janusz

Gozdecki (AGH)

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 2 of 92

Deliverable reviewer Paul Patras (NUIM)

Deliverable abstract

The document describes the specification of the 802.11

basic modules according to the FLAVIA‘s architecture

description carried out in D4.1.1.

Keywords 802.11, architecture, interface, module, prototype

Project co-funded by the European Commission within the Seventh

Framework Programme

DISSEMINATION LEVEL

PU Public X

PP Restricted to other programme participants (including the

Commission Services)

RE Restricted to a group specified by the consortium (including the

Commission Services)

CO Confidential, only for members of the consortium (including the

Commission Services)

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 3 of 92

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the FLAVIA consortium. Neither this document nor the
information contained herein shall be used, duplicated or communicated by any means to any third party, in whole or
in parts, except with the prior written consent of the FLAVIA consortium. This restriction legend shall not be altered or
obliterated on or from this document.

STATEMENT OF ORIGINALITY

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of
previously published material and of the work of others has been made through appropriate citation, quotation or
both.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 4 of 92

TABLE OF CONTENT

EXECUTIVE SUMMARY .. 8

1 INTRODUCTION ... 9

1.1 FLAVIA ARCHITECTURE OVERVIEW .. 9

1.2 MODULES SPECIFICATION .. 11

2 WIRELESS MAC PROCESSOR .. 13

2.1 DESCRIPTION ... 13

2.1.1 Application Programming Interfaces ... 14

2.2 IMPLEMENTATION PLATFORM ... 16

2.3 COMPILER AND DEBUGGER ... 17

2.4 MAC PROGRAMS ... 19

2.4.1 ACK Piggybacking .. 20

3 SPECIFICATION FRAMEWORK: MAC80211++ .. 23

3.1 OVERVIEW .. 23

3.2 MODULARITY .. 24

3.2.1 Wireless stack interfaces .. 24

3.2.2 Modularization framework ... 26

3.3 FLEXIBILITY ... 29

3.3.1 Service Scheduler .. 29

3.3.2 Function Handler ... 33

3.3.3 A simple example: the FLAVIA hello service .. 36

3.4 VIRTUALIZATION ... 37

3.4.1 Virtualization example .. 40

3.5 INFORMATION BASE ... 41

3.5.1 The Data Sharing module ... 42

4 OPERATION MODULES ... 46

4.1 SUPERSENSE ... 46

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 5 of 92

4.2 DATA TRANSPORT WITH QOS CAPABILITIES .. 48

4.3 POWER SAVING .. 53

4.4 ADVANCED MONITORING.. 56

4.5 RATE ADAPTATION ... 57

5 CONCLUSIONS ... 61

6 REFERENCES .. 63

APPENDIX A: AGH UPDATE ON FLEXIBLE ARCHITECTURE FOR VIRTUALIZABLE

WIRELESS FUTURE INTERNET ACCESS (D4.1.1) ... 65

A.1 MONITORING ... 66

A.2 MISBEHAVIOUR DETECTION AND REACTION .. 70

A.3 CONSISTENCY MANAGER .. 72

APPENDIX B: PSEUDO-CODE .. 79

B.1 MAC80211 ... 79

B.2 MAC80211++ ... 84

B.3 ADVANCED MONITORING.. 90

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 6 of 92

LIST OF FIGURES

Figure 1: FLAVIA high-level view: 802.11 framework architecture. 11

Figure 2: WMP Programming Interface. .. 15

Figure 3: MAC Engine work-flow. ... 17

Figure 4: XFSM: Tx-state (left) and Rx-state (right) machines. ... 19

Figure 5: Simplified DCF frame exchange (top) and VoIPiggy proposal (bottom). 21

Figure 6: Overview of the mac80211 framework. .. 23

Figure 7: Architecture of a wireless driver. .. 25

Figure 8: Architecture of a wireless stack under mac80211++. ... 29

Figure 9: Service Scheduler workqueue structures. .. 32

Figure 10: Service Scheduler work-flow.. 33

Figure 11: Architecture of the Function Handler. .. 35

Figure 12: Function Handler work-flow. .. 35

Figure 13: Function flavia_hello_init() in flavia_hello_service. ... 36

Figure 14: Function flavia_hello_exit() in flavia_hello_service. .. 37

Figure 15: mac80211 typical interface and hooking mechanism. 38

Figure 16: Virtualization overlay driver (FLAVIAn). .. 39

Figure 17: Requirements for FLAVIAn virtualization-enabler driver. 40

Figure 18: The new mac80211 QoS interface for the data transport. 49

Figure 19: Architecture of the b43* driver. ... 52

Figure 20: New PS mechanism implementation using the current framework. 54

Figure 21: PS mechanism implementation within the FLAVIA architecture. 55

Figure 22: Interfacing Rate Control with mac80211 ... 58

Figure 23: AGH modules integrated in the FLAVIA architecture.. 65

Figure 24: FLAVIA services interaction with AGH modules. .. 66

Figure 25: Monitoring service outline. .. 67

Figure 26: Consistency Manager within the FLAVIA global architecture. 73

Figure 27: Inter-CM use case. ... 75

Figure 28: Consistency Manager interfaces. .. 78

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 7 of 92

LIST OF TABLES

Table 1: MAC Programs expressed as extensible finite state machines. 14

Table 2: Percentage of the piggybacked frames vs. the station delay 22

Table 3: APIs for mac8_mlme and mac8_ht support .. 28

Table 4: Multiple Writers Multiple Readers approach implementation 43

Table 5: Data Sharing Listener Management implementation .. 43

Table 6: Single Writer Multiple Readers approach implementation 44

Table 7: Set of reading and writing functions .. 45

Table 8: Extended FLAVIA 802.11 services scheme .. 66

Table 9: Extended passive monitoring service summary ... 69

Table 10: Misbehaviour Detection and Reaction service summary 71

Table 11: Consistency Manager Summary .. 76

Table 12: Set of functions and declaration files of the mac80211 framework 80

Table 13: Registered operations in /linux/netdevice.h .. 80

Table 14: Set of functions exported by the net_device structure .. 81

Table 15: Callbacks within the cfg80211_ops structure .. 83

Table 16: Set of functions contained in the directory net/wireless/ 84

Table 17: Source code for the Service Scheduler ... 87

Table 18: Source code for the Function Handler .. 89

Table 19: Pseudo-code for the Advanced Monitoring module ... 92

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 8 of 92

Executive summary

This report describes the specification of the FLAVIA-based 802.11 modules and
provides preliminary prototypes of some of them. Following the work carried out in
WP4 and described in D4.1.1 [6] we specify the operational modules planned to be

implemented and the corresponding framework that will support them. These modules
are chosen as they illustrate FLAVIA‘s principles: (i) modularity, in terms of defining

different 802.11 MAC services; (ii) flexibility, in terms of dynamic configurability of
the 802.11 MAC; (iii) virtualization, in terms of managing parallel independent
802.11 MACs accessing the same system resources.

In Section 1 we briefly review the FLAVIA architecture for an 802.11 MAC that is the
basis for the modules and Wireless Processor specification. We also identify the set of

services and functions to be added and concisely introduce the framework where the
modules will be deployed. Then, Section 2 provides the specification of the Wireless
Processor, which is the element of the architecture responsible for the direct

interaction with the hardware modules. The section describes the MAC Engine that is
an executor of Extended Finite State Machines (XFSMs) implemented at the firmware

level, and where Wireless Processor is built. We show how we will develop the MAC
Engine and introduce its programming interfaces, illustrating how to develop and build
MAC programs with a set of examples. Section 3 describes the mac80211framework,

the modifications performed to support modularization and provide flexibility in
building up the enhanced mac80211 framework, named mac80211++. In addition,

this section details the scheduling of a new FLAVIA service, explaining how new
services and functions can be added and loaded. Next, we describe the virtualization
support, which involves adding an overlay layer between the device drivers and the

mac80211 framework. We also provide two specifications of the Information Base,
which could be implemented by either programming an ad-hoc module or extending

dynamically the structure ieee80211_local present in the mac80211 module. Section 4
presents the FLAVIA operation modules to be implemented within the aforementioned

framework, describing the mapping and interaction of the modules within the FLAVIA
architecture. Section 5 summarizes and concludes the deliverable.

Appendix A contains an update on the FLAVIA architecture for an 802.11 node. We

introduce the information on the extended Monitoring service, a new Misbehaviour
Detection and Reaction service, and the extended Consistency Manager module.

Appendix B contains the pseudo-code for the Service Scheduler and Function Handler
specified in Section 3, as well as the pseudo-code corresponding to the mac80211
framework and the Advanced Monitoring module.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 9 of 92

 1 Introduction

FLAVIA will provide a new MAC architecture where new mechanisms can be easily
deployed, improving, e.g., the standardization time for new wireless technologies.

The scope of this deliverable is to describe the specification of the modules to be
developed based on the FLAVIA 802.11 architecture. We also report a preliminary

implementation stage that confirms FLAVIA‘s feasibility. Specifically, the flexibility and
modularity principles are shown by adding new services that run in parallel as kernel
modules, and enable the dynamic configuration of the MAC parameters. In addition,

the virtualization support is achieved by implementing a new layer that is inserted
between the mac80211 framework and the device driver. Before introducing the

implementation, we briefly review the FLAVIA architecture for an 802.11 node and its
functional modules.

The FLAVIA architecture builds upon the Wireless MAC Processor (WMP) which is the
cornerstone of the FLAVIA architecture. This entity is responsible for the direct
communication with the hardware modules. Therefore, the implementation of the

WMP becomes one of the key contributions in this deliverable.

A common framework for the implantation of the envisioned services is provided by

the mac80211 framework available in the Linux kernels. However, we need to extend
and modify this to support FLAVIA‘s principles. For that reason, this document details
the modifications performed to the mac80211 framework deriving an enhanced

version, named mac80211++, which will allow the implementation of new services
and functions in a flexible and modular way.

More specifically, we focus on a representative set of operation modules specified in
the deliverable D4.1.1, namely: SuperSense, Data Transport, Power Saving,
Monitoring and Rate Adaptation. We select these implementation examples since they

are representative of the 3 fundamental FLAVIA principles, i.e., modularity, flexibility
and virtualization. Through these examples we also demonstrate the compatibility

between the legacy operation and the new MAC enhancements.

 1.1 FLAVIA architecture overview

This section is devoted to briefly describing the architecture proposed by FLAVIA for

an 802.11 MAC, following the general WP2 architecture specification [6][5]. Figure 1
depicts the architecture according to the WP2 vision, which comprises several

modules, such as: the FLAVIA control, the Information Base, the Service Container,
the Function Container and the Wireless Processor.

The FLAVIA architecture is designed according to three main aspects: modularity,

flexibility and virtualization. These goals are accomplished by using a set of reusable
functions on top of which different services can be built upon. In addition, new

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 10 of 92

interfaces will be provided such that new services can be easily added and finally, by

means of the virtualization modules, wireless processor, services and functions may
be instantiated and used in parallel.

We summarise below the main modules that compound FLAVIA architecture for an

802.11 as depicted in Figure 1:

- Wireless processor: key component of the FLAVIA architecture intended to

handle hardware events and execute medium access programs designed as
loadable Finite State Machines (FSMs).

- Service container: architecture element in charge of instantiating services,

which are composed of functions. A service may implement basic or new MAC-
layer functionalities.

- Function container: architecture element handling the set of running instances
of functions. This container is managed by the FLAVIA control entity.

- FLAVIA Control: entity that manages the loading and changes of context of the

different services and functions. It is worth noting the importance of the
virtualization module as part of the FLAVIA control, which allows creating

several virtual wireless processors running on top of a unique physical device.
- Information Base: architecture component responsible for managing different

data/parameters modified by and shared among different services.

Note that each service is not isolated from the rest, but their interactions are piped

through a set of interfaces that enable the exchange of metadata and signalling
among different modules.

The modular composition permits to build a more robust and flexible architecture than

the already existing MAC 802.11 architecture widely deployed nowadays.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 11 of 92

Figure 1: FLAVIA high-level view: 802.11 framework architecture.

 1.2 Modules Specification

The FLAVIA deployment is strongly dependent on the framework where the set of

modules will be prototyped. For that reason we specify two lines of work: i) Wireless
MAC Processor and ii) a specific framework for other hardware platforms as the WMP

approach is HW dependent.

The Wireless Processor is defined within the mac80211 framework but for the specific

broadcom platform. In order to increase our flexibility we extend our research towards
any kind of HW platform. To this end, we develop a new framework named
mac80211++, starting from the original mac80211 framework.

mac80211 [9], included in the Linux kernel, is the common framework for most of the
commonly used wireless drivers. It fulfils the requirements to match the vision in

FLAVIA, as it makes possible to modify the operation of the wireless hardware without
introducing changes in the actual hardware or drivers. Given the choice of mac80211

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 12 of 92

framework as the basis of our work, achieving deep knowledge of this module is

essential. This task is carried out in Section 3.

We have already started implementing representative envisioned FLAVIA modules
previously defined in [6], e.g.: SuperSense, Data transport with QoS capabilities and

Power Saving.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 13 of 92

 2 Wireless MAC Processor

The architecture envisioned by FLAVIA requires hardware support. The Wireless MAC
Processor (WMP) is the element of the architecture responsible for the direct
interaction with the hardware modules, which provides the architecture with the

abstraction to the lowest level of programmable resources. In this deliverable we
focus on its specification and a preliminary implementation. This section describes the

MAC Engine and the set of its programming interfaces.

We introduce also the Extended Finite State Machines (XFSMs) compiler developed
which builds new MAC programs, changing MAC card behaviour on-the-fly without the

need of recompiling. Furthermore, we present the specification of a debugger that
might help us to monitor the behaviour of the MAC programs.

Finally, we develop a set of MAC programs intended to show the flexibility and
modularity derived from the FLAVIA architecture.

 2.1 Description

Our design starts from the concern that most modern wireless cards do embed a

general-purpose CPU for supporting the hardware control logic. We propose to push
this approach further, by transforming the card itself in a specialized processor,

named Wireless MAC Processor (WMP). The WMP is devised to specifically handle
hardware/PHY events and schedule actions on the hardware/PHY card resources, thus
leaving the MAC protocol developer with the much simpler task of describing when

and under which events and/or conditions such actions should occur. In other words,
similarly to other processors specialized for handling digital signals (DSPs) or

graphical images (GPUs), we introduce a processor specialized for handling MAC
operations. The wireless MAC processor, whose internal architecture has been
presented in D2.2.1 [5], has been conceived as a CPU specialized for handling

hardware/PHY events and actions by executing XFSMs. We choose to abstract the
definition of the medium access control logic in terms of state machines because they

are very effective in modelling the behaviour of sequential control operations. Then,
the WMP is built on top of the MAC Engine, which is an executor of Extended Finite

State Machines implemented at the firmware level.

XFSMs are a generalization of the finite state machine model and permit to
conveniently control the actions performed by the MAC protocol as a consequence of:

 The protocol logic.

 Events such as arrivals and timer expirations.

 Conditions on configuration registers (whose settings can be verified for
enabling state transitions and updated when the transition is triggered).

Since the configuration memory is not explicitly represented in the state space, XFSMs

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 14 of 92

allow modelling complex protocols with relatively simple transitions and limited state

space. A user-defined MAC program is thus specified by the set of states S, the
triggering conditions F and the transition relations T. The number of states and
relations is in principle arbitrary and depends on the device capability. Conversely, the

set of events I, the sets of actions O and U, and the set of registers D over which
conditions may be enforced is predefined by the Wireless MAC Processor and

represent the WMP programming interface, detailed next. These sets represent the
wireless device capabilities (e.g., switching to a different frequency band) that cannot
be programmed by the user, but must be supported by the device hardware, and can

only be invoked and controlled by the user-defined state machine.

Table 1 shows the mapping between the formal definition of an XFSM, in terms of its

abstract 7-tuple (S, I, O, D, F, U, T) and the relevant meaning in terms of MAC
primitives or parameters.

XFSM formal notation MAC Engine meaning

S Symbolic states MAC protocol states

I Input symbols
Triggering events, e.g., hardware signals, timer expiration
generated by the interrupt block, etc.

O Output symbols

MAC actions: commands acting on the hardware, performed

by atomic functions either native in the device or
implemented in the pre-loaded operations module
(including arithmetic and logic operations, data creation and

deletion, etc.)

D
n-dimensional linear
space D1 x … x Dn

All possible settings of n configuration registers

F

Set of enabling
functions fi: D 

{0,1}

Set of conditions to be verified on the configuration
registers for enabling the transitions

U
Set of update
functions ui: D  D

Configuration commands devised to change the value of the
configuration registers

T
Transition relation T:

SxFxI  SxUxO

Indicates the target state, the MAC commands and the

configuration commands to be associated to each transition

Table 1: MAC Programs expressed as extensible finite state machines.

 2.1.1 Application Programming Interfaces

In order to define an interface covering most of the MAC programmability

requirements emerged so far for WLAN systems, we analysed some of the use cases
in D2.1.1 [4]. The set of identified events, actions and conditions form a WMP

programming interface able to support the examined use cases. Thus, its Application
Programming Interfaces (APIs) are summarized in Figure 2, and described in the

reminder of this section.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 15 of 92

Figure 2: WMP Programming Interface.

Events: These are the set of signals either provided by the hardware interrupt block,

or coming from the upper layers. The signals are generated by: i) the energy
detection subsystem (CH_UP and CH_DOWN signals, i.e., start and end of channel

busy intervals); ii) the receiver subsystem, (RCV_ACK, RCV_DATA, RCV_PLCP,
RCV_RTS, RCV_CTS, RCV_BEACON, HEADER_END signals, i.e., the end of reception of
different frame types or frame portions; MED_DATA_START and MED_DATA_END

signals, which delimit the reception of a generic frame); iii) the frame control
subsystem (COLLISION signal, i.e., checksum failure); iv) the transmitter sub-system

(MED_DATA_CONFIRM signal, i.e., end of a frame transmission; v) the transmission
and reception queues (QUEUE_OUT_UP and QUEUE_IN_OVER signals, respectively
enqueuing of a new frame and overflow at the reception queue); vi) the clock

(END_TIMER signal when a pre-set timer expires).

Actions: In addition to arithmetic, logic and control flow primitives, the operation

block supports MAC-specialized operations, categorized into configuration commands
and hardware commands. The configuration commands stores the information about
the configuration of PHY and MAC parameters, which refer to: i) the energy detection

mechanism: set/get(sensitivity), set/get(detection mode); ii) the transceiver:
set/get(channel), set/get(power); iii) the head-of-line frame: update_retry(),

more_frag(), prepare_header(); iv) the contention parameters: set/get(cwmin),
set/get(cwmax), set/get(cw), set/get(RTS_thr). The hardware commands drive
different card sub-systems: i) the transceiver subsystem: switch Rx(), tx_ACK(),

tx_beacon(), tx_data(), tx_RTS(), tx_CTS(), switch_Tx(), enable_ACK(); ii) the
timers: set_bk(), freeze_bk(), set_timer(value); iii) the upper layer interface:

report().

Conditions: The WMP contains registers explicitly updated by WMP actions and/or

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 16 of 92

implicitly updated by WMP events, which store information on the card configuration

and network state. These registers include: the station MAC address and the queue
registers (queue_length and queue_type), the transceiver registers (channel and
power), the contention registers (contention windows and backoff counter), the

handshake registers, the frame registers (frame type, destination and source address,
fragment), the medium state register. An example of register updated by a WMP

action is the backoff counter register (whose value is set by invoking the set_bk()
command), while an example of a register automatically updated by hardware events
is the medium state register (which becomes busy when a CW_UP event occurs).

 2.2 Implementation Platform

To prove the viability of Wireless MAC processors, we choose to implement its API
over an ultra-cheap commodity WLAN network interface card. We select the Air-

Force54G chipset from Broadcom, since one researcher of our team has contributed to
developing the relevant open source firmware, OpenFWWF [7], and documentation on
the internal card structure and its general purpose processor, registers, timers and

transmission/reception primitives is available.

The implementation will be carried out by discarding the original card firmware and

replacing it by an assembly code whose initial version is already available

The implementation will be carried out by discarding the original card firmware and

replacing it by an assembly code executing a MAC Engine, whose initial version was
presented in the first year review. In this version we implement the WMP and its state
machine execution Engine. In this implementation the previously described WMP

programming interface is mapped to actual signals, operations and registers of the
card. For supporting the upper-MAC operations and interacting with the other protocol

layers, we use the SoftMAC driver b43, which works as a wrapper between the Linux
internal mac80211 software and the network card.

The AirForce54G chipset is built upon an 8 MHz processor with 64 registers supporting

arithmetic, binary, logic and flow control operations. The other main blocks include:

 Tx and Rx Engine. These blocks correspond to the transmission and reception

blocks of the WMP architecture. They (i) encode and decode packets from
internal representation to the 802.11b/g CCK and OFDM encodings; (ii)
compute and verify the Frame Check Sequence; and (iii) transmit and receive

frames. Packet reception is performed by the Rx Engine in parallel to other
processor tasks.

 Tx and Rx FIFO queues. These queues are interfaced to the host kernel. On the
transmission path, packets forwarded from the driver are enqueued in the Tx
queue, from which the chipset moves the frames to the Tx Engine. On the

reception path, the processor waits for a packet received by the Rx Engine, and
pushes (or drops) the received data towards the host kernel.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 17 of 92

 Shared memory. This memory space of 4 KB can be accessed also by the host

and can be used for implementing the micro-instruction memory, i.e., the MAC
program.

 Internal code memory. This 32-KB memory is used for implementing the MAC

commands and the MAC Engine.

 Template RAM. The RAM memory can be used for composing arbitrary frames

(including customized frame replies) that can be pushed to the Tx Engine as if
they came from the Tx queue.

 Internal registers and external conditions (EC). The internal registers keep

hardware configuration settings. They may be set by the processor in response
to changes in the EC to program the radio interface and set up timers.

Since the new firmware has to implement a MAC Engine, i.e., an executor of generic
XFMSs, we also specify the new firmware work flow as depicted in Figure 3.

Figure 3: MAC Engine work-flow.

 2.3 Compiler and Debugger

To permit the MAC Engine to execute an XFMS, the latter must be coded in a suitable

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 18 of 92

machine language, analogous to a bytecode, a sort of binary code. Let ns be the

number of symbolic states, and ne the number of input events in I, the simplest
approach is to code the XFSM as an (ns·ne) table. At each location (I, j), the table
stores the state transition when event j is received at state i. Each transition is

defined by means of the 6-byte triplet (a, c, s), where:

 a (O + U) is a 2-byte MAC transition action, where the first byte identifies the
action label, and the second byte the action parameter (needed in case of

configuration actions);

 c F is a 2-byte condition enabling the transition (first byte = register name,

second byte = register state);

 s is the target state, coded with 2 bytes.

Note that we do not limit to 1 byte per state as the number of actual states may

become larger than the nominal ones: when multiple actions/conditions are associated
to a same transition, as a consequence of the above coding, the state must be split

into a sequence of intermediate states, each triggering at most one action and
verifying at most one condition. In practice, to cope with the severe memory
limitations of the chipset (only 4 KB are available for storing the MAC program table),

we have optimized the memory occupancy by replacing each table‘s row with a list
containing only the non-null state transitions. As each state generally reacts to a

number of input events much lower than the total inputs number (i.e., the table is
sparse), skipping null-transitions significantly reduces the required memory space.
Moreover, as a second optimization, we have enabled the possibility to use the second

byte of the state labels for encoding an additional state action (with no parameter) to
be executed after the state transition.

To avoid writing MAC programs in the above described machine language, we have
developed an XFSM builder. It includes a graphic XFSM editor on the eclipse platform
[8] for composing MAC program. In addition it includes a bytecode compiler that

translates an XFSM graphical representation into the machine language,
understandable by the firmware‘s MAC Engine. The bytecode can be loaded on the

memory chipset by using the chipset debug tools, or can be injected from the host to
the card by forwarding special packets whose payload carries the MAC bytecode.

Loading a new bytecode on the chipset allows changing on-the-fly the card behaviour
without any recompiling operation.

For monitoring the behaviour of the MAC program executions, apart from measuring

the throughput performance, we are also developing a debugger instrument based on
the analysis of channel activity traces. Specifically, by sampling the channel activity

by means of an USRP board and by processing this trace with software (whose
preliminary implementation has been realised in MATLAB) devised to identify idle and
busy intervals, we will double check the medium access operations programmed on

the card.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 19 of 92

 2.4 MAC Programs

We are planning to develop a set of MAC programs conceived to respond to the ‗lack

of functionalities‘ emerged in D2.1.1 [2]. To this purpose, we will start with the re-
implementation of the legacy DCF as an XFSM executed by the WMP. We will compare
its performance with the benchmark provided by the native Broadcom‘s firmware, as

well as with the performance provided by the OpenFWWF firmware (i.e., with the DCF
as well reprogrammed on the card, but via straight firmware recoding).

The relevant XFSM is represented by black-lined states and transitions in Figure 4.
The same figure shows, with different colours, the extra transitions and states
modelling the extensions presented next. In addition to the self-explaining state

labels, input events and transition arrows, the figure reports guard conditions – in
square brackets - and actions (when associated to a transition) - in italic style. For

graphical convenience, the figure separates the Tx state machine (left) from the Rx
one (right).

At an initial state we will support at least three different MAC programs that tackle

distinct MAC operation aspects, which indeed recur in several literature proposals: i)
programmable management of frame replies (in red, the ACK in piggybacking

program), ii) precise scheduling of the medium access times (in blue, the pseudo-
TDMA program) and iii) fine-grained control of the radio channels (in green, the multi-

channel program). In the following section we will focus on the ACK piggybacking
program.

Figure 4: XFSM: Tx-state (left) and Rx-state (right) machines.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 20 of 92

 2.4.1 ACK Piggybacking

In this section we will describe a MAC program implemented as a DCF extension that
optimizes the protocol efficiency, ACK Piggybacking. The key idea is to transmit data

encapsulated in acknowledgement frames. Specifically, when a given station gets the
access to the medium after a contention period and transmits its data frame, the
destination station replies with a data+ACK frame if its transmission queue is non-

empty. Note that the transmission of an ACK is always compulsory after the reception
of a unicast data frame. Therefore, transmitting data piggybacked on the ACK allows

saving air time and thus allocating a higher number of users in the network.
Moreover, the number of collisions is reduced as the ACK transmission is protected by
the SIFS interval.

Figure 4 shows how this mechanism can be easily defined in terms of an XFSM
update. Modifications need to be performed both at the Tx and Rx state machines. At

the reception side, starting from an ongoing reception, i.e. from the Rx state, when
the header reception is completed (HEADER_END event), the station transits to the
REPLY_FORGING state given that: [dst_addr = myaddr] and [queue! = empty]. In

this state, the station continues the reception process and simultaneously prepares
the data+ACK frame reply. If the transmission queue is empty but the frame is

addressed to the target station, the receiver sub-system moves to the WAIT_SIFS
state at the reception end (MED_DATA_END event). Otherwise, it moves to IDLE
state. When the reply is ready (END_SIFS event), either in the case of a normal ACK

or in the case of a data+ACK reply, the FSM switches to the transmission mode and it
moves to the state TX_REPLY. When the transmission is completed (MED_DATA_CONF

event), the system switches back to the receiver mode and to the IDLE state.

This mechanism can be applied to different types of traffic, such as TCP or voice
traffic. For the first case in [17] we show the performance improvements of

piggybacking as compared to the legacy DCF when TCP traffic is present.

ACK Piggybacking turns out to be especially appropriate in the case of short frame

transmissions, e.g. the ones generated by voice codecs. In VoIP applications, the
overhead introduced by the standard mechanism is too large, while collisions and the
subsequent backoff procedure add random and unpredictable delays.

We develop a MAC program named VoIPiggy [18] that transmits the voice frames
together with the acknowledgements, but only in the uplink direction. The VoIPiggy

exchange depicted in Figure 5 involves a legacy data frame from the Access Point
followed by an ACK frame, with voice data piggybacked, sent by the corresponding
station after a SIFS.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 21 of 92

Figure 5: Simplified DCF frame exchange (top) and VoIPiggy proposal (bottom).

The legacy mode is used by the AP for any kind of packets it transmits. Meanwhile,
VoIPiggy mode is used by a station whenever it receives a VoIP packet incoming from

the AP and the Head-of-Line (HOL) packet in its Tx FIFO queue is VoIP-data. This is
identified by checking the data stored in the structure sk_buff, which handles the

network packets that are received or to be transmitted. In case the queue is empty or
the HOL packet is not of VoIP-type, the station will use the legacy mode.

We add a hook in the receiver code to intercept ACK frames longer than the standard

ones. The AP will transform them back into full featured voice packets. In addition,
the AP is prevented from acknowledging the VoIP packets a station has sent

piggybacked on an ACK.

For the transmission state, these changes are subject to implementation at the AP,
which needs to wait for the ACK. The access point checks if the length of the received

ACK is larger than the legacy one. In that case, the AP needs to send the voice frame
up to the host. For the reception state, we modify the behaviour of the station. Upon

the reception of a voice frame from the AP, the STA checks if it has pending voice
traffic addressed to the AP and piggybacks the voice frames on the
acknowledgements.

On the other hand, when a packet is transmitted using the legacy mode because no
VoIP packet from the AP was received for more than 25ms, then the MAC Processor

will wait for an ACK and the packet will not be removed from the queue, but instead
will undergo legacy DCF access. This will be repeated until a maximum number of
retransmission attempts (7 in our case) or until a VoIP packet is received by the AP.

Another issue identified when developing this MAC program is the necessity of
delaying outgoing packets when the stations have voice traffic to be served. Without

this delay a VoIP packet might be transmitted using the legacy access. If this happens
once, then the probability of repeating in the near future is not negligible because of
synchronization effects (the VoIP traffic is generated using long inter-packet periods,

i.e., 20 ms). By delaying VoIP packet transmission for as long as 20 msec., the
timeout selected and configured in the VOIP_PIGGY_TIME_L and

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 22 of 92

VOIP_PIGGY_TIME_H registers is very likely to expire before a VoIP packet is received

from the AP, hence, the packet will use the VoIPiggy mode. Table 2: Percentage of
the piggybacked frames vs. the station delay presents some numbers on the

percentage of the piggybacked frames according to the delay introduced at the
station.

Maximum Delay [ms] % Piggybacked
Frames

10th Percentile 90th Percentile

0 0,03 0 39

5 1,41 16,9 1202,3

10 65,38 1360,1 2326,5

15 89,36 2138 2935,7

20 99,10 2972 2974,6

Table 2: Percentage of the piggybacked frames vs. the station delay

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 23 of 92

 3 Specification Framework: mac80211++

As already specified in Section 1.2, the mac80211 will be the basis for the
development of the FLAVIA prototype. Therefore, we first present an overview of the
mac80211 framework, highlighting its main characteristics. Then, we provide a proof

of concept of the modularity of mac80211, developing as well a function and a service
handler that manage the addition and loading of new services and functions, proving

FLAVIA‘s modularity concept. Besides we describe the virtualization support, by
adding an overlay layer between the device drivers and the mac80211 framework.
Finally, we explain the development of the Information Base, which is achieved by

extending one of the structures contained in the aforementioned framework.

 3.1 Overview

The Linux mac80211 [9] layer specifies a framework to enable SoftMAC-capable

device drivers used for operating with 802.11 hardware, and implements functionality
such as handling several higher-layer components of the MAC, including support for
hardware/software crypto, power saving, .11n style aggregation or LED management,

while other parts of the MAC functionality are implemented at the hardware level.
Figure 6 depicts an overview of the mac80211 framework.

Figure 6: Overview of the mac80211 framework.

The mac80211 module plays two key roles:

 Wrap the packet incoming from the upper layers and translate them into

the802.11 frame format.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 24 of 92

 Control management operations related to the 802.11 standard.

The difference with respect to the Full-MAC approach is that mac80211 handles the
management of MAC Sublayer Management Entity (MLME) within its framework. Still,
this happens only for the station mode of operation. In case the node is acting as an

AP, it is the hostapd module the one in charge of handling the MAC management.

The mac80211 module is composed of different data structures. We point the most

relevant ones for the deployment of FLAVIA:

 ieee80211_ops: It collects the callbacks required for the communication from
the mac80211 to the driver.

 ieee80211_local: Each instance of this structure represents a wireless device. It
contains all the possible information of the wireless card, such as driver or

interface information. It is created when the driver registers to the mac80211
module.

 3.2 Modularity

In this section we present the modularity that can be achieved with mac80211

framework. Once identified the limitations of mac80211, we aim to improve the
framework modularity by separating some of its components and rebuilding an

enhanced version, named mac80211++.

 3.2.1 Wireless stack interfaces

A standard wireless driver that uses the Linux wireless facilities includes some kernel
modules and may provide some interfaces that can be used by user level tools to
configure the device behaviour as depicted in Figure 7. The main modules defined in

the framework are the mac8011 and the cfg80211; these modules are loaded and
used by the drivers (e.g., ath5k, ath9k, b43) that are implemented in separate Linux

kernel modules. Moreover, the framework allows for dynamic composition of the rate
control that is linked as a separate component (some driver uses the separate
modules provided in the framework such as b43, while other drivers register their

operations to implement the rate control mechanism, such as ath9k). The mac80211
registers its callbacks to the net_device kernel interface building up the logical

network interface.
Bidirectional interfaces are defined among modules as represented in Figure 7 by the

arrows. The exported functions provide a direct interface shown with the green
continuous arrows. The usage of an exported function introduces a dependency in the
direction of the arrow (e.g., the driver depends on mac80211). The interface in the

other direction is implemented through the registration of callbacks (i.e., function
pointers). In Figure 7 this dependency is represented by the blue dashed arrows and

the labels represent the structure containing the function pointers.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 25 of 92

Figure 7: Architecture of a wireless driver.

The mac80211 module is contained in the folder net/mac80211 of the kernel source
and exports the ieee_ interface that is mainly used by the driver. In Table 12 (see

Appendix B.1) we report the set of functions implemented in each file.

The mac80211 registers its callbacks to the net_device, creating the Linux network
interface. The network device operation is defined in the file include/linux/netdevice.h,

and the registered operations are presented in Table 13 of the appendix. We highlight
some of the key operations: i) ieee80211_subif_start_xmit is used to transmit packets

and ii) ieee80211_netdev_select_queue provides a packet classification for the Linux
traffic control framework. In addition, Table 14 exposes the set of functions exported
by the net_device.

From the user level, the wireless card can be configured and controlled by the
cfg80211 module. This module acts on top of the mac80211 and consequently onto

the driver by means of the cfg80211_ops interface, defined in the file
include/net/cfg80211.h, in order to handle configuration requests on the wireless

interfaces. The mac80211 module registers the callbacks of the structure
cfg80211_ops summarised in Table 15.

The cfg80211 module provides mac80211 with an interface towards the user level,

cfg80211_. Table 16 summarises the set of functions contained in the files located in
the directory net/wireless/.

When loaded, the driver activates the mac80211 module and registers its operations
through the ieee80211_ops interface. In what follows, we report an example of the
functions registered by the b43 driver:

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 26 of 92

.tx = b43_op_tx,

.conf_tx = b43_op_conf_tx,

.add_interface = b43_op_add_interface,

.remove_interface = b43_op_remove_interface,

.config = b43_op_config,

.bss_info_changed = b43_op_bss_info_changed,

.configure_filter = b43_op_configure_filter,

.set_key = b43_op_set_key,

.update_tkip_key = b43_op_update_tkip_key,

.get_stats = b43_op_get_stats,

.get_tsf = b43_op_get_tsf,

.set_tsf = b43_op_set_tsf,

.start = b43_op_start,

.stop = b43_op_stop,

.set_tim = b43_op_beacon_set_tim,

.sta_notify = b43_op_sta_notify,

.sw_scan_start = b43_op_sw_scan_start_notifier,

.sw_scan_complete = b43_op_sw_scan_complete_notifier,

.get_survey = b43_op_get_survey,

.rfkill_poll = b43_rfkill_poll

The last interface depicted in Figure 7, named rate_control_ops, is related to the rate
control algorithm. A module to provide the rate control functionality registers a set of

operations defined in net/mac80211/ and defined as follows for the case of the
popular Minstrel algorithm:

.name = "minstrel",

.tx_status = minstrel_tx_status,

.get_rate = minstrel_get_rate,

.rate_init = minstrel_rate_init,

.alloc = minstrel_alloc,

.free = minstrel_free,

.alloc_sta = minstrel_alloc_sta,

.free_sta = minstrel_free_sta,

.add_sta_debugfs = minstrel_add_sta_debugfs,

.remove_sta_debugfs = minstrel_remove_sta_debugfs

 3.2.2 Modularization framework

The mac80211 framework is formed of a large number of sub-components, such as:
the MAC layer management entity (mlme), the high throughput (ht) and the MPDU
aggregation (agg) as specified in the IEEE 802.11n standard [2]. These parts are

defined in dedicated files but not implemented as separated modules. To illustrate the
various interfaces that can be defined within the mac80211 modules, we are splitting

some parts of the monolithic mac80211 framework and evolving to a new extended

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 27 of 92

and more modular framework.

The source file of management entity, mlme.c, and the code for high throughput
functionality, ht.c, have been split using the classic export/callback structure to
implement the inter-module communication. The mac8_mlme and mac8_ht modules

will be loaded by the mac80211 module.

Table 3 summarizes the new APIs added and declared as exported functions of the

new mac80211++ framework to support the new mac8_mlme and mac8_ht modules:

Method File
 ___ieee80211_stop_rx_ba_session agg-rx.c

 __ieee80211_stop_rx_ba_session agg-rx.c

 ieee80211_assign_tid_tx agg-tx.c

 ___ieee80211_stop_tx_ba_session agg-tx.c

 ieee80211_tx_ba_session_handle_start agg-tx.c

 __ieee80211_stop_tx_ba_session agg-tx.c

 __ieee80211_request_smps cfg.c

 ieee80211_set_channel_type chan.c

 init_mac80211_ht_ops ht_ops.c

 ieee80211_ht_cap_ie_to_sta_ht_cap ht_ops.c

 ieee80211_sta_tear_down_BA_sessions ht_ops.c

 ieee80211_request_smps_work ht_ops.c

 ieee80211_recalc_idle iface.c

 ieee80211_led_assoc led.c

 ieee80211_hw_config main.c

 ieee80211_bss_info_change_notify main.c

 ieee80211_reset_erp_info main.c

 init_mac80211_ops mlme_ops.c

 ieee80211_rx_bss_put scan.c

 ieee80211_bss_info_update scan.c

 sta_info_get sta_info.c

 sta_info_alloc sta_info.c

 sta_info_insert sta_info.c

 sta_info_destroy_addr sta_info.c

 ieee80211_tx_skb tx.c

 ieee80211_stop_queues_by_reason util.c

 ieee80211_wake_queues_by_reason util.c

 ieee802_11_parse_elems util.c

 ieee802_11_parse_elems_crc util.c

 ieee80211_set_wmm_default util.c

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 28 of 92

 ieee80211_build_probe_req util.c

 ieee80211_send_probe_req util.c

 ieee80211_recalc_smps util.c

 free_work work.c

 ieee80211_add_work work.c

Table 3: APIs for mac8_mlme and mac8_ht support

The callbacks corresponding to the new structure mac8_mlme_ops are defined as

follows:

._ieee80211_dynamic_ps_disable_work = ieee80211_dynamic_ps_disable_work,

._ieee80211_dynamic_ps_enable_work = ieee80211_dynamic_ps_enable_work,

._ieee80211_dynamic_ps_timer = ieee80211_dynamic_ps_timer,

._ieee80211_max_network_latency = ieee80211_max_network_latency,

._ieee80211_mgd_assoc = ieee80211_mgd_assoc,

._ieee80211_mgd_auth = ieee80211_mgd_auth,

._ieee80211_mgd_deauth = ieee80211_mgd_deauth,

._ieee80211_mgd_disassoc = ieee80211_mgd_disassoc,

._ieee80211_mlme_notify_scan_completed = ieee80211_mlme_notify_scan_complete,

._ieee80211_recalc_ps = ieee80211_recalc_ps,

._ieee80211_send_nullfunc = ieee80211_send_nullfunc,

._ieee80211_send_pspoll = ieee80211_send_pspoll,

._ieee80211_sta_quiesce = ieee80211_sta_quiesce,

._ieee80211_sta_reset_beacon_monitor = ieee80211_sta_reset_beacon_monitor,

._ieee80211_sta_reset_conn_monitor = ieee80211_sta_reset_conn_monitor,

._ieee80211_sta_restart = ieee80211_sta_restart,

._ieee80211_sta_rx_notify = ieee80211_sta_rx_notify,

._ieee80211_sta_rx_queued_mgmt = ieee80211_sta_rx_queued_mgmt,

._ieee80211_sta_setup_sdata = ieee80211_sta_setup_sdata,

._ieee80211_sta_tx_notify = ieee80211_sta_tx_notify,

._ieee80211_sta_work = ieee80211_sta_work,

The mac8_ht API is defined below:

._ieee80211_send_delba = ieee80211_send_delba,

._ieee80211_process_delba = ieee80211_process_delba,

._ieee80211_ba_session_work = ieee80211_ba_session_work,

._ieee80211_send_smps_action = ieee80211_send_smps_action,

._ieee80211_sta_tear_down_BA_session = ieee80211_sta_tear_down_BA_sessions,

._ieee80211_ht_cap_ie_to_sta_ht_cap = ieee80211_ht_cap_ie_to_sta_ht_cap,

._ieee80211_request_smps_work = ieee80211_request_smps_work,

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 29 of 92

Figure 8 illustrates the extensions and changes carried out in the mac80211

framework, turning it into a more modular framework following the FLAVIA
specifications.

Figure 8: Architecture of a wireless stack under mac80211++.

 3.3 Flexibility

In order to keep to a minimum level the number of modifications introduced to the

mac80211 code and thus make the FLAVIA architecture more flexible, we implement
two auxiliary modules, namely the Service Scheduler and the Function Handler. These

two modules are liable, respectively, for managing the scheduling of a new FLAVIA
service and the registration of the FLAVIA functions to be executed at the occurrence
of specific events raised/handled by mac80211 (e.g., packet reception, packet

transmission or channel switching).

In this section, we first describe the architectures of the Service Scheduler and the

Function Handler. Then we illustrate a simple example showing how to use the
proposed architecture to register a new service and enhance the behaviour of

mac80211 at the occurrence of a specific event (e.g., the association of a STA with an
AP).

 3.3.1 Service Scheduler

The Service Scheduler has been designed and deployed to provide a simple and
standardized mechanism to schedule FLAVIA services. Through this system, the

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 30 of 92

developer of a new service can focus only on the implementation of the main service

functions, using the Service Scheduler as a mean to schedule periodically its
execution. The Service Scheduler will run the functions registered by the FLAVIA
service during its initialization phase.

In addition to simplifying the implementation of a service, the Service Scheduler
architecture improves its maintenance, since the implementation of its internal

functions can be improved to support enhanced services, as long as its APIs are not
modified. Indeed, it can be easily updated with more sophisticated functionalities to
meet the requirements of real-time systems.

 Functions:

The main function of the FLAVIA Service Scheduler is the

flavia_service_scheduler_init. It initializes the service scheduler by creating a new
single thread workqueue, which is used to manage the services as standalone tasks.

The cleanup function flavia_service_scheduler_exit unloads the service scheduler,

deleting the auxiliary structures like the workqueue that are used to carry on the
scheduling task.

The most important function of the Service Scheduler API is the
flavia_register_service. This function provides a simple and standardized method for
FLAVIA developers to register a function implementing a new FLAVIA service. The

process implemented by the registering function comprises the following steps:

1. Initialization of the task implementing the FLAVIA service. This involves

initializing a new flavia_ss_t object, which contains all the information
necessary for executing a new service, and the task that will be registered on
the workqueue.

2. Initialization of the new flavia_ss_t object on the list used for internal purposes
by the service scheduler.

3. Initialization of the timer that will schedule the task, when the corresponding
timeout expires.

The behaviour of flavia_register_service_tsf_sync function is quite similar to the
previous procedure. However, unlike flavia_register_service, it registers a function
that needs to stay synchronized with the TSF module of the wireless card.

Once a given service is no longer used, it can be removed using the
flavia_remove_service function that stops the pending timers and, successively,

deletes the corresponding work from the workqueue.

The two functions, flavia_service_set_ieee80211_local and
flavia_service_get_ieee80211_local, set and return the internal pointer to the variable

struct ieee80211_local used by mac80211. These functions provide a simple
mechanism to get direct access to the internal information of mac80211.

The auxiliary function flavia_ss_timer_function is executed periodically when the timer

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 31 of 92

of the FLAVIA service registered by the developer expires. This function simply adds

the work implementing flavia_service_hook_container on the worqueue used by the
Service Scheduler to handle all FLAVIA services.

The flavia_service_hook_container invokes the function registered by the module

implementing the FLAIVA service and reschedules the timer that, in turn (i.e. when
the timer expires), will executes again flavia_ss_timer_function. Therefore,

flavia_service_hook_container represents the main function of the kernel thread put
on the workqueue and invoked periodically to execute any FLAVIA service. As
illustrated in Figure 9, this auxiliary procedure is the main entry point for the function

implementing a FLAVIA service.

The rescheduling timeout is defined by the member flavia_usec of the structure

flavia_ss_t.

Unlike flavia_service_hook_container, the flavia_service_hook_container_tsf_sync
procedure attempts to stay synchronized with the TSF module of the wireless card by

rescheduling the execution of the function earlier than the service timeout (the
member flavia_usec of flavia_ss_t).

The preliminary source code of the main data structures and functions of the FLAVIA
Service Scheduler described above is detailed in Table 16 of Appendix B.2.

Figure 9 illustrates the data structures used by the Service Scheduler to execute

periodically the FLAVIA services. Note that flavia_ss_wq is defined as single-threaded.
Therefore, only one kernel thread is created to handle and schedule the tasks

appended to the corresponding queue. The data structure flavia_ss_t, which is
assigned to the data member of the work_struct data structure, contains the items
necessary to define a FLAVIA service. These elements are: i) the service specific data

(flavia_data), ii) the procedure that implements the service behaviour
(flavia_service_hook), and iii) the time interval that elapses between the execution of

two consecutive instances of the service function (flavia_usec).

On the contrary, the function flavia_srv_container (or the function

flavia_srv_container_tsf_sync for services that need to stay synchronized with the TSF
module) is assigned to the *func member of the work_struct data structure, which
represents the pointer to the procedure actually executed by the kernel thread.

Consequently, when the timer defined by the parameter flavia_timer expires, the
function invoked by the kernel thread is flavia_srv_container. This last function, in

turn, executes the service function pointed by flavia_service_hook and reschedules
the timer to execute again the flavia_srv_container later.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 32 of 92

Figure 9: Service Scheduler workqueue structures.

Figure 10 illustrates the main steps executed to register and execute a FLAVIA

service. When a new service is registered, a new work_struct object is initialized with
the members illustrated in Figure 9 and a new timer is triggered. When the timer
expires, the work_struct object is queued on the workqueue defined by the Service

Scheduler containing all the tasks that must be executed immediately. Once the task
can be scheduled, the kernel thread implementing the workqueue invokes the function

flavia_srv_container that, in turn, executes the service function pointed by
flavia_service_hook as described above. Note that the red-coloured phases in Figure
10 are not directly implemented in the Service Scheduler, as they are provided by the

Timer and Workqueues of the Linux kernel API.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 33 of 92

Figure 10: Service Scheduler work-flow.

 3.3.2 Function Handler

The Function Handler is designed and deployed to provide a standardized mechanism
to hook the mac80211++ code (i.e., to add piece of code that acts as glue between

any FLAVIA function and the mac80211 procedures). More specifically, the Function
Handler permits to register a function to any hook added to the mac80211 code; thus

improving its functionalities with new FLAVIA functions. At the occurrence of a specific
event, the Function Handler will call all the FLAVIA functions previously registered on
that hook. For example, when a new frame is received, the control flow of the

mac80211 code reaches a FLAVIA hook that transfers the control to the Function
Handler, which, in turn, invokes the execution of all functions registered on that hook.

Note that the function invoked by the Function Handler can register a FLAVIA service
or create a new task executed by an independent kernel thread. Therefore, the
Function Handler mechanism provides a high level of flexibility to the developers of

new functionalities and services.

The FLAVIA Function Handler defines two main data structures: the

flavia_function_ops, a structure used to define the list of functions that are called
when the corresponding hook is executed in mac80211, and the flavia_hook_ops, a
structure used to define the set of mac80211 hooks.

 Functions

The main function of the FLAVIA Function Handler is the flavia_function_handler_init,

which performs some consistency checks and initializes the internal data structures
used to fulfil the management task. On the contrary, the function
flavia_function_handler_exit removes the functions registered on all hooks and

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 34 of 92

deletes the structures to free their memory space.

Every function designed to enhance the functionalities of the MAC protocol through
the FLAVIA architecture can be registered on a particular hook using the
flavia_register_function, which connects the function to a hook invoked from

mac80211 when the control flow reaches such hook. The procedure implemented by
the registering function consists of two main phases that are detailed next:

1. Initialize the function that will be executed every time the control flow of
mac80211 reaches the corresponding hook.

2. Assign the function to the hook passed as argument. More specifically, the

registration may proceed as follows:

- If at least a function has been already registered on the hook, the Function

Handler registers the new function on the corresponding hook (i.e., the list
of functions), and then it adds the new item to the list of functions executed
on the same event/hook;

- Otherwise, the Function Handler creates a new hook object (i.e., a new list
of functions), and registers the function on the new hook.

The flavia_remove_function deletes a function registered on a hook. It must be used
when a module implementing a FLAVIA service is removed.

In addition to implementing the structures and the procedures necessary to handle a

FLAVIA function, the Function Handler provides a standard method to define hooks in
the mac80211 code, so that any developer can easily enhance mac80211 with new

functionalities. To this end, the Function Handler API provides the
flavia_function_hook_container function, which can be invoked everywhere inside the
mac80211 framework to create new hooks.

The execution of all functions associated with a specific hook is performed by
flavia_exe_hook_functions.

Finally, the two auxiliary functions flavia_find_hook_ops and flavia_find_function_ops
search the list of FLAVIA functions or a single FLAVIA function registered on a given

hook, respectively.

The preliminary source code of the main data structures and functions of the FLAVIA
Function Handler described above is detailed in Table 17 Section B.2.

Figure 11 illustrates the data structure used to handle all the functions registered on
the corresponding hooks defined in the mac80211 kernel module to enhance its

functionality. More specifically, for each item of the dynamic list of hooks, the Function
Handler maintains a double linked list of functions registered by a developer through
the function flavia_register_function.

Note that the binding between a hook and the corresponding list of functions is
performed at runtime through the functions flavia_register_function and

flavia_function_hook_container made available by the API of the Function Handler. In

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 35 of 92

particular, flavia_register_function adds a new function f_nm to the list assigned to

the corresponding hook hook_n, on which f_nm is being registered. Additionally
flavia_function_hook_container invokes all functions defined on a specific hook, when
these are triggered during the execution of mac80211.

Figure 11: Architecture of the Function Handler.

Figure 12 shows the sequence of steps executed by the
flavia_function_hook_container function declared in the Function Handler, when the
control flow of mac80211 reaches a specific hook (i.e., the hook is triggered).

Figure 12: Function Handler work-flow.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 36 of 92

 3.3.3 A simple example: the FLAVIA hello service

The flavia_hello_service is a simple service designed to illustrate the registration
mechanism of new services and functions, which occurs through the Service Scheduler

and the Function Handler, respectively.

In this simple example, two functions, namely flavia_hello_service and
flavia_hello_function, are defined. Both routines simply print a message in the file

used for kernel debug purposes. In particular, the function implementing the Hello
Service displays periodically a brief greeting message. Whereas an auxiliary routine

assigned to the hook invoked prints the association status and other information of
the 802.11 station when an 802.11 station gets associated to an AP.

As any Linux kernel module, the two main functions implemented in this example

correspond to the initialization and clean-up macros, defined in linux/init.h
(flavia_hello_init and flavia_hello_exit).

The flavia_hello_init function, as illustrated in Figure 13, holds two structures named
flavia_ss_item and flavia_func_item, which are used as containers to handle the
selected service and function, respectively,. The flavia_hello_init function calls the

flavia_register_function, defined in the flavia_function_handler.c file, in order to set
the flavia_hello_function. Similarly, the flavia_register_service, defined and exported

by the flavia_service_scheduler.c file, is invoked to register the flavia_hello_service,
which actually implements the service. If any problem occurs during the registration
process, an error value is returned to the procedure that invoked the module.

Otherwise, the Hello Service is loaded correctly.

Figure 13: Function flavia_hello_init() in flavia_hello_service.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 37 of 92

Figure 14 depicts the flavia_hello_exit function that unloads the service, removing

both function and service through, the functions flavia_remove_function and
flavia_remove_service, respectively.

Figure 14: Function flavia_hello_exit() in flavia_hello_service.

 3.4 Virtualization

In order to provide true virtualization capabilities to mac80211, FLAVIA is exploiting
the current architecture of mac80211 as depicted in Figure 6.

The mac80211 framework is already providing a soft-virtualization mechanism as it
can support multiple logical network interfaces on top of the physical one. This
mechanism is present in mac80211 as a way to provide multiple BSSID support, as

well as simultaneous AP, client and monitoring operations. Therefore, mac80211 and
its associated user-land tools such as iw are designed to add, delete and change the

logical interfaces in a transparent way, by using the netlink interface to dynamically
change different elements in the kernel.

Unfortunately, these mechanisms are limited by the hardware capabilities and the

corresponding mac80211 driver the framework is relying on. Specifically, in the
current architecture each logical interface is bound to a physical hardware interface

and this interface is bound to a set of physical parameters such as frequency of
operation. Consequently, true virtualization in the FLAVIA flavour that aims at
exploiting the full capability of a card, e.g., switching on and off a specific channel, is

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 38 of 92

impossible with the existing mac80211 framework.

To overcome this limitation, FLAVIA is introducing a new element in the mac80211
stack, FLAVIAn, which is essentially a kernel module that acts as a mac80211 driver.
FLAVIAn is used as an overlay layer between the hardware card and the mac80211

framework, allowing to present a single WLAN interface through a set of multiple
mac80211 device drivers and thus to enable virtualization. In our case, we will work

with the new mac80211++ stack.

The mac80211 family of drivers is using a certain number of hooks to maximize the
reuse of element inside the system. The current requirements for interfacing a driver

with a Linux kernel and the mac80211 subsystem are the following:

- A kernel driver should provide a sample macro to be recognized by the

kernel. Example of these are the MODULE_* family of macros.

- A networking device driver should provide net device hooks as objects of
type net_device_ops.

- A mac80211 driver should provide mac80211 hooks as mentioned before,
exposed as objects of type ieee80211_ops.

- A driver could implement a set of supplementary user-space/kernel
interfaces by implementing a Netlink hook using the type genl_ops to
describe the messages to be exchanged.

Figure 15 summarizes the different interactions between drivers and the mac80211
framework.

modprobe
drivername

ifconfig devicename xxx

iwconfig
devicename xxx

iw devicename xxx

Typical
mac80211
driver

Kernel Macros

Netlink hooks

mac80211 hooks

Network device hooks

Kernel space
Userland space

command line tools
example

libnl

ioctl,
C fund
calls

Netlink

mac802
11

netdev

kernel
module

Figure 15: mac80211 typical interface and hooking mechanism.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 39 of 92

FLAVIAn as an overlay layer has to provide the same hooks, but additionally is
required to provide the following registering functions:

- flavian_netdev_attach_ops as a replacement for netdev_attach_ops that is

needed to managed the netdev hooks;

- flavian_ieee80211_alloc_hw as a replacement for ieee80211_alloc_hw that

is providing the mac80211 hooks

- flavian_genl_register_family_with_ops as a replacement for the function
genl_register_family_with_ops for the Netlink hooks that might be needed.

The overlay mechanism in the new mac80211++ stack is depicted in Figure 16.

Figure 16: Virtualization overlay driver (FLAVIAn).

In addition to the above, we have determined that FLAVIAn should commit to the

following minimum requirements to support mac80211 and the Linux kernel:

- netdev hooks: FLAVIAn should provide a start transmit function

(ndo_start_xmit), MTU control (ndo_change_mtu), MAC address control
(through ndo_set_mac_address)

- mac80211 hooks: FLAVIAn should provide a packet transmit interface (tx),

start and stop capabilities (start/stop), configuration (config) as well as add/
remove interface hooks (add_interface and del_interface). Finally, a

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 40 of 92

configurable filter is required (configure_filter).

Figure 17 summarizes the above minimum requirements.

netlink

mac80211

netdev

Linux Kernel

mac80211
compliant

driver
FLAVIAn

Kernel Macros : MODULE_*

Netlink hooks

mac80211 hooks :
t x , s t a r t / s t o p , c o n f i g ,
add_interface, del_ interface,
configure_filter

Network device hooks :
ndo_start_xmit, ndo_change_mtu,
ndo_set_mac_address

flavian_netdev_attach_ops

flavian_ieee80211_alloc_hw

flavian_genl_register_family_with_ops

Figure 17: Requirements for FLAVIAn virtualization-enabler driver.

To ensure appropriate interaction of the mac80211 stack and the device drivers
through the FLAVIAn overlay, a small modification in the driver code is also required
in order to reroute the mac80211 callbacks the driver is capable of handling to point

to the equivalent ieee80211_flavian_ops structure specified by the FLAVIAn overlay.

 3.4.1 Virtualization example

We provide an example for the ath5k driver. The handlers supported by this driver will
be defined as follows:

const struct ieee80211_flavian_ops ath5k_hw_ops = {

 .tx = ath5k_tx,

 .start = ath5k_start,

 .stop = ath5k_stop,

 .config = ath5k_config,

 .prepare_multicast = ath5k_prepare_multicast,

 .configure_filter = ath5k_configure_filter,

 .sw_scan_start = ath5k_sw_scan_start,

 .sw_scan_complete = ath5k_sw_scan_complete,

 .get_stats = ath5k_get_stats,

 .conf_tx = ath5k_conf_tx,

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 41 of 92

 .get_tsf = ath5k_get_tsf,

 .set_tsf = ath5k_set_tsf,

 .reset_tsf = ath5k_reset_tsf,

 .get_survey = ath5k_get_survey,

 .set_coverage_class = ath5k_set_coverage_class,

 .set_antenna = ath5k_set_antenna,

 .get_antenna = ath5k_get_antenna,

 .set_ringparam = ath5k_set_ringparam,

 .get_ringparam = ath5k_get_ringparam,

};

The key functionality covered by the above handlers cover frame transmission (the

low-level driver should send the frame out based on the configuration in the Tx
control data and should stop queues appropriately), enabling/disabling the hardware
(including turning on frame reception at start-up and clearing queues before

shutdown), configuring Rx filtering, notifying about status of the scanning procedure
(start/complete), etc.

Note that the add/remove interface capabilities have been removed since
virtualization will be handled in the FLAVIAn driver and the device driver will be no
longer required to support multiple interface management. BSS association status will

also be moved to the FLAVIAn layer, while the capabilities to change the Tx
parameters used for channel contention will be implemented but triggered by FLAVIAn

for pure virtualization. The same principle holds for antenna and queue configuration.
Since TSF is only used in IBSS operation mode, the related handlers may be disabled
since we expect the driver to be agnostic of the operation mode with FLAVIAn

managing associations of multiple virtual devices. Moreover, if the firmware/hardware
takes full care of TSF synchronization, this functionality will not be required but

implementing it remains still under discussion.

Similar modifications will be required to support other mac80211 drivers (e.g., ath9k,
b43) with the FLAVIAn overlay, but as we explained above, such changes will involve

limited programming effort.

 3.5 Information Base

The Information Base plays an important role within the FLAVIA architecture since it
provides a unified vision of the data for all the FLAVIA modules. Note that at the

implementation stage of this entity, existing data management solutions offered by
the existing protocol stack must be considered.

In particular, in this section we will introduce the main structures defined in the Linux

Wireless stack that includes the mac80211 module. We envisage that the FLAVIA
framework may conveniently extend these structures in order to provide the

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 42 of 92

developer with the functionality required by the FLAVIA architecture.

The structure ieee80211_local is a general-purpose collection of information
embedded in other structures. For example, it includes the ieee80211_hw structure
that contains the hardware specific information of the wireless card. Another structure

defined here is the ieee80211 operations (ieee80211_ops) that allows accessing the
driver from the mac80211 modules. In addition, the ieee80211_local structure

contains the states of the wireless interface (suspended, resuming, started, etc.).
Other structures contained herein are related to management and configuration.

The mac80211 framework integrates this structure in the net device structure used by

the Linux Network Devices to differentiate among the installed wireless cards. For
example, each physical card allocates its ieee80211_local, thus the different functions

can operate separately on the various interfaces.

To interact with the wireless stack, developers have to extend the ieee80211_local
structure to be able to store custom data. In the FLAVIA framework the different

services store the data using the Information Base. Hence, in order to integrate the
FLAVIA framework with the mac80211 framework we define a practical way of

extending the structure ieee80211_local by using the data sharing interface defined in
the FLAVIA general architecture.

To this aim the data gateway interface is extended to include a structure of

ieee80211_local type as a parameter. In case this structure is not provided, the data
sharing module will store the data in a general repository. Otherwise, when

ieee80211_local is provided, the data sharing module stores the data within that
structure, creating separate data storage for each interface.

 3.5.1 The Data Sharing module

As defined in the general architecture, the Information Base contains a Data Sharing
module that acts as gateway among the FLAVIA Services and Functions. We consider

two different approaches for storing data:

a. Multiple Writers Multiple Readers with challenge protection.

b. Single Writer Multiple Readers.

In the first case, the set of functions for the Multiple Writers Multiple Readers solution
is:

 mac8_ds_set: store the data.
 mac8_ds_read: retrieve the data.

 mac8_ds_remove: remove the data.
 mac8_ds_protect: protect the data against arbitrary data changes.

All the functions receive the structure ieee80211_local as first parameter to select the

repository and, as second parameter, an integer public key to identify the specific
data. In addition, the method mac8_ds_set requires as input the data value and size,

while the function mac8_ds_protect receives also the protection callback. The specific

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 43 of 92

function signatures are introduced next:

void *mac8_ds_read(

ieee80211_local *local,

int publicKey

);

int mac8_ds_remove(

ieee80211_local *local,

int publicKey

);

int mac8_ds_set(

ieee80211_local *local,

int publicKey,

void *data,

unsigned int size

);

int mac8_ds_protect(

ieee80211_local *local,

int publicKey,

int (*consistency_test)

 (struct

mac8_ds_data_protection *)

);

Table 4: Multiple Writers Multiple Readers approach implementation

Note that the description of the protection callback is defined as follows:

int (*consistency_test)(struct mac8_ds_data_protection *)

where the mac8_ds_data_protection* parameter represents a structure containing the
structure ieee80211_local, the old value, the new value and the public key.

Furthermore, the data sharing module manages an asynchronous procedure that is
used for keeping informed about the change of data values. For this purpose, we

define two functions, namely mac8_ds_on_change_listener_add and
mac8_ds_on_change_listener_rem. Both functions require as parameter the structure
ieee80211_local to choose the repository, and the public key to select the observed

data. The mac8_ds_on_change_listener_add function returns an integer identifier
associated to the registered listener. Later this identifier can be later used as

parameter in mac8_ds_on_change_listener_rem to unregister that specific listener.
The function definitions are presented in Table 5.

int mac8_ds_on_change_listener_add(

ieee80211_local *local,

int publicKey,

void (*notify_function)(void *)

);

int mac8_ds_on_change_listener_rem(

ieee80211_local *local,

int publicKey,

int idListener

);

Table 5: Data Sharing Listener Management implementation

The notify callback has the following signature:

void (*notify_function)(void *)

The notify_function activates a new Linux task. In the registration process the user is
notified about the repository and the public key related to the callback.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 44 of 92

For the second approach, Single Writer Multiple Readers, we define the following

functions:

 mac8_ds_create_sw: for creating and storing the data.
 mac8_ds_update_sw: for updating the data.

 mac8_ds_remove_sw: for removing the data.

Table 6 presents the declaration of these functions.

int mac8_ds_create_sw(

ieee80211_local *local,

int publicKey,

void *data,

unsigned int size

);

int mac8_ds_update_sw(

ieee80211_local *local,

int privateKey,

void *data,

unsigned int size

);

int mac8_ds_remove_sw(

ieee80211_local *local,

int privateKey

);

Table 6: Single Writer Multiple Readers approach implementation

The mac8_ds_create_sw accepts as parameter the structure ieee80211_local and the
public key. It returns the private key for updating the data with mac8_ds_update_sw

and for removing the data with mac8_ds_remove_sw. The update and create tasks
require also the value to be stored and its size. It is worth noting that all the reading

functions can be used with the public key.

Table 7 summarises a new group of methods that has been defined for typed reading
and writing:

int mac8_ds_read_int (

ieee80211_local *local,

int publicKey

);

int mac8_ds_set_int (

ieee80211_local *local,

int publicKey

);

long mac8_ds_read_long (

ieee80211_local *local,

int publicKey

);

int mac8_ds_set_long(

ieee80211_local *local,

int publicKey);

double mac8_ds_read_double (

ieee80211_local *local,

int publicKey

);

int mac8_ds_set_double(

ieee80211_local *local,

int publicKey

);

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 45 of 92

char* mac8_ds_read_string(

ieee80211_local *local,

int publicKey

);

int mac8_ds_set_string(

ieee80211_local *local,

int publicKey

);

Table 7: Set of reading and writing functions

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 46 of 92

 4 Operation Modules

To illustrate the functionality introduced by FLAVIA, new services are added to the
wireless architecture. We specify five operation modules, i.e. SuperSense, Data
transport with QoS capabilities, Power Saving, Advanced Monitoring and Rate

Adaptation.

We specify these services in detail (which service, macro-service or functions are

involved) we discuss the mapping and interaction of each module within the FLAVIA
architecture and describe the interfaces that are exposed. We highlight the
improvements introduced over the standard mechanism, and present some use cases

for them as well.

 4.1 SuperSense

FLAVIA SuperSense is an innovative sensing service able to select constantly the most
advantageous network configuration thanks to a dynamical analysis of the radio
spectrum performed using both passive and active techniques.

The SuperSense module comprises three main structures:

1. flavia_ss_item: object containing the work to be registered on the scheduler

work queue and all the information concerning to the new service;

2. flavia_func_item: structure used to define the list of function to be called, when
the corresponding hook is executed;

3. sps_ieee80211_local: a structure containing all the driver global information.

The module‘s key functions are the init and exit ones. In fact, the flavia_sps_init

function is the most important one since it initializes the module through the following
steps:

1. Get the ieee80211_local struct from mac80211.

2. Get the Time Synchronization Function (TSF) value for synchronization issues.

3. Register the function flavia_sps_init_tsf_polling that will be executed to start

the polling activity.

4. Register the function flavia_sps_exit_tsf_polling that will be executed to end the

polling activity.

5. Register the function flavia_sps_set_superframe_ie that will be executed to set
up the new Information Element used to define the SPS Super-frame.

6. Register the function flavia_sps_start_tsf_polling that will be executed when the
station gets associated.

Once all those functions are correctly registered, the SPS service is considered loaded.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 47 of 92

Conversely, the function flavia_sps_exit removes the functions previously registered,

unloading the service.

The mechanism behind FLAVIA SuperSense allows switching the device between two
types of interfaces, which represent two different operation modes that alternate

periodically:

1. Tx/Rx mode.

2. Monitoring mode.

Through the introduction of a new data structure, named super-frame, the module
can set and manage the total duration of a SPS period, and the specific length of the

operation modes.

The super-frame always starts with an active monitoring period followed by a

transmission period in which all nodes that belong to the same BSS operate using the
same medium access mechanisms to transmit their data traffic. During an active
monitoring period, only one node is allowed to send probes along the wireless channel

in order to estimate the global link quality, based on different metrics.

The flavia_sps_set_superframe_ie function sets the new Information Element (IE)

contained in the beacon, which will be used to define the FLAVIA SPS Super-frame.
The IE contains two variables indicating the global duration of the frame period and
the time spent to perform the active monitoring.

To allow all the nodes to switch at the same time from one operational mode to
another, synchronization is required and obtained through to the TSF. This ensures

that the timers for all stations in the same BSS are kept synchronized. Each node
maintains a TSF timer with modulus 264 counting in increments of microseconds.
Timing synchronization is achieved by stations periodically exchanging timing

information through beacon frames.

Once a given station extracts the TSF value from the beacon, the station is

synchronized. Then, the SPS service uses the flavia_sps_tsf_superframe function to
compute the super-frame length, through the new IE contained in the beacon. In

addition, SPS builds the frame mask in order to constantly check when to switch from
transmission mode to monitoring, and vice versa. The transition between the two
operational modes is handled by:

1. flavia_tx_to_mon_mode. It changes the operating mode from Tx/Rx to active
monitoring, according to the following steps:

a. Send a null_func frame with the power save bit on, so that the AP will
buffer the frames addressed to the stations while they are not listening.

b. Disable the hard_start_xmit of the AP/STA virtual device.

c. Change the channel according to the IE sequence and start the active
sensing of the channel.

d. Stop all Tx queues of the non-monitoring network devices (STA/AP) used

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 48 of 92

by upper layers through hard_start_xmit.

e. Start all Tx queues of the monitoring network devices.

f. Disable beaconing.

g. Enable active monitoring (via flavia_enable_active_probe function).

2. flavia_mon_to_tx_mode. It changes the operating mode from active monitoring
to Tx/Rx, according to the following steps:

a. Enable the hard_start_xmit of the AP/STA virtual device.

b. Tune back to the original channel and send a nullfunc frame with the
power save bit off to trigger the AP to send the stations all the buffered

frames.

c. Switch back to the operating channel.

d. Restart all AP/STA interfaces.

e. Start all Tx queues of the non-monitoring network devices (STA/AP) used
by upper layers through hard_start_xmit.

f. Stop all Tx queues of the monitoring network devices.

g. Enable beaconing.

h. Disable active monitoring (via flavia_disable_active_probe function).

The SuperSense service handles the active probing activity through the
flavia_active_probe_work function, which enables a single device to transmit during

the active monitoring period. In particular, to optimize the active monitoring activity,
the above function implements a distributed round robin mechanism that coordinates

the medium access for all stations within the same Basic Service Set. The coordination
mechanism implemented by the SuperSense service prevents collisions caused by
simultaneous transmissions of stations that are hidden to each other (i.e., the intra-

interference), thus improving the estimation accuracy of the interference caused by
external sources.

Finally, the function flavia_send_active_probe transmits specific monitoring packets
on a given channel at a specific data rate. Many probes are sent through the wireless

channel varying these parameters in order to determine, according to the collected
sensing statistics, the best available network configuration.

 4.2 Data transport with QoS capabilities

The FLAVIA framework aims at providing the different modules with a direct control of
the QoS in the transmission part. For this purpose, we extend the mac80211

framework to provide an interface to the traffic control functionalities that are
supported in the Linux network device component.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 49 of 92

Typically, the control of these functionalities is handled by the traffic control (tc) tool,

which is part of the iproute2 program suite. This tool operates through the netlink
framework to implement the user space/kernel space communication. Nevertheless, a
kernel module is not able to interact directly with the scheduling component of the

traffic control functionalities, and is limited by the provided netlink interface as well.

Figure 18: The new mac80211 QoS interface for the data transport.

To provide the FLAVIA modules with a fine grained QoS control of the wireless
interfaces, we add to the new maxc80211++ a QoS extension as depicted in Figure

18.

The new interface will use the mac80211++_qos_ prefix and will wrap the interfaces
defined in the Linux scheduler component. In particular, Figure 18 shows the

Qdisc_device_ops interface that is utilized to control (add/remove/configure) the
Linux queuing disciplines (qdiscs).

In what follows, we describe the functionalities available through this new interface.

 Queuing Discipline (qdisc) functions

Each qdisc type included in the Linux kernel must provide a set of callbacks (collected
into a qdisc_ops structure):

 init: initialize and configure the queuing discipline.

 enqueue: enqueue a socket buffer (skb) according to the queuing discipline.
 dequeue: return the next packet to be sent. If the queue is empty, then NULL

is returned.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 50 of 92

 requeue: allow the re-insertion in the queue of a previously dequeued socket

buffer. The socket buffer is re-inserted in the same position from which it was
dequeued and not considered for the queue statistics.

 drop: remove a socket buffer from the qdisc.

 change: change the configuration of the queuing discipline
 reset: reinitialize the qdisc by emptying its queue and setting the default

configuration. Moreover, the reset function is called recursively for the
attached classes and qdiscs.

 destroy: destroy a qdisc and remove associated classes and filters. Delete all

pending events and free resources.
 dump: return status and diagnostic information.

The qdisc_ops options are registered by modules through the register_qdisc function.
To identify a qdisc instance, a 32-bit identifier is employed. This identifier is composed

by two fields, the 16 most significant bits identifying the major number, and the other
16 bits corresponding to the minor number.

 Traffic classification functions

Defining traffic classes allows classifying the packet stream according to different

priorities. Each class is identified by: i) an InternalID, assigned by the qdisc to which
the class belongs, and ii) a classID, which is structured as the qdisc identifier. The
major number corresponds to the qdisc to which the classes belong while the minor

number must be different for each attached class.

The classes are managed through the callbacks defined inside the Qdisc_class_ops

structure:

 graft: attaches a new qdisc to the class.
 leaf: returns the qdisc associated to the selected class.

 get: returns the InternalID corresponding to a given ClassID. A class usage
counter is incremented.

 put: usually called after a get, decreases the usage counter of a class. If the
counter reaches 0 the class is destroyed.

 change: changes the properties of a class.

 delete: deactivates and destroys a class, if it is not used.
 walk: iterates through all the classes that belong to the qdisc and invokes a

function for each of them.
 tcf_chain: returns the list of filters associated to a class.
 bind_tcf: links a filter instance to a class.

 unbind_tcf: removes a filter instance from a class.
 dump_class: returns status and diagnostic information of a class.

When the enqueue function of a qdisc is executed, the appropriate class is selected by

invoking the tc_classify function, which returns a structure (tcf_result) that contains
the classID. Then, the enqueue function of the qdisc contained inside the class is
invoked recursively.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 51 of 92

 Traffic filtering functions

Filters are employed by the qdiscs to assign an incoming packet to one of their
classes. The filters are maintained in ordered lists according to priority values. Filters

are identified by handlers, which are 32-bit integers (but not structured into major
and minor numbers). The functions associated to filters are grouped into structures of
type tcf_proto_ops:

 init: initializes a filter.
 destroy: deletes a filter. If it is linked to a class, the unbind_tcf function of the

class is called.

 classify: performs the actual classification, returning the classID of a

corresponding class .

 get: returns a filterID associated to a given handler.

 put: should be called when a filter (previously selected through a get call) is no

longer in use.

 change: configures a new filter (calling the bind_tcf function of the associated

class) or modifies the configuration of a pre-existing filter.

 delete: destroys the internal element of a filter. To delete the entire filter the

destroy function must be called.

 walk: iterates over all the elements of a filter and invokes a function for each of

them.

 dump: returns the status and diagnostic information regarding a filter or an

element that belongs to the filter.

 Driver support for QoS

To provide an actual control of the QoS in the Linux Traffic Control framework, a direct
connection of the wireless card queues has to be created towards the overall net

device that includes the mac80211 and the driver.

We will provide an example for the b43 driver. This driver does not use a direct
connection between the in-kernel net-device space queues and the underlying DMA

rings located in the NIC. In queue saturation condition, this causes packets to be
dropped at the driver level, thereby being taken out of the Linux traffic control scope.

Thus, the tc qdisc queues are always empty losing the expected shaping functionality.
To provide the aforementioned direct connection of the wireless card queues, we
extend the b43 driver as a proof-of-concept, namely b43*. This solution implements a

direct connection between the net_device level queues and on-NIC DMA rings. This
modification enables the queuing disciplines defined at the net_device level to be

effective by actually controlling the packet dropping.

Figure 19 illustrates the architecture of the driver b43*. Having multiple tx_queue
structures inside the driver allows to separate packet streams. In case of saturation at

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 52 of 92

the DMA or driver level, the dequeuing process at the corresponding queues inside the

net_device will be stopped. In this way net_device queues will be filled, and the
configured Linux traffic control queuing discipline and dropping policy will be
implemented, instead of having uncontrolled packet losses, as it happens with the

current version of the b43 driver.

Figure 19: Architecture of the b43* driver.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 53 of 92

 4.3 Power Saving

The development of power saving mechanisms can also benefit from a modular and

flexible architecture. FLAVIA offers a framework whereby tasks such as monitoring,
frame forging, or sleep/awake transitions are exposed as online functional blocks that
are provided with a common shared data space.

 Current Framework

At the testing stage of the custom power saving (PS) algorithms there are two

options:

a) Write a complete specific SoftMAC for capable drivers.

b) Hook into current Linux wireless stack the functions needed to support the
proposed mechanism.

Needless to say, the second option is the simpler of the two options but still entailing

a high degree of complexity. In order to illustrate this, the following introduces an
actual PS mechanism, NoA/ASPP [10], and the subsequent implementation within the

current Linux wireless stack.

Adaptive Single Presence Period (ASPP) is a power saving algorithm to adaptively
control the Notice of Absence (NoA) protocol specified by the WiFi Alliance. NoA has

been proposed in order to provide energy savings to all devices in a WiFi-Direct
network, a peer-to-peer wireless communication technology specified by the WiFi

Alliance. WiFi Direct devices, named peer-to-peer (P2P) devices, must be able to act
either as an AP or as a Client. In particular it defines the concept of a P2P Group,
where a P2P Group Owner (P2P GO) acts as an AP for a set of connected P2P Clients.

Thus, the AP (P2P GO) might be a mobile power-constrained node needing therefore
power saving procedures.

Figure 20 demonstrates how this PS scheme can be hooked into the Linux Wireless
stack. First, wpa_supplicant1 should add a static NoA Information element (IE) into
the beacon frame template, hand it over to the cfg80211 module and finally to

mac80211. Specific functions hooked into the Rx/Tx handlers in mac80211 carry out
the measurements required by ASPP and finally, after computing the parameters for

the NoA, ASPP needs to edit the static template for every beacon transmission. Upon
receiving a beacon frame, the driver (e.g., ath5k) should be provided with the ability

of handling the NoA IE and scheduling the absent periods accordingly. The analysis of
every piece of the stack, hooking functionalities and reusing code in order to test and
to implement new algorithms are clearly difficult tasks using the current architecture.

1 http://hostap.epitest.fi/wpa_supplicant/

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 54 of 92

Figure 20: New PS mechanism implementation using the current framework.

 PS Service module

The goal of the PS service module is to enable various power saving algorithms to be
easily implemented through specifying helpful functional blocks and their interactions

with other FLAVIA services, functions or the Information Base.

We take advantage of mac80211 and the FLAVIA service management specified
above, and also identify some primitives required to command to the actual hardware

to perform certain atomic and hardware-specific tasks, e.g., change its state to a low
power state (sleep).

The mac80211 framework exposes the modularity and flexibility required by FLAVIA
to easily implement this power saving service as an (un)loadable module. We define
the following two functions:

1. flavia_ps_policy(): This function is registered into the FLAVIA Function Handler.
It incorporates the logic of the developed algorithms and stores information of

the mechanism(s) in operation and its (their) state.

2. flavia_ps_management(): This function provides management logic to support
the PS mechanisms being implemented.

Finally, a generic power saving scheme might require the ability of triggering
sleep/awake events. This action is ultimately performed by hardware through setting

the proper hardware registers accordingly. We then specify a primitive to
communicate with the immediate low layer the notification to execute the chosen
event.

- drv_flavia_ps_notify(): This is a notification primitive and requires drivers to
provide its proper handling. Thus, we push all the ―intelligence‖ to the upper

layer, designing this way a hardware-agnostic power saving framework.

In order to support sleep/awake transitions typically required by power saving
algorithms, it is still needed that drivers/firmware support sleep/awake events (issued

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 55 of 92

by the previously mentioned primitives of the PS service). In order to demonstrate

this functionality, we choose the ath9k driver, which does not require any firmware,
and we implement the handler functionality required for these notifications.

Following the example introduced in the previous section, the implementation of an

algorithm such as NoA/ASPP becomes much simpler using the FLAVIA framework. The
developer specifies the monitoring functionality that needs to be supported by the

FLAVIA monitoring service. In turn, forging the NoA IE in beacon frames can also be
supported by an extended FLAVIA management service. Finally, the computation of
the absent periods and the scheduling of sleep/awake events is supported by this new

PS service. Figure 21 illustrates the generic functional modules that typically interact
to support the power saving mechanism within the FLAVIA architecture.

Figure 21: PS mechanism implementation within the FLAVIA architecture.

The implementation of NoA/ASPP is only an illustrative example to demonstrate the
benefits of using the PS Service in a modular and flexible architecture. We envision

two categories of potential power saving mechanisms that can be implemented:

 Sleep/awake mechanisms: These mechanisms schedule intervals when a

wireless interface dozes being in a low-power state, and intervals when it

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 56 of 92

becomes active by idling, transmitting or receiving. NoA/ASPP is an example

within this category.

 PHY/MAC adaptation mechanisms: These mechanisms adapt different PHY
parameters (e.g., transmission power, modulation coding scheme), and/or MAC

parameters (e.g., EDCA parameters, user association policies).

 4.4 Advanced Monitoring

The FLAVIA Advanced Monitoring (FAM) module provides a passive monitoring service
able to measure several parameters related to radio channel conditions and
capabilities of neighbouring nodes. Each node performs PHY/MAC layer measurements

within the time-scale of microseconds, based on all types of 802.11 frames (data,
management, and control). The promiscuous mode of operation of wireless network

cards is utilized to ensure a comprehensive view of the current wireless channel
conditions. This means that all measurements are performed along with the normal
activity of the wireless card and reported periodically to the Information Base and

MAC parameter calculation service (defined in Appendix A.1). The FAM module
supports multiple network interfaces per node. The results of FAM measurements are

utilized mainly by the Misbehaviour Detection and Reaction service and the
Consistency Manager module. The FAM module works on the frame level – this means

that all frames sent and received by each network interface must be examined by the
FAM module functions. This imposes high requirements on the FAM module on the
effectiveness of the frame analysis (i.e., limited computational power available at the

nodes should be taken into account). Therefore, in the first phase of implementation
we implemented hooks in the mac802.11 module which are directly accessible for

FAM. In the next implementation phase the full integration with FLAVIA Service
Management Framework is expected.

The FAM module consists of the following main functionalities:

1. init and exit functions responsible for initialization of other FAM module
functionalities.

2. Functions responsible for communication with user space where the Discovered
Capabilities DB (DCDB) component resides and control mechanisms are placed.

3. Measurement functions for uplink and downlink data path.

The FAM module‘s key functions responsible for initialization are the init and exit. In
particular, the flavia_fam_int() is the most important; it initializes the module through

the following steps:

1. Initialize netlink communication with the user space.

2. Initialize the function responsible for receiving the configuration and control

information from the user space.

3. Initialize the thread responsible for sending measurement data to the user

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 57 of 92

space applications.

4. Initialize the internal module data structures.

5. Activate the hooks in the mac80211 module.

Conversely, the flavia_fam_exit() function deactivates the hooks in the mac80211

module, closes the sending thread and frees resources allocated for data structures.

For communication with user space the netlink mechanism is used. The application

that requires monitoring data from the FAM module sends the command to the
receiving function of the FAM module. This command defines the parameters the
application requests and the time interval at which results are to be sent to the

application.

The hooks in the mac80211 module have to be placed in the ieee80211_rx function

for the downlink frame path and in the ieee80211_tx function for the uplink frame
path. The measurement functions called by the hooks require access to each frame
header and frame timing information to discover and calculate the following

parameters per each neighbouring station interface: supported rates, preamble type,
state of the power saving and WEP security modes, country code, Signal to Noise

Ratio (SNR), Frame/Bit Error Rate (F/BER), RTS_Threshold, Fragmentation_Threshold,
beacon interval, operation mode, number of retransmissions, channel occupancy. The
measurements are also used to determine NAV, backoff, and IFS size independently

for each received frame. This calculation is done separately for each station that is
within the neighbourhood of the FLAVIA node. Table 19 in Appendix B.3 presents a

preliminary source code for the FAM module.

 4.5 Rate Adaptation

In order to maximize network performance, current WLAN devices employ rate control
algorithms that select the PHY rate used for packet transmission based on the
observed channel conditions. By seeking to choose the appropriate transmission rate,

these algorithms aim to reduce the packet loss rate while efficiently using the wireless
resources in terms of channel time.

As the IEEE 802.11 standard does not provide any guidance for designing robust rate
adaptation mechanisms, the solutions encountered nowadays in operational systems
are either proprietary to the respective card vendors or have been developed by open

source communities. The predominant approach taken by these algorithms is to rely
on transmission related statistics to trigger incremental decisions to adjacent rates.

This is also the case of the Minstrel2 and PID3 (proportional-integral-derivative) rate
control algorithms supported by the mac80211 framework which constitutes the
foundation of the FLAVIA implementation prototype.

2 http://wireless.kernel.org/en/developers/Documentation/mac80211/RateControl/minstrel
3 http://wireless.kernel.org/en/developers/Documentation/mac80211/RateControl/PID

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 58 of 92

In this section we discuss how rate control algorithms are implemented within the

mac80211 framework and how the modularity capabilities can be exploited to support
the integration of improved algorithms. As a proof of concept we discuss the extension
of the ath5k driver for Atheros based cards with the H-RCA rate adaptation paradigm

[11] that minimizes the average time each packet spends on the medium including
MAC retries, in a fully decentralized fashion with no message exchange, providing

higher and more stable throughput.

 Current Framework

Most of the current mac80211 drivers rely on rate control algorithms provided by the
framework. These algorithms are encapsulated in independent kernel modules that
are linked to the specific driver once a new device is being loaded. The naming

convention of these modules is based on an rc80211_ prefix, followed by the name of
the algorithm. As already mentioned, mac80211 implements (i) the Minstrel

algorithm, which uses a heuristic that relies on transmission success probability and
air-time to select the appropriate rate, and (ii) PID, which employs a proportional-
integral-derivative controller that takes as input the frame error rate and controls the

transmission rate. Minstrel is currently the default rate adaptation scheme used. On
the other hand, the framework allows the drivers to implement their own rate

adaptation mechanisms and register them upon device initialization to notify the
mac80211 framework that rate selection will be handled by the driver itself. One
example of such drivers is ath9k for Atheros cards.

Despite the differences of these two approaches, they both use a common mechanism
to interface with the mac80211 framework. Specifically, the rate_control_ops

callbacks are registered by the rate adaptation module to the framework. These
design principles are illustrated in Figure 22.

Figure 22: Interfacing Rate Control with mac80211

 H-RCA

Existing rate adaptation schemes estimate channel conditions by either directly
measuring link SNR or recording packet loss statistics. However, current state-of-the-

art algorithms do not distinguish losses due to packet collisions from losses that occur

mac80211

rc80211_*
Driver

(b43, ath5k, etc.)

Driver w. embedded
rate control

algorithm (e.g. ath9k)

ieee80211 _ops ieee80211 _ops

rate_control _ops rate_control _ops

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 59 of 92

due to noise. Therefore, they often wrongly select suboptimal transmission rates and

incur drastic throughput oscillations.

We investigate how a collision aware rate control algorithm, H-RCA [11], could be
implemented in the FLAVIA framework. H-RCA eliminates the abovementioned

shortcomings of existing techniques and provides improved network performance.
First, given a rate-set {r1, . . . , rK} Mb/s with ri < ri+1 for all i ϵ {1, . . . , K − 1}

(e.g., for 802.11a {6, 9, . . . , 54}), the rates ri for which the Packet Loss Ratio (PLR)
in a given channel conditions is higher than the one for a higher rate rj are identified

and excluded from the rate-set. To estimate the PLR, H-RCA uses a technique based
on IEEE 802.11e TXOP functionality [3] to gain observations of packets solely

susceptible to loss through channel noise. As defined in the standard, when a station
gains access to the medium and successfully transmits a packet, if the remaining
TXOP time is long enough for another packet transmission, the station can transmit

the next packet after a SIFS without an additional backoff period. If any packet in the
TXOP burst results in an unacknowledged transmission, no further packets are sent.

At the time the second or later packets in the TXOP burst are transmitted, all other
stations in the network see the medium as continuously busy so there can be no
collision. Hence, if transmission of the second or later packets in the burst fails, it can

only have been caused by noise.

This technique overcomes a significant limitation of the hardware to distinguish

transmission failures that occur due to collisions from those that occur due to noise on
the medium. This is important as if the rate of transmission failure increases there are
two potential explanations, each of which would dictate distinct corrective action. If

the channel is experiencing increased noise, transmission failures will result and the
station should change to a lower, more robust rate.

For each rate a critical PLR value above which a lower rate would give higher
throughput is determined and Bayesian inference is employed to determine if the PLR
of the current rate is above a rate lowering threshold. To explore superior rates, the

rate increase frequency is set so that the opportunity-cost of sampling a higher rate is
kept below 5%.

We envisioned an enhanced ath5k driver for Atheros cards that incorporates H-RCA,
similar to the approach taken by the rate control algorithm specific to ath9k. We note

that a more modular design whereby the rate adaption technique is programmed as
an independent module that suits different drivers would also be possible. To register
the H-RCA algorithm to the mac80211 framework, the driver is required to invoke

ieee80211_rate_control_register function passing a reference to a rate_control_ops

structure that contains the handlers implemented by the algorithm. In our example

this structure should be defined as follows:

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 60 of 92

static struct rate_control_ops ath_hrca = {

 .name = "h-rca",

 .tx_status = hrca_tx_status,

 .get_rate = hrca_get_rate,

 .rate_init = hrca_rate_init,

 .rate_update = hrca_rate_update,

 .alloc = hrca_alloc,

 .free = hrca_free,

 .alloc_sta = hrca_alloc_sta,

 .free_sta = hrca_free_sta,

};

The module will also access the MAC layer parameters through the FLAVIA interface to

set appropriate TXOP values to facilitate H-RCA's PLR estimation procedure.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 61 of 92

 5 Conclusions

This second WP4 deliverable provides the specifications of the Wireless MAC Processor
and the modules to be implemented in the FLAVIA prototype. Based on the
architecture defined in [6] for an 802.11 node, we have specified the framework to

provide the key FLAVIA functionality as well as a set of representative modules to be
implemented. Specifically, we have identified as candidate modules to be

implemented key representative blocks such as SuperSense, Power Saving and Data
transport with QoS capabilities. All these new services reflect the functionalities
supported by FLAVIA architecture.

Our specification has started from an almost clean-slate definition of a new
architecture, the Wireless Processor, responsible for the direct interaction with the

hardware modules. We have described the MAC Engine and the set of programming
interfaces. We have also provided a description of the XFSM compiler developed to
build new MAC programs. In addition we have introduced a set of such MAC programs

to show the flexibility and modularity resulting from the FLAVIA architecture. One of
the main achievements accomplished is the possibility to change the MAC behaviour

on-the-fly.

One of the main difficulties posed by the envisioned clean-slated design is the need of
very specific hardware, and the requirement to implement almost all software from

scratch. In order to illustrate the FLAVIA features using other platforms, we have also
specified a higher software architecture that can be implemented with almost any

existing hardware. This specification has started from an existing framework, namely
the mac80211 framework existing in Linux environments, which has been
substantially extended it in order to support FLAVIA‘s main features in terms of

modularity, flexibility and virtualization. This new framework, named mac80211++,
will become the development platform. More specifically, the extension of the

mac80211++ is twofold:

i. We intend to create a modular framework by untangling the existing mac80211,
at the present at early stage of development.

ii. We have developed and implemented a Service Handling module that allows
loading new services in real-time, based on the mac80211++ framework. This

module is one of the essential components of the FLAVIA prototyping.

In order to implement the virtualization as specified in FLAVIA, a new layer, called
FLAVIAn, has been specified between the mac80211 framework and the wireless

drivers, exceeding the bounded capabilities of the driver that the mac80211
framework is relying on.

Another goal of this deliverable is the implementation specification of the Information
Base entity corresponding to the FLAVIA architecture. We have accomplished this by

extending the structure ieee80211_local contained in the mac80211 module.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 62 of 92

Finally, we have also introduced in the Appendix A two new services to be supported

by the FLAVIA architecture. In particular, we have described the modifications needed
to support a new advanced monitoring service and an additional service (Misbehaviour
Detection and Reaction). Note that, to support the new services, we have extended

the Consistency Manager module as well.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 63 of 92

 6 References

[1] IEEE 802.11, LAN/MAC Specific Requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access
Control (MAC). Revision of IEEE Std 802.11-1999, 2007.

[2] IEEE 802.11n, Amendment 5 to Standard for Information Technology. LAN/MAC
Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) specifications: Medium Access Control (MAC)
Enhancements for Higher Throughput, IEEE Std. 802.11n, 2010, Supplement to
IEEE 802.11 Standard.

[3] IEEE 802.11 WG. Amendment 8 to Standard for Information Technology.
LAN/MAC Specific Requirements - Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications: Medium Access Control (MAC)
Enhancements for Quality of Service (QoS), IEEE Std. 802.11e, November
2005. Supplement to IEEE 802.11 Standard.

[4] FLAVIA Project Deliverable D.2.1.1 - Report on Scenarios, Services and
Requirements, January 2011, available at http://www.ict-flavia.eu

[5] FLAVIA Project Deliverable D.2.2.1 - Architecture Specification, May 2011,
available at http://www.ict-flavia.eu

[6] FLAVIA Project Deliverable D.4.1.1 - 802.11 architecture and interfaces

specification, May 2011, available at http://www.ict-flavia.eu

[7] OpenFWWF: Open FirmWare for WiFi networks,

http://www.ing.unibs.it/openfwwf/

[8] Open development platform, Eclipse, http://www.eclipse.org/

[9] Linux kernel mac80211 framework for wireless device drivers,

http://linuxwireless.org/en/developers/Documentation/mac80211

[10] D. Camps-Mur, X. Perez-Costa, S. Sallent-Ribes, Designing energy efficient

Access Points with Wi-Fi Direct, Computer Networks, Volume 55, Issue 13, 15
September 2011.

[11] K. D. Huang, Ken R. Duffy and David Malone, H-RCA: 802.11 Collision-aware

Rate Control, Hamilton Institute technical report, 2011.

[12] Raya, M., Aad, I., Hubaux, J., and El Fawal, A. DOMINO: Detecting MAC layer

greedy behavior in IEEE 802.11 hotspots. IEEE Transactions on Mobile
Computing, 5:1691–1705, 2006.

http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ict-flavia.eu/
http://www.ing.unibs.it/openfwwf/
http://www.eclipse.org/
http://linuxwireless.org/en/developers/Documentation/mac80211

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 64 of 92

[13] Serrano, P., Banchs, A., Targon, V., and Kukielka, J. Detecting selfish

configurations in 802.11 WLANs. IEEE Communications Letters, 14:142–144,
2010.

[14] Ahn, Y. w., Cheng, A., Baek, J., and Fisher, P., Detection and punishment of

malicious wireless stations in IEEE 802.11e EDCA network. In Proc. of IEEE
Sarnoff Symposium. 2010.

[15] Cagalj, M., Ganeriwal, S., Aad, I., and Hubaux, J.-P., On Selfish Behavior in
CSMA/CA Networks. In Proc. of IEEE INFOCOM. 2005.

[16] Konorski, J. A game-theoretic study of CSMA/CA under a backoff attack.

IEEE/ACM Transactions on Networking, 14:1167–1178, 2006.

[17] Gallo, P., Gringoli, F., and Tinnirello, I., On the Flexibility of the IEEE 802.11

Technology: Challenges and Directions. Future Network and MobileSummit
2011, to appear.

[18] Salvador, P., Gringoli, F., Mancuso, V., Serrano, P., Mannocci, A., Banchs, A.,

VoIPiggy: Implementation and evaluation of a mechanism to boost voice
capacity in 802.11 WLANs. Submitted to INFOCOM 2012.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 65 of 92

APPENDIX A: AGH Update on Flexible Architecture

for Virtualizable wireless future Internet Access

(D4.1.1)

This section contains an update on the FLAVIA architecture described in D4.1.1 [6]. It

provides information on the extended Monitoring service, a new Misbehaviour
Detection and Reaction service, and the extended Consistency Manager module.
Figure 23 shows how the proposed AGH extensions are integrated in the FLAVIA

architecture. Furthermore, Figure 24 shows how FLAVIA services interact with the
proposed AGH extensions.

Monitoring

Misbehaviour

Detection/

Reaction

Consistency

Manager Discovered

Capabilities

Database

Figure 23: AGH modules integrated in the FLAVIA architecture.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 66 of 92

Figure 24: FLAVIA services interaction with AGH modules.

Table 8 summarizes this set of the extended FLAVIA services/modules with their
corresponding acronym and a short description. Later on, each of these
services/modules is characterized, together with their corresponding list of functions.

Service Short name Description

Monitoring MONI Extends the passive monitoring part of the

Monitoring Service

Misbehaviour

Detection and
Reaction

MDR Based on network measurements it detects

misbehaving nodes and applies methods to
encourage such nodes to cooperate

Module Short name Description

Consistency
Manager

CM Provides intra- and inter-node consistency

Table 8: Extended FLAVIA 802.11 services scheme

A.1 Monitoring

The FLAVIA monitoring system provides accurate and timely information regarding the
status of the network. The Monitoring (MONI) service as defined in [6] analyses the

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 67 of 92

available radio spectrum and collects important information on the quality of each

link. This allows choosing the best available channel for transmission. It also
introduces a new scanning mechanism named SuperSense. The FLAVIA architecture
supports both types of scanning: active and passive. The extended passive monitoring

service described in this Annex supports two new functions: calculation of MAC
parameters and capability discovery. Its macro-functions (capability_discovery and

mac_parameter_calculation) are triggered every time a specific request arrives at the
monitoring service. They are usually started at the beginning of the wireless card‘s
operation and continued until the card is turned off. The PHY and MAC layer

measurements are based on the reception of all types of IEEE 802.11 frames (data,
management, and control). Promiscuous network monitoring on the channel used for

regular data transmission is utilized to ensure a comprehensive view of the current
wireless channel conditions.

Figure 25 provides a vision of the extended passive monitoring and the whole set of

functions that are currently supported by the MONI service. The orange colour
indicates the services originally proposed in D4.1.1 [6] without any modifications, the

blue colour presents the extended passive monitoring service, and finally the green
colour shows new services proposed in this Annex. The figure also presents a division
according to the macro-functions supported by the MONI Service.

Monitoring

Passive scan

listen_channel

listen_promiscuous

Active scan
Interference

estimation

Link

estimation

Capability

discovery

MAC

parameter

calculation

create_probe_frame

send_probe_frame

channel_quality_estimation

measure_collision_stats

measure_custom_stats

create_distance

estimation_frame

send_distance_est

imation_frame

analyze_stats

calculate_NAV

calculate_backoff

calculate_xIFS

Figure 25: Monitoring service outline.

The passive_scan macro-function passive_scan(frequency range, timeout, dwell time)
requires three parameters:

 A range of frequencies to scan on (it can be a spectrum width or a list of

channels). The channel list could also include only one channel, and if the
channel value is equal to 0 then the scanning procedure is activated on the

currently used channel.

 A time interval within which to perform the scanning. If the timeout is equal to
0, and the dwell time is equal to 1 then the passive scanning runs until it is

stopped. The stop procedure is called when the passive_scan function is run
with timeout=0, dwell time=0.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 68 of 92

 The dwell time spent on each channel (only used if timeout is different then 0).

In all other cases the meaning of this parameter is described above.

Capability Discovery

The information obtained using promiscuous network monitoring is sent to the

Information Base where it remains available for other FLAVIA modules in the
Discovered Capabilities DB (DCDB) component. DCDB should be considered as an

extension to the Data Collector component of the FLAVIA 802.11 framework
architecture. The following information about neighbouring nodes and channel state

can be obtained using the extended passive monitoring: supported rates, preamble
type, state of the power saving and WEP security mode, country code, Signal to Noise
Ratio (SNR), Frame/Bit Error Rate (F/BER), RTS_Threshold, Fragmentation_Threshold,

beacon interval, operation mode, number of retransmissions, channel occupancy, and
number of active nodes in the neighbourhood.

This macro-function is defined as follows:

capability_discovery(parameter list, interval)

MAC Parameter Calculation

The FLAVIA open architecture offers possibilities to misbehave. Therefore, the

extended monitoring system should support the MAC parameter calculation service
with the required measurements. These measurements are used to determine NAV,

backoff, and IFS size independently for each received frame. This calculation is done
separately for each station that is within the neighbourhood of the FLAVIA node. This
task requires precise recognition of certain events (e.g., reception start, reception

stop), which can be provided by the Wireless Processor. The obtained calculations are
forwarded to the misbehaviour detection module, which is able, based on the received

data, to evaluate the other IEEE 802.11 MAC parameters, in particular CWmin and
CWmax. This allows the Misbehaviour Detection service to detect the incorrect
configuration of stations.

This macro-function is defined as follows:

mac_parameter_calculation(parameter list, interval)

Summary of the Monitoring Service

Table 9 summarizes the set of macro-functions, functions, and commands
corresponding to the extended passive monitoring service.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 69 of 92

Macro-functions passive_scan(frequency range, timeout, dwell time)

capability_discovery(parameter list, interval)

mac_parameter_calculation(parameter list,

interval)

Functions listen_promiscuous(promisc, on/off)

analyze_stats(parameter list, interval)

calculate_NAV()

calculate_backoff()

calculate_IFS()

obtain_frame(frame)

analyse_frame_parameters(frame)

analyze_management_frame()

analyze_control_frame()

analyze_data_frame()

update_MAC_capabilities()

update_channel_parameters()

update_database()

send_MDR_parameters()

trigger_MDR_module()

Table 9: Extended passive monitoring service summary

Pseudocode:
The pseudo-code for the macro-functions of the Monitoring Service is the following:

capability_discovery() {

 while(capability_discovery == on){

 obtain_frame()

 analyse_frame_parameters()

 case (frame type):

 MANAGEMENT: analyze_management_frame()

 CONTROL: analyze_control_frame()

 DATA: analyze_data_frame()

 update_MAC_capabilities()

 update_channel_parameters()

 if(update_time_out)

 update_database()

}

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 70 of 92

mac_parameter_calculation() {

 while(mac_parameter_calculation == on){

 obtain_frame()

 analyse_frame_parameters()

 calculate_NAV()

 calculate_backoff()

 calculate_IFS()

 update_MAC_parameters()

 if(update_time_out)

 send_MDR_parameters()

 if(channel_utilization_threshold)

 trigger_MDR_module()

 }

}

A.2 Misbehaviour Detection and Reaction

The goal of the misbehaviour detection and reaction (MDR) service is to first detect

modifications of MAC layer parameters (e.g., DIFS, NAV) by analysing wireless
measurement data and then to adapt the wireless card behaviour appropriately. By
default, the service is activated when the network is saturated (i.e., the network

utilization, as reported by the monitoring service, is above a defined threshold).

Misbehaviour Detection

The detection part of the MDR service is dependent on the monitoring service. Based
on the measurements of parameters conducted by the extended passive monitoring

service, it is able to evaluate IEEE 802.11 MAC parameters, in particular the CWmin
and CWmax values set by other nodes in the network. The evaluation of most MAC
parameters (e.g., DIFS, NAV, and TXOPLimit) is a straightforward comparison with the

standard values. However, the correct setting of the CW values will be done with the
use of any of the following three sub-services (methods): chi-square test, mean test,

and entropy test. The number of employed CW detection methods can be extended.
The methods have configurable parameters, which determine the number of false
positives. The methods can also be configured to measure either actual or only

consecutive backoff [12] as well as take into account all backoff values or only those
for which the frames had their retry bit set to 0 [13].

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 71 of 92

Reaction to Misbehaviour

The reaction part of the MDR service will apply one of the following three methods to
encourage correct behaviour: dropping acknowledgement (ACK) frames [14],

selective frame jamming [15], and CW manipulation [16]. All these methods send
appropriate configurations to the Wireless Processor to change its behaviour. The
methods are applied when misbehaviour is detected and are suppressed when the

misbehaviour ceases.

Summary of the MDR service

Table 10 summarizes the set of macro-functions, functions and commands
corresponding to the MDR service.

Macro-functions detect_misbehavior()

apply_reaction_method ()

Functions obtain_measurements()

estimate_CW(MAC address)

compare_MAC_parameters_with_std(MAC address)

send_configuration()

Table 10: Misbehaviour Detection and Reaction service summary

Pseudocode:

The pseudo-code for the macro-functions of the MDR service is the following:

detect_misbehavior() {

 obtain_ measurements()

 for each MAC_address {

 estimate_CW(MAC)

 is_misbehaving[MAC] = compare_MAC_parameters_with_std(MAC)

 }

}

apply_reaction_method() {

 for each MAC_address {

 if is_misbehaving[MAC] {

 send_configuration()

 }

 }

}

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 72 of 92

A.3 Consistency Manager

Module Overview

As described in D2.2.1 [5], the FLAVIA Consistency Manager (CM) is designed as a

module responsible for intra- and inter-node configuration and parameter detection,
as well as analysis and resolving potential or existing configuration inconsistencies. In
order to provide such functionality the architecture of the CM module is divided into

two basic components: Intra-CM and Inter-CM. In this section, CM functionalities
described in D2.2.1 are listed together with several extended functionalities. Macro-

functions and functions used by the CM module are also given.

The main responsibility of the Intra-CM component (which operates locally on each
node) is to eliminate the possibility of mutually exclusive settings being applied by

different services/software modules to the same system parameter. The consistency
of information stored in the Information Base (IB) is guaranteed by the Data Gateway

(cf. D4.1.1 [6], Figure 23), which defines solutions for both single and multiple write
protection (cf. D2.2.1 [5]). The most typical use-case of the Inter-CM application is
the Tx Power Control for a wireless interface against the physical characteristic of the

end-level power amplifier, as well as local transmission power EIRP regulations, taking
into account the antenna gain introduced into a total radiated power. If a requested

parameter change surpasses the acceptable value, the CM will report back failure
notification with an error code.

The CM module also introduces an additional level of modules/services differentiation

within the overall FLAVIA node architecture. It adds the following configurable
features:

 Allow or deny a specified module/service to request a specific parameter
value change.

 Assign priorities to modules to perform specific actions or decide which

request is allowed to take precedence over another (this feature can be
applied to both Intra-CM and Inter-CM).

The Inter-CM component takes advantage of neighbouring nodes‘ capabilities and the
parameter discovery function delivered by the extended passive Monitoring service

and its Capability Discovery function. Moreover, a dedicated signalling protocol
supports the CM in obtaining remote node configuration parameters or a general
configuration summary. The Inter-CM operability mode requires a Designated Node

(DN) to be nominated among all nodes sharing the same network resources — which
typically is a frequency channel a group of nodes is operating on. The natural

candidate to be nominated as a DN in an infrastructure operational mode is the Access
Point (AP). In an ad-hoc mode a Cell-ID indicates the DN, while Backup Designated
Node (BDN), in case of a DN failure, will be the node with the highest MAC. The DN is

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 73 of 92

responsible for overall group performance analysis, is capable of running group

performance optimization algorithms, taking final decisions and generating
configuration change indications. The process of the DN election within an ad-hoc
mode relies on the Monitoring Service and its Capabilities Discovery function.

Integration of Consistency Manager within the FLAVIA Architecture

As described in D4.1.1 [6], the CM module resides within the FLAVIA Control and
Management subsystem (Figure 26). Taking into account the presented overview and

the main goals of the CM module it can be derived that it should act as a proxy
between services/modules requesting parameters change and the functions
implementing them.

CONSISTENCY
MANAGER

module

Figure 26: Consistency Manager within the FLAVIA global architecture.

Consistency Manger functionalities

The general functionalities of the CM are the following (this list is a combination of
functionalities described in D2.2.1 [5] and extended functionalities proposed in this

Appendix):

 Analyse all the requests which are to be applied to wireless interfaces.

 Generate the local set of capabilities with respect to the data stored within

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 74 of 92

the IB.

 Verify the consistency conditions stored in the IB.

 Confirm the suitability of the requested parameter value within a list of
supported parameters and their acceptable value ranges and regulatory

limits.

 Confront the requested parameter value with the already configured value.

 Report failed or conflicted requests extended with an error code.

 Organize the parallel access for modules/services to configure system
parameters.

 Mutual exchange of consistency conditions.

 Verify the service logic consistency.

 Resolve the conflicts.

As described in D2.2.1 the Intra-CM can take the following actions in case of
consistency violation: force the service generation violation to abort its request, return

an error code or automatically enforce a correction based on the request.

In the Inter-CM scenario, the DN takes the final decision in order to resolve a group

inconsistency. The only use case which requires sending back a response is the
situation when a parameter change request is coming from one group of nodes to
another one. Then an acknowledgement or error code is generated by the CM. An

illustration for such a scenario is depicted in Figure 27, where FLAVIA Node A (which
is a DN for Group 1) is requesting a parameter change (e.g., frequency change to a

non-overlapping channel) which affects Group 2. FLAVIA Node B, since it belongs to
both groups, is able to convey such a request to the FLAVIA Node C (which is a DN for
Group2). As a result, Node C runs the Intra-CM consistency check function and

decides to apply or reject the requested configuration change.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 75 of 92

GROUP 1
CHANNEL A

GROUP 2

CHANNEL B

(p
arti

ally
 overla

ppin
g

with
 ch

annel A
)

FLAVIA
NODE

B

FLAVIA
NODE

C

FLAVIA
NODE

A

GROUP 1
DESIGNATED

NODE

GROUP 2
DESIGNATED

NODE
INT1

INT2

set_remote_parameter_request()

set_remote_parameter_request()

set_configuration_parameter_indication()

set_remote_parameter_response()

set_remote_parameter_response()

Figure 27: Inter-CM use case.

The following primitives are designed to provide the described CM functionalities:

 get_configuration_parameter_request()/response() — allows to receive
information from the local IB,

 get_consistency_conditions_request()/response() — obtains the summary
of consistency conditions stored in the local IB,

 get_service_logic_request()/response() — obtains the summary of a
requested service logic setup,

 execute_configuration_change_indication() — allows to locally trigger a

service or function capable of executing a configuration parameter change,

 get_remote_parameter_request()/response() — obtains the value of a

requested remote parameter, which is used by a remote node, together
with its acceptable range,

 get_remote_summary_request()/response() — obtains a brief summary of

a remote node‘s configuration: number of interfaces, configured channels,
Tx Power levels, modulation schemes used, etc.,

 set_configuration_parameter_indication() — allows a DN to indicate a
remote node parameter change to a requested value,

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 76 of 92

 set_remote_parameter_request()/response() — allows to invoke the

set_configuration_parameter_indication() function on a DN, if such an
indication requests a parameter change affecting a group of nodes, sharing
different resource (i.e., operating on a different channel, other ad-hoc node

group, etc.), as depicted in Figure 27. The final decision is taken by a
proper DN, which is also responsible to respond with an acknowledgement

or error code.

Table 11 summarizes the set of macro-functions and functions corresponding to the
CM operation modes: intra- and inter-node. Since the CM relies on commands

delivered by the PHY resource management service, the table itself does not contain
commands.

Macro-functions

Intra-CM check_intra_consistency()

Inter-CM check_inter_consistency()

Functions

Intra-CM get_configuration_parameter()

get_consistency_conditions()

get_service_logic()

execute_configuration_change()

Inter-CM get_remote_parameter()

get_remote_summary()

set_configuration_parameter()

set_remote_parameter()

Table 11: Consistency Manager Summary

Pseudocode:

The pseudo-code for the macro-functions of the CM is the following:

check_intra_consistency(){

 switch(consistency_scope){

 case(parameter) : get_configuration_parameter()

 case(conditions) : get_consistency_conditions()

 case(service) : get_service_logic()

 }

 build(consistency_context)

 if(intra_consistency_analysis == positive){

 execute_configuration_change()

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 77 of 92

 }else{

 error_code_response()

 }

}

check_inter_consistency(){

 switch(consistency_scope){

 case(parameter) : get_remote_parameter()

 case(summary) : get_remote_summary()

 }

 build(consistency_context)

 if (inter_consistency_analysis == positive){

 if(relay_scenario)

 set_remote_parameter()

 set_configuration_parameter()

 }else{

 error_code_response()

 }

}

Interfaces

Basically CM relies on system state data, registered events or service configuration
parameters collected and exposed by the IB via the REP Interface and is able to
execute a function from the collection of functions delivered by the PHY resource

management service. The inter-node operability and consistency verification requires
an additional signalling interface to be introduced. This interface is responsible for

ensuring inter-node communication, conveying data related to remote node
configuration setup, as well as triggering messages, indicating the specific parameter
values to be remotely changed. Such a signalling protocol is to be used in cases when

more detailed information is required and capabilities discovered and reported by the
Passive Monitoring service to IB is not sufficient for CM to take a required optimizing

action in order to resolve inter-nodes configuration inconsistencies. A detailed scheme
of the CM architecture and its interfaces is depicted in Figure 28.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 78 of 92

CONSISTENCY
MANAGER

Module

INFORMATION
BASE

REP INTERFACE

LOCAL CONFIGURATION
REQUEST PHY RESOURCE

MANAGEMENT
INTER-CM

INTRA-CM

DISCOVERED
CAPABILITIES

DB

REMOTE CONFIGURATION
REQUEST

Figure 28: Consistency Manager interfaces.

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 79 of 92

APPENDIX B: Pseudo-code

This section contains a set of tables describing the source and pseudo-code for: i) the
mac80211 framework, ii) the new framework mac80211++ and iii) the advanced
monitoring module.

B.1 mac80211

In what follows we summarize the main declarations of the mac80211 framework:

 The set of functions and corresponding declaration files for the mac80211

framework is given below.

Method File

ieee80211_unregister_hw main.c

ieee80211_free_hw main.c

ieee80211_chswitch_done mlme.c

ieee80211_enable_dyn_ps mlme.c

ieee80211_disable_dyn_ps mlme.c

ieee80211_ap_probereq_get mlme.c

ieee80211_beacon_loss mlme.c

ieee80211_connection_loss mlme.c

ieee80211_cqm_rssi_notify mlme.c

ieee80211_ready_on_channel offchannel.c

ieee80211_remain_on_channel_expired offchannel.c

ieee80211_rate_control_register rate.c

ieee80211_rate_control_unregister rate.c

rate_control_send_low rate.c

ieee80211_sta_ps_transition rx.c

ieee80211_rx rx.c

ieee80211_rx_irqsafe rx.c

ieee80211_scan_completed scan.c

ieee80211_sched_scan_results scan.c

ieee80211_sched_scan_stopped scan.c

ieee80211_find_sta_by_ifaddr sta_info.c

ieee80211_find_sta sta_info.c

ieee80211_sta_block_awake sta_info.c

ieee80211_sta_set_tim sta_info.c

ieee80211_tx_status_irqsafe status.c

ieee80211_tx_status status.c

ieee80211_report_low_ack status.c

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 80 of 92

ieee80211_get_tkip_key tkip.c

ieee80211_beacon_get_tim tx.c

ieee80211_pspoll_get tx.c

ieee80211_nullfunc_get tx.c

ieee80211_probereq_get tx.c

ieee80211_rts_get tx.c

ieee80211_ctstoself_get tx.c

ieee80211_get_buffered_bc tx.c

wiphy_to_ieee80211_hw util.c

ieee80211_generic_frame_duration util.c

ieee80211_rts_duration util.c

ieee80211_ctstoself_duration util.c

ieee80211_wake_queue util.c

ieee80211_stop_queue util.c

ieee80211_stop_queues util.c

ieee80211_queue_stopped util.c

ieee80211_wake_queues util.c

ieee80211_iterate_active_interfaces util.c

ieee80211_iterate_active_interfaces_atomic util.c

ieee80211_queue_work util.c

ieee80211_queue_delayed_work util.c

Table 12: Set of functions and declaration files of the mac80211 framework

 Set of registered operations in the /linux/netdevice.h file.

.ndo_open = ieee80211_open,

 .ndo_stop = ieee80211_stop,

 .ndo_uninit = ieee80211_teardown_sdata,

 .ndo_start_xmit = ieee80211_subif_start_xmit,

 .ndo_set_multicast_list = ieee80211_set_multicast_list,

 .ndo_change_mtu = ieee80211_change_mtu,

 .ndo_set_mac_address = ieee80211_change_mac,

 .ndo_select_queue = ieee80211_netdev_select_queue.

 Table 13: Registered operations in /linux/netdevice.h

 The set of functions exported by the net_device structure is listed below (The
second column specifies the files belonging to the mac80211 framework that

call those functions.)

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 81 of 92

Method File

netif_addr_lock_bh iface.c

netif_addr_unlock_bh iface.c

netif_carrier_off iface.c, mlme.c

netif_carrier_on iface.c, mlme.c

netif_napi_add main.c

netif_receive_skb rx.c

netif_rx status.c

netif_rx_ni cfg.c

netif_stop_subqueue util.c

netif_tx_start_all_queues iface.c, mlme.c

netif_tx_stop_all_queues offchannel.c

netif_tx_stop_all_queues iface.c, mlme.c

netif_tx_wake_all_queues offchannel.c, mlme.c

netif_wake_subqueue tx.c, util.c

Table 14: Set of functions exported by the net_device structure

 The mac80211 module registers the following callbacks within the
cfg80211_ops structure:

.add_virtual_intf = ieee80211_add_iface,

 .del_virtual_intf = ieee80211_del_iface,

 .change_virtual_intf = ieee80211_change_iface,

 .add_key = ieee80211_add_key,

 .del_key = ieee80211_del_key,

 .get_key = ieee80211_get_key,

 .set_default_key = ieee80211_config_default_key,

 .set_default_mgmt_key = ieee80211_config_default_mgmt_key,

 .add_beacon = ieee80211_add_beacon,

 .set_beacon = ieee80211_set_beacon,

 .del_beacon = ieee80211_del_beacon,

 .add_station = ieee80211_add_station,

 .del_station = ieee80211_del_station,

 .change_station = ieee80211_change_station,

 .get_station = ieee80211_get_station,

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 82 of 92

 .dump_station = ieee80211_dump_station,

 .dump_survey = ieee80211_dump_survey,

 .add_mpath = ieee80211_add_mpath,

 .del_mpath = ieee80211_del_mpath,

 .change_mpath = ieee80211_change_mpath,

 .get_mpath = ieee80211_get_mpath,

 .dump_mpath = ieee80211_dump_mpath,

 .update_mesh_config = ieee80211_update_mesh_config,

 .get_mesh_config = ieee80211_get_mesh_config,

 .join_mesh = ieee80211_join_mesh,

 .leave_mesh = ieee80211_leave_mesh,

 .change_bss = ieee80211_change_bss,

 .set_txq_params = ieee80211_set_txq_params,

 .set_channel = ieee80211_set_channel,

 .suspend = ieee80211_suspend,

 .resume = ieee80211_resume,

 .scan = ieee80211_scan,

 .sched_scan_start = ieee80211_sched_scan_start,

 .sched_scan_stop = ieee80211_sched_scan_stop,

 .auth = ieee80211_auth,

 .assoc = ieee80211_assoc,

 .deauth = ieee80211_deauth,

 .disassoc = ieee80211_disassoc,

 .join_ibss = ieee80211_join_ibss,

 .leave_ibss = ieee80211_leave_ibss,

 .set_wiphy_params = ieee80211_set_wiphy_params,

 .set_tx_power = ieee80211_set_tx_power,

 .get_tx_power = ieee80211_get_tx_power,

 .set_wds_peer = ieee80211_set_wds_peer,

 .rfkill_poll = ieee80211_rfkill_poll,

 .set_power_mgmt = ieee80211_set_power_mgmt,

 .set_bitrate_mask = ieee80211_set_bitrate_mask,

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 83 of 92

 .remain_on_channel = ieee80211_remain_on_channel,

 .cancel_remain_on_channel = ieee80211_cancel_remain_on_channel,

 .mgmt_tx = ieee80211_mgmt_tx,

 .mgmt_tx_cancel_wait = ieee80211_mgmt_tx_cancel_wait,

 .set_cqm_rssi_config = ieee80211_set_cqm_rssi_config,

 .mgmt_frame_register = ieee80211_mgmt_frame_register,

 .set_antenna = ieee80211_set_antenna,

 .get_antenna = ieee80211_get_antenna,

 .set_ringparam = ieee80211_set_ringparam,

 .get_ringparam = ieee80211_get_ringparam

Table 15: Callbacks within the cfg80211_ops structure

 Next we give the set of functions contained in the files located in the directory

net/wireless/.

Method File

 cfg80211_send_rx_auth mlme.c

 cfg80211_send_rx_assoc mlme.c

 __cfg80211_send_deauth mlme.c

 cfg80211_send_deauth mlme.c

 __cfg80211_send_disassoc mlme.c

 cfg80211_send_disassoc mlme.c

 cfg80211_send_unprot_deauth mlme.c

 cfg80211_send_unprot_disassoc mlme.c

 __cfg80211_auth_canceled mlme.c

 cfg80211_send_auth_timeout mlme.c

 cfg80211_send_assoc_timeout mlme.c

 cfg80211_michael_mic_failure mlme.c

 cfg80211_ready_on_channel mlme.c

 cfg80211_remain_on_channel_expired mlme.c

 cfg80211_new_sta mlme.c

 cfg80211_del_sta mlme.c

 cfg80211_rx_mgmt mlme.c

 cfg80211_mgmt_tx_status mlme.c

 cfg80211_cqm_rssi_notify mlme.c

 cfg80211_cqm_pktloss_notify mlme.c

 cfg80211_classify8021d util.c

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 84 of 92

 cfg80211_connect_result sme.c

 cfg80211_roamed sme.c

 cfg80211_disconnected sme.c

 cfg80211_scan_done scan.c

 cfg80211_sched_scan_results scan.c

 cfg80211_sched_scan_stopped scan.c

 cfg80211_find_ie scan.c

 cfg80211_get_bss scan.c

 cfg80211_get_mesh scan.c

 cfg80211_inform_bss scan.c

 cfg80211_inform_bss_frame scan.c

 cfg80211_put_bss scan.c

 cfg80211_unlink_bss scan.c

 cfg80211_wext_siwscan scan.c

 cfg80211_wext_giwscan scan.c

 cfg80211_notify_new_peer_candidate mesh.c

 cfg80211_testmode_alloc_reply_skb nl80211.c

 cfg80211_testmode_reply nl80211.c

 cfg80211_testmode_alloc_event_skb nl80211.c

 cfg80211_testmode_event nl80211.c

 cfg80211_ibss_joined ibss.c

Table 16: Set of functions contained in the directory net/wireless/

B.2 mac80211++

In this section we present the preliminary source code of the prototype of the Service

Scheduler and the Function Handler. First, Table 17 summarizes the source code of
the main data structures and functions of the Service Scheduler described Section
3.3.1.

Source code for the Service Scheduler

struct flavia_ss_t {

 struct work_struct flavia_work;

 unsigned long flavia_data;

 void (*flavia_service_hook)(unsigned long data);

 unsigned int flavia_usec;

 struct timer_list flavia_timer;

 struct list_head flavia_ss_list;

};

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 85 of 92

struct flavia_ss_t *

flavia_register_service(void *service_hook,

 unsigned int usec,

 unsigned long service_data)

{

 struct flavia_ss_t *srv = alloc_mem(sizeof(struct flavia_ss_t));

 if (srv != NULL) {

 // 1. Initialize the work that will be executed later

 // and the auxiliary information

 init_work_for_workqueue(&srv->flavia_work, flavia_srv_container)

 srv ->flavia_data = service_data;

 srv ->flavia_service_hook = service_hook;

 srv ->flavia_usec = usec;

 setup_timer(flavia_ss_timer_function, srv);

 // 2. Add the new scheduled service to the list

 add_to_service_list(&srv->flavia_ss_list, &flavia_ss.flavia_ss_list);

 // 3. Start the countdown of the timer that will schedule the work

 start_timer(srv->flavia_usec);

 return srv;

 }

 return NULL;

}

struct flavia_ss_t *

flavia_register_service_tsf_sync(void *service_hook,

 unsigned int usec,

 unsigned long service_data)

{

 struct flavia_ss_t *srv = alloc_mem(sizeof(struct flavia_ss_t));

 if (srv != NULL) {

 // 1. Initialize the work that will be executed later

 // and the auxiliary information

 init_work_for_workqueue(&srv->flavia_work,

flavia_srv_container_tsf_sync)

 srv ->flavia_data = service_data;

 srv ->flavia_service_hook = service_hook;

 srv ->flavia_usec = usec;

 setup_timer(flavia_ss_timer_function, srv);

 // 2. Add the new scheduled service to the list

 add_to_service_list(&srv->flavia_ss_list, &flavia_ss.flavia_ss_list);

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 86 of 92

 // 3. Start the countdown of the timer which will schedule the work

 start_timer(srv->flavia_usec);

 return srv;

 }

 return NULL;

}

void

flavia_ss_timer_function(unsigned long data)

{

 struct flavia_ss_t *srv = (struct flavia_ss_t *) data;

 int ret;

 ret = queue_work_on_workqueue(flavia_ss_wq, srv->flavia_work);

 if (!ret) {

 printk("[FLAVIA] Failed to queue the work after the timer

expired.\n");

 }

}

void

flavia_srv_container(struct work_struct *work)

{

 struct flavia_ss_t *srv = (struct flavia_ss_t *) work;

 // 1. Call the function implementing the FLAVIA Service

 srv->flavia_service_hook(srv->flavia_data);

 // 2. Reschedule the timer that, in turn, recalls this function through

a work

 start_timer(srv->flavia_usec);

 return;

}

void

flavia_srv_container_tsf_sync(struct work_struct *work)

{

 struct flavia_ss_t *srv = (struct flavia_ss_t *) work;

 u64 tsf;

 unsigned int next_usec;

 // 1. Call the function implementing the FLAVIA Service

 srv->flavia_service_hook(srv->flavia_data);

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 87 of 92

 // 2. Compute the expiration time

 tsf = get_tsf_from_driver();

 r_u32 = module_of(tsf, srv->flavia_usec);

 next_usec = srv->flavia_usec - r_u32;

 // 3. Reschedule the timer that, in turn, recalls this function

 start_timer(srv->flavia_usec);

 return;

}

void

flavia_remove_service(struct flavia_ss_t *srv)

{

 stop_and_delete_timer(&srv->flavia_timer);

 cancel_work_from_worqueue(&srv->flavia_work);

 delete_from_service_list(&srv->flavia_ss_list,

&flavia_ss.flavia_ss_list);

}

Table 17: Source code for the Service Scheduler

Second, Table 18 summarizes the preliminary source code of the main data structures
and functions of the Function Handler described in Section 3.3.2.

Source code for the Function Handler

struct flavia_function_ops {

 struct module *module;

 char *function_name;

 void (*flavia_function_hook)(unsigned long data);

 unsigned long function_data;

 struct list_head flavia_function_list;

};

struct flavia_hook_ops {

 char *hook_name;

 struct list_head flavia_function_list;

 struct mutex flavia_func_list_mtx;

 struct list_head flavia_hook_list;

};

struct flavia_function_ops *

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 88 of 92

flavia_register_function(void *function_hook,

 char *func_name, char *hook_name,

 unsigned long func_data)

{

 struct flavia_hook_ops *hook_item = NULL;

 struct flavia_function_ops *func_item =

 alloc_mem(sizeof(struct flavia_function_ops));

 if (func_item != NULL) {

 // 1. Initialize the function hook that will be executed each time

 the corresponding mac80211 hook is invoked

 func_item->function_name = func_name;

 func_item->flavia_function_hook = function_hook;

 func_item->function_data = func_data;

 // 2. Look for the hook on which the function will be registered

 hook_item = flavia_find_hook_ops(hook_name);

 if (hook_item != NULL) {

 // 2.1 Register the new function on the corresponding hook

 // Add the new item to the list of functions executed on the

same hook

 add_to_func_list(func_item, hook_item);

 } else {

 // No function registered for this hook till now...

 // 2.1 Create and register a new hook

 hook_item = alloc_mem(sizeof(struct flavia_hook_ops));

 hook_item->hook_name = kstrdup(hook_name, GFP_KERNEL);

 INIT_LIST_HEAD(hook_item->flavia_function_list);

 add_to_hook_list(hook_item, &flavia_hooks.flavia_hook_list);

 // 2.2 Register the function on the new hook (new list of

functions)

 add_to_func_list(func_item, hook_item);

 }

 return func_item;

 }

 return NULL;

}

void

flavia_function_hook_container(char *hook_name, unsigned long

mac80211_data)

{

 struct flavia_hook_ops *hook_item;

 list_for_each_entry(flavia_hooks.flavia_hook_list) {

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 89 of 92

 hook_item = next_list_entry(flavia_hooks.flavia_hook_list);

 if (hook_item->hook_name == hook_name) {

 flavia_exe_hook_functions(hook_item, mac80211_data);

 }

 }

 return;

}

void

flavia_exe_hook_functions(struct flavia_hook_ops *hook_item, unsigned

long mac80211_data)

{

 struct flavia_function_ops *func_item;

 // 1. Loop over all functions registered on this hook

 list_for_each_entry(hook_item->flavia_function_list) {

 func_item = next_list_entry(hook_item->flavia_function_list);

 func_item->flavia_function_hook(mac80211_data);

 }

 return;

}

void

flavia_remove_function(char *func_name, char *hook_name)

{

 struct flavia_function_ops *flavia_func_item =

 alloc_mem(sizeof(struct flavia_function_ops));

 // 1. Search the function registered on the hook

 flavia_func_item = flavia_find_function_ops(func_name, hook_name);

 if (flavia_func_item != NULL) {

 // 1.1 Remove the function from the corresponding hook

 delete_from_func_list(flavia_func_item->flavia_function_list);

 }

 return;

}

Table 18: Source code for the Function Handler

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 90 of 92

B.3 Advanced Monitoring

This section presents the pseudo-code for the Advanced Monitoring module described

in Section 4.4.

Pseudocode for the Advanced Monitoring module

//rx.c - definition of the hook for the monitoring function for the

uplink path

void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)

{

......

 void (*p_rx_measure)(struct ieee80211_hw *hw, struct sk_buff

*skb);

......

 if(p_rx_measure != NULL)

 (*p_rx_measure)(hw, skb);

......

}

//tx.c - definition of the hook for the monitoring function for the

downlink //path

static bool __ieee80211_tx(struct ieee80211_local *local, struct

sk_buff **skbp, struct sta_info *sta, bool txpending)

{

......

 void (*p_rx_measure)(struct ieee80211_local *local, struct sk_buff

*skb);

......

 if(p_tx_measure != NULL)

 (*p_tx_measure)();

......

}

//flavia_monitor.c – definition of FAM module functions

flavia_fam_init()

{

 init_netlink_communication();

 create_sending_thread();

 data_structures_init();

 enable_rx_hook();

 enable_tx_hook();

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 91 of 92

}

flavia_fam_exit()

{

 disable_rx_hook;

 disable_tx_hook;

 free_resources;

}

flavia_rx_measure(){

 analyze_farme(){

 case(frame type):

 control: analyze_control_frame();

 management: analyze_management_farme();

 data: analyze_data_frame();

 }

 calculate_NAV();

 calculate_backoff()

 calculate_IFS()

 update_mac_parameters();

 update_channel_parameters();

}

flavia_tx_measure(){

 analyze_farme(){

 case(frame type):

 control: analyze_control_frame();

 management: analyze_management_farme();

 data: analyze_data_frame();

 }

 calculate_NAV();

 calculate_backoff()

 calculate_IFS()

 update_mac_parameters();

 update_channel_parameters();

}

receive_command_handler()

{

 analyze_command();

 configure_sending_thread();

}

sending_thread_handler()

FLAVIA

FLexible Architecture

for Virtualizable wireless future Internet Access

Grant Agreement: FP7 - 257263

Deliverable 4.2 Version: 1.0 Page 92 of 92

{

 init_wait_queue();

 format_message();

 send_message();

 clear_data_structures();

}

Table 19: Pseudo-code for the Advanced Monitoring module

