
FP7-ICT Strategic Targeted Research Project (STREP) TrendMiner (No. 287863)

Large-scale, Cross-lingual Trend Mining and Summarisation of Real-time Media Streams

D2.1.2 Knowledge and Provenance
modelling and Stream Reasoning v2

Dr. Sina Samangooei, University of Southampton
David Monks, University of Southampton

Dr. Nicholas Gibbins, University of Southampton
Dr. Hans-Ulrich Krieger, Thierry Declerck, DFKI GmbH

Abstract.
FP7-ICT Strategic Targeted Research Project (STREP) ICT-2011-287863 TrendMiner
Deliverable D2.1.2 (WP2)

Keyword list: knowledge modelling, stream reasoning

Copyright c© 2013 University of Southampton

Project
Delivery Date
Contractual Date
Nature
Reviewed By
Web links
Dissemination

TrendMiner No. 287863
November 7, 2013
October 31, 2013
Other
Kalina Bontcheva, USFD and Alex Simov, ONTO
https://github.com/sinjax/squall; http://www.dfki.de/lt/onto/tmo.owl
PU

https://github.com/sinjax/squall


TrendMiner Consortium

This document is part of the TrendMiner research project (No. 287863), partially funded by the FP7-ICT Programme.

DFKI GmbH
Language Technology Lab
Stuhlsatzenhausweg 3
D-66123 Saarbrcken
Germany
Contact person: Thierry Declerck
E-mail: declerck@dfki.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Contact person: Kalina Bontcheva
E-mail: K.Bontcheva@dcs.shef.ac.uk

University of Southampton
Southampton SO17 1BJ
UK
Contact person: Mahensan Niranjan
E-mail: mn@ecs.soton.ac.uk

Ontotext AD
Polygraphia Office Center fl.4,
47A Tsarigradsko Shosse,
Sofia 1504, Bulgaria
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Internet Memory Research
45 ter rue de la Rvolution
F-93100 Montreuil
France
Contact person: France Lafarges
E-mail: contact@internetmemory.org

Sora Ogris and Hofinger GmbH
Linke Wienzeile 246
A-1150 Wien
Austria
Contact person: Christoph Hofinger
E-mail: ch@sora.at

Eurokleis S.R.L.
Via Giorgio Baglivi, 3
Roma RM
00161 Italy
Contact person: Francesco Bellini
E-mail: info@eurokleis.com

Hardik Fintrade Pvt Ltd.
227, Shree Ram Cloth Market,
Opposite Manilal Mansion,
Revdi Bazar, Ahmedabad 380002
India
Contact person: Suresh Aswani
E-mail: m.aswani@hardikgroup.com



Executive Summary

This deliverable is about knowledge modelling and stream reasoning in the context of the
TrendMiner project. The document is organized following those two topics. We start with
the actual state of development of the TrendMiner Ontologies (TMO), and then describe
the actual state of development of stream reasoning.
The integrated TrendMiner Ontologies have been built partly from scratch and consist of
existing but also of updated ontologies. The need for a set of TrendMiner specific ontolo-
gies for pursuing the task of Ontology-Based Information Extraction (OBIE), which is
the topic of Task 2.3 in TrendMiner, has been recognized very soon, since for the specific
use cases described in WP6 and WP7, one can not rely only on the generic ontologies
available for example in DBpedia or Freebase.
To address the increasing number of high throughput semantic streaming data sources,
we present the Squall distributed stream reasoner. Using Squall, rules and queries can be
instantiated as production systems which can consume unbounded streams of data, pro-
ducing meaningful application-specific answers to structured questions. We present two
versions of Squall. In the first version delivered, a complete tool and framework are de-
scribed which can instantiate and realise Jena rules and SPARQL queries. In the second
version a more modular version of the Squall framework is delivered capable of express-
ing: different query and rule languages; production system optimisation strategies; and
instantiations on different stream processing frameworks.



Contents

1 Introduction 3
1.1 Relevance to Trendminer . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Relevance to project objectives . . . . . . . . . . . . . . . . . . . 4
1.1.2 Relevance to other work packages . . . . . . . . . . . . . . . . . 4

1.2 Software Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 TrendMiner Ontologies 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 BIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 ICB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Finding Competitors Across Stock Exchanges . . . . . . . . . . . 12
2.3.2 Monitoring Unusual Events . . . . . . . . . . . . . . . . . . . . 12

2.4 Relevance for Multilingual Lexical Resources . . . . . . . . . . . . . . . 13

3 The Squall stream reasoner 14
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Stream Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Squall Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Squall Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Streams and Distribution . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Modular Stream Reasoning 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Modular Production Rule Systems . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Lexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



CONTENTS 2

4.2.2 Translators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.4 Builders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Jena Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Greedy Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 OpenIMAJ Stream Builder . . . . . . . . . . . . . . . . . . . . . 38

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusions and Future Work 41
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Retraction Support . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Ontology Translation . . . . . . . . . . . . . . . . . . . . . . . . 42



Chapter 1

Introduction

We describe two activities in the context of Task 2.2 of TrendMiner: Knowledge Mod-
elling and Stream Reasoning.

Knowledge Modelling in TrendMiner is needed in order to pursue the task of Ontology-
Based Information Extraction (OBIE, task 2.3, see also D2.2.2 Multilingual, ontology-
based IE from stream media -v2). There ontological data available in the Linked Open
Data framework is already used, mainly for the purpose of Named Entities disambigua-
tion. But the generic ontological data one can find in for example DBPedia, is not suited
for providing the specific knowledge background for the use cases in TrendMiner, which
are dealing with assisting financial investing decisions (WP6) and EU-wide tracking of
political views, trends, and politician popularity over time (WP7).

We have therefore constructed an integrated ontology, TMO, the TRENDMINER On-
tology, that has been assembled from several independent multilingual taxonomies
and ontologies which are brought together by an interface specification, expressed
in OWL (McGuinness and van Harmelen (2004)). The TMO ontologies are online
(http://www.dfki.de/lt/onto/tmo.owl)
As Semantic Web technologies have increased in maturity, they have been increasing ap-
plied to application domains that may be characterised by the large volumes of data that
they generate and the real-time demands on the processing of that data. Examples of
such domains include sensor networks, financial information and communications net-
work management. Over the last decade, the database community has shown a great deal
of interest in Data Stream Management Systems (DSMS), which aim to meet the demands
of such domains. However, although stream processing systems have been developed to
deal with streaming data, there are only a few systems which have attempted to do so for
streaming semantic data. Moreover, the current generation of stream processing systems
for semantic data typically leverage existing reasoners and query engines by applying
them to snapshots of the streams, rather than adopt a native stream processing approach.

This document accompanies both the TMO delivery and the software deliverable of the
Squall stream reasoning tool that has been built as part of Work Package 2, and which

3



CHAPTER 1. INTRODUCTION 4

follows the initial sketch that was provided in Deliverable D.2.1.1. The structure of this
document is as follows: in Chapter 3, we describe the basic Squall system, which imple-
ments a production rule system for RDF using the Rete algorithm on the Storm stream
processing framework; in Chapter 4 , we describe the enhanced Squall system, which
decomposes the task of building the Rete network into modular components, so allowing
the specification of rules in a wider variety of languages (Jena, RIF, SPARQL) and on a
wider variety of processing frameworks (Storm, S4, Hadoop).

In the remainder of this chapter, we describe the relevance of this deliverable both to the
project objectives, as given in the Description of Work, and the the research taking place
in other Work Packages.

1.1 Relevance to Trendminer

1.1.1 Relevance to project objectives

The TMO ontologies are relevant for all work packages that need to have access to stable
knowledge objects (instances).

The streaming reasoning tool described in this deliverable contributes both to project ob-
jective 1 (”deliver new real-time trend mining and summarisation methods for stream
media”) and objective 5 (”deploy a cloud-based infrastructure for real-time collection,
analysis, summarisation, and semantic search”).

1.1.2 Relevance to other work packages

The TMO ontologies are for sure relevant for all OBIE activities, described in WP2, but
is also supports greatly the use cases, and is also relevant to WP4 on summarization.

The stream reasoning tool contributes principally to the real-time stream media platform
that is being developed in Work Package 5, but it also acts as an upstream component
of the machine learning tools developed in Work Package 2; the entailments that are
generated by the stream reasoner can be viewed as extra features that can be used to help
identify important messages or trend information.

1.2 Software Availability

The schema of the TMO is available online: www.dfki.de/lt/onto/tmo.owl.

All software including the source for the various modules and methods by which the tools



CHAPTER 1. INTRODUCTION 5

can be built are found on the project’s Github repository1. The README of the project
contains instructions by which the project and its components can be included as part of
a mavenised java project, a development environment can be created, or a version of the
tool can be compiled and run.

1https://github.com/sinjax/squall

https://github.com/sinjax/squall


Chapter 2

TrendMiner Ontologies

2.1 Introduction

Within TRENDMINER, TMO serves as a common language that helps to interlink data,
delivered from both symbolic and statistical components of the TRENDMINER system.

Very often, the extracted data is supplied as quintuples, RDF triples that are “anno-
tated” by two further temporal arguments, expressing the temporal extent in which
an atemporal fact holds (essentially, an extension of the plain N-Triples format; see
http://www.w3.org/TR/rdf-testcases/). In order to store such quintuples, they are either
transformed into a set of semantic-preserving triples when stored in a triple repository
like OWLIM (

In this paper, we will also sneak a peek on the temporal entailment rules (Krieger (2012))
and queries that are built into the semantic repository hosting the data and which can be
used to derive useful explicit information. This includes identifying companies operating
in similar areas, monitoring data for unusual events, or making knowledge about people
explicit.

2.2 Ontologies

Overall, TMO consists of sixteen truly independent ontologies which do not have
knowledge of one another. Two further ontologies, called IF and XEBR2XBRL bring
them together through the use of interface axioms, using axiom constructors, such as
rdfs:subClassOf and owl:equivalentProperty, or by posing domain and range restrictions
on certain underspecified properties. It is worth noting that across the ontologies, each
property has been cross-classified as being either synchronic, i.e., property instances stay-
ing constant over time, or diachronic, i.e., changing over time (Krieger (2010)). This
property characteristic can be used, amongst other things, to check the consistency of a

6



CHAPTER 2. TRENDMINER ONTOLOGIES 7

temporal ABox or as a distinguishing mark in an entailment rule.

Let us quickly introduce the 18 sub-ontologies of TMO and then focus on a few selected
highlights in subsections 2.1–2.5.

1. BIO (biographical facts about people and events)

2. CFI (ISO’s classification of financial instruments)

3. DAX (stock exchange: Deutscher Aktien Index)

4. DC (very less from Dublin Core)

5. EN (stock exchange: NYSE Euronext)

6. GICS (Standard&Poor’s/MSCI industry sector classification)

7. ICB (Dow Jones/FTSE industry sector classification)

8. IF (most of the interface axioms)

9. LOGIC (modalized propositions; used by SENT )

10. NACE (EU/UN industry sector classification)

11. OP (opinion: extends the MARL ontology)

12. POL (political facts about people and events)

13. SENT (sentiment, uses LOGIC )

14. SKOS (SKOS relations applicable to classes)

15. SOC (translation of TheSoz/GESIS sociology thesaurus)

16. TIME (distinction: synchronic/diachronic properties)

17. XEBR (XBRL Europe Business Registers)

18. XEBR2XBRL (interfacing XEBR and local XBRL jurisdictions)

Even though ABox data (populated instances) usually come with a temporal extent, the
TBoxes and RBoxes of the ontologies are not equipped with temporal information, thus
still being represented as triples. For instance, we do not state that an URI represents
a class at a certain time and a property at a different time. Or that a class is a subclass
of another class for only some amount of time. Thus TBox and RBox of the integrated
ontology represent universal knowledge that is true at any time, so there is no need to
equip them with a fourth and fifth temporal argument. This quality gives rise to the use
of ontology editors such as Protégé for manually constructing the TBoxes and RBoxes of
some of our ontologies.

It is worth noting that almost all ontologies are multilingual in that both classes,
properties, and predefined instances are assigned multiple and multilingual labels or



CHAPTER 2. TRENDMINER ONTOLOGIES 8

even longer definitions in different languages, making use of the annotation properties
rdfs:label, skos:prefLabel, and skos:altLabel, together with an additional annotation prop-
erty rdfs:definition.

Figure 2.1: The TMO ontology consists of 18 sub-ontologies overall. The color encoding
refers to ontologies focussing on models of people’s private and public life (yellow), sen-
timent/opinion (purple), industry sector classification (green), stock exchange (brown
rectangle), financial reporting (orange rectangle), financial instruments (blue), and in-
terface (red). As can be seen from the picture, some of the ontologies even model several
aspects of a domain; e.g., DAX alone deals with industry sector classification, reporting,
description of stock exchange listed information, and people who are either key executives
or shareholders of a company.

2.2.1 BIO

BIO is used to represent biographical facts about people’s life. The ontology comes with
a tripartite structure of the following pairwise disjoint classes, subclasses of the most
general class Entity:

• Abstract. An Abstract thing can manifest in a Happening, whereas a Happening
might lead to an Entity.

• Happening. Happenings are either static atomic Situations or dynamic decompos-
able Events.

• Object. The subclass Agent makes a fundamental distinction between Person and
Group.



CHAPTER 2. TRENDMINER ONTOLOGIES 9

Assertional knowledge (i.e., ABox relation instances) in BIO is usually encoded as quin-
tuple (see above) with the notable exception of Happenings which encapsulate their own
starting and ending time. People might be involved in a happening or learn about it, thus
being isAwareOf a happening. Since isAwareOf is a diachronic property, we can easily
model (using the temporal extent) that awareness might turn into oblivion.

2.2.2 EN

The Euronext ontology EN does not come up with its own industry classification, but
makes use of ICB (see below). EN , in part, reduplicates the stock exchange ontology
DAX , but uses different names for classes and properties. However, more financial num-
bers are given here, even for three succeeding year.

Let us take an example. Credit Agricole’s revenues for 2012, 2011, and 2010 are listed
today as 16,315,000, 20,783,000, and 20,129,000 Euros. Even at the end of this year,
these numbers will be the same. However in 2014, the number for 2010 will no longer be
listed, but instead, we will then find only numbers for 2013, 2012, and 2011. Clearly, we
do not want to extend the ontology with new property names every time a new business
year starts, thus we must avoid properties such as hasRevenue2013, hasRevenue2012,
hasRevenue2011, etc.

In order to address this and to proper represent the numbers against the varying date
when the numbers where taken, we use a simple “trick” here: we always use exactly the
three properties hasRevenue-1, hasRevenue-2, and hasRevenue-3. The hyphen - now
should be interpret as a minus sign −, thus, e.g., the value stored under hasRevenue-2
actually refers to the revenue two (2) years ago relative to the actual business year when
the company snapshot was taken (the business year is stated elsewhere).

2.2.3 ICB

ICB, the Industry Classification Benchmark, is a further industry classification used
worldwide at many places (e.g., NYSE in New York). Euronext (as operated by NYSE)
makes use of ICB’s four level deep classification in its description of titles. Given the
ICB terminology stated in a document, we have auto-generated an OWL ontology ICB
that arranges the 186 industry sectors in a subsumption hierarchy. ICB is connected to
EN through an axiom from IF and comes up with an informal sector description for En-
glish, German, and Spanish, together with a further multilingual “definition” of the most
specific concepts (actually, even 11 languages are available). In order to address these def-
initions on the class level properly, we make use of a further annotation property which
we have called rdfs:definition.



CHAPTER 2. TRENDMINER ONTOLOGIES 10

2.2.4 OP

This opinion ontology is based on the Marl ontology, described in (Westerski et al.
(2011)). Even though some of the property names would have been labelled differently
by us (e.g., using hasTarget instead of describesObject in order to be compatible with
opinion mining terminology), we have not alter the original property names.

We have, however, made some adjustments to Marl and have added further properties as
described below:

• extractedFrom is now a datatype property, mapping to xsd:anyURI;

• we have added the object property hasHolder (range: underspecified);

• we have added the datatype property holdersTrust (range: xsd:double);

• we have added the datatype property utteredAt (range: xsd:dateTime);

• we have declared certain properties to be functional;

• we have defined the range type for already-existing properties.

Some of the original properties (e.g., describeFeature) as well the new property hasHolder
are not assigned a range class in Marl . In order to constrain these properties further, we
recommend (as we have done in TMO) to add further interface axioms, e.g., the holder of
an opinion is an agent/person (see subsection 2.2.5 below).

We have furthermore classified all properties in the opinion ontology as diachronic prop-
erties. This has the advantage that such a treatment makes it easy to see how an opinion
evolves/changes over time. Note that this evolution mostly happens for aggregated opin-
ions, but might even happen for information related to a single opinion, say the holders’
trust changes.

2.2.5 IF

As already explained, the interface ontology IF interlinks the 16 subontologies through
manually specified interface axioms. To achieve this, IF makes use of DC , SKOS and
TIME , but mostly utilizes the standard axioms constructors from RDFS and OWL, to-
gether with domain and range restrictions:

• owl:equivalentClass

• rdfs:subClassOf

• owl:equivalentProperty

• rdfs:subPropertyOf

• owl:sameAs



CHAPTER 2. TRENDMINER ONTOLOGIES 11

• rdfs:domain

• rdfs:range

• rdf:type

Here are some examples, using description logics (DL) syntax.

Classes and Properties

dax:Company, en:Company, nace:IndustrySector, and gics:GICS can be used inter-
changeably; xebr:Report is a subclass of dc:Resource; the properties dax:portrait and
en:activity are equivalent (DL syntax):

dax:Company≡ en:Company

dax:Company≡ gics:GICS

dax:Company≡ nace:IndustrySector

xebr:Reportv dc:Resource

dax:portrait≡ en:activity

Note that the transitivity of owl:equivalentClass guarantees that dax:Company,
en:Company, gics:GICS, and nace:IndustrySector are lying in the same equivalence class.

Domain & Range Restrictions and Typing

XEBR reports are linked to companies via the diachronic functional object property
if:hasReport; the holder of an opinion is an agent:

>v ∀if:hasReport− . dax:Company

>v ∀if:hasReport . xebr:Report

if:hasReport : owl:FunctionalProperty

if:hasReport : owl:ObjectProperty

if:hasReport : time:DiachronicProperty

>v ∀op:hasHolder . bio:Agent

The last axiom together with

bio:Person≡ pol:Person

gives us the possibility to talk about, e.g., journalists and their opinions, due to the fol-
lowing subclass axioms, specified in BIO and POL , resp.:

bio:Personv bio:Agent

pol:Journalistv pol:Person



CHAPTER 2. TRENDMINER ONTOLOGIES 12

2.3 Rules

This section presents some showcases that involve individual ontologies, interlinking ax-
ioms, and domain-specific queries and entailment rules.

2.3.1 Finding Competitors Across Stock Exchanges

Characterizing a company against an industry sector classification is an extremely impor-
tant showcase which involves finding competitors of a company that work in a similar
field. We attack this problem in two ways. Firstly, we have established manual mappings
between sectors from different classification schemes, such as (all four classes talk about
financial institutions)

icb:ICB8300≡ nace:nace 64.1

icb:ICB8300≡ dax:Banks

icb:ICB8300≡ GICS4010

Secondly, we are trying to match the free-text information of a company against the mul-
tilingual labels of the NACE, ICB, DAX, and GICS classes in order to establish an auto-
mated sector classification. For instance, from the English info text found for adidas

The adidas Group is one of the global leaders within the

sporting goods industry ...

it should be feasible to find the class nace:nace 47.64 whose English label is

Retail sale of sporting equipment in specialised stores.

Since the mappings connect industry sectors across different stock exchanges, query-
ing for companies of type dax:Banks will automatically yield companies classified as
icb:ICB8300, nace:nace 64.1, or GICS4010. Here is an example involving competitors
of Deutsche Bank, making use of the query language in HFC (Krieger (2013)) to access
quintuples in the WHERE clauses:

SELECT DISTINCT ?competitor
WHERE ?db dax:name "Deutsche Bank" ?s ?e

?db rdf:type ?type ?s ?e
?competitor rdf:type ?type ?s2 ?e2

FILTER ?db != ?competitor

2.3.2 Monitoring Unusual Events

“Unusual” events refer to important changes happened in a company or in a person’s life,
say, the replacement of a CEO or the change of the transparency standard (a company



CHAPTER 2. TRENDMINER ONTOLOGIES 13

can not adhere to more than one standard at the same time). If latter happens, a rule can
leave a memento in the repository that can be queried later. Here is an example, making
use of HFC’s rule language:

?c dax:transparencyStandard ?ts1 ?s1 ?e1
?c dax:transparencyStandard ?ts2 ?s2 ?e2
->
?mem rdf:type if:Memento ?e1 ?s2
?mem if:changeStandard ?c ?ts1 ?ts2 ?e1 ?s2
@test
?ts1 != ?ts2
DTLess ?s1 ?s2
@action
?mem = MakeUri ?c ?e1 ?s2 ?ts1 ?ts2

The predicate (@test) DTLess guarantees that ?s1 is smaller than ?s2 (both variables will
bind XSD atoms of type dateTime). The action (@action) MakeUri deterministically
generates a new URI from its input arguments ?c, ?e1, ?s2, ?ts1, and ?ts2. This URI
then is used on the RHS of the rule to store the relevant information, viz., the company,
the different standards, and the period in which the change happened.

2.4 Relevance for Multilingual Lexical Resources

In general, linguistically-analyzed multilingual language data used in labels, comments,
and definitions of knowledge organization systems (KOSs) can be a very rich input for
multi-lingual Ontology-Based Information Extraction (Wimalasuriya and Dou (2010)),
ontology mapping, and translation (Montiel-Ponsoda et al. (2011); Garcia et al. (2012)),
or for multi- and crosslingual terminology harmonization across various KOSs (Gromann
and Declerck (2012)). As such, language data in KOSs are building a specific but very
useful language resource, since their encoding in RDF (using for example the lemon
model (McCrae and Unger (2014))) is a way to explicitly link language data with do-
main knowledge. Due to space requirements, we can not go into further details of those
aspects and have mainly focussed on the description of the integrated ontologies. In the
final version, we will address the multilingual aspects of our ontologies in more detail.



Chapter 3

The Squall stream reasoner

3.1 Introduction

In this chapter, we present a novel approach to reasoning over streaming semantic data
that implements the reasoner as a data flow network, and a prototype implementation of
that approach, Squall. The stream-native approach taken in Squall differs from current
approaches, which leverage existing Semantic Web reasoners. We therefore begin this
chapter with a review of the literature on stream reasoning, and then examine the design
of the Squall reasoner in more detail.

3.2 Stream Reasoning

Traditional database management systems (DBMS) adopt a ‘store now, query later’ ap-
proach in which largely static data is organised in a persistent data set. This is appropriate
for an application where the data will be queried repeatedly, and where updates to the
data set are small or infrequent; consequently, DBMSes typically provide indices or other
access structures that improve the efficiency of access to the stored data.

By contrast, many recent applications deal with large volumes of constantly changing
dynamic data; these applications are characterised by update event frequencies often in
excess of 100,000 events per second, and appear in a variety of domains from online auc-
tions and financial trading systems to sensor networks and social media. The assumptions
made by DBMSes, that the amortised cost of building access structures are far outweighed
by the savings to be made by using those access structures, no longer hold with such ap-
plications, and so different approaches are needed. Moreover, the data rates for some
applications are high enough that they may preclude the persistent storage of data in any
way.

In the past decade, the database systems community has explored the area of data stream

14



CHAPTER 3. THE SQUALL STREAM REASONER 15

management systems (DSMS), special purpose databases which are designed to handle
unbounded sequences of time-varying data. These systems are characterised by the use
of continuous queries, long-lived queries that are matched against streaming data as it
is received (as opposed to the one-shot queries that are typical in DBMSes), and by an
explicit acceptance of the tradeoff between cost and completeness of results.

Developments in data storage on the Semantic Web over the same period have predomi-
nantly focussed on triplestores - DBMSes designed for storing RDF triples - and it is only
in the last few years that any significant attention has been paid to streaming semantic
data (della Valle et al., 2009).

Although work on continuous queries dates back at least as far as the early 1990s (Terry
et al., 1992), concerted work on data stream management systems did not start in earnest
until a decade later. Babcock et al. (2002) gives a concise survey of the early DSMSes.
A common feature of these early systems share is that they adopt a data flow approach
to the processing of incoming data and to the evaluation of continuous queries. Queries
are decomposed into fundamental operators that are arranged as the vertices in a directed
acyclic graph (the query plan - which may combine multiple queries), the edges of which
correspond to the data streams that are the inputs and outputs of those operators. This
allows the operators to be executed independently of each other, increasing the overall
flexibility of the system.

Streaming semantic data is a recent development in the Semantic Web community that
applies the techniques used in DSMSes to RDF data, and represents a radically different
approach to that more usually found in the Semantic Web. The popularity of linked data
is at least in part due to the assumption of persistence of data (the notion that ”cool URIs
don’t change”), whereas streaming data is by its very nature fleeting and ephemeral. This
is in many ways a natural development for the Semantic Web; in the real world, data exists
at all points on the spectrum from persistent to ephemeral. Moreover, the application
of a DSMS approach to the Semantic Web can be seen as the continuation of a long-
standing flow of techniques from the databases community. For example, the development
of efficient RDF triple stores has been possible principally because the Semantic Web
community has been able to build extensively on forty years of research into relational
databases; the semantics of the SPARQL query language (Perez et al., 2009) rely in no
small part on the relational algebra.

The transition from DSMSes that operate on streams of arbitrary tuples, to DSMSes that
are restricted to operate on RDF triples/quads is therefore a relatively straightforward
move that several research groups have made largely independently of each other. No-
table examples of such semantic stream processing are the streaming SPARQL work
of Bolles et al. (2008), the C-SPARQL query language of Barbieri et al. (2009) and
the EP-SPARQL query language of Anicic et al. (2011); these languages typically ex-
tend the semantics of SPARQL by defining an RDF stream as a set of timestamped
subject-predicate-object triples, mostly following the approach made in the STREAM
DSMS (Arasu et al., 2003) (with some minor changes; both Bolles and Anicic annotate



CHAPTER 3. THE SQUALL STREAM REASONER 16

triples with time intervals, rather than the instants used by STREAM).

These semantic stream processing approaches may be extended to stream reasoning,
whereby streams of entailments may be generated from streams of RDF data.One of the
earliest references to stream reasoning is by della Valle et al. (2008), who present two con-
ceptual architectures for combining reasoning techniques with data streams. The first of
these architectures is based on RDF molecules and reuses existing DSMSes and reasoners
by coupling them using a transcoder that converts from the format used by the existing
DSMS to timestamped RDF molecules, and a pre-reasoner that incrementally maintains
materialised RDF snapshots. These snapshots are passed to conventional SW reasoners
that are not aware of time. This may be combined with the incremental materialisation al-
gorithm described by Barbieri et al. (2010) which maintains the ontological entailments.
This algorithm, based on the delete and re-derive approach introduced by Gupta et al.
(1993), tags each RDF triple (both inserted and entailed) with an expiration timestamp
and applies a sliding window to the stream of timestamped triples. The algorithm then
can compute a new complete and correct materialisation by dropping RDF triples that are
no longer in the window – effectively temporal truth maintenance.

The second architecture in (della Valle et al., 2008) primarily concerns itself with querying
rather than reasoning per se, and streams RDF triples (rather than molecules); here, stream
operators (like those in the STREAM DSMS) are arranged in query plans. Other similar
contemporary approaches include that by Walavalkar et al. (2008), who use the rule-based
axiomatisation of RDF Schema to generate a set of continuous queries to be evaluated
within the TelegraphQC DSMS (Chandrasekaran et al., 2003), and that by Hoeksema
and Kotoulas (2011), who arrange a set of S4 processing elements, whose functionality
corresponds to the RDFS entailment rules, to generate a stream of inferred triples which is
then fed back into the reasoner (in order to calculate the deductive closure of the stream).

3.3 Squall Overview

The Squall reasoner is a novel stream reasoner that can evaluate both continuous queries
in C-SPARQL, and collections of rules. As part of Deliverable D2.1.2, we have provided
two versions of Squall; in this chapter we describe the basic version, while in Chapter 4 we
describe a modular extension to Squall. Squall depends on a number of open source tech-
nologies, including the Apache Jena RDF library1 and the Storm system for distributed
real-time computation2. Squall’s novelty lies in two areas: it reasons natively on streams,
and that reasoning may be distributed across a server cluster.

By native stream reasoning, we mean that, rather than reusing an existing reasoner, as
in the RDF molecule stream reasoning approach described above, we have taken an ap-
proach which combines several aspects of the systems described in Section 3.2, specif-

1http://jena.apache.org/
2http://storm-project.net/

http://jena.apache.org/
http://storm-project.net/


CHAPTER 3. THE SQUALL STREAM REASONER 17

ically the fine-grained streaming of (della Valle et al., 2008), the rule-based nature of
(Walavalkar et al., 2008) and the re-entrant streams of (Hoeksema and Kotoulas, 2011).
The system evaluates rules and queries by translating them into data flow networks that
apply low-level operators (such as join and select) directly to the data streams, rather than
by applying a conventional reasoner to a snapshot of the data streams.

Key to this approach is the development of an efficient query plan that corresponds to the
queries and entailment rules that are in use. In the basic Squall system, we use the well-
understood Rete pattern matching algorithm (Forgy, 1979) to transform the rule bodies
into a query plan. The Rete algorithm has long been used to improve the efficiency of
matching facts against productions in production systems, and is in essence a data flow
system; partial matches are propagated through a network of alpha and beta nodes (effec-
tively select and join operators) in such as way as to minimise the number of times that
each new fact is matched against a pattern. In adapting the Rete algorithm to streams of
RDF triples, the alpha and beta memories become respectively streams and windows on
streams (beta memories appearing immediately before beta or join nodes); this is effec-
tively the approach taken by Jin et al. (2005) in the ARGUS stream processing system.

In order to support entailment rules beyond those in the axiomatisation of the ontology
language, the basic version of Squall accepts Datalog-style rules expressed in the rule lan-
guage used by Jena (the enhanced version of Squall, described in Chapter 4, supports the
BLD dialect of the Rule Interchange Format (Boley and Kifer, 2010) in addition). These
rules are compiled to a Rete-based query plan and deployed such that the output stream
from the rule network (the merge of the streams resulting from the terminal nodes that
represent the head of each rule) can be fed back into the network in order to calculate the
deductive closure of the entailment rules, as in (Hoeksema and Kotoulas, 2011) (but note
that the entailment stream is not reentrant by default). The output stream can also be fed
into a second Rete network, this time for the continuous queries that have been registered
with the system. This partitioning of the Rete network simplifies its management; the rule
network is relatively static (the entailment rules are expected to persist for the lifetime of
the system), whereas the query network is more dynamic (although long-lived, the con-
tinuous queries do not necessarily persist as do the entailment rules). An outline sketch
of the reasoner from a data flow perspective is shown in Figure 3.1.

In order to reduce the amount of duplicate processing, the query plan built for the rules
allows the sharing of operators between different rules (so, for example, if two rules con-
tained the same pattern in their head, only a single select node matching that pattern would
be present in the resulting rules). However, there is no structure sharing between the rule
query plan and the plans built for the continuous queries that have been registered with
the system, nor is there any sharing between different continuous query plans; this deci-
sion follows the observation made above regarding the expected lifetime of rules versus
queries, and aims to minimise the amount of changes that need to be made to the query
plans.

Having established the query plans, the nodes of each are then provisioned as a Storm



CHAPTER 3. THE SQUALL STREAM REASONER 18

Query
Compiler

Query
Network

Rule
Network

Entailed triples Query results

Queries

Ground and
entailed
triples

Source
streams

Figure 3.1: Stream Reasoner data flow

topology, which allows the processing of the plan to be distributed; the nature of this
distribution is left to the Storm framework.

3.4 Squall Internals

In this section, we take a more detailed look at key aspects of the basic Squall system,
concentrating on the underlying stream representation, and the processing of queries and
rules.

3.4.1 Streams and Distribution

The streams of RDF triples that pass through the Squall system are managed via the
Storm framework, typically using Kestrel message queues3. Streaming data sources add
new triples to an input queue, which the Storm framework wraps up as a spout (a source of
streams). The atomic unit of processing within Storm is the bolt, a node which processes
any number of input streams and produces any number of new output streams. Many
functions may be implemented as bolts; in Squall, we primarily concentrate on filters and

3http://robey.github.io/kestrel/

http://robey.github.io/kestrel/


CHAPTER 3. THE SQUALL STREAM REASONER 19

joins. The spouts and bolts within a system are organised as a topology, a network which
performs an arbitrarily complex multi-stage stream computation.

3.4.2 Query Processing

In this section we define how we compile a Storm topology from C-SPARQL queries and
Jena rules in Squall topologies. We outline our overall compilation technique including a
discussion of the technologies we use and extend. We go on to describe how the various
components of distributable queries can be implemented within the Storm framework.

We use the primitive Storm components of spouts and bolts to compile a topology de-
signed to answer a specific C-SPARQL query. The spouts in a Squall topology emit
graphs of triples as opposed to individual triples. In most streaming contexts, a group of
triples which relate to a given event are more likely to arrive simultaneously than individ-
ual independent triples. For example, a single social media event (tweet, facebook post
etc.) is unlikely to be a single triple, but instead a graph of triples defining the event’s
various attributes. Beyond spouts, all components in the Squall topology consume some
input and emit bindings. For example: the filter bolts match specific triple patterns on
inputs of graphs and emit bindings set to components of matched triples; join bolts com-
pare the value of shared bindings of two other bolts and emit all bindings of two triples
which match a shared binding; SPARQL Filter bolts decide whether a specific binding of
variables passes a given filter statement and forward the input bindings on if so. With this
in mind, in the next section we describe in detail how each component takes its input and
returns bindings of variables.

During the compilation of C-SPARQL queries into Storm topologies, we have opted to
implement within-query structure sharing. Conceptually, if two bolts have an identical
history and binding variable configuration they can be treated as the same bolt and there-
fore any function they perform can be performed once on a given stream and its emitted
bindings used multiple times. For example, the SPARQL query defined in Figure 3.2 con-
tains two basic graph patterns and could therefore be intuitively defined using two bolts
which feed a single join. However, if one disregards the specific variables ?user1, ?user2
and ?friendOfFriend these two bolts are identical4. A filter defined on either basic pattern
would match the same triples and emit the same bindings as the other. How these bind-
ings are joined together, defined later in the topology compilation process, would then
represent the two patterns we see in the query. With the careful design of binding order
we reuse simple filter bolts as well as arbitrary trees of join bolts allowing for increased
efficiency within queries. We also hope to investigate this strategy as an approach to pat-
tern reuse across queries. We describe how re-use is implemented in the various topology
components below.

4i.e. they are both of the format ? foaf:knows ?



CHAPTER 3. THE SQUALL STREAM REASONER 20

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?user1 ?friendOfFriend
WHERE {

?user1 foaf:knows ?user2 .
?user2 foaf:knows ?friendOfFriend

}

Figure 3.2: Within-query shared structure

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?user1 ?friendOfFriend
FROM STREAM <http://thesocialnetwork.com/posts>

[RANGE 30m STEP 5m]
FROM STREAM <http://yourspace.com/walls>

[RANGE 1h]
WHERE {

{
?user1 foaf:knows ?user2 .
?user2 foaf:knows ?friendOfFriend

}
{

?user2 dc:created ?post
?post dc:createdAt ?time
FILTER (time > "20/01/2012"ˆˆxsd:date)

}
}

Figure 3.3: Example C-SPARQL query

Stream Definition

In C-SPARQL, the “FROM STREAM” construct as shown in Figure 3.3 must contain an
IRI from which triples can be physically downloaded: “...the IRI represents an IP address
and a port for accessing streaming data...” (Barbieri et al., 2009). The exact approach by
which triples are extracted from these resolvable streams can take many forms and there
are various implementation issues to consider, especially in a distributed context. For
example, a given stream might be used by multiple queries simultaneously running on the
same cluster making it intuitively more efficient to download triples a single time from
the stream and make them accessible by all topologies. In this setup, an IRI would act
more as an index into a local register of streams rather than a first-class source of triples.



CHAPTER 3. THE SQUALL STREAM REASONER 21

With regards to distribution, extremely high volume streams might benefit from physical
distribution around the cluster as opposed a to a single point of entry, both for purposes
of resource utilisation but also so that the single point of entry doesn’t become a point
of failure in the distributed stream processing system. Further complication arises when
the input streams are consumed by multiple distributed sources, including the difficulty
in guaranteeing that a specific input is consumed only once and, if consumed, processed
successfully.

To address these concerns, Squall supports many different kinds of stream implemented
as various kinds of spout. A simple stream spout is a single-task Storm component which
makes a direct connection to the IRI. This spout is useful for development and testing or
for low throughput streams and local RDF files. In anything beyond this, this spout would
represent a single point of failure and result in inefficient network utilisation in larger
scale streams. If such a simple spout were distributed, each node would consume the IRI
simultaneously and have no way to guarantee that a message wasn’t a duplicate of another
already served by another spout instance. Therefore Squall also supports a more complex
message queue-based triple spout. As mentioned above, we use the Kestrel distributed
message queue system. A Kestrel distributed message queue cluster involves a set of
Kestrel servers, each of which holds a reliable ordered message queue. By picking a
random kestrel server for all get operations (i.e. when the spout emits) and set operation
(i.e. when the kestrel queue is filled from the IRI) one loses the ordering of messages,
but gains a highly distributable source of triples while allowing both for guarantees of no
processing duplication but also (if required) processing guarantees.

Though we discuss these specific examples, many spouts can be written for arbitrary
sources of triples. The key feature all Squall spouts share is their ability to create serialised
Jena Graph instances from an IRI and emit these graphs with a timestamp to subscribing
bolts.

Basic Graph Patterns

In Squall, the lowest granularity level of SPARQL component represented by a single
physical component on a Storm topology is the SPARQL basic graph pattern which we
represent as filter bolts. These bolts hold a single triple pattern which may contain zero or
more variables which must be bound by incoming triples. When receiving the serialised
Graph instances from the spouts, the filter bolts use their basic graph pattern to query the
Graph through the Jena API, receiving zero or more triples which match the literals of the
triple pattern and provide bindings for the variables of the triple pattern.

During query compilation, the variables of the basic graph pattern are numbered in order
of appearance within the graph pattern5. This order is used to designate the position
of a binding in the tuples emitted by the filter bolt. This approach provides a variable-
name agnostic method for variable binding which allows a single filter bolt to be shared

5e.g. ?user foaf:knows ?friend becomes ?0 foaf:knows ?1



CHAPTER 3. THE SQUALL STREAM REASONER 22

between multiple basic graph patterns which share a given triple pattern, but which may
not share exact variable names within. These variable names are forgotten at run time and
in fact only come into operation in the final terminal bolt and when join bolts are being
constructed. We describe this process in more detail in the next section.

Joins and Groups

In Squall, joins represent a point at which a pair of sources6 have their variable bindings
compared to one another. When two triples from the two joining sources have equal
values bound to variables which the two sources are being joined upon, they emit a novel
set of variable bindings integrating the variables they shared, but also the bound values for
the variables they did not share. This is implemented using two queuing data structures
representing sliding windows over the two sources being joined. When a novel binding
appears from the left or right source, the corresponding queue is offered the binding. At
this point the sliding windows are updated, removing any triples that have fallen out of
the window either by time considerations or space. Simultaneously to being added to the
queue of origin, the binding is compared to each binding in the sibling queue. If the bound
values for the variables on which the two sources are being joined match then the values
of the two bindings, (i.e. both the matching variables and the associated variables which
were not involved in the join) are combined and emitted, thus joining the results of the
two sources.

During the compilation phase, the variable names involved in the bindings of the two
components are matched against one another such that the index of the matching bindings
from both the left and right is noted in each join bolt. For example, when joining ?user1
foaf:knows ?user2 and ?user2 foaf:knows ?friend it would be noted that the sec-
ond variable on the left must match the first variable on the right. With this variable-
match-index information, a pair of bindings from two sources is identified as matching
if-and-only-if each value bound to each binding index for the two sources are equal. This
approach of variable-index matching rather than direct variable-name matching allows
bindings to be matched against each other at run time in a binding variable-name agnostic
fashion. From this it follows that if two join instances have the same incoming pattern on
the left and right and both emit the same pattern, they can share a single join bolt instance.

At this stage it is valuable to discuss groups as defined by SPARQL queries. It is possi-
ble to consider the group graph pattern construct (i.e. anything contained within a pair
of curly brackets) to represent items which must be preferentially joined. Without the
presence of FILTER, UNION, subqueries or OPTIONAL statements, such groups ele-
ments could correctly7 be joined in any arbitrary order. For example: the query pat-
tern {A 1 B} 1 {C 1 D} expresses the same query as {A 1 B 1 C 1 D} or indeed
{A 1 B 1 C} 1 D. There is in fact a great deal of opportunity in the space of join op-

6either filters or indeed other joins
7According to the SPARQL 1.1 specification



CHAPTER 3. THE SQUALL STREAM REASONER 23

timisation when selecting precisely how to join such ambiguous joins. This is a partic-
ularly important consideration in a distributed streaming context due to the existence of
sliding windows. One join configuration could mean a constantly overflowing window
which loses a lot of bindings while another could result in early filtering of irrelevant
bindings and thus less window overflowing. In Squall we purposefully avoid this op-
timisation and instead chose to take the group graph patterns defined by the query as
the query’s join plan. The single optimisation we do apply is that, at a group level, if
the join order is ambiguous we preferentially join bolts which share variable names in
an attempt to avoid joins which emit bindings for every pair of input bindings8. For
exmaple, the query pattern {A 1 B 1 C 1 D} is constructed in Squall as though it were
{{{A 1 B}1C}1 D} assuming the clauses A, B, C and D shared no variables9 but would
be joined {{{A 1 D} 1 B 1}C} if A and D shared variables.

Finally, we must discuss exactly how we make joins work correctly in Storm and therefore
a distributed context. Our goal is not only to gain distribution by spreading different joins
across a network, but to distribute the operations of an individual join, spreading the
load of the binding/match operation described above across a cluster of machines and
therefore achieving higher throughput. However, to distribute a specific join operation
we must guarantee that a specific join bolt task is guaranteed to be given all instances
of bindings which could ever match each other, while simultaneously not defaulting to
a situation where all bindings are sent to a single task instance, which would guarantee
correct matches but would not distribute load. To these ends we use the fields grouping
provided by Storm, which allows for aggregation of tuples based on the values they hold.
Concretely, each join bolt registers with its left and right sources using a fields grouping
on the indexes of the fields which are involved in the join between the two sources. This
guarantees that bindings from the left and right sources are distributed across the cluster
while simultaneously guaranteeing that bindings which have the potential to match each
other are never sent to different bolt task instances.

Filters

In SPARQL, filters have group level scope which means that any bindings within the
filter’s group, or groups held recursively inside the filter’s group, must pass their bindings
to the filter in order to be considered as valid bindings and pass down through the rest of
the query. In a Squall topology, for a filter to be given access to all the bindings it needs,
the filter must occur as the last step in the network path of given group. This principal
is reflected by the SPARQL standard which states that {A 1 B 1 FILT ER(?a ==?b)}
is equivalent to {A 1 FILT ER(?a ==?b) 1 B}. Subsequently, at compile time, each
filter discovered within a group is held out until all other structures within the group
are constructed (i.e. basic graph pattern bolts are connected in a network of join bolts), at
which point a SPARQL filter bolt per FILTER expression within the group is connected to

8This is the case when a join is against two branches which share no variable names
9A rather strange query to be sure but useful for this discussion



CHAPTER 3. THE SQUALL STREAM REASONER 24

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?friend ?post
FROM STREAM <http://thesocialnetwork.com/posts>

[RANGE 30m STEP 5m]
FROM STREAM <http://yourspace.com/walls>

[RANGE 1h]
WHERE {

?post dc:createdBy ?friend
{

?user1 foaf:knows ?friend .
}
UNION
{

?user1 foaf:knows ?user2
?user2 foaf:knows ?friend

}
?user1 foaf:mailBox "ss@ecs.soton.ac.uk"

}

Figure 3.4: An example C-SPARQL query supported by Squall

the final join bolt in a chain of filters, stopping bindings from flowing between a grouping
and components further up the query hierarchy if they do not pass the SPARQL filter’s
binding requirements.

As filters act only as a validation of a set of bindings in SPARQL, they hold no windows,
instead only being handed complete sets of bindings to check. Therefore, it is safe to
connect filters as shuffle groupings in Storm. In terms of internal implementation, each
filter node holds a single SPARQL FILTER clause which is used to construct a Jena El-
ementFilter instance. By using the Jena framework to implemented SPARQL filters in
Squall we immediately support most valid SPARQL filters in a streaming context.

Unions and Optional

Operationally, a UNION statement can be thought of as a fork in the Squall topology,
fundamentally constructing two completely separate networks at the point of the UNION.
Consider the query in Figure 3.4 which requests the posts made by people known by,
or people known by people who are known by ?user1. The first basic graph pattern of
createdBy and can be expressed as a simple filter bolt. If joined in the order the constructs
appear in the query, the union is then expressed as a fork from that filter bolt. The first



CHAPTER 3. THE SQUALL STREAM REASONER 25

path in the fork results in the createdBy filter joining with the first option in the union,
the second path in the fork results in its join with the second part of the union. These two
seperate join paths are then joined individually and seperately with the final compoenent
of the query, namely the mailBox filter.

This approach still allows for shared bolts. In Figure 3.4 there are in fact 3 unique filter
bolts, one for the createdBy, mailBox and knows components. These filters are then joined
and indeed the join between createdBy and foafKnows is shared by the first and second
union paths. Our forking approach means unions are represented as separate paths of
tuple flow, while simultaneously allowing for shared components as these paths could
happen to go through shared bolts.

The implementation of OPTIONAL has a conceptually similar implementation to UNION
in Squall. Fundamentally a fork of two paths is constructed such that one path has the
OPTIONAL component, and the other path does not. These forks created by both OP-
TIONAL and UNION are maintained in the topology until the final terminal at which
point the bindings are combined to answer the specific query.

An optimisation might be an early merging of forks which would allow the reuse of whole
union patterns rather than a component-wise reuse. This optimisation is reserved for
future work. Note however, that without this optimisation, the UNION is a construct
which doesn’t explicitly exist at runtime. Instead the forks are only considered during
compilation time and are held implicitly by the structure of the topology at runtime.

Aggregation

An important feature of SPARQL which has vital application in a streaming context is ag-
gregation. Indeed, the main purpose of queries over a streaming data source is often some
summary statistic over a window of the stream to provide some real time understanding
of the values in the stream. The implementation of the various aggregation operators is
handled in the final terminal bolt. If aggregation is requested, a configurable window of
bindings are held and the aggregation is calculated over them. The aggregation is emitted
and calculated, including stale values in the window removed, every time a new binding is
handed to the final terminal. We use the Jena implementation of the SPARQL aggregation
operators to support aggregation in Squall the first instance. However, the Jena implemen-
tations do not support the updating of statistics, instead relying on a batch update of all
statistics every time the window is updated. There are various approaches to the efficient
implementation of aggregation operators over a stream, we leave these optimisations for
future work.

The nature of aggregation requested in a given query decides exactly how the final ter-
minal is to be connected to the rest of the Squall topology. Firstly, in the case where no
aggregation is requested, the final terminal can be heavily distributed and connected to
the rest of the network through a shuffle grouping. This is the case only because without
aggregation each binding is in and of itself the answer to the SPARQL query and can



CHAPTER 3. THE SQUALL STREAM REASONER 26

be emitted in isolation of other bindings, this is the most efficient form of final terminal
connection. The next most efficient case is when aggregation is requested together with
a GROUP BY against some variable bindings. In this case, a fieldGrouping can be used
such that bindings containing like-values for the variables contained in the GROUP BY
statement are all sent to the same final terminal bolt tasks. In this case the final termi-
nal can still be distributed, however in an extreme case where the GROUP BY variables
take only a one or few values the network may be underutilised. Finally, in the worst
case of aggregation without GROUP BY (e.g. SELECT count(∗)...) all bindings must
be sent to one and only one running final terminal bolt task. In this case the answer to
aggregation can be accurate only if a single bolt task handles all bindings, otherwise the
requested summary statistic would be only a partial view of the aggregation. Therefore in
this scenario a global grouping is used to guarantee a correct aggregation.

Terminals

The final bolt type is the terminal bolt, which takes the role of combining bindings to
answer the specific SPARQL query. The main role of the final terminal bolt is the trans-
formation of bindings into query answers, and the transmission of query answers to some
external output. Similar to spouts, this final terminal could support many different out-
puts depending on the task at hand. In the current implementation of Squall a file output
is supported, useful for tests and benchmarks, and a Kestrel queue output is supported
which is useful for larger scale production usage.

In a query which does not contain any unions or optionals there are three configurations
a network can take. The network can be a single bolt (i.e. a single filter) and therefore
connect directly to the conflict set. In the second configuration the network may be a set
of filters combined through a set of join bolts, in which case all joins will be eventually
pairwise joined with each other until a single final join is reached, this bolt is then con-
nected with the final terminal. Finally, in the third configuration there may be a set of
filters in the highest level group, in this case once bindings pass the chain of filters they
are passed directly to the final terminal. Therefore, in all cases not involving a union a
single bolt will simply connect directly with the final terminal. In the case of a union the
final terminal bolt is simply connected to each of the final single bolts of each of the union
forks.

In any case, when bindings are pass to the conflict set bolt the results of the query are
constructed. Squall currently supports SELECT and CONSTRUCT SPARQL queries,
though ASK is trivial to support. SELECT takes all bindings given and outputs the re-
quested bindings. If any individual variable has no value in a given binding the only
conclusion which can be reached is that the other variables were a part of an OPTIONAL
part of the query pattern and therefore are left blank in the output. In any other case the
binding could not have reached the final terminal. These bindings can be outputted in
various formats including: RDF, JSON or CSV. The output of a CONSTRUCT follows a
similar process to SELECT but instead of the output being variable bindings, the output



CHAPTER 3. THE SQUALL STREAM REASONER 27

is formed from the requested triples template filled with the requested variable bindings.

The distribution of the final terminal and how the final terminal is connected to it’s pre-
ceding bolts, is decided by the level of aggregation requested in the given query.

3.4.3 Reasoning

In Section 3.4.2 above, we have described the processing of queries within the basic
Squall system. The evaluation of rules uses the same techniques; alpha nodes within the
Rete are implemented as filter bolts, while beta nodes are implemented as joins. The
alpha memories which lie between the alpha and beta networks are implemented using
the message queues underlying the Storm framework, as are the beta memories which lie
between beta nodes.

The key differences between our treatment of continuous queries and our treatment of
rules are as follows:

1. Each continuous query added to the system is deployed as a separate Storm topol-
ogy; there is no sharing of nodes between queries. In contrast, each collection of
rules is compiled to a single Storm topology, even though the bodies of the rules
may be of similar complexity to typical queries, which allows a great deal of node
sharing within each collection of rules. The construction of the rule topologies uses
the Rete algorithm laid out by Forgy (1979).

2. The terminal bolts in the rule topologies emit triples, rather than the bindings emit-
ted by those in the query topologies. In a query topology, the final terminal bolt
takes on an analogous role to the conflict resolution phase and the production exe-
cution phase of the Rete algorithm; each such bolt consists of a set of triple patterns
which are instantiated by the incoming bindings to produce the triples that result
from a successful activation of the underlying rule.

3. The stream of triples that are emitted from the terminal bolts may be combined
(using a bolt which subscribes to each terminal bolt) and piped back into the input
stream of the reasoner, as shown in Figure 3.1. This reentrancy allows the (re-
peated) application of the rules to their own entailments, in order to produce more
of the deductive closure of the input stream (limited by the window sizes placed
on the input - if this window size were infinite, the reasoner would be complete, so
this permits a degree of control in the tradeoff between completeness and resource
usage)



CHAPTER 3. THE SQUALL STREAM REASONER 28

3.5 Conclusion

The last decade has seen a radical increase in the number and throughput of semantic
streaming data sources. These data sources, though information rich, are fundamentally
useless without systems capable of reasoning over streaming context and querying struc-
tured semantic streams over time. In this chapter we have outlined the squall stream
reasoning library and tool. Given rules written in Jena or structured queries written in
CSPARQL, squall can construct production systems capable of reasoning over seman-
tic data streams. The production systems constructed by squall allow for node sharing
implementing the rete production system algorithm. Squall instantiates these production
systems over storm allowing for distributed reasoning and horizontal scaling in order to
handle extremely high throughput streaming data sources.



Chapter 4

Modular Stream Reasoning

4.1 Introduction

For the first version of the tool described in the previous section, a concerted effort was
made to make provided software modular and extensible. Therefore, it was possible to
write a SPARQL query production system which could be extended to deal with a variety
of sources and outputs as well as extensions to provide for static data sources. However,
the extensibility of the code fell short when it came to sharing the structure of a SPARQL
production system with a production system made from a different source, for example,
Jena rules. It is known for example that the basics of the rete production rule system can
be as readily applied to answering SPARQL queries as it can be applied to Jena rule sets.

Further, the system discussed in the previous section makes no allowance for different
physical instantiations of the production rule system. A given rule language is consumed
and a physical instantiation of the system is made directly, in our case in the Storm dis-
tributed computing framework. However, if in future the same production system was
to be deployed against yahoo’s S4 distributed stream processing framework, or perhaps
against a non-streaming batch framework, it would be very difficult to reuse the compo-
nents of the system which do not relate to the physical manifestation of the system, such
as the optimized query plan..

Towards a modular production rule instantiation we highlight 4 separable stages of the
production rule construction process. These stages are: (1) Lexing, (2) Translation,
(3) Planning and (4) Building .

During the lexing stage the proposed production system is consumed from its source
language. Examples of this process are the consumption of Jena rules or the consumption
of SPARQL queries. This stage is relatively simple and often provided by off-the-shelf
lexers for a given production rule language.

The output of the lexer does not necessarily guarantee a direct mapping between different
production rule systems. At the translation stage a lexed production rule system is taken

29



CHAPTER 4. MODULAR STREAM REASONING 30

from its raw form and expressed as a series of translated components. The translator must
classify all the production rule components as one of a fixed set of translated components
as well as defining a function which actually performs the task of each distinct production
rule component of the lexed production rule system.

After the translators have been applied, the production rule systems is expressed in uni-
form way called a Translated Production System (TPS). The next stage is a process of
solution Planning wherein a TPS is expressed in a form of a Planned Production System
(PPS) which can be built directly. The planners make no attempt to understand the gran-
ular functionality of the translated components within the TPS. Instead, using only the
component’s type and input/output variable bindings which TPS components must pro-
vide, planners express how the components should be connected to one another in order to
best instantiate a given production rule system. More concretely the output of the Planner
is a Directed Graph (digraph). The vertices of the this digraph contain the functionality
of the components of the TPS. In simple planners there may be a one to one mapping
of components to nodes. In more complex planners single PPS nodes might contain the
functionality of multiple TPS components. Further, the planner explicitly defines how
these components must be connected to one another using a series of directed edges. A
given planner works independently of the preceding translator which means that the op-
timisations achieved by a certain planner can be applied as readily to solving Jena rule
production systems as it can be applied to a SPARQL production rule system.

A planner provides the optimised structure of a production rule system as a digraph. To
finally instantiate a given production rule system, a builder must be defined. The job of
the builder is to express the digraph described by the planner against a particular com-
munication and processing framework. The internal workings of the components and the
data transmitted is of no consequence to the Builder. Builders must only concern them-
selves with the practical details of how given production rule nodes connected by edges in
a digraph are instantiated and that provisions are made for the communications between
these nodes.

By using a combination of these 4 components, production rule systems can be instanti-
ated which are written in arbitrary languages (e.g. Jena, RIF, SPARQL), optimized using
arbitrary production rule system algorithms (e.g. RETE, Eddys etc.) and finally expressed
against arbitrary communication frameworks (e.g. Storm, S4, Hadoop). We provide this
framework as well as at least one working implementations of each of the 4 components
in the Squall1 library. In the rest of this section we describe each of these 4 components
in more detail as well as describing the provided implementations.

1http://github.com/sinjax/squall

http://github.com/sinjax/squall


CHAPTER 4. MODULAR STREAM REASONING 31

Jena 
Rules

SPARQL
Query

Jena 
Lexer

SPARQL 
Lexer

Jena 
Translator

SPARQL
Translator

Translated Production System 
(TPS)

SourceProvider[0..*]

Joinable[0..*]

Predicates[0..*]

Consequence[0..*]

TPS[0..*]

Figure 4.1: Multiple lexer and translator sets for different production system definitions,
all outputting to a unified translated production system (TPS)

4.2 Modular Production Rule Systems

4.2.1 Lexing

Individual Lexers are often black box solutions understood by a specific Translator. This
is in direct contrast to the translator→ planner and the planner→ builder relationships
which can be combined arbitrarily. In Squall we use the predefined SPARQL and Jena
Rules lexers made available in Jena. We have also written our own lexer for the consump-
tion of RIF rule sets.

4.2.2 Translators

Coupled with an appropriate lexer, a translator defines a given production rule system as a
set of components classified as one of a predefined set of component types. The goal of a



CHAPTER 4. MODULAR STREAM REASONING 32

Translator is the transformation of a raw production system definition as a Translated Pro-
duction System (TPS). Generally, the components of a TPS are functions which consume
some data (bindings, triples etc.), and output some data (bindings of variables, triples
etc.). More concretely, an individual component is often expressed as a function which
consumes a Context and outputs a Context. A Context in Squall is an OpenIMAJ stream-
ing construct which is in essence a map of strings to arbitrary objects. Therefore, exactly
what a given TPS component expects to be contained in a given input Context, or what
is provided in output Contexts of a function is entirely the decision of a given translator.
The only information which translators must define for each component is (1) What kind
of component it is and (2) What output bindings of variables (if any) a given component
produces .

The specific bindings a component outputs gives Planners all the information they need to
correctly connect components together and further give Planners the required information
to perform certain types of optimisation whilst remaining independant of the specific
functionality of the components. The component types (to which a translator can classify
a given component) are one of the following:

1. SourceProvider: A source provider can instantiate a source of Context instances.
This design choice of “potential to construct” rather than simply “an instance of” a
source is in direct contrast to the rest of the TPS components. However this extra
level of flexibility was seen to be a extremely useful for many types of sources,
some of whose instantiation might result in early item consumption from external
streams of data.

2. JoinableComponent: Joinable components expect to receive the output of Sources
(the things made by SourceProviders) as their input and emit bindings of variables.
Further, Joinable components expect to be combined together with other Joinables
in an AND fashion (see Section 3.4.2). The two subtypes of JoinableComponent
instances are: (1) Filter patterns and (2) Other Translated Production System in-
stances .

3. Predicate: Predicates consume a set of bindings and output the same (or potentially
augmented) set of bindings. This output is simply the input itself if the predicate
is indeed a boolean function. However, in the example of Jena Functors, some
predicates may alter input contexts. Once all Joinables are connected to one another,
Predicates expect expect to be attached to each other.

4. Consequences: Once all Joinables have emitted and Predicatess have been passed,
the bindings are handed to these consequences which model what the system ex-
pects to do with bindings. For example: a SPARQL SELECT consequences might
simply emit certain requested binding variables while a SPARQL CONSTRUCT
statement might construct and emit triples from bindings. This construct is subtly
different from the Operation described by Planners in Section 4.2.3. Where con-



CHAPTER 4. MODULAR STREAM REASONING 33

sequences create the output of a give production system defenition, operations do
something with these consequences.

5. TranslatedProductionSystems: For fully expressing key aspects of most produc-
tion systems a facility must be provided to allow expression of logical UNION op-
erations or more specifically, forks in the translated production system. By adding
a sub TPS to a given root TPS, a Translator is defining a set of clauses that must be
combined in an OR fashion (as opposed to the Joinable’s AND fashion) with each
other. Examples of this are the UNION or OPTIONAL operator in SPARQL.

.

A translator must wrap up the functionality of all parts of a given production rule system
as one of these components and specify the variables that particular component creates.
The key design choice here is that the bare minimum information is provided to the Plan-
ners such that, after the appropriate translation stage, there is a decoupling between the
particular production system language and the rest of the production rule system instanti-
ation process.

The general process of a combination of lexer and translator can be seen in Figure 4.1.

4.2.3 Planners

Once the translation step is completed, the job of the Planner is to design a Planned
Production System (PPS) in the form of a Directed Graph (digraph). The PPS consumes
a TPS and plans how its components should communicate in order to answer the question
posed by the production system. The digraph defined by the Planner is made up of a set
of verteces called NamedNodes and a set of edges called NamedStreams which connect
NamedNodes together. As well as providing a guaranteed unique name, a NamedNode
instance can express whether it is a2:

1. Source: The beginning of a graph. The input of the production system is produced
here.

2. Function: A node in the middle of the graph. The work of the translated production
system is done here.

3. Operation: A node at the end of the graph. The operation nodes hold the function
which must be performed with the final outputs of the production system.

The NamedStreams of a Planner define a vertex-unique named stream, and the bindings
which must be grouped on that stream of communication. Though bounded by the bind-
ings which a given compoenent can produce, this list of variables encapsulates the slightly

2These 3 states are defined as convenience functions as they could be readily understood by investigating
the children and parents of a given node.



CHAPTER 4. MODULAR STREAM REASONING 34

Planned Production System (PPS)

Planner

Translated Production System 
(TPS)

SourceProvider[0..*]

Joinable[0..*]

Predicates[0..*]

Consequence[0..*]

TPS[0..*]

Named
Stream

Named
Node

Figure 4.2: Planners consume TPS instances from Translators and produce PPS instances
ready for Builders

separate notion of “grouped variables”. This concept allows for the potential distribution
of Planner nodes. Armed with the knowledge of the grouped variables a distribution-
aware Builder can guarantee messages sent across a given stream appear in the correct
distributed instance. Planners provide the machinery to join the bindings of the Joinable-
Components defined by the Translator, appending in series the Predicates of the translator
and also appending the Consequences of the Translator. Exactly how these connections
are achieved is a matter for optimization and specific Planners.

The output of all final Consequences are useless unless their use is defined outside the
production system. Therefore, along with a TPS, a Planner is given an Operation which
is called with all outputs of all final consequences. This operation can be used by specific
instantiations of production rule systems to achieve something with the outputs of the
system.

At this stage it is important to emphasize what exactly Planners provide and what they
disregard entirely. Planners express how data flows through a production system. The
Planner’s Nodes encapsulate the functionality of the production system. This includes
both that functionality defined explicitly by the Translator, but also extra functionality



CHAPTER 4. MODULAR STREAM REASONING 35

added by the Planner encapsulating the notion of Translator component joining as well as
the final Operation handed to the planner. The Planner’s Streams encapsulate the notion
of how nodes communicate and what data must appear together with other data when
transmitted through this stream. Beyond this, the planner is in no way concerned with the
specific functionality of the non-join nodes and the specific transport mechanism of the
streams. Further, planners make no attempt define exactly how the outputs of nodes are
to be sent to each other, or indeed what they send! The only thing defined is which nodes
should receive the outputs of which other nodes. This makes planners both Translator ag-
nostic and Builder agnostic. This separation of concerns is a fundamental design decision
of our framework and allows for the decoupled provisioning of arbitrary translators and
the realization of production systems through arbitrary Builders.

4.2.4 Builders

Finally, builders instantiate and run the digraph defined by the PPS. As should be expected
by now, builders make no attempts to understand the functions implemented at each node,
nor exactly what each node is attempting to send to every other node. However, armed
with the knowledge of the which nodes are connected, exactly how they are connected
and exactly what variables must be grouped when items are transmitted through a specific
stream, a builder can implement the digraph defined by the planner on arbitrary frame-
works processing frameworks.

4.3 Example

The framework described in the previous section is perhaps best understood with a con-
crete example. Here we outline a Jena Translator fed into a Greedy Planner instantiated
by an in memory, non-distributed OpenIMAJ3 stream Builder. Through descriptions and
code examples exactly what each level of the framework is responsible for will be better
understood.

4.3.1 Jena Translator

The Jena Rule language provisions inference rules composed by a body to match which
has a head as the consequence of the rule. Each element of the head or body of a Jena
rule can be a triple pattern, a functor or another rule. The triple pattern is a triple of nodes
where nodes can be literal patterns or URIs, but also variables and wild-cards. Functors
are defined by their name and a set of variables and often define predicates over matched
variables as well as more complex functionality.

3http://openimaj.org

http://openimaj.org


CHAPTER 4. MODULAR STREAM REASONING 36

Translated Production System 
(TPS)

SourceProvider[0..*]

Joinable[0..*]

Predicates[0..*]

Consequence[0..*]

TPS[0..*]

[r1: (?d p1 o1) <-
  (?d p1 o2)
  (?d p2 ?n)
  greaterThan(?n,10) ]

[r2: (?d p1 o3) <- 
  (?d p1 o4)]

Sources (e.g. message queue or file)

Figure 4.3: Jena translators compile multiple rules as seperate sub TPS of a root TPS.
Each sub TPS holds patterns as joinables, functors as predicates and rule heads as conse-
quences. Jena sources are provided to the translator separately.

The Jena translator takes as input a set of rules and an explicit list of input stream sources.
Unlike some other production system definition languages which might be supported,
Jena rules make no provision for the definition of input streams themselves, so for our
production rule system these must be provided. The constructed TPS provisions this
source at the root level while each rule in the set of Jena rules is provisioned as a sub TPS.

For an individual rule, the body is handled first. Each component of the body is handled by
a specialised function added as a different type of component to the sub compile produc-
tion rule systems. For each triple pattern, the Jena Translator adds a Joinable component
to the compiled production system which consumes a raw triple and emits bindings if any
were matched. For each functor, the translator adds a predicate component which runs the
functor by extracting variables from the input context and emitting the same or augmented
bindings as the output context.

Finally, for the head of the jena rule the translator similarly produces a component for
each part of the head, but instead of part of the joinables or the predicates, these compo-
nents are added as consequences. The consequences which can be constructed are either



CHAPTER 4. MODULAR STREAM REASONING 37

Greedily builder Planned Production System
Translated Production System 
(TPS)

SourceProvider[0..*]

Joinable[0..*]

Predicates[0..*]

Consequence[0..*]

TPS[0..*]

Planner 
defined 

Join

The final 
operation is 

wrapped in a 
node

streams describe 
connection + 

variable grouping

Operation

Figure 4.4: The Greedy Planner constructs new paths for sub TPS, Join Nodes between
joinables and a final Operation node for the provided Operation.

triple pattern consequence functions (consuming bindings, emitting triples) or functor
consequence functions (consuming bindings, emitting nothing).

In Figure 4.3 we show two example Jena rules being compiled into a TPS using this
approach.

4.3.2 Greedy Planner

As defined in the previous section, the greedy planner is given a Translated Production
System (TPS) and a final Operation as input. The Greedy planner makes no attempt to
match variables, reuse patterns or optimise join ordering or filters in any way. Instead



CHAPTER 4. MODULAR STREAM REASONING 38

the planner creates its digraph in a greedy fashion. The planner starts by creating nodes
in the digraph for each source in the TPS. Once done each Joinable in the TPS is con-
nected to all the identified sources of the current TPS. Once connected to their source,
each Joinable is greedily (first come, first served) joined with the next Joinable in the or-
der added to the TPS. This resultant “joined combination” is then itself joined with the
next Joinable in the TPS. This process proceeds recursively until a single node remains
which represents the combination of the Joinables of a given TPS. At this point the pred-
icates defined in the TPS are connected in series to the final Joinable, again resulting in a
single node now representing the joinables and the predicates. At this point, sub TPS are
treated. Each sub TPS results in a fork in the digraph constructed by the greedy planner,
representing the union required. Finally, once all sub TPS of a given TPS are handled, all
the resultant nodes are connected to the consequences of the TPS. From the root TPSs, all
consequences provided against all the sub TPSs are connected to the final operation which
consumes all final consequences and provides the output of the production rule system.

In Figure 4.4 we show the same two example Jena rules after being translated and now
being planned as a digraph by a Greedy Planner.

4.3.3 OpenIMAJ Stream Builder

OpenIMAJ (Open Intelligent Multimedia Analysis in Java) has recently been extended
to support single thread non-distributed stream processing constructs. Stream constructs
are defined and augmented using the application of map or filter operations and are con-
sumed using foreach constructs. We choose to demonstrate the idea of Builders in Squall
by defining the OpenIMAJ Stream Builder (OIBuilder). The key constructs within the
OpenIMAJ stream framework which must be understood so an OIBuilder can be under-
stood are as follows:

Stream - At a fundamental level a stream is an object which can provide some “next
item” of a given type and can signal when no further items exist. At this level the
operations of a stream are fairly close to standard Java iterable objects. Beyond
this, streams provide various functional constructs, namely: map, filter, transform
and foreach. The first 3 operations simply return another stream whose items are
that of the original stream with the appropriate modification made as defined by the
specific operation. The final operation is the thing which drives the consumption of
the stream.

Map - When map is called on a stream with a function, each item on the stream is handed
to the function and each output is emitted on the new stream. Importantly this is a
one to one mapping, and so each object on the original stream has a mapped object
on the output stream.

Filter - When filter is called on a stream with a predicate, each item on the stream is



CHAPTER 4. MODULAR STREAM REASONING 39

checked against the predicate and emitted on the output stream given that the pred-
icate passes.

ForEach - When foreach is called on a stream with an operation the consumption of the
stream commences. The foreach function the stream it was applied to for the next
item available. This might request an item from some parent stream once it has
been passed through a map or a filter function. This process of next item request
proceeds up the entire stream chain until the original stream is reached. Once a
given item passes all maps and filters, the foreach function is given the item. In this
way streams are processed and outputs created in a “pull” manner in OpenIMAJ.

Multiplex Stream - A multiplex stream wraps around a given stream and allows for
multiplex consumption by multiple downstream stream operations. This is achieved
by replacing the map, filter, transform and foreach operations with multiplex imple-
mentations. These operations create a new “sibling aware” stream object which is
aware of all other streams created against the multiplex stream. When any one of
these sibling streams consumes from the wrapped stream, a queue is informed on
all other siblings. In this way all siblings are given the output of the parent stream
in order.

Join Stream - A join stream can be considered the opposite of a multiplex stream. It is
handed multiple streams on instantiation and presents them all as a single stream.
When child streams request an object from this join stream the join stream requests
an object from each stream it was instantiated with in a round robin fashion. If any
given stream returns an object, that object is returned, otherwise the next stream
is interrogated for one round. If no streams return a valid object, the join stream
finally returns null. Depending on desired functionality Join Stream instances might
be used with buffered non-blocking null-returning maps.

The OIBuilder is handed the digraph generated by any Squall Planner. For each source
NameNode a new OpenIMAJ stream is created, wrapped in a Multiplex stream and added
to a map of “prepared” streams by the name of the NameNode. All the children of each
NameNode is then added to a list of disconnected nodes. This list of disconnected nodes
is then investigated such that it is checked whether all the parents of a given disconnected
node are prepared and ready to be connected to. Once this is the case for a given node,
it is connected to its parent, either using a Join stream (if there are multiple parents), or
simply connected directly, in both cases adding the node’s function as a map. The map
call results in a new stream which is added to the list of prepared streams by name, and
again that node’s children are added to list of disconnected nodes. This processes proceeds
recursively until the length of the disconnected list is equal to 1 and the single item in the
disconnected list has no children (an end condition guaranteed by Squall Planners). The
operation defined by this final node is connected to all its parents, with a join stream if
required, resulting in a constructed and running OpenIMAJ stream instantiation of the
production rule system



CHAPTER 4. MODULAR STREAM REASONING 40

4.4 Conclusion

In this section we have presented our four stage framework for the definition, optimization
and instantiation of production systems. When components are written against this frame-
work they can take advantage of other components whilst in development and production,
allowing for easy and quick prototyping and support for novel sources of production rules,
optimization functions or production system instantiations. In the future we hope to in-
crease the number of example modules created against this design and therefore increase
its potential as a useful framework against which to develop.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we have outlined and delivered Squall, a novel tool for reasoning and query-
ing against streams of semantic data. In the first instance, we have delivered a command
line tool and library which can be used to instantiate local and distributed versions of Rete
stream processing networks which can reason against a set of rules and answer queries
expressed as CSPARQL.

Though usable, our initial system is explicitly built using certain query languages, con-
structs query plans optimised against specific algorithms and instantiates these plans
against the storm stream reasoning framework. Therefore, we have also delivered an ad-
vanced version of the Squall framework which facilitates the instantiation of production
rule systems in a more flexible and modular way. The framework delivered should al-
low for the support of arbitrary languages for: the expression of production rule systems;
the reusable and modular expression of production rule system plans; and the ability to
physically instantiate these production rule systems against arbitrary stream processing
frameworks which may be local, distributed or work in batch settings.

5.2 Future Work

The main item of future work arising from this deliverable is an in-depth evaluation of the
Squall reasoner, which will be carried out against the semantic data originating from the
machine learning deliverables from WP3 and the ontology-driven information extraction
tools from WP2. In addition to this evaluation, we have identified the following three
areas of future development:

41



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 42

5.2.1 Retraction Support

At present, the Squall reasoner produces entailments from input streams which consist
of newly asserted facts, rather than a list of assertion and retraction events. In terms of
the Stanford STREAM system(Arasu et al., 2003), this corresponds to the output of the
IStream relation to stream operator; this approach was taken on the grounds that entailed
triples are likely to be as ephemeral as the ground triples from which they were derived.
However, if the entailed triples are persisted, this potentially leads to a situation in which
there may be conflicting entailments; in this case, it would be appropriate if out-of-date
entailments were removed. While this could be carried out in a naive manner by expiring
persistent triples based on their timestamps (effectively treating the persisted entailment as
a sliding window on the entailment stream), it could also be carried out by introducing the
equivalent of STREAM’s DStream operator, which produces a stream of newly retracted
facts.

5.2.2 Ontology Translation

The majority of reasoning tasks on the Semantic Web arise from the use of RDFS and
OWL ontologies. While the ontology languages used may have rule-based axiomatisa-
tions that can be used to build query plans in Squall (for example, the non-normative
axiomatisation of RDFS in (Hayes, 2004) or the OWL2-RL dialect), the ontologies them-
selves are not inherently rule based and they cannot be easily integrated with Squall (as
effectively static data). Moreover, the rule-based axiomatisations of ontology languages
typically contain very general patterns which yield Rete-based query plans in which the
alpha network does not adequately discriminate between incoming triples; this does not
lend itself to the effective distribution of the reasoning process.

However, a rule-based ontology language axiomatisation can be combined with a do-
main ontology by rewriting each rule as multiple specialised rules, each of which con-
tain some part of the domain ontology. For example, the RDFS entailment rule rdfs9
({〈?u rdfs:subClassOf ?x〉,〈?v rdf:type ?u〉} ` 〈?v rdf:type ?x〉) can be combined with the
triple 〈B rdfs:subClassOf A〉 to yield a new rule 〈?v rdf:type A〉 ` 〈?v rdf:type B〉. We can
therefore convert an ontology defined in a language with a rule-based axiomatisation into
an equivalent set of rules that are compatible with Squall.

To this end, we are currently working on a Translator module for ontologies (called
OWLRuleCompiler in the package org.openimage.squall.compile.owl in the main
GitHub repository). This module will perform static reasoning over a provided ontology
using the Jena libraries, then query the model according to a provided rule set (e.g. RDFS
entailments) specified in RIF (W3C’s Rule Interchange Format). The provided rule set
will be then be populated with the concepts and roles defined in the provided ontology
based on the query results returned; This will result in a new set of rules that expresses the
ABox reasoning task of the provided ontology, up to the expressivity of the provided rule



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 43

set (an OWL 2 Full ontology translated using the RDFS entailments will produce only
the rules representing RDFS reasoning over the ontology’s ABox). This set of ontology
specific rules will be compatible with the behavior of Squall, and could be passed to any
Planner module.



Bibliography

44



Bibliography

Anicic, D., Fodor, P., Rudolph, S., and Stojanovic, N. (2011). EP-SPARQL: a unified
language for event processing and stream reasoning. In WWW ’11: Proceedings of
the 20th international conference on World Wide Web.

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivas-
tava, U., Thomas, D., Varma, R., and Widom, J. (2003). STREAM: The Stanford
Stream Data Manager. IEEE Data Engineering Bulletin, 26(1):19–26.

Babcock, B., Babu, S., Motwani, R., and Widom, J. (2002). Models and Issues in
Data Stream Systems. In Proceedings of the 21st ACM Symposium on Principles
of Database Systems, pages 1–16.

Barbieri, D. F., Braga, D., Ceri, S., della Valle, E., and Grossniklaus, M. (2009). C-
SPARQL: SPARQL for continuous querying. In WWW ’09: Proceedings of the 18th
international conference on World wide web. ACM.

Barbieri, D. F., Braga, D., Ceri, S., della Valle, E., and Grossniklaus, M. (2010). Incre-
mental reasoning on streams and rich background knowledge. In Proceedings of the
7th Extended Semantic Web Conference (ESWC’10), pages 1–15. Springer.

Boley, H. and Kifer, M. (2010). RIF Basic Logic Dialect. W3C Recommendation REC-
rif-bld-20100622, World Wide Web Consortium.

Bolles, A., Grawunder, M., and Jacobi, J. (2008). Streaming SPARQL - Extending
SPARQL to process data streams. Proceedings of the 5th European Semantic Web
Conference (ESWC2008), page 15.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J., Hong, W.,
Krishnamurthy, S., Madden, S., Reiss, F., and Shah, M. (2003). TelegraphCQ: Con-
tinuous Dataflow Processing. In Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data.

della Valle, E., Ceri, S., Barbieri, D. F., and Braga, D. (2008). A first step towards stream
reasoning. In Proceedings of Future Internet - FIS 2008, pages 72–81.

45



BIBLIOGRAPHY 46

della Valle, E., Ceri, S., van Harmelen, F., and Fensel, D. (2009). It’s a Streaming World!
Reasoning upon Rapidly Changing Information. IEEE Intelligent Systems, 24(6):83–
89.

Forgy, C. (1979). On the Efficient Implementation of Production Systems. PhD thesis,
Department of Computer Science, Carnegie-Mellon University.

Garcia, J., Montiel-Ponsoda, E., Cimiano, P., Gmez-Prez, A., Buitelaar, P., and McCrae,
J. (2012). Challenges for the Multilingual Web of Data. Web Semantics: Science,
Services and Agents on the World Wide Web, 11.

Gromann, D. and Declerck, T. (2012). Terminology harmonization in industry classifica-
tion standards. In Gornostay, T., editor, Proceedings of CHAT 2012: The 2nd Work-
shop on the Creation, Harmonization and Application of Terminology Resources,
pages 19–26. Linkping University Electronic Press.

Gupta, A., Mumick, I. S., and Subrahmanian, V. (1993). Maintaining views incrementally.
ACM SIGMOD Record, 22(2):157–166.

Hayes, P. (2004). RDF Semantics. W3C Recommendation REC-rdf-mt-20040210, World
Wide Web Consortium.

Hoeksema, J. and Kotoulas, S. (2011). High-performance Distributed Stream Reason-
ing using S4. In Proceedings of the First International Workshop on Ordering and
Reasoning (OrdRing2011).

Jin, C., Carbonell, J., and Hayes, P. (2005). ARGUS: Rete+ DBMS= Efficient Persistent
Profile Matching on Large-Volume Data Streams. In Proceedings of the 15th Inter-
national Symposium on Methodologies for Intelligent Systems (ISMIS2005), pages
156–170.

Krieger, H.-U. (2010). A general methodology for equipping ontologies with time. In
7th International Conference on Language Resources and Evaluation. ELRA. Oral
presentation.

Krieger, H.-U. (2012). A temporal extension of the hayes/ter horst entailment rules and
an alternative to w3c’s n-ary relations. In 7th International Conference on Formal
Ontology in Information Systems. IOS Press.

Krieger, H.-U. (2013). An efficient implementation of equivalence relations in owl via
rule and query rewriting. In Proceedings of the 7th International Conference on
Semantic Computing. IEEE, IEEE.

McCrae, J. and Unger, C. (2014). Design Pattern for Engineering the Ontology-Lexicon
Interface. In Buitelaar, P. and Cimiano, P., editors, Towards the Multilingual Seman-
tic Web. Springer.



BIBLIOGRAPHY 47

McGuinness, D. L. and van Harmelen, F. (2004). Owl web ontology language overview.
Technical report, W3C - World Wide Web Consortium.

Montiel-Ponsoda, E., Vila-Suero, D., Villazn-Terrazas, B., Dunsire, G., Escolano, E., and
Gmez-Prez, A. (2011). Style Guidelines for Naming and Labeling Ontologies in the
Multilingual Web. In Proceedings of International Conference on Dublin Core and
Metadata Applications 201, pages 105–115. Dublin Core Metadata Initiative.

Perez, J., Arenas, M., and Gutierrez, C. (2009). Semantics and complexity of SPARQL.
ACM Transactions on Database Systems, 34(3):1–45.

Terry, D., Goldberg, D., Nichols, D., Oki, B., Terry, D., Goldberg, D., Nichols, D., and
Oki, B. (1992). Continuous queries over append-only databases. ACM SIGMOD
Record, 21(2):321–330.

Walavalkar, O., Joshi, A., Finin, T., and Yesha, Y. (2008). Streaming Knowledge Bases. In
Proceedings of the Fourth International Workshop on Scalable Semantic Web Knowl-
edge Base Systems.

Westerski, A., Iglesias, C. A., and Rico, F. T. (2011). Linked opinions: Describing senti-
ments on the structured web of data. In 4th international workshop Social Data on
the Web (SDoW2011), Bonn, Germany.

Wimalasuriya, D. C. and Dou, D. (2010). Ontology-based Information Extraction: an
Introduction and a Survey of Current Approaches. Journal of Information Science,
36:306–323.


	Introduction
	Relevance to Trendminer
	Relevance to project objectives
	Relevance to other work packages

	Software Availability

	TrendMiner Ontologies
	Introduction
	Ontologies
	BIO
	EN
	ICB
	OP
	IF

	Rules
	Finding Competitors Across Stock Exchanges
	Monitoring Unusual Events

	Relevance for Multilingual Lexical Resources

	The Squall stream reasoner
	Introduction
	Stream Reasoning
	Squall Overview
	Squall Internals
	Streams and Distribution
	Query Processing
	Reasoning

	Conclusion

	Modular Stream Reasoning
	Introduction
	Modular Production Rule Systems
	Lexing
	Translators
	Planners
	Builders

	Example
	Jena Translator
	Greedy Planner
	OpenIMAJ Stream Builder

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work
	Retraction Support
	Ontology Translation



