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Executive Summary

This document presents research and software development work from Task
3.1 on supervised learning to correlate streaming social media text with move-
ments in political opinion and financial markets. The central idea is that accu-
rate models of these real-valued time series can identify important features of
the text. These features might be important terms, users and/or posts, which
are likely to be of interest to analysts and can form part of the summarisation
algorithms in WP4 and the display in WP5 (along with the model predictions).

The document contains three strands of work:

1. A novel text regression approach which can automatically identify im-
portant users from massive streams of social media text input, as well as
a lexicon of important words. This includes evaluation on political and
financial time-series prediction, based on the use cases identified in WP6
and WP7 and their data sets. Additionally, we integrate rich knowledge
sources into the model: namely sentiment word lists and predicted entity
mentions, as output from WP2.

2. A fast online implementation of the regression model. Online methods
can process data as it arrives in a single pass, and are much more ef-
ficient than the standard batch approaches; the more common machine
learning approach. Moreover, online inference will allow for simpler in-
tegration into the TrendMiner platform for processing streaming social
media text. We present an online inference technique for modelling non-
stationary data, where the model is allowed to evolve with time, and
evaluate the approach against a stationary model.

3. A users’ guide to the software components of the deliverable. We include
a batch training component written in Python, which uses parallel pro-
cessing on a SMP server, and a similar online component written in Java,
which can run using cloud computing on streaming input.
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Chapter 1

Introduction

Firstly, we present a new bilinear model of user and words for predicting some
real valued instances of a set of related tasks. The algorithm works by predict-
ing one or more time-series as a function of the users and the words they use,
with a sparsity inducing term to encourage the model to find small sets of non-
zero parameters. This lends itself to end-user interpretation by “selecting” the
most important features. This model is pioneering in several ways. It is the
first text-regression approach at modelling social media users, particularly at
such a large scale, and the first to model related time-series as multi-output
regression. We demonstrate its efficacy on political and finance time-series
tasks using large datasets sourced from the United Kingdom and Austria. Its
high modelling accuracy augurs well for its integration into the TrendMiner
platform to identify important text and users from social media streams.

The second part of the document details an online implementation of the
same regression model. Online methods can process data as it arrives in a
single pass, and are much more efficient than the standard batch approaches;
the more common machine learning approach. Moreover, online inference
will allow for simpler integration into the TrendMiner platform for processing
streaming social media text. We present an online algorithm and experimental
work demonstrating that our online learner has very similar predictive perfor-
mance to our state-of-the-art method for batch training. The online setting also
lends itself to non-stationary modelling, where the model is allowed to evolve
with time. This allows for the set of important users and words to change with
time, which often occurs in real-world problems such as social media which is
greatly influenced by linguistic trends, events, and changes to users’ patterns
of behaviour. We show promising results indicating that accounting for dy-
namic adaptive modelling as part of online inference can improve predictive
performance.
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The final part presents a users’ guide to the software components of the
deliverable. We include a batch training component written in Python, which
uses parallel processing on a SMP server, and a similar online component
written in Java, which can run using cloud computing on streaming input.

Breakdown of deliverable’s objectives:

• Release 2 of regression models, including deep features from WP2
(temporal, sentiment and event information).
Chapter 2 describes a multitude of novel models for temporal text re-
gression; Chapter 3 extends the majority of those models making it pos-
sible for them to be applied in an online learning setting. Section 2.3.3
presents a framework for incorporating sentiment features extracted
from WP2 and Section 2.3.4 showcases how event information can be
incorporated into our regression models.

• Modelling improvements in the form of parallel implementation,
regularisation and multivariate output.
All models presented in this script (Chapters 2 and 3) are applying sev-
eral types of regularisation in order to select and weight a small subset
of the entire set of features; some of the models are performing multi-
output regression using multi-task learning frameworks (see for example
Section 2.2.3).

• A software system implementing algorithms for non stationary
modelling; associated report on implementation details and per-
formance measures; initial implementation.
The software systems implementing both the batch and online learners
are detailed in Section 3.4. Furthermore, the code to replicate several of
the experiments presented in Section 3.3 are also delivered

Published Paper. Vasileios Lampos, Daniel Preoţiuc-Pietro and Trevor Cohn.
A user-centric model of voting intention from Social Media. In Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics
(ACL), 2013. [23]
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Chapter 2

Regression models of trends

Web Social Media platforms have ushered a new era in human interaction
and communication. The main by-product of this activity is vast amounts of
user-generated content, a type of information that has already attracted the
interest of both marketeers and scientists because it offers – for the first time
at a large-scale – unmediated access to peoples’ observations and opinions.

One exciting avenue of research concentrates on mining interesting sig-
nals automatically from this stream of text input. For example, by exploiting
Twitter posts, it is possible to infer time series that correlate with financial in-
dicators [7], track infectious diseases [21, 22, 32] and, in general, nowcast the
magnitude of events emerging in real-life [37, 20]. Other studies suggest ways
for modelling opinions encapsulated in this content in order to forge branding
strategies [17] or understand various socio-political trends [42, 31]. The main
theme of the aforementioned works is linear regression between word fre-
quencies and a real-world quantity. They also tend to incorporate hand-crafted
lists of search terms to filter irrelevant content and use sentiment analysis lex-
icons for extracting opinion bias. Consequently, they are quite often restricted
to a specific application or domain and therefore, generalise poorly to new
data sets [13].

In this section,1 we propose a generic method which initially is independent
of the characteristics described above (use of search terms or sentiment anal-
ysis tools), but in the next steps of our work would be able to easily incorporate
such features. Our approach is able to explore not only word frequencies, but
also the space of users by introducing a bilinear formulation for this learning
task. Regularised regression on both spaces allows for an automatic selection
of the most important terms and users (amongst thousands of possible candi-

1This section is based on our accepted paper for ACL 2013 [23].
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dates), performing at the same time an improved noise filtering. In addition,
more advanced regularisation functions enable multi-task learning schemes
that can exploit shared structure in the feature space. The latter property
becomes very useful in multi-output regression scenarios, where selected fea-
tures are expected to have correlated as well as anti-correlated impact on
each output (e.g., when inferring voting intention percentages for competing
political parties).

We evaluate our methods on the domain of politics using data from the mi-
croblogging service of Twitter to infer voting trends. Our proposed framework
is able to successfully predict voting intentions for the top-3 and top-4 parties
in the United Kingdom (UK) and Austria respectively. In both case studies –
bound by different characteristics (including language, time-span and num-
ber of users) – the average prediction error is smaller than 1.5% for our best
model using multi-task learning. We also show how our methods are appli-
cable in the financial domain. Finally, our qualitative analysis shows that the
models uncover interesting and semantically interpretable insights from the
data.

2.1 Description of data sets

For the evaluation of the proposed methodologies we have created two data
sets of Social Media content with different characteristics based in the UK
and Austria respectively. They are used for performing regression aiming to
infer voting intention polls in those countries. Data processing is performed
using the TrendMiner architecture for Social Media analysis [35] (see also
Deliverable D3.1.1).

2.1.1 Tweets from users in the UK

The first data set (we refer to it as Cuk) used in our experimental process
consists of approx. 60 million tweets produced by approx. 42K UK Twitter
users from 30/04/2010 to 13/02/2012. We assumed each user to be from the
UK, if the location field in their profile matched with a list of common UK
locations and their time zone was set to G.M.T. In this way, we were able to
extract hundreds of thousands of UK users, from which we sub-sampled 42K
users to be distributed across the UK geographical regions proportionally to
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Figure 2.1: Voting intention polls for the UK and Austria.

their population figures.2

2.1.2 Tweets for Austria

The second data set (Cau) is shorter in terms of the number of users involved
(1.1K), its time span (25/01 to 01/12/2012) and, consequently, of the total num-
ber of tweets considered (800K). However, this time the selection of users has
been made by SORA (Paul Ringler et al.) who decided which accounts to
monitor by subjectively assessing the value of information they may provide
towards political-oriented topics. Still, we assume that the different users will
produce information of varying quality, and some should be eliminated en-
tirely. However, we emphasise that there may be smaller potential gains from
user modelling compared to the UK case study. Another important distinction
is language, which for this data set is primarily German with some English.

2.1.3 Ground Truth

The ground truth for training and evaluating our regression models is formed
by voting intention polls from YouGov (UK) and a collection of Austrian poll-
sters3 – as none performed high frequency polling – for the Austrian case study.
We focused on the three major parties in the UK, namely Conservatives (CON),

2Data collection was performed using Twitter API, http://dev.twitter.com/, to extract
all posts for our target users.

3Wikipedia, http://de.wikipedia.org/wiki/Nationalratswahl_in_\%D6sterreich_

2013.
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Labour (LAB) and Liberal Democrats (LBD) and the four major parties in Aus-
tria, namely the Social Democratic Party (SPÖ), People’s Party (ÖVP), Freedom
Party (FPÖ) and the Green Alternative Party (GRÜ). Matching with the time
spans of the data sets described in the previous sections, we have acquired
240 unique polls for the UK and 65 polls for Austria. The latter have been ex-
panded to 98 polls by replicating the poll of day i for day i−1 where possible.4

There exists some interesting variability towards the end for the UK polls (Fig.
2.1a), whereas for the Austrian case, the main changing point is between the
second and the third party (Fig. 2.1b).

2.2 Methods and models for regularised and

multi-output text regression

The textual content posted on Social Media platforms unarguably contains
valuable information, but quite often it is hidden under vast amounts of un-
structured user generated input. In this section, we propose a set of methods
that build on one another, which aim to filter the non desirable noise and ex-
tract the most informative features not only based on word frequencies, but
also by incorporating users in this process.

2.2.1 The bilinear model

There exist a number of different possibilities for incorporating user informa-
tion into a regression model. A simple approach is to expand the feature set,
such that each user’s effect on the response variable can be modelled sepa-
rately. Although flexible, this approach would be doomed to failure due to the
sheer size of the resulting feature set, and the propensity to overfit all but the
largest of training sets. One solution is to group users into different types,
such as journalist, politician, activist, etc., but this presupposes a method for
classification or clustering of users which is a non-trivial undertaking. Besides,
these naïve approaches fail to account for the fact that most users use similar
words to express their opinions, by separately parameterising the model for
different users or user groups.

We propose to account for individual users while restricting all users to

4This has been carried out to ensure an adequate number of training points in the experi-
mental process.
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share the same vocabulary. This is formulated as a bilinear predictive model,

f(X) = uuuTXwww + β , (2.1)

where X is an m × p matrix of user-word frequencies and uuu and www are the
model parameters. Let Q ∈ Rn×m×p be a tensor which captures our training
inputs, where n, m and p denote the considered number of samples (each
sample usually refers to a day), terms and users respectively; Q can simply be
interpreted as n versions of X (denoted by Qi in the remainder of the script), a
different one for each day, put together. Each elementQijk holds the frequency
of term j for user k during the day i in our sample. If a user k has posted ci·k
tweets during day i, and cijk ≤ ci·k of them contain a term j, then the frequency
of j for this day and user is defined as Qijk =

cijk
ci·k

.

Aiming to learn sparse sets of users and terms that are representative of
the voting intention signal, we formulate our optimisation task as follows:

{www∗,uuu∗, β∗} = argmin
www,uuu,β

n∑
i=1

(
uuuTQiwww + β − yi

)2
+ ψ(www, ρ1) + ψ(uuu, ρ2) , (2.2)

where yyy ∈ Rn is the response variable (voting intention), www ∈ Rm and uuu ∈ Rp

denote the term and user weights respectively, uuuTQiwww expresses the bilinear
term, β ∈ R is a bias term and ψ(·) is a regularisation function with parameters
ρ1 or ρ2. The first term in Eq. 2.2 is the standard regularisation loss function,
namely the sum squared error over the training instances.5

In the main formulation of our bilinear model, as the regularisation func-
tion ψ(·) we use the elastic net [47], an extension of the well-studied `1-norm
regulariser, known as the LASSO [40]. The `1-norm regularisation has found
many applications in several scientific fields as it encourages sparse solutions
which reduce the possibility of overfitting and enhance the interpretability of
the inferred model [16]. The elastic net applies an extra penalty on the `2-
norm of the weight vector, and can resolve instability issues of LASSO which
arise when correlated predictors exist in the input data [46]. Its regularisation
function ψel(·) is defined by:

ψel (www, λ, α) = λ

(
1− α

2
‖www‖22 + α‖www‖1

)
, (2.3)

where λ > 0 and α ∈ [0, 1); setting parameter α to its extremes transforms
elastic net to ridge regression (α = 0) or vanilla LASSO (α = 1).

5Note that other loss functions could be used here, such as logistic loss for classification,
or more generally bilinear variations of Generalised Linear Models [29].
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Eq. 2.2 can be treated as a biconvex learning task [2], by observing that for
a fixed www, learning uuu is a convex problem and vice versa. Biconvex functions
and possible applications have been well studied in the optimisation literature
[36, 34]. Their main advantage is the ability to solve efficiently non-convex
problems by a repeated application of two convex processes, i.e. a form of
coordinate ascent. In our case, the bilinear technique makes it possible to
explore both word and user spaces, while maintaining a modest training com-
plexity.

Therefore, in our bilinear approach we divide learning in two phases,
where we learn word and user weights respectively. For the first phase we
produce the term-scores matrix V ∈ Rn×m with elements given by:

Vij =

p∑
z=1

uzQijz. (2.4)

V contains weighted sums of term frequencies over all users for the considered
set of days. The weights are held in uuu and are representative of each user. The
initial optimisation task is formulated as:

{www∗, β∗} = argmin
www,β

‖Vwww + β − yyy‖22 + ψel (www, λ1, α1) , (2.5)

where we aim to learn a sparse but consistent set of weights w∗ for the terms
of our vocabulary.

In the second phase, we are using www∗ to form the user-scores matrix D ∈
Rn×p:

Dik =
m∑
z=1

w∗zQizk , (2.6)

which now contains weighted sums over all terms for the same set of days.
The optimisation task becomes:

{uuu∗, β∗} = argmin
uuu,β

‖Duuu+ β − yyy‖22 + ψel (uuu, λ2, α2) . (2.7)

By inserting the weights of the second phase back to phase one, we can
iterate the process as in each step we are dealing with a convex problem. We
cannot claim that a global optimum will be reached, but biconvexity guaran-
tees that our global objective (Eq. 2.2) will decrease in each step of this itera-
tive process. In the remainder of this paper, we refer to the method described
above as Bilinear Elastic Net (BEN).
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2.2.2 Exploiting term-target or user-target relationships

The previous model assumes that the response variable yyy holds information
about a single inference target. However, the task that we are addressing in
this paper usually implies the existence of several targets, i.e., different polit-
ical parties or politicians. An important property, therefore, is the ability to
perform multiple output regression. A simple way of adapting the model to the
multiple output scenario is by framing a separate learning problem for each
output, but tying together some of the parameters. Here we consider tying
together the user weights uuu, to enforce that the same set of users are relevant
to all tasks, while learning different term weights. Note that the converse sit-
uation, where www’s are tied and uuu’s are independent, can be formulated in an
equivalent manner.

Suppose that our target variable yyy ∈ Rτn refers now to τ political entities,
yyy =

[
yyyT
1yyy

T
2 ...yyy

T
τ

]T
; in this formation the top n elements of yyy match to the first

political entity, the next n elements to the second and so on. In the first phase
of the bilinear model, we would have to solve the following optimisation task:

{www∗, β∗} = argmin
w,β

τ∑
i=1

‖Vwiwiwi + βi − yi‖22 +
τ∑
i=1

ψel (wwwi, λ1, α1) , (2.8)

where V is given by Eq. 2.4 and www∗ ∈ Rτm denotes the vector of weights
which can be sliced into τ sub-vectors {www∗1, ...,www∗τ} each one representing a
political entity. In the second phase, sub-vectors www∗i are used to form the
input matrices Di, i ∈ {1, ..., τ} with elements given by Eq. 2.6. The input
matrix D′ is formed by the vertical concatenation of all Di user score matrices,
i.e. D′ =

[
DT

1 ... DT
τ

]T
, and the optimisation target is equivalent to the one

expressed in Eq. 2.7. Since D′ ∈ Rτn×p, the user weight vector uuu∗ ∈ Rp and
thus, we are learning a single weight per user and not one per political party
as in the previous step.

The method described above allows learning different term weights per re-
sponse variable and then binds them under a shared set of user weights. As
mentioned before, one could also try the opposite (i.e. start by expanding the
user space); both those models can also be optimised in an iterative process.
However, our experiments revealed that those approaches did not improve on
the performance of BEN. Still, this behaviour could be problem-specific, i.e.
learning different words from a shared set of users (and the opposite) may
not be a good modelling practice for the domain of politics. Nevertheless, this
observation served as a motivation for the method described in the next sec-
tion, where we extract a consistent set of words and users that are weighted
differently among the considered political entities.
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2.2.3 Multi-task learning with the `1/`2 regulariser

All previous models – even when combining all inference targets – were not
able to explore relationships across the different task domains; in our case, a
task domain is defined by a specific political label or party. Ideally, we would
like to make a sparse selection of words and users but with a regulariser
that promotes inter-task sharing of structure, so that many features may have
a positive influence towards one or more parties, but negative towards the
remaining ones. It is possible to achieve this multi-task learning property by
introducing a different set of regularisation constraints in the optimisation
function.

We perform multi-task learning using an extension of group LASSO [45],
a method known as `1`1`1/`2`2`2 regularisation [3, 25]. Group LASSO exploits a pre-
defined group structure on the feature space and tries to achieve sparsity in
the group-level, i.e. it does not perform feature selection (unlike the elas-
tic net), but group selection. The `1/`2 regulariser extends this notion for a
τ -dimensional response variable. The global optimisation target is now formu-
lated as:

{W ∗, U∗,βββ∗} = argmin
W,U,βββ

τ∑
t=1

n∑
i=1

(
uuuT
tQiwwwt + βt − yti

)2
+ λ1

m∑
j=1

‖Wj‖2 + λ2

p∑
k=1

‖Uk‖2 ,
(2.9)

where the input matrixQi is defined in the same way as earlier, W = [www1 ... wwwτ ]
is the term weight matrix (each wwwt refers to the t-th political entity or task),
equivalently U = [uuu1 ... uuuτ ], Wj and Uj denote the j-th rows of weight matrices
W and U respectively, and vector βββ ∈ Rτ holds the bias terms per task. In
this optimisation process, we aim to enforce sparsity in the feature space but
in a structured manner. Notice that we are now regularising the `2,1 mixed
norm of W and U , which is defined as the sum of the row `2-norms for those
matrices. As a result, we expect to encourage the activation of a sparse set
of features (corresponding to the rows of W and U), but with nonzero weights
across the τ tasks [3]. Consequently, we are performing filtering (many users
and words will have zero weights) and, at the same time, assign weights of
different magnitude and sign on the selected features, something that suits a
political opinion mining application, where pro-A often means anti-B.

Eq. 2.9 can be broken into two convex tasks (following the same notion
as in Eqs. 2.5 and 2.7), where we individually learn {W,βββ} and then {U,βββ};
each step of the process is a standard linear regression problem with an `1/`2
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regulariser. Again, we are able iterate this bilinear process and in each step
convexity is guaranteed. We refer to this method as Bilinear Group `1/`2 (BGL).

2.2.4 Using groups of terms

A great deal of Natural Language Processing research is based on the use of
fixed lists of terms, formed automatically or manually. Sentiment analysis, in
particular, is usually driven by various types of keywords or phrases mapped
to a certain category of sentiment. Those keywords can usually be grouped
in classes, for example representing a positive, negative or neutral sentiment
bias.

In this section, we propose a bilinear text regression model able to ac-
count for such word groupings. Its aim is to exploit this group structure and
learn the model parameters accordingly; different groups may influence the
response (target) variable differently and in addition not all features included
in each may be relevant to the task at hand. The bilinear global optimisation
function is formulated as follows:

{www∗,uuu∗, β∗} = argmin
www,uuu,β

n∑
i=1

(
yi − β −

L∑
`=1

uuuTQ`iwww`

)2

+ λ1

L∑
`=1

‖www`‖2 + λ2‖www‖1 + ψ`(uuu, λ3, α) ,

(2.10)

where L is the number of term groups, respectively Q`i and www` refer to the
input data (word frequencies per group) and term weights for group `, λ’s and
α are the regularisation parameters, and the remaining terms follow the no-
tation of the previous paragraphs. The above optimisation task formulates a
combination of a sparse Group LASSO regulariser (for the groups of words)
[45, 11] together with Elastic Net’s objective function (for the users). There-
fore, we are overall regularising three quantities: the term groups (`2-norm),
the members of each group (`1-norm) and the users (Elastic Net regularisa-
tion function). This method is denoted as Bilinear Group LASSO – Elastic Net
(BGLEN) in the remainder of this script.

2.3 Experiments

The proposed models are evaluated on Cuk and Cau which have been intro-
duced in Section 2.1. We measure predictive performance, compare it to the
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performance of several competitive baselines, and provide a qualitative anal-
ysis of the parameters learned by the models.

2.3.1 Data preprocessing

Basic preprocessing has been applied on the vocabulary index of Cuk and Cau

aiming to filter out some of the word features and partially reduce the dimen-
sionality of the problem. Stop words and web links were removed in both
sets, together with character sequences of length <4 and <3 for Cuk and Cau

respectively.6 As the vocabulary size of Cuk was significantly larger, for this
data set we have additionally merged Twitter hashtags (i.e. words starting
with ‘#’) with their exact non topic word match, where possible (by dropping
the ‘#’ when the word existed in the index). After performing the preprocess-
ing routines described above, the vocabulary sizes for Cuk and Cau were set to
80,976 and 22,917 respectively.

2.3.2 Predictive accuracy

To evaluate the predictive accuracy of our methods, we have chosen to emu-
late a real-life scenario of voting intention prediction. The evaluation process
starts by using a fixed set of polls matching to consecutive time points in the
past for training and validating the parameters of each model. Testing is per-
formed on the following δ (unseen) polls of the data set. In the next step of
the evaluation process, the training/validation set is increased by merging it
with the previously used test set (δ polls), and testing is now performed on the
next δ unseen polls. In our experiments, the number of steps in this evaluation
process is set to 10 and in each step the size of the test set is set to δ = 5 polls.
Hence, each model is tested on 50 unseen and consecutive in time samples.
The loss function in our evaluation is the standard Mean Square Error (MSE),
but to allow a better interpretation of the results, we display its root (RMSE)
in tables and figures.7

The parameters of each model (αi for BEN and λi for BEN and BGL,
i ∈ {1, 2}) are optimised using a held-out validation set by performing grid
search. Note that it may be tempting to adapt the regularisation parameters
in each phase of the iterative training loop, however this would change the

6Most of the times those character sequences were not valid words. This pattern was
different in each language and thus, a different filtering threshold was applied in each data
set.

7RMSE has the same metric units as the response variable.
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Figure 2.2: Global objective function and RMSE on a test set for BEN in 15 iterations
(30 steps) of the model.

global objective (see Eqs. 2.2 and 2.9) and thus convergence will not be guar-
anteed. A key question is how many iterations of training are required to reach
convergence. Figure 2.2 illustrates how the BEN global objective function
(Eq. 2.2) converges during this iterative process and the model’s performance
on an unseen test set. Notice that there is a large performance improvement
after the first step (which alone is a linear solver), but overfitting occurs after
step 11. Based on this result, for subsequent experiments we run the training
process for two iterations (4 steps), and take the best performing model on
the held-out validation set.

CON LAB LBD µµµ

Bµµµ 2.272 1.663 1.136 1.69

Blast 2 2.074 1.095 1.723

LEN 3.845 2.912 2.445 3.067

BEN 1.939 1.644 1.136 1.573

BGL 1.7851.7851.785 1.5951.5951.595 1.0541.0541.054 1.4781.4781.478

Table 2.1: UK case study — Average RMSEs representing the error of the inferred
voting intention percentage for the 10-step validation process; µµµ denotes the mean
RMSE across the three political parties for each baseline or inference method.

We compare the performance of our methods with three baselines. The
first makes a constant prediction of the mean value of the response variable
yyy in the training set (Bµµµ); the second predicts the last value of yyy (Blast); and
the third baseline (LEN) is a linear regression over the terms using elastic
net regularisation. Recalling that each test set is made of 5 polls, Blast should
be considered as a hard baseline to beat8 given that voting intentions tend

8The last response value could be easily included as a feature in the model, and would likely
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SPÖ ÖVP FPÖ GRÜ µµµ

Bµµµ 1.535 1.373 3.3 1.197 1.851

Blast 1.1481.1481.148 1.556 1.6391.6391.639 1.536 1.47

LEN 1.291 1.286 2.039 1.1521.1521.152 1.442

BEN 1.392 1.31 2.89 1.205 1.699

BGL 1.619 1.0051.0051.005 1.757 1.374 1.4391.4391.439

Table 2.2: Austrian case study — Average RMSEs for the 10-step validation process.

to have a smooth behaviour. Moreover, improving on LEN partly justifies the
usefulness of a bilinear approach compared to a linear one.

Performance results comparing inferred voting intention percentages and
polls for Cuk and Cau are presented in Tables 2.1 and 2.2 respectively. For the
UK case study, both BEN and BGL are able to beat all baselines in average
performance across all parties. However in the Austrian case study, LEN per-
forms better that BEN, something that could be justified by the fact that the
number of users in Cau was small enough (1.1K) and filtering them further had
a negative impact. Nevertheless, the difference in performance was rather
small (approx. 0.26% error) and the inferences of LEN and BEN followed a
very similar pattern (ρ̄ = .94 with p < 10−10).9 Multi-task learning (BGL) de-
livered the best inference performance in both case studies, which was on
average smaller than 1.48% (RMSE).

Inferences for both BEN and BGL have been plotted on Figures 2.3 and 2.4.
They are presented as continuous lines of 50 inferred points (per party) which
are created by concatenating the inferences on all test sets.10 For the UK case
study, one may observe that BEN (Fig. 2.3b) cannot register any change – with
the exception of one test point – in the leading party fight (CON versus LAB);
BGL (Fig. 2.3c) performs much better in that aspect. In the Austrian case
study this characteristic becomes more obvious. BEN (Fig. 2.4b) consistently
predicts the wrong ranking of ÖVP and FPÖ, whereas BGL (Fig. 2.4c) does
much better. Most importantly, a general observation is that BEN’s predictions
are smooth and do not vary significantly with time. This might be a result of
overfitting the model to a single response variable which usually has a smooth
behaviour. On the contrary, the multi-task learning property of BGL reduces
this type of overfitting providing more statistical evidence for the terms and
users and thus, yielding not only a better inference performance, but also a

improve predictive performance.
9Pearson’s linear correlation averaged across the four Austrian parties.

10Voting intention polls were plotted separately to allow a better presentation.
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Figure 2.3: UK case study — Voting intention inference results (50 polls, 3 par-
ties). Sub-figure 2.3a is a plot of ground truth as presented in voting intention polls
(Fig. 2.1a).

more accurate model.

2.3.3 WP2 Integration: Using sentiment word lists

In this section we describe two experiments that demonstrate a way for inte-
grating sentiment features extracted by WP2 to our methods for text regres-
sion. In the following experiments we use the MPQA opinion corpus and in
particular its subjectivity lexicon [43, 44]. We consider four groups of terms
based on all combinations of their polarity (positive or negative) and subjec-
tivity (strong or weak). The number of keywords per group is: 1062 (weak
subjectivity, negative polarity), 899 (weak subjectivity, positive polarity), 1299
(strong subjectivity, positive polarity) and 2234 (strong subjectivity, negative
polarity).

The experiments follow the same scenario as in the previous sections, i.e.
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(b) BEN
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Figure 2.4: Austrian case study — Voting intention inference results (50 polls, 4
parties). Sub-figure 2.4a is a plot of ground truth as presented in voting intention
polls (Fig. 2.1b).

the inference target are voting intention polls; we have only carried out ex-
periments on the UK data set (Cuk). The first experiment is the application of
BEN on the MPQA terms as whole (without considering any grouping based on
polarity or subjectivity), whereas the second is the application of BGLEN on
the four groups of sentiment terms. The aim of those experiments is two-fold:
a) investigate whether a predictive value is present in those sentiment terms
and b) see whether a structured learning function (structure is based on the
polarity/subjectivity groups) can improve further this inference value.

The performance results (with the baselines as well as the performance of
BEN when applied on the entire Twitter vocabulary for an easy comparison)
are presented on Table 2.3. First of all, we see that the enforcement of a
structure (based on the sentiment word list properties) enhances the inference
performance, that is BGLEN (MPQA) performs better than BEN (MPQA). We
also observe that both models are not able to outperform the application of
BEN on the entire Twitter lexicon. Still, we believe that by combining the
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CON LAB LBD µµµ

Bµµµ 2.272 1.663 1.136 1.69

Blast 2 2.074 1.095 1.723

BEN 1.9391.9391.939 1.644 1.136 1.5731.5731.573

BEN (MPQA) 2.13 1.713 1.487 1.777

BGLEN (MPQA) 2.238 1.6291.6291.629 1.1261.1261.126 1.664

Table 2.3: UK case study — Inference performance based on the use of MPQA
sentiment lexicon and the corresponding methodologies; comparison with previous
results.

CON LAB LBD µµµ

Bµµµ 2.272 1.663 1.136 1.69

Blast 2 2.074 1.0951.0951.095 1.723

LEN 3.845 2.912 2.445 3.067

BEN 1.939 1.644 1.136 1.573

EN (IE) 1.969 1.584 1.096 1.551.551.55

GL (IE) 1.9161.9161.916 1.4221.4221.422 1.355 1.564

Table 2.4: UK case study — Inference performance based on the use of Wikipedia
entities (representing events, people, locations, etc.) and the corresponding method-
ologies; comparison with previous results.

two lexicons (Twitter vocabulary index or clustered subsets of it as well as
groups of sentiment word lists) we can possibly improve the performance of
the former; this is something that we will experiment with in the next months.

2.3.4 WP2 Integration: Predictions using entities/events

In this section two additional WP2 integration experiments are presented. We
are using a method developed by WP2 (see Deliverable D2.2.1 and [9]) which
aims to extract entities from text by exploiting linked data. In our case, the en-
tities are extracted from the content of tweets and each entity corresponds to
a ‘term’ described in a Wikipedia page. Of course, this information extraction
(IE) method cannot be 100% accurate and therefore some noise is expected
in the extracted features, i.e. some Wikipedia pages are going to be incorrect
references for the words included in a tweet. However, we assume that our
learning algorithm will filter most of the noise (the results from the experi-
mental process seem to confirm that). Note that the Wikipedia-based features
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can account for several types of entities including events, people, phenomena,
locations, etc.

In those preliminary experiments we do not model users (as we did in all
previous experiments); the experimentation in both word and user spaces will
be carried out in the near future. Two models for voting intention prediction
are trained and tested using the data set of UK tweets (Cuk); the only distinc-
tion here that the actual data set used in the experiments is a subset of the
original one (it only contains a 10% of the original 42K users) and thus, the
inference results will not be directly comparable with the original ones. The
first model is a pure application of Elastic Net (EN), whereas the second one
performs multi-task learning and multi-output regression using the Group `1/`2
regulariser (GL).

WP2’s IE method extracted a set of approx. 250,000 Wikipedia entities
from Cuk. By filtering the ones that had a small frequency in our data, we
ended up with approx. 25,000 entities, which defined the dimensionality of
our task. Table 2.4 holds the performance results of EN and GL in comparison
to the previously applied schemes on the entire Twitter vocabulary and the
considered set of users. Interestingly, the Wikipedia entities perform quite
well when used as features; they outperform the baselines as well as BEN
(not BGL though, see Table 2.1). Similarly to the previous section, these good
performance indicators encourage the application of learning schemes which
combine all features in one model.

2.3.5 Preliminary experiments on financial time series

In this section, we describe a set of preliminary experiments which apply BEN
in an effort to predict financial indicators. The experiments yield interesting
results which firstly indicate that data coming from Social Media do contain
valuable information for the domain of finance and secondly demonstrate how
the proposed models can be directly applied to other domains (apart from the
political one). For the following experiments we are using the data set with
tweets from Austria (Cau); the response variables (inference targets) are the
closing price and MACD11 of the NTX Index.12

The evaluation process is similar to the one used in the previous experi-
ments in that we train on previous values and try to predict the ones in the
future, though this time we are using 5 folds where the number of training
points is the same for each fold (set equal to 4 months of data) and then try

11Moving Average Convergence/Divergence, http://en.wikipedia.org/wiki/MACD.
12NTX Index, http://en.indices.cc/indices/details/ntx/facts/.
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Figure 2.5: Prediction of financial indicators (closing price and MACD of NTX Index)
based on Twitter data (Austria).

to predict the financial indices in the following 10 days (i.e. overall we have
50 test points). Table 2.5 and Figure 2.5 present the inference performance
results which are encouraging given that we have not embedded any time se-
ries analysis technique so far in our methodology (for example Blast could be
included as an additional feature or a simple autoregressive model could be
incorporated).

Closing Price MACD

Bµµµ 160.306 18.286

Blast 87.15187.15187.151 16.50216.50216.502

LEN 151.805 18.853

BEN 149.582 17.345

Table 2.5: Regression performance (RMSE) in predicting financial indicators (Aus-
tria).

2.3.6 Qualitative Analysis

In this section, we refer to features that have been selected and weighted as
significant by our bilinear learning functions. Based on the weights for the
word and the user spaces that we retrieve after the application of BGL in the
last step of the evaluation process (see the previous section), we compute a
score (weighted sum) for each tweet in our training data sets for both Cuk and
Cau. Table 2.6 shows examples of interesting tweets amongst the top weighted
ones (positively as well as negatively) per party. Together with their text
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Party Tweet Score Author

CON PM in friendly chat with top EU mate, Sweden’s Fredrik Reinfeldt, before
family photo

1.334 Journalist

Have Liberal Democrats broken electoral rules? Blog on Labour complaint
to cabinet secretary

−0.991 Journalist

LAB Blog Post Liverpool: City of Radicals Website now Live <link> #liverpool
#art

1.954 Art Fanzine

I am so pleased to hear Paul Savage who worked for the Labour group has
been Appointed the Marketing manager for the baths hall GREAT NEWS

−0.552 Politician
(Labour)

LBD RT @user: Must be awful for TV bosses to keep getting knocked back by all
the women they ask to host election night (via @user)

0.874 LibDem MP

Blog Post Liverpool: City of Radicals 2011 – More Details Announced
#liverpool #art

−0.521 Art Fanzine

SPÖ Inflationsrate in Ö. im Juli leicht gesunken: von 2,2 auf 2,1%. Teurer wurde
Wohnen, Wasser, Energie.

0.745 Journalist

Hans Rauscher zu Felix #Baumgartner “A klaner Hitler” <link> −1.711 Journalist

ÖVP #IchPirat setze mich dafür ein, dass eine große Koalition _mathematisch_
verhindert wird! 1.Geige: #Gruene + #FPOe + #OeVP

4.953 User

kann das buch “res publica” von johannes #voggenhuber wirklich
empfehlen! so zum nachdenken und so... #europa #demokratie

−2.323 User

FPÖ Neue Kampagne der #Krone zur #Wehrpflicht: “GIB BELLO EINE
STIMME!”

7.44 Political satire

Kampagne der Wiener SPÖ “zum Zusammenleben” spielt Rechtspopulisten
in die Hände <link>

−3.44 Human Rights

GRÜ Protestsong gegen die Abschaffung des Bachelor-Studiums Internationale
Entwicklung: <link> #IEbleibt #unibrennt #uniwut

1.45 Student Union

Pilz “ich will in dieser Republik weder kriminelle Asylwerber, noch krim-
inelle orange Politiker” - BZÖ-Abschiebung ok, aber wohin? #amPunkt

−2.172 User

Table 2.6: Examples of tweets with top positive and negative scores per party for
both Cuk and Cau data sets.

(anonymised for privacy reasons) and scores, we also provide an attribute for
the author (if present). In the displayed tweets for the UK study, the only possi-
ble outlier is the ‘Art Fanzine’; still, it seems to register a consistent behaviour
(positive towards LAB, negative towards LBD) and, of course, hidden, indirect
relationships may exist between political opinion and art. The Austrian case
study revealed even more interesting tweets since training was conducted on
data from a very active pre-election period. For a better interpretation of the
presented tweets, it may be useful to know that ‘Johannes Voggenhuber’ (who
receives a positive comment for his book) and ‘Peter Pilz’ (whose comment
is questioned) are members of GRÜ, ‘Krone’ (or Kronen Zeitung) is the major
newspaper in Austria13 and that FPÖ is labelled as a far right party, something
that may cause various reactions from ‘Human Rights’ organisations.

13“Accused of abusing its near monopoly to manipulate public opinion in Austria”, Wikipedia,
19/02/2013, http://en.wikipedia.org/wiki/Kronen_Zeitung.
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2.4 Related Work

The topic of political opinion mining from Social Media has been the focus of
various recent research works. Several papers have presented methods that
aim to predict the result of an election [42, 6] or to model voting intention and
other kinds of socio-political polls [31, 19]. Their common feature is a method-
ology based on a meta-analysis of word frequencies using off-the-shelf senti-
ment tools such as LIWC [33] or Senti-WordNet [10]. Moreover, the proposed
techniques tend to incorporate posting volume figures as well as hand-crafted
lists of words relevant to the task (e.g., names of politicians or parties) in order
to filter the content successfully.

Such papers have been criticised as their methods do not generalise when
applied on different data sets. According to the work in [13], the methods
presented in [42] and [31] failed to predict the result of US congressional
elections in 2009. We disagree with the arguments supporting the statement
“you cannot predict elections with Twitter” [12], as many times in the past
actual voting intention polls have also failed to predict election outcomes, but
we agree that most methods that have been proposed so far were not entirely
generic. It is a fact that the majority of sentiment analysis tools are English-
specific (or even American English) and, most importantly, political word lists
(or ontologies) change in time, per country and per party; hence, generalisable
methods should make an effort to limit reliance from such tools.

Furthermore, our work – indirectly – meets the guidelines proposed in [28]
as we have developed a framework of “well-defined” algorithms that are “So-
cial Web aware” (since the bilinear approach aims to improve noise filtering)
and that have been tested on two evaluation scenarios with distinct character-
istics.
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Chapter 3

Online Biconvex Learning

3.1 Introduction

The bilinear model described in the previous chapter allows the exploration
of textual streams from both the perspective of the words expressed and the
people expressing those words. This predictive model is constructed through a
supervised learning scheme against arbitrary real valued data streams. There-
fore, using this model it is possible to go beyond the identification of words
and users which portray general importance, and go towards the identification
of important words and users for a particular task.

A primary application envisaged for this bilinear model is the analysis of
social text streams. Concretely, we define this as the analysis of textual cor-
pora to which multiple users are contributing incrementally over time. Within
this domain the bilinear model could be used to identify leading players for a
given task, important keywords of a given topic or domain, various other sum-
marisation of social event activities via ranking as well as the identification
of novel words or users associated with particular events occurring within a
given domain.

The Web Social Media platforms which house such activity are inherently
dynamic, readily expressed as asynchronous streams of novel textual artefacts
often generated by extremely large and diverse user bases. This is in direct
contrast to traditional machine learning datasets usually comprised of static
data sources with fixed users and vocabularies. This challenging streaming
context means novel terms and novel users are a rule rather than an exception.
In its current state the biconvex learning algorithm outlined in the previous
chapter cannot analyse changing vocabularies, changing user sets or indeed
incorporate novel information once the model is constructed. One way to
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extend the model to deal with streaming sources is the construction of fixed
data windows from the stream. This approach would necessitate a re-training
of the model from scratch against these changing data windows.

A more elegant approach is the application of an online, one pass learning
scheme to construct the bilinear model directly from the stream. An appropri-
ate technique must be able to accurately construct the model incrementally,
both in terms of data but also in terms of model dimensions (i.e. users and
words). Furthermore, the technique chosen must be able to selectively for-
get data as it becomes irrelevant, allowing the model to efficiently change
over time and therefore capture non-stationary components of the underlying
information space.

Over the past 5 years such online learning techniques have been given
a great deal of attention. As is often the case, the interest is born out of
a novel problem and a promising family of solutions which become relevant
as they seem to address that problem. In the case of online learning, its in-
creased interest can be attributed to a mixture of: increased availability of
large datasets including large scale streaming data sources; and the improved
performance of techniques which have the capacity and are simple enough to
use large quantities of these novel data sources. It has been shown that, in
practice, the size of the dataset is the more important factor in terms of the
performance of machine learning models [14]. Studies have shown that a sim-
ple models trained over an enormous dataset will outperform a sophisticated
model trained on a smaller dataset. Interesting examples of this exist in both
the text analysis domain [4], as well as image retrieval [41].

This desire to handle extremely large datasets has lead to the exploration
of online techniques which can create a reasonable model in an iterative, one-
item at a time setting. Stochastic gradient descent is a common approach
to learning in an online manner [27, 8]. For example, Lin and Kolcz [24]
present Twitter’s solution to large scale machine learning including an online
stochastic gradient descent model learner [8] which trains a two class logistic
regression based classifier. In this section we present and explore our solution
to training a bilinear model in an online fashion which is in fact a biconvex
stochastic gradient descent scheme.

In the rest of this chapter we describe the approach we have taken to learn
the bilinear model in an online, one pass, setting. We then describe a series
of experiments in which we demonstrate the online learner’s ability improve
its predictions over time, maintain sublinear regret increase1 and an ability to
forget historic data and therefore deal with non-stationary distributions more

1against a batch learning approach
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effectively than a batch learner with access to the whole stream simultane-
ously.

3.2 Online Biconvex Learning

To learn the bilinear model described in the previous chapter, we have de-
vised an online biconvex learning scheme which includes an ability to learn
the weightings of novel words, novel users, individual or batches of novel data
and also the integration of various regularisers including the l1,l2 regulariser
mentioned in the previous chapter, all working in an online, one pass setting.

Our technique extends stochastic gradient descent methods with proximal
updates for regularisation to work in a biconvex context. Given a training
pair of features xi and the real valued tasks to be predicted yi, Algorithm 1 ad-
dresses the learning problem outlined in Equation 2.9 and updates the bilinear
model. For each training pair, the algorithm alternate between (sub-)gradient
steps with respect to some loss function and proximal steps with respect to
some regulariser. These steps are repeated alternately for the model’s word
and user weightings and the model’s bias. More concretely, we update the
user weights keeping the words fixed, followed by updating the words keep-
ing the users fixed, and finally update the bias keeping both users and words
fixed. This update procedure is then iterated for a single training pair until
some stopping condition is reached. The process is then repeated when a
novel training pair arrives.

For comparison, it might be useful to consider this algorithm to be a
stochastic gradient descent implementation of the biconvex update scheme
suggested in section 2.2.1. The key difference being that the batch scheme
optimises both www and uuu completely across all data items available, where this
scheme is explicitly formulated to update both www and uuu for each item of data
in isolation.

3.2.1 The Online Learning Algorithm

The first input to Algorithm 1 is a stream of training pairs {〈x1, y1〉, ..., 〈xn, yn〉}
where xi is a matrix whose columns are words and whose rows are users and
yi is a vector containing the values whose columns are the real valued results
of a number of tasks being predicted and modelled. The concatenation of all xi
instances across the whole of this stream (or some partial subwindow) would
form the Q tensor described in Section 2.2.1. The second input of the algo-
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Algorithm 1 Online Biconvex Proximal Gradient Algorithm

1: Q ← {〈x1, y1〉, ..., 〈xn, yn〉} . A potentially unbounded set of training pairs
2: θθθ ← {η0, λw, λu} . Gradient steps, proximal parameters etc.
3: procedure OnlineBiconvexLearner(Q,θθθ)
4: initialise www . Initialise word weights
5: initialise uuu . Initialise user weights
6: initialise β . Initialise Bias
7: while Q hasItem do
8: while !StoppingCondition(θθθ;www,uuu, β) do
9: Di ← xiwww + β . The user-scores matrix

10: uuu← uuu−∆L(θθθ;Di,uuu, yi) . User Gradient Step
11: uuu = prox(uuu) . User Proximal Step
12: V i ← uuuTxi + β . The word-scores matrix
13: www ← www −∆L(θθθ;Vi,www, yi) . Word Gradient Step
14: www = prox(www) . Word Proximal Step
15: Bi ← uuuTxiwww + β . Current estimate with bias
16: β ← β −∆L(θθθ; I,Bi, yi) . Bias Gradient Update
17: end while
18: end while
19: end procedure

rithm are the various parameters which govern initialisation, learning rates
and regulariser parameters etc. The parameters and their purpose will be
highlighted as they are used in the rest of this algorithm description and in
more detail in the implementation details in Section 3.4.

The first stage of the algorithm, before any data is seen, is the initialisation
of the weightings matricies and the bias. Experimentally we found there was
a great deal of sensitivity in these initial values given the gradient calculation
nature of the stochastic update scheme. Complete 0 initialisation would result
in a 0 update in the loss-gradient update. A random initialisation heavily slows
the rate of learning. Eventually we found a reasonable setup was to initialise
www uniformly with low values in the range of the data input and to keep β and
uuu at 0, allowing the first update to be completely data driven.

Once initialised, the algorithm proceeds on a per training-pair basis.
Though we show a monolithic while-loop in Algorithm 1, the actual implemen-
tation more closely resembles a processing pipeline where current state of
the weightings vectors are held2 and updated via calls to an update function.
The exact implementation is described in further detail in Section 3.4. For

2either in memory or serialised on disk
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each training pair, an iterative bi-convex optimisation scheme is followed. The
stages of the bi-convex optimisation can be further broken down into a loss
function sub-gradient steps followed by a proximal regulariser sub-gradient
steps adjustment for each of the words, users and bias matricies.

Though any loss function with a calculable sub-gradient can be used, for
the sake of an example we show here the procedure for a L2 loss function.
The loss function for a single training pair 〈xi, yi〉 is:

L(θθθ;xi, {www,uuu,βββ} , yi) =
τ∑
t=1

(
uuuT
t xiwwwt + βt − yti

)2
(3.1)

In the case of calculating the update on uuu, firstly Di is calculated, thus
keeping www and βββ fixed. The gradient of this loss function is used to update uuu:

Di =xiwww

L(θθθ;Di, {uuu,βββ} , yi) =
τ∑
t=1

(
uuuT
tDit + β − yti

)2
∆L(θθθ;xi,Di, yi) =

τ∑
t=1

2Dit
(
uuuT
tDit + β − yti

) (3.2)

It can be shown that this cost function is convex which means following
its gradient is guaranteed to lead to a global minima. The amount which this
gradient is followed is one of the parameters held in θθθ. A similar loss function
gradient update can be calculated for www and β with slight adjustment for the
calculation of the β gradient which takes the form:

Bi =uuuTxiwww + β

L(θθθ;Bi, I, yi) =
τ∑
t=1

(Bit − yti)2

∆L(θθθ;Bi, I, yi) =
τ∑
t=1

2 (Bit − yti)

(3.3)

As with the loss function, any regulariser with a calculable sub-gradient
proximal update step can be used in our procedure. The proximal update step
to achieve a multi-task `1/`2 regulariser discussed in Section 2.2.3 for the mth

word or user is:
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Algorithm 2 Dampening of Weightings

1: www . Current value of word-task weightings
2: uuu . Current value of user-task weightings
3: β . Current value of bias
4: γ . Some dampening factor
5: procedure DampenWeightings(www,uuu, β, γ)
6: www ← www(1− γ) . Dampen word weightings
7: uuu← uuu(1− γ) . Dampen user weightings
8: β ← β(1− γ) . Dampen bias
9: end procedure

proxθd(www)m =

{
0 if ‖www‖2 ≤ dm
‖www‖2−dm
‖www‖2 wwwm otherwise.

(3.4)

Whose derivation and background can be found in Martins [27]’s work. As
described in the previous chapter, this regulariser favours sparsity between
rows of the weighting matrices (i.e. sparsity between users and words) but
density between columns of a non-zero row (i.e. tasks). For example, this
means that when a word is seen to be useful for the prediction of one task, it
is expected to be important for the prediction of other tasks. This assumption
works well when the various tasks modelled in the yi vector are thought to
share a domain. Alternative regularisers can also be supported many of whose
implementations already exist in the SPAMS toolkit3.

The updates to each weightings matrix is iterated a number of times for
each training pair depending on a given stopping criteria. Experimentally we
have found that stopping after a certain number of minimum iterations up to a
certain maximum is prudent. Furthermore, we can stop early if we notice that
the values of the weightings matrices have become stable and therefore don’t
change very much relatively within a single update step. Other approaches
could be the tuning of the weightings matrices for the optimal calculation of
some left out validation set. Such stopping criteria will be investigated in
future work.

3.2.2 Non-Stationary Distributions

In Algorithm 1, Line 7, after a new training pair is received but before any al-
teration is made to the model weightings, it is possible to inject the actions of

3http://spams-devel.gforge.inria.fr
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Algorithm 2 and dampen the past model weightings. The main purpose of this
algorithm is to deal with the potentially non-stationary nature of the training
pairs being consumed during model construction. Both the word-user depen-
dent matrix and the task value independent matrix are likely to have means,
variances and co-variances that change over time. Though non-stationary dis-
tributions can occur for a variety of reasons, one way in which non-stationary
distributions are generated is through a random walks like process wherein
recent values are better indicators of future values than historic values.

For this reason, upon the addition of novel data, old weightings could be
dampened by some proportion. This would result in the effect of early train-
ing pairs on the model’s weightings disappearing entirely as novel items are
added. The amount of dampening might control exactly how quickly the past is
forgotten. If the distribution of independent and dependent variables is truly
non-stationary, then predictions of future events should improve as a conse-
quence of forgetting unhelpful old pairs and paying more attention to recent
pairs. Furthermore, as the pairs being used to predict some future event occur
closer in time to that future event’s time, more aggressive dampening should
force the past to be forgotten more rapidly and therefore improve predictions.

3.3 Experiments

In this section we outline experiments and present results testing the online
biconvex learner used to train a bilinear model. The first experiment explores
the online learner’s performance as compared to a batch learner. The second
experiment explores dampening and its effect on performance given the po-
tentially non-stationary nature of the tweet and political poll problem space
being modelled. All experiments mentioned here use datasets discussed in
Section 2.1 and some experiments outlined in Section 2.3 in an online context.

3.3.1 Regret analysis

In this experiment we aim to demonstrate the capabilities of the online learner
by comparing it to the batch learner in the context of a common problem born
of streaming data. Our experiment uses the Austrian political intention data
set described in Section 2.1 and proceeds as follows: Given some initial model,
the xi component of a training pair is used to predict the pair’s yi component.
An error is calculated between this prediction and the correct value in the
form of the Root Mean Sum Square Error (RMSE). Once complete, the 〈xi, yi〉
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(a) Ground Truth (polls)
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(b) Online Learner
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(c) Batch Learner
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(d) Overall regret across days

Figure 3.1: Stream Learning case study for Austrian data

pair is used to continue training the model. This experiment mirrors a sit-
uation wherein novel information is constantly available, and perhaps novel
independent variables (the xi components) are made available before the cor-
rect dependent variable (the yi components). In such a situation it is often
desirable to predict the likely dependent variable. We perform this experi-
ment with our online learner as well as the batch learner. The batch learner
simulates this scenario by being trained on N days to predict the N + 1th day.
This is the same data setting as the online learner which is instead handed the
first N days before being handed the N+1th which it uses to perform a predic-
tion, calculate RMSE, and then update the model ready for the next day. By
calculating the difference between the batch learner’s RMSE and the online
learner’s RMSE per day, we can calculate a cumulative measure of regret [38].

In this experiment we initialise the β of both the batch and the online
learner as the first day’s yi value. In both the batch and online learners, the
initial values of the www and uuu weighting matrices are set to a uniform 0.1 and

31



0 respectively. The other parameters used for learners can be seen in Ap-
pendix B.1. Figure 3.1 shows the results of this experiment. Figure 3.1a shows
the ground truth, 3.1b shows the results of the online learner, 3.1c shows the
batch learner’s predictions and 3.1d shows the regret between the online and
batch learners.

We start by looking at the overall shape of the voting intention predictions
where we note that the online learner is correctly updating the bilinear model
and thus follows ground truth voting intentions visibly well. Key characteris-
tics visible in the ground truth Figure 3.1a are reflected by the model learnt
using the online learner in Figure 3.1b such as the overall ordering of all 4 par-
ties. The online learner also successfully predicts the notable event between
FPÖ and ÖVP during days 2 and 8 where there was a swapping of voting in-
tention order. In fact, the online learner was able to capture this switch along
with the general shape of the other curves more effectively than the batch
learner and therefore achieved lower RMSE scores.

This lower RMSE score can be seen in the form of the negative values in the
regret between the batch and online learner shown in 3.1d. Negative regret is
generally impossible in regret analysis where multi-pass online algorithms are
often expected to perform as well or worse than their batch counterparts when
faced with a large static dataset [38]. However, the potential non-stationary
nature of this voting intention prediction problem is evidently better handled
by an online learner. In this experiment, the online learner was dampened
(by 0.02 per day in this experiment) and therefore forgets uninformative old
information, favouring newer information. Assuming some variety of random
walk is the underlying mechanism for the problem of voter intention, novel
training pairs are of higher value for prediction of future events than older
training pairs. When compared to the batch learner, for which no special
measures have been taken to window the data and thus forget the past, it can
be understood that the past might weight the model incorrectly, resulting in
the negative regret measured. Another explanation might be inappropriate
experimental parameters. As will be discussed in more detail in Section 3.4,
the parameters of both learners are numerous and with some adjustment the
batch learner’s performance on this task might be improved.

3.3.2 Non stationary components

To investigate the premise of dealing with non-stationary data by dampening
past models (outlined in Section 3.2.2), we aim to investigate whether our po-
litical poll prediction tasks display non-stationary properties. Mimicking the
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Figure 3.2: The effect of daily weightings matrix dampening on the root Mean SSE
of predicting days 63 through 68 using days 0 to 62.

experiments in Section 2.3 we use days 0 to 62 of the austrian political inten-
tion dataset (see Section 2.1) to predict the voting intention outcome of days
63 to 68. Each day is processed by the model sequentially, and after each
day an attempt is made to perform the prediction task; the root mean SSE of
predicting days 63 to 68 is then measured after each day is consumed. In Fig-
ure 3.2a we see the difference in Root Mean SSE when applying a dampening
between 0.0001 and 0.02 as compared to no dampening after each day is pro-
cessed. In Figure 3.2b we show the average absolute Root Mean SSE across
all 63 training days for each level of dampening. The first figure shows that
as dampening increases, the improved RMSE score beyond the un-dampened
model increases as the days processed approach the days to be predicted.
This result is evidence for the political intentions distribution being a non-
stationary distribution as the results would be expected if the distant-past was
a worse predictor of the test-time period than the near-past.

These results show that an effective way of improving the bilinear model’s
predictive ability in such a non-stationary system is to dampen past weight-
ings. Furthermore we show that, in this particular dataset, higher levels of
dampening are preferential, though we expect there to be some limit. This
is because if dampening were set to 1 (i.e. all past weightings completely
forgotten as training pairs were consumed), then weightings would be incor-
rectly set to 0 and the model learning would collapse. The appropriate amount
of weighting is likely to be affected by various factors including the rate of
change of underlying random walk, the rate at which data is added to the
model, the optimal or desired window of influence and so on. The exact effect

33



of this kind of dampening and how it can be wielded to control the portions of
past data which effect the model will be addressed in future work.

3.4 The Tools

After initial prototype versions were written in matlab, the learning schemes
described in Chapters 3 and 2 were implemented as reusable libraries in both
Python and Java. The projects which contain these implementations have been
made available as open source projects under the BSD licence, both in java4

and python5. The python project implements both the batch version of the
learning described in Section 26 while the java implementation currently sup-
ports the streaming implementation. Both have been written such that they
can be easily used within a streaming context with sequential data updates,
the batch learner achieves this by holding previously seen data in memory.

In the rest of this section we describe the structure of the learner libraries
including the manner in which they should be used, design decisions and the
various parameters and options controlling the behaviour of both libraries sup-
port.

A common theme between the implementations below is a focus on the sep-
aration of concerns. Learners understand and hold all the functionality of the
actual learning procedure, but more general components such as the initiali-
sation of parameters, the loss functions used, the procedure for gradient step
update etc. are handled by separate modules which can be specified as param-
eters. Implementations mentioned here strive for flexibility, allowing the easy
side by side comparison of novel replacements for all proposed techniques as
they arise.

3.4.1 Batch Implementation: Python

Batch Biconvex Learner

The main class in our python batch biconvex learner implementation is the
module bivariate.learner.batchbivariate. The main class in this mod-
ule is an bivariate.learner.onlinelearner whose children must provide
implementations of process(X,Y) and predict(X). The process accepts an

4http://github.com/sinjax/trendminer-java
5http://github.com/sinjax/trendminer-python
6A streaming version was originally written in python but must be re-written for release
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individual Xi ∈ Rp×m where p is the number of users and m is the number of
words and Yi ∈ R1×τ a row of responses for each τ task. process also accepts
a n long list of Xi instances and a matrix Y ∈ Rn×τ . In both cases the input
is dealt with cumulatively with previous inputs and must therefore match it’s
dimensions in terms of users and words. In future implementations we aim
to support adaptability with respect to users and words as the streaming im-
plementation does in the next section. Once the model parameters of a given
learner are trained, the predict(X) function may be called, thus generating a
prediction for a given X.

The batch python version of the learner is backed by the SPAMS optimisa-
tion library. SPAMS (SPArse Modeling Software) provides a set of implemen-
tations of the F-ISTA [5] stochastic gradient descent based loss function and
proximal update regulariser optimisation scheme. The SPAMS library sup-
ports various problem forms; the form which is of direct interest to our pur-
pose is the multi-task style problems. Given a training set {xxxi, yyyi}ni=1, where
xxxi ∈ Rp and yyyi ∈ Rτ , τ is the number of tasks, and p is the number of features
we are interested in finding W ∈∈ Rp×t. The formulation of the problem with
a square loss function, no bias and arbitrary regulariser can be written as:

arg min
W∈Rp×t

1

2
||Y −XW||22 + λψ(W) (3.5)

Where the rows of X and Y hold the n training samples. The problem
shown in Equation 3.5 matches closely the two sub-parts of the iterative bi-
convex optimisation scheme described in Section 2.2.1, namely Equations 2.5
and 2.7 and more importantly the expansion to the independent parameter
form found in Equation 2.8. However, before SPAMS can be used, certain
discrepancies must be addressed, namely the number of rows in the task-
expanded term-weighting and task-expanded user-weighting matrices D′ and
V ′ and how they relate to the X matrix expected by SPAMS in Equation 3.5.

We re-iterate that D′ ∈ Rτn×p and is created as a result of stacking
Dt ∈ Rτn×p where t ∈ {1, . . . , τ}. The issue which arises can be seen when
comparing the number of rows in D′, equalling τn, and the number of rows in
the SPAMS formulation XW and therefore Y, equalling n. To deal with this
discrepancy the values held in each row of yi in equation 2.8, i.e. the response
for each task for a given training pair, can be placed in the matrix Y′ which
has the shape Y′ ∈ Rτn×t. We construct Y′ as Y′ = [Y1, . . . ,Yτ ]

T where Yi is a
matrix whose shape is Yi ∈ Rn×τ and whose ith column contains the response
of the ith task of all n samples.

Each Yi matrix corresponds with with a Di matrix stacked inside D′. De-
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constructing the calculation DiU we note that the column created by the mul-
tiplication of Di with the ith column of U correctly corresponds with the non-
empty ith column of Yi. All other columns must be ignored by the optimisa-
tion process as they correspond to nonsensical pairings of tasks7 . This is
achieved in SPAMS by setting non-i columns of Yi to NaN. More details of this
expansion procedure can be seen in the batch python implementation of our
biconvex learner using SPAMS.

Beyond this core consideration, our implementation of the batch biconvex
learner includes various options and parameters which could be adjusted for
a given task. These include all options which can be passed to the underlying
SPAMS optimiser8. Beyond these we also allow for the various parameters
unique to our biconvex optimisation scheme, including various parameters for
controlling the iterative biconvex procedure. These are described in detail
both in the code and in Appendix A.1

Other Library Features

Beyond the learner, the python implementation provides various
bivariate.generator instances, each providing various methods with which
to generate data which can feed learners as well as bivariate.evaluators
which given a learner perform a given evaluation against a test set. Cur-
rently the SSE, MSSE and RMSSE evaluators are implemented. Beyond this
functionality for building learning systems, we also provide the various experi-
ments used to generate the experimental results found in the previous section.
These can be found along with documentation in bivariate.experiment.

3.4.2 Online Implementation: Java

With respect to the seperation of regularisers and loss functions, our online bi-
convex learner implemented in java follows a similar strategy to SPAMS. Loss
functions and regularisers are interacted with generically and interchange-
ably, both for the evaluation of gradient and proximal updates, as well as for
the calculation of the cost function by various evaluators. The online learner
is a part of the OpenIMAJ [15] multimedia library, more specifically a Trend-
Miner branch of OpenIMAJ, in the machine learning subproject9.

7e.g. the 2nd row of Di and the 1st column of UT would represent the 2nd task’s user-weights
weighted by the 1st task’s user parameter, a meaningless calculation.

8Those are extensively documented here: http://bit.ly/Zi2TOt
9https://github.com/sinjax/trendminer-java
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Simple Biconvex Learner

The first and most simple Online learning bi-
convex learner in our Java implementation is
org.openimaj.ml.linear.learner.BilinearSparseOnlineLearner which
is an implementation of the OnlineLearner interface in the same package,
therefore providing implementations of a process(X,Y) and predict(X) as in
the python batch implementation. While the python implementation accepts
as input either a single training pair or a batch, this Java implementation
accepts only single training pairs at a time. Extensions which we discuss
below go beyond this limiting factor.

When the first item is seen, the W , U and optionally the β bias
are initialised. Unlike the python implementations the initialisations
of these matrices can be controlled separately. Currently the W is
initialised to a uniform 0.1, and the β bias and the U value ze-
ros. However, any initialisation strategy which is an extension of
org.openimaj.ml.linear.learner.init.InitStrategy may be used. Cur-
rently various sparse and non sparse init strategies are provided.

As explained with the python implementation, the value of Y′ is con-
structed from Yi. With the limitation of one item at a time in this ba-
sic implementation, the size of Y′ ∈ Rτ×τ . In the iterative phase of the
online learner (see Section 3.2) Di and Vi are calculated for the individ-
ual Xi instance handed to the process method. At this point, the gra-
dient of the loss function (extracted from the parameters) is handed the
value of Y′, the current value of the parameter being calculated (either
W or U) and finally the value of Di or Vi. Any loss function implemented
against the org.openimaj.ml.linear.learner.loss.LossFunction may be
used meaning any function with a calculable sub-gradient. Currently only
SquareLossFunction is provided. The loss for either W or U is added and
the paramter is regularised. Again any regulariser implemented against
org.openimaj.ml.linear.learner.regul.Regulariser which can be any
regulariser which can provide a proximal update given a parameter matrix and
a λ regularisation paramter. Currently the L1Regulariser and the group-task
L1L2Regulariser are provided. In fact, any regulariser which is expressible
as a proximal update can be implemented and used as part of our learning pro-
cedure. In future releases we plan to provide a regulariser which understands
nested groups and performs the appropriate proximal update.

As with the python implementation this iterative phases proceed for each
training pair until some stopping condition is reached. The various parameters
of the stopping condition as well as the parameters which control the stages
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1 X_i = {
2 "steve": {
3 "cheese": 1,
4 "is": 1,
5 "really": 10,
6 "nice": 1
7 },
8 "alan": {
9 "ok": 1

10 }
11 }
12 Y_i = {
13 "cheesecompany": 10.4,
14 "othercompany":3.4
15 }

Figure 3.3: Example input as JSON to the process function of the adaptive biconvex
learner

described above are discussed in more detail in Appendix A.2

Adaptive Biconvex Learner

Another online learner available is the IncrementalBilinearSparseOnlineLearner.
This learner aims to not only deal with the adaption of a model with
the appearance of novel data, but is adaptive with respect to novel
words and users. It’s process function consumes as Xi instances
Map<String,Map<String,Double>>, a map of users to maps of words to
counts. The function consumes as Yi a Map<String,Double>, namely a map of
tasks to values. An example of such an input presented as JSON can be seen
in Figure 3.3.

This adaptive implementation is backed by a simple
BilinearSparseOnlineLearner. When a new training pair is received it
is firstly checked whether there are any novel words and users in the Xi

component of the pair. For each novel word and user, the underlying learner’s
W and U matrices are updated with empty rows, initialised using the provided
initialiser. Alternatively, a special initialiser can be specified which initialises
novel word or user parameter rows for each task seen so far to some value
aggregated from the parameter of values seen so far. Such flexibility has had
little experimentation but may provide for more flexibility in future iterations
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of the library.

The index of the new rows added for novel words and users are held by
the adaptive learner such that each word and user seen is associated with a
unique index. Once this check is made, a new Xi matrix is constructed which
is of the dimensions of the number of words and users seen so far, along with
a Yi matrix constructed in a similar way. The two matrices are populated
sparsely with the values of the Xi and Yi maps and the constructed matrices
are passed to the underlying online bilinear learner instance. In this way, the
weights of novel words and users are initialised and learnt as they arrive from
the stream, but when a word or user has been seen before it will correctly
contribute towards the value of the parameter matching that word or user.

Other Library Features

As with the python batch implementation, the Java library provides vari-
ous org.openimaj.ml.linear.data.DataGenerator instances, each provid-
ing various methods with which to generate data which can feed learners.
These include generators which are a type of random data simulator, pri-
marily used for testing, but also includes generator implementations for the
datasets used in the experiments discussed in Section 3.3.Also made avail-
able are various org.openimaj.ml.linear.evaluation.BilinearEvaluator
implementations which, given a learner, perform a given evaluation against
a test set. Currently the SSE, MSSE and RMSSE evaluators are imple-
mented. Beyond this functionality for building learning systems, we also
provide the various experiments used to generate the experimental results
found in the previous section. These can be found along with documentation
in org.openimaj.ml.linear.experiments.
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Chapter 4

Conclusions and Future Work

In this section we outline the major components discussed in this deliverable
and outline the direction of future work suggested by our work.

4.1 Conclusions

We have presented a novel method for text regression that exploits both word
and user spaces by solving a bilinear optimisation task, and extensions that
apply multi-task learning for multi-output inference. Our approaches perform
feature selection – hence, noise filtering – on large-scale user-generated in-
puts automatically, generalise across two languages without manual adapta-
tions and deliver a significant inference performance over strong baselines
(< 1.5% error when predicting polls). Our methodologies have been extended
to accommodate outputs from WP2 such as sentiment taxonomies or entities.
Moreover, we have provided a preliminary demonstration about their applica-
bility on the financial domain.

We have also presented a learner capable of learning the bilinear text re-
gression model in an online setting. We showed that this learner was capable
of achieving predictive performances similar to that of the model learnt in a
batch setting. Furthermore, we have demonstrated capability of modelling
data originating from a non-stationary distribution.

Finally, we have also delivered a set of open source implementations of
both our batch and online bilinear model learners. We discussed the key func-
tionality of these tools as well as discussing how the tools could be extended to
allow for novel loss functions, regularisers and how they could be integrated
as part of a stream processing pipeline.
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4.2 Future Work

In this section we will highlight some key directions of future work which have
been suggested and lead logically from the work presented in this deliverable.
Firstly, in Appendix C we present an example of more sophisticated online
learning schemes which could be used to train our bilinear model, or indeed
any other model more quickly than a standard stochastic gradient decent.

On the subject of the online model, we believe an exploration into its ap-
plication to a financial domain would be an interesting area of research. We
have shown in earlier deliverables that the bag of words type representation
of tweets during a time interval carries some information that correlates with
financial data. We have also worked on online learning algorithms suitable for
non-stationary data. In immediate future work we expect to achieve conver-
gence between these two strands. A particular focus will be on integrating
work on predictions with volatility in the financial markets, rather than direc-
tion of movement of the stock prices.

Another potential avenue for research is the joint modelling of several do-
mains in a single model by applying multi-task learning techniques. For ex-
ample, knowing that 10-year bond prices (financial domain) characterise the
internal economy’s status for a country, they should also reflect on the political
domain. Hence, combining voting intentions together with bond prices in one
model may produce better and more generic solutions as well as interesting
socio-political insights.

A second line of exploration will be the link between work carried out in
WP2 on extracting ontologies and data driven regularization we have been
working on in WP3. In this deliverable we have mostly used the outputs of
WP2 as rich features and achieved some interesting results shown in Sec-
tion 2.3.3. In future work we could leverage the structures suggested by the
ontologies of WP2 for a more sophisticated integration of WP2 and WP3. This
might involve forcing large parts of the model weights to be zero, based on
prior knowledge derived from ontologies via well understood hierarchical reg-
ularisation techniques.
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Appendix A

Biconvex Learner Parameters

A.1 Python Batch Learner

Table A.1 shows a set of extra parameters understood by the batch biconvex
learner in the biconvex learning library created by trendminer. These param-
eters are subject to a great deal of change and this document should be used
for advisory purposes only. Please see the code available on the repository1

Parameter Values Purpose

bivar_it0 0 . . . N The minimum number of iterations of the
biconvex scheme which must pass be-
fore any other checks of biconvex conver-
gence are made

bivar_max_it 0 . . . N The maximum number of iterations of the
biconvex learning scheme

bivar_tol 0 . . . N The minimum amount of loss improve-
ment against some loss function and
some validation set which an iteration of
the biconvex scheme must achieve. If
it is not achieved the biconvex scheme
ends

init_strat lambda function Given a shape, this lambda function must
initialise a matrix. This is used to ini-
tialise the W and U matrices when the
first data pair is processed

1http://github.com/sinjax/trendminer-python
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intercept True/False (SPAMS parameter) If true, an extra col-
umn of ones must be added to V ′ and the
current value of the bias (initialised as 1)
must be added as a row to W0 and U0 be-
fore they are handed to SPAMS, and then
removed when SPAMS gives its answers
for W and U. This is the bias.

loss various, see SPAMS
docs

(SPAMS parameter) If a “non-missing”
loss function is requested, it’s “missing”
version is used instead. This is to ac-
count for the required formulation of Y′.

Table A.1: Parameters for the python biconvex learner (includes some SPAMS pa-
rameters also used by the learner)

A.2 Java Online Learner

Table A.2 shows a set of parameters understood by the streaming
biconvex learner in the biconvex learning library created by trend-
miner. These parameters are subject to a great deal of change and
this document should be used for advisory purposes only. All pa-
rameters used by each learner are documented in an extention of
the org.openimaj.ml.linear.learner.LearningParameters instance. For
example, the simple biconvex learner’s paramters can be found in
org.openimaj.ml.linear.learner.BilinearLearnerParamters. Please see
the code available on the repository2

Parameter Values Purpose

BIAS true/false whether a bias component is added to w
and u. Default is false.

SEED 1, . . . , N The random seed of any randomised
components of this learner (usually ini-
tialisation). Defaults to -1 (i.e. no seed)

WINITSTRAT InitStrategy The initialisation strategy for W. Defaults
to a SparseRandomInitStrategy with
sparcity set to 0.5

2http://github.com/sinjax/trendminer-java
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UINITSTRAT InitStrategy The initialisation strategy for U. Defaults
to a SparseRandomInitStrategy with
sparcity set to 0.5

BIAS INIT-
STRAT

InitStrategy The initialisation strategy for BIAS. De-
faults to a SparseZerosInitStrategy

BICONVEX
_MAXITER

1, . . . , N The maximum number of iterations in the
biconvex iterative stage. defaults to 3

BICONVEX
_TOL

float < 1 The threshold of the ratio between
the (||wnew−wold||1+||unew−uold||1+||βnew−βold||1)

(||wold||1+||uold||1+||βold||1) i.e.
some notion of normalised changed of
the paramters. Defaults to 0.01

LAMBDA float The parameter of the regulariser, de-
faults to 0.001

ETA0_U float The weighting of the subgradient of U,
weighted down each ETASTEPS number
of iterations of the biconvex scheme, de-
faults to 0.05

ETA0_W float The weighting of the subgradient of W,
weighted down each ETASTEPS number
of iterations of the biconvex scheme, de-
faults to 0.05

ETA0_BIAS float The weighting of the subgradient of
BIAS, weighted down each ETASTEPS
number of iterations of the biconvex
scheme, defaults to eta0 (0.05)

LOSS LossFunction The loss function, defaults to Square-
MissingLossFunction

REGUL Regulariser The regularisation function, defaults to
L1L2Regulariser

ETASTEPS integer The steps at which point the eta parame-
ter is reduced, defaults to 3

FORCE
_SPARCITY

true/false Should all parameter matricies be held
SparseMatrix instances and therefore re-
main sparse. Forces a copy but could
save a lot.

DAMPENING float < 1 The value of w, u and beta are updated
each time data is added s.t. w = w * (1.0
- DAMPENING). The default value is 0

Table A.2: Parameters for the Java online biconvex learner
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Appendix B

Online Learning Experiment
Parameters

B.1 Regret Experiment Parameters

In Figure B.1 we note the parameters used to achieve the results reported for
the experiment in Section 3.3.1. Any parameters not explicitly mentioned take
their default values as noted in Appendix A.

B.2 Non-Stationary Experiment Parameters

In Figure B.2 we note the parameters used to achieve the results reported for
the experiment in Section 3.3.2. Any parameters not explicitly mentioned take
their default values as noted in Appendix A.
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1 Streaming Parameters = {
2 dampening: 0.02,
3 loss: SquareLossFunction,
4 biaseta0: 0.5,
5 seed: -1,
6 regul: L1L2Regulariser,
7 biasinitstrat: HardCodedInitStrat // Hard coded to y_0,
8 biconvex_maxiter: 10,
9 winitstrat: SingleValueInitStrat // Set to 0.1,

10 forcesparcity: true,
11 uinitstrat: SparseZerosInitStrategy,
12 lambda: 0.0010,
13 biconvex_tol: 0.01,
14 eta0u: 0.02,
15 eta0w: 0.02,
16 etasteps: 3,
17 bias: true
18 }
19 Batch Parameters = {
20 lambda1: 0.0001,
21 bivar_it0: 3,
22 bivar_max_it: 10,
23 max_it:500, // Maximum number of FISTA iterations
24 tol:1e-3, // Tolerence for FISTA
25 intercept:True,
26 }

Figure B.1: Parameters used for the online and batch learners in the regret experi-
ments
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1 Streaming Parameters = {
2 dampening: {0:0.0001:0.02}, // from 0 to 0.02 in steps of

0.0001
3 loss: SquareLossFunction,
4 biaseta0: 0.5,
5 seed: -1,
6 regul: L1L2Regulariser,
7 biasinitstrat: HardCodedInitStrat // Hard coded to y_0,
8 biconvex_maxiter: 10,
9 winitstrat: SingleValueInitStrat // Set to 0.1,

10 forcesparcity: true,
11 uinitstrat: SparseZerosInitStrategy,
12 lambda: 0.0010,
13 biconvex_tol: 0.01,
14 eta0u: 0.01,
15 eta0w: 0.01,
16 etasteps: 3,
17 bias: true
18 }

Figure B.2: Parameters used for the dampening experiments
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Appendix C

Sequential Nonstationarity
Estimation

Sequential updates for parameter estimation, when cast in a Bayesian setting,
can be used to propagate uncertainties about estimated parameters and infer-
ence. In the sequential setting, the Kalman filter for linear Gaussian models,
and extensions of it, offer the framework for this propagation. This Appendix
summarises work being done in this direction. Algorithms have been devel-
oped and tested on synthetic data and some difficulties identified. These are
now being applied to financial time series data.

C.1 State Space Models

A state state space model, formulated for sequential estimation of parameter
vector θ from observations y is defined by a dynamical state equation and an
observation equation.

θ(n) = f (θ(n− 1)) + u(n)

y(n) = g (θ(n), x(n)) + v(n)

A simplified version of this, where one assumes a random walk model for state
dynamics, scalar observations, linear output model and Gaussian noise in the
process and observation stages is:

θ(n) = θ(n− 1) + u(n)

y(n) = θt(n)x(n) + v(n)
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Sequentially estimating θ from observations y involves the following steps of
the Kalman filter:

θ (n|n− 1) = θ (n− 1|n− 1)

P (n|n− 1) = P (n|n− 1) + Q

e(n) = y(n) − θt x(n)

k(n) =
P (n|n− 1) x(n)

R + xt(n)P (n|n− 1)x(n)

θ (n|n) = θ (n|n− 1) + k (n) e(n)

P (n|n) = P (n|n− 1) − k(n)xt(n)P (n|n− 1)

In the notation above θ (n|n− 1) should be read as the estimate of the param-
eter vector θ at time point n, using all the data upto time n − 1. Q and R

are the covariance matrix of the process noise and the variance of the scalar
observations noise respectively.

The regression model we consider for predicting direction of financial mar-
ket movements from a bag-of-words representation of tweets is a logistic, de-
fined as

y = g
(
θtx
)
,where

g(s) =
1

1 + exp(−s)

We assume that predictions are made from tweets collected from within a time
window (daily, hourly etc), preprocessed to generate a vector of bag-of-words.
For the non-linear logistic model, the Kalman filter estimation is no longer
optimal and a number of methods for approximate propagation of estimates
and their uncertainties exist. The extended Kalman filter linearizes the ob-
servations aboout the operating point and uses gradients in its re-estimations.
The linearization, and subsequent update can be iterated till convergence to
derive a recursive update [30] for the parameters of the logistic and the error
covariance matrix (uncertainty) on it:

[P (n|n)]−1 = [P (n|n− 1)]−1 + g (1− g)x(n)xt(n)

θ(n|n) = θ(n|n− 1) + (y(n)− g)P [n|n− 1]x(n)

These update equations can also be derived directly from a Bayesian perspec-
tive as shown by [39].

In the above formulation, the denominator of the update term in the
Kalman filter, i.e. R + xt(n)P (n|n − 1)x(n), is known as the innovation term
and contains the new information in data {x(n), y(n)}. This has is an indicator
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of the degree of novelty in the new data point at time n and closely relates to
what is known as the evidence term in Bayesian inference literature [26], [18].
Our expectation in WP3 is that an estimate of this quantity can be used as a
robust detector of nonstationarity.

The difficulty in directly implementing the above formulation is the relative
dimensions of the data setting. When the covariates x are from a bag-of-words
representation, their dimensionality is very high, often much higher than any
temporal window which we analyze.

Sparsity inducing regularizers is one way of dealing with the dimensional-
ity issue. We have explored an algorithm that alternates between a Kalman
filter update and a convex optimization step of an l1 norm regularized regres-
sion in this context. The regularizer minizes the following cost function:

θ(n) = arg min
θ

{
||y(n)− θt(n)x(n)||22

}
+ τ {||θ − θ(n− 1)||1}

The regularization here constrains the number of changes that the steps be-
tween time n− 1 and time n. A similar idea has been used in [1] for inference
of slowly time varying networks in social and biological problems.

At the time of this deliverable implementation of the above has been com-
pleted and is being tested on financial data.
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