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Summary

This deliverable reports on work performed as part of WP5 during the second year of the project.
The main theme was on ”Automatic extraction of constraints” and its use in learning manipulatory
tasks.

We report on three strategies to address the problem of constraints’ extraction. In Section 1 we
present an extension of the constraint extraction method presented in the first year, see Deliverable
D5.1 and whereby we use the notion of invariance across variable to determine the importance of
each variable to the success of the task. The relative importance of each variable is then used as
a soft-constraint in an impedance controller. Additionally, it is also used as a means to determine
the most appropriate frame of reference into which to express the variables (the frame in which
the variables are the most invariant). Transitions across frames of reference is used to segment
the task. This framework is implemented to extract constraints in a bimanual coordination tasks,
bowl mixing, that is relevant to the Robohow scenario.

In Section 2, we present an alternative way of automatically segmenting the task based on an
analysis of the statistical distribution of the whole group of variables. We also explore the use
of a representation of the data based on screw theory to enable segmentation to be robust to
translational and rotational transformation. We report on preliminary implementation of this
approach in simulation with theoretical sets of data showing complex distributions.

Then, in Section 3, we explore mechanisms by which one can learn and model the task impedance
when manipulating an object. While in the approach of Section 1, the impedance is learned and
controlled from the human or robot standpoint, i.e. from the actor’s point of view, here, we model
the impedance from the object’s point of view, i.e. at task level. The advantage of such approach
is that it can then be easily ported to robotic platforms that differ importantly in kinematic from
the human.

Finally, in Section 4, we detail how motion primitives can be extracted from the monitoring of a
human-human joint transportation task. It can then be improved to more complex motions using
haptic cues without further human monitoring, and extended by including visual cues in order to
handle more constraints, such as the balance of an object placed on the transported beam, and
infer human intentions during the manipulation task.

Work on automatic task constraint and automatic segmentation of the task participates in Task 5.1
Learning bootstrapping information to guide imitation learning. Work on extracting the impedance
from both robot and object’ viewpoints participate in Task 5.3 Learning adaptive stiffness control
that has the desired effects. Work on learning of human-robot joint transportation participates to
Task 5.5 Learning of haptics interaction.
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Chapter 1

Automatic extraction of constraints in

bi-manual tasks

Introduction To recall, in this work, we consider task constraints to be features of the motion
that the robot should reproduce for achieving successful task execution. In the previous year of the
project we proposed an approach for extracting these task constraints from human demonstration
using a variance-based method (Pais et al, 2013).

The procedure is devised in two steps: robot data (end effector position and forces) is recorded
from kinaesthetic demonstrations, then analyzed with respect to the observed variance across all
demonstrations and to the way this variance changes in time. We extract the relative importance
of force and position at each time step and use this information to continuously modulate the
robot’s stiffness throughout the task. We automatically determine the object of interest in each
part of the task and express all the variables in this local frame.

For encoding the motion we use a time-independent representation. The motion profile is encoded
as a non-linear dynamical system of the form ẋ = f(x), where x and ẋ ∈ R

D represent the
cartesian position and velocity of the end effector. The function f : RD 7→ R

D is a continuous and
continuously differentiable function stable only at the attractor

∗

x, estimated from demonstrations
using a mixture of k Gaussians. The parameters of the GMM model are specified by a vector
θk

x = [πk
x, µk

x, Σk
x], representing the priors, means, covariance matrices. Based on this encoding

the velocity ẋ is thus computed as ẋ = E{p(ẋ|x; θk
x)}.

Similarly we encode the rotation specified by an axis-angle representation, with respect to an
estimated attractor, and estimate a coupling function between the position and orientation. This
ensures that the observed temporal–correlated behavior of the two variables is preserved and
thus a perturbation will not cause an unsynchronized behavior. The system follows the original
demonstrated dynamics and ensures asymptotical stability at the target of both position and
orientation (Shukla and Billard, 2012). The force and stiffness profiles are encoded separately, as
a function of the position, using a Gaussian Mixture Model.

Finally we generate a finite state machine based on the change of the extracted constraints. Each
state contains the information for the parametrization of the task: (a) the local constraints and
(b) the motion encoding. The procedure is described in Pais et al (2013).
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Encoding bi-manual coordination patterns Most of the common daily chores are performed
bi-manually by humans, however executing bi-manual tasks by robots requires extending the cur-
rent learning framework, as well as the control architecture and task representation. An advantage
is that it allows executing tasks that cannot be addressed otherwise, such as molding dough, or
tying shoe laces. Here we focus on a particular sub-set of bi-manual tasks that require force
control during the arm coordination. In such task, the ”master” hand manipulates the object (e.g.
mould the dough), while the other hand provides assistance (such as compensating forces to keep
the bowl steady on the table).

Directly programming bi-manual tasks might be difficult because of the high dimensionality of the
variable set and modeling their coordinated behavior, however learning such tasks from demon-
stration poses few challenges, both on designing the experimental setup, as well as on analyzing
the resulting data.

For a complete task representation, the recorded data should include information about the arm
movement, the hand configuration, the force sensed on the arm and the tactile signature on the
hand, the grasp configuration used and so on, which would easily be recorded from kinesthetic
teaching in which the robot directly experiences the task. We propose a setup that combines two
approaches: the user performs the demonstration by kinaesthetically guiding the robot arm with
one hand and by wearing a data-glove covered with tactile sensors on the other hand. We alternate
between the arms performing the active/passive tasks, recording complementary information from
the robotic arm and from the glove.

We exemplify this on a task of stirring in a bowl, that requires completing a sequence of actions
for each arm. To determine the coordination components we focus on determining the dominant
hand at each moment during the demonstration, in either position or force applied in the task.
This is similar to results on human subjects showing that the hands can change the active and
passive roles during manipulation and that this is caused by a force-motion relation, rather than
routine in performing the task Johansson et al (2006). Hand dominance allows us to encode
differently the motion of the active and passive arms. For the active arm we encode the motion
and force profile as described above. However for the passive arm the motion is insignificant,
while the forces sensed on the arm are reaction forces responsible for keeping the object in place,
therefore we choose to encode its force and stiffness profiles as dependent on the forces sensed
on the active arm. This allows the passive arm to apply compensating forces to the ones applied
by the active arm.

On-going work focuses on firstly extending the current approach from arm motion to hand and
finger motion, analyzing coordination on multiple levels, between different systems, and subject to
different dynamics: (a) between arms coordination; (b) arm-hand coordination; (c) coordination
between fingers. Secondly we focus on determining causalities between variables involved in the
task in order to automatically determine the best way of encoding the task.

This chapter is based on the following two papers, given in appendix:

Pais, A. L., Umezawa, K., Nakamura, Y., and Billard, A. (2013) Task Parametrization
Using Continuous Constraints Extracted from Human Demonstrations. Submitted to
IEEE Transactions on Robotics, November 2013.
Pais, A. L. and Billard, A. (2014) Encoding bi-manual coordination patterns from human
demonstrations. 9th ACM/IEEE International Conference on Human-Robot Interaction
(HRI) 2014
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Chapter 2

Discovering primitive motion categories

from unsegmented demonstrations

Everyday human tasks (or complex robot tasks) such as baking a cake, making an omelette or
preparing coffee can be decomposed into a sequential combination of simple motion primitives.
Much research has been focused on the representation, recognition and learning of these motion
primitives, with the ultimate goal of having a robot learn and reproduce the sequence of motions
autonomously. However, many of these approaches take into consideration assumptions such as
a priori knowledge of the expected motion primitives (pre-specified number and type of motions)
for segmentation and recognition or use pre-segmented motion sequences for learning.

Our goal is to avoid these assumptions by proposing a framework that autonomously discov-
ers motion primitives and groups them into primitive motion categories from unsegmented task
demonstrations without any a priori knowledge. To incrementally learn and build primitive motion
categories we need to tackle two main problems: unsupervised segmentation of motion primitives
and clustering of the extracted primitives.

Unsupervised Segmentation To bypass the need of a priori knowledge from the expected
motion primitives, we apply a Bayesian nonparametric approach for relating multiple time series,
proposed by Fox et al (2009) called the Beta Process Hidden Markov Model (BP-HMM), with
some extensions and modifications for our specific task. This approach follows the intuition that
non-linear dynamical phenomena (such as human motion) can be modeled by a set of switching
dynamical processes (Fox et al, 2008). The aim of the BP-HMM is to discover and incrementally
model an unbounded collection of switching dynamical processes (behaviors) which are shared
throughout multiple time series. In our setting, these dynamical behaviors correspond to motion
primitives that are shared throughout different continuous complex task demonstrations and belong
to an unbounded set of primitive motion categories.

Sharing features using the Beta Process (Fox et al, 2009; Hughes et al, 2012): In order to allow
for an unbounded set of behaviors, the BP-HMM uses a feature-based nonparametric Bayesian
approach based on the beta process, where the set of behaviors is represented as a list of features.
Each i-th time-series is described with a sparse binary vector fi = [fi1

, fi2
, ...] which indicates the

presence/absence of features (behaviors). Given N time series, the matrix F = [fi; ...; fN ] is the
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binary feature indication for the full set of time series. F is generated by the beta-process (BP),
which induces a predictive distribution on features known as the Indian Buffet Process (IBP),
modeled as follows:

B|Bo, γ, β ∼ BP (β, γBo), B =
∞∑

k=1

bkδk (2.1)

fi|B ∼ BeP (B), i = 1...N (2.2)

The realization B of the BP contains the set of global weights which determines the potentially
infinite number of features. Each k-th feature is represented by its generative model parameters θk,
while bk ∈ (0, 1) indicates its presence/absence. Each binary feature vector fi is then determined
by independent Bernoulli draws parametrized by B, dependent on its mass hyper-parameter γ
which determines a Poisson(γ) distribution for the number of active features in each i-th time
series and concentration hyper-parameter β which control how often features are shared between
time series. By setting β = 1, the predictive distribution of the features is the IBP.

Dynamic behavior modeling using the BP-HMM (Fox et al, 2009; Hughes et al, 2012): This
previously derived feature model is then combined with an HMM, to create the BP-HMM. fi now
determines the set of finite states available for the i-th time-series. Each t-th time step is assigned
a state zit = k from the set {k : fik = 1}, which determines the parameters θk that generated yit

(observed data of i-th time series at step t, where yit ∈ Rd for a d-dimensional time series). In the
original implementation of the algorithm, Emily Fox et al. use the first-order vector autoregressive
(VAR) process to model the switching dynamical behaviors in motion capture data. However, the
algorithm is not limited to other types of generative models. Hughes et al (2012) extended the
formulation of the BP-HMM to model the distinct behavior dynamics with Multivariate Gaussian
and Multinomial distributions. In this work we use and compare the VAR process and Gaussian
distribution. Following the generative processes of these two models:

BP-AR(1)-HMM BP-Gaussian-HMM

State Dynamics zit ∼ πzit−1
, yit|zit = k zit ∼ πzit−1

, yit|zit = k
Model Parameters θk = {Ak, Σk} θk = {µk, Σk}

Observation Dynamics yit = Azit
yit−1 + eit(zit) yit ∼ N (µzit

, Σzit
)

eit ∼ N (0, Σzit
)

The transition distribution πi is independent for each time series and is derived from a normalized
collection of gamma-distributed random variables (active feature fi) with sticky parameters biasing
the model to match high self transitions. The model parameters are drawn from conjugate priors
on the mean and covariance of the data, namely the matrix normal inverse-Wishart, defined by
Σ ∼ IW(νo, So) and A|Σ ∼ MN (0, Σ, Ro). So is a scaling matrix, νo are the degrees of freedom
and Ro is the precision matrix. These parameters are derived from the actual data, except for
the So, this value is user-specific and its value might have a great impact on the performance
of the algorithm depending on the statistical properties of the data. This happens due to the
underlying properties of the IW prior, even though they are popular because of their conjugacy to
Gaussian likelihoods, they assume strong dependence between variance and correlation (i.e high
variance implies high correlation and low variance implies low-to-moderate correlation). This is
bad for inference, because it means that correlation will be extremely high if variance is higher
than expected. Thus, for sequences of motions where the variance is similar for each motion,
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the inference is robust, however, when motions have different variance, the algorithm fails and
different values of So may under or over-segment the trajectories. To alleviate this we use a non-
informative hierarchical prior recently proposed by Huang and Wand (2013). This distribution
comes from a family of prior distributions for covariance matrices whose standard deviation and
correlation parameters are marginally non-informative for particular hyper-parameters. Hence, Σ
is now drawn from:

Σ|a1, ..., ap ∼ IW(νo + p − 1, 2νdiag(1/a1, ..., 1/ap)) (2.3)

ak ∼ind. Inverse − Gamma(1/2, 1/A2
k), k = 1, ..., p (2.4)

where p is the dimension of the time series data. In the original implementation, the BP-HMM
model is learned using a Markov Chain Monte Carlo (MCMC) method that alternates between
re-sampling fi given yi and θk, and θk given fi and yi. This is done using a combination of
Metropolis-Hastings and Gibbs samplers. This method, even though robust, needs many iterations,
requires careful initialization and only modifies a small subset of variables at each step. Recently
Hughes et al (2012), introduced an improved MCMC method for BP-HMM learning which rapidly
discovers new and shared behaviors using split-merge moves based on sequential allocation. We
use this implementation made available by Michael Hughes1.

We examine the performance of the previously described variants of the BP-HMM on a toy dataset
of 5 features (behaviors), where each behavior is a primitive motion category (PMC) from the
following set: {hyperbolic parabloid, line, sign wave, helixoid, pure screw} (Figure 2.1a).

(a) Instances of each Primitive motion category (PMC)

(b) Randomly generated trajectories from PMCs

Figure 2.1: PMCs and Random Toy Trajectories

Each PMC is a set of instances of motion primitives that share the same underlying dynamics,
but are subject to translation, rotation and scaling in space and time. For example, a sign

1http://michaelchughes.github.io/NPBayesHMM/
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wave constrained to the X-Y plane in a world coordinate system belongs to the same PMC as a
sign wave constrained to the X-Z plane with shorter duration and larger amplitude. We create
sequential random combinations of these primitive motion categories, to form N-trajectories with
shared PMCs (Fig. 2.1a). Our generated toy trajectories are 7-dimensional time series, which
represent the rigid motion (3d for Cartesian position and 4d for quaternion orientation) of a
human/robot end-effector or object within a continuous demonstration (Fig. 2.1b). We present
results from 3 experiments, each with increasing complexity (degree of variation within PMCs) for
the segmentation algorithm (Fig.2.2 and Table 2.1).

BP-VAR(1)-HMM Segmentation 

BP-Gaussian-HMM Segmentation 

7-D Time Series and Ground Truth Segmentation  

Figure 2.2: Segmentation results for incremental experiments (left column) Exp-1 Invariant PMCs
(middle column) Exp-2 PMC subject to t and (left column) Exp-3 subject to t and R

Pure segmentation performance is evaluated with precision, recall and F-measure on the identified
segment boundaries, where TP: correctly identified boundary, FP: incorrectly identified boundary
and FN: unidentified boundary. To measure the performance of behavior sharing we use metrics
based on conditional entropy analysis for clustering evaluation (i.e. homogeneity, completeness
and V-measure introduced by Rosenberg and Hirschberg (2007)). Homogeneity is a score defining
if each cluster contains only members of a single category, completeness is the score describing
that all members of a given category are assigned to the same cluster and the V-measure is their
harmonic mean. The range for the error metrics (both segmentation and behavior sharing) is
bounded to [0,1].

The first experiment involves validating the applicability of this segmentation approach without
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Table 2.1: Error Analysis of Segmentation and Behavior Sharing.

Segmentation Behavior Sharing
Experiments Precision Recall F-measure Homogeneity Completeness V-measure

Exp.1 (VAR) 1.0 1.0 1.0 1.0 0.747 0.855
Exp.1 (Gau) 1.0 1.0 1.0 1.0 1.0 1.0

Exp.2 (VAR) 1.0 1.0 1.0 0.959 0.619 0.753
Exp.2 (Gau) 1.0 1.0 1.0 0.959 0.603 0.7404

Exp.3 (VAR) 0.928 0.765 0.839 0.609 0.479 0.536
Exp.3 (Gau) 0.9 0.563 0.692 0.701 0.436 0.538

variation between the motion primitives of each PMC (i.e. no translation, rotation nor scaling).
This experiment is completely unrealistic but it proves that if motion primitives from the same
PMC have no variations between them, the segmentation and behavior sharing perform perfectly
for both VAR and Gaussian models (F-measure=1.0, V-measure=1.0). For the second experiment,
we apply only translation between the PMCs. This dataset is more realistic, since it is a continuous
trajectory through space and time, however the only difference between motion primitives within a
PMC is their position in space. Regarding segmentation, both generative models still perform with
high accuracy (F-measure=1.0), however motion grouping increasingly deteriorates (V-measure-
VAR=0.753,V-measure-Gau=0.7404). In the third experiment, we increased the variation within
PMCs, now subject to translation and different rotations. The performance of both algorithms
decreases dramatically, not only is motion grouping worse (V-measure-VAR=0.536,V-measure-
Gau=0.538), but the segmentation is less accurate as well (F-measure-VAR=0.839, F-measure-
Gau=0.692).

This leads us to the conclusion that the BP-HMM segmentation approach is only robust for PMCs
with a minimal level of variation, which in a realistic application (i.e. tracking data of a human
demonstrating a recipe or kinesthetic teaching of a complex task to a robot) is very hard to find.
However, since the algorithm shows unprecedented performance for segmenting and grouping
invariant PMCs, the next step in our work is to find an invariant representation of the primitive
motion trajectories in order to feed invariant PMCs to the BP-HMM algorithm. Moreover, this
approach will be contrasted to the automatic segmentation based on variance developed by our
group (Pais et al, 2013) and on the ROBOHOW data for the tasks of flipping pancakes and of
grating carrots.
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Chapter 3

Learning object-level impedance control

Our goal in this part of work is to learn the object-level impedance control for robust grasping and
dexterous manipulation. This work comes in the context of Task 5.3 in WP5, i.e., learning adaptive
stiffness control that has the desired effects on object, which includes learning the dynamics of the
hand and finger motion to ensure stable grasp and desired object manipulation. In both of these
two tasks, appropriate grasping forces need to be applied on the grasped or manipulated object,
either to keep the grasp stable under perturbation or to move the object to a desired configuration.
This force pattern can be extracted directly using contact forces information or indirectly using
impedance information.

Our approach is based on extracting the desired impedance characteristics from human demon-
stration, in which the robust grasping and dexterous manipulation are demonstrated by a human
expert. Since the involvement of coordination of multiple degree of freedoms and multiple contacts
in these tasks, it is usually very difficult to directly obtain the desired impedance pattern from
the robot’s perspective. To this end, we proposed an approach that learns the desired impedance
pattern from object’s perspective and validated this object-level impedance controller on both
robust grasping and dexterous manipulation, see Fig. 3.1. In the following parts, we will briefly
present our approach on learning the object-level impedance from human demonstration.

Robust 

Grasping 

Dexterous 

Manipulation 

Object-level Impedance Learning 

Figure 3.1: The object-level impedance for robust grasping and dexterous manipulation. The left figures are
showing the human demonstration, while the right figures are the implementations on Allegro hand.

12



D5.2 FP7-ICT-288533 ROBOHOW.COG January 31, 2014

Relative Impedance for Robust Grasping Our method of impedance selection for robust
grasping is quite intuitive: the object stiffness in one direction is inversely proportional to the
variance of displacement under perturbation in the corresponding direction. From this assump-
tion, we can learn the relative stiffness for robust grasping in different directions from human
demonstration. During the demonstration, an object is grasped by a human demonstrator with
eyes closed. The grasped object is perturbed by another person randomly and the displacement
of the object is recorded {xi, i = 1...N}. Then the object stiffness can be specified as follows:

K = α{
1

N

N∑

i=1

(xi − xr)(xi − xr)T }−1 (3.1)

where α ∈ R
+ is a ratio parameter that needs to be set manually and xr ∈ R

6 is the object initial
(and desired) position and orientation.

Variable Impedance for Dexterous Manipulation For dexterous manipulation, besides the
desired impedance, a time-varying reference trajectory xr, ẋr will also be required. This problem
can be formulated as an optimization problem that learns the reference trajectory and the desired
object impedance simultaneously. During the demonstration, at each sample instant, the motion
of the object {x(i), ẋ(i)} and the sum of manipulating forces ff,o(i) applied on the object are
recorded. Consider t = 1...Nt consecutive samples of data obtained over a short time window.
Assuming the impedance parameters and reference trajectory remain constant over this time
window, the relationship between the object motion and the force exerted on object is given by:

ff,o(i) = D(ẋr − ẋ(i)) + K(xr − x(i)), i = 1...Nt; (3.2)

Since the object’s impedance parameters and the reference trajectory are not changing with time
over this time window, they can be obtained by minimizing the following objective function:

min:
D,K,ẋr,xr

Nt∑

i=1

‖ff,o(i) − {D(ẋr − ẋ(i)) + K(xr − x(i))}‖2 (3.3)

The additional constraints on the impedance parameters (positive-definite) and reference trajectory
(upper bound) can be also taken in account in this optimization framework. For more details, one
can refer to our recent submitted paper (Li et al, 2014), in Annex.

Li M., Yin H., Tahara K., Billard A. (2014) Learning object-level impedance control for
robust grasping and dexterous manipulation. International Conference on Robotics and
Automation (ICRA), 2014. (Submitted).
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Chapter 4

Learning of haptics interaction

We consider the case where the robot has to work in direct physical contact with the human via
an object, more specifically, for a joint beam transportation task with a human operator. We seek
to prove that segmentation of the task is also a valid approach in this case.

To this end, we monitor the task performed by two human partners on one degree of freedom and
extract a model of segmentation of the task: the beam’s trajectory can be segmented in constant
velocity phases in the world frame, which we call motion primitives. This segmentation has
been validated by implementing a pro-active behavior of the HRP-2 robot: the robot uses haptic
signals to guess the human’s intention, and then sequences the motion primitives to help him
performing the task. This segmentation has then been extended by including lateral and rotation
motion primitives, without monitoring humans. This extension allows the robot to perform a more
complex task than the one that was monitored, which is also validated on the HRP-2 robot. The
velocity of the beam on the frontal axis is similar in shape to the one observed with human dyads.
Those works are presented more in detail in Bussy et al (2012b,a). This approach shows that
segmentation of the task, in motion primitives in this case, is a valid approach even for physical
collaborative tasks.

Yet, by evaluating this work, we found that the main issue was in detecting the change of intention
from the human partner - more specifically how to detect the transition between states of the
finite state machine. The main concern being that haptic information alone is lacking. Because
of this, we continued this work by adding the use of visual data in human-humanoid joint actions.
In addition to the observation of the human operator to follow his intention, this would also allow
more complex tasks that can take advantage of vision. For example, we can now place objects on
top of the table and add task constraints that try to keep these objects from falling of the table.
In Agravante et al (2013), a height control using visual servoing was implemented to maintain
a static object on the table while the human operator changed its height. This was expanded
further in Agravante et al (2014), by using a ball - an extreme case of a moving object on top of
the table.

These tasks show how vision data is complementary to haptic data and how a more complex
task can be added while still retaining the carrying task created previously. Furthermore, we also
investigate how the task knowledge from vision and the haptic information on human intention
affect the impedance control framework used in the context of the collaborative task Agravante
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et al (2014). In parallel to increasing task complexity, investigations are also in progress on using
vision to monitor the human partner during the task and extract possible useful features that can
help to determine the finite state machine transitions.

This chapter is based on the following publication that has been accepted in the International
Conference on Robotics and Automation:

Agravante, D. J., Cherubini A., Bussy A., Gergondet P., Kheddar A. (2014) Collaborative
Human-Humanoid Carrying Using Vision and Haptic Sensing International Conference
on Robotics and Automation (ICRA), 2014. (Accepted).
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Task Parametrization Using Continuous Constraints

Extracted from Human Demonstrations
Ana Lucia Pais, Keisuke Umezawa, Yoshihiko Nakamura, and Aude Billard

Abstract—Performing daily tasks requires a robot to combine
representations of individual actions to achieve the task goal.
In this work we propose an approach for learning task speci-
fications automatically, from observing human demonstrations.
We hypothesize that task specifications consist in tasks variables
that present a pattern of change that is invariant across demon-
strations. We identify these specifications at different stages of
task completion. Changes in task constraints allow us to identify
transitions in the task description and to segment the into sub-
tasks. We use a variance-based method for extracting task-space
constraints, and identify: (1) the reference frame in which to
express the task variables, (2) the variable of interest at each
time step, position or force at the end effector; and (3) a factor
that can modulate the contribution of force and position in a
hybrid impedance controller. The approach was validated on a 7
DOFs Kuka arm, performing a kitchen task, grating vegetables.
Generalization was shown with respect to transferring the control
strategy to other vegetables and across grating positions. A
quantitative evaluation was conducted.

Index Terms—learning and adaptive systems, motion control,
constraints extraction, programming by demonstration.

I. INTRODUCTION

DAILY activities such as dish washing or preparing a

meal often require completing a series of atomic actions

while interacting with multiple objects. When performing

such tasks, humans are able to focus on the key aspects

necessary for achieving the goal. For example when grating a

vegetable they naturally push against the grater, and focus on

maintaining a certain speed and contact force with the grating

surface. Moreover, humans naturally introduce variability by

repositioning objects or by using different paths between two

objects. Consequently, obtaining a feature-based representation

for such high-level tasks assumes firstly to account for the

large variability between demonstrations and to decide what

feature should be reproduced (extracting task constraints with

respect to trajectories and force profiles), and secondly to

relate these features to the objects in the task (extracting the

suitable frame of reference).

In this work we propose an approach for automatically

extracting continuous task constraints required for successfully

completing the task. We use Programming by Demonstration

(PbD) to record kinesthetic demonstrations while using various

initial positions of the robot and spatial configurations of the

used objects (see Fig. 1, top row). Our approach exploits

this variability between demonstrations to learn a criterion

A. L. Pais and A. Billard are with the Laboratory of Learning Al-
gorithms and Systems (LASA), EPFL, Switzerland e-mail: {lucia.pais,
aude.billard}@epfl.ch.

K. Umezawa and Y. Nakamura are with the Graduate School of Informa-
tion Science and Technology, University of Tokyo, Japan e-mail:{umezawa,
nakamura}@ynl.t.u-tokyo.ac.jp

T
a

sk
 E

x
e

c
u

ti
o

n
D

e
m

o
n

st
ra

ti
o

n

FzFz

vy

FzFz

vy

FzFz

vy

FzFz

vy

FzFz

vy

FzFz

vy

Fig. 1: From recording different human demonstrations, we detect the relevant frame

of reference and the direction in which a hybrid force and position controller must be

applied. In this figure the robot has correctly extracted that the frame of reference is

attached to the grater and that force has to be applied along the vertical axis, whereas

position control is needed along the horizontal plane of the grater. This allows the robot to

reproduce the task even when the grater is moved in a different position and orientation.

for determining a notion of coherence in the demonstration.

Specifically, a task variable (such as the force perceived at

the end effector) might have a large variability within a

demonstration, thus indicating that it becomes important in

only a given region of the task. Moreover, regions in which

a variable changes very little throughout a set of sequential

demonstrations prove that the demonstrator was coherent in

that part of the task. Therefore we focus on extracting such

behaviors as the task constraints that should be reproduced.

Based on this criterion we learn a decomposition between

force and position control and the frame of reference where

this applies at all time. We fix a priori the type of controller,

using a hybrid cartesian impedance controller throughout the

task, and learn a weighting factor between the force and

position that modulates their contribution by adjusting the

controller’s stiffness. This approach is designed as a bootstrap-

ping process preceding learning a task model, that extracts the

constraints without requiring any prior information about the

type or goal of the task, nor models of the objects.

For learning a task model we consider that a change in the

extracted constraints indicates a change of the atomic action

to be performed, thus implicitly segmenting the demonstration

data. This allows us to learn a model for each atomic action,

in the local frame of reference, using the data between two

changes of constraints. When encoding the motion profile we

aim to preserve the exact behavior seen during demonstra-

tion. We therefore choose to encode variables that show a

temporal coupling (like position and orientation, that change

synchronously towards a target posture (the attractor)) using

our Coupled Dynamical Systems (CDS) approach [1]. This

encompasses the following advantages: (a) the motion is en-

coded in a time independent manner and ensures asymptotical
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stability at the target of both dynamical systems; (b) the motion

follows the demonstrated dynamics even if the execution starts

from unknown regions of the space, far from the demonstrated

motion, without the need to replan or re-scale the trajectory;

(c) the temporal–correlated behavior of the two variables is

preserved and thus a perturbation in one of the systems does

not cause an unsynchronized behavior, the robot being able to

adapt online to changes in the environment. The force profile is

encoded separately, as a function of the position. This allows

the robot to execute the task in changing conditions and to

generalize to situations that were not seen during training (see

Fig. 1, bottom row).

For reproducing the task we assume that the flow of actions

(i.e. the task sequence) is implicit in the demonstration. Thus, a

Finite State Machine (FSM) is generated for reproduction. The

states are not known a priori but extracted. They correspond

to the atomic actions identified previously and encode their

corresponding constraints. The task is executed using a single

controller and embedding the constraints online.

Automatically extracting this constraint–based task

parametrization has several advantages. First, the constraints

are extracted from variables that can directly be used for

control, while learning the task in cartesian space makes

the skill easily transferable to a new robotic platform. A

single controller is used throughout the task and no switching

occurs. Moreover, extracting the suitable frame of reference

and expressing all the variables in this local frame allows

simplifying the control (i.e. perform force and position control

on perpendicular axis with respect to the object), and makes

the skill easily generalizable to different locations or similar

objects. Finally, by encoding the task in a time independent

manner the system is robust to perturbations.

The proposed approach achieves a unitary task represen-

tation, as described in Section III, which we validate on a

kitchen task, grating vegetables in Section IV. We discuss the

advantages and limitations of our approach in Section V and

present related work in Section II.

II. RELATED WORK

When encoding robotic tasks, for achieving generality of

the learned model, the representation of the motion is often

related to task space constraints, either natural constraints

that arise from the physical properties of objects, or artificial

constraints, such as following a specific motion profile [2].

In addition constraints can be soft constraints that allow to

loosely follow a behavior with a certain flexibility [3], [4]

(i.e. a slack in the desired velocity, motion or force profiles);

or hard constraints that depict parts where the motion has to

be exactly followed [5], [6]. An innate ability to understand

such constraints also drives human learning (see Section II-A).

In our work we focus on extracting artificial task constraints,

and encode in a continuous manner soft constraints based on

the variance existing in the demonstration data. Furthermore

we reconstitute the task from an extracted sequence of states,

parameterized with the extracted constraints. We review re-

lated work with respect to similarities with human learning,

automatic extraction of constraints, task segmentation, and

constraint–based motion planning.

A. Human inspiration

In imitation learning, coherence between demonstrations is

an important factor for properly generalizing a task, therefore

the variance encodes key information, also exploited in human

learning [7]. Infants learn by detecting ”statistical regularities”

in the stimuli they face (such as auditory, linguistic [7], or

visual cues [8]). These regularities draw their attention [9] and

allow them to form an understanding about an environment

whose structure was not otherwise specified [10]. Therefore,

by detecting features encoded in the signal itself they can learn

a task without being aware of the conceptual goal. Moreover

infants have an innate ability to segment the action performed

by other people that they observe, which gives them a high-

level understanding of what the task consists of [11], and the

intention behind it [12]. However, aside the implicit cues found

in the demonstration, the ability to link these to the correct

objects is important to achieve generalization. Studies show

that adults are able to infer the correct reference frame in

order to (a) build a personal perspective on a spatial scene

[13], and (b) to perform spatial reasoning based on relations

between objects [14].

The work that we propose follows the same principle,

namely to focus on important cues in the signal in order to

infer a notion of coherence that the demonstrator had. Based

on this assessment implicit segmentation is performed, rather

than using the engineering approach of seeking explicit seg-

mentation. Moreover humans often form their understanding

of how to properly manipulate objects, what forces should

be applied and how to adjust the compliance of the arm, by

actually trying to perform the task. Therefore we use kines-

thetic demonstrations that provide the robot with information

about forces and additionally facilitate the interaction by being

similar to the way humans teach their children [15]. Moreover

enhancing these methods with the capability of interpreting a

task in a way that is akin to human learning might lead to

increasing the robot’s acceptance [16].

B. Automatic extraction of task-space constraints

Previous approaches at extracting task constraints focus

mainly on the suitable frame of reference and encode the

motion in a time dependent manner. Exploring low variance

regions for determining task constraints or segmentation points

has been previously explored, however we depart from these

approaches by increasing the complexity and number of the

encoded constraints. Moreover we consider continuous con-

straints that may apply throughout or only on a subpart of the

task. Finally, we use a single controller throughout the task

execution, while the constraints identify values taken by the

variables of the impedance controller as the task unfolds.

In our previous work [17] we proposed extracting the refer-

ence frame in a manipulation task with respect to a proposed

metric of imitation. Data recorded from demonstrations (joint

angles, hand cartesian position relative to the objects and grip-

per status) is projected into a lower dimensionality latent space

and further encoded in a time-dependent manner using a Gaus-

sian Mixture Model (GMM). Gaussian Mixture Regression

(GMR) is used to reproduce the motion. In a previous attempt,
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temporal variations are encoded in an Hidden Markov Model

(HMM) and implicit segmentation is performed through HMM

states. [18]. These implementations have the limitations of

encoding the motion in a time-dependent manner and lack

the information about forces exerted on objects, that in some

tasks might be key to achieving successful reproduction.

In this work we build on these existing approaches by addi-

tionally extracting constraints with respect to force profiles and

robot stiffness in different regions of the task. Moreover we

encode the motion using a Coupled Dynamical Systems (CDS)

approach [1], which presents several advantages over encoding

the motion using a GMM (as in [17]) or Dynamic Movement

Primitives (DMP) (such as [19]). Firstly it is time invariant

making the robot robust to perturbations, and ensures stability

at the target, while reaching the attractor in a coordinated

manner that resembles the original demonstrated dynamics of

the end effector’s position and orientation. This makes the

motion very human-like, so there is no need for additional

processing (such as synthesizing variance during execution

[20]) to achieve a natural–looking movement. Secondly, from

an execution point of view this encoding provides the ability

to generalize to new contexts and adaptation to perturbations

occurs in a reactive manner without replanning.

An alternative way of encoding a motion is based on an

invariant representation [21]. While the motion in this form

is not directly usable to reproduce the motion in changing

contexts, it has the advantage of facilitating motion recognition

regardless of the task frame. A different method is described in

[22] in which a task space is selected based on three criteria: a

variance–based analysis of object trajectories, attention focus

on objects in the task and an evaluation of the teacher’s

discomfort during demonstration. While this method tends to

be more complex, it is applied solely to vision–tracked human

demonstrations. In our case the demonstrations are performed

kinesthetically in order to allow the robot to experience forces

that should be applied on objects. Moreover in [22] the authors

perform an indirect evaluation of the data by suggesting

that if a human maintains an uncomfortable posture during

demonstration then this might be important for the task. In our

case a direct evaluation is done on robot’s proprioceptive data,

while the user chooses an arbitrary position for demonstration.

Moreover the ability to successfully perform complex tasks

resides in making use of additional sensing. For example,

assessing joint torques values can be an indicator of whether

the motion of the end effector is constrained [23]. Therefore

the second aspect that we address is detecting axes in task

space where force control applies and encoding these force

profiles. Additionally varying the robot’s stiffness according

to the task ensures safer interaction [24]. However, adding

the force information, while of high importance for the task,

can be challenging depending on the platform. A method is

proposed in [25] for using kinesthetic teaching for demonstrat-

ing the motion, and using a haptic device for demonstrating

the force that should be applied while the robot is replaying

the trajectory. In our work, we extract the task constraints

from a low number of demonstrations. Moreover we extract

atomic actions, thus making the approach suitable for tasks

that encompass switching between multiple atomic actions.

C. Task segmentation

Complementary to the constraints extraction topic is that of

performing task segmentation which on the long term offers

the possibility to easily recognize, classify and reuse motions

[26]–[28]. In our work we do not explicitly seek to segment

the data, however segmentation occurs naturally when the task

constraints change. This allows a flexible representation of the

task, exploiting the local behavior in each sub-task. A vast

majority of recent works focus on segmenting motion data

represented by sets of joint positions or hand positions and

orientation retrieved by motion capture systems in the case

of human motion and by robots proprioception in the case of

robotic motions. However very few works focus on segmenting

task data that includes force information.

Current existing approaches for motion segmentation [26]

rely on either (1) classification based on existing motion

primitives used for prior training [29]–[31]; (2) looking for

changes in a variable, like zero-crossings [32]; or (3) clustering

similar motions by means of unsupervised learning [33].

The downside of these approaches is the need of prior task

knowledge, which may be poor and incomplete in real-life

situations. Furthermore most segmentation approaches rely on

other techniques for human motion analysis which include

[26]: Dynamic Time Warping (DTW) used in the temporal

alignment of recorded data; or HMM for analyzing data that

varies in time (such as hand movements sign language [34]).

Additionally when a human demonstrates a task to a robot,

he/she may stop during the demonstration to rearrange an

object or teach in a different manner. In these cases the

above mentioned approaches over-segment the data. Regions

of low variance have been alternatively used to determine

segmentation points [35]. We take a similar approach, but

extend this method to analyze other motion constraints, while

removing the over-segmentation.

The first approach for segmentation can ease robot control

because of the existence of motion primitives. However while

it is safe to assume that human motions are likely to follow a

specific pattern in a known context, rather than being random

(as shown in [36]), a major drawback is the need to include

prior knowledge. It also restricts the scope of segmentation by

knowing what the task is about. An example is described in

[30] for segmenting motions used in robot assisted surgery.

The second segmentation involves searching for zero ve-

locity crossings (ZVC) [32] or other changes in a variable

compared to a known state [23]. This approach is sensitive to

the variables encoded while one needs to find a way that would

ensure optimal segmentation across all task dimensions. The

third approach encompasses a more complex view of human

motion, such as learning and clustering motion primitives in

an incremental manner, from observing human motion [33].

The method in [33] performs unsupervised segmentation based

on motion encoded through an HMM. The obtained segments

are clustered according to a measure of relative distance and

organized in a tree structure. It encodes generic motions at

the root, that gradually become more specialized close to the

leaves. The algorithm allows to change the model according

to known primitives [37], and to use the same learned model
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Fig. 2: Example of recorded data and computed variance over trials (V artrial) and over a time window (V arwin) for a measured variable xi. Region A
shows data with little variance across trials (i.e. a feature of that should be reproduced). Region B shows data with large variance over trials, and low variance
over a time window (almost constant).

not only for recognizing, but also for generating motions [31].

While being one of the most robust implementations to date,

the approach lacks time independency in motion encoding.

These approaches, while efficient, have the shortcoming

of not only being task specific and requiring a considerable

amount of prior knowledge (and thus achieve little generaliza-

tion across a wide range of tasks), but they also fail to model

specific features of the motion, focusing mainly on changes

in position. Moreover these algorithms focus on extracting

motion primitives, as opposed to learning a parametrization

of a control system that remains the same all along the task,

as in your approach. This allows learning and reproducing a

task in a seamless manner.

D. Constraint based motion planning

Alongside motion segmentation, learning systems should

encompass features such as [33]: (1) the possibility to rec-

ognize a motion similar to one that was previously learned,

(2) the ability to correctly categorize a new motion and (3)

structuring the learned models such that the data can be easily

accessed and used. The first two features can be explored

in long-term learning, while the last aspect is essential as

it allows using learned actions for generating higher–level

planning strategies.

Previous ways of encoding the task sequence use: Petri nets,

Markov Models [35], [38], graph representations [39]. In our

work we consider the sequence of atomic actions implicit

in the demonstration and extract a finite state machine to

execute the task, in which the states encode the extracted

constraints. Moreover, representing a task with respect to its

goals allows a tree representation of skills [40], or a similar

graphs-based representation for strategies [39]. While this

means incorporating external knowledge in the representation,

our implementation takes a lower level approach by encoding

constraints that guarantee the task success without knowing

the conceptual goal, and isolating atomic actions thus allowing

individual reuse [41].

Properly segmenting and encoding atomic motions can be

used for constrained motion planning [42], [43], while a

constraint based representation of a more complex task can

be used by a high level planner [44] for executing plans or

for inferring motion grammars [45] for a high-level represen-

tation. A constraint based framework for specifying a task is

described in [46], where a task is defined and executed as a

finite state machine (FSM) based on the existing constraints.

In our approach the parametrization of the FSM comes from

the constraints extracted from demonstration.

III. METHOD

In this work we identify task constraints directly from

variables that can be used for control (end effector position

and force). This enables a consistent way of encoding all the

subparts of the task for using a single controller and ensures

a smooth reproduction by directly embedding the constraints

during the execution. We use a hybrid impedance controller:

τ = JT (K(x− x̃) + F ) (1)

in which the following variables: x̃ ∈ R
6 – the desired

cartesian trajectory, F ∈ R
6 – the desired force and K ∈ R

6×6

– the stiffness matrix are extracted from user demonstrations.

Moreover we extract a frame of reference RF in which

the variables are most consistent and that in some cases

may represent a quasi-orthogonal decomposition of position

and force control along the axes of the object, although we

continuously use a hybrid controller.

τ = JTRF





K1(x1 − x̃1)
K2(x2 − x̃2)

F



 (2)

A set of kinesthetic demonstrations is recorded, in which a user

physically guides a passive robot throughout the task. Data are

recorded from the robot and expressed in a fixed referential

RF0 located in the robot’s base: end effector position and

orientation as well as external forces estimated at the end

effector. Additionally the objects positions with respect to the

robot’s base are tracked by a vision system.

From the demonstration we learn a desired path and stiffness

profile for the directions along which position is the variable

of interest. Secondly for the directions along which force is

important, we learn a dependency between the desired force

profile and the desired trajectory, i.e. F becomes a function

of other variable, e.g. in Eq. 2, F = f(x1, x2).
The proposed method for extracting the task constraints is

illustrated below, on an uni-dimensional measurement (d =
1..D, where D = 1) of two variables: force F ∈ R and

cartesian position x ∈ R of the robot’s end effector. The

data set is a vector of k = 2 components: ξid = {F id, x
i
d}

considered to be recorded over a number of N demonstrations

of a task (see Fig. 2 (a)). The upper indices correspond to

representing the data in the reference frame of each object

oi, i = 1..No, from the total No objects involved in the

task. The ξ0 corresponds to the original recorded data (in

RF0), the fixed referential in the base of the robot. The data

was temporally aligned using Dynamic Time Warping (DTW),

resulting in a set of length T . For the purpose of this example
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(x) in 2 reference frames (RF1 and RF2).

we drop the lower index d. Note that in a typical robotic task

a minimum of k = 6 variables have to be compared if using a

3D measurement of position and force. The data is analyzed

with respect to the variability that exists in the motion. For all

objects oi we compute the variance of each recorded variable

k in two ways: (1) as the averaged variance of the signal over

trials (i.e. consecutive demonstrations):

V artrial
(

ξid,k
)

=
1

ND

ND
∑

i=1

(

V ar(ξid,k)
)

(3)

and (2) the averaged variance of the signals over a time

window ω. An example is given in Fig. 2 (b).

V arwin
(

ξid,k
(

t : t+ ω)) =
1

ND

ND
∑

i=1

(

V ar(ξid,k(t : t+ ω))
)

(4)

The size of the time window is chosen arbitrarily as being the

shortest time period in which we see noticeable changes in

the task flow. The values of the two variances are normalized

such that V artrial, V arwin ∈ [−1, 1].
We postulate that if a variable (a) changes value significantly

within a single demonstration and (b) changes this value in

a systematic way across demonstrations then this variable is

significant for the task. It hence becomes a task constraint that

should be reproduced. We thus develop a criterion given by

the difference between the variance over the time window and

that over trials, that allows comparing the task variables in a

relative manner, without setting any hard thresholds. At each

time step the criterion is computed as:

C
(

ξid,k
)

= V arwin
(

ξid,k
)

− V artrial
(

ξid,k
)

(5)

and the obtained value is normalized, such that the criteria

C(ξid,k) ∈ [−1, 1]. The total number of criteria to be

computed for a task is given by NC = No · k · D. In this

example NC = 4, as seen in Fig. 3 (a).

A. Determining the Task Constraints

Using the defined criterion we extract the following task

constraints: the frame of reference and the relative positioning

within an object space (as explained in Section III-A1), relative

importance of position and force on each axis of the object

(see Section III-A2), and a weighting factor between the two,

used to modulate the controller’s stiffness throughout the task

(Section III-A3). The procedure is summarized in Alg. 1.

1) Extraction of the Reference Frame: Expressing the con-

trol variables in the local reference frame attached to the object
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Fig. 4: The reference frame and variables of interest are given by the maximum
criterion in a time window ωi.

on which manipulation is performed at a given time, allows

the robot to properly execute the task when the positions of

the objects change in the scene. Moreover this allows us to

consider constraints not only as factors that limit the robot’s

motion [47], but that also add meaning to the motion (i.e.

a grating motion, characterized by a given force and motion

profile, is only meaningful when performed on a grater and in

the context of a grating scenario).

For choosing a frame of reference we compare the computed

criteria and choose at each time index t, t = 1..T the

value of the highest criterion for all the variables considered

max(C(ξid,k)), see Fig. 3 (b). Thus the vector of obtained

maximum values max(C(ξid,k)) is analyzed separately for

each dimension d, using a time window of arbitrary size (in

this case w1 = 100 time steps). We consider that in each

time window the reference frame is given by the object o

with the highest number of occurrences of its corresponding

criterion max(C(ξok)). In this example there are two changes

of reference frame, as shown in Fig. 4 (a): for the first 100

time steps the RF is given by object o2, for the next 200 time

steps there is a change to o1, and for the rest of the motion

the RF is changed to o2.

The changes in the reference frame determine a set of

segmentation points ψs which delimit the actions performed on

each object. In this example there are 3 actions (one performed

on object 1 and two performed on object 2) determined by

the change of RF. Each segmentation point corresponds to

a state that contains the time index ts when the change

occurred and the id of the reference frame used up to that

point ψs = [ts, RFs].
2) Extraction of the Relevant Task Variables: The criterion

defined in Eq. 5 allows us to compare in a relative manner

the influence of variables of different types (like force vs.

position), and that vary across different scales, see Fig. 3 (a).

The aim is to be able to quantify their relevance with respect

to the task, so as to give more importance to the variable of

interest in the controller and to adjust it when a change occurs.

For determining the relevant task variables, we analyze the

criterion on each dimension d using a time window of arbitrary

size (in this case w2 = 100 time steps). Similarly to extracting

the reference frame, we consider the relevant variable in each

time window to be the one that has the highest occurrence

of its corresponding maximum criterion in that interval. In the

given example, there are several changes between position and

force as variables of interest (see Fig. 4 (b)).

The changes in the variable of interest determine additional

segmentation points which together with the initial points
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Algorithm 1 Task Constraints Extraction

Bootstrapping(Set of N demonstrations: ξi
d,k

1→N

= {F i
d
, xi
d
})

Do DTW, dataset length T

Criteria: C(ξi
d,k

) = V arwin(ξ
i
d,k

)− V artrial(ξ
i
d,k

)

s = 0 % number of segmentation points

% Determine the reference frame:
for t = 1 : ω1 : T do

RF (t) = RFi for which Cmax = max
t:t+ω1

(C(ξi
k
))

if RF (t) 6= RF (t− 1) then

s = s+ 1; % Create a new segmentation point

ψs = [ts, RFi] % add the current constraints

end if
end for

% Determine the variable of interest:

for each dimension d = 1 : D do

for t = 1 : ω2 : T do

add ξi
d,k

to the current constraints vector

ψs = [ts, RFi, ξ
i
d,k

] for which Cmax = max
t:t+ω2

(C(ξi
d,k

))

if ξi
d,k

(t) 6= ξi
d,k

(t− 1) then

Insert a new segmentation point

end if
end for

% Determine the stiffness modulation factor:

for each segment s do

add λd,s(t) = C(ξd,1(t)− ξd,2(t)) to the constraints vector

ψs = [ts, RFi, ξ
i
k
, λd,s]

end for
end for

return ψ1:s

end

determined by the change of RF delimit individual atomic

actions such as reaching movements. In the example described

above, there are 3 segmentation points corresponding to the

change of the variable of interest (see Fig. 4 (b)). The first

two points are identical to the segmentation points ψ1 and ψ2

found by the change in the reference frame. The next point

ψ3 marks a change from a force-based part of the task to a

position based part. The final point ψ4 concludes the motion.

The points are sorted according to the time index when the

segmentation occurred. The information about the variable of

interest is added to the vector ψs = [ts, RFs, ξ
s
d,k].

3) Extraction of the Stiffness Modulation Factor: Deter-

mining the axis-specific relative importance between our two

variables can be done by computing a weighting factor λ that

balances the contribution of the force and position according

to the relevance determined above. Thus, for each dimension

d the value of λd ∈ R
D is given by the normalized difference

between the criterion computed for position and the one

computed for force

λd = C(xd)− C(Fd) (6)

Thus the value of λ becomes a weighting factor for the

controller’s stiffness K. Therefore we can use an impedance

controller for reproducing the motion with the factors de-

scribed above representing continuously constraints, directly

embeddable in the robot’s control.

τ = JT ·RF · (λK(x− x̃) + F ) (7)

The corresponding λ profile for each segment of the motion

is added to the constraints vector ψs = [ts, RFs, ξ
s
d,k, λs]

B. Constraint–based Motion Learning and Execution

In our work, segmentation of the demonstrated data occurs

implicitly whenever there is a change in the extracted task

constraints. This is a natural manner of segmenting as the

points in which either the reference frame or the variables of

interest change, delimit atomic actions (e.g. the force sensed

at the end effector might be relevant in the first part of the

task while after the segmentation point, end effector’s position

could become more relevant). Segmenting and interpreting the

data in a stochastic manner allows regenerating the motion

according to the measures determined to be important as

well as finding optimal control strategies with respect to the

variables of interest (see Table I, Columns 1 and 2).

1) Learning the motion profile: We choose to encode the

motion using a coupled dynamical system approach, as de-

scribed in [1], which allows us to preserve the coupled evolu-

tion of position and orientation towards the target posture, that

was observed in the demonstrations. Each individual variable

is encoded as a non-linear dynamical system of the form

ẋ = f(x), which encodes the mapping between a variable and

its first derivative thus removing the explicit time dependency.

Here x and ẋ ∈ R
D represent the cartesian position and

velocity of the end effector. The function f : R
D 7→ R

D

(initially unknown, but implicit in the demonstrated behavior)

is a continuous and continuously differentiable function stable

only at the attractor
∗

x. The non–linear behavior of function f is

encoded using a mixture of k Gaussians, specified by a vector

θkx = [πkx, µ
k
x,Σ

k
x], representing the parameters of the GMMs

(priors, means, covariance matrices), such that P (x, ẋ|θkx)
represents the dynamics of system 1. Based on this encoding

the velocity ẋ is thus computed as ẋ = E{p(ẋ|x; θkx)}. The

model is learned through maximization of likelihood under

stability constraints (see [1] for details).

In our case the absolute position of the attractor in each

segment is estimated from the initial set ξ0 (in RF0) as

the average of all the points from the N demonstrations,

on each dimension d, at the segmentation time ts, resulting:
∗

xd = avg
1→N

(xd(ts)). The motion is encoded in the attractor’s

reference frame RF∗, such that the attractor becomes
∗

xi = 0.

The attractor has the meaning of a relative positioning with

respect to the reference frame RFi in that segment of the task.

Several attractors can be defined with respect to a single object.

In a grating task for example there are two attractors with

Algorithm 2 CDS [1] motion generation for a segment ψi

CDS motion(Cψi , current robot position, current object position)
if current attractor

∗

x,
∗

r not reached then

% Compute next end effector position
ẋ = E{p(ẋ|x; θkx)};
x(t+ 1) = x(t) + ẋ(t)∆t

% Infer orientation based on current position
r̃ = E{p(r|γ(x); θkc )};

% Compute next end effector orientation
ṙ = E{p(ṙ|β(r − r̃); θkr )};
r(t+ 1) = r(t) + αṙ(t)∆t

end if
% Return next desired position and orientation
return {x(t+ 1), r(t+ 1)}

end
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State Constraints Motion Encoding

ψ1 [ts1 , RF1, F, λ1] Cψ1
= [Cx, θ

k
F , θ

k
λ]

ψ2 [ts2 , RF2, x, λ2] Cψ2
= [Cx, θ

k
λ]

ψ3 [ts3 , RF2, F, λ3] Cψ3
= [Cx, θ

k
F , θ

k
λ]

ψ4 [ts4 , RF1, x, λ4] Cψ4
= [Cx, θ

k
λ]

TABLE I: Final task parametrization for the given example, consisting of
states ψs, the extracted constraints and the corresponding statistical encoding
to be used by the controller in each segment, Cψs .

F
S
M Ψ1 Ψ2 Ψ3 Ψ4 

E
n

co
d

in
g

Start Stop

Fig. 5: Finite State Machine used for executing the task. Each state encodes
the determined constraints. We consider that the order of the demonstrated
actions is implicit for the task flow.

respect to the grating surface: the top (initial point touched on

the grater) and the bottom (after passing the blade).

Similarly we encode the rotation specified by an axis-

angle representation r ∈ R
4, as P (r, ṙ|θkr ), with respect to

an estimated attractor
∗

r. Finally P (γ(x), r|θkc ) represents a

coupling function between the two systems, learned using

maximization of likelihood. During the execution the system

updates the dynamics of system 1 through GMR, second the

coupling is updated and this determines updating the second

system (see Alg. 2).

The model can be further parameterized to control the speed

and amplitude of the robot’s behavior under perturbation, using

two scalars α, β. While in the original implementation in [1]

these parameters are learned from recording good trials and

perturbed demonstrations, here we can estimate them based

on the variance information, such that in regions with high

variability the adaptation is slower than in regions with low

variability. Thus, in the proposed impedance controller, the

reference trajectory for the reaching segments is given by

the learned CDS model. This ensures that the learned model

follows the original dynamics of the demonstrated motion, it

is stable at the target. The synchronous evolution is ensured

through a coupling function. The complete CDS encoding of

the motion in a sub-part of the task is thus specified by the

vector: Cx = [θkx, θ
k
r , θ

k
ξ ,

∗

x,
∗

r, α, β].

2) Learning the force profile: For segments of the task, and

across dimensions in which the force becomes important, we

use GMM to learn a joint distribution of the variables F and x.

We use a model comprising a mixture of K Gaussian compo-

nents, such that: p(F, x) =
K
∑

k=1

(πkF · p(F, x;µkF ,Σ
k
F )), where

πkF , µkF and ΣkF represent the priors, the mean and the co-

variance matrix for the Gaussian model. These parameters are

learned through (EM) Expectation – Maximization algorithm.

The vector θkF = [πkF , µ
k
F ,Σ

k
F ] is added to the Cψs = [θkF ].

During the execution, GMR is used for predicting the force to

be applied based on the current position: E{p(F |x)}. Unlike

the encoding of position, for the force there is no attractor, as

force control is performed along a trajectory. Following the

desired force in the running controller is ensured by a PD

controller.

Algorithm 3 Constraint–based task execution

FSM Execution(ψi, Cψi , i = 1 : s)

do
read robot current position ξd,1 and EE force ξd,2
read objects positions
for all task segments s do

Use current state’s constraints ψs = [ts, RFs, ξdk, λs]

Transform data to RFs
% Compute next desired robot position
{x(t+ 1), r(t+ 1)} = CDSmotion(robot position, object position)
% Determine stiffness modulation based on current position

λ = E{p(λ|x)}
if Force important on dimension d then

% Predict force based on current position
F = E{p(F |x)}

end if
Transform all data back to RF0

Update robot’s motion (according to eq. 7)
Else Go to the next state

end for
until Task completed

end

3) Learning the stiffness profile: We encode the stiffness

modulation factor λ similarly to encoding the force, by learn-

ing a joint distribution p(λ, x) using a mixture of k gaussians.

The model is parameterized by the vector θkλ = [πkλ, µ
k
λ,Σ

k
λ],

representing the priors, means and covariance matrices.

4) Constraint–based Execution: We assume that the flow

of atomic actions is implicit in the demonstration, thus the

reproduction is based on the determined sequence of ψ1:s

points. A finite State Machine containing the inferred states

is generated, as shown in Fig. 5. A state is generated for

each change of constraints and contains: (a) the extracted

constraints, and (b) the learned motion models, as they are

summarized in Table I, Column 3. The transition to the next

state occurs when the attractor of the current state is reached.

The execution of the task based on the extracted constraints

is presented in Alg. 3.

IV. EXPERIMENTS

This approach was validated on a common kitchen task,

grating vegetables, using a KUKA Light Weight Robot (LWR)

with 7 degrees of freedom (DOFs). Two objects were used in

the task: a grater and a bowl. Data was recorded from the robot

at 100 Hz, consisting of: end effector position and orientation

given as an homogeneous transformation matrix (x ∈ R
12),

and external forces estimated at the end effector (F ∈ R
3).

The objects are tracked at 1KHz using an OptiTrack motion

capture system. The objects’ initial position was static, and

the user could move them freely during the demonstration.

A. Task description

The task consisted of several atomic actions, presented in

Fig. 6: reaching from the initial position to the slicer (the

motion takes around 3 to 5 seconds, until the demonstrator

finds a conformable position), a repetitive slicing motion (on

average around 30 seconds), a reaching motion from the slicer

to the trashing container (on average 2 seconds). Typical

demonstration data are presented in Fig. 7.

The variability of the task consisted in:

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to IEEE Transactions on Robotics. Received: November 8, 2013 04:55:04 PST



8

(a) Reaching the grater (b) Grating the whole

vegetable

(c) Trashing the remains

Fig. 6: Atomic actions in the Vegetable Grating Task. The user demonstrates
the whole task at once, using different starting configurations of the objects
and the robot.

1) Starting each demonstration from a different initial po-

sition of the robot, and placing the objects in different

positions in the reachable space of the robot (we recorded

data for 3 different positions of the objects, placed on

average 30, 45 and 65 cm apart from the initial position);

2) Using vegetables of different sizes and types (we recorded

data for 3 types of vegetables (carrots, zukinis and

cucumbers). The vegetables varied in length, from a

minimum of 10 cm for a carrot to a maximum of 35

cm for a cucumber, and with about 2 cm in diameter);

the variability of the manipulated object affected the force

applied by the user when providing demonstrations and

the duration of the demonstration. The task lasted until

the vegetable was fully grated;

3) inherent user variability between demonstrations.

A total of N = 18 demonstrations were recorded, 6 for

each vegetable type, using 3 different objects positions and

orientations.

B. Extracted Constraints

For extracting the task constraints we evaluated the 3D

measurements of position and force projected in the reference

frame of each object (see Fig. 8). For each dimension we

computed the variance over trials and averaged over a time

window (see Fig. 9), and the criterion, computed according to

the equation 5. Following the approach described in Section

III, the criterion on each axis was evaluated in a time window

of width w = 200 time steps (2 seconds) for determining

the reference frame (see Fig 10 (a)). This resulted in one

segmentation point. The motions of reaching and grating were

expressed in the reference frame of object 1, the grater, and

the motion of reaching the trash container was expressed in

the reference frame of object 2, the bowl.

Similarly, we evaluated the criterion on each dimension,

using a time window of width w = 300 time steps (3 seconds)

for determining the variable of interest (see Fig. 10 (b)). The

results showed that the force on the vertical axis became

important in the second part of the task (grating and trashing),

while only position was important in the first part of the

motion (corresponding to reaching the grater). The change in

the variable of interest determined a new segmentation point.

A final point concludes the motion.

0 500 1000 1500 2000 2500 3000
− 15

− 10

− 5

0

5

Estimated External Force at the EF [N]

Time steps

F
o

rc
e

 [
N

]

Fx [N] Fy [N] Fz [N]− 1
− 0.5

0
0.5

0

0

1

x [m]

Robot Cartesian Position

y [m]

z
 [

m
]

Reaching Grating Reaching

Fig. 7: Typical data obtained from a human demonstration, for the whole
duration of the task: robot’s cartesian position (left) and the sensed end effector
force (right). Vertical lines were manually added to highlight the 3 parts of
the task: reaching the grater, grating and reaching the trash.

C. Task execution

Three segmentation points ψs were determined for this task

(see Fig. 11 (a)), involving 3 different states: (1) reaching using

a position-weighted controller expressed in the RF of object

1, (2) grating using the RF of object 1 and (3) reaching for

the trash bowl using the reference frame of object 2. Two

attractors were determined relative to the grater: one near

the handle (Grater Top); and one at the bottom of the grater

(Grater bottom), after passing over the blade. Similarly at the

end of the motion the positioning was relative to the trashing

bowl. This allowed us to have an attractor based encoding of

the task. A finite state machine was generated as described

in Section III-B4, see Fig. 11 (b). For evaluation purposes

the number of times the grating should be performed was

added as an additional condition for the transition to the next

state. The advancement of the FSM happened when the current

attractor was reached, or when the number of grating passes

was completed.

D. Framework Evaluation

We performed two different assessments with respect to (1)

the correct extraction of task constraints; and (2) the ability of

the system to generalize to new object locations and different

vegetables.

1) Evaluation of the extraction of constraints: We validated

whether the model had correctly extracted the dimensions

onto which to provide either force or position control, by

comparing the robot’s quantitative performance in executing

the task when using the proposed approach or other simple

control schemes.

For evaluating the framework we compared our approach

with standard control modes: a position controller and an

impedance controller with fixed stiffness values. For these

two control modes, 5 different demonstrations were pro-

vided (Di, i = 1..5), using gravity compensation mode (gcp)

and robot’s execution was evaluated during motion replays

(Ri, i = 1..5) in the different setups: position control (pos)

and impedance control (imp). The performance under these

control modes was compared to the developed approach (amp).

Several replays were performed for each demonstrated motion.

We constantly compensated for the decrease of the vegetable’s

height, during replays. Each group of 1 demonstration fol-

lowed by 5 replays were performed on the same vegetable. A

single vegetable type was used, and the task was demonstrated

using 5 passes over the grating surface during each trial.
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Fig. 8: Data recorded from demonstrations with the variance envelope. Data were aligned using DTW and projected in the reference frame of the two objects:
the grater (RF1) and the bowl (RF2). Vertical lines were manually added to highlight the parts of the task.
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Fig. 9: The variance of the considered variables (Position and Force with respect to the two objects), averaged over a time window, and the corresponding
criterion.
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axis was analyzed with a time window (in this casew = 200 time steps). The reference

frame was given by the object for which the maximum number of data points were

found in the time window. One segmentation point (ψ1) was created at this stage and

corresponded to starting a reaching motion towards the trashing bowl.
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interest on any axis determined a segmentation point. Here a point was created (ψ2)
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to the object). This corresponded to the beginning of the grating motion.

Fig. 10: The extraction of constraints for the Vegetable Grating Task.
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(b) The finite state machine used for task execution

Fig. 11: Information used in the task encoding.
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Trial 1

D1 gcp

1
0

0

4

6
0

2
1

.0
0

1
4

.5

8
.4

4
2

.0
6

5 100

R1 pos 1 1 20

R2 imp 2 3 60

R3 imp 3 2 40

R4 imp 4 4 80

R5 imp 7 4 80

Trial 2

D2 gcp

7
4

7

4
8

2
1

.6
2

1
1

.5

7
.4

3
5

.6
5

5 100

R1 pos 2 1 20

R2 imp 2 2 40

R3 imp 5 3 60

Trial 3

D3 gcp

7
4

9

4
3

3
1

.0
8

1
0

.0

6
.5

3
5

.0
0

5 100

R1 pos 1 1 20

R2 imp 7 4 80

R3 imp 6 4 80

Trial 4

D4 gcp

9
0

6

5
5

1
7

.7
8

1
3

.0

7
.5

4
2

.3
0

5 100

R1 pos 0 0 0

R2 imp 5 4 80

R3 imp 3 2 40

R4 imp 1 1 20

R5 imp 1 1 20

Trial 5

D5 gcp

8
3

6

5
2

1
8

.0
7

1
3

.2

9
.7

2
6

.9
2

5 100

R1 pos 0 0 0

R2 imp 2 2 40

R3 imp 1 1 20

R4 imp 1 1 20

R5 imp 5 4 80

Trial 6

DN gcp

9
2

7

5
6

3
5

.8
6

1
3

.5

7

4
8

.1
5

5 100

R1 amp 4 4 80

R2 amp 5 4 80

R3 amp 8 5 100

R4 amp 9 5 100

TABLE II: Evaluation of the control modes. For Trials 1 - 5 we compared
the demonstrated motion Di provided using the robots gravity compensation
mode (gcp), with a standard position control mode (pos), and with an
impedance controller with fixed stiffness (imp). Trial 6, illustrates the perfor-
mance of the proposed controller, learned from the N = 18 demonstrations
(amp).

For all the trials we measured: the original and final weight

of the vegetable (winit, wfin[g]); the original and final height

(hinit, hfin[cm]). The original values were measured before

the demonstration was performed, while the final values were

measured at the end of the last replay round. For each round

of demonstration and replay we measured the weight of the

grated part (∆w[g]) with a precision of ±1g and counted the

number of successful passes (SP).

We evaluated the task performance with respect to the

following computed measures:

1) wratio[%] the ratio of the grated vegetable (wgrated =
∑

∆w) as a percentage of the initial weight. Note that

the value of the winit −wgrated was often different than

the final weight (wfin) as the vegetable could break in the

grating process. The broken part was not accounted for

in the grated weight (∆w), but was reflected in a lower

final weight.

2) hratio[%] the percentage of the vegetable length being

grated (hinit − hfin) with respect to the initial length.

3) SPratio[%] the percentage of successful passes (SP) out

of the total passes performed.

Fig. 12: Problems encountered when using standard control modes, mostly
due to the size variation in the vegetable (from left to right): robot missed the
grating target, incomplete slicing, high force applied, causes the vegetable to
bend or break.

Fz

x

y
z

v
x

Fz

x

y

z

vx
Fz

x01

yo1

zo1

vx

D1 x02

yo2

zo2

D2

Fig. 13: The change of RF with respect to object’s location.

Results are presented in Table II. Using a standard position

controller (Trials 1 - 5) for replaying the motion gave good

results in a very low number of cases: mean (M) = 12% and

standard deviation (SD) = 10.95 successful passes, while the

amount of vegetable grated was bellow one gram per trial

(M = 0.80g, SD = 0.83). When replaying the recorded motion

using an impedance controller the number of successful passes

increased (M = 52.5%, SD = 25.16).

These results were compared against the proposed approach

(see Table II, Trial 6), using the parametrization learned

from the initial 18 demonstrations. The grating performance

was assessed using the same performance metrics as for the

standard control modes. The overall performance was better

with respect to the amount of grated vegetable, and the number

of successful passes. Common problems encountered when

using standard control modes are presented in Fig. 12.

2) Evaluation of the generalization ability: We tested

whether the automatic segmentation of the task and the extrac-

tion of RF was correct and led to a correct reproduction when

the position of the objects was changed. The robot regenerated

the complete sequence and managed to complete the overall

task comprising the 3 segments even when the objects were

located in arbitrary positions and orientations, none of which

were seen during training.

The importance of being able to change the reference frame

is illustrated in Fig. 13, when using different positions and

orientations of the two objects. In this case we performed a

pure qualitative assessment by placing the objects in random

positions and orientations in the robot’s reachable space,

and using different vegetables (see Fig. 14). We measured

the number of successful passes over the grater’s surface.

Similarly we tested the functionality over a larger grating

surface.
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Fig. 14: Generalization to different grating surfaces and vegetables, while the
position and orientation of the grater were changed.

V. DISCUSSION

Our approach of extracting continuous soft constraints from

human demonstration was tested on a cooking task encompass-

ing 3 segments. The proposed method extracted the necessary

information for performing the task and encoded the task flow

without any prior knowledge. The task was reproduced from

a time independent encoding, using an impedance controller

parameterized by the continuous constraints.

From a Human-Robot Interaction (HRI) perspective, this

method can facilitate teaching interactions as it allows the user

to demonstrate the whole task rather than individual actions.

A fragmented representation can be demanding when the user

has to actively teach the robot how to perform the task. As

multiple demonstrations are required for generalization, it is

more convenient for the user to demonstrate the whole task,

rather than individual actions, such as reaching movements.

We further discuss 3 aspects that could influence the be-

havior of our approach: (1) the number of variables accounted

for when extracting the constraints, (2) the window size for

analyzing the data and (3) the resulting criterion and the

possibility to generalize a learned task to a new context.

a) Influence of other variables on segmentation points:

The approach presented above can be extended by taking into

account other variables. We computed the variance over trials

and time window for 2 other measures: the torques sensed at

the end effector, and the end effector velocity (a total of k = 4
variables). The analysis, using the same approach presented in

Section III, shows that using the extra information provided by

the velocity, or torque data does not significantly modify the

segmentation points. The new segmentation points (see Fig.

15) roughly correspond to the ones determined before.

b) Choice of window size: In the current implementation

the window size was chosen by the user as being the minimum

time duration for observing noticeable changes in the task

flow. The size of the window might influence the number and

location in the data of the segmentation points obtained. We

do not yet have an automatic way to determine the optimal

time window, although it would be relatively straightforward

to implement the heuristic described previously. This would

however require to set a threshold of the minimum amount

of change across all variables to determine the minimal time

window and hence introduce yet another open parameter.

c) Task Generalization: We tested the developed con-

troller for a different grating surface and a softer vegetable.

This resulted in proper grating, as shown in Fig. 14. However
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Fig. 15: Segmentation points and controller type obtained when accounting
for 4 variables: end effector position, force, torque, and velocity.

in the current implementation the choice of modeling the force

as conditioned on the position was ad-hoc, prior information.

Future work will extend this approach to learn and extract

automatically that there is a correlation between these two

variables and the directionality of the correlation.

VI. CONCLUSIONS

The presented approach for extracting task constraints takes

advantage of the existing variance in the demonstrated data,

and proposes a criterion for detecting regions of coherence

across demonstrations. Objects upon which an action was

performed are determined. The action is further encoded in

the local frame of reference, in a time independent manner,

preserving the task flow of actions.

In particular, we compared different measurements (like

position and force) and modulated their contribution to the

controller used in reproducing the motion, by using a weight-

ing factor that adapts the robot’s stiffness. Also by weighting

the relative importance of each of the task variables when

expressed in the reference system of the objects involved in

the task we can determine the suitable reference frame to be

used in each segment. Finally a set of segmentation points

were obtained by splitting the motion whenever a change in

the reference frame or in the variables on interest occured. The

approach was validated on a kitchen task (grating vegetables),

achieving good generalization results.

The advantages of using this segmentation and feature

extraction method are firstly decreasing the task complexity by

focusing on learning just the variables that are important for

each region of the task (i.e. encode just end effector position

for a reaching motion vs. accounting for position and force

in manipulation sub-tasks) and secondly achieving efficient

generalization when the position of the objects is changed.
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ABSTRACT

Humans perform tasks such as bowl mixing bi–manually,
but programming them on a robot can be challenging spe-
cially in tasks that require force control or on-line stiffness
modulation. In this paper we first propose a user-friendly
setup for demonstrating bi–manual tasks, while collecting
complementary information on motion and forces sensed on
a robotic arm, as well as the human hand configuration and
grasp information. Secondly for learning the task we propose
a method for extracting task constraints for each arm and
coordination patterns between the arms. We use a statistical
encoding of the data based on the extracted constraints and
reproduce the task using a cartesian impedance controller.

Categories and Subject Descriptors

I.2.9 [Robotics]; I.2.6 [Learning]: Knowledge acquisition;
H.5.2 [User Interfaces]: Interaction styles

General Terms

Robot Learning

Keywords

Programming by demonstration; Task constraints extraction

1. INTRODUCTION
Daily activities, such as dish washing or preparing a meal,

require completing tasks that are implicitly bi-manual. A
challenge in programming such tasks is accounting for all
the task variables, for the motion of each arm, as well as for
their coordinated behavior. Here we take a Programming
by Demonstration (PbD) approach in which a human can
directly demonstrate the task, and propose a method for
determining and encoding bi-manual coordination patterns.

We exemplify this on a task (stirring in a bowl, as shown
in Fig. 1) that requires completing a sequence of actions

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

HRI’14, March 03–06, 2014, Bielefeld, Germany.

ACM 978-1-4503-2658-2/14/03...$15.00

http://dx.doi.org/10.1145/2559636.2559844.

D
e

m
o

n
st

ra
ti

o
n

S
e

tu
p

 1

S
e

tu
p

 2

Extracted Constraints

Glove Data Glove Data Robot Data

Suitable

Grasp

Suitable 

Grasp

Uni-manual

Constraints

Uni-manual

Constraints

Coordination

Constraints

Synchronize

Motion features

Robot Data

Figure 1: The two setups used in the demonstration phase. We
alternate between the active/passive arms in the tasks, and record
complementary information from the glove and robot arm.

for each arm. According to a taxonomy of bi-manual ac-
tions proposed in [6], the task subparts can be described as:
(1) a discrete reaching motion from the initial position of
each arm to the proper configuration to start mixing; (2)
an asymmetrical coordinated motion, in which one arm is
actively stirring while the other is passively assisting; (c)
an uncoordinated reaching back action. The stirring action
requires coordination not only in arm movement, but also
with respect to the force and stiffness applied by each arm.
To be able to record the interaction forces perceived on

each hand in coordination and in conjunction with measure-
ments of the arm and finger displacement, we developed an
experimental setup displayed in Fig. 1 (see Section 3 for a
description). We analyze the demonstration data and ex-
tract (1) continuous constraints for each arm, consisting of
the variables of interest in each part of the task, expressed
in the local frame of reference of the object on which we
perform manipulation and a stiffness modulating factor; (2)
coordination patterns between the variables of interest in
each part of the motion. We represent the motion using
a time independent statistical encoding which allows using
the extracted features as continuous task constraints that
can be embedded online in the robot’s motion. For repro-
ducing the task on a bi–manual robotic platform we use a
cartesian impedance controller for each arm, parameterized
with the extracted constraints.

2. RELATED WORK
In our previous work [1], we proposed a method for en-

coding arm–motion in discrete bi–manual tasks based on de-
termining key postures during the demonstration. However



in the present work we focus on tasks that require coordi-
nated force control. We determine continuous constraints
that apply throughout the task or in parts of the task.

For each arm we extract task constraints using the method
prosed in [7], based on analyzing the variance in the data.
We extend this approach to determine arm dominance (i.e
the relative importance of each arm). We further encode the
whole task as a sequence of states describing each action.
Alternative representations are graph-based [2], or Markov-
model based [5].

3. METHOD
To execute the task on a robotic platform we consider a

cartesian impedance controller for each arm, given by τ =
JT · RF · (λK(x − xd) + F ). The desired position xd ∈
R

3, the force to be applied F ∈ R
3, and a factor λ ∈ R

3

that modulates the arm’s stiffness K, are extracted from
demonstration (as explained below) and are expressed in
the local reference frame of the object of interest RF .

To demonstrate the task we designed a setup as shown in
Fig. 1, in which the user can perform the task by kinestheti-
cally guiding the robotic arm with one hand and by wearing
a data glove on the other hand. This particular configu-
ration has two main advantages: (1) it makes it easy for
the user to provide demonstrations (i.e. rather than han-
dling multiple degrees of freedom from two robot arms); (2)
it allows simultaneously recording complementary informa-
tion: end effector cartesian positions (xR ∈ R

3) and forces
(FR ∈ R

3), from a KUKA LWR arm; hand configuration
(θG ∈ R

23 joint angles), and wrist position (xG ∈ R
3) from

the data glove. Additionally we recorded the object’s carte-
sian position (xo ∈ R

3) using an Optitrack vision system.
The user performed the task in two phases, by alternating

the roles of the active and passive hands. This allowed us to
record both robot data and glove data for both the active
and the passive arm. We recorded N = 6 demonstrations in
each phase. We aligned the recorded data using Dynamic
Time Warping (DTW). The final data set for phase 1 is ξ1 =
{xAR, F

A
R , x

P
G, θ

P
G, xo}, where the upper indices refer to the

hand performing an active (A) or passive (P) task. Similarly
a data set ξ2 is obtained in the second phase.

Uni-manual constraints.
To extract the constraints of each arm, we consider for

each phase i = 1..2, a subset ξiR = {xR, FR} of ξi. The
glove wrist position xG is used for aligning the robot motion
in the two phases. We analyze the robot data in the refer-
ence frame of the object (i.e. the bowl), as described in [7].
For each recorded variable (position and force), across each
dimension, we compute a criterion based on the observed
variance in the data [7]. This allows us to compare in a
relative manner variables of different types. We consider at
each time step the variable of interest to be the one with the
maximum computed criterion. When this changes a segmen-
tation point is created, resulting in a set of states ψs. For
the current task representation see Fig. 2. The arm motion
in each segment is encoded as a non-linear dynamical system
[4]. The force components are encoded in a Gaussian Mix-
ture Model (GMM) as a function of position. We compute
a stiffness modulation factor λ as the difference between the
criterion computed for position and the one computed for
force on each axis. Additionally for each state we determine
a corresponding hand configuration θG,s.

Arm 1

Arm 2

Reaching

Reaching

Holding – passive arm

Mixing – active arm

Reaching

Reaching

Time [s]0 25

1


2
 3

End-state

coupling

Action

coupling

No

coupling

Figure 2: The identified motion segments for each arm, and corre-
sponding coupling.

Bi-manual coordination.
Comparing the obtained criteria between the two arms

allows us to determine at each time step which arm is domi-
nating in either position or force applied in the task. This is
similar to results on human subjects showing that the arms
can change the active and passive roles during manipulation
and this is caused by a force-motion relation, rather than
prior knowledge or routine in executing the task [3].
Hand dominance thus influences the way we model the

task subparts. For the active arm we encode the motion
and force profile as described above. However for the pas-
sive arm the motion is insignificant, while the forces sensed
on the arm are reaction forces responsible for keeping the ob-
ject in place. Therefore we choose to encode using a GMM
model its force p(FP

R , F
A
R ), and stiffness profiles p(KP

R , F
A
R )

as dependent on the forces sensed on the active arm. This
allows the passive arm to apply compensating forces to the
ones applied by the active arm.

4. CONCLUSION AND FUTURE WORK
We presented a procedure for recording bi–manual demon-

strations that reduces user’s effort and maximizes the ob-
tained information. We analyze the data to extract con-
straints for each arm and encode coordination patterns.
Future work involves determining a two levels encoding

of the task: (1) skill level as general knowledge about the
action, and (2) task level, as a parametrization of the learned
skill. This enables policy reusability for similar tasks, such
as stirring in a bowl of dough, and applying the same skill
for stirring coffee.
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Learning Object-level Impedance Control for Robust Grasping and

Dexterous Manipulation

Miao Li1, Hang Yin1, Kenji Tahara2,1 and Aude Billard1

Abstract— Object-level impedance control is of great impor-
tance for object-centric tasks, such as robust grasping and
dexterous manipulation. Despite the recent progresses on this
topic, how to specify the desired object impedance for a given
task remains an open issue. In this paper, we decompose
the object’s impedance into two complementary components–
the impedance for stable grasping and impedance for object
manipulation. Then, we present a method to learn the desired
object’s manipulation impedance (stiffness) using data obtained
from human demonstration. The approach is validated in two
tasks, for robust grasping of a wine glass and for inserting a
bulb, using the 16 degrees of freedom Allegro Hand mounted
with the SynTouch tactile sensors.

I. INTRODUCTION

Robust grasping and dexterous manipulation are two of

the most important capabilities that a robot is expected

to have. The main characteristic of a robust grasp is its

ability to comply with external perturbations applied to the

grasped object while still maintaining the grasp. In dexterous

manipulation, the robotic hand, mainly the fingertips, have

to physically interact with the object in order to move it to a

desired configuration. In both scenarios, appropriate grasping

forces need to be applied on the grasped or manipulated

object, either to keep the grasp stable under perturbation or

to move the object to a desired configuration.

To this end, various control algorithms have been proposed

and ported to control multi-fingered robotic hand. These can

be roughly divided into two groups. The first group encom-

pass hybrid position/force control approaches that modulates

the force explicitly to manage the interaction imposed by the

environment [1], [2], [3]. Another group uses impedance con-

trol to regulate the interaction force implicitly by specifying

the impedance of the grasped object [4], [5], [6]. [7]. In gen-

eral, the hybrid position/force control is more precise when

controlling simultaneously the force and position. The main

deficiency of hybrid control is the transition between position

and force control when the contact state varies between non-

contact and contact. A small delay in this transition may

lead to a very large overshot contact force. In addition, the

selection of accurate grasping forces for hybrid control that

fulfil the friction constraints and task requirements is still a

difficult planning problem [3]. In impedance controller, the

object motion is realized by a desired object impedance that

1M. Li, H. Yin and A. Billard are with LASA, École Poly-
technique Fédérale de Lausanne (EPFL), Switzeland {miao.li,
hang.yin,aude.billard}@epfl.ch

2K. Tahara is with Faculty of Engineering, Kyushu University,
744 Moto’oka, Nishi-ku, Fukuoka 819-0395, Japan. He is
currently a visiting scholar at LASA. tahara@ieee.org,
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Fig. 1: The obejct-level impedance for robust grasping and dexterous
manipulation are learned from human demonstration.

generates force to move the object to a desired configuration.

It has the advantage that it will converge to the desired

position in free motion and a stable equilibrium position in

the case of interaction with the environment. This merit can

be greatly beneficial for both robust grasping and dexterous

manipulation. Therefore, we restrict the rest of this review

to impedance controllers only. In [8], a fingertip Cartesian

stiffness controller was introduced using fingertip force sen-

sor. However, the stiffness controller can not actively control

the whole system dynamics. To overcome this defect, Liu

and Hirzinger [9] proposed a Cartesian impedance controller

for the DLR hand based on the joint torque measurements.

While these two controllers are in the fingertip Cartesian

space, object-level impedance controllers are proposed by

directly specifying the desired impedance in the object frame,

which are usually more suitable for robust grasping and

dexterous manipulation of an object. In [4], an object level

impedance controller has been proposed for a multi-arm

manipulator to directly control the internal object forces and

compensate the system dynamics. The object is assumed to

be rigidly grasped that can transmit bilateral contact forces

between the fingertips and the object. Wimbock et al. [5],

[7] recently presented their experimental evaluation of an

intrinsically passive controller for multi-fingered hand, where

the damping parameters are designed and implemented as a

function of the object effective inertia and stiffness matrix.

A similar impedance controller was also proposed in [6] and

[10] by defining a virtual frame which depends only on the

fingertip positions. The damping parameters are designed in
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both the finger joint space and the object frame.

However, despite all the above-mentioned progress, one

critical issue still remains unaddressed: how to specify the

proper impedance for a given task? The specification of

impedance is known as a difficult problem as it depends

on the task at hand as well as the kinematic and dynamic

limitation of the robot [11], [12]. Moreover, the impedance

parameters may need to adapt to the task requirements or to

variation in the environment, such as the bulb replacement

task that the torsional resistance increases greatly during the

last phase of the task. To this end, sensor feedback should be

taken into account to monitor the status of task’s completion

and to vary the impedance accordingly.

In this paper, we attempt to address this problem by learn-

ing the impedance from human demonstration. In the fol-

lowing Section II, some related works regarding impedance

specification are summarized. In Section III, an object-level

impedance controller is reformulated. In Section IV, methods

for learning impedance from human demonstration for robust

grasping and dexterous manipulation are presented. Experi-

ments on a multi-fingered robotic hand are demonstrated and

discussed in Section V. Finally, we give a conclusion and an

outlook on future work in Section IV.

II. RELATED WORK

a) Analytical Impedance Specification: In one of their

early works, Mason and Salisbury [8] used the congruence

transformation to obtain the desired object stiffness from

joint stiffness. Based on this work, Cutkosky and Kao [13]

expressed the compliance of a grasp as a function of grasp

geometry, contact conditions and mechanical properties of

the fingers. In order to choose the grasp compliance for

a given task, Shimoga and Goldenberg [14] formulated a

concept termed Grasp Admittance Center, which is the origin

of a frame that impedance matrices will be diagonal. Also, A

qualitative method has been developed to choose the relative

magnitude of the impedance parameters for a set of tasks. In

[15], [16], Kim et al. analysed the compliance characteristics

for different tasks by considering the grasp geometry, which

is the relation between the operational space and the fingertip

space of multi-fingered hand. Their analytical results show

that the non-diagonal terms in impedance matrices can not be

specified arbitrarily and they also used a qualitative method

(small and large value of stiffness) to specify the impedance

parameter.

b) Impedance Learning: Learning of tasks is another

approach by which desired impedance parameters can be

specified. In [17], the impedance learning problem is for-

mulated as a model-based reinforcement learning problem,

where the impedance parameters can gradually change to

improve the task performance. In [18], the authors ac-

complished a variable impedance controller with a model-

free, sample-based reinforcement learning method. However,

the reinforcement function needs to be carefully defined

to capture the essence of the task, which will be difficult

for complex tasks, such as dexterous manipulation. Sikka

and McCarragher [19] presented a method that can learn

extf

H

VF

,1ff
,2ff

,3ff

Fig. 2: An object grasped by 3 fingers. The object impedance and grasp
impedance are shown as springs. The ff,i, i = 1, 2, 3 are the contact forces
on each fingertips. fext is the external perturbation force. The frame H and
VF are the inertial frame and the virtual frame, respectively.

the robot end-point stiffness of contact tasks from human

demonstration. An online, incremental algorithm has been

proposed in [20] to learn varying end-point stiffness from

human demonstration. For a multi-fingered robotic hand, a

implicit compliant controller [21] is learned to adapt the

grasp under perturbation, which actually mapping the finger-

tips tactile response to finger joints. However, this method

is hand dependent and difficult to generalize to manipulation

tasks.

As discussed in [22], the tasks for multi-fingered hand

are usually object-centric. In these cases, learning an object-

level impedance is more suitable and can be easily applied

to other hands. In this paper, we extend the object-level

impedance controller in [10] with tactile feedback and object-

level impedance learned from human demonstration.

III. OBJECT-LEVEL IMPEDANCE CONTROL

In this section, we will reformulate the object-level

impedance controller proposed in [10], which is mainly

composed of two parts, a stable grasp controller and an object

manipulation controller.

A. Object Manipulation Impedance

Following the formulation of impedance control in [11],

the dynamics of the object, as shown in Fig. 2, is governed

by the equation:

ff,o + fext = M0ẍ (1)

where ff,o is the summation of manipulating forces ff,oi
exerted on the object from each fingertip, fext is the ex-

ternal perturbation force. All the forces are expressed in the

inertial frame. M0 is the actual inertia matrix and x is the

position and orientation of the object. Usually, the position

and orientation are controlled independently [10]. Here for

simplicity, we put position and orientation in one vector x

to introduce the controller.

The objective of impedance control is to modulate the

interaction between the object and the environment by con-

trolling the contact forces. The desired interaction of the

system is given by:

fext = M ẍ+D(ẋ− ẋr) +K(x− xr) (2)
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where xr, ẋr is the reference trajectory and M,D,K are the

desired apparent inertia, damping and stiffness, respectively.

From equation (1) and (2), we can derive the object-level

impedance control law given as:

ff,o = ED(ẋr − ẋ) + EK(xr − x) + (E − I)fext (3)

where E = M0M
−1 and I is the identity matrix. In practice,

it is often sufficient to keep the inertia unchanged, i.e.,

M0 = M and only shape the stiffness and damping. Then

the equation (3) can be simplified as:

ff,o = D(ẋr − ẋ) +K(xr − x) (4)

B. Stable Grasping Impedance

Up to now, only the object manipulation impedance has

been considered. In order to make the grasp stable during ma-

nipulation, we need to design a stable grasping impedance,

which can be used to change the grasping forces. In our

paper, the contact model between the object and the fingertips

is assumed to be point contact with friction, which can

only transmit contact forces. Therefore, we only use one

translational spring connecting each fingertip and the origin

of the object (virtual) frame to represent the stable grasping

impedance (stiffness), as shown in Fig. 2. The grasping

forces can be expressed as:

ff,gi = Kgi(‖∆pi‖ − Li)
∆pi

‖∆pi‖
(5)

where ff,gi and Kgi are the grasping force and stable

grasping stiffness at i-th fingertip. ∆pi = po−pi with pi as

the position of contact point on i-th fingertip and po as the

position of the object frame origin. Li is the desired distance

from the i-th fingertip to the object frame origin.

C. Implementation Issues

A rigorous implementation of the controller will require

a lot of computational load [23]. To reduce it, the finger

dynamics is not compensated and thus joint torques at each

finger can be obtained from a simple Jacobian transpose.

τ f,i = JT
f,iff,i (6)

where τ f,i are the joint torques at i-th finger and Jf,i is

the Jacobian of the i-th finger. The contact force can be

computed as: ff,i = fo,i + fg,i. The more rigorous way to

compute the contact force using grasp mapping can be also

use here [7], which is also more computational expensive.

In order to implement this controller, we need to address

the following issues: (1) measure the object position and

orientation x; (2) design the reference trajectory xr, ẋr;

(3) choose the impedance parameters K and D. While (1)

will be discussed in the remaining part of this section by

introducing a Virtual Frame, the method to deal with (2) and

(3) by learning from human demonstration will be presented

in the next section.

D. Virtual Object Frame

Due to the occlusion of the hand, it is still very difficult

to rely on vision to obtain the actual object position and

orientation in the controller. To deal with this, the concept

of Virtual Frame (VF) is adopted here, which is a function of

all the contact points between object and fingertips. Virtual

frame (VF) can be used to estimate the real object position

and orientation if we assume that relative contact points

between object and fingertips do not change 1. Different from

the definition in [10], the VF in this work is the function of

real contact point on each fingertip, which can be obtained

from tactile feedback. In our work, we only use three fingers,

the origin of VF is:

po =
1

3

3
∑

i=1

pi (7)

The orientation of the frame is defined in the following way:

Ro = [rx, ry, rz] ∈ SO(3) (8)

rx =
p3 − p1

‖p3 − p1‖

rz =
(p3 − p1)× rx

‖(p3 − p1)× rx‖

ry = rz × rx

With the defined VF, one can compute the translation and ro-

tation difference between the VF and the desired or reference

frame. Thus, from equation (4), (5) and (6), the desired joint

torque for each finger can be calculated. For more details

about the implementation, one can refer to [10].

IV. IMPEDANCE LEARNING FROM HUMAN

DEMONSTRATION

In this section, methods about how to specify impedance

for robust grasping and dexterous manipulation will be

presented.

A. Relative Impedance for Robust Grasping

A robust grasp should be able to comply with external

perturbation from any directions. But in different directions,

the extent of compliance will depend on the grasp configura-

tion as well as the task requirement. For instance, grasping

a screwdriver as a tool and grasping a pen to write will

require totally different levels of rotational compliance along

the axial direction.

Our method of impedance selection for robust grasping

is quite intuitive: the object stiffness in one direction is

inversely proportional to the variance of displacement un-

der perturbation in the corresponding direction. From this

assumption, we can learn the relative stiffness for robust

grasping in different directions from human demonstration.

This idea has also been utilized to learn the end-point stiff-

ness for a single manipulator [20]. During the demonstration,

an object is grasped by a human demonstrator with eyes

closed. To mimic the fact that our controller will use solely

1This assumption will neglect the rolling and slipping effects.
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proprioceptive and tactile information, with no vision. The

grasped object is perturbed by another person randomly and

the displacement of the object is recorded {xi, i = 1...N}.

Then the object stiffness can be specified as follows:

K = α{
1

N

N
∑

i=1

(xi − xr)(x
i − xr)

T }−1 (9)

where α ∈ R
+ is a ratio parameter that needs to be set

manually and xr ∈ R
6 is the object initial (and desired)

position and orientation.

Besides stiffness specification, object workspace mod-

elling is also very important for robust grasping as it de-

termines the extent of motion of a grasped object during

perturbation. However, the workspace of a grasped object

will depend on the hand kinematics and the grasp configu-

ration. To this end, we teach the robot the extend to which

it can stretch its fingers through kinaesthetic demonstration,

by back-driving the fingers, see Fig. 3. All positions and

orientations adopted by the hand during the demonstration

are used to build a probabilistic model of the workspace of

the hand. The use of a probabilistic model is advantageous

as it accounts for the imprecision of the recording and allows

to generalize outside the demonstrations. The latter is partic-

ularly important since demonstrations may not be exhaustive

and may not explore all possible postures. Here, we use

Gaussian Mixture Model (GMM). A GMM is a probabilistic

model of density function composed of K Gaussian compo-

nents. The likelihood of each position/orientation under this

model is given by:

p(x) =

K
∑

k=1

πkN (x|µk,Σk) (10)

where πk is the prior of the kth Gaussian component and

N (µk,Σk) is the Gaussian distribution with mean µk and

covariance Σk. A new VF, computed using Eq. (7) (8),

is said to lie in the object’s workspace if its likelihood to

belong to the model is greater than a fixed threshold, i.e.

p(x∗) > Lthresh. This threshold, in our experiment, is quite

conservative and is set as no more than 2 standard deviation,

which means that about 95.45% training position/orientation

of VF will be covered by the learned GMM. For more details

about the parameters selection for training GMM, one can

refer to [24].

With the object workspace model, one can design a desired

reaction behavior to improve grasping stability, eg., increase

object stiffness gradually when the object is approaching

boundary of learned working space. This could be achieved

in our model by increasing the ratio parameter α in equation

(9). This would however increase stiffness by the same

amount in all directions. It may often be useful to be able

to shape this increase along particular directions, such as

the direction the moves the object farthest away from the

workspace’s boundary.

B. Variable Impedance for Dexterous Manipulation

In the case of robust grasping, the reference frame can

be easily set as the initial position and orientation, which

(a) (b)

Fig. 3: (a) Human teaching of object workspace. The object impedance are
set to zero in all directions during the demonstration, which means human
can move the object freely in its workspace. (b) The position and orientation
of VF are recorded and trained using GMM. Here is shown the trained result
in the subspace of VF position. The red surface is the iso-surface with the
same threshold likelihood Lthresh

does not vary with time. For dexterous manipulation, a time-

varying reference trajectory xr, ẋr will be required. In this

section, we will present a method that learns the reference

trajectory and the desired object impedance simultaneously.

The objective of human demonstration is to model the

interaction between the object being manipulated and the

environment. Thus, during the demonstration, at each sample

instant i, i = 1...Ns, the motion of the object {x(i), ẋ(i)}
and the sum of manipulating forces ff,o(i) applied on the

object are recorded2. Consider t = 1...Nt consecutive sam-

ples of data obtained over a short time window. Assuming

the impedance parameters and reference trajectory remain

constant over this time window, the relationship between the

object motion and the force exerted on object is given by:

ff,o(i) = D(ẋr − ẋ(i)) +K(xr − x(i)), i = 1...Nt; (11)

During each time window, since we assume that the object’s

impedance parameters and the reference trajectory are not

changing with time, they can be obtained by minimizing the

following objective function:

min:
D,K,ẋr,xr

Nt
∑

i=1

‖ff,o(i)− {D(ẋr − ẋ(i)) +K(xr − x(i))}‖2

(12)

In practice, the term from damping is usually ignored by

assuming that the desired velocity trajectory is the same as

the measured one and thus equation (12) can be simplified

as:

min:
K,xr

Nt
∑

i=1

‖ff,o(i)− {K(xr − x(i))}‖2 (13)

One should note that the assumption that object’s impedance

parameters and reference trajectory are stationary for short

period of time only works for slow task right now. For fast

task, it may require to use a high speed (force and motion)

sensor to collected enough to obtain a reasonable optimal

solution for eq. (13). Also, from eq. (13), we can obtain

2In practice, only the contact forces on each fingertip can be measured,
which include the grasping forces and the manipulating forces. the sum of
grasping forces is very small in our setting, i.e., equation (5), which can be
ignored.
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the desired impedance parameters for each time window and

their corresponding reference trajectory. In this framework,

the desired impedance parameters and the reference trajec-

tory will depend on time. To account for this, we define a

variable φ ∈ [0, 1] to represent the completion of the task,

which is a function of the desired trajectory, i.e., φ = Φ(xr).
In our experiments, Φ is given by the distance from the

current configuration to the goal configuration. Thus, the

impedance parameters and desired trajectory are expressed

as a function of φ.

Since the system should be stable, additional constraints

should be taken into account. First, the stiffness matrix

should be positive semi-definite and its elements must be

less than some maximum value since we assume that human

will not demonstrate extremely large object stiffness. Also,

for the reference trajectory, it should be close to the actual

measured object trajectory. Thus we have:

Ki,j ≤ klim, i = 1...6, j = 1...6;

‖xr − x(i))‖ ≤ ∆xlim, i = 1...Nt; (14)

‖ẋr − ẋ(i)‖ ≤ ∆ẋlim, i = 1...Nt;

where ∆xlim ∈ R
+,∆ẋlim ∈ R

+ is upper bound of

the difference between the actual and real (position and

velocity) trajectories. With the objective function (13) and

the constraints (14), the optimized impedance parameters and

the reference trajectory can be obtained in each time window.

V. EXPERIMENTS AND DISCUSSION

In the experiments, we use a 4-fingered Allegro hand3 to

test the object impedance specification for robust grasping

and dexterous manipulation. The initial grasp and the grasp-

ing stiffness are predefined.

A. Setup

SynTouch 

(a) Allegro hand (b) Human demonstration

Fig. 4: (a) The Allegro hand mounted with the SynTouch tactile sensors
on the fingertips; (b) Human demonstration of bulb replacement.

Each of the four fingers of the Allegro hand has 4
independent torque-controlled joints, see Fig. 4a. In our

experiments, we only use 3 fingers even though our controller

can be generalized to 4 fingers. Each fingertip of these 3
fingers has been mounted with a biometric tactile sensor from

SynTouch4, which has been calibrated to provide contact

information such as contact position and contact force.

3http://www.simlab.co.kr/Allegro-Hand.htm
4http://www.syntouchllc.com/

(a) (b) (c) (d)

Fig. 5: Human demonstration of robust grasping on 3 different objects:
glass, cup, screwdriver (side and top grasp). The motion of the object when
perturbed is tracked by OptiTrack.

B. Robust Grasping

In the robust grasping experiment, a human expert demon-

strates 4 grasps as shown in Fig. 5. The arm and wrist

are fixated on the table so that the object motion will only

come from the finger motion. During the experiments, for

each object the perturbations are applied by another person

randomly. The position and orientation for the objects are

tracked using a motion capture system from OptiTrack5 at

a sampling rate of 240Hz. More than 10000 datapoints are

collected for each object.

The recorded object orientation is transformed into RPY

Euler angles. The relative impedance parameters for the 4
grasps in different directions are computed using equation

(9). In general, the choice of frame of reference depends

on the task. Here we compute a diagonal stiffness matrix

in the reference frame of the object since this is also the

frame of reference in our impedance controller. It is also

possible to extract the principle directions and corresponding

stiffness along these directions from eq. (9) [20], but then

we need to transform the stiffness along these principle

directions into the object’s frame of reference in real time

during implementation.

The relative stiffness for these grasps are shown in Fig. 6–

Fig. 9. The results show that in different directions, the

relative stiffness is indeed different, which means that an

isotropic stiffness is not always suitable. Also, comparing the

relative stiffness for two different grasps on the screwdriver

(Fig. 5, (c) and (d)), see Fig. 8 and Fig. 9, we found that

the rotational stiffness around Y -axis is totally different.

In the top grasp, the rotational stiffness around Y -axis is

much smaller than that of side grasp, which means that the

top grasp requires smaller forces to rotate the screwdriver

around Y -axis. This result coincides with our intuition.

Here, we only show the implementation results from the

grasp on the glass. The parameters are set as follows:

Kgi = 20N/m, Li = 0.5‖∆pi‖m, ktx = 20N/m, kty =
240N/m, ktz = 30N/m, krx = 1.2 × 10−3Nm/ deg,

kry = 6× 10−3Nm/ deg, ktz = 1.2× 10−3Nm/ deg. The

snapshot of the implementation on the Allegro hand is shown

in Fig. 10.

C. Dexterous Manipulation

For dexterous manipulation, we use the bulb replacement

as an example, Fig. 4b. The bulb is initially on the socket

5http://www.naturalpoint.com/optitrack/
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(a) (b) (c) (d) (e)

Fig. 10: Testing of robust grasping: Snapshots of the response of our controller when a human perturbs the original position of the glass. The fingers
adapt smoothly to follow the direction of motion induced by the human. The impedance was learned from former human demonstration, using results in
Fig. 6. The video is available at: http://lasa.epfl.ch/˜miao/robust_grasping.wmv

(a) glass (b) glass

Fig. 6: (a): The relative translational stiffness for glass, ktx < ktz < kty ;
(b): The relative rotational stiffness for glass, krx ≈ krz < kty .

(a) cup (b) cup

Fig. 7: (a): The relative translational stiffness for cup, ktx ≈ ktz < kty ;
(b): The relative rotational stiffness for cup, krx < krz < kty .

(a) screwdriver(side) (b) screwdriver(side)

Fig. 8: (a): The relative translational stiffness for screwdriver (side grasp),
ktx ≈ ktz < kty ; (b): The relative rotational stiffness for screwdriver (side
grasp), krx ≈ krz < kty .

already. During the human demonstration, only two fingers

are used as the impedance is learned in object’s frame of

reference and using two fingers is easier to demonstrate. The

manipulating forces are measured using SynTouch mounted

on the fingertips. The object real trajectory is tracked using

OptiTrack 6. Using equation (13) and (14), with ∆xlim =

6During the human demonstration, in order to track the object robustly,
the experimenter must take care of not placing his fingertips on the vision
markers.

(a) screwdriver(top) (b) screwdriver(top)

Fig. 9: The relative translational stiffness for screwdriver (top grasp),
ktx ≈ ktz < kty ; (b): The relative rotational stiffness for screwdriver
(top grasp), kty < krx ≈ krz .

60 deg, klim = 100N.mm/deg7, the reference trajectory and

desired stiffness for bulb replacement are obtained and shown

in Fig. 11 and Fig. 12a, respectively.

If we compare the desired rotation angle with the actual

rotation angle, we see that the difference varies during the

whole task. This means that human demonstrator indeed

regulates the difference between the actual and reference

trajectories as well as the stiffness parameter. When looking

at the desired object stiffness, Fig. 12a, we see that the

desired stiffness increases significantly during the last phase

of the task. This is due to the fact that the resistance torque

between the bulb and the socket increases significantly at

the last phase. We repeated this demonstration 10 times, the

obtained desired stiffness for each trial is shown in Fig. 12b.

If we could measure the rotational angle of the bulb using

vision, then the status of task completion φ and the corre-

sponding k and xr can be obtained directly. Unfortunately,

it is difficult to rely on vision for dexterous manipulation

task as the hand often obstructs the object from the camera’s

view. For this reason, we rely on tactile information to guide

the task process. Figure 12 indicates that the regulation of

stiffness during this task seems to follow two distinct phases.

During the first phase, which occurs before break point φ =
0.8 (i.e. more than 2/3rd of the total duration of the task), the

stiffness is quasi constant. Whereas in the second phase, it

increases steadily. We model this by setting a constant value

for the stiffness for the first phase and by increasing linearly

the stiffness up to its upper bound for the remainder of the

task, i.e., 4N.mm/deg, see Fig. 12b. We noticed during

the implementation that this breakpoint corresponds to the

instant when one fingertip (usually the thumb of Allegro

7∆xlim is chosen by considering the rotation limitation of human hand
and the Allegro hand.
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hand) starts slipping on the bulb. In order to detect the

slippage, we use the contact forces fc = [fcx, fcy, fcz] from

SynTouch on each fingertip, with fcx, fcy and fcz being the

tangential forces in two directions and the normal force,

respectively. A slippage occurs at one fingertip if the contact

forces that fingertip satisfying
√

f2
cx + f2

cy > µfcz , µ is the

coefficient of friction that is set manually. In our task, we

choose µ = 0.9. Fig. 14 shows the computed coefficient of

friction during one successful implementation. The resulting

control strategy is given in Algorithm 1. The snapshot of the

implementation on Allegro hand is shown in Fig. 13

Algorithm 1: Controller for bulb replacement task

1 Move fingers to initial positions: InitialGrasp();

2 repeat
Impedance Control Mode:

SetGrasp();

Compute the VF (eq.(7));

Set parameters:

Li = 0.5‖∆pi‖m, ktx = kty = ktz = 0N/m
krx = krz = 0Nm/deg, kry = 1× 10−3Nm/ deg,

Kgi = 12N/m
xr = 60deg
interpolate xr to smooth the controller:

for i=1 to 1000 do
Compute the current reference point:

xcr=Slerp(xr,i);

Send joint torques: ObjImp();

Open Finger and move back to initial grasp:

InitialGrasp();
until DetectSlip()

3 if DetectSlip() then

4 Rotate the bulb for another 4 times:

for i=1 to 4 do
Impedance Control Mode:

SetGrasp();

Compute the VF (eq.(7));

Set parameters:

Li = 0.5‖∆pi‖m, ktx = kty = ktz = 0N/m
krx = krz = 0Nm/deg,

kry = 1 + i ∗ 0.75× 10−3Nm/ deg,

Kgi = 12 + i ∗ 2.5N/m
xr = 60deg
interpolate xr to smooth the controller:

for i=1 to 1000 do
Compute the current reference point:

xcr=Slerp(xr,i);

Send joint torques: ObjImp();

Open Finger and move back to initial grasp:

InitialGrasp();

5 return 0;

D. Discussion

During the robust grasping, we didn’t consider the problem

of grasp stability. As studied in [25], the object dynamic
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Fig. 11: The learned reference trajectory for trial 5. φ is the variable that
represents the status of completion of the task, which is chosen as the ratio
between current rotational angle and maximal rotational angle.
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Fig. 12: (a) The learned desired object stiffness for trial 5. The stiffness
will significantly increase at the last phase of bulb replacement. (b) The
learned desired object stiffness for 10 different trials.
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Fig. 14: The computed cofficient of friction on the fingertip of thumb
during one successful implementation.

stability will be closely related to the choice of grasp

stiffness. In future work, we will investigate ways in which

to shape the stiffness while taking the grasp stability into

account.

Second, currently the initial grasp and grasp stiffness

are predefined in our experiments, which is based on the

assumption that the given grasp can realize the desired

object impedance. However, given the object impedance

specification and a multi-fingered robotic hand, how to

choose a grasp that can realize this desired impedance will

be a challenging extension direction. One of the possible

ways will be extending the optimization framework for grasp

synthesis in our previous work [26].
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(a) (b) (c) (d) (e) (f)

Fig. 13: The snapshots for dexterous manipulation. The video for this demo is available at: http://lasa.epfl.ch/˜miao/bulb_replace.wmv

VI. CONCLUSIONS

In this paper, an object-level impedance learning approach

was proposed for both robust grasping and dexterous manip-

ulation. For robust grasping, the relative stiffness is specified

by measuring the displacement of object under perturbation.

For dexterous manipulation, the desired reference trajectory

and the desired object impedance is learned through an

optimization-based approach. The results show that a vary-

ing stiffness is more suitable in our task. Both of these

approaches are validated on a multi-fingered robotic hand.

We are currently working on integrating tactile feedback

into the object impedance controller for grasping stiffness

specification.
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Collaborative Human-Humanoid Carrying

Using Vision and Haptic Sensing

Don Joven Agravante1, Andrea Cherubini1, Antoine Bussy1,2, Pierre Gergondet2 and Abderrahmane Kheddar1,2

Abstract— We propose a framework for combining vision
and haptic information in human-robot joint actions. The
framework consists of a hybrid controller that uses both visual
servoing and impedance controllers. This can be applied to
tasks that cannot be done with vision or haptic information
alone. In this framework, the state of the task can be obtained
from visual information while haptic information is crucial for
safe physical interaction with the human partner. The approach
is validated on the task of jointly carrying a flat surface (e.g.
a table) and then preventing an object (e.g. a ball) on top
from falling off. The results show that the presented approach
achieves its goal. Furthermore, the framework presented results
in a more collaborative setup by imparting task knowledge to
the robot as opposed to a passive follower.

Index Terms— Physical Human-Robot Interaction

I. INTRODUCTION

Humanoid robots provide many advantages when working

together with humans to perform various tasks. This is

because humans have an extensive experience in physically

collaborating with each other. Hence, humanoids can interact

with humans because of their human-like range of motion

and sensing capabilities. This reduces the need to learn how

to interact with the robot. However, many challenges are

still present in the various research areas that study physical

human-robot collaboration. Here, the area of interest is using

vision and force information together to enable human-robot

joint actions, which are collaborative tasks requiring both

parties to physically interact with each other (e.g. carrying a

large object together). In such tasks, the robot:

1) must move safely and regulate interaction forces,

2) has shared human-in-the-loop control,

3) can only use its on-board sensors.

The first two items are the main aspect of all human-robot

collaborative tasks. The last constraint is important for true

autonomy. For example if vision has a limited field-of-view,

external room cameras should not be used.

Physical human-robot collaboration has largely relied on

the use of haptic data (force/torque) for control. This is

because the main priority is the regulation of the interaction

forces between the human and robot. For example, previous

works [1]–[4] have demonstrated that using only haptic

1CNRS-UM2 LIRMM UMR 5506, Interactive Digital
Human group, 161 Rue Ada, 34392 Montpellier, France
{firstnames.lastname}@lirmm.fr.

2CNRS-AIST, JRL (Joint Robotics Laboratory), UMI 3218/CRT, Intelli-
gent Systems Research Institute, AIST Central 2, Umezono 1-1-1, Tsukuba,
305-8568, Japan.

information, a humanoid robot can help a human carry large

objects (e.g. a table or a beam or a panel). A possible

future application of this is in construction sites [1]. The

same scenario can also be applied to the household, such

as moving furniture (e.g. table). While doing this task, one

can imagine the need to prevent an object on top from

falling off. For example in moving a table a short distance,

it might be necessary to move it carefully with the objects

on top rather than removing the objects, transporting the

table and then placing the objects back on top. In this

scenario, haptic information alone is not rich enough to give

the robot knowledge about the state of the objects on top

of the table. But vision can obtain such information, being

largely complementary to haptics (analogous to human sight

and touch). Using both information sources might enable a

humanoid to perform more complicated tasks, similar to a

human. Although the benefits are great, there are not many

established methods integrating vision and force control.

In [5], three general categories for combining vision and

force control are identified: traded, hybrid and shared. Traded

control is the simplest, and switches between a pure visual

servoing controller and a pure force control method given

a certain threshold of the task error. In hybrid methods,

a prior specification of a “task-frame” [6], [7] is required

to decouple vision and force into orthogonal spaces. With

this, the controllers can be designed separately. Finally,

shared control methods aim at utilizing both vision and force

information together in the same space, such that all available

information is used [5]. For example, in [8], a force feedback

is used to correct the visual servo control trajectory.

In this paper, the impedance control framework [9], is

used. This allows a manipulator to be compliant by defining

a virtual impedance. In this framework, vision can be used to

provide a reference trajectory that is tracked in the absence

of external forces [10]–[12]. When contact does occur, it has

the properties of the shared control method where vision and

force determine the control of the same degree of freedom

(DOF) simultaneously. This approach is preferred over the

other methods since it can allow for compliance in all DOF.

This approach has been investigated previously in [10], [11]

with experiments of a robot interacting with objects. Here

and in our previous work [12], we use this approach for

physical human-humanoid collaboration experiments.

Our work is partly based on the joint object transportation

framework which was introduced in [3] and utilized in [12].

The overall system is hybrid - using the 3 DOF that are

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE International Conference on

Robotics and Automation. Received September 14, 2013.



controlled with only haptic information in [3] and designing

separate controllers for the remaining DOF. However, these

new controllers use the shared approach where both vision

and force affect the DOF at the same time. This compli-

cates the semantics to describe the whole system. In [12],

vision was used together with haptic data to stabilize the

height of the table, providing the reference trajectory of the

impedance controller in 1DOF. As a continuation to this

work, we use the same general framework of building a

visual servoing controller for providing a reference trajectory

to the impedance controller. However, we relax the constraint

on having a static object in [12]: the object on the beam is

free to move so control in 2 DOF is needed. This is a more

difficult task and vision is indispensable to acquiring the state

of the task. Another contribution of this work is the analysis

of collaboration in joint actions when each agent has their

own notion of how to do the joint task, as opposed to the

common leader-follower strategy.

To continue, the general framework is described in Sec-

tion II. The example task of human-humanoid table carrying

while keeping an object on top from falling is then described

in Section III. The details on implementing the general

framework to this specific task is done in Section IV. Results

from experiments are then presented in Section V. The

novelty of equal collaboration and the challenges it poses

is discussed in Section VI. Finally, Section VII concludes

and outlines some future works to be done.

II. GENERAL CONTROL FRAMEWORK

Our general approach to combining vision and haptic cues

is coupling a visual servoing controller to an impedance

controller. This simplifies the design by decoupling the vision

and force controllers in a systematic way. An overview of

the complete control framework is shown in Fig. 1.

Fig. 1. The general control framework applied to the task of balancing an
object on the table

Fig. 1 also shows the task example used in this paper -

balancing an object on the table. The following subsections

explain this general framework in a bottom-up approach

starting from the lower level controllers and abstracting it

higher to the cognitive level. The lowest level of control

is the inner joint-level control. This is represented by q

in Fig. 1. To abstract from the joint level to the “task

level”, the Stack-of-Tasks framework is used [13]. It is a

generalized inverse kinematics abstraction layer that creates

a hierarchical organization of different tasks to be executed

giving higher priority to critical tasks [13]. It allows for easier

integration with sub-tasks. For example, our experiments

make use of the walking algorithm in [14] as a sub-task.

A. Impedance Control

The other sub-task concerns the grippers. In Fig. 1 the

humanoid uses its grippers to co-manipulate an object with

a human. To do this, it needs to be safe and intuitive to

use. Here, impedance control [9] is used to regulate the

contact interaction (for safety) between the robot and its

environment. It also gives a simple physical analogy to

the control - a virtual mass-spring-damper system [9]. This

system is governed by the general equation:

f = M(Ẍd − Ẍ) +B(Ẋd − Ẋ) +K(Xd −X). (1)

The contact interaction is measured by the force-torque

sensors in the robot grippers and is represented as f . The

vectors Xd, Ẋd and Ẍd are a desired pose and its first

and second derivative. Correspondingly, vectors X, Ẋ and Ẍ

represent an actual pose and its first and second derivative.

Finally, matrices M,B and K are the inertia, damping and

stiffness parameters that define the desired virtual mass-

spring-damper system [9]. Strictly following the terminology

and causality from [9], our implementation on the HRP-

2 humanoid, is an “admittance controller” since the robot

is position-controlled by the Stack-of-Tasks, which uses

the output of X, Ẋ and Ẍ from the impedance controller.

These are obtained by solving the differential equation of

Eq. (1) given the other variables. The parameters M, B,

and K are determined empirically to provide comfort for the

human collaborator. Finally, Xd, Ẋd and Ẍd are the desired

pose and trajectory of the mass-spring-damper’s reference

position. These are detailed in the next subsection.

B. Proactive Behavior and Visual Servoing

For the general impedance controller of Eq. (1) a “passive”

behavior is defined by setting the desired pose Xd as

constant. This case is illustrated in Fig. 2(a) where only

the human knows about the task to be done. This is the

“classical” case in human-robot collaboration. In such a case

(and considering constant impedance parameters M,B,K),

the robot’s motion (X, Ẋ, Ẍ) can only be initiated by an

external force f due to Eq. (1). Recent research aims to

make the robot a proactive follower to make the system

more comfortable for the human. A way to achieve this is by

creating a suitable desired pose and trajectory (Xd, Ẋd, Ẍd)

such that the human effort is minimized [3], [12], [15]. These

works differ in the approach taken to produce the desired

pose and trajectory. In [15], human motion is predicted by

a minimum jerk model to give the desired pose. In [3], a

human pair doing a joint transportation task was studied and

it was observed from the data that the pair moves in constant

velocity phases during this task. A finite state machine (FSM)
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is then created by using the contant velocity assumption,

giving the desired pose and trajectory. Haptic cues are used

to determine the switching of states in the FSM [3]. Our

latest work [12] takes the same approach as the one in this

paper and is illustrated by Fig. 2(b). Here, the humanoid is

given knowledge of the task. This is done by designing a

visual servoing controller specific to the task and using the

output as the desired pose and trajectory of the impedance

controller. This also means that the robot has some autonomy

in doing the task driven by its own knowledge of the state

of the task. With the reasonable assumption that during

the collaborative task human motion is task driven, the

source (human intention to do the task) is taken into account

rather than the result (human motion). This differentiates our

approach from those that aim to model/predict human motion

such as the early work described in [15].

(a) robot as a pure follower (b) robot as an equal collaborator

Fig. 2. Human-humanoid collaboration. (a) shows the passive case with the
robot as a pure follower guided only by haptic information. (b) illustrates an
equal collaboration approach where both human and robot have a complete
knowledge of the task (represented by the blue arrows). Furthermore, each
uses both vision (green) and haptic (red) information to achieve this task.

Visual servoing is a term used for controlling robots

using visual information [16]. To create the visual servoing

portion of the framework, two important components are

needed: visual feature tracking and a controller based on

this feature [16]. However, in the current state-of-the-art for

both modules there is no “best” approach that fits all tasks

and problems. Existing methods have important tradeoffs to

consider for the whole system [16]. In our works, we take an

analytical approach to building the visual servoing portion.

In [12], the task is to keep the table horizontal (perpendicular

to the gravity field). The goal is then to minimize the rotation

between the normal of the plane and the gravity field vector

and a visual servoing system was designed to do this.

III. TASK DESCRIPTION

As a test for the general framework described, the task of

jointly transporting a surface while keeping a mobile object

on top from falling off is used. Fig. 3 illustrates the task with

the important reference frames and naming convention used

in the rest of this paper. The vectors composing the Carte-

sian frames are color coded: Red-Green-Blue correspond to

(~x, ~y, ~z) respectively.

Fig. 3 shows that the robot can control the table through its

hands {rh} and {lh}. The control design consists in driving

Fig. 3. Human-humanoid table carrying task with reference frames.

a reference “control frame” {cf}, rigidly linked to the table,

to a desired pose with respect to a local frame {l}, rigidly

linked to the robot torso. This pose is represented by the

homogeneous transformation matrix lTcf . To achieve this,

the hand poses {rh} and {lh} are controlled in the local

frame according to:

lTh = lTcf
cfTh h = {rh, lh}.

Assuming a rigid grasp of the table, the homogeneous

transformation matrices cfTrh and cfTlh are constant and

known once {cf} has been defined. For the implementation

of the impedance controller, lTcf is converted into the 6-

vector X = l[x, y, z, φx, φy, φz]
⊤

cf made up of the Cartesian

coordinates and Euler angles (the ZYX convention is used

which conveniently places the singularity at φy = ±90◦, an

impossible case of the joint transportation task).

An intuitive description of the task is to “keep the object

on the table from falling off”. The control design can be

defined to attract the object (o) towards an appropriate

desired goal point (d) (refer to Fig. 3). To realize this task,

direct force application on the object is not possible, since

the priority is table transportation. Hence, only an indirect

action can be applied by tilting the table to contrast gravity.

To do this, a decoupled approach can be used, where the

control of tyo is done through φx, and that of txo through z.

It is chosen to regulate txo with z and not with φy because

the latter option would make the task uncomfortable for the

human. In fact, controlling φy forces the human to actively

move his/her z position. Instead, by controlling z and leaving

φy compliant, the human at the other end just needs to be

compliant in his/her φy , which is more comfortable.

To integrate the whole system, the important part

is defining the admittance controller’s desired trajectory

(Xd, Ẋd, Ẍd) for all 6 DOF. The vision-based control takes

care of two DOF (z, φx). Three DOF (x, y, φz) of the pose

are defined from the FSM of our group’s earlier work [3],

[4] (described briefly in Section II-B). Finally, the remaining

DOF (φy) is made compliant by setting φy,d = 0.
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IV. IMPLEMENTATION DETAILS

As explained in Section II-B, the approach is to design

a visual servoing controller for the task to make the robot

proactive. Two main components are needed: visual tracking

and the control design.

A. Vision Algorithm

In the HRP-2, RGB-D data is obtained from an embedded

ASUS Xtion device located in the head. Fig. 4 shows typical

data of the task. The aim of the vision algorithm is to process

this raw data into visual features that can be used for control.

An error signal can be defined by txo −
txd and tyo −

tyd.

For the example task here, z is irrelevant, since tzd ≡ tzo.

Since the desired location t(x, y)d is arbitrarily defined, the

vision algorithm only needs to obtain t(x, y)o. A variety of

vision algorithms that can do this may be used, with speed as

another consideration. For example, given the object model

and the table model, it is possible to use a model based

tracker. Designing a novel vision algorithm is not the focus

of this work, so we use well-known methods [17]–[19].

Nevertheless, it is briefly described here for completeness.

Fig. 4. Typical raw data (RGB + Depth images) during the task. Left:
RGB image. Right: Depth image, where dark red→bright red corresponds
to “far”→“near” and black pixels are regions without data.

The feature used here is the centroid of the object and

the table. The first step is to segment these from the image.

Color segmentation is used in our system. For example the

pink object in Fig. 4 and yellow object in Fig. 3 can be

easily characterized and thresholded by a specific hue range

and a high saturation (from the HSV color space). To add

robustness, morphological operations (opening and closing)

are used to remove outliers. After this, sliding window

detection (sped up using the image pyramids concept) finds

the most probable location. The centroid of the detected blob

is (u, v) in pixel coordinates. This is then converted into cxo

and cyo by using the intrinsic camera calibration parameters

(fx, fy, cx, cy) and the depth czo in the following equations:

cxo =
czo(u−cx)

fx
, cyo =

czo(v−cy)
fy

. (2)

The next step is to segment the table in the image. A flood fill

algorithm [19] is done in saturation-value-depth space. This

algorithm starts with a “seed” point and grows the region

based on a connectivity criteria between neighboring pixels.

Here, the seed point is the bottom pixel of the ball. A low

saturation and high value characterize well the “white” color

of the table. The addition of depth ensures connectivity in

Cartesian space, simplifying for example the segmentation

between table and floor pixels. Finally, some morphological

operations (opening and closing) are done to remove outliers.

From these segmented points, the Cartesian centroid is used

as ctt (a translation vector). The Cartesian coordinates of the

object in the table frame are then obtained by:

tto = cT−1
t

cto. (3)

The homogeneous transformation matrix cTt is composed of

the table centroid position ctt and the rotation matrix cRt. A

simple approximation consists in setting cRt equal to cRcf ,

which is obtained from proprioception.

B. Vision-Based Control

The control design needs to drive tto to ttd. There are

several methods to do this. Here, a simple PD controller is

used such that:

Ci(s) = Kp,i +Kd,is i = {x, y} . (4)

This choice is justified by analyzing the task using a

simple sliding model (i.e., neglecting friction and angular

momentum). Fig. 5 illustrates the necessary variables for this

analysis. Since a control with z rather than φy is desired, the

trigonometric identity zr = lt sinφy is used, where lt is the

length of the table and zr is the differential height. zr can

be converted to z by a trivial change of frame.

Fig. 5. A simplified “thin beam” model used to control the table height

The Lagrangian equation of motion along t~x is:

mẍ = mg sinφy = mgzr/lt. (5)

Along y, linearization of the Lagrangian equation about

φx = 0 leads to:

mÿ = −mgφx. (6)

Taking the Laplace transforms of these two equations yields:

{

s2X(s) = gZr (s) /lt
s2Y (s) = −gΦ (s) .

(7)

Rearranging, the transfer functions describing the dynamics

on the 2 DOF can be derived:
{

Px(s) =
X(s)
Zr(s)

= g
lts2

Py(s) =
Y(s)
Φ(s) = − g

s2
.

(8)

It should be noted that both are double integrators. As such,

they are only marginally stable when feedback controlled
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with a Proportional gain. But the Proportional Derivative

controller (PD) chosen can be used. The denominator of the

closed loop system transfer function in the two cases is:
{

Dx(s) = lts
2 + gKd,xs+ gKp,x

Dy(s) = s2 − gKd,ys− gKp,y.
(9)

The two systems are asymptotically stable if all the roots of

these two polynomials have non-multiple negative real parts.

This condition is verified, for a second order polynomial, if

all the coefficients are strictly positive. In the case of the

characteristic polynomials in (9), this is equivalent to:

Kp,x > 0 Kd,x > 0 Kp,y < 0 Kd,y < 0. (10)

Finally, the applied controllers are:
{

z = Kp,x (xd − x)−Kd,xẋ
φx = Kp,y (yd − y)−Kd,y ẏ.

(11)

By numerical differentiation ẋ (and ẏ) is obtained as:

ẋ (t) =
x (t)− x (t−∆t)

∆t
,

with ∆t the sampling step. Tuning the gains in (11) accord-

ing to (10) guarantees stability of the closed loop system, as

long as the linear approximation is valid. This implies that
tto will converge to ttd, as desired. The outputs of (11) are

fed to the admittance controller (1) as desired values zd and

φx,d. Numerical differentiation is used to obtain ż, φ̇x in Ẋd.

However, for Ẍd a piece-wise constant velocity is assumed

such that z̈ = φ̈x = 0. This also prevents too much noise

introduced by a second numerical differentiation.

V. RESULTS

For the experiments, we chose a ball to be the moving ob-

ject. This makes it similar to a well-studied problem/example

in control theory: the “ball-and-plate” system, which is a

2-DOF generalization of the “textbook example” ball-on-

beam system (used to study advanced control methods [20]).

Although similar, significant differences exist - notably that

collaboration is the main issue here.

Several experiments were performed and with 2 different

balls - a yellow tennis ball which tends to move slower and

a pink ball which moves quite fast. A few different users

also tested this early system, but as the described experience

was similar this is not discussed here. A more extensive

and statistically based “usability study” is planned for future

work. Some experiments are shown in the accompanying

video and in Fig. 6. The video also shows some results

of the vision algorithm detecting the ball and the table.

In the initial experiments, both human and humanoid stand

stationary and balance the ball on the table. Some disturbance

is then introduced (e.g. the ball is pushed by another person)

and the gains of the PD controller are tuned according to (10)

in order to be able to handle such a disturbance.

After “light” gain tuning of the vision-based controller

with such tests, the complete system is tested where the

human-humanoid dyad transport the table with the ball on

top. To show the performance of the framework, the results

for the complete experiment are shown in Fig. 7, 8 and 9.

The results here are from the yellow ball, and the desired ball

position is set to ttd = (0.15, 0, 0), which is 15cm closer to

the human than the table centroid. This is done to avoid

the minimum limit of the depth sensor. The robot starts out

walking in place. At time ≈ 50s, the human pulls the table,

signaling the robot to help transport the table forward via the

FSM developed in [3], [4]. In this task, walking introduces a

significant disturbance that can move the ball. Fig. 7 shows

the estimated trajectory (blue) of the ball in the perceived

table frame. This data is derived from the visual estimate of

the ball and goal location. The red border signifies a rough

approximate of the table boundaries. The results show that

although the ball moves a lot, it doesn’t fall off the table

during this transportation task.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3
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0.3

0.4

Trajectory of the Ball in the Table frame

x (m)

y
(m

)

Fig. 7. Controlled ball trajectory (blue) during the experiment, computed
from the visual data. The red border is a rough estimate of the table edges
and the green + symbolizes the goal.

For verifying the controller, the evolution of the controlled

variables is plotted in Fig. 8. From the plots, it shows that

the robot is making minor adjustments to l(φx)cf and more

adjustments to lzcf . This supports what is seen in Fig. 7, i.e.,

that there is more motion in the t~x than in the t~y direction.

Fig. 9 shows that τx averages to about 0Nm which means

that the interaction force is regulated well. As for Fz , it

averages to about 12N . This shows that the robot carries

part of the weight of the table and thus lightens the burden

on the human. Although there are some small spikes, the

overall result still shows that this interaction force is also

well-regulated. Furthermore, in both signals a noticeable

oscillation can be seen. This correlates to the frequency of

the walking gait and the disturbance that it causes.

VI. DISCUSION ON EQUAL COLLABORATION

The results show that the complete system (Fig. 2b) can

do the job well: the vision-based controller tries to keep the

ball on the table while the impedance controller regulates

interaction forces. A simple analysis of Fig. 2 shows that

a disadvantage of the pure follower (Fig. 2a) is that the

success/failure of the vision task depends solely on the

human partner. Specifically, the human needs to use his/her
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Fig. 6. Snapshots of two experiments where the human-humanoid dyad transports a table with a ball (fast in the top sequence, slow in the bottom one).
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Fig. 8. Plot of the 2 vision-controlled positions executed by the robot.
Blue: lzcf , in green: l(φx)cf

vision to observe the state of the task and then apply a

sufficient force to haptically communicate to the robot what

s/he wants to do. While in Fig. 2b the cognitive load of the

task is shared in some capacity - both human and robot are

able to observe the state of the task and act accordingly.

However, this sharing can become a disadvantage when the

human and robot disagree on the state of the task and

the action to take [21]. Experimentally, this is handled in

our system by making the robot more compliant and less

stiff (impedance parameter tuning). This ensures that the

human can always safely impose his intention through the

haptic channel. This also shows a possible extension of

the system which is to dynamically change the impedance

parameters: making it more stiff when the robot is more

certain of his observations and more compliant when there

is more uncertainty. In effect, this makes the impedance

parameters a method to weigh the importance between vision

(task knowledge) and haptic (human intention) information

channels. But, it is important to note that this disadvantage

of equal collaboration also applies to human-human pairs

and more generally in teams - “teamwork” (or the lack of

it). Some preliminary experiments have been made with both
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Fig. 9. Plot of the force and torque in the control frame during the
experiment. The 2 correspond to what is used by the impedance controller
for the 2 degrees of freedom in the task

the passive follower and the approach of equal collaboration

and the advantages/disadvantages briefly described here can

be observed by the human collaborator. One difficulty in

presenting these results is in the use of proper evaluation

methods since the most important aspect - the comfort of

the human collaborator- is very subjective. Another difficulty

is to separate the contribution of the human and robot.

Although in the results presented here the human is told to

be more “passive” (does not try that hard to keep the ball on

the table) he also does not try to make the ball fall off, since

teamwork is a factor in the overall result. The resolution of

these issues is left for future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, a general framework for human-robot joint

collaborative tasks was presented. It uses a visual servoing

controller to realize the task and a haptic channel to recognize

human intention. Both vision and force control are combined

in the impedance control framework. This is implemented

and tested on a joint transportation task where a human and

humanoid robot carry a table with a freely moving ball on

top. The objective is to transport the table while keeping
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the ball from falling off. This task is used to explore some

important issues in robotics: the combination of vision and

force information and the issues concerning collaboration -

safety and effective human-robot collaboration strategies.

To continue the work here, it is planned to further in-

vestigate the combination of vision and force information.

Another major area for continued study is in collaboration,

such as the idea of dynamically changing the impedance

parameters described in Section VI. Further works are to

utilize good statistical methodology and experiments with

different users to better analyze the qualitative results.
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