
ICT-­‐2011.9.8	
  -­‐	
  FET	
  Proactive	
   PHIDIAS	
   	
  

File: PHIDIAS_D_1_2.doc   1 of 12  

  
Deliverable report for 

 
 
 
 
 
 
 
 
 
 
 

 
P H I D I A S 

"Ultra-Low-Power Holistic Design for Smart Biosignals Computing 
Platforms" 

 
Grant Agreement Number 318013 

 
 

Deliverable D 1.2  
Report on structured sparsity for bio- signals 

 
Due date of deliverable: 30/09/2013 

 
 
 
 

Lead beneficiary for this deliverable: EPFL 
Contributors:  
-  EPFL: development and performance assessment of joint compressed sampling. 
Writing of the deliverable 
-  ALL: revision 
 
 

Dissemination Level: 
PU Public X 
PP Restricted to other programme participants (including the Commission 

Services) 
 

RE Restricted to a group specified by the consortium (including the 
Commission Services) 

 

CO Confidential, only for members of the consortium (including the Commission 
Services) 

 

 
Version: 1.3 (revision) Date 04.03.2014 
Draft of the WP Leader   
Commented version for amendment  
Version accepted by the Steering Board X 

 



ICT-­‐2011.9.8	
  -­‐	
  FET	
  Proactive	
   PHIDIAS	
   	
  

File: PHIDIAS_D_1_2.doc   2 of 12  

 
 

1.  Description of task 

 
This deliverable report the results of the Task 1.2 of WP1, describing the investigated 
advanced sparsity techniques for smart sensing and optimized recovery of bio-signals. 
By merging both sampling and compression, CS allows to develop practical ultra-low 
power read-out systems for wireless bio-signal monitoring devices, where large 
amounts of sensor data need to be transferred through the power-hungry wireless 
links.  
 
Building on the work illustrated in D1.1, in this deliverable we propose a novel 
approach for joint compression of multi-lead ECG signals, where strong correlations 
exist between leads. The technique can be exploited to optimize the quality of a signal 
after reconstruction, or, alternatively, minimize the amount of data sent through an 
energy-hungry wireless link, thus addressing the challenge of ultra-low-power 
embedded monitoring of multi-lead bio-signals.   
 
Figure 1 exemplifies the reconstruction quality of the proposed technique, plotting an 
excerpt from original and reconstructed signals. For clarity, only one of the 15 signals 
composing the recording is presented, and plots are horizontally shifted to separate 
them. Across the recording, the compression ratio obtained in the example is 90%. 
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F igure 1: Reconstructed (top) and orig inal (bottom) signal using the joint 
reconstruction CS technique, with a compression ratio of 90% 

2.  Joint Compressed sensing of mult i - lead ECG 

 
The fundamentals of CS have been discussed in D1.1, which presented experimental 
evidence of CS performance when inputs are considered in isolation. Nonetheless, in 
a real scenario many of the bio-signals are acquired on multiple channels. As an 
example, for the ECG signals we have different standards, e.g.:  3-lead or 12-lead 
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combinations. In these cases, sampling, compressing and reconstructing each signal 
individually is clearly sub-optimal, because leads are not independent sources, and 
are in fact strongly correlated. In the case of the ECG acquisitions, all signals can be 
considered as different projections of a single multidimensional source, which is the 
electrical field produced by the heart. Thus not only these leads are not independent, 
but each lead conveying useful information about other leads.  
 
In this deliverable we discuss how mutual information between the leads of bio-
signals can be exploited to optimized CS-based compression, considering the example 
of multi-lead ECG acquisitions. We also propose the techniques to exploit this 
information for optimized recovery of the joint compressed sensing. This optimization 
will directly translated to less measurement needed for the recovery, leading to the 
minimization of transmission bandwidth (and, ultimately, of power consumption) 
without quality degradation.  

3.  Compressed sensing and recovery algorithms 

3.1.  Compressed sensing and background on 
sparsity 

 
Let’s denote the vector x  as a real–valued N -dimensional vector of samples of 

single-lead bio-signal and α = Ψx  is the expansion of the vector x  in a given 
sparse domain Ψ . For example, it is well known that ECG signals have a very 
sparse representation on the wavelet domain, which means that their wavelet 
coefficients α  are sparse, or more accurately compressible.  
 
By sparse we mean that α  has few nonzero elements and rest of the elements 

are zero (exact sparse), or very close to zero (compressible). The original signal 
vector x  then can be described by linear superposition of S  elements of an 
orthonormal basis in which the signal is sparse: x ≈ α ii=1

S∑ ψ i , with S << N .  
 
Given the sparsity of the input signal, compressed sensing states that, only 
Slog N

S( )  linear measurements of the vector x  are enough to preserve all 

information of the signal. This measurement vector is denoted as y =Φα =ΦΨx . 
The matrix Φ  is called the sensing matrix. In our experiment the sensing matrix is 
binary and sparse, which is proven to be the time and space optimal choice, and 
very close to bounds of the measurement optimality, as detailed in D1.1.     
 
Under broad conditions that must be satisfied by x  it is then possible to recover 

the original signal x  from its measurements by solving a convex optimization 
problem. The problem is formulated in the form  
 

min
α∈ℜN

α
1 subject to 

ΦΨ α − y
2
≤σ

 [1] 
 

The recovered signal x̂  is then computed as x̂ =ΨTα̂ . 
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The first part of equation [1] is a gradient optimization for minimization of the error 
and second part adds the sparsity constraint to force to reach the sparse solution. 
In case of the compressible signals it is proven that the recovered x̂  is the best S-
term approximation of the original signal x . 

 
It has to be noted that further lossless compression coding can be applied to the 
signal transformed in the sparse domain. In this deliverable we only report the 
results of the Compressed Sensing, without compression coding. 

 
As discussed before, in many cases the monitoring ECG signals, and bio-signals in 

general, is performed by simultaneous recording of multiple leads. Let’s indicate 
X ∈RN×L = [x1, x2,..., xL ]  as a matrix of composed of L leads, each row representing 
a vector of ECG data xi ∈R

N×1, i∈{1,2,...,L} . The whole matrix X  is acquired and 
compressed at the same time Y =ΦX,Y ∈RM×L . 

4.  Performance Metrics and Databases 

To quantify the compression performance while assessing the diagnostic quality of 
the compressed ECG records, we employ the two most widely used performance 
metrics, namely the compression ratio (CR) and percentage root-mean-square 
difference (PRD). The compression ratio is defined as the percent reduction in 
number of bits required to represent the signal after compression relative to the 

original number of bits: CR =
borig − bcomp

borig
×100% , where borig  and bcomp  represent 

the number of bits required for the original and compressed signals, respectively. 
The percentage root-mean-square difference (PRD), and associated signal-to-noise 
ratio (SNR), quantifies the percent error between the original signal vector x and 
the reconstructed x̂ : 

 

PRD =
x − x̂

2

x
2

×100  

SNR = −20 log10 (0.01× PRD)  
  

 
Table 1 reports the resulting different quality classes and corresponding PRD: 

 
 

PRD Reconstructed Signal Quality 

0 ∼ 2% “Very good” quality 

2 ∼ 9% “Very good” or ”good” quality 

≥ 9% Not possible to determine the quality group 
 

Table 1: PRD and corresponding gual ity  c lass 
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4.1.  Database 

 
We investigated CS of ECG data, obtained from the PTB Diagnostic ECG 

Database, available on the physionet website1. The database contains 549 
records from 290 subjects. Each record includes 15 simultaneously measured 
signals: the conventional 12 leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) 
together with the 3 Frank lead ECGs (vx, vy, vz). Each signal is digitized at 1K 
samples per second, with 16-bit resolution over a range of ± 16.384 mV. 

 

5.  Methods 

5.1.  Joint Sparsity and support selection 

 
The problem of the CS could be seen as finding the best k-term approximation of 

the sparse vector α  which satisfies the y = ΦΨα̂ . Like in many greedy algorithms 
the problem could be seen as a two-folded problem. First, we need to find the 
support that achieves the best approximation, and then we also need to find the 
values of the entries in this support that achieves the best approximation.  
Let’s imagine α̂  is the best k-term approximation of the α , then: 
 

α̂ = arg
x= x 0≤S

min x −α 2
2  

 
Let B = sup(α̂ )  is the support of the vector that achieves the best approximation. 
 

(α̂ )B = (α )B  and M = (S log(N / S))  
 

Where (α̂)
BC

 is the compliment set of the support B. It can be can proved that:  

B = sup(α̂ ) = arg
K:|K |≤S

min (α )K −α 2

2

= arg
K:|K |≤S

max( α 2
2 − (α )K −α 2

2 )

= arg
K:|K |≤S

max( (α )K 2

2 )

= argmax α i
2

i∈K
∑

 

 

                                                
1 http://www.physionet.org/physiobank/database/ptbdb/ 
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Where K is the set on nonzero elements in the best S-term approximation. So the 
best support is the set of indices contributing the most to the 2-norm of α . In 
other words, the best support is achieved by choosing the indices of the largest S 
elements of α . In case the support set is known, then the CS problem can be 
solved, if enough measurements are provided.  

5.2.  Joint support selection 

 
As mentioned before, we propose to leverage the similarities between multiple 

channels to obtain a high-performance CS-based methodology. Following this 
intuition, we propose and evaluate a novel algorithm for joint reconstruction of 
multi-lead bio-signal acquisitions. Figure 2 shows the support of the best S-term 
approximation of the investigated multi-lead ECG recordings. It shows that support 
set of the S-term approximation for leads are very similar, so that a joint sparse 
support selection can be performed in the reconstruction algorithm.  
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F igure 2: Support of the best S-term approximation  

of mult i - lead ECG signals.  
 

 
To solve the reconstruction problem we the L1 norm minimization problem 
detailed in Section 3.1 is done simultaneously for all leads, and S-term 
approximation of the sparsity support of the first lead is used for recovering all the 
other leads.  

6.  Encoding algorithm 

The processes of collecting the measurements (compression) of the multi-leads 
ECG signals follows the routine used for the single lead case. The difference is in 
the selection of the reference lead. In our study, we always lead 1. This lead is 
compressed at a lower rate, to guarantee a very good support selection. The 
extracted support set is then used as an additional constraint in solving the CS 
problem, where all indices out of the support are set to zero. 
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7.  Results 

7.1.  Compression ratio and best S-term 
approximation 

D1.1 reported that ECG signals are compressible but they are not exact sparse. 
This means that their expansion of the proper transformation domain, like the 
discrete wavelet domain, results in a compressible representation. 
 
In case of exact sparse signals, the number of required measurements for the 
measurement optimal sensing matrix is M =O S log(N / S)( ) , while for 
compressible signal the number of measurements depends on the level of 
sparsity and the desired reconstruction quality, and can be therefore bigger than 
M . 
 
Moreover, in the illustrated scenario of joint support selection, the amount of 
similarity between best S-term approximation support of each lead and the 
reference one plays an important role, and must be investigated. To do so, we 
have defined a constant value δ  as the fraction of sparsity level S over the 
number of measurements M:δ = S M . In our simulations for each number of 
measurements M , different values for δ corresponding to different values of S-
term approximations of other leads are investigated. Figure 3 shows the results of 
output SNR over all records of the database. Different curves for each values of 
δ  are plotted. The plot shows that how for different values of acquired number of 
the measurements the best S-term approximation will change.. 
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F igure 3: Averaged SNR for f ixed number of measurements over different 

selections of the cardinal ity  of the support,  normalized over M =O(S log(N / S))  
 

Based on the results shown on the Figure 3, the best number of for each number 
of M is extracted. Figure 4 shows the result for best value of S for different 
number of measurements. The results shows that for small number of 
measurements, strong similarity exist between the support set of leads, so that a 
small cardinality in the support is required to reach the best results. Instead, for 
higher values of the M , similarity between the support set of the leads could not 
add any additional information. In other words, in case of higher number of 
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measurements, since signals are not exact sparse, even coefficients with a small 
value impact the quality of the input reconstruction.   
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F igure 4: Best value for S corresponding to different values of measurements’ 

number (M).   
 

Figure 5 and Figure 6 shows the comparison between the performance quality of 
using normal reconstruction for each lead or using the joint compression 
technique interms of SNR and PRD performance quality respectively. The results 
shows that expoliting these similaraties between the support set amonge 
different leads could reach to an important gain, when a small number of 
measurements is considered.  
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F igure 5: Comparison of Joint CS reconstruction and normal CS 
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F igure 6:Comparison of Joint CS reconstruction and Normal CS 
 

The results show that by applying the joint reconstruction even a very small 
number (~20%) of measurements would suffice to reach a good signal 
reconstruction. Also promising is that even for very small number of measurement 
(like 5%) where normal CS reconstruction fails, by using the joint CS still it is 
possible to recover the signals and reach to the performance quality of 10 dB. 
 
Figure 7 also shows the resulting averaged SNR for each individual lead.  It can be 
noted that performance for some of the leads –more specially leads number 4 
and 7- are not very, good which affecting the overall SNR. If we compare this result 
with Normal CS reconstruction the same behavior is seen (Figure 8).  
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F igure 7:Averaged SNR of Joint reconstruction for each Lead  
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F igure 8: Averaged SNR for normal CS reconstruction for each lead 

 
This is due to the fact that these leads are generally very noisy, explaining the poor 
behavior of the CS for reconstructing these leads. Figure 9 shows a sample vector 
of size 512 from these leads. This observation counterintuitively suggests that, 
even if CS has a poor SNR for some signals, it can be nonetheless beneficial, as it 
can removing additive noise. 
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F igure 9: Sample ECG recording for Leads 4 and 7 from PTBDB 
 
 

 
 

Figure 10 and Figure 11 show the box plots comparing the PRD of normal and 
joint CS reconstruction algorithms. On each box, the central mark is the median, 
the edges of the box are the 25th and 75th percentiles, and the whiskers extend 
to the most extreme data points not considered outliers. Results shows that with 
joint CS reconstruction, performance is increased significantly.  

Joint CS reconstruction could reach average signal quality of “Good” 
reconstruction with CR = 12.5% when for normal CS the required CR 
is 24%.  
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F igure 10: Boxplot for Joint CS reconstruction 
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F igure 11: Boxplot For normal CS reconstruction 

 
 
 

 
We have also investigated the reconstruction time for both reconstruction 
algorithms. Both algorithm are executed on Matlab running of an 15” Macbook 
with i7 processor chip from intel with OSX 10.6. For each processing black of all 
records the execution times are recorded and averaged. Figure 12 shows the 
result of convergence time for both reconstruction algorithms over the different 
compression ratios. Due to exploiting additional information from other leads the  
convergence time of the optimization algorithm for joint reconstruction is 
significantly low compared to the normal CS reconstruction. This is very beneficial 
and important if the reconstruction algorithm executes on a device with limited 
amount of resources like an handheld or a mobile device.  
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F igure 12: Comparison of averaged normalized reconstruction t ime 
 

8.  Performance of the partners 

As lead beneficiary of the deliverable, EPFL investigated the illustrated advanced 
strategy for CS-based sensing and reconstruction, providing evidence on the 
similarities in the support of bio-signal acquired concurrently and the benefit of 
exploiting this information on the quality of reconstructed signals. 
All partners fulfilled their tasks in satisfactory time and quality. 

 

9.  Conclusions 

The deliverable presents advanced an advanced sparsity technique (named joint 
reconstruction) for compressed sensing and optimized recovery of bio-signals. Joint 
reconstruction exploits the mutual information present in multi-lead acquisitions to 
achieve higher compressions of CS-based systems. In the proposed scheme, a lead 
is sampled at a high compression ratio (CR), will all other leads have a more 
aggressive, and thus lower, CR. The high-CR signal is used to derive the support (i.e.: 
index of non-zero coefficients) for all the leads.  
 
We evaluated the performance of joint reconstruction on a database of 15-leads ECG 
recordings (PTB, available on Physionet). First, we investigated the support of the 
signals, confirming that strong similarities are present between the leads. Second, 
we compared the quality of the signal reconstructions when using joint support with 
respect to a baseline CS implementation. Joint support CS can successfully 
reconstruct the acquired signals with a lower CR. Moreover, it achieves a better 
reconstruction quality (lower PRD) for a given CR, especially in the lower range of CR, 
where a high compression of the signal is performed. 
 
The Full Assembly deems this deliverable to be fulfilled satisfactory. 

 
 
  

 


