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1 Summary

Our main goal in this work package is to bring the strength of statistics to topological tools. Our
first task is to gain a better understanding of topological noise. Most results in applied topology for
approximating the underlying persistence or homology of a space are of the form, given a sufficient
sample, there exists some finite simplicial complex we can build on top of our sample such that the
answer we obtain will be correct or approximately correct in the appropriate sense.

In particular for persistence, stability gives an upper bound on the magnitude of the noise.
Importantly however, these are only upper bounds often in a form which are unsuitable for statisitcal
tests. Little is known how the “topological noise” behaves. This is important for constructing a
null hypothesis as well as constructing algorithms which deal with outliers in a more robust way
than current topological methods.

We present several results:
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• Central limit theorems for Betti numbers on stationary point processes. We also note that
currently in preparation are central limit theorems for persistent Betti numbers.

• Simplification of 2D vector fields with sufficient and necessary conditions for simplification -
with a version in preparation for 3D vector fields.

• Gaussian kernels on persistence diagrams. This is in the spirit of persistence landscapes
which raises persistence diagrams into a Hilbert space, vastly speeding up the computation of
distances between diagrams (as opposed to the Hungarian algorithm for computing bottleneck
distance).

Much of this work is in preparation or submission but we highlight the work which is available:

• D. Yogeshwaran, E. Subag and R.J. Adler, “Random geometric complexes in the thermody-
namic regime,” accepted

• P. Skraba, B. Wang, G. Chen and P. Rosen. “2D Vector Field Simplification Based on
Robustness”. IEEE Pacific Visualization (PacificVis) , 2014.Best Paper)

We do not go into the details but also highlight the work in the paper

• Adler, R. J., Bartz, K., Kou, S. C., Monod, A. “Estimating Thresholding Levels for Random
Fields via Euler Characteristics.” submitted.

which is important for understanding how to use topological information for determining param-
eters. This type of work is also complementary to the semi-supervised framework for learning we
present in WP3. Furthermore, TOPOSYS had a poster appear at this years’ ECCS

• Adler, R. J., Skraba P. “Topological Detection of Heavy Tailed Distributions,” ECCS 2014

Finally, we highlight an upcoming result on long bar in uniform point processes. This is currently
work in progress which will be presented at a workshop shortly and is in preparation for submission.
We highlight the result here however.

Let Pn be a homogeneous Poisson process on the unit cube Q “ r0, 1sd with rate λ “ n,
and let UpPn, rq :“

Ť

pPPn Brppq. For every i-cycle σ we denote Bpσq, Dpσq, P pσq the birth-time,
death-time, and persistence (ratio), respectively. We want to argue that

Pmax “ max
σ

P pσq “ Θ

˜

ˆ

log n

log log n

˙1{i
¸

.

2 Stationary Point Processes

We consider the topology of simplicial complexes with vertices the points of a random point process
and faces determined by distance relationships between the vertices. In particular, we study the
Betti numbers of these complexes as the number of vertices becomes large, obtaining limit theorems
for means, strong laws, concentration inequalities and central limit theorems.

As opposed to most prior papers treating random complexes, the limit with which we work is in
the so-called ‘thermodynamic’ regime (which includes the percolation threshold) in which the com-
plexes become very large and complicated, with complex homology characterised by diverging Betti
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numbers. The proofs combine probabilistic arguments from the theory of stabilizing functionals of
point processes and topological arguments exploiting the properties of Mayer-Vietoris sequences.
The Mayer-Vietoris arguments are crucial, since homology in general, and Betti numbers in partic-
ular, are global rather than local phenomena, and most standard probabilistic arguments are based
on the additivity of functionals arising as a consequence of locality.

This paper is concerned with structures created by taking (many) random points and building
the structure based on neighbourhood relations between the points. Perhaps the simplest way to
describe this is to let Φ “ tx1, x2, . . . u be a finite or countable, locally finite, subset of points in Rd,
for some d ą 1, and to consider the set

CBpΦ, rq ∆
“

ď

xPΦ

Bxprq, (1)

where 0 ă r ă 8, and Bxprq denotes the d-dimensional ball of radius r centred at x P Rd.
When the points of Φ are those of a stationary Poisson process on Rd, this union is a special case

of a ‘Boolean model’, and its integral geometric properties – such as volume, surface area, Minkowski
functionals – have been studied in the setting of stochastic geometry since the earliest days of that
subject. Our interest, however, lies in the homological structure of CBpΦ, rq, in particular, as
expressed through its Betti numbers. Thus our approach will be via the tools of algebraic topology,
and, to facilitate this, we shall generally work not with CBpΦ, rq but with a homotopically equivalent
abstract simplical complex with a natural combinatorial structure. This will be the Čech complex
with radius r built over the point set Φ, denoted by CpΦ, rq.

The first, and perhaps most natural topological question to ask about these sets is how connected
are they. This is more a graph theoretic question than a topological one, and has been well studied
in this setting, with [30] being the standard text in the area. There are various ‘regimes’ in which
it is natural to study these questions, depending on the radius r. If r is small, then the balls in
(1) will only rarely overlap, and so the topology of both CBpΦ, rq and CpΦ, rq will be mainly that
of many isolated points. This is known as the ‘dust regime’. However, as r grows, the balls will
tend to overlap, and so a large, complex structure will form, leading to the notion of ‘continuum
percolation’, for which the standard references are [15] and [24]. The percolation transition occurs
within what is known as the ‘thermodynamic’, regime, and is typically the hardest to analyse. The
third and final regime arises as r continues to grow, and (loosely speaking) CBpΦ, rq merges into a
single large set with no empty subsets and so no interesting topology.

There has been considerable recent interest in the topological properties of CBpΦ, rq and CpΦ, rq
that go beyond mere connectivity or the volumetric measures provided by integral geometry. These
studies were initiated by Matthew Kahle in [18], in a paper which studied the growth of the expected
Betti numbers of these sets when the underlying point process Φ was either a Poisson process or a
random sample from a distribution satisfying mild regularity properties. Shortly afterwards, more
sophisticated distributional results were proven in [20]. An extension to more general stationary
point processes Φ on Rd can be found in [40], while, in the Poisson and binomial settings, [3] looks
at these problems from the point of view of the Morse theory of the distance function. Recently
[4] has established important – from the point of view of applications – extensions to the results
of [3, 18, 20] in which the underlying point process lies on a manifold of lower dimension than an
ambient Euclidean space in which the balls of (1) are defined.

However, virtually all of the results described in the previous paragraph (with the notable
exception of some growth results for expected Betti numbers in [18] and numbers of critical points
in [3]) deal with the topology of the dust regime. What is new in the current paper is a focus on
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the thermodynamic regime, and new results that go beyond the earlier ones about expectations.
Moreover, because of the long range dependencies in the thermodynamic regime, proofs here involve
considerably more topological arguments than is the case for the dust regime.

2.1 Summary of Results

Throughout we shall assume that all our point processes are defined over Rd for d ě 2. Denoting
Betti numbers of a set A Ă Rd by βkpAq, k “ 1, . . . , d ´ 1, we are interested in βkpCBpΦ, rqq for
point processes Φ Ă Rd. Since the Betti numbers for k ě d are identically zero, these values of
k are uninteresting. On the other hand, β0pAq gives the number of connected components of A.
While this is clearly interesting and important in our setting, it has already been studied in detail
from the point of view of random graph theory, as described above. Indeed, (sometimes stronger)
versions of virtually all our results for the higher Betti numbers already exist for β0 (cf. [1, 30]),
and so this case will appear only peripherally in what follows. A summary of our results, grouped
according to the underlying point processes involved:

1. General stationary point processes: For a stationary point process Φ and r P p0,8q, we
study the asymptotics of βkpCBpΦ XWl, rqq as l Ñ 8 and where Wl “ r´

l
2 ,

l
2 q
d. We show

convergence of expectations (Lemma 2.5) and, assuming ergodicity, we prove strong laws for
all the Betti numbers and a concentration inequality for β0.

2. Stationary Poisson point processes: Retain the same notation as above, but take Φ “ P, a
stationary Poisson point process on Rd. In this setting we prove a central limit theorem for
the Betti numbers of CBpP X Wl, rq and CpP X Wl, rq, for any r P p0,8q, as l Ñ 8. We
also treat the case in which l points are chosen uniformly in Wl and obtain a similar result,
although in this case we can only prove the central limit theorem for r R Id, where the interval
Id will be defined in Section 2.7. Informally, Id is the interval of radii where both CBpP, rq
and its complement have unbounded components a.s.. We only remark here that I2 “ H and
Id is a non-degenerate interval for d ě 3.

3. Inhomogeneous Poisson and binomial point processes: Now, consider either the Poisson point
process Pn with non-constant intensity function nf , for a ‘nice’, compactly supported, density
f , or the binomial process of n iid random variables with probability density f . In this case the
basic set-up requires a slight modification, and so we consider asymptotics for βkpCBpPn, rnqq
as n Ñ 8 and nrdn Ñ r P p0,8q. We derive an upper bound for variances and a weak law.
In the Poisson case, we also derive a variance lower bound for the top homology. For the
corresponding binomial case we prove a concentration inequality ( and use this to prove a
strong law for both cases.

A few words on our proofs: In the case of stationary point processes, we shall use the nearly-
additive properties of Betti numbers along with sub-additive theory arguments. In the Poisson and
binomial cases, the proofs center around an analysis of the so-called add-one cost function,

βkpCBpP Y tOu, rqq ´ βkpCBpP, rqq,

whereO is the origin in Rd. While simple combinatorial topology bounds with martingale techniques
suffice for strong laws, weak laws, and concentration inequalities, a more careful analysis via the
Mayer-Vietoris sequence is required for the central limit theorems.
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Our central limit theorems rely on similar results for stabilizing Poisson functionals (cf. [32]),
which in turn were based upon martingale central limit theory. As for variance bounds, while upper
bounds can be derived via Poincaré or Efron-Stein inequalities, the more involved lower bounds
exploit the recent bounds developed in [22] using chaos expansions of Poisson functionals.

One of the difficulties in analyzing Betti numbers that will become obvious in the proof of the
central limit theorem is their global nature. Most known examples of stochastic geometric func-
tionals satisfy both the notions of stabilization (cf. [32]) known as ‘weak’ and ‘strong’ stabilization.
However, we shall prove that higher Betti numbers satisfy weak stabilization but satisfy strong sta-
bilization only for certain radii regimes. We are unable to prove strong stabilization of higher Betti
numbers for all radii regimes because of the global dependence of Betti numbers on the underlying
point process.

Beyond the Čech complex Although this paper concentrates on the Čech complex as the basic
topological object determined by a point process, this is but one of the many geometric complexes
that could have been chosen. There are various other natural choices including the Vietoris-Rips,
alpha, witness, cubical, and discrete Morse complexes (cf. [13, Section 7], [41, Section 3]) that are
also of interest. In particular, the alpha complex is homotopy equivalent to the Čech complex ([41,
Section 3.2]), as is an appropriate discrete Morse complex ([13, Theorem 2.5]). This immediately
implies that all the limit theorems for Betti numbers in this paper also hold for these complexes.
Moreover, since our main topological tools can be shown to hold for all the complexes listed above,
most of our arguments should easily extend to obtain similar theorems for these cases as well.

2.2 Preliminaries

We refer readers to the standard texts such as [16, 25] for more details on the topology we need,
while [34, 38] covers the point process material. In this report we omit proofs but refer the reader
to the paper described in the summary.

Our two main topological tools are collected in the following two lemmas. The first is needed
for obtaining various moment bounds on Betti numbers of random simplicial complexes, and the
second will replace the role that additivity of functionals usually plays in most probabilistic limit
theorems. Because the arguments underlying these lemmas are important for what follows, and
will be unfamiliar to most probabilistic readers, we shall prove them both. However both contain
results that are well known to topologists.

Lemma 2.1. Let K,K1 be two finite simplicial complexes such that K Ă K1 (i.e., every simplex in
K is also a simplex in K1). Then, for every k ě 1, we have that

ˇ

ˇβkpK1q ´ βkpKq
ˇ

ˇ ď

k`1
ÿ

j“k

#
 

j-simplices in K1zK
(

.

With a little more work, one can go further than the previous lemma and derive an explicit
equality for differences of Betti numbers. This is again a classical result in algebraic topology which
is derived using the Mayer-Vietoris sequence (see [10, Corollary 2.2]). However we shall state it
here as it is important for our proof of the central limit theorem.

A little notation is needed before we state the lemma. A sequence of Abelian groups G1, . . . , Gl
and homomorphisms ηi : Gi Ñ Gi`1, i “ 1, . . . , l ´ 1 is said to be exact if im ηi “ ker ηi`1 for all
i “ 1, . . . , l ´ 1. If l “ 5 and G1 and G5 are trivial, then the sequence is called short exact.
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Lemma 2.2 (Mayer-Vietoris Sequence). Let K1 and K2 be two finite simplicial complexes and
L “ K1 X K2 (i.e., L is the complex formed from all the simplices in both K1 and K2). Then the
following are true:

1. The following is an exact sequence, and, furthermore, the homomorphisms λk are induced by
inclusions:

¨ ¨ ¨ Ñ HkpLq λkÑ HkpK1q ‘HkpK2q Ñ HkpK1 YK2q

Ñ Hk´1pLq
λk´1
Ñ Hk´1pK1q ‘Hk´1pK2q Ñ ¨ ¨ ¨

2. Furthermore,

βkpK1

ď

K2q “ βkpK1q ` βkpK2q ` βpNkq ` βpNk´1q ´ βkpLq,

where βpGq denotes the rank of a vector space G and Nj “ kerλj.

2.3 Point Process Preliminaries

A point process Φ is formally defined to be a random, locally-finite (Radon), counting measure
on Rd. More formally, let Bb be the σ-ring of bounded, Borel subsets of Rd and let M be the
corresponding space of non-negative Radon counting measures. The Borel σ-algebraM is generated
by the mappings µ Ñ µpBq for all B P Bb. A point process Φ is a random element in pM,Mq,
i.e. a measurable map from a probability space pΩ,F ,Pq to pM,Mq. The distribution of Φ is the
measure PΦ´1 on pM,Mq.

We shall typically identify Φ with the positions tx1, x2, . . . u of its atoms, and so for Borel B Ă Rd
it we shall allow ourselves to write

ΦpBq “
ÿ

i

δxipBq “ #ti : xi P Bu “ #tΦXBu,

where # denotes cardinality and δx the single atom measure with mass one at x. The intensity
measure of Φ is the non-random measure defined by µpBq “ EtΦpBqu, and, when µ is absolutely
continuous with respect to Lebesgue measure, the corresponding density is called the intensity of
Φ.

For Borel A Ă Rd, we write ΦA for both the restricted random measure given by ΦApBq :“
ΦpAXBq (when treating Φ itself as a measure) and the point set ΦXA (when treating Φ as a point
set). To save space, we shall write Φl for ΦWl

, where Wl is the ‘window’ r´l{2, l{2qd, for all l ě 0.
For a measure φ PM, let φpxq be the translate measure given by φpxqpBq “ φpB ´ xq for x P Rd

and B P Bb. A point process is said to be stationary if the distribution of Φpxq is invariant under

such translation, i.e. PΦ´1
pxq “ PΦ´1 for all x P Rd. For a stationary point process in Rd, µpBq “ λ|B|

for all B P Bb, where |B| denotes the Lebesgue measure of B, and the constant of proportionality
λ is called the intensity of the point process.

For a set of measures Θ PM, let the translate family be Θx :“ tφpxq : φ P Θu. A point process
Φ is said to be ergodic if

P tΦ P Θu P t0, 1u

7
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for all Θ PM for which

P tΦ P pΘzΘxq Y pΘxzΘqu “ 0

for all x P Rd.
Finally, we say that Φ has all moments if, for all bounded Borel B Ă Rd, we have

E
!

rΦpBqs
k
)

ă 8, for all k ě 1. (2)

2.4 Limit theorems for stationary point processes

This section is concerned with the Čech complex CpΦl, rq, where Φ is a stationary point process on
Rd with unit intensity and, as above, Φl is the restriction of Φ to the window Wl “ r´l{2, l{2q

d.
The radius r is arbitrary but fixed.

It is natural to expect that, as a consequence of stationarity, letting lÑ8, l´dEtβkpCpΦl, rqqu
will converge to a limit. Furthermore, if we also assume ergodicity for Φ, one expects convergence
of l´dβkpCpΦl, rqq to a random limit. All this would be rather standard fare, and rather easy to
prove from general limit theorems, if it were only true that Betti numbers were additive functionals
on simplicial complexes, or, alternatively, the Betti numbers of Čech complexes were additive func-
tionals of the underlying point processes. Although this is not the case, Betti numbers are ‘nearly
additive’, and a correct quantification of this near additivity is what will be required for our proofs.

As hinted before Lemma 2.1, the additivity properties of Betti numbers are related to simplicial
counts SjpX , rq, which, for j ě 0, denotes the number of j-simplices in CpX , rq, and SjpX , r;Aq,
which denotes the number of j-simplices with at least one vertex in A.

Our first results are therefore limit theorems for these quantities.

Lemma 2.3. Let Φ be a unit intensity stationary point process on Rd, possessing all moments.
Then, for each j ě 0, there exists a constant cj :“ cpLΦ, j, d, rq such that

EtSjpΦA, rqu ď EtSjpΦ, r;Aqu ď cj |A|.

Lemma 2.4. Let Φ be a unit intensity, ergodic, point process on Rd possessing all moments. Then,
for each j ě 0, there exists a constant, pSj :“ pSpLΦ, j, d, rq, such that, with probability one,

lim
lÑ8

SjpΦ, r;Wlq

ld
“ lim

lÑ8

SjpΦl, rq

ld
“ pSjpLΦ, rq.

2.5 Strong Law for Betti numbers

In this section we shall start with a convergence result for the expectation of βkpCpΦl, rqq when
Φ is a quite general stationary point process, and then proceed to a strong law. We treat these
results separately, since convergence of expectations can be obtained under weaker conditions than
the strong law. In addition, seeing the proof for expectations first should make the proof of strong
law easier to follow.

From [40, Theorem 4.2] we know that

EtβkpCpΦl, rqqu “ Opldq.

The following lemma strengthens this result.

8
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Lemma 2.5. Let Φ be a unit intensity stationary point process possessing all moments. Then, for
each 0 ď k ď d´ 1, there exists a constant pβk :“ pβkpLΦ, rq P r0,8q such that

lim
lÑ8

EtβkpCpΦl, rqqu
ld

“ pβk.

Remark 2.6. The lemma is interesting only in the case when pβk ą 0, and this does not always hold.
However, it can be guaranteed for negatively associated point processes (including Poisson processes,
simple perturbed lattices and determinantal point processes) under some simple conditions on void
probabilities, cf. [40, Theorem 3.3].

thm 2.7. Let Φ be a unit intensity ergodic point process possessing all moments. Then, for 0 ď
k ď d´ 1, and pβk as in Lemma 2.5,

βkpCpΦl, rqq
ld

a.s.
Ñ pβk.

The following concentration inequality is an easy consequence of the general concentration in-
equality of [29].

thm 2.8. Let Φ be a unit intensity stationary determinantal point process. Then for all l ě 1,
ε ą 0, and a P p 1

2 , 1s, we have that

P
!
ˇ

ˇ

ˇ
β0pCpΦ

l
1
d
, rqq ´ E

!

β0pCpΦ
l
1
d ,rqq

q

)
ˇ

ˇ

ˇ
ě εla

)

ď 5 exp

ˆ

´
ε2l2a´1

16Kdpεla´1 ` 2Kdq

˙

,

where Kd is the maximum number of disjoint unit balls that can be packed into B0p2q.

2.6 Poisson and binomial point processes

Since there is already an extensive literature on β0pCpX .rqq for Poisson and binomial point processes,
albeit in the language of connectedness of random graphs (e.g. [30]), in this section we shall restrict
ourselves only to βk for 1 ď k ď d´ 1.

The models we shall treat start with a Lebesgue-almost everywhere continuous probability
density f on Rd, with a compact, convex support that (for notational convenience) includes the
origin, and such that

0 ă inf
xPsupppfq

fpxq
∆
“ f˚ ď f˚

∆
“ sup
xPRd

fpxq ă 8. (3)

The models are Pn, the Poisson point process on Rd with intensity nf , and the binomial point
process Xn “ tX1, . . . , Xnu, where the Xi are i.i.d. random vectors with density f . From [18], we
know that for both Pn and Xn the thermodynamic regime corresponds to the case nrdn Ñ r P p0,8q,
so that for such a radius regime we have that

EtβkpCpPn, rnqqu “ Θpnq, EtβkpCpXn, rnqqu “ Θpnq.

In proving limit results for Betti numbers in these cases, much will depend on moment estimates
for the add-one cost function. The add-one cost function for a real-valued functional F defined over
finite point-sets X is defined by

DxF pX q ∆
“ F pX Y txuq ´ F pX q, x P Rd. (4)

9
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Our basic estimate follows. For notational convenience, we write

βnk pX q
∆
“ βkpCpX , rnqq,

where trnuně1 is a sequence of radii to be determined.

Lemma 2.9. Let 1 ď k ď d´ 1. For the Poisson point process Pn and binomial point process Xn,
with nrdn Ñ r P p0,8q, we have that

∆k
∆
“ max

ˆ

sup
ně1

sup
xPRd

E
 

|Dxβ
n
k pPnq|4

(

, sup
ně1

sup
xPRd

E
 

|Dxβ
n
k pXnq|4

(

˙

(5)

is finite

2.6.1 Strong laws

We begin with a lemma giving variance inequalities, which, en passant, establish weak laws for
Betti numbers.

Lemma 2.10. For the Poisson point process Pn and binomial point process Xn, with nrdn Ñ r P
p0,8q, and each 1 ď k ď d´ 1, there exists a positive constant c1 such that for all n ě 1,

VARpβkpCpPn, rnqqq ă c2n, VARpβkpCpXn, rnqqq ă c2n. (6)

Thus, as nÑ8,

n´1 rβkpCpPn, rnqq ´ EtβkpCpPn, rnqqus P
Ñ 0,

and

n´1 rβkpCpXn, rnqq ´ EtβkpCpXn, rnqqus P
Ñ 0.

Thanks to the recent bound of [22, Theorem 5.2], we can also give a lower bound for the Poisson
point process in the case of k “ d´ 1.

Lemma 2.11. For the Poisson point process Pn with nrdn Ñ r P p0,8q, there exists a positive
constant c1 such that for all n ě 1,

VARpβd´1pCpPn, rnqqq ą c1n. (7)

Remark 2.12. Note that from the universal coefficient theorem ([25, Theorem 45.8]) and Alexander
duality ([36, Theorem 16]), we have that1

H̃kpCBpPn, rqq – H̃d´k´1pRdzCBpPn, rqq.

Thus

βd´1pCBpPn, rqq “ β0pRdzCBpPn, rqq ´ 1.

β0pRdzCBpPn, rqq is nothing but the number of components of the vacant region of the Boolean
model, which is easier to analyse and this shall play a crucial role in our proof.

1The H̃k are the reduced homology groups and it suffices to note that H̃k – Hk for k ‰ 0 and H0 – H̃0p.q ‘ F.
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Our next main result is a concentration inequality for βkpCpXn, rnq.

thm 2.13. Let 1 ď k ď d´ 1, Xn be a binomial point process, and assume that nrdn Ñ r P p0,8q.
Then, for any a ą 1

2 and ε ą 0, for n large enough,

P
 
ˇ

ˇβkpCpXn, rnq ´ EtβkpCpXn, rnqu
ˇ

ˇ ě εna
(

ď
C

ε
n2k`2´a expp´nγq,

where γ “ p2a´ 1q{4k and C ą 0 is a constant depending only on a, r, k, d and the density f .

The proof, close to that of [30, Theorem 3.17], is based on a concentration inequality for mar-
tingale differences.

We now finally have the ingredients needed to lift the weak laws of Lemma 2.10 to the promised
strong convergence.

thm 2.14. For the Poisson point process Pn and binomial point process Xn, with nrdn Ñ r P p0,8q,
and each 1 ď k ď d´ 1, we have, with probability one,

lim
nÑ8

n´1 rβkpCpPn, rnqq ´ EtβkpCpPn, rnqus “ 0,

and
lim
nÑ8

n´1 rβkpCpXn, rnqq ´ EtβkpCpXn, rnqus “ 0.

2.7 Central Limit Theorem

We have finally come to the main result: central limit theorems for Betti numbers.
We start with some definitions from percolation theory for the Boolean model on Poisson pro-

cesses ([24]) needed for the proof of the Poisson central limit theorem. Recall firstly that we say
that a subset A of Rd percolates if it contains an unbounded connected component of A.

Now let P be a stationary Poisson point process on Rd with unit intensity. (Unit intensity is for
notational convenience only. The arguments of this section will work for any constant intensity.)
We define the critical (percolation) radii for P as follows:

rcpPq ∆
“ inftr : P tCpP, rq percolatesu ą 0u,

and,

r˚c pPq
∆
“ suptr : P

 

RdzCpP, rq percolates
(

ą 0u.

By Kolmogorov’s zero-one law, it is easy to see that the both of the probabilities inside the infimum
and supremum here are either 0 or 1. The first critical radius is called the critical radius for
percolation of the occupied component and the second is the critical radius for percolation of the
vacant component.

We define the interval of co-existence, IdpPq, for which unbounded components of both the
Boolean model and its complement co-exist, as follows:

IdpPq “
#

prc, r
˚
c s if P tCpP, rcq percolatesu “ 0,

rrc, r
˚
c s otherwise.

11
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From [24, Theorem 4.4 and Theorem 4.5], we know that I2pPq “ H and from [33, Theorem 1] we
know that IdpPq ‰ H for d ě 3. In high dimensions, it is known that rc R IdpPq (cf. [39]).

We now need a little additional notation. Let tBnuně1 be a sequence of bounded Borel subsets
in Rd satisfying the following four conditions:

(A) |Bn| “ n, for all n ě 1.

(B)
Ť

ně1

Ş

měnBm “ Rd.

(C) |pBBnq
prq|{nÑ 0, for all r ą 0.

(D) There exists a constant b1 such that diampBnq ď b1n
b1 , where diampBq is the diameter of B.

In a moment we shall state and prove a central limit theorem for the sequences of the form
βkpCpP XBn, rqq, when the Bn are as above. Setting up the central limit theorem for the binomial
case requires a little more notation.

In particular, we write Un to denote the point process obtained by choosing n points uniformly
in Bn, and call this the extended binomial point process. This is a natural binomial counterpart to
the Poisson point process P XBn.

We finally have all that we need to formulate the main central limit theorem.

thm 2.15. Let tBnu be a sequence of sets in Rd satisfying conditions (A)–(D) above, and let P
and Un, n ě 1, respectively, be the unit intensity Poisson process and the extended binomial point
process described above. Take k P t1, . . . , d´ 1u and r P p0,8q. Then there exists a constant σ2 ą 0
such that, as nÑ8,

n´1VARpβkpCpP XBn, rqq Ñ σ2,

and
n´1{2 pβkpCpP XBn, rqq ´ EtβkpCpP XBn, rqquq ñ Np0, σ2q.

Furthermore, for r R IdpPq, there exists a τ2 with 0 ă τ2 ď σ2 such that

n´1VARpβkpCpUn, rqq Ñ τ2,

and
n´1{2 pβkpCpUn, rqq ´ EtβkpCpUn, rqquq ñ Np0, τ2q.

The constants σ2 and τ2 are independent of the sequence tBnu.

Remark 2.16. The condition r R IdpPq, needed for the binomial central limit theorem, is rather
irritating, and we are not sure if it is necessary or an artefact of the proof. It is definitely not
needed for the case k “ d´ 1. To see this, note that from the duality argument of Remark 2.12, we
have that

βd´1pCpP XBn, rqq “ β0pRdzCpP XBn, rqq ´ 1.

However, RdzCpP X Bn, rq is nothing but the vacant component of the Boolean model, and central
limit theorems for β0pRdzCpX XBn, rqq for both Poisson and binomial point processes are given in
[32, p1040] for all r P p0,8q. By the above duality arguments, this proves both the central limit
theorems of Theorem 2.15, when k “ d´ 1, and without the requirement that r R IdpPq.

12
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3 Robustness-based Simplification of 2D Vector Fields

This work describes the simplification of vector fields (primarily for visualization). Note that
this work does not assume the vector field is a gradient vector filed of a scalar field. It gives a
constructive algorithm for constructing the simplification as well as shows that in a given metric no
smaller perturbation simplification exists. It ultimately makes use of Laplacian smoothing, which
shows how this can be altered such that it will always work if simplification is possible.

A considerable amount of research has been focused on vector field simplification based on the
notion of a topological skeleton [60, 62]. A topological skeleton consists of critical points connected
by special streamlines called separatrices, which provide a condensed representation of the flow
by dividing the domain into regions of uniform flow behavior. However, existing simplification
techniques rely on the stable extraction of the topological skeleton, which can be difficult due to
instability in numerical integration, especially when processing highly rotational flows, e.g. Figure 1.
Furthermore, the distance and area-based relevance measures that are commonly used to determine
the cancellation ordering of critical points typically rely on geometric proximities and do not consider
the flow magnitude, an important physical property of the flow.

Here we show new vector field simplification scheme derived from the recently introduced notion
of robustness. Intuitively, the robustness of a critical point is the minimum amount of perturbation,

(a) (b)

(c)

Figure 1: Topological skeleton: Sinks (and saddle-sink separatrices) are red, sources (and saddle-
source separatrices) green, and saddles blue. (a) A highly rotational flow field where the pointed
critical points are close to Hopf-bifurcations. Numerical inaccuracies may accumulate during inte-
gration and separatrices may intersect or switch. (b)-(c) Instability of separatrices under a small
perturbation: The upper right sink is not connected with the saddle on the left in (b), but is after
a small perturbation in (c).
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Figure 2: Figure adapted from [75]. Suppose the vector field is continuous, where sinks are red,
sources are green, and saddles are blue. From left to right: vector fields f , relations among com-
ponents of Fr, and augmented merge trees. f contains four critical points, a sink x1, a source x3,
and two saddles x2 and x4. We use β, γ, ω, etc. to represent components of certain sublevel sets.

with respect to a metric encoding flow magnitude, that is required to cancel it within a local
neighborhood. Our method finds, in the space of all vector fields, the one that is closest to the
original vector field with a particular set of critical points removed, according to a metric based on
the L8 norm (the maximum point-wise modification to the vector field). Our results are optimal
in this norm, that is, there exists no simplification with a smaller perturbation.

3.1 Background

We provide relevant background in degree theory and robustness by reviewing previous work [45, 75]
with minimal algebraic definitions and illustrating the related concepts through an example (Figure
2 adapted from [75]). We also provide introductory descriptions of isolating neighborhoods and
Laplacian smoothing [47, 78].
Degrees. For a critical point x in 2D, its degree degpxq equals its (Poincaré) index, that is,
the number of field rotations while traveling along a closed curve centered at x counter-clockwise.
Sources, sinks, centers, and saddles have indices `1, `1, `1 and ´1, respectively. Furthermore,
for a (path-)connected component C that encloses several critical points, its degree degpCq is the
sum of the respective degrees of those critical points [45]. For our robustness-based simplification
strategy, we rely on a corollary of the Poincaré-Hopf theorem (which is also employed by topological-
skeleton-based simplification, e.g., [72]), which states that if a connected component C in 2D has
degree zero, then it is possible to replace the vector field inside C with a vector field free of critical
points.
Merge tree. To analyze a continuous 2D vector field f : R2 Ñ R2, we define a corresponding
scalar function (referred to as the flow magnitude function) f0 : R2 Ñ R which assigns for each
point the magnitude (Euclidean norm) of the corresponding vector, f0pxq “ ||fpxq||2. We use
Fr “ f´1

0 p´8, rs to denote the sublevel set of f0 for some r ě 0. F0 is precisely the set of critical
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points of f .
Increasing r from 0, the space Fr evolves and we can construct a graph that tracks the (con-

nected) components of Fr as they appear and merge. This is called a merge tree (or join tree as
described in [43]). The root represents the entire domain of f0 and the leaves represent the creation
of a component at a local minimum. An internal node represents the merging of two or more
components. We further record an integer at each node, which is the degree of the corresponding
component in the sublevel set, and refer to the result as an augmented merge tree. An initial
computation of the degrees of critical points is sufficient to determine the degree of any component
of any sublevel set by computing the sum of the degrees of the critical points lying in it [45]. An
example is shown in Figure 22. The merge tree on the right shows how the components of the
sublevel sets Fr evolve. At r “ 0 there are four components that correspond to the four critical
points, each with nonzero degree. At r “ r1, components that contain x1 and x2 merge into a single
component β1, which has zero degree. When r “ r2, components β1 and β2 merge into a single
component γ1 with degree `1, while β3 grows into γ2. Finally at r “ r3, the single component ω1

has zero degree.
Static robustness and its properties. The (static) robustness of a critical point is the height
of its lowest degree zero ancestor in the merge tree [44, 75]. The static robustness quantifies the
stability of a critical point with respect to perturbations of the vector fields through the following
lemmas explicitly stated in [75].

We first define the concept of perturbation. Let f, h : R2 Ñ R2 be two continuous 2D vector
fields. Define the distance between the two mappings as dpf, hq “ supxPR2 ||fpxq ´ hpxq||2. A
continuous mapping h is an r-perturbation of f , if dpf, hq ď r.

Lemma 3.1 (Critical Point Cancellation [75]). Suppose a critical point x of f has robustness r.
Let C be the connected component of Fr`δ containing x, for an arbitrarily small δ ą 0. Then, there
exists an pr ` δq-perturbation h of f , such that h´1p0q X C “ H and h “ f except possibly within
the interior of C.

Lemma 3.2 (Degree & Critical Point Preservation [75]). Suppose a critical point x of f has
robustness r. Let C be the connected component of Fr´δ containing x, for some 0 ă δ ă r. For any
ε-perturbation h of f where ε ď r´ δ, the sum of the degrees of the critical points in h´1p0q XC is
degpCq. If C contains only one critical point x, we have degph´1p0q X Cq “ degpxq. That is, x is
preserved as there is no ε-perturbation that could cancel it.

Revisiting the example in Figure 2, the robustness of the critical points x1, x2, x3, and x4 is r1,
r1, r3, and r3, respectively. Since the robustness of x3 is r3, for any δ ą 0, we consider a component
C Ď Fr3`δ that is slightly larger than ω1 and contains x3 (in fact, ω1 contains all four critical
points). Lemma 3.1 implies the existence of an pr3 ` δq-perturbation that cancels x3 by locally
modifying the component C. Now consider another component C 1 Ď Fr3´δ where r2 ă r3´ δ ă r3,
then C 1 has degree `1. Lemma 3.2 states that any pr3 ´ δq-perturbation preserves the degree of
C 1.
Isolating neighborhood and Laplacian smoothing. Previously, topology-based simplification
has focused on cancelling pairs of critical points that are connected by separatrices. Zhang et al. [78]
and Chen et al. [47] propose to compute an isolating neighborhood surrounding a pair of critical
points, where a critical-point-free vector field can be found by solving a constrained optimization
problem, referred to as a vector-valued Laplacian smoothing [78].

2 We do not show any components that appear after r “ 0 as they have zero degrees and do not correspond to
critical points of the vector field.
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Figure 3: (a)-(b): Illustrative examples for uncovered (a) and covered (b) boundaries of im pCq.
(c): A component and its image space with a few mappings highlighted.

Based on Conley index theory, every boundary point of an isolating neighborhood can be clas-
sified as either an entrance or exit point. If an isolating region C in the domain contains multiple
critical points and has a trivial Conley index, the flow inside C can be replaced with a new field free
of critical points [78]. A typical situation for C to have a trivial Conley index is when its boundary
BC consists of a single inflow and a single outflow component. As shown in the later examples,
such an isolating neighborhood is not always easy to construct. The robustness-based method has
no such constraint and only requires the degree of C to be zero.

3.2 Robustness-Based Simplification Algorithms

In robustness-based simplification, we first locate sets of critical points that share the lowest zero-
degree ancestors in the merge tree and sort them based on their robustness values. For each set
with a common robustness r, we compute the corresponding component of the sublevel set C Ď Fr.
Since by construction degpCq “ 0, our strategy can simplify C, whereas the distance-based strategy
requires an isolating neighborhood with trivial Conley index.

Given a 2D vector field restricted to a degree-zero component C, f : C Ñ R2, we define the
image space of C, im pCq. For each point p P C, we have a vector vp “ fppq P R2. im pCq Ă R2

is constructed by mapping p to its vector coordinates vp. The origin in im pCq corresponds to the
critical points (0 vectors) in C. Since C Ď Fr, it follows that @p P C, ||vp||2 ď r, therefore im pCq
is contained within a disc of radius r in R2. We denote the boundary of this disc by S.
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Now suppose the boundary of C, denoted as BC, is a simple closed curve3. Note that the above
maps BC to S, obtaining the image, im pBCq. We refer to the boundary of im pCq as uncovered,
if im pBCq Ă S, otherwise, as covered. Figures 3(a)-(b) illustrate these concepts. Note that both
examples have zero degree. In 3(a), the region C encloses a saddle-sink pair connected by a separa-
trix. By traversing counter-clockwise along BC and observing how its image im pBCq wraps around
S, we see that the boundary of im pCq is uncovered. In 3(b), the region C encloses a saddle-sink
pair not connected by separatrix and the boundary of im pCq is covered.

In the PL setting, the vector field f is restricted to a triangulation K of C, f : K Ñ R2, where
the support of K, |K| “ C. We construct the image of C by mapping each vertex p P K to its
vector coordinates vp “ fppq. Through linear interpolation, this construction also maps edges and
triangles in K to edges and triangles in im pCq (Figure 3(c)). The concept of covered and uncovered
boundaries of im pCq can be defined similarly up to a small additive constant.

Algorithm Overview Our simplification strategy consists of four operations:

• SmoothingpCq: Perform Laplacian smoothing on C;

• CutpCq: Deform the vector field in its image space im pCq to remove critical points in C;

• UnwrappCq: Modify the vector field in its image space im pCq so part of its boundary is
uncovered;

• RestorepCq: Set the boundary to its original value.

Three cases are classified by the Conley index of C, denoted as CH˚pCq. The operations to simplify
each case are:

(a) If CH˚pCq is trivial, return C1 “ SmoothingpCq.

(b) If CH˚pCq is nontrivial and the boundary of im pCq is uncovered, then C1 “ CutpCq, and
return C2 “ SmoothingpC1q.

(c) If CH˚pCq is nontrivial and the boundary of im pCq is covered, then C1 “ UnwrappCq,
C2 “ CutpC1q, C3 “ RestorepC2q and return C4 “ SmoothingpC3q.

By construction, degpCq “ 0 in all three cases. Indeed, degpCq ‰ 0 is a sufficient condition such
that there exists no simplification.

For the details on Cut and Unwrap, we direct the reader to the paper.

3.3 Synthetic Examples

We illustrate our robustness-based simplification strategy on three PL synthetic examples, high-
lighting the three different cases.

SyntheticA (Figure 4) corresponds to the example in Figure 2. It involves pairs of critical points
connected by separatrices. At r1, we have a component that contains critical points x1 and x2

and at r3 we have a component that contains all four critical points x1 to x4. The simplification
hierarchy involves two steps ranked by robustness values: first x1 and x2 are simplified, and then

3This is not needed, but it simplifies the algorithm and exposition.
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Figure 4: SyntheticA. (a) The original vector field: sinks are red, sources are green and saddles are
blue. (b) The topological skeleton: saddle-sink separatrices are red and saddle-source separatrices
are green. (c)-(d) 1st level simplification: before (c) and after (d) Smoothing. (e)-(f) 2nd level
simplification: before (e) and after (f) Smoothing.

(a) (b) (c)

Figure 5: SyntheticB. (a) the original vector field with its topological skeleton. (a)-(b): Single level
simplification before (a) and after (b) by Cut and Smoothing. (c) Only applying Smoothing
does not make the region a critical point free field.
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(a) (b) (c)

Figure 6: SyntheticC. (a) the original vector field with topological skeleton. (b)-(c) Before (b) and
after (c) simplification by combining Unwrap, Cut and Smoothing.

x3 and x4. Since both components (marked by yellow boundary) have a trivial Conley index,
this corresponds to case (a), where only Smoothing operations are needed. SyntheticB (Figure
5) involves a group of four critical points that are interconnected by separatrices, which could be
simplified in a single level using a robustness-based strategy. Since the component of interest has
a nontrivial Conley index, directly applying Laplacian smoothing fails (as shown in Figure 5(c)).
The component’s boundary is uncovered, so we apply case (b) of our simplification by combining
Cut with Smoothing.

SyntheticC (Figure 6) corresponds to case (c) of our algorithm. This is an untypical case
involving a pair of critical points not directly connected by a separatrix. In this case, the component
of interest C has nontrivial Conley index, and the boundary of its image is covered. The robustness-
based strategy cancels the critical point pair without any issue by combining Unwrap, Cut and
Smoothing operations. We further focus on this example by illustrating the image space of C,
im pCq, during various steps of simplification in Figure 7. In Figure 7(a), the entire boundary and
disk are covered. However, from the left phase plot in Figure 8, we can see that the degree is 0.
Once the optimal unwrapping point is computed, we perform the Unwrap operation, giving the
right phase plot in Figure 8 and the image space in Figure 7(b), leaving the boundary S uncovered.
The effect of the Cut operation in image space is shown in Figure 7(c), creating a void surrounding
the origin. Lastly, in Figure 7(d), the boundary is restored for the final output.

3.4 Results

We demonstrate our robustness-based simplification strategy on a number of real-world datasets.
When possible, we compare our method with distance-based simplification. Ths is only a subset of
the obtained results.

We identified a number of scenarios where the distance-based and robustness-based methods
disagree. Two pairs of critical points are studied(see the full paper). Even though the pairing of
these four critical points is consistent with both metrics, their actual simplification orderings are
different. The distance-based method cancels the pair in the middle-right of the domain first, while
the robustness-based method cancels the lower-middle pair first. Figure 9 provides an example that
shows the discrepancy of the two approaches in determining the simplification ordering of critical
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Figure 7: SyntheticC. The image space is shown through the different steps: (a) original, (b) after
Unwrap, (c) after Cut, and (d) final output after Restore.

2π

π

0

π

2π

π

0

π

Figure 8: SyntheticC. Left: The phase plot, original version (blue), and the phase-unwrapped
version (red). Right: The phase plot with optimal unwrap point (orange) and the modified phase
plot with boundary uncovered (purple).

point pairs in the time-varying setting. In this example, we look at consecutive time steps from the
OceanD dataset. Figure 9(a) highlights the critical points of interest. The pairings of these four
critical points again agree with each other using both topological-skeleton and robustness metrics.
We perform a per-slice simplification using the two approaches. The results are shown in the second
(distance-based) and third (robustness-based) columns in (b)-(c), respectively. From the results, we
see that the cancellation orderings change over time using the distance-based metric. This is due
to an increased distance between the two critical points near the upper-right corner, resulting in a
change of the simplification order. On the other hand, the robustness for these two pairs is stable.
Therefore, the robustness-based simplification returns a consistent outcome in this example.

There are a number of cases where the topological-skeleton-based metric combined with the
Laplacian smoothing technique is incapable of simplifying the given vector field. For example, for
the SyntheticB dataset shown in Figure 5, it is impossible to find an isolating neighborhood with a
trivial Conley index that encloses all the critical points due to the boundary condition. Therefore,
even though the obtained local region is guaranteed to be zero degree, Laplacian smoothing fails
to solve for a critical point free field. On the other hand, the simplification algorithm introduced
in Section 3.2 successfully simplifies the field. The boundary configuration of this region is rather
complex and does not satisfy a trivial Conley index. The Laplacian smoothing based on this
boundary configuration fails (bottom), but the proposed simplification method succeeds. These
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Figure 9: The OceanD dataset. (a) A sampled time series with pairs of critical points highlighted,
where white numbers indicate time stamps. (b) #21710. (c) #21715. For each subfigure (b)-
(c), Top Row: The original vector field (left) and with the separatrices (right). Middle Row: The
simplification ordering for the distance-based strategy. Bottom Row: The simplification ordering for
the robustness-based strategy. Orderings for distance and robustness-based methods are consistent
in (b) and different in (c).

Figure 10: The Combustion dataset. The bottom-up hierarchical simplifications (Top) from the
distance-based strategy and (Bottom) from the robustness-based strategy.
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two examples showcase the utility of the proposed algorithm in solving a critical point free field
within any given regions with zero degree. This relieves the requirement of the trivial Conley index
whose corresponding isolating neighborhood is sometimes difficult to obtain.

Figure 6 shows a nontypical case that involves the cancellation of a pair of critical points
not directly connected by separatrix. It is impossible for the topological-skeleton-based method
to compute an isolating neighborhood that encloses two critical points (but not the others) not
connected by separatrix [47]. Nonetheless, the robustness metric derives a local region that encloses
only these two critical points with total degree equal to zero under a certain configuration of the flow
magnitude. Hence, these two critical points may be cancelled. Whereas this may rarely occur in
the real-world data, it illustrates the flexibility and generality of the proposed method. In practice,
a simpler but similar situation may occur.

3.5 Discussions

The algorithm comes with theoretical guarantees on the amount of perturbation we introduce. The
motivation for Laplacian smoothing is to produce more visually appealing results. However, to the
best of our knowledge, no nontrivial bounds exist on the amount of perturbation introduced by
such a smoothing. In practice, smoothing only marginally increases the amount of perturbation
Scalability: Our method should scale to very large datasets. The robustness computation and
the simplification steps (e.g., Cut and Unwrap) run in linear time in the size of the mesh. For
example, for a region of 21k vertices and 64k edges, Cut required 2 seconds in MATLAB and 0.03
seconds in C++.
Generality: The simplification procedure requires only that the degree of the boundary be zero
and so applies to a wide range of cases. It can deal with highly rotational data (e.g., centers) as
well as cases where critical points are not connected by separatrices.
Other metrics: We use robustness and the L8 norm (the maximum over the domain), but using
other metrics such as the L2-norm, which incorporates both the magnitude of the vectors and
the area to capture a quantity closer to the energy of a perturbation, would be interesting. The
simplification requires only degree-zero components and any metric could be used to construct a
hierarchy. It is an open question to find degree-zero regions under different metrics.
Time-varying and 3D vector fields: The main challenge in simplifying time-varying 2D vector
fields is to achieve consistency across time-slices, e.g., obtaining critical points correspondences
at a given simplification level. Finally, the prospect of extending our framework to 3D vector
fields (currently in preparation) is promising. Whereas there remain technical obstacles, certain
operations (such as cutting and smoothing) in our pipeline readily extend to higher dimensions.

4 A Multi-Scale Kernel for Topological Machine Learning

Visual data is typically piped through complex processing chains in order to extract information that
can be used to solve high-level inference problems, such as recognition, detection or segmentation.
This information might be in the form of low-level appearance descriptors, eg, SIFT [99], or of
higher-level nature, eg, responses of batteries of object detectors [98] or features extracted at specific
layers of deep convolutional networks [79]. In many problems, the consolidated data is then fed to
some discriminant classifier such as the popular SVMs.

While there has been substantial progress on the encoding of low-level visual information, only
recently have people started looking into the topological structure of the visual data as an additional
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source of information. With the emergence of topological data analysis (TDA) [84], tools for effi-
ciently identifying topological structure have become broadly available. Using these tools, several
authors have recently demonstrated that TDA can capture characteristics of the data that other
methods often fail to provide, [105, 97].

Along these lines, studying persistent homology [92] is particularly popular, since it allows
to capture, roughly speaking, the birth and death times of topological features, eg, connected
components, holes, etc., at multiple scales. This information is then represented in the form of
persistence diagrams (PD). However, using PDs as input to machine learning algorithms requires
a notion of similarity or distance between PDs. Popular distance measures, such as the bottleneck
or Wasserstein distance are prohibitively expensive to compute when the diagrams contain a large
number of points (eg, when the input data is noisy, as it is the case in most vision problems). A
popular strategy to facilitate machine learning when the input data does not have a vector space
structure is to design a kernel that maps the data into a reproducing kernel Hilbert space (RKHS).

We propose a multi-scale L2 embedding of persistence diagrams, based on the principles of heat
diffusion. The L2 norm between embedded PDs is then used to define a distance measure that
is bounded, from above, by the degree-1 Wasserstein distance. We show that the negative of this
squared norm is a valid (conditionally) positive definite kernel and can thus be used within most
kernel-based learning techniques. The heat parameter of our kernel controls its robustness to noise
and can be tuned to the data (just like the parameters of a RBF kernel).

From a conceptual point of view, Bubenik’s concept of persistence landscapes [83] is possibly
the closest to ours, since an embedding of persistence diagrams is proposed. While persistence
landscapes were not explicitly designed for use in machine learning algorithms, we will draw the
connection to our work in §4.3 and show that they in fact admit the definition of a valid (condition-
ally) positive definite kernel. In summary, persistence landscapes as well as our approach represent
computationally attractive alternatives to the bottleneck or Wasserstein distance.

4.1 Background

There is a natural metric associated to persistence diagrams, called the bottleneck distance. Loosely
speaking, the distance of two diagrams is expressed by minimizing the largest distance of any
two corresponding points, over all bijections between the two diagrams. Let F and G be two
persistence diagrams, each augmented by adding each point pt, tq on the diagonal with countably
infinite multiplicity. The bottleneck distance is

dBpF,Gq :“ inf
γ

sup
xPF

}x´ γpxq}8 (8)

where γ ranges over all bijections from the individual points of F to the individual points of G.
As shown by Cohen-Steiner [90], persistence diagrams are stable with respect to the bottleneck
distance.

The bottleneck distance embeds into a more general class of distances, called Wasserstein dis-
tances. For any positive real number p, the p-Wasserstein distance is

dW,ppDf , Dgq :“

¨

˝inf
γ

ÿ

xPDf

}x´ γpxq}p8

˛

‚

1
p

, (9)

where again γ ranges over all bijections from the individual elements of Df to the individual
elements of Dg.

23



TOPOSYS Deliverable 2.2

4.2 Embedding persistence diagrams into L2

In this section, we propose an explicit multi-scale embedding of persistence diagrams into L2. The
Hilbert space structure of L2 will then be used to define a distance between diagrams and a kernel
for topological machine learning.

Note that a persistence diagramD, ie, a multi-set of points in R2, does not possess a Hilbert space
structure per se. However, D can be uniquely represented as a sum of Dirac delta distributions4 by
replacing each point in D with a Dirac delta centered at that point. Since Dirac deltas are elements
of the Hilbert space H´2pR2q [96, Chapter 7], we obtain a canonical Hilbert space structure for
persistence diagrams by adopting this point of view.

Unfortunately, the induced metric on the space of persistence diagrams does not take account of
the distance of the points to the diagonal, and therefore it cannot be robust against perturbations
of the diagrams. To address this issue, we propose to use the sum of Dirac deltas as an initial
condition of a heat diffusion problem with a Dirichlet boundary condition on the diagonal. The
solution of this partial differential equation is an L2 function for any chosen scale parameter σ ą 0.
In the following paragraphs we will (1) formally define this multi-scale L2 embedding of persistence
diagrams, (2) describe a simple algorithm that exactly evaluates the inner product in this Hilbert
space and (3) prove its robustness against perturbations.

Definition 4.1. Let Ω “ tpx, yq P R2 : y ě xu denote the space above the diagonal and let δp
denote a Dirac delta centered at the point p. For a given persistence diagram D, we now consider
the solution u : Ωˆ Rě0 Ñ R of the partial differential equation5

Bxxu` Byyu “ Btu in Ωˆ Rą0, (10)

u “ 0 on BΩˆ Rě0, (11)

u “
ÿ

pPD

δp on Ωˆ t0u. (12)

The L2pΩq-embedding at scale σ ą 0 of a persistence diagram D is now defined as

ΨσpDq “ up¨, ¨, σq . (13)

The solution of the partial differential equation (13) can be obtained by extending the domain
from Ω to R2 and replacing (12) with

u “
ÿ

pPD

δp ´ δp on R2 ˆ t0u, (14)

where p “ pb, aq is p “ pa, bq mirrored at the diagonal. It can be shown that the restriction to Ω
of the solution to this extended problem solves the original equation. It is given by convolving the
initial condition (14) with a Gaussian kernel:

upx, y, tq “
1

4πt

ÿ

pPD

e´
}px,yq´p}2

4t ´ e´
}px,yq´p}2

4t (15)

4A Dirac delta distribution is a function that evaluates a given smooth function at 0.
5Since the initial conditon (12) is not an L2 function, this equation only makes sense in a distributional setting.

For a rigorous treatment of existence and uniqueness of the solution see [96, Chapter 7].
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Given two diagrams F and G, we can compute the L2pΩq inner product of their embeddings
explicitly:

pΨσpF q,ΨσpGqq “

ż

Ω

ΨσpF qΨσpGq

“
1

8πσ

ÿ

pPF
qPG

e´
}p´q}2

8σ ´ e´
}p´q}2

8σ (16)

We show that our kernel is robust against perturbations of the input data by proving that the
L2-distance of the embeddings of two persistence diagrams is upper bounded by their Wasserstein
distance. This allows us to leverage current and future stability theorems from TDA, see §4.1.
The precise the statement of the theorems are omitted from this report but will be present in the
submitted version of this work.

4.3 Kernel construction

The Hilbert space structure of L2pΩq allows us to construct kernels in different ways, eg, using the
distance measure dPSSpF,Gq “ }Ψσp¨q ´Ψσp¨q}L2pΩq. In particular, we have ([81, Exercise 1.20]):

thm 4.2. Let X be the space of persistence diagrams and let F,G P X . Then the kernel kPSS :
X ˆ X Ñ R, defined by

kPSSpF,Gq “ ´d
2
PSSpF,Gq

“ ´}ΨσpF q ´ΨσpGq}
2
L2pΩq

(17)

is conditionally positive definite.

Note that by saying conditionally positive definite we adhere to the commonly used terminology
of [103]. Further, as a consequence of [81, Theorem 2.2], the kernel e´t¨kPSSp¨,¨q is positive definite
for all t ą 0. In the remainder we will refer to the kernel defined in (17) as the persistence scale
space (PSS) kernel.

4.4 Evaluation

To evaluate the embedding proposed in §4.2, we (1) investigate conceptual differences to persistence
landscapes and then (2) address performance in the context of shape classification/retrieval and
texture recognition problems.

Comparison to persistence landscapes In [83], Bubenik introduced persistence landscapes, a
representation of persistence diagrams as functions in the Banach space LppR2q. This construction
was mainly intended for statistical computations, enabled by the vector space structure of Lp.
Additionally, for p “ 2 we can exploit the Hilbert space structure of L2pR2q to construct a kernel
analogously to (17). For the purpose of this work, we refer to this kernel as the persistence landscape
(PLS) kernel and denote by ΨL the corresponding L2pR2q embedding of persistence diagrams.

For the first experiment, let Ft “ t´t, tu and Gt “ t´t`1, t`1u be two diagrams with one point
each and t P Rě0. The two points move away from the diagonal with increasing t, while maintaining
the same distance to each other. Consequently, dW,q and the PSS distance asymptotically approach
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Figure 11: Two instances of persistence diagrams F, F 1 from class A and one diagram G from class
B. The classes only differ in their points of low-persistence (ie, points closer to the diagonal).

a constant as t Ñ 8. In contrast, the PLS distance grows in the order of
?
t and, in particular,

is unbounded. This means that the PLS distance emphasizes points of high persistence in the
diagrams.

In the second experiment, we specifically focus on the previous observation. Fig. 11 illustrates
persistence diagrams from data samples of two fictive classes A (F ,F 1) and B (G). We first consider
the PLS distance between F and F 1. As we have seen in the previous experiment, their PLS
distance will be dominated by variations in the points of high persistence. Similarly, the PLS
distance between F and G will also be dominated by these points as long as t is sufficiently large.
Consequently, instances of classes A and B would be inseparable in a nearest neighbor setup, even
though they could easily be distinguished by looking at low-persistence features. This is in contrast
to the bottleneck, Wasserstein or our PSS distance.

4.5 Empirical results

We report results on two vision tasks where topological data analysis has already been shown
to provide valuable discriminative information ( [97]): shape classification/retrieval and texture
image classification. The purpose of the experiments is not to outperform the state-of-the-art on
these problems – which would be rather challenging by only using topological information – but to
demonstrate the advantages of the proposed PSS kernel/distance with respect to the alternative
PLS kernel/distance.

Datasets. For shape classification/retrieval, we use the SHREC 2014 [102] benchmark dataset,
see Fig. 12 (top). It consists of both synthetic and real shapes, given as 3D meshes. The synthetic
part contains 300 meshes of humans in 20 different poses; the real part contains 400 meshes of
humans (male and female) in 10 different poses. We use the meshes in full resolution, ie, without
any mesh decimation.

For the texture recognition experiments, we use the Outex TC 0000 test suite of the OuTeX
database [100], downsampled to 32 ˆ 32 patches. The test suite provides 100 predefined train-
ing/testing splits and each of the 24 classes is equally represented by 10 images during training and
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Real Synthetic

Figure 12: Examples from SHREC 2014 [102] (top) and the 24 texture classes of the OuTeX
Outex TC 0000 test suite [100] (bottom).

testing.

4.5.1 Shape classification

Tables 1 and 2 list the classification results for the PLS and PSS kernel on the 20-class (synthetic)
and 40-class (real) problem of SHREC 2014. All results are averaged over ten cross-validation
runs using random 70/30 training/testing splits with a roughly equal class distribution.

In summary, for both types of data, we observe a consistent improvement in classification
accuracy by switching from the PLS to the PSS kernel. For some choices of ti, the gains even
range up to ą 30% while, in other cases, the improvements are rather small. This can be explained
by the fact that varying ti essentially varies the smoothness of the input data. While smoothness is
a basic requirement for TDA in general, the PSS scale σ allows to address unfavourable smoothness
settings to a certain extent. The PLS kernel, on the other hand, does not have this capability and
essentially relies suitably preprocessed input data. As we can see, some choices of ti do in fact lead
performance close to the PSS kernel.

The important point, though, is that the PSS kernel allows tuning at the classification stage,
eg, using cross-validation on the training parts of each split. This is the prevalent strategy for
tuning RBF kernel parameters for instance. With the PLS kernel, we have to adjust the HKS time
parameter which corresponds to changing the input data. This is undesirable in most situations,
since HKS computation for meshes with a large number of vertices can be quite time-consuming
and sometimes we might not even have access to the input data directly.

4.5.2 Shape retrieval

In addition to the classification experiments of the previous section, we also report retrieval results
using standard performance measures (see [104, 102]). This allows us to evaluate the quality of the
PSS distance directly.

For brevity, only the nearest-neighbor (NN) performance is shown in Table 3 (for all measures,
see supplementary material). To study the effect of tuning the PSS scale σ, the PSS column lists
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HKS ti PLS PSS ∆
t1 68.0˘ 3.2 94.7˘ 5.1 `26.7
t2 88.3˘ 3.3 99.3˘ 0.9 `11.0
t3 61.7˘ 3.1 96.3˘ 2.2 `34.7
t4 81.0˘ 6.5 97.3˘ 1.9 `16.3
t5 84.7˘ 1.8 96.3˘ 2.5 `11.7
t6 70.0˘ 7.0 93.7˘ 3.2 `23.7
t7 73.0˘ 9.5 88.0˘ 4.5 `15.0
t8 81.0˘ 3.8 88.3˘ 6.0 `7.3
t9 67.3˘ 7.4 88.0˘ 5.8 `20.7
t10 55.3˘ 3.6 91.0˘ 4.0 `35.7

Table 1: Shape classification on SHREC 2014 (synthetic).

HKS ti PLS PSS ∆
t1 45.2˘ 5.8 48.8˘ 4.9 `3.5
t2 31.0˘ 4.8 46.5˘ 5.3 `15.5
t3 30.0˘ 7.3 38.2˘ 8.9 `8.3
t4 41.2˘ 2.2 51.2˘ 4.9 `10.0
t5 46.2˘ 5.8 62.0˘ 4.9 `15.7
t6 33.2˘ 4.1 58.0˘ 3.4 `24.7
t7 31.0˘ 5.7 64.2˘ 2.9 `33.2
t8 51.7˘ 2.9 58.8˘ 2.7 `7.0
t9 36.0˘ 5.3 41.2˘ 4.9 `5.2
t10 2.8˘ 0.6 27.8˘ 5.8 `25.0

Table 2: Shape classification on SHREC 2014 (real).

the maximum NN performance that can be achieved over a range scales σ.
As we can see, the results are comparable to the classification experiment. However, at a few

specific settings of the HKS time parameter ti, the PLS distance performs on par, or better than the
PSS distance. As indicated in §4.5.1 this can be explained by the changes in the smoothness of the
input, as a function of ti. Another observation is that NN performance of the PLS distance is quite
unstable around the optimal choice of ti, eg, it drops from 91% to 51.3% and 76.7% on SHREC
2014 (synthetic) and from 60.5% to 38.25% and 42.25% on SHREC 2014 (real). In contrast, the
PSS distance exhibits relatively stable performance.

To put these results into context with existing works in shape retrieval, Table 3 also lists the top
three entries (out of 22) of [102] on the same benchmark. On both real and synthetic datasets, we
rank among the top five entries. This is interesting, since it indicates that TDA is a rich source of
discriminative information for t his particular problem. In addition, since we only assess one HKS
time parameter at a time, performance could potentially be improved further by more elaborate
fusion strategies.

4.6 Texture Recognition

For texture recognition, all results are averaged over the 100 training/testing splits of the Outex TC 0000

test suite. Table 4 lists the performance of the PSS and the PLS kernel for 0-dimensional features
(ie, connected components). Higher-dimensional features did not lead to any useful results on this
problem. For comparison, we also list the performance of a simple nearest neighbour (NN) and a
SVM classifier, trained on normalized histograms of CLBP responses. The NN classifier uses the
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HKS ti PLS PSS ∆ PLS PSS ∆
t1 53.3 88.7 `35.4 24.0 23.7 ´0.3
t2 91.0 94.7 `3.7 20.5 25.7 `5.2
t3 76.7 91.3 `14.6 16.0 18.5 `2.5
t4 84.3 93.0 `8.7 26.8 33.0 `6.2
t5 85.0 92.3 `7.3 28.0 38.7 `10.7
t6 63.0 77.3 `14.3 28.7 36.8 `8.1
t7 65.0 80.0 `15.0 43.5 52.7 `9.2
t8 73.3 80.7 `7.4 70.0 58.2 ´11.8
t9 73.0 83.0 `10.0 45.2 56.7 `11.5
t10 51.3 69.3 `18.0 3.5 44.0 `40.5

Top-3 [102] 99.3 – 92.3 – 91.0 68.5 – 59.8 – 58.3

Table 3: Nearest neighbor retrieval performance. Left: SHREC 2014 (synthetic); Right: SHREC
2014 (real).

CLBP Operator PLS PSS ∆
CLBP-S 58.0˘ 2.29 69.1˘ 2.6 `11.1
CLBP-M 45.2˘ 2.48 55.0˘ 2.5 `9.8

CLBP-S (NN-χ2) 68.5˘ 2.3
CLBP-M (NN-χ2) 71.0˘ 2.4

CLBP-S (SVM-χ2) 76.1˘ 2.2
CLBP-M (SVM-χ2) 76.7˘ 1.8

Table 4: Classification results on the Outex TC 0000 test suite (downsampled to 32ˆ 32) .

χ2 distance, the SVM uses the corresponding χ2 kernel.
As in the previous experiments, the PSS kernel performs better than the PLS kernel by a large

margin, with gains up to 12% in accuracy. The results using PSS kernel are also substantially
higher than the results reported in [97] using the PSL distance on the same dataset in a comparable
setup.

Finally, we remark that tuning the PLS kernel is less straightforward in this experiment. While
we could artificially smooth the input images, CLBP responses or even tweak the radius of the
CLBP operator, all choices require changes at the beginning of the processing pipeline. In contrast,
adjusting the PSS scale σ via cross-validation is done at the end of the pipeline during classifier
training.

4.7 Discussion

The proposed multi-scale L2 embedding of persistence diagrams opens the pathway to using topo-
logical data analysis in the framework of kernel-based learning techniques. While the kernel enables
us to leverage topological information, eg, when training discriminant classifiers for shapes or tex-
tures, we have also seen that this does not immediately lead to state-of-the-art performance. In
fact, TDA should be considered a complementary source of information that can now be integrated
with existing approaches, eg, using well-established algorithms from kernel learning [94].
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