

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 1 of 45

COSMOS
Cultivate resilient smart Objects for Sustainable city applicatiOnS

Grant Agreement Nº 609043

D7.6.1 Integration Plan (Initial)
WP7: Use cases Adaptation, Integration and Experimentation

Version:

Due Date:

Delivery Date:

Nature:

Dissemination Level:

Lead partner:

Authors:

Internal reviewers:

1.5

30/06/2015

15/02/2015

Report

Public

NTUA

George Kousiouris, Achilleas Marinakis,
Panagiotis Bourelos, Orfefs Voutyras (NTUA),
David Jorquera, Jozef Krempasky (ATOS), Paula
Ta-Shma (IBM), Adnan Akbar (UniS), Bogdan
Târnaucă (Siemens)

Juan Sancho (ATOS), Achilleas Marinakis
(NTUA),

Ref. Ares(2015)1158255 - 17/03/2015

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 2 of 45

www.iot-cosmos.eu

The research leading to these results has received funding from the
European Community's Seventh Framework Programme under grant

agreement n° 609043

Version Control:

Version Date Author Author’s Organization Changes

v0.1 10/7/2014 Achilleas Marinakis NTUA
Circulating the ToC,

adding initial content

v0.2 24/7/2014
Achilleas Marinakis

and co-authors
NTUA, ATOS, IBM,

UniS, Siemens
Version ready for
internal review

v0.3 25/7/2014 Achilleas Marinakis NTUA
Final version based on
the review from ATOS

and NTUA

v1.0 25/7/2014 Achilleas Marinakis NTUA Version for submission

RE_SUBMIT
v1.1

22/1/2015 George Kousiouris NTUA Updated ToC

RE_SUBMIT
v1.2

26/1/2015 George Kousiouris NTUA
Updated Strategy and

Plan

RE_SUBMIT
v1.3

7/2/2015 George Kousiouris NTUA
Extended content of
integration periods

RE_SUBMIT
v1.4

12/02/2015 Achilleas Marinakis NTUA Internal Review

RE_SUBMIT
v1.5

13/02/2015 Juan Sancho ATOS Final Review

http://www.iot-cosmos.eu/

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 3 of 45

Table of Contents

Executive Summary ... 9

1. Introduction .. 10

1.1. Objectives .. 11

2. Integration Strategy .. 12

2.1. COSMOS Overall Goal/Vision .. 12

2.2. Integration Goals ... 14

2.2.1. COSMOS Platform and cross-component integration .. 14

2.2.2. Data Model/Template ... 14

2.2.3. VE description and linking in the COSMOS Platform .. 14

2.2.4. VE-side COSMOS components integration ... 14

2.2.5. Application definition, creation and deployment ... 15

2.3. Integration Stages Definition .. 15

2.4. Integration Timeline in a nutshell ... 15

2.5. Integration Stages Template Fields ... 17

2.5.1. Involved Integration Goals .. 17

2.5.1.1 Subgoals .. 17

2.5.2. Subsystems and integration points involved .. 17

2.5.2.1 Components involved.. 17

2.5.3. Use Case specific aspects involved and concretization 18

2.5.4. Testing environment ... 18

2.5.4.1 Testing infrastructure .. 18

2.5.4.2 Involved Tester roles ... 18

2.5.5. Deviations from Plan ... 19

2.6. Generic Considerations ... 19

2.6.1. Software Packaging ... 19

2.6.2. Helper Tools .. 19

3. Integration Stage 1 (M10-M16)... 20

3.1. Involved Integration Goals and Refinement to Subgoals .. 20

3.2. Subsystems involved ... 21

3.2.1. Data Feed, Annotation and Storage .. 21

3.2.2. Metadata Search and Storlets ... 22

3.2.3. Modelling and Storage Analytics ... 22

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 4 of 45

3.2.4. Security, Privacy and Storage .. 24

3.2.5. Autonomous Behavior of VEs with minimum integration with the Platform 24

3.2.6. Autonomous Behavior of VEs- Automated Event Detection and Incorporation of
COSMOS Platform ... 25

3.2.7. Components involved.. 26

3.3. Overview of Use Case specific aspects involved and concretization 26

3.3.1. Camden UC Data Feed... 27

3.3.2. Madrid UC Data Feed .. 28

3.4. Testing environment ... 28

3.4.1. Testing infrastructure - The COSMOS Platform Setup .. 28

3.4.2. Involved Tester roles ... 29

4. Integration Stage 2 (M17-M22)... 30

4.1. Involved Integration Goals and Refinement ... 30

4.2. Subsystems involved ... 31

4.2.1. VE Descriptions and Registry population .. 31

4.2.2. Application Definition Framework (Data Feed) .. 31

4.3. Use Case specific aspects involved and concretization ... 31

4.4. Testing environment ... 32

4.4.1. Testing infrastructure .. 32

4.4.2. Involved Tester roles ... 32

5. Traceability Matrix of Capabilities to Use Cases ... 34

6. Conclusions ... 36

Annex A Components Involved ... 37

 COSMOS platform ... 37

 Data Mapping .. 37

 Message Bus .. 37

 Cloud Storage-Metadata Search ... 37

 Cloud Storage- Storlets.. 37

 Event Detection and Situational Awareness ... 37

 Prediction .. 38

 Semantic Description and Retrieval .. 38

 VE Level ... 38

 Privelets ... 38

 Planner .. 38

 Event Detection and Situational Awareness ... 38

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 5 of 45

 Experience Sharing .. 38

Annex B Project Computing Testbed Details .. 39

 Basic Requirements ... 39

 Accessibility ... 39

 Security .. 39

 Components to Virtual Resources Mapping ... 39

 Testbed Description .. 40

Annex C Software Packaging and Delivery .. 41

 Installation - Execution .. 41

 Standard Naming Convention ... 42

 Standard Readme File ... 42

 Standard License File ... 42

 Manuals ... 42

 Acceptance Procedure .. 43

 Integration Tools ... 44

 Revision Control System .. 44

 Alfresco .. 44

 Wiki .. 44

 Code Quality checks .. 44

 Template Adaptation and Validation .. 44

References ... 45

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 6 of 45

Table of Figures

Figure 1: COSMOS Vision. Functionalities and Roles .. 12

Figure 2: COSMOS Integration Strategy Overview .. 13

Figure 3: COSMOS Integration Timeline Gantt Chart .. 16

Figure 4: Overall COSMOS Architecture .. 21

Figure 5: Data Feed, Annotation and Storage Subsystem .. 22

Figure 6: Metadata Search and Storlets Subsystem ... 23

Figure 7: Modelling and Storage Analytics Subsystem ... 23

Figure 8: Security, Privacy and Storage subsystem ... 24

Figure 9: Autonomous Behavior of VEs with minimum platform integration subsystem 25

Figure 10: Autonomous Behavior of VEs- Automated Event Detection and Incorporation of
COSMOS Platform ... 25

Figure 11: Camden UC data ... 27

Figure 12: Madrid UC data .. 28

Figure 13: COSMOS Platform Setup Process ... 29

Figure 14: VE Descriptions and Registry population ... 32

Figure 15: Application Definition Framework Subsystem (Data Feed) 33

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 7 of 45

List of Tables

Table 1: Test Case Template ... 17

Table 2: Traceability Matrix of capabilities to UC scenarios ... 34

Table 3: Software requirements for the Data Mapping .. 37

Table 4: Software requirements for the Message Bus .. 37

Table 5: Software requirements for the Metadata Search ... 37

Table 6: Software requirements for the Storlets .. 37

Table 7: Software requirements for the Event Detection at the COSMOS platform 37

Table 8: Software requirements for the Event Detection at the COSMOS platform 38

Table 9: Software requirements for the Semantic Description and Retrieval 38

Table 10: Software requirements for the Privelets ... 38

Table 11: Software requirements for the Planner .. 38

Table 12: Software requirements for the Event Detection at the VE level 38

Table 13: Software requirements for the Experience Sharing .. 38

Table 14: Components to VMs mapping and VM configuration requirements 39

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 8 of 45

Acronyms

Acronym Meaning

CBR Case-Based Reasoning

CEP Complex Event Processing

D Deliverable

DoW Description of Work

GA Grant Agreement

GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure

ID Identifier

IoT Internet of Things

IP Integration Point

JSON Java-Script Object Notation

MS Milestone

OS Operating System

REST Representational State Transfer

SSH Secure Shell

SVN Subversion

UC Use Case

UTM Universal Transverse Mercator

VE Virtual Entity

VM Virtual Machine

WP Work Package

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 9 of 45

Executive Summary

The main focus of this document is to highlight the integration plan to be followed in order to
enable the advanced and combined capabilities of the COSMOS platform. To this end, a
relevant strategy has been defined, that separates the final goal into 5 partial functional goals.
The latter are further refined to 14 subgoals that involve more concrete aspects and specific
involved subsystems of the COSMOS ecosystem. For each part of the ecosystem, relevant
integrating roles have been identified and their integration points with the platform have been
defined. For these integration points specific details and instructions will be offered in the
context of D7.7.1 “Integration of Results” document.

A division is performed also with regard to the timeline of the project, coordinated with its
milestones, and prioritized based on the stepwise gradual increase of the offered
functionalities and incorporated elements. To this end, 5 relevant integration periods have
been defined and concrete time lines for the goals and subgoals have been drawn. In order to
properly prepare these periods, a relevant description template has been defined,
incorporating the necessary details that need to be in place such as description of the main
subgoals of this period, involved subsystems, components and roles, specific tests or test
setups and the aspects of the UCs that can or must be concretized in order to enable the
application scenarios. This description drives also the reporting of the results in the relevant
D7.7.1 document, in terms of necessary content and type of information. The initial envisioned
integration period details have been included in this document for period 1 (PM10-16). The
remaining periods will be further refined in the next iterations of this document.

Furthermore, a traceability matrix has been created in order to map the offered COSMOS
capabilities to the project UCs. The main goal is that at the end of the project each capability
must have been applied to at least one of the scenarios. Thus the inclusion status can be
monitored via this structure and provide valuable feedback or identify gaps in the process on
which we will need to focus.

Finally, a set of necessary processes has been defined, in terms of practical aspects of
integration, such as documenting component dependencies, individual testing needs, relevant
tools and software packaging (in terms of recommendations about the internal structure of
the software components and the creation of the software packages and related
documentation), as part of an acceptance procedure at the component level.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 10 of 45

1. Introduction

The aim of this document is to describe the strategy and plan of integration of the different
parts developed within COSMOS, the included testbed and the process put in place to reach
this goal. The integration and demonstration purposes of the project are both formally defined
in WP7. The different project partners are expected to showcase the outcomes of the research
and development WPs of COSMOS, verifying their applicability through the representative
smart city Use Case scenarios and providing useful feedback about the COSMOS concepts and
technologies.

After providing detailed definitions and design for the Use Cases, partners are expected to
utilize the methodologies, frameworks and tools offered by COSMOS in order to realize the
corresponding application scenarios. According to the scenarios analysis and definition, the
use-cases will be implemented, the experiments will be prepared and the evaluation of the
experimentation will follow in the context of this WP. In this process, it is of major importance
to identify the intermediate steps that are necessary in order to progress development and
integration between the major building blocks of COSMOS, in order to provide added value
and functionality that can be used in the context of the defined Use Cases. Finally, the
capabilities of the COSMOS technologies must be tested under real-life smart city conditions
and be applied in a realistic context in order to verify the applicability of the implemented
technology in different application domains.

To keep the consistency of all the developments and to ensure that all the components follow
the same direction towards the overall solution, an integration plan has been defined and put
in place, covering the coherence of the development activities inside the technical WPs and
the integration and testing of the software components. Relevant subsystems and their
according functionality have been defined, in order to gradually progress towards the final
COSMOS platform prototype. This plan may also be used in order to prioritize work in the
respective technical WPs but also identify the testing needs of the functionalities, based also
on the roles that are envisioned to be included in their usage.

The document proceeds by describing the overall COSMOS vision and how this can be
separated into smaller fragments for better manageability, but also identifying their
relationship to the COSMOS Architecture and the involved components. Specific time periods
are highlighted, along with their primary goals, and relevant points have been defined that are
of specific interest for entities that wish to cooperate with the COSMOS platform itself.
Furthermore, based on the requirements imposed by the applications and by the platform
itself, an initial description of practical aspects is included (e.g. the testbed setup, component
functional requirements, etc.).

Finally some recommendations in terms of software packaging, internal structure, installation,
and execution of components, are given in Annex C. These guidelines give the set of rules that
developers should follow to have a group of components with a similar structure and similar
management commands.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 11 of 45

1.1. Objectives

The overall objectives of this deliverable, as defined in the DoW, are the following:

 Describe the methodology and time plan followed to perform the integration activities

 Describe the integration process and planned activities

 Describe the tools that are used

 Describe the components that are integrated

 Describe the infrastructure that is used

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 12 of 45

2. Integration Strategy

2.1. COSMOS Overall Goal/Vision

COSMOS final goal is to give the ability for creating applications that can combine information
coming from Smart City platforms with the COSMOS platform and VE side added value services
in order to achieve a desired outcome (in terms of the actual application scenarios). During this
process it engages a number of roles, whose interaction with the system should be the main
focus of integration. The main difference with relation to the roles envisioned in the COSMOS
Architecture is the specialization of the Application Developer role to 4 main subcategories,
one generic for the COSMOS App Developer and three more specialized roles that can
integrate with the platform only partially and with relation to a specific aspect. In that sense,
an Analytics expert could be involved only in implementing a relevant data analytics
component (in the form of Storlets), or a specific Domain’s expert (e.g. mechanical engineer)
could create a specific set of complex events rules in order to optimize a concrete function of
the platform (e.g. bus service management and early malfunction identification).

Figure 1: COSMOS Vision. Functionalities and Roles

In order to drive this effort, a suitable integration strategy needs to be in place. The integration
strategy of COSMOS revolves around a number of high level integration goals, that are
progressive steps towards the aforementioned final goal, bringing the main parts of the overall
system closer at each step. These high level goals may span across different integration
periods within the project, that have been defined based on components delivery and key
milestones of the project. In each period, the high level goals become more fine-grained on

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 13 of 45

subgoals, regarding a specific aspect. These subgoals include the integration of one or more
subsystems in order to be tested and provide the envisioned capability. These subsystems are
intended to be completed within the specific period and are the main unit of integration and
testing. For these cases also, relevant integration points must be identified. These are
specifically the points of involvement of “external” entities/roles, for which specific testing
processes should be described (In D7.7.1 Integration of results) for their incorporation. The
integration points (IPs) have been separated into 4 major categories:

 IP1:It implies end user involvement, which should be accompanied by respective
Graphical User Interfaces

 IP2: It implies Application Developer involvement, which should be accompanied with
the definition of a relevant process and format

 IP3: it implies VE Developer involvement, in terms of endpoints definition and format

 IP4: it implies VE Developer involvement, in terms of definition of a description
template and instance creation

The overall process appears in Figure 2.

Figure 2: COSMOS Integration Strategy Overview

In the following paragraphs, more details are provided for the identified goals along with their
mapping on integration periods.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 14 of 45

2.2. Integration Goals

2.2.1. COSMOS Platform and cross-component integration

The first integration goal consists of the COSMOS platform being the central point of
integration of the various components and how the latter can be combined in order to
produce increased functionality and added value (e.g. data ingestion,). This includes the way
other existing platforms (like VEPROT and Camden EnergyHive) could interconnect with the
main COSMOS platform in order for the latter to have access to the specific data. It includes
also the manner through which a COSMOS component developer would integrate their
respective components (e.g. new prediction model, new analytics Storlet, new data annotation
etc.).

Especially for the UC platform data feeds, these can be separated in two major points:

 The endpoints and interfaces through which this information may be obtained by the
COSMOS platform

 The data format and semantics (in terms of fields annotations and meaning)

2.2.2. Data Model/Template

The second integration goal refers to the definition of a common Data Model and Template as
an agreement between the COSMOS UCs and the COSMOS Platform. This template will contain
the amount and type of information provided by the UCs and adapted to a format that is
understandable and usable by the various components and applications. This does not refer to
the format to be used, since this has been agreed from an early stage of the project that it will
be based on JSON.

2.2.3. VE description and linking in the COSMOS Platform

This goal is responsible for integrating Smart City elements in the COSMOS platform, in terms
of their semantics, their description of capabilities and functionalities. To this end, relevant
tools available by the platform may be used by the role of VE Developer, in order to create
description templates of the various physical entities (e.g. buses, flats, traffic lights) and to
instantiate them based on the actual available physical objects. This includes also the
necessary interfaces that need to be implemented in order for the data streams from these
objects to reach the COSMOS components.

2.2.4. VE-side COSMOS components integration

According to the COSMOS architecture, a number of components are expected to be deployed
on the VE side. For these components a suitable integration must be in place, taking under
consideration the dependencies from the UC side, in order for a VE-side COSMOS component
to be included directly in the VE. Furthermore, issues of communication between these
components or with the COSMOS platform need to be investigated and adapted.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 15 of 45

2.2.5. Application definition, creation and deployment

Application creation may include one or more features from the described capabilities of the
platform in Chapter 2.1, depending on the stage of the project. The role of Application
Developer is needed in this case, an entity that will be responsible for combining information,
services and logic from multiple sources in order to provide added value in the form of an
application. The definition framework of such an application is a goal of integration, along with
the creation of the necessary support structures by the platform (e.g. creating a data channel
that combines the application-defined sources of information). These applications are initially
defined by the UCs. Initially limited functionality is foreseen, not including all aspects of
involvement. This inclusion is expected to be completed during the following years of the
project. However, the ability to have the framework for at least defining preliminary
applications should be existent at the end of Y2.

2.3. Integration Stages Definition

The integration periods that can be defined at this stage may be separated to the following
intervals:

 M10-M16: Following the release of the initial software prototypes, platform
component integration may kick in, in order to enable advanced capabilities and initial
platform features. This corresponds to Milestone MS6 of the project. Initial discussions
are needed also in terms of necessary metadata annotations.

 M17-M22: For this period, background work in data model agreement and necessary
adaptations that will drive Y2 component development is foreseen, along with
extensions of the platform design and initial VE integration (VE descriptions etc.) from
the UCs. This corresponds to Milestone MS8 of the project. This does not include data
format aspects, since these have been defined early in the project to be JSON-
compatible.

 M23-M25: For this period, and following the release of Y2 components, the goal is to
have the platform available, along with a set of elementary applications and VE
integration (in terms of described VEs, getting info etc.). This will be completed one
month prior to Milestone MS9, in order to receive feedback on the results.

 M26-M34: For this period, the final point of VE-side components integration is
expected to be completed, thus leading to the ability to create full-blown applications
covering the entire range of COSMOS functionalities (combining VE data, VE side
actions, COSMOS services and generic smart city data).

 M35-M36: Final version of the applications creation, exploiting the results of the
previous period.

2.4. Integration Timeline in a nutshell

The integration timeline incorporating the goals and subgoals identified so far is included in
Figure 3. This includes also tasks that have been identified for the upcoming periods and for
which we will extend their description in the next iterations of this document. As mentioned
previously, the main target is for:

 End of Y1 (M16) to have advanced platform capabilities and their definition

 End of Y2 (M25) to have extended platform capabilities and elementary applications
that utilize COSMOS services and Smart City data

 End of Y3 (M36) to have completely incorporated the VE side components and enable
full blown COSMOS applications

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 16 of 45

Figure 3: COSMOS Integration Timeline Gantt Chart

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 17 of 45

2.5. Integration Stages Template Fields

Each integration stage description needs to incorporate a set of fields that will drive
integration actions and will guide/prioritize the overall project (including the technical WPs)
towards the fulfilment of the necessary steps. In the following paragraphs, an analysis of these
fields and their necessary information is portrayed.

2.5.1. Involved Integration Goals

This section includes the high level integration goals that are partially or overall completed
within this stage. These goals may span across multiple periods, and can be further refined in
concrete aspects (subgoals), that usually refer to a system capability.

2.5.1.1 Subgoals

The subgoals, which refer to a concrete capability of the system, in relation also to the
architecturally defined ones in the relevant documentation, are based on one or more
subsystems (collections of components).

2.5.2. Subsystems and integration points involved

In order for a subgoal to be completed, a number of components must cooperate in order to
provide the overall functionality or variations of it. This functionality is expressed mainly as a
component diagram (in this document) and as a sequence diagram (in D7.7.1), including the
cooperation of more than one components that form a subsystem. The overall functionality of
the subsystem needs to be tested through the defined scenarios that also involve the expected
inputs from the Use Cases of the project. Integration points, as mentioned in the strategy,
must be identified at this part.

2.5.2.1 Components involved

The components to be included in the subsystems examined in the specific period are listed.
Before the components are included in the platform, they must be tested in order to verify
their behaviour. Furthermore their functional requirements must be documented (in terms of
OS etc.). Given that some components may be included in more than one subsystems or
periods and in order not to repeat information, these requirements have been included in a
relevant Annex (Annex A) and cross-referenced from that location. The testing of these
components (based on a template Test Case table that appears in Table 1) will be included in
the results deliverable (D7.7.1) in a similar manner (cross-referenced from a respective Annex).

Table 1: Test Case Template

Test Case Number
Version

Ordinal of the test case, no special numbering policy is
enforced, component name should precede

Test Case Title Short name that describes the test case.

Module tested Name of the module to be tested.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 18 of 45

Requirements
addressed

To which requirements the module functionality can be
mapped.

Initial conditions Initial conditions that we need to set before starting the test.

Expected results List of the results that are expected when the test is run.

Owner Person responsible for the test case.

Steps List of the exact steps that the owner must follow to perform
the test case.

Passed “Yes” if the test has passed, “No” if it has failed.

Bug ID Bug ID, if the test has failed and a bug report was opened.
Naming convention should include Test Case Number Version
and Bug Number.

Problems Any problems encountered while running the tests.

Required changes Any suggested changes to the test or the module tested.

2.5.3. Use Case specific aspects involved and concretization

The purpose of this section is to highlight at this stage what is the expected concrete usage of
a COSMOS service/component in the context of a specific UC. Examples of this may include
concrete CEP rules definition, concrete models and predictions and cases for the CBR
approach, specific data feed adaptations and annotations.

2.5.4. Testing environment

2.5.4.1 Testing infrastructure

The infrastructure that is needed in order to proceed with the deployment and usage of the
components. This may include internal project testbed that will emulate the COSMOS
platform, usage of external services or elements of the UC infrastructure, client side
components etc.

2.5.4.2 Involved Tester roles

COSMOS ecosystem is comprised of a set of functionalities, features or capabilities that are
expected to be used by different roles/actors involved. A mapping may be performed between
the various COSMOS features and these roles that are intended to be engaged. The latter
should be also the ones that test the offered services and report back with their feedback.
Thus in each period the suitable roles need to be identified and suitable feedback mechanisms
need to be in place. Potentially not all roles will be completely enabled by the end of the
project since in many cases this would imply an increased level of abstraction (e.g. GUIs) that
may not be feasible to create in the project lifetime or resources. For these cases, the project’s
technical partners are expected to act as mediators for the Use Cases to adapt to their specific
aspects and needs.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 19 of 45

Examples of fully flexible roles may include Domain Experts (e.g. a mechanical engineer, either
external or from EMT) to provide their experience and expertise to optimize e.g. bus
maintenance, potentially through the definition of proper CEP rules (e.g. if ABS is activated
more than 3 times in a non-humid day -> check tire conditions). Another example would be of
a Domain Expert on modelling, creating prediction models from the available information and
using the COSMOS services (e.g. storage and Storlets) to create an algorithm for training etc.

2.5.5. Deviations from Plan

For each period, and based on the anticipated inputs and results, a number of deviations may
be identified. This information is expected to be included in the D7.7.1 “Integration of Results”
in a respective section.

2.6. Generic Considerations

2.6.1. Software Packaging

Software packaging needs to follow a number of conventions in order to have a uniform
nature. More information on this is provided in Annex C and is relevant to all the software
artefacts produced.

2.6.2. Helper Tools

A set of tools may aid in the integration of the components. Details on these tools are included
in Annex C.

Following, a list of the upcoming integration Stages, as identified at this moment in time, is
included. For the initial stages more concrete information can be defined. For the future periods
their details will be more fine grained in the next iterations of this document, following its
application in the context of the project and feedback.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 20 of 45

3. Integration Stage 1 (M10-M16)

3.1. Involved Integration Goals and Refinement to Subgoals

In this first Integration Stage, the main focus is on the first Integration Goal, the COSMOS
Platform and cross-component integration, that spans across Y1 and Y2 of the project. For
Integration Period 1, this can be refined to the subgoals of “Data Management and Analytics”,
“COSMOS Platform Setup” and “Autonomous VE Behaviour”.

Data management refers to the receipt and ingestion of data feeds from the UC platforms,
their subsequent annotation with adaptable tags and their grouping as storage objects.
Analytics refers to the creation of relevant Storlets, which are computational components that
are executed near the actual data, and which are used for any specific need of data
manipulation.

Autonomous VE Behaviour refers to the initial prototype of the VE-side component
functionality, resulting in a suitable definition of a Case Based Reasoning approach for problem
solving, that is enhanced with social aspects in order to share experiences and solutions. This
does not include the actual deployment on the VE side, since this is included in future goals
(VE-side COSMOS components integration).

These subgoals are using the following subsystems:

 Data Management and Analytics (Subgoal)
o Data Feed, Annotation and Storage (Subsystem)
o Storage and Analytics which can be divided into

 Metadata Search Storlet (Subsystem)
 Modelling and Storage Analytics (Subsystem)

o Security, Privacy and Storage with Analytics (Subsystem)

 Autonomous VE Behaviour (Subgoal)
o Autonomous Behaviour with minimal integration to the platform (Subsystem)
o Autonomous Behaviour with Platform involvement and automated event

detection (Subsystem)

Information with relation to the subsystems is included in the following paragraphs.

COSMOS Platform Setup refers to the way the current version of the components needs to be
installed and configured, so that a running instance of a COSMOS Platform provider is enabled,
and it is more of a practical nature. Thus details on this task are included in Section 3.4.1.

Furthermore, based on the presented Gantt Chart in Figure 3, other subgoals that are
activated are:

 Metadata Annotation and Definition (included in the Data Model Goal)

 Data Fields definition (included in the Data Model Goal)

 COSMOS Ontology Definition (included in the VE Description and Linking Goal)

Given that the Annotations and Fields topics are highly related to the Data Management
aspects, they have been incorporated in the respective subgoal in terms of how they were
applied in Y1. For the COSMOS Ontology definition, given that it is the first step towards an
overall description of the VEs, the outcomes will be reported in the following integration
periods of the project, along with the future steps that will further concretize the approach.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 21 of 45

3.2. Subsystems involved

With relation to the main architectural diagram, depicted in Figure 4, the subsystems that have
been identified above can be highlighted. For each case, relevant integration points (of the
respective category defined in Section 2.1) are highlighted, for which a specific process should
be realized in D7.7.1 (Integration of Results) that would enable the testing with regard to this
feature.

Figure 4: Overall COSMOS Architecture

3.2.1. Data Feed, Annotation and Storage

The components involved in this subsystem appear in Figure 5. The main flow includes the
data source (real-time data coming from the UCs, and more specifically the Camden platform)
that is adapted to the format and protocol of the COSMOS platform (i.e. the format accepted
by the Message Bus component, IP3). The format to be used in this case is JSON. The VE
developer must also specify (in terms of a relevant configuration file), what are the
annotations (metadata tags) to be associated with the individual fields of information in the
data feed (IP3). This information is collected by the Raw Data Collector, grouped into objects
(along with the actual data) by the Data Mapper and stored in the backend storage system.
From there it can be retrieved based on the metadata tags using relevant constraints.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 22 of 45

Figure 5: Data Feed, Annotation and Storage Subsystem

3.2.2. Metadata Search and Storlets

The components involved in this subsystem appear in Figure 6. The main flow includes the
data source (historical or static data coming from the UCs, and more specifically the Madrid
static Bus Routes definitions) that is adapted to the format of the COSMOS platform. The
format to be used in this case is JSON. The VE developer must again specify (in terms of a
relevant configuration file- IP3), what are the annotations (metadata tags) to be associated
with the individual fields of information in the data feed (this action is omitted since it is
included also in the previous subsystem). Furthermore, an Application Developer, with the
specialization of Analytics Expert, is responsible for creating and integrating a Storlet script
(IP2) in order to perform a set of specific computation actions (such as geolocation conversion
and metadata enrichment) on the ingested data. This functionality enables the End Users to
search for bus routes that include stops in a given geographic box (IP1).

3.2.3. Modelling and Storage Analytics

The subsystem and roles for this case appears in Figure 7. The main flow includes the data
source (historical data coming from a smart building in Surrey). The specific source was
selected since it included the features that were needed by the respective model of occupancy
detection, since the main purpose of this subsystem is to integrate the process and flow of
model creation. In the upcoming periods, models more adapted to the UC needs will be
pursued. This subsystem includes the incorporation of an Application Developer (specialized as
an Analytics Expert) in order to create a relevant Storlet for data preprocessing (IP2), based on
the needs of the other Application Developer (specialized as a Modelling Expert- IP2), e.g. if
the latter needs average values from the raw data or other forms of preprocessing (outlier
detection etc.). The modelling Expert may also include a relevant model creation and training
algorithm, through the usage of Apache Spark. Domain experts will need to be in close
communication and perform collaborating coding. In the future there may be certain libraries
COSMOS offers with a number of ready-made Storlets/modelling options which can
sometimes avoid the need for coding.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 23 of 45

Figure 6: Metadata Search and Storlets Subsystem

Figure 7: Modelling and Storage Analytics Subsystem

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 24 of 45

3.2.4. Security, Privacy and Storage

The subsystem and roles for this case appears in Figure 8. The main flow includes the data feed
(real-time data coming from a camera) that is ingested securely in the COSMOS storage,
following a hardware-enabled preprocessing step at the source (IP3), that is responsible for
compressing and encrypting the image before its transmission. This subsystem includes the
incorporation of an Application Developer (specialized as an Analytics Expert) in order to
create a relevant Storlet for data privacy processing (IP2), which is in charge of enabling
external users (End Users role included) retrieval on the images (IP1), but based on their access
rights. Thus the Storlet may allow or deny access to the image, or retrieve it and blur the faces
of the frame, based on the authorization level of the End User. The incorporation of real data
from the UCs (especially the Madrid UC that includes on board bus cameras) is expected to be
performed in the future integration periods.

Figure 8: Security, Privacy and Storage subsystem

3.2.5. Autonomous Behavior of VEs with minimum integration with the
Platform

The subsystem and roles for this case appears in Figure 9. The main flow in this case includes
the instantiation of the Planner component by an Application Developer role (IP2), through the
definition of the kind of problem the component is intended to solve (case-problem structure
definition). Thus it gives the capabilities to the End Users of the application to automate
management aspects, through setting the problem parameters (e.g. arrival at one hour and
desired flat temperature of 25oC- IP1). The solutions may come either from the planner’s local
Case Base or through interaction with other similar VEs. In that case the Experience Sharing
kicks in, in order to find friend VEs that have dealt with similar situations in the past, thus
instructing it on the necessary solution to follow. The solution is rated in the end in terms of its
effectiveness, information that is kept in the social network.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 25 of 45

3.2.6. Autonomous Behavior of VEs- Automated Event Detection and
Incorporation of COSMOS Platform

The subsystem and roles for this case appears in Figure 10. The main flow in this case includes
the same flow as previously, however the platform capabilities (in terms of CEP or storage) are
also enabled. Thus new functionalities can be achieved (e.g. logging of historical data, event
recognition and alert etc.). The data now pass through the COSMOS platform, thus including
the VE developer to adapt the relevant flows (IP3).

Figure 9: Autonomous Behavior of VEs with minimum platform integration subsystem

Figure 10: Autonomous Behavior of VEs- Automated Event Detection and Incorporation of COSMOS Platform

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 26 of 45

3.2.7. Components involved

The components involved based on the previous subsystems and their functional
requirements, as these can be identified by the current development process, have been
included in Annex A. We do not include them here in detail, since these components may
appear in more integration periods and in order not to repeat information we cross-reference
them directly from the respective Annex.

3.3. Overview of Use Case specific aspects involved and concretization

For this integration period, UCs are expected to be incorporated in the following manner:

 Data coming from the platforms and adapted to the COSMOS needs for ingestion
(Data Feed, Annotation and Storage subsystem). Data may be ingested either through
real-time feeds (Camden UC) or through historical file-based formats (Madrid UC),
annotated accordingly and stored to COSMOS storage structures. More information
on this is provided in Sections 3.3.1 and 3.3.2.

 Analytics capabilities based on the annotated data, mainly in the form of metadata
search and filtering (Madrid UC), in the form of searching for bus routes based on area
highlighting. This is mainly tested through the Metadata, Search and Storlets
subsystem.

 The image blurring and parametric image retrieval application is expected to be used
in the case of Madrid, in the context of a wider application scenario and is included in
the Security, Privacy and Storage subsystem.

 Data pre-processing Storlets are also expected to be used in the context of UC-
tailored prediction models, included in the Modelling and Storage subsystem.

 For the Camden UC, the applied aspects include a concretization of the Autonomous
Behaviour of VEs subsystems, in the following manner:

In smart home environment, total energy consumption is measured in real time with the help
of smart meters.

1. Every flat is modelled as a VE. Every flat contains a thermometer (sensor) and a boiler
whose temperature can be measured (sensor), as well as set (actuator).

2. During the creation of an application, COSMOS offers the developer the opportunity to
define how cases relevant to his application are going to be stored, created and
maintained.

3. A user downloads an application for a VE. This application defines how the several cases
(both complete and incomplete) are going to be created. For example, the flat VE
continuously records the actions of a human user regarding the heating of the flat. In our
case, it may record that at a room with a temperature of 6 oC, the user turned the heating
on for a total of 10 minutes (600 seconds) and stopped at 20 oC, using hot water of 70 oC.

4. That way, the VE builds a case of {6, 600, 20, 70} and, in a similar, fashion its case base.
5. COSMOS manages the CBR cycle.
6. Each time a new incomplete case is created, the VE searches its Case Base for a solution.

For example, the user may inform the VE that he/she will return after a specific time
interval and request a certain target temperature in that certain time limit.

7. If no solution is detected, the VE initiates the Experience Sharing service and asks its
friends for help.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 27 of 45

8. A number of cases is returned by the friends.
9. Based on the dependability index of the friends and the similarity of the cases (the

weights of these criteria can be defined), the cases are sorted and the best case is chosen.

The case is evaluated based on its results and the Trust of the friend that shared its case is
recalculated. The extensive details on the available data sets and interfaces for the UCs is given
in D7.1.1 [10] However we include here a short overview with relation to the concrete aspects
used during this integration period.

3.3.1. Camden UC Data Feed

Endpoint

Camden flats send their data through Mosquitto (MQTT) which is a lightweight
publish/subscribe messaging protocol. In order to inject them in the COSMOS platform
through the Message Bus, Camden UC provided us with an endpoint, credentials and a
relevant topic.

Data Format

The data are structured in JSON format, which is the one adopted in the COSMOS platform.

The Figure 11 shows an example of these data:

Figure 11: Camden UC data

“estate” refers to one of three 21-storey tower blocks (Dalehead, Gillfoot and Oxenholme), all
located within the boundaries of the London Borough of Camden. “hid” corresponds to one
single flat and is unique within the heating system. “ts” indicates the timestamp of the specific
observation, written in Epoch (Unix) format. “returnTemp” and “flowTemp” keys refer to the
temperature of the heating water, whereas “cumulative” represents the cumulative energy
consumption of the flat and is used for charging.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 28 of 45

3.3.2. Madrid UC Data Feed

EMT data were provided through files containing historical data for bus trips. Each excel file
contained data for a particular bus line during a particular time period. The data were injected
to the COSMOS platform through the Data Mapper component.

An example of a bus trip data is depicted in Figure 12:

Figure 12: Madrid UC data

“STOPID” and “NAME” keys both refer to a specific bus stop, while “METERS” indicates the
whole distance covered by the bus from the beginning of its trip. “POSX” and “POSY”
correspond to the UTM coordinates of the relevant bus stop.

3.4. Testing environment

3.4.1. Testing infrastructure - The COSMOS Platform Setup

The testing infrastructure to be used comprises of an internal testbed, for the components to
be deployed. This emulates the role of a COSMOS Platform Provider. In order to create this
facility, a number of steps must be performed (Figure 13):

 Creation of a set of virtual appliances (Virtual Machines) that will be the environment
for the platform components to run. Given that components may have different
dependencies (e.g. operating systems, java versions etc.), in order to have functional
separation we used this approach for the isolation of deployed components. These
dependencies led to the mapping between components and VMs that needs to be
taken under consideration for the determination of the VM types to be created. The
virtualization approach is also helpful in case the COSMOS Platform provider is based
on a Cloud (private or public) implementation. Details on the COSMOS testbed are
included in Annex B, again following the logic that it may be used in multiple
integration periods and thus it should not be included in the individual period
description. Furthermore it will be easier to update this information based on new
component deployments or added requirements.The description includes component
grouping in these VMs, needed open ports and virtualization dependencies.

 Deployment of the created VMs on a respective hardware platform.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 29 of 45

 VM configuration. Based on the mapping of components to VMs, the necessary
dependencies (e.g. libraries etc) need to be installed, along with the configuration of
the network ports. Component requirements and software dependencies are
described in Annexes A and B

 Component installation. Finally, the respective components need to be installed and
configured in the VMs. This information is provided in great detail in deliverables
DX.2.1 (where X{3,4,5,6}), the project’s technical WPs prototype documentation.

Figure 13: COSMOS Platform Setup Process

It is expected that in the end of the project, the virtual appliances created by the COSMOS
project will be made available as an alternative and more flexible means of platform
installation.

3.4.2. Involved Tester roles

During this period, the main roles involved are the COSMOS Component Developers, that aim
to integrate the various components in cooperating entities. These testers will also emulate
the role of the other entities (e.g. VE developer, App Developer, End user, Domain Expert) that
have been highlighted in the defined subsystems.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 30 of 45

4. Integration Stage 2 (M17-M22)

4.1. Involved Integration Goals and Refinement

Following the results of the first integration period and the initial deployment and definition of
the COSMOS platform, the second stage of integration aims at further enhancing the linking in
the platform and better incorporation of the UC elements. To this end, and based on the Gantt
Chart in Figure 3, the main tasks that are expected to be the focus on this period include the
definition of the data model to be used across the platform and in cooperation with the
component needs and the UC data feeds. This implies mainly the identification of component
combinations (not necessarily in the form of subsystems), from which the information flow will
pass.

The VE Description and Linking to the platform is one of the main goals of this period, which
aims at resulting in having semantically enriched VEs in the COSMOS platform, together with
their annotations and endpoints description. To this end, it will include the following subgoals:

 COSMOS Ontology Definition
o This includes mainly the different ways through which UC data can be directed

to the COSMOS platform. Thus the ontology definition should be generic
enough to cover the different means of data acquisition (e.g. through REST
interfaces, through appropriate topics in the Message Bus etc.) and have the
capabilities at the same time to be instantiated based on the available
interfaces per case.

 Domain Specific Ontology Definitions for Use Cases
o Given that the COSMOS ontology should be abstract enough to describe

endpoints, the semantics of these endpoints are linked with Domain Specific
ontologies, in order to indicate the type of information contained in a specific
endpoint. Thus relevant definitions must exist for each UC, adapting to its
individual needs and enabling the mapping of the endpoint to the concept.

 VE Descriptions and Registry population (subsystem)
o Based on the two previous steps, concrete VE descriptions should be made

available in the COSMOS Registry, in order to describe the UC elements and be
used in the following goal.

Furthermore, another critical aspect that integration will center around is the initial version of
the application scenarios, which implies work towards the following subgoals:

 Application Definition Framework (subsystem)
o This relates mainly to the sources of data and how these can be combined in

the context of a specific application, how they can be discovered by an
Application Developer and included (the endpoints), in the application logic
(and based on what the latter needs to achieve).

 Application Scenarios concretization
o This relates mainly to the initial design and development of one or more of the

concrete Application Scenarios that have been defined in D7.1.1, in relation to
how the available COSMOS enabled functionalities can be used or defined in
order to server the application needs. This includes aspects such as data flow
from multiple sources of information, event definition and identification,
specific Storlet creation and integrated usage, adapted predictive models for a
specific metric (as indicated by the application) etc.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 31 of 45

Finally, the third point of attention will be the initialization of the discussion on the overall
integration process at the VE side, which includes the following:

 VE resources specification and endpoint
o This refers to the VE side components of COSMOS and how these can be

deployed on the actual UC testbeds. Component deployment should take
under consideration specification of the available resources, and this
information should be also propagated to the development WPs in case poor
alignment is identified.

Also the initial integration goal of “COSMOS Platform and Cross Component integration” is
expected to carry on, but mainly in order to incorporate any needed changes and new
advancements.

4.2. Subsystems involved

This section will be further populated in the next iterations of the document, following the
update on the COSMOS architecture. For the moment we can identify two subsystems that can
be the target of integration in this period.

4.2.1. VE Descriptions and Registry population

The subsystem and roles for this case appear in Figure 14. The main involved entity is the VE
developer, who needs to provide the concrete VE descriptions, based on the provided
ontologies. This corresponds to integration point IP4, and includes the definition of the
templates and then the population of the registry with existing entities (with their endpoints
and semantics).

4.2.2. Application Definition Framework (Data Feed)

The subsystem and roles for this case appear in Figure 15. The main involved entity is the
Application Developer, who needs to retrieve relevant endpoints based on their needs (IP2)
and create the necessary data channel (e.g. in the MB) from which the various application
components will derive the information, based on the application logic.

4.3. Use Case specific aspects involved and concretization

In the second iteration of this document, we expect to have the concrete aspects that are
going to be applied in the components in order to enable the realization of the application
scenarios (defined in D7.1.1), specifically the ones that are anticipated to be ready for the end
of Y2 (M25- September 2015). For these cases we expect to have identified specifically which
components are going to participate in the respective COSMOS app and from which
perspective (how are they going to be used in the context of the scenario).

Furthermore, we anticipate to have defined the UC scenario of Taipei and the way to link to
the platform in terms of data feeds.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 32 of 45

4.4. Testing environment

4.4.1. Testing infrastructure

The testing infrastructure at this stage is expected to be comprised by the COSMOS platform,
described in Chapter 3, enhanced by the newly introduced components in this cycle, and by
the UC platforms. A significant advancement is the expectation to have available the VEPROT
platform from the Madrid UC, in order to obtain real-time feeds from the respective VEs.

Figure 14: VE Descriptions and Registry population

4.4.2. Involved Tester roles

The involved tester roles at this stage include mainly the VE developers, that are expected to
utilized the COSMOS platform components for creating the descriptions of the VEs.
Furthermore, the Application Developer role should be included in order to take under
consideration how the different available services can be combined to create an elementary
COSMOS App, obtaining information from the city platforms and using this as input to the
COSMOS services.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 33 of 45

Figure 15: Application Definition Framework Subsystem (Data Feed)

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 34 of 45

5. Traceability Matrix of Capabilities to Use Cases

A traceability matrix is necessary in order to maintain a mapping between the COSMOS
functionalities and how these may be applied to the different UCs (Table 2). Every capability or
component should be present in at least one of the scenarios, by the end of the project, in
order to justify its usefulness and added value.

Table 2: Traceability Matrix of capabilities to UC scenarios

UC 1

Capital Planning
UC 2

Minimising Carbon
UC 3

Heating Schedule
UC 4

Mobility Assistance

Data
Annotation

Data
ingestion

Real time
feed

Data
Analytics

CBR-
Planning

TBD

Experience
Sharing

TBD

H/W
encryption

 TBD

Privelets

Predictive
Modelling

TBD

CEP

TBD

Semantic
Integration

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 35 of 45

This mapping is defined based on an initial investigation of the application Use Cases, as these
are defined through 4 application scenarios in D7.1.1. The mapping is based on the current
description of the scenarios and on potential capabilities that can be adapted to fit their needs
and seem reasonable to be included in the envisioned application. The exact concretization
will be performed in the following integration periods of the project. This information will be
updated also in the next versions where application scenarios may be enriched, thus allowing
the adaptation of the features, including also the Taipei UC. The entry TBD (To Be Discussed)
implies that the specific capability may or may not have meaning to be included in the specific
scenario, thus its applicability should be further investigated.

For the purposes of Y1, the main focus was given on the integration of the COSMOS platform
components and their initial prototypes, along with the ingestion of data from the UCs.
Therefore this matrix will be more useful in the context of Y2 and Y3 of the project, in which
we aim for building the applications that correspond to the realization of these scenarios.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 36 of 45

6. Conclusions

In order to proceed with the integration process in the context of the COSMOS project, a
necessary plan needs to be in place. The main aspects of this have been highlighted in this
document, that will act as a guide also for the results reporting and presentation.

By dividing the process into more fine grained goals and subsystems, we can gain enhanced
perspective as to the various aspects that need to be included in the platform, having in mind
at all times the progress towards the final target, the COSMOS enabled application. By keeping
also track of the UC involvement in each period, we can identify gaps and inconsistencies
across the technical WPs and the UC scenarios and optimize their mapping and relationship.

From this initial version of the document, the concrete process of setting up a COSMOS
platform provider has been defined, along with the necessary information regarding the
practical aspects of this setup. Furthermore, the needs of the immediate period following this
plan have been identified, in terms of concrete subsystems for integration. Relevant roles and
integration points have been identified.

In the following updates of this document, the upcoming integration periods will be further
concretized, based on the technical developments and the goals highlighted here. It must be
stressed that this intends to be a living document, that will be continuously updated based on
the technical discussions and the goals within each period.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 37 of 45

Annex A Components Involved

 COSMOS platform

 Data Mapping

Table 3: Software requirements for the Data Mapping

Name Version OS

Java Runtime Environment 1.8 Linux/Windows

RabbitMQ server 3.3.1 Linux/Windows

Swift All In One 1.12.0 Linux/Windows

The Data Mapping will be distributed as a NetBeans 8.0 project folder zip.

 Message Bus

Table 4: Software requirements for the Message Bus

Name Version OS

Erlang R15B Linux/Windows

 Cloud Storage-Metadata Search

Table 5: Software requirements for the Metadata Search

Name Version OS

Ubuntu 13.10 Linux, 64 bit

RabbitMQ server 3.0.2 or higher Linux

Elastic Search 1.2.0 Linux

Python 2.7 Linux

OpenStack Swift 1.12.0 Linux

 Cloud Storage- Storlets

Table 6: Software requirements for the Storlets

Name Version OS

Ubuntu 13.10 Linux, 64 bit

LXC Part of Linux kernel Linux

Python 2.7 Linux

OpenStack Swift 1.12.0 Linux

Java JDK 7 Linux

 Event Detection and Situational Awareness

Table 7: Software requirements for the Event Detection at the COSMOS platform

Name Version OS

ZeroMQ 4.0.4 Linux/Windows

Apache Tomcat 7.0.54 Linux/Windows

JDOM 2.0.5 Linux/Windows (JRE)

Jersey 2.10.1 Linux/Windows (JRE)

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 38 of 45

 Prediction

Table 8: Software requirements for the Event Detection at the COSMOS platform

Name Version OS

Ubuntu 13.10 Linux

Python 2.7 Linux

 Semantic Description and Retrieval

Table 9: Software requirements for the Semantic Description and Retrieval

Name Version OS

Ubuntu 13.10 Linux, 64 bit

JBoss Application Server 7 Linux

OpenRDF Sesame 2 Linux

Java JDK 7 Linux

 VE Level

 Privelets

Table 10: Software requirements for the Privelets

Name Version OS

Java Runtime Environment 1.7 Linux/Windows

Apache Tomcat 7.0 Linux/Windows

Java Server Faces 2.2 Linux/Windows

 Planner

Table 11: Software requirements for the Planner

Name Version OS

Java Runtime Environment 1.8 Linux/Windows

Apache-Jena 2.10.0 Linux/Windows

Pellet-Jena 2.3.2 Linux/Windows

Planner will be distributed as a NetBeans 8.0 project folder zip.

 Event Detection and Situational Awareness

Table 12: Software requirements for the Event Detection at the VE level

Name Version OS

ZeroMQ 4.0.4 Linux/Windows

 Experience Sharing

Table 13: Software requirements for the Experience Sharing

Name Version OS

Java Runtime Environment 1.8 Linux/Windows

Jetty-Maven-Plugin 9.1.5.v20140505 Linux/Windows

Experience sharing will be distributed as a NetBeans 8.0 project folder zip.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 39 of 45

Annex B Project Computing Testbed Details

 Basic Requirements

 Accessibility

The COSMOS platform consists of components that span across virtualised infrastructure,
framework services and application layers. This makes the components integration a difficult
task that requires physical and remote access for the developers to the integration sites and to
all platform layers. It is also important, at least for the integration purposes, the developers to
have access in the virtual environment to check the correct deployment and execution of
application components. To this direction, COSMOS partners are expected to use a Web Client
through SSH in order to remotely connect to the VMs.

 Security

VMs should be accessible over the Internet through a secured connection. More specifically,
access control and firewall need to be incorporated to isolate the infrastructure from the
outside world and guarantee its normal operation. To this direction, HTTPS using port 443 can
be adopted.

 Components to Virtual Resources Mapping

The component to VM mapping that has been chosen for the COSMOS Platform appears in
Table 14, along with the network configuration necessary for the VMs.

Table 14: Components to VMs mapping and VM configuration requirements

Virtual
Resource
(VM ID)

Components
Included

WP(s) #Cores RAM Disk

Connectivity
Requirements

(opened
ports)

Hypervisor
requirements

(if any)

1
VE1 (Planner,

Experience
Sharing)

WP5,
WP6

1 1GB 8GB
3030, 8080,
5050

None

2
VE2 (Planner,

Experience
Sharing)

WP5,
WP6

1 1GB 8GB
3030, 8080,
5050

None

3

Swift,
Storlets

requirements
for first year

of project

WP4 4 8GB 500GB

8080, 9200,
5672, 5000,
6000, 6001,
6002, 873

None

4
Swift,

Metadata
Search –

WP4 4 8GB 500GB
8080, 9200,
5672, 5000,
6000, 6001,

None

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 40 of 45

requirements
for first year

of project

6002, 873

5
Event

Detection

WP4,

WP6
1 1GB 4GB

50100, 8080,
50101, 50102

None

6 Message Bus WP4 1 2GB 4GB 5672 None

7
Semantic

Description
and Retrieval

WP5 1 2GB 4GB
8080, 9000,
9990

None

 Testbed Description

The hardware infrastructure is provided by Atos. Atos is responsible for assuring a constant
access and a continuity of the services that guarantee the correct functioning of the physical
infrastructure. The Infrastructure details are the following: 1HP DL180G5 / 2x Intel Quad-Core
Xeon L5410 / 24GB RAM/ 4x1TB SATA. These physical resources must accomplish individual
work packages needs.

The system is virtualised in order to develop the different functionalities following an isolated
VMs strategy. This option has been chosen by the different partners; the argument is that the
individual development and deployment of the different modules can be controlled by the
developer directly and it does not affect the parallel development of other functionalities e.g.
restart VMs, or conflicting requirements. This may also aid in improved packaging and release
in the end of the project, in terms of Virtual Appliances with pre-installed COSMOS
components.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 41 of 45

Annex C Software Packaging and Delivery

This section describes a set of recommendations for developers to ease the compilation and
deployment of components in the testbed. The COSMOS project uses SVN [4] as repository to
share the software developed within the COSMOS scope . A methodology has been defined to
make easier the deployment of software in the different site machines. This methodology
includes recommendations related to build tools and packaging software.

 Installation - Execution

The installation of the components in the test-bed may be performed in a variety of ways,
however the goal should be to have a, as automated as possible, process. Indicatively, the
following ways may be applied:

 Standard package formats may be selected for Linux and Windows:
o Linux Operating System. For these machines, Ubuntu 13.10 has been chosen

as the main COSMOS Linux distribution. For the modules developed for Linux,
every module may include a ".deb" package. This will be the installation point
of the binary of any component delivered. The naming convention followed
should be: eu_cosmos_<wp>_<component-name>.deb. The description of any
dependencies will be present during the building of the .deb file so the apt-get
command will be able to resolve and download any missing dependencies. [6]

o Windows Operating System. For these machines, Windows 7 or superior
version can be used as COSMOS Windows version. The components developed
for Windows must be delivered as MSI (Microsoft Installers) [7] or EXE
(Windows Executable Installers) [8] files. Any custom or necessary libraries
should be included in the .msi/.exe file by the developers. Again the naming
conventions mentioned in the Linux distributions are valid so any msi or exe
naming should be: eu_cosmos_<wp>_<component-name>.msi/.exe

 Java-based programs should be provided as executable jar files, including helper
scripts that may aid in the configuration of the installation and execution

 Components based on different programming languages should also provide helper
scripts for the installation and execution, in the according language of implementation.
Additional scripts may be provided for preparing the testbed for the deployment of
these components (e.g. installation of dependencies etc.)

When installation has taken place, the packages will have to provide some way for the user to
execute them. Whether these packages are COSMOS components or VE_level components,
during test-bed testing they should provide some way of seamless execution. Naming
conventions may be applied for the aforementioned scripts. For example:

 Prepare_< component-name>.*

 Install_<component-name>.*

 Execute_<component-name>.*

Any form of installation should also necessarily provide a basic configuration file that will be
accessed at the start of execution, as a script parameter and provide necessary alterations to
the executed program if needed.

Indicative parameters for the scripts may include:

 help: shows help about the usage of the component.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 42 of 45

 configure: performs any configuration needed prior the execution of the component
(optional).

 start: starts the component’s execution.

 stop: stops the component’s execution.

 clean: frees resources and resets the state of the component after its execution
(optional).

Obviously, these scripts will be created, if possible, only for those cases where it makes sense
to do it. That is, there could be some components which are started inside a server, in the
moment this server starts running, so no start script is needed in this case.

 Standard Naming Convention

A standard naming convention will be used for all phases of package development. From
source code naming to installation package creation the naming convention is eu.
cosmos.<location>.<wp>.<tool-name>.<component-name>, except where any other
convention is explicitly mentioned. Further analysis follows:

 location: CosmosPlatform, VELevel

 wp: security, datamanagement, thingsmanagement, thingsanalysis

 tool-name: (optional)

 component-name: e.g. Planner, CEP

It is very important that each <> contains no white spaces.

 Standard Readme File

Every software package should contain a “README.txt” file. This file should contain, at least,
the following information:

 Name of the software package.

 Responsible person for the software component.

 Dependencies.

 Configuration instructions.

 Path to the log files produced by the component (if any).

 Standard License File

Every software package should contain a “license.txt” file, indicating the applicable license for
the specific package and details of usage and distribution permissions.

 Manuals

Developers are also strongly encouraged to provide an installation and configuration manual
and a user manual for the components they are responsible for. Indicatively, sections for such
a documentation can include:

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 43 of 45

 Implementation:
o Functional description: This section describes the overall purpose of the

delivered prototype. It must include the context and scope of the prototype;
the motivation and main innovations.

 Fitting into overall COSMOS solution: This section describes how the
prototype fits into the overall COSMOS chain from a functional point
of view. How it is mapped into the COSMOS methodology and how it is
related with other components. How it is mapped into the overall
COSMOS architecture.

o Technical description: This section describes the technical details of the
implemented software.

 Prototype architecture: This section contains a diagram and a
description of what is the architecture of components that build up
the prototype.

 Technical specifications: This section contains details about
programming language, libraries, databases, application servers and so
on required for the implementation of the prototype

 Delivery and usage:
o Package information: This section describes the structure of the delivered

package (folders and files).
o Installation instructions: This section describes the steps that must be

followed to install and start up the prototype as well as how to execute the
software.

o User manual: This section provides details how to use the prototype.
o Licensing information: This section specifies under which licence the

prototype or components inside are delivered.
o Download: This section specifies the path where the source code is available.

 Acceptance Procedure

Developers are advised to follow certain rules to deliver their components to WP7:

1. The source code of the components should be submitted into the subversion
repository and tagged with the version of the component (this only applies to the open
source code developed during the project). If the code cannot be distributed the
binary parts of the component should be available in Subversion or in the relevant
testbed facilities for demonstration/integration purposes.

2. The installation scripts should also be available in the repository with instructions to
utilize them. Configuration information should also be provided.

3. The requirements for the installation should be clearly defined in the README file of
the component.

4. The components should have been passed the unit tests defined inside the WP for
these components. A testing report must be available shown the tests performed,
especially on interactions with other components, relevant to the test cases defined in
Annex A.

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 44 of 45

 Integration Tools

 Revision Control System

Revision Control Systems are widely adopted, operating as repositories for storing and
maintaining the design and specification documentation, as well as the source code and
configuration files of the software under development. The most important advantage of
these systems is that they can support multiple partners working simultaneously on different
versions of the same document or software. In that way, any bugs and other issues can be
easily located and fixed while at the same time new stuff can be added. Additionally, in a
project like COSMOS where the development teams are geographically dispersed, revision
control improves the development process and the communication between the development
teams.

In COSMOS, Subversion (SVN) [4] is used, which is nowadays one of the most popular and
complete, in terms of features, open source revision control systems.

 Alfresco

Alfresco [5], which is an open source ECM system, is used to manage the project’s critical
documents like CA, DoW, GA, deliverables released to EC etc. Alfresco has the advantage of
providing the COSMOS partners with full access from anywhere and at any time.

 Wiki

For the purposes of integration, we have setup a Wiki in which integration information may be
included in order to document testbed configuration, mapped IPs, VM names, access
credentials etc.

 Code Quality checks

COSMOS partners will investigate the possibility to use Sonar [1], which is an open platform to
manage code quality and extract useful conclusions. Extracted information will be fed back to
developers in order to improve the quality of their code, especially in the case of the code base
that is going to be released as open source.

In terms of languages, Sonar supports analysis of Java in the core, but also of Flex (ActionScript
3), PHP, PL/SQL and other languages through plugins (Open Source or commercial) as the
reporting engine is language agnostic. A full list of available plugins can be found in [2].

According to [3], Sonar enables to cover quality on 7 axes and so to report on:

 Duplicated code

 Coding standards

 Unit tests

 Complex code

 Potential bugs

 Comments

 Design and architecture

 Template Adaptation and Validation

The defined COSMOS template (in JSON format) needs to be validated against the produced
data feeds that are expected to be ingested in the platform. Relevant tools for this validation
are expected to be used, e.g. as the ones listed in [9].

D7.6.1 Integration Plan (Initial)

Date: 15/02/2015 Grant Agreement number: 609043 Page 45 of 45

References

[1] Sonar tool: http://www.sonarqube.com/

[2] SonarQube Documentation, Plugin Library List, available at:
http://docs.codehaus.org/display/SONAR/Plugin+Library;jsessionid=48B59953A92269D99
38CA1751951ED36

[3] Method & Tools: http://www.methodsandtools.com/tools/tools.php?sonar

[4] Subversion: http://tortoisesvn.tigris.org/

[5] Alfresco : http://www.alfresco.com/

[6] Debian Packaging: https://wiki.debian.org/IntroDebianPackaging

[7] MSI: http://msdn.microsoft.com/en-us/library/aa266427%28v=vs.60%29.aspx

[8] EXE: http://msdn.microsoft.com/en-us/library/ff553615.aspx

[9] JSON Schema Organisation, Available at: http://json-schema.org/implementations.html

[10] COSMOS Project Deliverable D7.1.1 Use Case Scenarios Definition and Design (Initial)

http://docs.codehaus.org/display/SONAR/Plugin+Library;jsessionid=48B59953A92269D9938CA1751951ED36
http://docs.codehaus.org/display/SONAR/Plugin+Library;jsessionid=48B59953A92269D9938CA1751951ED36
http://www.methodsandtools.com/tools/tools.php?sonar
http://tortoisesvn.tigris.org/
http://www.alfresco.com/
https://wiki.debian.org/IntroDebianPackaging
http://msdn.microsoft.com/en-us/library/aa266427%28v=vs.60%29.aspx
http://msdn.microsoft.com/en-us/library/ff553615.aspx
http://json-schema.org/implementations.html

