

C REATE AN INTELLIGENT TECHNOLOGICAL ARCHITECTURE CAPABLE OF DELIVERING EMBODIED, FLEXIBLE, AND EFFICIENT RHYTHMICAL STIMULATION ADAPTED TO INDIVIDUALS' MOTOR PERFORMANCE AND SKILLS FOR THE PURPOSE OF ENHANCING/RECOVERING MOVEMENT ACTIVITY

Project FP7-ICT-2013-10-610633

BeatHealth

"Health and Wellness on the Beat"

Collaborative Project Personalised health, active ageing and independent living

Deliverable D6.3 "List of publications and patents resulting from BeatHealth activities"

Due date of deliverable: October 1st, 2016 Actual submission date: October 24th, 2016

Starting date of the project: October 1st, 2013 **Duration:** 36 months

Lead contractor: UM Revision: 0.0

Dissemination Level		
PU	Public	X
PP	Restricted to other programme participants (including the Commission services)	
RE	Restricted to a group specified by the consortium (including the Commission services)	
CO	Confidential, only for members of the consortium (including the Commission services)	

CREATE AN INTELLIGENT TECHNOLOGICAL ARCHITECTURE CAPABLE OF
DELIVERING EMBODIED, FLEXIBLE, AND EFFICIENT RHYTHMICAL STIMULATION
ADAPTED TO INDIVIDUALS' MOTOR PERFORMANCE AND SKILLS FOR THE
PURPOSE OF ENHANCING/RECOVERING MOVEMENT ACTIVITY

TABLE OF CONTENTS

1.	Pul	blications resulting from BeatHealth activities	1
	1.1.	Publications in peer-reviewed journal	1
	1.2.	Conference proceedings	1
	1.3.	Book chapter	1
2.	Ma	nuscripts in preparation resulting from BeatHealth activities	2
3	Pat	tents filled during the life time of the project	2

CREATE AN INTELLIGENT TECHNOLOGICAL ARCHITECTURE CAPABLE OF
DELIVERING EMBODIED, FLEXIBLE, AND EFFICIENT RHYTHMICAL STIMULATION
ADAPTED TO INDIVIDUALS' MOTOR PERFORMANCE AND SKILLS FOR THE
PURPOSE OF ENHANCING/RECOVERING MOVEMENT ACTIVITY

1. Publications resulting from BeatHealth activities

1.1. Publications in peer-reviewed journal

- [1] Bardy, B. G., Hoffmann, C., Moens, B., Leman, M., & Dalla Bella, S. (2015) Sound-induced stabilization of breathing and moving. *Annals of the New York Academy of Sciences*, 1337, 94-100. doi: 10.1111/nyas.12650.
- [2] Buhmann, J., Desmet, F., Moens, B., Van Dyck, E., &, Leman, M. (2016) Spontaneous Velocity Effect of Musical Expression on Self-Paced Walking. *PLoS ONE 11*(5): e0154414. doi: 10.1371/journal.pone.0154414
- [3] Dotov, D. G., Bayard, S., Cochen de Cock, V., Geny, C., Driss, V., Garrigue, G., Bardy, B. G., & Dalla Bella, S. (2016). Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson's disease. *Gait & Posture*, 28(51), 64-69. doi: 10.1016/j.gaitpost.2016.09.020
- [4] Dotov, D. G., Bardy, B. G., & Dalla Bella, S. (2016). The role of environmental constraints in walking: Effects of steering and sharp turns on gait dynamics. *Scientific Reports*, 6, 28374. doi: 10.1038/srep28374
- [5] Hoffmann, C. P., & Bardy, B. G. (2015). Dynamics of the locomotor-respiratory coupling at different frequencies. *Experimental Brain Research*, 233(5), 1551-1561. doi: 10.1007/s00221-015-4229-5
- [6] Moens, B., & Leman, M. (2015). Alignment strategies for the entrainment of music and movement rhythms. *Annals of the New York Academy of Sciences*, 1337, 86-93. doi: 10.1111/nyas.12647
- [7] Timoney, J., O'Leary, S., Czesak, D., Lazzarini, V., Conway, E. E., Ward, T. E., & Villing, R. C. (2015). The BeatHealth Project: Application to a Ubiquitous Computing and Music Framework, *Journal of Cases in Information Technology*, 17(4), 29-52. doi: 10.4018/JCIT.2015100103
- [8] Van Dyck, E., Moens, B., Buhmann, J., Demey, M., Coorevits, E., Dalla Bella, S., & Leman, M. (2015). Spontaneous Entrainment of Running Cadence to Music Tempo. *Sports Medicine Open*. doi: 10.1186/s40798-015-0025-9
- [9] Van Dyck, & Leman, M. (2016). Ergogenic effect of music during running performance. *Annals of sports medicine and research*, 3(6): 1082.

1.2. Conference proceedings

- [1] Bayard, S., Dotov, D. G., Cochen de Cock, V., Torre, K., Bardy, B., & Dalla Bella, S. (2015). Beat complexity and variability may optimize the effects of rhythmic auditory cueing on walk in Parkinson's disease. *Movement Disorders*, 30, S287-S287.
- [2] Hoffmann, C. P., Moens, B., Leman, M., Dalla Bella, S. & Bardy, B. G. (2013) Does Running in Synchrony with Sound Improve Endurance Performance and Save Energy? Proceedings of the 10th International Symposium on Computer Music Multidisciplinary Research (pp. 158-162), Marseille (France): October 15-18, 2013.
- [3] Timoney, J., Lazzarini, V., Ward, T., Villing, R., Conway, E. E. & Czesak, D. (2014). The BeatHealth project: synchronising movement and music. *Fifth Workshop on Ubiquitous Music*, Vitorià (Brazil): October 29 November 1, 2014.
- [4] Villing, R., Lazzarini, V., Czesak, D., O'Leary, S. & Timoney, J. Approaches for constant audio latency on Android (2015). *Proceedings of the 18th International Conference on Digital Audio Effects (DAFx-15)*, Trondheim, Norway: November 30 December 3, 2015.

1.3.Book chapter

CREATE AN INTELLIGENT TECHNOLOGICAL ARCHITECTURE CAPABLE OF DELIVERING EMBODIED, FLEXIBLE, AND EFFICIENT RHYTHMICAL STIMULATION ADAPTED TO INDIVIDUALS' MOTOR PERFORMANCE AND SKILLS FOR THE PURPOSE OF ENHANCING/RECOVERING MOVEMENT ACTIVITY

[1] Dalla Bella, S. (2015). Music and brain plasticity. In S. Hallam, I. Cross & M. Thaut (Eds.), *Oxford Handbook of Music Psychology, Second Edition*. Oxford: Oxford University Press.

2. Manuscripts in preparation resulting from BeatHealth activities

- Buhmann, J., Van Dyck, E., Moens, B., Dotov, D., & Leman, M. Degree of entrainment as a means to model running behavior.
- Damm, L., Blondel, F., Ihalainen, P., Varoqui, D., & Bardy, B. G. The ecological representativeness of running on a treadmill.
- Damm, L., Blondel, F., Ihalainen, P., Varoqui, D., Dalla Bella, S., & Bardy, B. G. Why do we (not) synchronize with the musical beat during running?
- Dotov, D. G., Bayard, S., Cochen de Cock, V., Bardy, B., & Dalla Bella, S. Beat variability optimizes rhythmic auditory cueing in the parkinsonian walk. Dependence on individual's tendency to synchronize.
- Dotov, D. G., Bayard, S., Cochen de Cock, V., Geny, C., Bardy, B., & Dalla Bella, S. *Heterogeneity of gait response to cueing in Parkinson's disease is related to disease duration.*
- Garzo, A., Hernandez, E., Garay-Vitoria, N., Silva, P. A., Cullen, A., Villing, R., Cochen De Cock, V., Ihalainen, P. A Complete Stakeholder Involvement Process for a Validated Design of a Gait Training System for Parkinson Disease.
- Garzo, A., Hernandez, E., Bonail, B., Montejo, M. BeatHealth cloud platform: security and privacy compliant design.

3. Patents filled during the life time of the project

No patents have been filled during the 3 years of the project. See deliverable D6.6. for details on exploitation plan of BeatHealth activities.