
Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Document Properties

Document Number: D 2.1

Document Title:

NetIDE Core concepts and Architecture v1

Document Responsible: Pedro A. Aranda (TID), Diego López (TID)

Document Editor: Pedro A. Aranda (TID), Diego López (TID)

Authors:

Pedro A. Aranda (TID) Diego López (TID)
Holger Karl (UPB) Roberto Doriguzzi (CreateNet)
Georgios Katsikas (IMDEA) Carmen Guerrero (IMDEA)
Ladislav Lhotka (CZ.NIC) Bernhard Schrder (FTS)
Elisa Rojas (IMDEA)

Target Dissemination Level: PU

Status of the Document: Final

Version: 1.0

Production Properties:

Reviewers:
Elio Salvadori (CreateNet) Christian Stritzke(UPB)
Kevin Phemius(Thales)

Document History:

Disclaimer:
This document has been produced in the context of the NetIDE Project. The research leading to these results
has received funding from the European Community’s Seventh Framework Programme (FP7–ICT) under grant
agreement n◦ 619543.
All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is
merely representing the authors view.

NetIDE Confidential i

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Abstract:
This deliverable defines the core technical concepts of NetIDE project, collects requirements,
analyses them and provides blueprints of the architecture that will be the reference for RTD and
integration activities in the project.
We explore the state of the art and provide a first draft of the NetIDE architecture. This ar-
chitecture v.0 is based on the PoC implementations of the Data-Centre use case, UC1, sketched
in Deliverable D 5.1, “Use Case requirements”. These implementations use off-the-shelf compo-
nents and help us identify missing feature needed for the NetIDE framework. The architecture
postulates the use of an external domain-specific language (DSL) as a way of mixing and match-
ing Network Applications (Network Apps) developed with different programming languages and
paradigms to different SDN controllers.
We propose to translate the Network Applications into this domain-specific language (DSL)
and feed them into an intermediate translator that generates the code for the different SDN
controllers we target. We have derived this concept from an initial implementation of one of
the use cases described in the Description of Work (DoW) using state-of-the art environments
like the Pyretic framework, the POX and Ryu OpenFlow controllers and YANG as a means to
describe network equipment configurations.
Finally, we describe the next steps in our way to the NetIDE architecture. Along with projects we
had planned to follow, we have enlarged the scopes of our plans with regards to OpenDayLight
and included architectural work of the Open Networking Foundation as a result of the first
technical review of the project, which was held in Bologna at the end of June 2014.
The emerging of the OpenDayLight controller platform has had an impact on the SDN landscape
and on our project in particular. We have incorporated ODL into our next steps and will explore
how far the project can leverage on this platform when describing its architecture. Additionally,
there are other efforts in the Open Networking Foundation - more precisely the North-bound
Interface in the architecture group - we will start following.

Keywords:

software defined networks, networking, future internet, openflow, integrated development environment

ii Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Contents

List of Figures iv

Acronyms vi

List of Corrections ix

1 Introduction 3

2 State of the Art 5
2.1 Open SDN environments based on OpenFlow . 5

2.1.1 OpenFlow (OF) switches, controller frameworks and controllers 5
2.1.2 Northbound Interface for selected OF controllers 13

2.2 OpenFlow network emulation/simulation environments 14
2.3 Applications extending the basic OF control plane 14
2.4 High-level SDN Programming Languages . 15
2.5 Tools for SDN and legacy networks . 15

2.5.1 YANG . 16
2.5.2 Standard Data Models . 17

2.6 Tools supporting the software development cycle in Software Defined Networks . . . 17
2.6.1 OpenFlow Debuggers . 17
2.6.2 LoxiGen . 18

3 The NetIDE architecture – A first draft 19
3.1 Requirements in different phases . 19

3.1.1 Development phase . 19
3.1.2 Deployment phase . 20
3.1.3 Runtime phase . 20
3.1.4 Requirements conclusions . 20

3.2 Shortcomings of existing solutions . 20
3.2.1 The control application/controller aspect . 20
3.2.2 The controller/switch aspect . 22

3.3 Core concept: The Intermediate Representation Format (IRF) and its aspects 23
3.3.1 Internal and external domain-specific languages (DSLs): IRF behavioural

aspects . 23
3.3.2 Topology patterns: IRF structural aspects . 25
3.3.3 Transformation flow: Description of Work (DoW) vs. now 25

3.4 A simplified architecture: NetIDE v.0 . 26

4 A proof of concept: Pyretic and Ryu 29
4.1 Goals of the proof of concept . 29
4.2 Brief reminder: The Data-Centre use case . 29
4.3 Implementation in YANG . 30

4.3.1 Implementation . 31

NetIDE Confidential iii

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

4.3.2 Gap analysis . 33
4.4 Implementation of the use case using Pyretic (standard POX-based client) 33

4.4.1 Implementation . 34
4.4.2 Gap analysis . 36

4.5 Implementation of the use case on Pyretic (using a novel Ryu-based client) 37
4.5.1 Implementation . 37
4.5.2 Gap analysis . 39

4.6 Conclusions on Proof-of-Concept work . 39

5 Next steps 41
5.1 Technological alternatives . 41

A Topology YANG Module 43

B Pyretic Module 51
B.1 Main . 51
B.2 Load Balancer . 52
B.3 Firewalls . 54
B.4 Monitor . 56
B.5 Commons . 58

C Bibliography 61

iv Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

List of Figures

2.1 An overview of the architecture of ODL rel. “Hydrogen” 9
2.2 The two Service Abstraction Layer models in OpenDayLight Source: https://wiki.

opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ 10
2.3 Architectural comparison of NetIDE and ODL . 12
2.4 The Pyretic framework . 16

3.1 Transformation flow between different software artefacts 26
3.2 The NetIDE v.0 framework as an evolution of Pyretic 27

4.1 Logical view of a virtual data-centre offering . 30
4.2 UML diagram of the topology data model . 32
4.3 Pyretic’s bootstrap operations. 38

NetIDE Confidential v

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Acronyms

AD-SAL Application-Driven Service Abstraction Layer (SAL)

API Application Programming Interface

ARP Address Resolution Protocol

DC Data-Centre

DMZ De-Militarised Zone

DNS Domain Name Service

DDoS Distributed Denial of Service

DoW Description of Work

DSL domain-specific language

ECA Event-Condition-Action

EPL Eclipse Public License

FRP functional reactive programming

FW Firewall

HW Hardware

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IP Internet Protocol

IRF Intermediate Representation Format

LLDP Link Layer Discovery Protocol

MAC Medium Access Control

MD-SAL Model-Driven SAL

NAT Network Address Translation

NBI North-bound Interface

NFV Network Function Virtualisation

ODL OpenDayLight

OF OpenFlow

NetIDE Confidential vii

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

OFSID OpenFlow Software Implementation Distribution

ONF Open Networking Foundation

OS Operating System

OSGi Open Services Gateway Initiative

OVS Open Virtual Switch

PaaS Platform as a Service

PoC Proof-of-Concept

RTT Round Trip Time

SAL Service Abstraction Layer

SDN Software Defined Networking

SDNw Software Defined Network

SLA Service Level Agreement

SotA State-of-the-Art

SW Software

TCP Transmission Control Protocol

UC use case

UDP User Datagram Protocol

URI Universal Resource Locator

VM Virtual Machine

VRRP Virtual Router Redundancy Protocol

WP work-package

viii Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

List of Corrections

NetIDE Confidential ix

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Executive Summary

This deliverable defines the core technical concepts of NetIDE project, collects requirements, anal-
yses them and provides blueprints of the architecture that will be the reference for RTD and
integration activities in the project.

We explore the state of the art and provide a first draft of the NetIDE architecture. This
architecture v.0 is based on the Proof-of-Concept (PoC) implementations of the Data-Centre use
case, UC1, sketched in Deliverable D 5.1, “Use Case requirements”. These implementations use off-
the-shelf components and help us identify missing feature needed for the NetIDE framework. The
architecture postulates the use of an external domain-specific language (DSL) as a way of mixing
and matching Network Apps developed with different programming languages and paradigms to
different Software Defined Networking (SDN) controllers.

We propose to translate the Network Applications into this domain-specific language (DSL) and
feed them into an intermediate translator that generates the code for the different SDN controllers
we target. We have derived this concept from an initial implementation of one of the use cases
described in the Description of Work (DoW) using state-of-the art environments like the Pyretic
framework, the POX and Ryu OpenFlow controllers and YANG as a means to describe network
equipment configurations.

Finally, we describe the next steps in our way to the NetIDE architecture. Along with projects
we had planned to follow, we have enlarged the scopes of our plans with regards to OpenDayLight
and included architectural work of the Open Networking Foundation as a result of the first technical
review of the project, which was held in Bologna at the end of June 2014.

The emerging of the OpenDayLight controller platform has had an impact on the SDN landscape
and on our project in particular. We have incorporated OpenDayLight (ODL) into our next steps
and will explore how far the project can leverage on this platform when describing its architecture.
Additionally, there are other efforts in the Open Networking Foundation - more precisely the North-
bound Interface in the architecture group - we will start following.

We also provide a view into the next steps to create the NetIDE architecture and a long-term
view of the Intermediate Representation Format as a way of representing Network Applications in
a tool-friendly way.

This deliverable is tightly coupled with Deliverable D 3.1,”Developer Toolkit Specification”. The
outcome of the architecture work has been fed into the concept for the Integrated Development
Environment that will be used by the project.

The present version of this deliverable includes suggestions and comments resulting from the
First Technical Review that took place in Bologna in the 23rd of June, 2013.

NetIDE Confidential 1

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

1 Introduction

NetIDE has set out to provide an Integrated Development Environment (IDE) for SDN development
that unifies different controller technologies and allows a developer to write applications that are
independent from the underlying Software Defined Networking (SDN) technology. To this avail,
NetIDE proposes to use an Intermediate Representation Format (IRF) to store SDN applications
that is handled by an IDE and transformed into platform-specific code.

During the lapse of time between proposal submission and project start, important advances
in the State-of-the-Art (SotA) have occurred. The introduction of the ODL controller has stirred
the SDN landscape with its possibility of integrating proprietary SDN network equipment with
OpenFlow (OF) equipment under one controller. However, OpenDayLight is still in its early phases
and some unknowns regarding the real level of platform independence persist.

To start both the conceptual and the development work, we have resorted to Pyretic. This higher-
level construct, based on the POX controller, provides modular and compositional applications
based on high level abstractions of the underlying network infrastructure and a well-defined north-
bound interface for SDN applications. However, the original Pyretic distribution is not platform-
independent. Therefore, one of the efforts in the project boot phase has been to detach the Pyretic
infrastructure from POX (the OF controller it talks to) and make it interact with another OF
controller (in our case, Ryu).

Additionally, we have explored whether we can apply state-of-the-art network configuration pro-
tocols (in our case YANG) in the framework of NetIDE.

This document is tightly coupled with Deliverable D 3.1 [1]. Both are released at the same time
and extensive cross-referencing will be used, in order to keep the documents at a reasonable size.

The rest of the document is structured as follows:

• Chapter 2 briefly presents the state of the art,

• Chapter 3 describes initial steps to identify the architecture components

• Chapter 4 discusses a proof-of-concept implementation for a restricted architecture

• Chapter 5 outlines next steps towards the NetIDE architecture.

NetIDE Confidential 3

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

2 State of the Art

Software Defined Networking implies a paradigm shift in the way networks are designed and oper-
ated. They are the result of a general trend, where Hardware (HW) functionality is being replaced
by Software (SW) implementations. This evolution has been fostered not only by a continuous
increase in computing power and competitiveness of SW based solutions, but also by an evolution
in the SW development world towards conceptually sound procedures and easy to use tools. In this
chapter, we analyse the state of the art of SDN environments. We examine different controllers for
OF based and proprietary SDN environments.

This deliverable concentrates on a selected subset of controllers, namely i) POX, ii) Ryu,
iii) Floodlight, iv) Beacon, and v) OpenDayLight. For a high level analysis of a more broad range
of open source SDN controllers available today including details on the northbound/southbound
interfaces available and documentation, please refer to Deliverable D 6.1 [2].

2.1 Open SDN environments based on OpenFlow

A basic OF environment requires some essential components in both data and control planes. A
forwarding node is the basic building element of the OF network, it may be a commercial HW-
based node or a SW-based implementation. On the other hand, the control plane consists of OF
controllers and higher-level language constructs that ease the development of Network Apps for a
specific framework.

2.1.1 OF switches, controller frameworks and controllers

Many open source projects have emerged to help building OpenFlow networks, both controllers and
switches are freely available under different licenses. One of the most popular SW-based OF switch
implementation is the Open Virtual Switch (OVS) [3] which is integrated in the Linux kernel 3.3,
firmware such as Pica8 [4] and Indigo [5] are also available.

In addition, there are also many open source OF controllers and controller frameworks for
almost every development environment. NOX [6] written in C, Pox [7] in Python, floodlight [8] in
Java and Trema [9] for Ruby developers are some of the available controllers. Most of these con-
troller frameworks are part of more or less ambitious, wider-ranging OF development frameworks.

We emphasize the difference between the controller framework and the controller
itself. For the purpose of the ensuing architecture discussion, this difference is crucial and we
will adopt the following terminology. The controller is the actually running piece of software in an
operational SDN network. It understands and processes the SDN control protocol (e.g., OpenFlow)
and is customized to the needs of the particular network. But since implementing a controller
from scratch encompasses considerable amounts of repetitive work, controller frameworks have
emerged that collect together common basic functionality and that can be customized by network
applications running in conjunction with the controller (the actual implementations differ widely,
ranging from binding libraries together, plugins into a process, or separate processes, but that is
not a crucial aspect).

The remaining text in this section gives a brief overview of popular controller frameworks.

NetIDE Confidential 5

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

C/C++ OpenFlow controller frameworks

NOX

NOX [6] was the first reference implementation of an OF controller. This implementation, referred
to as NOX Classic, was programmed in Python and C++ by Nicira Networks side-by-side with
OpenFlow. The current implementation is C++ only and, as stated in the NOX website, aims
at implementing a C++ Application Programming Interface (API) for OF 1.0 that provides fast,
asynchronous I/O. It includes sample components that implement topology discovery, a learning
switch and a network-wide switch that is distributed over all the OF switches controlled by an
instance of NOX.

Trema

Trema [10] is an OF controller framework. The OF controller accepts applications written in C
and Ruby as well. In addition to the OF controller, Trema is shipped with an integrated OF
network emulator and OF traffic analysis tools based on Wireshark [11]. Trema also provides a test
framework (Ruby). The integration of network emulation and test framework using Ruby enables
developers to apply “well-known” testing tecnhiques such as mocks, stubs and expectations to OF
programming. There is a branch in the Trema repository to support OF 1.3.

Trema is the base for the ProgrammableFlow [12] networking framework provided by NEC.

Python-based OpenFlow controller frameworks

POX

POX [7] is an evolution of the Python OF interface that has been dropped from NOX and that
has been a very fast and convenient entry path to OF networking and SDN in general. At its core,
POX is a platform for the rapid development and prototyping of network control software using
Python. In includes a number sample components: l2-learning, l3-learning, pretty-log, etc. to help
new users in the development of their applications. It runs on multiple platforms including Linux,
Mac OS, and Windows, and supports the same GUI and visualisation tools as NOX. Benchmarks
shown in the website confirm that POX provides an improvement over NOX applications written
in Python. Nowadays it supports OF version 1.0 and the Nicira OF extensions. Although lots of
OF 1.3 feautures are derived from the Nicira extensions, OF v1.3 is not supported.

RYU

Ryu [13] is a component-based SDN framework written in Python. Ryu developers described it
as a Network Operating System. It supports OF version 1.0, 1.1, 1.2, 1.3 and 1.4, as well as the
Nicira extensions and the standard OF configuration protocol OF-Config [14]. Ryu can also control
and monitor legacy platforms through the support of configuration protocols such as: Netconf [15],
NetFlow [16], SNMP [17] and OvSDB [18].

One of the components of the Ryu framework is the Packet Library, that is used to parse and
build packets for several protocols in the same way the Python-based dpkt [19] library does. Ryu’s
Packet Library includes the implementation of stacked packet formats that allows it supporting
standards like VLAN, MPLS, GRE etc. This library provides the framework with the possibility of
interacting with network signalling and routing protocols. In this sense, it implements a speaker for
the BGP-4 routing protocol [20] and the documentation explains how to implement an application
to respond to ICMP packets. Additionally, the Ryu platform includes integrated test applications
for OFconfig support and Virtual Router Redundancy Protocol (VRRP) [21] configurations, which
are well documented.

6 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Another feature of Ryu is that it can run in virtualisation environments based on cloud orchestra-
tors like the OpenStack framework [22]. Ryu cooperates with OpenStack by means of the Quantum
Ryu plugin which is available in the official Quantum releases.

The northbound interfaces exposed by Ryu comprise a RESTful management API and a REST
API for OpenStack. Additionally, it gives the developer the possibility of detaching his/her appli-
cation from the core of Ryu by defining specific application-defined REST APIs.

Ryu is licensed under the Apache 2.0 license.

Java-based OpenFlow controller frameworks

Beacon

Beacon [23] is an OpenFlow controller implementation written in Java that that uses an imple-
mentation of the OSGi specification, Equinox. OSGi gives Beacon the capability to not only start
and stop applications while it is running, but to also add and remove them (runtime modularity),
without shutting down the Beacon process.

Beacon includes the OpenFlowJ library for working with OpenFlow messages. OpenFlowJ is an
object-oriented Java implementation of the OpenFlow 1.0 specification.

Floodlight

FloodLight [8] is a fork of Beacon. Like its “parent” it supports Java and Python modules but also
added Jython support. It allows synchronous and asynchronous messages to the switch and OF
messages are converted in Java events, making it simple to assimilate. Floodlight was redesigned
without the Open Services Gateway Initiative (OSGi) framework making it easier to develop with-
out OSGi experience. Floodlight is multi-threaded allowing it to have great speed compared to
other, mono-threaded controller (like NOX).

The choice of Java as its primary language was justified by three main reasons :

• Java is a very popular programming language.

• There are many IDEs and tools to develop in Java.

• Java is multi-platform, making it easier to export code from any kind of system (Beacon has
been deployed on Android and Floodlight on iOS).

Floodlight is actively developed and have the support of Big Switch Networks’ engineers who
are actively testing and fixing bugs and building additional tools, plugins, and features. The Open
Source community is well developed and many plug-ins and fixes were added by external developers
in the project’s repository. It can easily be modified and is able to supports any size of network
with consistent performances. Major improvement can be possible by the use of a more powerful
and optimised hardware.

As many OF Controllers, Floodlight has a modular architecture : a Core module (responsible
for implementing the OF protocol), associated with “main” modules (which handle the basics such
as link and host discovery) and the applications either above (using the modules REST APIs) or
embedded in the controller (using Java interfaces).

The latest stable version of Floodlight only support OF up to the 1.1 protocol version. A beta
version supporting OF 1.3 is also available but without full support of the capabilities of this version
(e.g. rate limiter, meter tables, . . .).

NetIDE Confidential 7

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

OpenDaylight

OpenDayLight (ODL) is an open platform for the development and execution of general purpose
SDN network applications and telecommunication-oriented Network Function Virtualisation (NFV)
applications. The founding of OpenDayLight was announced in April 2013, after the initial con-
ception of NetIDE. Since then, the ODL architecture and implementation have grown rapidly.

OpenDaylight: Open Source Programmable Networking Platform

The OpenDayLight consortium describes ODL as follows: OpenDayLight is an open platform for
network programmability to enable SDN and NFV for networks at any size and scale. Enterprises,
service providers, equipment providers and academia can download Hydrogen today and begin to
evaluate, commercialize and deploy SDN and NFV.

OpenDayLight software is a combination of components including a fully pluggable controller,
interfaces, protocol plug-ins and applications. The Northbound (programmatic) and Southbound
(implementation) interfaces are clearly defined and documented APIs. This combination allows
vendors and customers alike the ability to utilize a standards-based and widely supported platform
without compromising technical creativity and solution innovation. With this common platform
both customers and vendors can innovate and collaborate in order to commercialize SDN- and
NFV-based solutions. 1

OpenDayLight is supported by leading server and networking industry players (39 members).
Cisco is a major contributor which leads to recurring questions about the neutrality of ODL and a
potentially hidden agenda.

Unlike other SDN controller projects the ODL scope is more than just the controller framework
and also includes:

• SDN applications running on top of the controller. SDN applications implement network
services such as firewalls or load balancing. Business applications build on top of these
network services,

• Integration with other higher level frameworks such as OpenStack which enables cloud appli-
cation development, and

• A Service Abstraction Layer (SAL) for multiple lower level frameworks supporting many
network equipment programming models.

Figure 2.1 2 provides an overview of the current scope and architecture of ODL. The analysis
presented in this deliverable refers to ODL release “Hydrogen” (February 2014, provided under
Eclipse Public License (EPL))3. It provides three flavours dedicated to different areas of use cases.
These flavours contain only some of the modules shown in the whole architecture in Figure 2.1:

• Base edition: Basically the controller core with the standard fundamental features such as
topology management, switch manager and Internet address resolution. This is the feature
set which is also typically provided by the other SDN controllers.

• Virtualization edition: This edition additionally contains SDN applications implementing
network overlays (DOVE), virtual networks (VTN, Virtual Tenant Network) and integration
into OpenStack. This edition contains many features required to implement a virtualized
data centre and to provide cloud services.

1source: http://opendaylight.org
2source: http://www.opendaylight.org/project/technical-overview
3As of the 29th of September, 2014, the OpenDayLight project released a second version, nicknamed “Helium”

8 Confidential NetIDE

http://opendaylight.org
http://www.opendaylight.org/project/technical-overview

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Figure 2.1: An overview of the architecture of ODL rel. “Hydrogen”

• Service provider edition: This edition contains services such as the Affinity Metadata
Service which defines workload relationships and their Service Level Agreement (SLA) re-
quirements. This edition introduces a higher level of network programming by focusing on
the needs of network service provider applications and their connectivity requirements. It
supports high-level routing protocols such as BGP and LISP. It also addresses security re-
quirements such as the detection and mitigation of Distributed Denial of Service (DDoS)
attacks.

OpenDaylight follows the following architectural principles 4:

1. Runtime Modularity and Extensibility supporting installation, removal and update
of service implementations within a running controller, also known as “In-Service Software
Upgrade” (ISSU)

2. Multiprotocol Southbound: Allow for more than one southbound protocol interface from
the controller to support network elements with diverse capabilities. Examples of such pro-
tocols are OpenFlow, Netconf, BGP and LISP.

3. Service Abstraction Layer: Utilizing the OSGi framework allowing multiple southbound
protocols to present the same northbound service interfaces.

4. Open Extensible Northbound API: To allow for an extensible set of application-facing

4based on https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Principles#

Overview

NetIDE Confidential 9

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Principles#Overview
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Principles#Overview

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

APIs both across runtimes via REST (level 3 API) and within the same runtime, e.g. via
function calls (level 2 API). The set of accessible functions should be the same.

5. Support for Multi-tenancy/Slicing: This includes allowing the controller to present dif-
ferent views of the controller itself depending on which slice the caller is from.

6. Consistent Clustering: Providing redundancy and scale out while ensuring network con-
sistency.

The Service Abstraction Layer provided by OpenDayLight

The OpenDayLight controller within the general ODL project exposes two sets of northbound
APIs known as Service Abstraction Layers, which comes in two flavours: the Model-Driven SAL
(MD-SAL) and the Application-Driven SAL (AD-SAL). The task of the SAL is to create a layer
to develop applications against that is agnostic with regards to the underlying SDN protocol or
protocols. It allows to programmatically access network elements from different SDN platforms in
a uniform way.

In the case of the AD-SAL, this is done by means of a Java Contract, which is usually a set of
Java interfaces and supporting objects that represent the data.

In contrast, the MD-SAL is a set of infrastructure services within the ODL framework that is
aimed at providing common and generic support to application and plugin development.

The MD-SAL currently provides infrastructure services for:

• Data Store

• RPC / Service routing

• Notification subscription and publish services

This common model-driven infrastructure allows developers of applications and plugins to develop
against different APIs (e.g. Java APIs, DOM APIs, and REST APIs) derived from a single model.

Request

Routing

Java SB modeled API

REST API

NB-Plugin 1

REST API

NB-Plugin 2Adaptation Plugin

Controller

MD-SAL

Java NB Service Modeled API

SB-Plugin 1 SB-Plugin 2

SB Model

Data

NB Model

Data

Data Store

SB Plugin Model

“Is generated from”

NB Service Model

“Is generated from”

(a) The Model-Driven SAL

Java plugin NB API

Request Routing

Java plugin SB API

Adaptation

Java Service NB API

REST API

NB-Plugin 1

REST API

SB-Plugin 1

NB-Plugin 2

SB-Plugin 1 SB-Plugin 2

Controller

AD-SAL

(b) The Application-Driven SAL

Figure 2.2: The two Service Abstraction Layer models in OpenDayLight
Source: https://wiki.opendaylight.org/view/OpenDaylight_Controller:

MD-SAL:FAQ

10 Confidential NetIDE

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Comparison between ODL and NetIDE

In a first approach, ODL can be considered another controller in the list of controllers targeted
by NetIDE. However, ODL is a controller framework divided into three clear parts: northbound
modules, southbound modules and the so-called Service Abstraction Layer module. In the ODL
framework, network applications written in YANG and Java, later compiled into jar files, would be
at the same level of the Network Application Engine in the architecture of NetIDE, which unifies
the network applications written for different controllers into a single application in IRF language.
The main added value of ODL for the NetIDE proposed architecture is that ODL is a controller
framework capable of supporting multiple protocols, e.g. OpenFlow 1.0, OpenFlow 1.3, BGP-LS,
etc. on its southbound interface. The set of southbound protocols of ODL supported should ease
the integration of different SDN-based and legacy networks5. All of these modules are dynamically
linked into the Service Abstraction Layer.

Some of the features that NetIDE could benefit from ODL:

• Active collaborative development from the community (open source project)

• Different southbound protocols (OpenFlow 1.0, BGP-LS, SNMP, NETCONF, etc) allowed
for deployment

• Web interface for managing network applications

Some of the added values that NetIDE could bring to ODL:

• Ability of programming the network application with different languages (including legacy)

• Debugging and monitoring capabilities

Figure 2.3 shows a summary comparison of the architectures of NetIDE and ODL. The simi-
larity between the IRF language for NetIDE and the YANG language for ODL is apparent, since
they both are located at a similar level in the architecture, as language unifiers for the network
applications that will later be deployed on the final controller framework. That is, both the IRF
and YANG language allow to define the network application, although in NetIDE IRF is created
after a translation from another language, while in ODL YANG is directly used for writing that
application. Thus, an initial idea would be transforming the network application for NetIDE into
YANG, so that it is later used in ODL. However, the YANG development module is still in an
early phase and applications still need to be written or finally modified in Java.

Another relevant difference is that ODL allows the creation of independent southbound applica-
tions, also written in Java, as southbound modules for management and interconnection with the
physical network. These applications grant high flexibility to the framework.

5This assessment is based on the scarce documentation available and needs to be confirmed with new applications

NetIDE Confidential 11

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

POX Ryu Floodlight

Others...

OpenFlow
Floodlight Others...

			Java

Java

SAL

N
et
ID
E	
N
et
w
or
k	
En
gi
ne

				Network	Applica�on 				Network	Applica�on

O
penD

aylight	project

Northbound

Southbound

				Network 				Network

Is written

for

Is translated

to

Is translated

to

SB Interface

controls network

Is written

in

IRF YANG

Figure 2.3: Architectural comparison of NetIDE and ODL

12 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

2.1.2 Northbound Interface for selected OF controllers

According to [24], the northbound API is used to communicate between the SDN controller and
the services and applications running over the network. A survey that includes most of our target
SDN controllers can be found in [25]. We are not covering the REST API, despite it being a way
of overcoming the “programming language barrier”. Any application using this API can be made
multi-controller by rewriting the parsing code for each of the controllers it wants to support, and
anyhow, the REST API will not be able to expose features which are not present in the controller.
Instead we are looking at the APIs exposed to applications running on the controller itself.

There is a first fundamental grouping, which is forced by the programming environment selected
by the development teams, shown in Table 2.1.

Programming Language SDN controller framework

Python POX
Ryu

Beacon
Java Floodlight

ODL

Table 2.1: Classification by language

The Python controllers

Although POX and Ryu are both programmed in Python, their programming model is different.
Ryu provides implementations of a switching hub, the Spanning Tree Protocol, a Firewall, a

Router and an OF switch tester. All these applications can be controlled through a REST API. Re-
garding the programming model, all Ryu applications inherit the ryu.base.app manager.RyuApp

class. It is in these applications where the user logic is implemented. The user logic is a set of
event handlers. Functions implementing an event handler are marked by a specific decorator.

The scope of POX is more modest. It provides components for a set of layer-2 and layer-3
switches, and an implementation of the Spanning Tree Protocol. POX provides the components to
implement a Web service. When writing applications for POX, the programming model is different.
Applications are not derived from any specific Python class that implements default behaviour. The
programmer has to implement all the registration logic, as well as the event handling loops.

The two models are so different that porting applications between both controllers is not an
automatic task.

Java based controllers

When developing in the Java SDN world, the first big difference is the whether the controller uses
OSGi, like for example Beacon, or not like in the case of Floodlight. A side-by-side comparison of
the paradigm implemented in these two controllers can be made by comparing [26] and [27]. The
additional effort due to the bundle-support code and the difference in naming conventions make
the task difficult, although possible.

Code snippets shown in a blog [28] suggest a certain level of similarity between Beacon and ODL.
This suggests that code portability is not completely out of scope when going this direction. The
opposite direction seems not to be possible, due to features offered by the OpenDayLight framework
only. Just as an example, Beacon does not provide the routing protocols provided by the ODL
framework.

NetIDE Confidential 13

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

2.2 OpenFlow network emulation/simulation environments

Since the beginning of OpenFlow, it has been bundled with the Mininet emulation environment in
order to allow people to get hands–on experience without the need of a physical OpenFlow network.

Mininet

Mininet [29] is a Network Emulation platform for quick network test-bed set-up; it allows the
creation of large (up to 1024 nodes) OF networks in a single machine. Nodes are created as
processes in separate network namespaces using the Linux network namespaces [30], a lightweight
virtualization feature that provides individual processes with separate network interfaces, routing
tables, and ARP tables. Nodes are connected via virtual Ethernet pairs. Mininet supports binding
to external controllers and provides a front end for OF soft switches such as the Stanford reference
implementation and OpenVSwitch. Mininet has a full support of OpenFlow versions 1.0 and 1.3 .

MaxiNet

MaxiNet6 is an extension of Mininet to clustered environments, developed by one of our partners
(UPB). It provides the same interface to an experimenter but allows to run much larger experiments
by distributing the execution of several Mininet instances over multiple host machines. Semantic
correctness is achieved by proper time dilation of instance execution.

OpenFlow on the NetKit network emulation environment

NetKit [31] is a network emulation environment for the Linux Operating System (OS). It is mainly
used to recreate networking laboratories that help understand the user how routing protocols work
in real networks, using Virtual Machines (VMs) that run on using User-Mode Linux. The VMs uses
Quagga [32] routing daemon and other mainstream Linux networking utilities to provide the user
with a look and feel of commercial eqipment. An installation of the SW reference implementation
of the OF switch OVS on a Netkit VM is reported in [33]. It also explains how to install the NOX
OF controller to complete the OF emulation environment on NetKit.

Simulating OpenFlow on NS-3

NS-3 [34] includes support for OF switching. It relies on building the OpenFlow Software Imple-
mentation Distribution (OFSID) [35], and integrates into the simulation environment using NS-3
wrappers. At the point of this writing, OF support status in NS-3 is as follows: (1) version 1.0
of the OF protocol, (2) there is a version of OFSID that supports MPLS. This version was created
by Ericsson. However, the integration with NS-3 is limited, because there is no way to pass MPLS
packets to the NS-3 OF switch implementation.

2.3 Applications extending the basic OF control plane

Additionally, other OF related projects mainly focus on additional use cases. Flowvisor [36] provides
OF specific network virtualization allowing multiple OF controllers to act on a subset of the elements
deployed in an OF network; and RouteFlow [37] investigates how to integrate IP routing features
in the OF control plane.

6https://www.cs.upb.de/?id=maxinet

14 Confidential NetIDE

https://www.cs.upb.de/?id=maxinet

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

2.4 High-level SDN Programming Languages

When controlling the network becomes a software matter, the natural consequence is to look for
high-level languages able to provide a level of abstraction powerful enough to simplify programming
and achieve more complex behaviours. In this respect, we can consider OF similar to a processor
instruction set in normal IT, while several network programming languages have already being
proposed.

FML [38] is a policy language for the NOX controller that allows operators to declaratively specify
network policies. It provides a high-level declarative policy language based on logic programming.
An FML program consists of a collection of inference rules that collectively defines a function that
assigns a set of flow constraints to each packet.

Procera [39] provides a controller architecture and high-level network control language that allows
operators to express network behaviour policies, without resorting to general-purpose programming
of a network controller. Procera is designed to be reactive, supporting how most common network
policies react to dynamic changes in network conditions. Procera is able to incorporate events that
originate from sources other than OpenFlow switches, allowing it to express policy that reacts to
conditions such as user authentications, time of day, bandwidth use, or server load.

The Frenetic language [40] is intended to support to following essential features in the context
of OF networks:

• High-level abstractions that give programmers direct control over the network, allowing them
to specify what they want the network to do.

• Modular constructs that facilitate compositional reasoning about programs.

• Portability, allowing programs written for one platform to be reused with different devices.

• Rigorous semantic foundations that precisely document the meaning of the language and
provide a solid platform for mechanical program analysis tools.

The current Frenetic framework prototype combines a streaming declarative query sub-language
and a functional reactive sub-language that, together, provide many of the features listed above.

Pyretic [41] is one member of the Frenetic family of SDN programming languages. It is both a
programmer-friendly domain-specific language embedded in Python and the runtime system that
implements programs written in the Pyretic language on network switches.

Pyretic will play a significant role in later chapters, hence a few more details are in order.
Figure 2.4 shows the internal architecture of the Pyretic environment. Applications take advantage
of the Pyretic runtime and drive the OF network elements through a chain of elements which
include the Pyretic backend and the Pyretic client that runs on the OF controller platform. The
backend and the client communicate over a TCP stream using a well defined API.

Nettle [42] allows networks of OpenFlow switches to be controlled using a high-level, declarative
and expressive language. At the lowest layer, it includes a Haskell library for working with the
OpenFlow protocol. The next layer provides a programming model for observing and controlling
networks based on functional reactive programming (FRP).

2.5 Tools for SDN and legacy networks

Traditionally, the main method for specifying the desired behaviour of network devices has been
configuration. Most devices provide a command-line or graphical (web) configuration interface,
and some also support the NETCONF configuration protocol [15], or its RESTful cousin REST-
CONF [43].

NetIDE Confidential 15

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

FW Router LB Monitor

Pyretic Controller Platform

Application

Programmer API

Runtime

Switches

Switches API OpenFlow

Monitor App1 App2

Pyretic Runtime

Pyretic Backend

OF Controller Platform

OF Controller Client

OpenFlow

Switches

POX Client

POX

Serialized TCP
messages

Figure 2.4: The Pyretic framework

For the NetIDE project, configuration data are potentially important for the following three
reasons:

• The OF-Config protocol [14] uses the NETCONF protocol for a remote configuration of OF
switches. This includes essential IP addressing and DNS information as well as the address(es)
of OF controller(s).

• Most real-world networks are not pure SDN. Traditional devices, such as routers or firewalls,
often have crucial roles in the overall network behaviour. It is therefore important to be able
to interact with such devices and configure them accordingly.

• A configuration of a network device can be viewed as a formal specification of the device’s
desired behaviour. As such, it may be used as input, translated to IRF, and further processed
by the NetIDE tool chain.

2.5.1 YANG

YANG [44] is a standard language for modelling configurations and state data. Its development in
the IETF was closely connected to the NETCONF protocol but recently YANG has been used in
other contexts as well.

The primary syntax of YANG resembles the C programming language or BSD-style configuration
syntax. An alternative XML syntax named YIN is also defined as a part of the standard.

YANG is designed to model not only configuration and state data but also user-defined remote
procedure calls (RPC) and asynchronous notifications. The data may be encoded in XML as well
as in JSON [45].

YANG data models are structured into modules. Every YANG module declares a namespace to
which all data nodes defined by the module belong. Modules may also be further subdivided into
submodules that share the main module’s namespace.

Basic building blocks of a YANG data hierarchy are similar to XML schema languages such as
RELAX NG [46]:

• A leaf node is a single configuration or state parameter. Every leaf has a type and it may
also have a default value.

16 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

• A container node contains leafs, other containers, lists or leaf-lists or nodes. YANG also
distinguishes containers that are used only as folders for organising data from those whose
presence has a semantic meaning, such as turning on a certain function.

• A leaf-list node represents a sequence of leafs. A minimum and maximum number of entries
in the sequence may be specified.

• A list node is similar to a leaf-list but represents a sequence of containers with the same
structure. Every list declares one or more child leafs as the list key that uniquely identifies
each list entry.

• A choice node represents multiple alternative content models that are allowed at a given
place.

The selection of YANG built-in types is roughly comparable to that of XSD Datatype Library [47].
However, YANG also allows for deriving new named datatypes from existing ones by specifying
additional restrictions.

Semantic constraints may be specified in YANG using the must statement. Its argument is an
XPath expression that has to evaluate to true for a valid data instance.

Reusable collections of data nodes may be defined in YANG as groupings that may be used
repeatedly, also in other modules.

An important element of modularity in YANG data models is the augment statement. Its main
purpose is to extend an existing module from outside by adding new data nodes at any location.

2.5.2 Standard Data Models

After the YANG language specification [44] was published as a Proposed Standard, work started
in the IETF on the development of core data models that are needed for most network devices:

• ietf-interfaces [48]: configuration and management of network interfaces;

• ietf-ip [49]: configuration of IP parameters and management of the IP layer;

• ietf-system [50]: basic system configuration and management;

• ietf-routing [51]: framework for configuration and management of the routing subsystem

More specialised data models, e.g. for routing protocols, are expected to be developed by different
IETF Working Groups.

2.6 Tools supporting the software development cycle in Software
Defined Networks

2.6.1 OpenFlow Debuggers

Another component for an OF network application development cycle is the debugger. The task
of Controlling how packets flow in an OF based network is performed by an application running
in the OF controller. Tools to control that this application works as expected and to isolate
malfunctioning parts of it are needed. These tools fall into the same category of tools as debuggers
in the SW development cycle.

Handigol et.al. have proposed an OF debugger called ndb [52]. This tools mimics the GNU
debugger gdb [53] in the SW development cycle in some aspects. It is a command-line tool that

NetIDE Confidential 17

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

loads an OF application and allows it to run natively in the OF controller. It uses breakpoints
and back-traces to inspect how an application is behaving. The intended use of ndb is as follows:
(i) The debugger loads the network application. (ii) The programmer sets breakpoints at specific
points in the network application, where the state wants to be observed. This normally happens
when the network application was not able to handle a specific network packet. (iii) The network
application is launched and specific network debugging traffic is launched. (iv) The debugger halts
the application at a breakpoint. (v) Controller state and test packets that led to the network
application hitting the breakpoint are stored (vi) The debugger hands control to the programmer
who has access to the state and the packets that were being processed when the application hit the
breakpoint.

As mentioned above, Trema [9] and other OF controllers go beyond the mere implementation of an
OF controller and provide an OF development framework. In the specific case of Trema, it includes
a Wireshark [11] plugin to dissect OF packets [54] and a bridge to display OF events on Wireshark,
known as Tremashark [55].The next step in this development is provided by OFRewind [56]. This
tools collects network traces, that can afterwards be replayed in order to detect configuration or SW
errors in a network. Additionally, tools to check the different components in the OF eco-system.
FlowChecker [57] provides a method to check the flow-tables within an OF switch.

A very comprehensive approach to OF testing should be provided by the final version of NICE [58].
This tool, which is available in a preliminary version [59], is designed to test network applications
on an OF controller that control several switches. Techniques like code analysis will allow the
programmer to determine classes of packets that receive the same treatment in the controller and
generate stimuli that cover the whole OF application under test. This tool will also create a network
model using an iterative approach to refine the model and cover the application fully.

2.6.2 LoxiGen

LoxiGen [60] is a tool that generates OpenFlow protocol libraries in multiple languages. It is
composed of a frontend that parses wire protocol descriptions and a backend for each supported
language (currently C, Python, and Java).

LoxiGen currently supports OpenFlow versions 1.0, 1.1, 1.2, and 1.3.1. Versions 1.0 and 1.3.1
are actively used in production. Support for versions 1.1 and 1.2 is considered experimental.

LoxiGen is licensed under the EPL version 1.0. The LoxiGen compiler license contains an excep-
tion giving the user permission to license the generated code under any license that they choose,
provided they maintain the same copyright headers contained in LoxiGen.

18 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

3 The NetIDE architecture – A first draft

In this chapter, we document the bootstrap work undertaken by the project. The purpose was to,
on one hand, identify those components of the proposed NetIDE architecture that we can implement
using state-of-the-art components and technologies directly and, on the other hand, to find gaps
and shortcomings these technologies have compared to the scope of NetIDE.

We recall that the Description of Work (DoW) [61] stipulates support for both development and
execution of network control applications. The discussion here focuses on the development aspects
as they form the underpinning for an execution/runtime support. In later architecture deliverables,
support for runtime aspect will become more prominent. First ideas on that have already been
published [62].

We start this discussion by recalling, mostly from the DoW with some additional considera-
tions, the requirements we see for the development, deployment, and execution phase (Section 3.1).
Based on that, we consider a broad range of shortcoming of the existing controller frameworks (Sec-
tion 3.2). From that, we derive a first draft of the core architectural abstraction for the NetIDE
Intermediate Representation Format (IRF) (Section 3.3). To support the credibility of this ap-
proach, we have undertaken a first proof-of-concept implementation, discussed in Section 3.4.

3.1 Requirements in different phases

We envision an Integrated Development Environment for Network Application Development that
is closely related to equivalent systems in the Software delvelopment world. Deliverable D 5.1 [63]
provides information regarding requirement handling in the different phases in the lifetime of a
Network Application. In this section, we briefly recall how requirements guide the work of the
different kinds of Network Application users.

3.1.1 Development phase

During the development phase, requirements guide the developer produce a useful Network Appli-
cation:

• Requirements collection: the developer defines the scope of the Network Application to
be developed.

• Analysis and Design: following the results of the requirements collection phase, the devel-
oper specifies the actual behaviour of the Network Application and models relevant aspects
that will be the variables of and constraints for it.

• Development: the developer actually codes the network program using his favorite network
programming language, translates it to the IRF, and develops the APIs exposed by the
Network App.

• Testing and Validation: With support of Unit tests and simulators, the developer will be
able to assure that the behaviour of the Network Application complies with the specification
before actual deployment in the production environment.

NetIDE Confidential 19

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

3.1.2 Deployment phase

After the application reaches production grade, it can be deployed in the production environment.
Debug and testing tools are still available to developers during this phase in order to assess perfor-
mance, detect and debug malfunctions, etc. In case of need, the application can be fed back into
the development cycle for a new iteration.

3.1.3 Runtime phase

Once the Network Application is deployed, it needs to be monitored to check that it complies with
the expected behaviour. In case the observed behaviour deviates from it, there will be a need
for a debugger to understand what conditions cause such a misbehaviour and how it needs to be
modified to meet the requirements.

Additionally, the system has to allow to run several Network Applications in parallel. We cannot
anticipate that the IDE will produce optimised Network Applications at compile time. Hence, we
will need to implement optimisers that deploy the applications onto the SDN platform minimising
redundant use of resources. With the time resource usage in the SDN infrastructure might degrade.
Therefore, the Network App needs to provide enough information to implement garbage collection
to free up resources that were allocated to a Network Application but remain unused in the SDN
infrastructure.

3.1.4 Requirements conclusions

As stipulated by the DoW, our approach is to create a unifying language that covers orthogonal
aspects of the deployment models of different SDN approaches (for example, some SDN platforms
handle the network on a packet-level basis, while other take decisions based on the information of
flows) and that is executable and translatable across different SDN flavours. We call this unifying
language the NetIDE IRF and aim at making it deploy-able on actual SDN substrates in the same
way as OpenFlow or vendor-specific applications are deployed today. Section 3.3 summarizes our
insights so far and links the architecture discussion to Deliverable D 3.1 as well.

3.2 Shortcomings of existing solutions

When pondering the brief survey of the state of the art in Chapter 2 and reflecting that with the
DoW, there are two aspects where current solutions have conceptual shortcomings: 1. the interac-
tion between control applications and the actual controller itself, 2. the interaction of the controller
with actual switches, where the first aspect is certainly the more challenging one. There are also
some practical or convenience shortcomings; they pertain mostly to the development environment
and are discussed in other deliverables. However, overcoming the conceptual shortcomings will ne-
cessitate additional functionality also from the development environment, making this more than
a mere implementation exercise. Let us first consider these two conceptual aspects in more detail.

3.2.1 The control application/controller aspect

When selecting the SDN platform, the developer is confronted with a number of controller frame-
works with different programming languages, component models, etc. Additionally, the interaction
between the developer of a control application and the controller framework or, respectively, be-
tween the control application and the ready control is complicated by a number of issues discussed
below. While not all of these issues hold or are relevant for all frameworks described in Chapter 2,
many of them recur across the board.

20 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

General-purpose programming languages With very few exceptions, controller frameworks as-
sume that the actual control applications are developed using one specific, general-purpose
programming language (with Java and Python being popular examples). While this probably
lowers the entry barrier to novice programmers, it is at the core of some of the issues dis-
cussed next. It is also a considerable hindrance to executing applications written in different
programming languages inside a single controller framework (of whatever ilk).

As an example, we concentrated in creating applications for controllers written in Python
and Java to see the extend to which Jython [64] can help bridge the gap between both
programming languages. However, the results were quite discouraging and we were not able
to produce even a simple Network Application written in Python that could be executed on
a Java based controller using Python.

Only some of the frameworks (along with a wider development model, then) use explicitly
crafted languages.

No separation of phases There commonly is no explicit separation of the three crucial phases
development, deployment, and execution foreseen in the controller frameworks as such or in
their development environments (if any exist at all).

Two examples of problems we encountered were:

• checking topologies at development time and runtime: we were not able to
specify the class of topologies in which the developed control application can run at
development time in our test environments. In other words, it is not possible to check
at deployment time whether a particular application is suitable for a given network and
the developer has to know the topology a Network App can run on before launching it.
At runtime, this can lead to strange, difficult to find misbehaviour or outright failure.

• debugging an application: we found no way to carry information available at devel-
opment time into the execution phase to support, e.g., a network debugger. There is no
commonly agreed upon format for such information across different platforms.

Various interaction models The way a controller and its control applications interact can be multi-
faceted. While there is a certain prevalence for so-called event-condition-action patterns, this
is not necessarily the only possible pattern. Pyretic is one of the very few of the controllers
and their associated programming paradigms that make this model explicit.

Implicit interactions Even if the interaction model is well specified, it is not necessarily easy to un-
earth such interactions from a concrete piece of code realizing a control applications. This is
perhaps the point where different programming paradigms differ the most: Some approaches
make it very explicit, going to the point of introducing explicit language constructs. Other
approaches are very implicit here, relying on proper function calls and observance of pro-
gramming rules that are perhaps online specified in natural language, but are not amenable
to automatic processing.

Extracting interactions between controller and a single control application then becomes
a considerable challenge; it can turn practically impossible if multiple control applications
start implicitly interacting with the controller. This is in particular the case if each control
application stores its own view of the current state of the network (e.g., switch states, which
data flows consuming what data rate, . . .). This can easily lead to solutions that are hard to
understand, tune, or debug.

Imprecise concurrency semantics Essentially all controller frameworks have some more or less
well developed notion of being able to support multiple control applications. It is, however,

NetIDE Confidential 21

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

not always fully clear how the precise concurrency semantics of these applications looks like:
are they run in parallel (trigger by an event?), in sequence, can the execution sequence be
aborted, etc.

And even if that semantics is well defined, it can differ significantly between different controller
frameworks. An application developed for one framework might easily have some implicit
expectations how it is executed with respect to other applications in the same controller.
Transplanting such an application into a controller with a different semantics is again likely
to fail.

Different component models Only some of the controller frameworks explicitly support a compo-
nent model. For example, OSGi is supported by Beacon and OpenDayLight, two controllers
written using the Java programming language and integrated into the Eclipse IDE. How-
ever, they differ in programming model and API [65]. Hence reusing control applications as
components across these two controllers is not possible without a source code porting (i.e.
rewriting) process.

We have experienced this in the proof-of-concept work reported in Chapter 4. In our case,
the choice was POX and Ryu, two OpenFlow controllers written in the same programming
language (Python), but with completely different models.

Multiple controllers Most controller frameworks think in terms of a single controller that runs
inside a given network. While there is some work on replicating a controller for fault-tolerance
reasons (e.g., ONIX [66]) or performance reasons (e.g., Kandoo) [67], this is still a notion that
is not deeply embedded in typical frameworks. In particular, the coordination effort necessary
to achieve consistent behavior is both complex and run-time intensive and necessitates severe
changes in a controller’s data structures (if said controller is not prepared for coordinated
execution).

And even if that effort has been completed for one controller framework, that does not mean it
is now possible to mix different controllers inside one network. The difference in concurrency
semantics, execution patterns, etc. will make this a very brittle exercise at best.

Running multiple uncoordinated controllers in a single network is obviously an absurd notion.

In short, we see substantial difference between controller frameworks with respect to their pro-
gramming languages and component models, the level of explicitness of application/controller in-
teraction and concurrency model. All these differences contribute to the hardness of combining
control applications from multiple frameworks inside a single controller.

3.2.2 The controller/switch aspect

Once an SDN solution is deployed in an actual controller, this controller has to talk to the network
switches using the SDN control protocol. OpenFlow’s claim to fame is in large part the attempt to
harmonize and standardize this control protocol. Its success not withstanding, it is still the case
that there are switches that use legacy or closed-source, vendor-defined protocols; examples are
Juniper Networks’ Junos XML API [68] or Cisco’s OnePK framework [69].

As long as the semantics of these protocols is similar or identical, mere syntactic differences are of
little concern and can be dealt with by a common driver architecture: translating requests/replies
from one protocol to another is a mere mechanic exercise.

A more interesting case happens when there are indeed semantic differences between these con-
trol protocols or between the assumed capabilities of a switch. This will be the focus of the
corresponding task.

22 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

From a practical purpose, however, we should note that the work of the OpenDayLight consor-
tium has already had some considerable impact here. Their attempts to standardize these very
protocols seems promising and might succeed in defining de-facto standards, turning a conceptually
interesting research question into one that is less relevant for the real world. We shall follow the
activities of OpenDayLight on this point very closely and will decide how and whether to pursue
this line of work further or whether to rely on OpenDayLight here.

3.3 Core concept: The IRF and its aspects

As described in the Section 3.2, we are confronted with a set of very diverse controllers with
diverging models, different programming languages, etc. Since NetIDE tries to provide a means
to make them collaborate and allow for developments to work across the board, we argue in this
sectionthat the introduction of a domain-specific language is beneficial towards this goal.

3.3.1 Internal and external domain-specific languages (DSLs): IRF behavioural
aspects

The discussion in Section 3.2 has highlighted the different expressive power levels of different
controller frameworks and their associated languages. In particular, it is useful to categorise them
loosely according to their level of formality:

• Some frameworks use an explicit, non-general-purpose language to define control applications
(example PI-Calculus).

• Some frameworks use a general-purpose language without any easily recognizable structure
how the control application interacts with the controller; at best, specific function calls could
be detected (example Beacon).

• The middle ground between these two extremes is taken by approaches that use a general-
purpose language, but endow it with enough structure such that the execution semantics of
the controller is reflected in that structure. The typical example is Pyretic: control programs
written in Pyretic essentially express Event-Condition-Action (ECA) patterns that are then
interpreted and executed by the corresponding POX controller.

This last, middle-ground case is particularly interesting as we believe this to be the right balance
between structure and entry barrier. In fact, such approaches are well known in software engi-
neering: into a general-purpose language, recognizable elements are embedded for “programming”
in a very specific domain. These approaches are called internal domain-specific language (DSL).
We shall concentrate, as a first hypothesis, for the remainder of this architecture discussion, on
controller frameworks that have a more or less well developed internal DSL.

But while internal DSLs are highly appropriate for a programmer, they are not necessarily useful
to be used across different controllers. For example, the “host language” into which they are
embedded differs in our examples. Executing that is in practice not feasible even though perhaps
conceivable in principle (imagine a controller that has to execute ECA patterns specified in both
Java and Python).

We have hence decided to follow a different path for the NetIDE architecture: Assuming that
a controller application is written using an internal DSL (and our editor and tool support will
make that a very attractive choice), we will compile them into code of a common, external DSL.
This external DSL has to be expressive enough to encompass all the (reasonable) functionality
present in the internal DSLs that we will consider. In particular, it has to be able to express a
suitable superset of Event-Condition-Action patterns along with the data basis on which a controller

NetIDE Confidential 23

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

application operates. It has to maintain sufficient meta-data (e.g., variable names) to later allow
simple debugging.

Structuring such an external DSL is a challenging task. It is simplified here by the fact that the
controller applications we are considering here are, after all, restricted to a fairly narrow domain.
It hence makes sense to get inspiration from similar fields, and autonomous computing did develop
a suitable structure for such a task: the MAPE-K reference model. This is a general pattern
how to structure languages and execution paradigms with a control loop that includes components
that 1. Monitor a system, 2. Analyse a system, 3. Plan and Execute actions, 4. and include an
explicit representation of a Knowledge base that holds information about the controlled system.
In addition, there is the notion of a decision component that can coalesce planning actions coming
from different planners.

Our job is hence to analyze a control application, written in an internal DSL like Pyretic, and
extract the monitoring, analyzing, and planning components out of it and represent them explicitly.
The execution of the plans will be actually quite simple: the only real actions control applications
can take are actions that modify switching tables. This takes place via the SDN control protocol
(e.g., OpenFlow) in a uniform, well standardized manner and can hence be thought of as the main
task for the controller. In this sense, the controller takes on a different role: it turns into an
interpreter for the MAPE-K data and code. 1

The details of how we leverage the MAPE-K scheme will be discussed in detail in Deliver-
able D 3.1. Here, let us just point out one advantage and one challenge:

Flexible choice of concurrency model Section 3.2 has discussed the difficulties of different con-
currency models in different controller frameworks. These different semantics still persist,
but the decision component of a MAPE-K system is the natural place to include a flexible
resolution logic to arbitrate between the different models.

Consider the simple case when indeed all control applications come from the same controller
framework. Then, the decision component only has to mimic that concurrency model (se-
quential, parallel execution) – such a functionality can be provided in general.

In the more complicated case, when controller applications from different frameworks is to
be mixed, no easy resolution is likely. Such a logic will have to be provided manually, either
at development or at deployment time (when the decision is made to mix applications from
different frameworks). But at least, there is a single, well understood place where these
resolutions can take place, rather than having to distribute this logic over a complex code
base.

Code “blobs” In a ideal scenario, the various internal DSLs are expressive enough to support
all kinds of monitoring, analyzing and planning needs, and all these functions can than be
directly represented in the external DSL.

In practice, this is unlikely to be always feasible. More likely, there will be some functionality
that is invoked by a piece of code in an internal DSL that is not immediately representable
in any form of generalized format. We are hence faced with the need to execute black-box
type of code that can be considered a “binary” code (from the perspective of the MAPE-K
interpreter) – we shall use the common term of a “blob” (binary large object’) to refer to such
pieces of code. As long as the interfaces to such a code are clearly defined, this should be
doable; the main advantage here is the structuring of the programs as well as the Knowledge
base against which all these binary code blocks operate.

1TODO: explain difference to DoW. Driver turned into a compiler. We have another driver further down, but that’s
a different thing.

24 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Nevertheless, will we see that as something that is doable, we also acknowledge that support
for such blobs holds considerable challenges and does require further analysis.

In summary, the external DSL constitutes the behavioral aspects of NetIDE’s IRF.

3.3.2 Topology patterns: IRF structural aspects

In addition to the behaviour of the IRF, it is necessary to express structural aspects as well. In
particular, the topology of the network that is to be controlled by SDN is relevant here.

Looking more closely, one has to distinguish between topology aspects in the different phases.

Topology during development An application developer typically has some sort of network topol-
ogy in mind when developing a control application. That can be a trivial one when a simple
“in/out” application like a firewall is developed. It can be a very complex topology like a
Clos network [70] when thinking about routing in a data centre.

Usually, an application developer will try to develop an application that is fairly generic and
usable in many contexts. Hence, developing for a specific topology is not useful. Rather,
one should think in terms of topology patterns: a (typically) parameterized family (or set of
families) of topologies to which this control application is applicable.

Topology during deployment When deploying a (set of) applications in a real network, the param-
eterized topology should be matched with the real network topology (if known at deployment
time). Moreover, if multiple applications are deployed, their respective topology patterns
should be checked whether they are mutually compatible.

Topology during executing Once the network operates and control applications run, the topology
description of the applications is replaced by the actual topology of the network (possibly
statically provided, possibly dynamically configured). In terms of the MAPE-K approach,
topology data forms part of the knowledge base.

In summary, the topology description is the data model part of the IRF. It expresses the state of
the system. Compared to the behavioural description, it is much simpler, yet still requires further
investigation. Our initial attempts using YANG are reported below (Section 4.3), but have no yet
achieved the level of flexibility and parameterizability we are looking for.

3.3.3 Transformation flow: DoW vs. now

With its intended ability to express both structural and behaviour aspects, the IRF is a centrepiece
for NetIDE work. In the DoW, we had envisioned transformations into the IRF and using “drivers”
to pass IRF artefacts in a suitable form to a specific controller. Based on our current understanding
so far, we view these transformation steps somewhat differently by now:

1. We still foresee the transformation from a controller program into IRF. We currently assume
that this will only be possible if these programs were written for a controller framework that
exposes some sort of internal DSL as a structuring means.

2. We are hopeful that the extraction of blobs can succeed and that this can be embedded into
an IRF document.

3. The notion of a “driver” seems no longer appropriate to describe the connection between
an IRF document and a controller. A driver carries the connotation of a program that runs
continuously and translates data between different formats (in the broadest sense of the word).

NetIDE Confidential 25

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Rather, we currently imagine to translate the IRF into specific code that matches a particular
controller; this happens once at deployment time, rather than continuously at runtime.

Nonetheless, there are aspects that take place continuously at runtime and that involve the
IRF; the prime example is the modification of the topology representation in the MAPE-K
knowledge base. Obviously, this process is based on IRF formats.

4. There is, however, another notion of a driver: A piece of software that can translate between
different formats of SDN control protocols. As discussed above, this driver can range from
fairly simple to highly complex.

Figure 3.1 compares our current understanding of the NetIDE flow of transformation with our
understanding at the time of preparing the Description of Work.

Pyretic

program

POX

frame-

work

Pyretic

controller

Ryu

program

Ryu

frame-

work

Ryu

controller

Beacon

program

Beacon

frame-

work

Beacon

controller

(a) Before NetIDE: only directly mapping from pro-
gram to controller possible

Pyretic

program

POX

frame-

work

Pyretic

controller

Ryu

program

Ryu

frame-

work

Ryu

controller

Beacon

program

Beacon

frame-

work

Beacon

controller

External

DSL

(b) With NetIDE: translation into External DSL al-
lows flexible mixing

Figure 3.1: Transformation flow between different software artefacts

3.4 A simplified architecture: NetIDE v.0

The architecture we have outlined above has a rather high ambition level. In particular, it seems
challenging to mix control applications coming from very different frameworks. To get a first
understanding on feasibility, we started our practical work (described in the following Chapter 4)
with a very restricted version of the architecture.

Specifically, we made the following main assumptions:

1. We only considered two controller frameworks, namely Pyretic/POX and Ryu.

2. We only consider Pyretic as an internal DSL for SDN control applications.

3. We only consider static topology aspects (no patterns) and looked at the opportunities offered
by YANG.

26 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Because of these limitations, one could look at this version 0 of our architecture (along with its
proof-of-concept implementations) as a sort of Pyretic++. We definitely intend to go beyond these
simplifying restrictions in the course of the project; for now, it seemed advisable to allow us to test
our ideas with quick and early test implementations.

The work on Pyretic helps us understand the challenges of the proposed network API: currently
Pyretic is attached to the POX OpenFlow controller. Detaching it from the underlying controller
would yield a platform-independent implementation. The glue between Pyretic and the underlying
controller is provided by means of an API that is implemented by means of serialised TCP mes-
sages. These messages help us understand the requirements for the Intermediate Representation
Format, especially for the way we want to express the dynamic behaviour of the NetIDE network
applications, which is the basis for the External DSL depicted in Figure 3.1b. This work is linked
with the IRF work within WP 3. We target a detached Pyretic that provides a run-time environ-
ment to applications and drives a backend that communicates with different Pyretic clients through
an intermediate process (the NetIDE interpreter) that provides adaptation for different controllers.

Application

Programmer API

Abstract Controller

Abstract API
(IRF)

Drivers API

Runtime

Switches API

Switches

Monitor App1 App2

Pyretic ++

NetIDE Interpreter

OF Contr. 1 OF Contr. 2

OF Propr.

Figure 3.2: The NetIDE v.0 framework as an evolution of Pyretic

This detached Pyretic, shown as Pyretic++ in Figure 3.2, is intended to be generic and will speak
Pyretic on its northbound interface, i.e. towards the different Network Applications. Its southbound
interface provides an abstract API which exposes all functionality the Network Applications will be
able to use. This functionality is abstracted from the different SDN models we envisage in NetIDE
and is expressed by means of the Intermediate Representation Format (IRF).

The NetIDE interpreter takes the application expressed in the Intermediate Representation For-
mat and transforms it into controller-specific code. We envisage one such transformer per controller
type supported by the NetIDE architecture. The driver API limits the set of packet types and ac-
tions the controller code can contain and sends the code to the controller.

We envisage the drivers API to be capable of driving pure OpenFlow controllers and SDN
controllers that drive proprietary equipment. In the initial tests, we are targeting the OpenFlow
controllers POX and Ryu.

NetIDE Confidential 27

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

4 A proof of concept: Pyretic and Ryu

4.1 Goals of the proof of concept

We have defined the simplified architecture to allow us to do a reality check: is that concept feasible
even under simplifying assumptions? Specifically, we wondered how difficult it would be to cross-
use programs written for two similar controllers: POX and Ryu. Both Python-based, yet they do
have differences with respect to their execution semantics.

In order to advance towards a controller-independent framework, we have focused on the API
between the backend and the client, and communicated the Pyretic infrastructure to a Ryu con-
troller. The API between backend and client has provided a preliminary model for the Intermediate
Representation Format, which is being used in WP 3 for designing the development environment
architecture.

The Pyretic implementations in Sections 4.4 and 4.5 explore possible evolution paths from the
POX-centric Pyretic environment towards the NetIDE architecture. We use the Pyretic on POX
implementation as a reference. Pyretic offers a client-backend interface between the framework and
the controller. This interface provides an API that we have used to extract an initial concept for
the behavioural models in the IRF.

Additionally, Section 4.3 gives more details on how we attempt to leverage YANG as a topology
description technique and how to make it more dynamic than it is today. Both discussions are
routed in UC1, the Data-Centre (DC) use case, described in detail in another deliverable and
briefly recapitulated in Section 4.2.

4.2 Brief reminder: The Data-Centre use case

In order to be profitable, DC operators need an attractive service offering that maximises the
number of users the infrastructure serves. To achieve this objective, providers may choose to offer
Infrastructure as a Service (IaaS) [71], Platform as a Service (PaaS) [72] or similar service strate-
gies, collectively known as “xaaS” [73]. Each service proposal depends on client needs, alliances,
provider portfolio and other factors that are out of the scope of this document.

The DC use case in NetIDE concentrates on an SDN-based IaaS provider. In this case, the
provider sells virtual DC infrastructure to their clients who get a DC infrastructure on which to
operate their services. Figure 4.1 shows one possible virtual DC offering to a client. The figure
highlights areas or patterns that can be used as “components”: 1. the Internet connection, including
some functionalities (like, for example, the advertisement of the client’s IP prefix to the Internet);
2. a De-Militarised Zone (DMZ), where the fortified Web and Domain Name Service (DNS) servers
are located; 3. the protected zone, hosting the back-end servers that serve sensitive data to the
web server. It also shows another important feature of pattern-based network design: the specific
client depicted in Figure 4.1 has chosen to have a DMZ-like zone directly connected to the Internet.
However, another client might choose to protect this zone with a Firewall. Additionally, different
clients might choose different kinds of Firewalls: one client might need a stateful Firewall (FW)
in order to protect the DMZ while a stateless solution might suffice for another. The use case
also demonstrates that one of the corner-stones for a successful SDN-based strategy is to have
reusable components to build the configurations offered to clients in an automated way. Reusable

NetIDE Confidential 29

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Internet

2 links

Load balancer

RouterR1

L2 SwitchSW1

FirewallFW1

L2 Switch

SW2VM - WWW Server

Web

VM - DNS

DNS

FirewallFW2

L2 Switch

SW3

VM 1 VM 2

Protected zone ’component’

DMZ ’component’

Unprotected zone ’component’

Figure 4.1: Logical view of a virtual data-centre offering

components let the provider leverage on the development costs: once a component is developed
and debugged, it can be instantiated in all client deployments. Additionally, all clients will benefit
from enhancements on the components used in their infrastructures.

4.3 Implementation in YANG

In traditional statically configured networks, two pieces of information completely determine the
network structure and behaviour:

30 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

1. topology, i.e. essentially a graph with nodes representing network devices and edges repre-
senting communication links;

2. configurations of individual network devices.

SDN networks add a highly dynamic component – the controller – that doesn’t fit this picture
very well: its behaviour is typically specified using a program written in a high-level programming
language (see Sec. 2.1.1).

The purpose of the YANG implementation was to investigate an alternative approach to the
Intermediate Representation Format (IRF) definition based on the YANG data modelling language,
and test it on the Data-Centre use case. The requirements were as follows:

• The format must be reasonably general, i.e. not limited or tuned to the particular use case.

• To the maximum extend possible, the format must reuse existing data models for device
configuration.

• An instance of this format must be able to capture the topology and behaviour of the Data-
Centre uses case as specified above.

After a series of experiments, the best layout of the YANG-based IRF turned out to be the
simplest one: a coordinated set of configurations, each in a separate file. One configuration is
central: it describes the network topology and provides links to the other configuration files.

Then, for every physical network device (switch, router, firewall, host etc.) there is one additional
configuration file. It contains a standard configuration in that it could be directly installed in
devices that support NETCONF and corresponding data models. However, it is not required that
all devices support NETCONF: for those that don’t, the configuration may need to be translated
to a device-specific configuration language.

Each configuration can be serialised in either XML or JSON format.
The exact organisation of the set of configuration files is somewhat arbitrary. For the Data-Centre

use case, we used the following layout with an extra directory for device configurations1:

data-centre-topo.json

node-conf/

DNS-config.json

FW1-config.json

FW2-config.json

R1-config.json

SW1-config.json

SW2-config.json

SW3-config.json

Web-config.json

Optionally, all configuration files may be collected in a single archive such as TAR or ZIP.

4.3.1 Implementation

It is possible to affirm that there is no single notion of network topology, which can mean different
things in different contexts. The common denominator should always be the physical topology but
various virtual topology abstractions can be built on top of it.

Monsanto et al. [74] distinguish two orthogonal approaches for creating topology abstractions:

1the device names correspond with Figure 4.1

NetIDE Confidential 31

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

1. many-to-one mapping, in which several physical components are coalesced into a virtual
component (“big switch”);

2. one-to-many mapping, in which one physical component gives rise to multiple virtual com-
ponents, such as VLANs or virtual hosts.

Monsanto et al. also note that the two approaches for topology abstractions are incompatible.
Therefore, in order to keep the possibility of creating arbitrary abstractions, a specification of
network topology must include all details and avoid introducing any abstractions on its own.

This consideration prevented us from using the existing topology data model [75] that was de-
veloped by the I2RS Working Group in the IETF and also adopted for the OpenDaylight project.
This data model is designed for one-to-many abstractions but does not support many-to-one ab-
stractions.

We therefore developed a new data model for representing physical network topologies and other
necessary information. It is based on the assumption that the physical topology is the fundamental
substrate and all abstractions built on top of it must be specified in the configuration files.

Figure 4.2 shows the entities appearing in the data model together with their relationships. The
complete YANG module appears in Appendix A.

nam e? (rw) s tring
descrip tion? (rw) s tring
type? (rw) iden tity re f

lis t link

nam e? (rw) s tring
descrip tion? (rw) s tring
connection? (rw) lea fre f

lis t in terface

inc lude-se t[]? (rw) lea fre f
capab ility []? (rw) ine t:u ri

conta iner capab ilities

f le -nam e? (rw) s tring
fo rm at? (rw) enum era tion

conta iner conf guration

nam e? (rw) s tring
descrip tion? (rw) s tring
type (rw) iden tity re f
m anagem ent-address? (rw) ine t:host

lis t node
nam e? (rw) s tring
descrip tion? (rw) s tring
inc lude-se t[]? (rw) lea fre f
capab ility []? (rw) ine t:u ri

lis t capab ility -set

descrip tion? (rw) s tring
conta iner netw ork

irf- to p o lo g y
M andatory con f g
O ptiona l con f g
K ey lea f
N ot con f g

Legend

Figure 4.2: UML diagram of the topology data model

Basically, a network is represented as a set of nodes (devices or “cloud-like” objects) and a set
of links. Each node has one or more interfaces that may be connected to links – this is how the
network graph is defined.

A node representing a physical device also contains a reference to the device’s configuration file,
declaration of its format (XML or JSON), and also a specification of the data model implemented
by the device in the form of capability Universal Resource Locators (URIs) (see [44], sec. 5.6.4).

In order to avoid repeating the long capability URIs over and over again, the data model allows
for defining named capability sets that may be used for any number of nodes.

32 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

4.3.2 Gap analysis

For the Data-Centre use case, the YANG-based IRF could capture most of the required function-
ality. The data models of individual devices appearing in the Data-Center use case (as formulated
above) can be built from existing data models. However, after extending and refining the services of
the Data-Centre network, several potential gaps of the YANG-based approach may be encountered:

1. The design of topologies can be efortlessly done in YANG. Specifically, we use the “container
network” in our use case to define a network topology and the nodes that shape it. However,
that network topology might be hard to visualise from its instantiation in YANG.

2. Regarding static configuration, many parameters might have to be taken into account, which
are defined by following different standards. So only a few parameters, the most common for
all the components in the network, can be specific while the rest need to be generalised. For
example, IP addresses can be easily assigned and, in our particular use case, the “grouping
address-and-port” was defined in order to set the domain name or the IP address of the device
and its associated port number.

3. Truly dynamic behaviour of SDN switches that requires complex controller programs may
be difficult or impossible to capture in a static configuration, since YANG is not able to
save dynamic configuration as it is a static language. Therefore, YANG language should be
extended to provide that functionality.

4. Modularity support of functions can not be easily demarcated in YANG since it is directly
related to the dynamic configuration. Although the YANG language defines the so-called
YANG modules, these modules are static in nature and do not allow support for functionality
modules, which are dynamically defined by the SDN software in the end.

The first gap is not critical for the development, but YANG could be extended to allow that
visualisation if needed. The second deficiency should be tackled by clearly defining what items of
the static configuration are fundamental for the system and what ones are not crucial or could be
omitted for the system to work properly. Finally, the third and fourth items are quite incompatible
with the static definition of YANG. While static configurations can, to some extent, describe
dynamic behaviour (e.g. in a form of match-action rules), they are certainly no Turing-complete
languages.

In conclusion, it is quite safe to assume that YANG-modelled configuration data can be used to
represent two parts of the IRF, namely the network topology and static configuration of devices.
However, for SDN controller programs and the different modules that shape them, a more capable
domain-specific language has to be developed.

4.4 Implementation of the use case using Pyretic (standard
POX-based client)

In this section, we summarize the technical details of the use case introduced in section 4.2 using
the Pyretic programming language and backend. The target of this section is to 1. showcase
the simplicity of this language for composing SDN modular applications, 2. give us a credit for
considering Pyretic as a strong reference framework for our NetIDE architecture and 3. reveal any
implementation drawbacks of the current Pyretic release which should be addressed by NetIDE
towards a promising, unified, platform independent SDN platform.

Pyretic, as part of the Frenetic project, targets at providing simple, reusable and high-level
abstractions for programming Software Defined Networks. Specifically, Pyretic is a runtime system

NetIDE Confidential 33

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

that operates upon the OF protocol for SDN and the Python-based POX controller, serving a
two-fold purpose.

First of all Pyretic is a programming language for packet processing that facilitates the composi-
tion and deployment of SDN applications. The key idea behind this is that network programmers
do not need to deal with low-level implementation details such as message/event exchange between
controller and switches or rule installation/modification/deletion actions. Instead, network pro-
grammers need a set of tools and primitives that can simply and intuitively describe the objectives
(e.g. drop/forward/flood packets) of network administrators, so called policies, by acting upon the
network dataplane. The most important part of this domain specific language is the provision of a
set of operators that undertake the policy composition either sequentially or in parallel. This key
feature enables reusing and integrating small, independent SDN modules to compose big policies;
a critical contribution towards realistic SDN deployments.

Secondly, Pyretic is also a runtime system that acts as an intermediate between the high-level
programmers interface and the underlying topology. In that sense, on the northbound side, the
runtime speaks Pyretic while on the southbound side, a client is responsible to communicate with
the SDN controller and the switches. The interface between Pyretic and the client (summarized
in Section 4.5) have been designed to translate Pyretic instructions into OpenFlow messages and
vice-versa. As already introduced in Section 3.4, an improved/extended version of this interface
will provide the Intermediate Representation Format (IRF). Currently this client is a POX client
that speaks OpenFlow but it can be extended to interact with any SDN controller as also presented
in section Section 4.5.

The intermediate runtime system keeps track of the topology, the message and event exchange
among all the entities as well as the dynamic policies specified by the application and can proactively
or reactively update the dataplane.

The next two subsections give a technical, Pyretic-view of the first NetIDE use case and a gap
analysis describing Pyretics strong points and limitations.

4.4.1 Implementation

The Data-Centre use case, as presented in Section 4.2, is a realistic first step to implement key SDN
applications and identify which are the strong and weak points of Pyretic both as a programming
language and a backend.

Topology-wise, in order to emulate the devices of this use case, we use mininet [29], a network
emulator described in Section 2. This tool facilitates the deployment and interconnection of virtual
devices, managed by SDN controllers and provides the infrastructure to Pyretic and other run-
times to act upon. Thus, the topology implementation is a unique piece of python code (i.e. file
UC1 DataCenter.py), used by all the NetIDE SDN implementations as a common dataplane.

From the application point of view, the modular approach of Pyretic helps to implement different
functionality of Figure 4.1 as small, independent modules and compose them accordingly to achieve
the use case purposes. The core modules of this scenario take advantage of Pyretics class called
DynamicPolicy. This is a key class, inherited by all the deployed network functions, which is
dynamically enforced to the dataplane once the programmer instantiates it. A DynamicPolicy
instance exposes self.policy object which is applying the programmers decisions once its value is
overridden. If not modified by the programmer, this object drops the received packets by default.

Besides the implemented modules from our side, we extensively use a key module already provided
by the Pyretic community, the Medium Access Control (MAC) learner, which enables the basic
L2 connectivity of all the devices of the topology by learning the Address Resolution Protocol
(ARP) addresses and forwarding accordingly. The following paragraph introduces the modules
that compose this use case and the Pyretic programming style details. The modules are available
in [76]:

34 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

• Commons.py. A python script that contains global variables which define the Internet
Protocol (IP) prefixes of the network, as specified by the network operator, the protocols
and ports used by the firewalls as well several other variables that parameterize the Pyretic
modules such as the monitoring interval of the network Monitor. This script acts as glue
between the topology and the application and is a single point of parameterization for the
whole use case functionality.

• Monitor.py. The first pyretic module that comes aside to the UC functionality acts as a
logger of the various network events. This module takes advantage of the three, basic Pyretic
event handlers, namely:

1. packets(): Handler that captures packet in events coming to the controller. This handler
can be configured to return certain or all the packet header fields.

2. count bytes(): Handler that counts the received bytes in the controller. Based on the
same philosophy as the first one, the programmer can specify the fields to be appeared,
enabling a categorization of the counters based on several fields (e.g. Transmission
Control Protocol (TCP) byte counters, port 80 byte counters).

3. count packets(): Similar to the previous counter, but returns the number of counted
packets per category. Using a parallel composition (operator +) of the three modules
above, Monitor gives useful information to the network administrator by printing those
packet/byte counters and potentially the content of each packet received. In this module,
policy object is a parallel addition of the three query objects:

policy = PktQuery + PktCapture + ByteQuery

• Firewall.py. Following the same philosophy, Firewall module inherits DynamicPolicy and
for any captured packet-in, it applies a static, spatially-oriented set of firewall rules. The
first set defines the external firewall functionality that sits between Internet and DMZ and
allows external requests (Internet-side) to access only DNS (User Datagram Protocol (UDP)
at port 53) and Web (TCP at port 80) services at the DMZ. The rest of the traffic is blocked.
The second set, specifies the internal firewall device functionality that sits between DMZ and
Protected zone and allow only outgoing traffic. The most straightforward way to enforce the
above rules is to create an object (i.e. Blocked) that filters all the blocked traffic by composing
unions of rules (operator —) and then using if () condition of Pyretic we can specify:

if_(Blocked, drop, mac_learner()), where:

Blocked = DNSToInternet | DNSToInternet_Reply | HTTPToInternet |

HTTPToInternet_Reply

This command applies drop action to the packets filtered by Blocked object and uses MAC
learner to forward the remaining traffic.

• LoadBalancer.py This is the most complete and representative Pyretic module since it uses
the most important Pyretic tools. First of all the Load Balancer needs to filter the received
packet-in events keeping only the ones that need to be balanced (e.g. the outgoing direction).
This is implemented by instantiating a packet() handler similar to the monitoring module,
that gives the source IP addresses of the incoming packets. Then, for those packets, it applies
a round-robin policy that splits the flows across to internal load balancing servers based on
the source IP addresses. Packets from the same IP are redirected to the same server so as to
avoid TCP retransmissions caused by multipath latencies. The modifications applied to the

NetIDE Confidential 35

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

packets affect the source and destination IP fields only. Finally, the policy object is updated
with the load balancing rules.

• UC1 DC NetManager.py The last but not least module of this use case is the one that
mostly highlights Pyretics strong points. In particular, this is the main module that acts as
a composer of the Big UC Policy by calling appropriately all the above modules. Technically
speaking, this piece of code specifies how pyretic behaves upon the different classes of packets.
The following expression gives you the main idea on the way that SDN composition is handled
by this language:

ARPPkt >> mac_learner() +

LB >> mac_learner() >> AccessControl +

Monitor(MonitoringInterval)

Specifically, for layer 2, ARP packets filtered by ARPPkt are sequentially composed with
the MAC learning module. In layer 3, LB packets are passed through the same module to
learn the next hops and then filtered by the firewall rules. Moreover, Monitor is constantly
capturing all packets. Using the operator + we compose the three critical parts in parallel to
achieve the goals of this use case.

In this section we achieved to implement a key use case (UC) using a modular, pure SDN
language like Pyretic. Taking a look at the Pyretic code repository in [77], it is easy to
understand that the major achievement is that all OF terminology is abstracted from the
programmer and replaced by intuitive high-level set of expressions that specify the way that
packets are handled. Together with the powerful composition operators that allow effectively
reusing existing modules, these are the most prevalent contributions of Pyretic to the SDN
world.

4.4.2 Gap analysis

From the above description of Pyretics details, we can easily capture the strong points of this domain
language and runtime system. However, delving into the details of Pyretic we also gathered a very
useful set of gaps that pose restrictions to the SDN developers. Towards a holistic and unified
network management approach, NetIDE flags those gaps and takes the explicit stance to provide
solutions that overcome these limitations. The following list briefly presents and discusses the
aforementioned gaps:

1. Pyretic is a domain specific language that focuses on the design and implementation of efficient
packet processing tools. Pyretic does not have the means to statically configure (e.g. assign
IPs, masks, routes, etc.) the nodes of the topology before starting the application. This
should is a task that should exist before starting any Pyretic application.

2. Pyretic does not provide the tools to easily program stateful behaviors in the network, such as
a stateful firewall that keeps track of the open connections/sessions and applies different rules
according to those connections (e.g. simply allow one-way communication between 2 nodes,
h1 to h2 but not vice-versa). If we need such kind of functionality, we should build extra
logic on top of Pyretic. The only construct currently available to approach this functionality
is if () but the programmer should take care of the way to use this, since the policy given as
a 3rd argument is going to be applied to all the rest packets that fall out the 1st argument.
This may cause inconsistencies and conflicts with other modules.

36 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

3. The basic version of Pyretic currently available cannot handle proactive rule installation that
can speed up network performance in the case of the static firewalls of this use case. In that
sense, initially, all packets go to the controller which then re-actively installs the rules to the
switches, increasing the Round Trip Time (RTT) of the first packets per flow.

4. The Network Address Translation (NAT) functionality for the gateway router of this use case
is something that also falls out of the scope of Pyretic since NAT devices do many more things
than just L2 or L3 forwarding. For this reason, Pyretic can be used to implement basic, static
NAT functionality such as IP and port modifications. Even in this simple case however, there
is a prominent need to handle stateful connections, an issue already highlighted above.

4.5 Implementation of the use case on Pyretic (using a novel
Ryu-based client)

Section 4.4 reports the results of an initial evaluation of Pyretic as programming language for the
implementation of the Data-Centre use case (Section 4.2). However the current implementation
of Pyretic it tightly coupled to POX OF controller. By implementing a Pyretic client for Ryu,
we implement a proof-of-concept for an IRF based on the API exposed by the interface between
Pyretic and the Pyretic backend running in the OF controller. We confirm that an OF controller
with a different design concept can be used as a backend for Pyretic and thereby show that the
coupling between Pyretic and the underlying OF is not as close and initially suspected.

The Ryu controller has two main aspects that make it attractive for the NetIDE framework.
First, like POX, Ryu is written in Python language. Although both POX and Ryu use different
implementations of the OF library, the methods used to build most of the common OF messages
are very similar. This affinity between the two approaches can be leveraged to define the IRF.

Secondly, since Ryu natively supports multiple versions of the OF protocol2, the implementation
of a Ryu-based OF client provides a way to understand the requirements for NetIDE to support
different versions of the OF protocol. In particular, this aspect will facilitate and improve the defi-
nition of the IRF as well as the implementation of the upper layers of the NetIDE architecture like
the Network Application Engine (e.g. components like the interpreter and the resource manager).

4.5.1 Implementation

The implementation of the Pyretic client for Ryu can be summarized in the following steps: (i) im-
plementation of a socket client that interfaces with the Pyretic backend, (ii) implementation of the
handlers that intercept the messages coming from Pyretic and that must be forwarded to the
switches and (iii) overriding of the handlers in Ryu for the common OF messages coming from the
switches that must be forwarded to Pyretic.

However, this is not sufficient to start the Ryu client from Pyretic (or any other client different
from POX). In fact, Pyretic is very tight to POX and neither the CLI arguments nor the initial-
ization processes contemplate methods to specify a different controller as envisioned in Figure 4.3.

In the current version of Pyretic3, the OpenFlow messages supported by the backend and by the
OpenFlow client can be inferred by the method called “found terminator” which is in charge of
parsing the Pyretic’s protocol.
On the Pyretic’s backend side, we can find the parser for the messages coming from the network
through the OF client and that should be passed to the Pyretic’s upper layers. Messages are formed

2up to v1.4 at the time of writing
3commit 6d3fd862feb0b47255d3bd4081a960b70e057676 of May 2, 2014

NetIDE Confidential 37

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Start Pyretic

Parse the CLI arguments:
The of client is specified with: ”-c
controller”,
e.g. ”-c pox”, ”-c ryu”, ...

Start the runtime system

Start the backend socket server

Launch client application. E.g.
i) pox.py of client.pox client
ii) ryu-manager of client.ryu client

Figure 4.3: Pyretic’s bootstrap operations.

tuples which first element is a string containing the name of the message. The supported OpenFlow
messages are the following:

• PacketIn. The tuple sent by the OF client to the Pyretic’s backend is (“packet”, datapath id,
in port, ethernet frame)

• LLDP PacketIn. The tuple is (“link”, originator datapath id, originator port, datapath id,
in port)

• FeaturesReply. This message is used to pass the list of the available ports of each switch
to Pyretic. This is achieved with a first tuple (“switch”, “join”, datapath id, “BEGIN”),
then the OF client sends one (“port”, “join”, datapath id, port no, port config, port state)
for each port and finally (“switch”, “join”, datapath id, “END”)

• Switch disconnected: The client notifies Pyretic the disconnection of a switch from the
controller with the tuple (“switch”, “part”, datapath id)

• FlowStatsReply. The tuple is (“flow stats reply”, datapath id, flow stat dict). Where
flow stat dict is a dictionary containing the flow statistics.

• PortStatus. The client notifies Pyretic a port status event with the tuple (“port”, “join”
/ “mod” / “part”, datapath id, port no, port config, port state) for ADD, MODIFY and
REMOVE events respectively.

On the other direction, from Pyretic to the OF client, the following messages are implemented:

• PacketOut. The tuple received from Pyretic is (“packet”, packet). Where packet is a
dictionary that contains the datapath id of the switch, the in port and the out port.

• LLDP PacketOut messages. LLDP packet are sent to a switch after receiving the following
tuple (“inject discovery packet”, datapath id, port)

• FlowMod. FlowMod messages are handled with three different tuples, depending on the
operations to be performed on the flow tables of the switch: add, delete and clear. To add
an entry in the flow table the tuple (“install”, pred, priority, action list) is used, where pred
is a dictionary containing the datapath id, the match and the in port. To remove an entry
from the tables the tuple is (“delete”, pred, priority). Finally, to clear the tables the tuple
is (“clear”, datapath id). If the datapath id is not specified, the flow tables of the whole
network are emptied.

• FlowStatsRequest. Flow statistics requests are sent by Pyretic through the OF client with
the tuple (“flow stats request”, datapath id).

38 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

4.5.2 Gap analysis

The analysis of the Pyretic’s southbound APIs highlighted several gaps of their current implemen-
tation. These limitations are mainly due to the conceptual definition of the Pyretic’s highlevel
language that obviously influence the definition of the interface with the underlying OpenFlow
clients. The following list summarizes the main gaps of the Pyretic’s southbound APIs that NetIDE
should fill for the implementation of the Intermediate Representation Format (IRF) as envisioned
in Section 3.4:

1. The current version of the APIs do not allow the specification of neither idle nor hard timeouts
for the installed flow entries. As a consequence, all the FlowMod messages are sent by the
OF clients to the switches with the timeouts set to zero, which means that the flow entries
never expire. Referring to the Data Center use case, the L2 switches cannot leverage on an
aging mechanism for the MAC tables entries based on the idle timeout. In this case the only
solution would be to use a timer at application level and leverage on the flow statistics to
understand when a MAC address is no longer used.

2. Some OF messages are not implemented in the Pyretic’s APIs. The list of non-supported
OpenFlow messages is the following: aggregate flow, table, queue and port statistics, flow
removed, port modification, queue configuration, read state and error message. For instance,
the load balancer implementation of the Data center use case could have leveraged on the port
statistics to apply certain optimization policies. Moreover, port statistics are often used to
detect network congestions and re-route part of the traffic to alternative paths. Additionally,
support for flow removed messages could also be used to detect when flows are no longer active
in the network and, consequently, to update the state of MAC tables of learning switches or
to adapt the firewall policies.

3. Further extensions could be necessary in case of clients supporting OF versions beyond 1.0
to either support the new functions or to embody those functions within code “blobs” as
envisioned in Section 3.3.1.

4.6 Conclusions on Proof-of-Concept work

The initial practical work looked at the use case from three different points of view: 1. how well the
implementation is suited to handle information to set up the scenario (i.e. static behaviour like the
Layer-2 interconnection between elements in scenario), 2. how well the implementation is suited
to express the dynamic behaviour of the different elements in the scenario (e.g. how a firewall
implements state-full filtering), 3. how well the implementation is able to isolate information that
will have the same meaning but will change from user to user (e.g. the IP prefix advertised by a
router will change from user to user, but the router is expected to advertise an IP prefix always).

Our proof-of-concept implementations show that the base components of the NetIDE architecture
cannot be completely implemented using off-the-shelf code and need NetIDE-specific extensions:

1. YANG is well suited for static configurations but can only be applied with limitations to
express the dynamic behaviour we expect in Network Apps.

2. Pyretic as a high-level language needs some refinement regarding module support, static
configurations and optimisation of the interaction between the controller and the network
elements.

3. The interface between Pyretic and POX provides only a subset of the OF specification 1.0,
which is valid as a starting point. However, this interface should be extended to become
independent of the underlying protocol, be it proprietary or OpenFlow.

NetIDE Confidential 39

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

NetIDE will benefit from its easy portability to controllers different from POX, even written
in other programming languages like Java (FloodLight, OpenDayLight, Beacon), C (Nox,
Trema) or Ruby (Trema). A different analysis should be produced for non-OF control proto-
cols (like Cisco’s OnePK), whose APIs cannot easily be mapped to the Pyretic API.

Implementing the TCP-based Pyretic API on the Ryu controller yields following requirements
for the IRF:

• OpenFlow version agnosticity: if we want to support as many controllers as possible, we
will need to support (ideally) all versions of the OF protocol and handling of the different
versions has to be done in a protocol agnostic way.

• Implementation of support protocols: Link Layer Discovery Protocol (LLDP) is an
essential part of the Pyretic API. The IRF will need to provide means for including sup-
port/signalling protocols needed by high-level SDN languages (for example, to implement
topology discovery or similar functionality).

With the implementations described in this chapter we have an initial proof of concept for the
NetIDE architecture:

• we show that we are working on a concept that is controller-agnostic

• we show that YANG can be used as a possible base for the IRF, provided we define a way of
including

• we provide work-package (WP) 3 with an example of an API that is used to handle the
dynamic behaviour of an SDN application for their work on the IDE.

40 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

5 Next steps

In this final chapter, we discuss the technological alternatives we will be exploring, as well as some
initial thoughts about where the discussion on the Intermediate Representation Format should lead
us. With the work presented in this Deliverable and Deliverable D 3.1, we have laid the foundations
for the NetIDE framework and the Intermediate Representation Format. Up to this point in time,
we have concentrated on the Data-Centre use case. While we will continue using it as one of the
guiding lines of our work, we will start implementing the other use cases described in the Description
of Work, both to test the developed concepts and to incorporate new aspects they unveil.

5.1 Technological alternatives

In the immediate future, we will conclude the implementation of the concept shown in Fig-
ure 3.1b.We will implement the transformers from the IRF into Ryu and POX programs and
test them against the use case. We also plan to investigate how to integrate the more static in-
formation provided by the YANG implementation with the behavioural descriptions provided by
the Python programs into a unity. Additionally, we will explore how to enhance the support for
modularity in the IRF in order to start the work on the IRF code repository.

In order to live up to the claim included in the DoW that NetIDE will provide a controller-agnostic
framework, we will continue to integrate new SDN controllers using the Pyretic++ paradigm fol-
lowing the paradigm shown in Figure 3.2.

We have contacted the Pyretic development team and are in the way of establishing a good
working relationship with them. As a result, we envisage to contribute the Ryu back-end to the
Pyretic project. In this line of work, the project has also started to work on a similar back-end
for the OpenDayLight controller framework. In addition, we also plan to evaluate other high-level
SDN languages and constructs like Frenetic, in order to extract concepts that could be useful
for the NetIDE architecture. With regards to Pyretic, our action plan includes exploring the
implementation of back-end client API for other OF controllers and evaluating how far it can be
used in proprietary SDN environments.

As one of our first targets, we envisage to work on step up our work on OpenDayLight for the
following reasons:

• as already expressed in the SotA overview of ODL, it has grown to be a significant player in
the SDN landscape the project targets,

• in contrast to our initial PoCs, which have been based on Python-based OpenFlow con-
trollers, OpenDayLight is written in Java and will help us highlight programming language
independent features and find ways around programming language dependencies,

• as Ryu, OpenDayLight supports more than one OF flavour, as well as managing legacy
equipment.

• in addition to OpenFlow, OpenDayLight supports a proprietary SDN platform (Cisco OnePK),
and

• ODL has become a major player in the SDN landscape, with a large pool of contributors; it
is therefore an external effort the project might leverage upon.

NetIDE Confidential 41

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

In the short term, we plan to evaluate the Service Abstraction Layer it provides by trying to imple-
ment a Pyretic client for it. This Proof-of-Concept implementation will enhance our understanding
of the external DSL we propose for NetIDE.

The SDN landscape is evolving so rapidly that we cannot completely anticipate new develop-
ments. However, we will continue to follow the evolution of OpenStack, because any integration
with it should improve the general acceptance of the results of the project and because we do not
rule out additional valuable inputs from it.

From an architectural point of view, we are starting to follow the discussions of the Open Net-
working Foundation (ONF) regarding their proposed architecture in general and their proposed
North-bound Interface (NBI), which we will evaluate and assess the extent to which this NBI may
find a place in the NetIDE architecture.

We also plan to integrate other SW tools that provide abstractions for different SDN solutions.
As pointed out in Section 4.6, we need the IRF to become agnostic to OF flavours. The component
in the NetIDE framework we target in out efforts to become SDN flavour-agnostic is the NetIDE
interpreter (see Figure 3.2). In this line of work we are studying the way ODL claims to provide
controller independence and following the evolution of tools like LoxiGen [60] that generate OF
protocol libraries for different programming languages that are OpenFlow protocol version agnostic.

All these efforts target an architecture that is as independent of the underlying SDN networking
layer as possible within the constraints of the project. We are presenting our work to different
related communities, like we have done already at the Pyretic summer school 2014. We aim at
a total adoption of the architecture that ensures its existence beyond the life time of the NetIDE
project. This strategy is also applied to components developed by the project.

42 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

A Topology YANG Module

module irf-topology {

namespace "http://www.netide.eu/ns/irf-topology";

prefix "irt";

import ietf-inet-types {

prefix "inet";

}

organization

"NetIDE Project.";

contact

"Project Web: <http://www.netide.eu>

Editor: Ladislav Lhotka <lhotka@nic.cz>";

description

"This module is a part of the Intermediate Representation Format

(IRF) data model. It contains YANG definitions for specifying

network topology.

Copyright 2014 NetIDE Project Consortium.

TBD: licence text";

revision 2014-05-13 {

description

"Initial revision.";

}

/* Identities */

identity node-type {

description

"Base identity form which specific node types are derived.";

}

identity host {

base node-type;

description

"This identity represents a host.";

NetIDE Confidential 43

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

}

identity router {

base node-type;

description

"This identity represents a router.";

}

identity switch {

base node-type;

description

"This identity represents a switch.";

}

identity firewall {

base node-type;

description

"This identity represents a firewall.";

}

identity dummy-node {

base node-type;

description

"This identity represents an unspecified node or network.";

}

identity link-type {

description

"Base identity form which specific link types are derived.";

}

identity multi-access {

base link-type;

description

"This identity represents a multi-access link.";

}

identity point-to-point {

base link-type;

description

"This identity represents a point-to-point link.";

}

/* Groupings */

grouping description-leaf {

leaf description {

type string;

description

44 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

"Textual description of an object.";

}

}

grouping capa-set {

description

"This grouping defines a recursive specification of a set of

capabilities.";

leaf-list include-set {

type leafref {

path "/irt:network/irt:capability-set/irt:name";

}

}

leaf-list capability {

description

"List of URIs representing node’s capabilities including

- NETCONF capabilities,

- supported YANG modules, using the URI format specified in

RFC6020, sec. 5.6.4.";

type inet:uri;

}

}

grouping common-data {

description

"Leafs that are common for all objects (nodes, links, etc.).";

leaf name {

type string {

length "1..max";

}

description

"Name of the object, also serves as a list key.";

}

uses description-leaf;

}

grouping address-and-port {

description

"Device address and optional port.";

leaf address {

mandatory "true";

type inet:host;

description

"Domain name or IP address of the device.";

}

leaf port {

type inet:port-number;

NetIDE Confidential 45

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

description

"Port on which the device listens.";

}

}

/* Data */

container network {

description

"Specification of a network consisting of a list of nodes and a

list of links.";

uses description-leaf;

list capability-set {

key "name";

description

"Each entry of this list defines a set of capabilities that

can be referred to from nodes and thus become part of their

data model.";

uses common-data;

uses capa-set;

}

list node {

key "name";

description

"Each entry of this list describes a network node (host,

router, switch etc.).";

uses common-data;

leaf type {

mandatory "true";

type identityref {

base node-type;

}

description

"Type of the node.";

}

leaf brand {

type string;

description

"Identification of the manufacturer.";

}

leaf model {

type string;

description

"Identification of the model.";

}

container operating-system {

description

"Identification of the operating system.";

leaf name {

46 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

type string;

description

"Name of the operating system.";

}

leaf version {

type string;

description

"Operating system version.";

}

}

container configuration {

when "../type != ’irt:dummy-node’";

description

"Parameters of node configuration.";

container methods {

description

"Specification of configuration methods supported by the

device.";

container netconf {

description

"NETCONF parameters.";

container ssh {

presence "Support for NETCONF over SSH";

description

"Indicates support and provides parameters for

NETCONF over SSH.";

uses address-and-port {

refine "port" {

default "830";

}

}

}

container tls {

presence "Support for NETCONF over TLS";

description

"Indicates support and provides parameters for

NETCONF over TLS.";

uses address-and-port {

refine "port" {

default "6513";

}

}

}

}

container openflow {

presence "Support for OpenFlow";

description

"Indicates support and provides parameters for

OpenFlow.";

NetIDE Confidential 47

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

uses address-and-port {

refine "port" {

default "6653";

}

}

}

container cli {

description

"CLI parameters.";

container ssh {

presence "CLI via SSH";

description

"Indicates that the device’s command-line interface

is accessible through SSH.";

uses address-and-port {

refine "port" {

default "22";

}

}

}

}

}

container capabilities {

description

"Collection of capabilities supported by the node.

It can be defined as a union of individual capabilities

and/or predefined capability-sets.";

uses capa-set;

}

leaf file-name {

type string;

description

"Name of the config file (inside the ’node-conf’

subdirectory).

By default, the file name is the same as the name of the

node with an extension ’.xml’ or ’.json’, depending on

the ’format’ parameter.";

}

leaf format {

type enumeration {

enum XML;

enum JSON;

}

default "XML";

description

"Format of the config file.";

}

48 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

}

list interface {

key "name";

min-elements "1";

description

"Every node has one or more interfaces.

The ’name’ key must be the same as the name that is used

for the interface in the config file (this doesn’t apply

to dummy nodes).";

uses common-data;

leaf connection {

type leafref {

path "../../../link/name";

}

description

"The link to which the interface is connected.";

}

}

}

list link {

key "name";

description

"Each network has zero or more links.";

uses common-data;

leaf type {

type identityref {

base link-type;

}

default "irt:point-to-point";

description

"Type of the link.";

}

}

}

}

NetIDE Confidential 49

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

B Pyretic Module

B.1 Main

#!/usr/bin/python

###

Name: UC1_DC_NetManager.py

Author: Georgios Katsikas - katsikas@imdea.org

Description: Pyretic Implementation of NetIDE UC1 - Main Module

###

import os

Pyretic libraries

from pyretic.lib.std import *

from pyretic.lib.corelib import *

Generic Pyretic Modules

from pyretic.modules.Commons import *

from pyretic.modules.Monitor import Monitor

from pyretic.modules.Firewall import Firewall

from pyretic.modules.mac_learner import mac_learner

from pyretic.modules.LoadBalancer import LoadBalancer

Main class for UC1 DataCenter Implementation

class UC1_DC_NetManager(DynamicPolicy):

def __init__(self):

super(UC1_DC_NetManager, self).__init__()

self.FW = Firewall()

self.policy = None

Initialize and Start

self.SetInitialState()

Initial configuration of DC Application

def SetInitialState(self):

LB configuration

self.LB_Device = LB_Device

self.PublicIP = PublicIP

self.ServerIPs = [LB_Server_1, LB_Server_2]

self.ClientIPs = [ipp2, ipp3, ipp4]

Firewall configuration

self.FWDevices = [Firewall_1, Firewall_2]

return self.Start()

Dynamically update enforced policy based on the last values of all the modules

NetIDE Confidential 51

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

def Start(self):

Handle ARP

ARPPkt = match(ethtype=ARP_TYPE)

Instantiate Firewalls

AccessControl = self.FW.ApplyFirewall()

Instantiate Load Balancer

LB = LoadBalancer(self.LB_Device, self.ClientIPs, self.ServerIPs,

self.PublicIP)

self.policy = (

(ARPPkt >> mac_learner()) + # L2 Learning SWs

(LB >> mac_learner() >> AccessControl) + # LB + FWs

Monitor(MonitoringInterval) # Monitoring

)

return self.policy

##

Bootstrap Use Case

##

def main():

return UC1_DC_NetManager()

B.2 Load Balancer

#!/usr/bin/python

###

Name: LoadBalancer.py

Author: Omid Alipourfard - omida@cs.princeton.edu

Editor: Georgios Katsikas - katsikas@imdea.org

Description: Round Robin Load Balancer

###

Pyretic libraries

from pyretic.lib.std import *

from pyretic.lib.query import *

from pyretic.lib.corelib import *

##

Translate from

client -> public address : client -> server

server -> client : public address -> client

##

def Translate(c, s, p):

cp = match(srcip=c, dstip=p)

sc = match(srcip=s, dstip=c)

return ((cp >> modify(dstip=s)) +

(sc >> modify(srcip=p)) +

(~cp & ~sc))

52 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

##

Simple round-robin load balancing policy

#

This implementation will drop the first packet of each flow.

An easy fix would be to use network.inject_packet to send the

packet to its final destination.

##

class LoadBalancer(DynamicPolicy):

def __init__(self, Device, Clients, Servers, PublicIP):

super(LoadBalancer, self).__init__()

#print("[Load Balancer]: Device ID: %s" %(Device))

#print("[Load Balancer]: Server addresses: %s %s" %(Servers[0],

Servers[1]))

self.Device = Device

self.Clients = Clients

self.Servers = Servers

self.PublicIP = PublicIP

self.Index = 0

Start a packet query

self.Query = packets(1, [’srcip’])

Handle events using callback function

self.Query.register_callback(self.LoadBalancingPolicy)

Capture packets that arrive at LB and go to Internet

self.Public_to_Controller = (match(dstip=self.PublicIP,

switch=self.Device)>> self.Query)

self.LB_Policy = None

self.policy = self.Public_to_Controller

def UpdatePolicy(self):

self.policy = self.LB_Policy + self.Public_to_Controller

def LoadBalancingPolicy(self, pkt):

Client = pkt[’srcip’]

Be careful not to redirect servers on themselves

if Client in self.Servers: return

Round-robin, per-flow load balancing

Server = self.NextServer()

p = Translate(Client, Server, self.PublicIP)

print("[Load Balancer]: Mapping c:%s to s:%s" % (Client, Server))

Apply the modifications

if self.LB_Policy:

self.LB_Policy = self.LB_Policy >> p

else:

self.LB_Policy = p

Update LB policy object

self.UpdatePolicy()

Round-robin

NetIDE Confidential 53

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

def NextServer(self):

Server = self.Servers[self.Index % len(self.Servers)]

self.Index += 1

return Server

B.3 Firewalls

#!/usr/bin/python

###

Name: Firewall.py

Author: Georgios Katsikas - katsikas@imdea.org

Description: Firewall configuration for the two firewalls of UC1

###

import os

Pyretic libraries

from pyretic.lib.std import *

from pyretic.lib.corelib import *

Pyretic modules

from pyretic.modules.Commons import *

from pyretic.modules.mac_learner import mac_learner

class Firewall(DynamicPolicy):

def __init__(self):

super(Firewall, self).__init__()

Initial policy objects are empty

self.Blocked = None

self.Allowed = None

self.policy = None

def ApplyFirewall(self):

Set rules to devices

ac1 = self.ConfigureFW1()

ac2 = self.ConfigureFW2()

Update block object

if self.Blocked:

self.Blocked = self.Blocked | ac1 | ac2

else:

self.Blocked = ac1 | ac2

The packets tha match Block object are dropped. The rest are forwarded.

self.Allowed = if_(self.Blocked, drop, mac_learner())

Update policy object

return self.UpdatePolicy()

def UpdatePolicy(self):

self.policy = self.Allowed

54 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

return self.policy

def ConfigureFW1(self):

Only UDP at port 53

ICMPtoDNS = (

match(ethtype=IP, protocol=ICMP,

switch=Firewall_1, srcip=ipp1, dstip=ipp2)

)

TCPtoDNS = (

match(ethtype=IP, protocol=TCP,

switch=Firewall_1, srcip=ipp1, dstip=ipp2)

)

DNSToInternet = (

match(ethtype=IP, protocol=UDP,

switch=Firewall_1, srcip=ipp1,

dstip=ipp2) & ~match(dstport=DNS_PORT)

)

DNSToInternet_Reply = (

match(ethtype=IP, protocol=UDP,

switch=Firewall_1, srcip=ipp2,

dstip=ipp1) & ~match(srcport=DNS_PORT)

)

Only TCP at port 80

ICMPtoWeb = (

match(ethtype=IP, protocol=ICMP,

switch=Firewall_1, srcip=ipp1, dstip=ipp3)

)

UDPtoWeb = (

match(ethtype=IP, protocol=UDP,

switch=Firewall_1, srcip=ipp1, dstip=ipp3)

)

HTTPToInternet = (

match(ethtype=IP, protocol=TCP,

switch=Firewall_1, srcip=ipp1,

dstip=ipp3) & ~match(dstport=HTTP_PORT)

)

HTTPToInternet_Reply = (

match(ethtype=IP, protocol=TCP,

switch=Firewall_1, srcip=ipp3,

dstip=ipp1) & ~match(srcport=HTTP_PORT)

)

Compose the above rules --> FW1 functionality

p = (

DNSToInternet | DNSToInternet_Reply | ICMPtoDNS | TCPtoDNS |

HTTPToInternet | HTTPToInternet_Reply | ICMPtoWeb | UDPtoWeb

)

return p

def ConfigureFW2(self):

NetIDE Confidential 55

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Incoming is blocked --> FW2 functionality

p = (

match(ethtype=IP, dstip=ipp4, switch=Firewall_2)

)

return p

B.4 Monitor

#!/usr/bin/python

###

Name: Monitor.py

Author: Georgios Katsikas - katsikas@imdea.org

Description: Module that gathers and prints useful statistics (e.g. pkt/byte

counters)

###

import os

Pyretic libraries

from pyretic.lib.corelib import *

from pyretic.lib.std import *

from pyretic.lib.query import *

Pyretic modules

from pyretic.modules.Commons import *

Monitoring Module for DC Topology

class Monitor(DynamicPolicy):

Monitor Constructor

def __init__(self, monitoringInterval):

super(Monitor, self).__init__()

self.MonitoringInterval = monitoringInterval

self.SetInitialState()

Start monitoring

def SetInitialState(self):

#self.ByteQuery = self.ByteCounts()

self.PktQuery = self.PacketCounts()

self.PktCapture = self.PacketInsector()

self.UpdatePolicy()

Dynamically Update Policy

def UpdatePolicy(self):

self.policy = self.PktQuery + self.PktCapture # + self.ByteQuery

Prints counted packets

def PacketCountPrinter(self, PktCounts):

print("------------------------ Packet Counts ------------------------")

for k, v in sorted(PktCounts.items()):

print u’{0}: {1} pkts’.format(k, v)

print("---")

56 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

Counts packets every second

def PacketCounts(self):

q = count_packets(self.MonitoringInterval, [’srcip’, ’switch’, ’protocol’])

q.register_callback(self.PacketCountPrinter)

return q

Prints counted bytes

def ByteCountPrinter(self, ByteCounts):

print("------------------------- Packet Bytes ------------------------")

for k, v in sorted(ByteCounts.items()):

print u’{0}: {1} bytes’.format(k, v)

print("---")

Counts bytes every second

def ByteCounts(self):

q = count_bytes(self.MonitoringInterval, [’srcip’, ’switch’, ’protocol’])

q.register_callback(self.ByteCountPrinter)

return q

Packet capture

def PacketInsector(self):

q = packets(1, [’srcip’, ’dstip’, ’switch’, ’protocol’, ’ethtype’])

q.register_callback(self.PacketPrinter)

return q

Prints captured packet

def PacketPrinter(self, pkt):

print "------------------------- Packet Content -----------------------"

Capture Ethernet IP + ICMP/UDP/TCP

if pkt[’ethtype’] == IP_TYPE:

print "Ethernet packet"

raw_bytes = [ord(c) for c in pkt[’raw’]]

print "Ethernet payload is %d" % pkt[’payload_len’]

eth_payload_bytes = raw_bytes[pkt[’header_len’]:]

print "Ethernet payload is %d bytes" % len(eth_payload_bytes)

ip_version = (eth_payload_bytes[0] & 0b11110000) >> 4

ihl = (eth_payload_bytes[0] & 0b00001111)

ip_header_len = ihl * 4

ip_payload_bytes = eth_payload_bytes[ip_header_len:]

ip_proto = eth_payload_bytes[9]

print "IP Version = %d" % ip_version

print "IP Header_len = %d" % ip_header_len

print "IP Protocol = %d" % ip_proto

print "IP Payload is %d bytes" % len(ip_payload_bytes)

Number 6 is TCP

if ip_proto == TCP:

print "TCP packet"

tcp_data_offset = (ip_payload_bytes[12] & 0b11110000) >> 4

tcp_header_len = tcp_data_offset * 4

print "TCP Header Length = %d" % tcp_header_len

tcp_payload_bytes = ip_payload_bytes[tcp_header_len:]

print "TCP Payload is %d bytes" % len(tcp_payload_bytes)

if len(tcp_payload_bytes) > 0:

NetIDE Confidential 57

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

print "Payload:\t",

print ’’.join([chr(d) for d in tcp_payload_bytes])

Number 17 is UDP

elif ip_proto == UDP:

print "UDP Packet"

udp_header_len = 8

print "UDP Header Length = %d" % udp_header_len

udp_payload_bytes = ip_payload_bytes[udp_header_len:]

print "UDP Payload is %d bytes" % len(udp_payload_bytes)

if len(udp_payload_bytes) > 0:

print "Payload:\t",

print ’’.join([chr(d) for d in udp_payload_bytes])

Number 1 is ICMP

elif ip_proto == ICMP:

print "ICMP packet"

print pkt

else:

print "Unhandled IP packet type"

Capture Ethernet ARP

elif pkt[’ethtype’] == ARP_TYPE:

print "ARP packet"

print pkt

else:

print "Unhandled packet type"

print "--"

B.5 Commons

###

Name: Commons.py

Author: Georgios Katsikas - katsikas@imdea.org

Description: Global variables for Pyretic Modules

###

Pyretic libraries

from pyretic.lib import *

from pyretic.lib.corelib import *

from pyretic.lib.std import *

################### IP Setup ##################

Internet side

ipp1 = IPPrefix(’10.0.0.0/24’)

DNS Server

ipp2 = IPAddr(’10.0.1.17’)

Web Server

ipp3 = IPAddr(’10.0.1.18’)

Intranet

ipp4 = IPAddr(’10.0.1.32’)

Load Balancer configuration (Internet side)

LB_Server_1 = IPAddr(’10.0.0.1’)

LB_Server_2 = IPAddr(’10.0.0.2’)

PublicIP = IPAddr(’10.0.0.100’)

58 Confidential NetIDE

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

###

Middleboxes’ IDs

Firewall_1 = 9

Firewall_2 = 10

LB_Device = 4

Protocols

ICMP = 1

TCP = 6

UDP = 17

IP = 0x0800

Allowed ports

DNS_PORT = 53

HTTP_PORT = 80

Messages

ERROR = -1

Monitoring Interval period (in seconds)

MonitoringInterval = 5

NetIDE Confidential 59

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

C Bibliography

[1] The NetIDE consortium. D3.1 - Developer Toolkit Specification. Technical report, The Euro-
pean Commission, 2014.

[2] The NetIDE consortium. Preliminary Market Analysis. Technical report, The European
Commission, 2014.

[3] OpenVSwitch. http://openvswitch.org/development/openflow-1-x-plan.

[4] Pica8 Open Network Fabric. http://www.pica8.org/solutions/openflow.php.

[5] Indigo - Open Source OpenFlow Switches. http://www.openflowhub.org/display/Indigo/
Indigo+-+Open+Source+OpenFlow+Switches.

[6] About NOX. http://www.noxrepo.org/nox/about-nox/.

[7] About pox. http://www.noxrepo.org/pox/about-pox/. Last visited: Sat, 10 Nov 2012.

[8] Floodlight: a Java-based OpenFlow Controller. http://floodlight.openflowhub.org/.

[9] Trema: Full-Stack OpenFlow Framework in Ruby and C. https://github.com/trema/.

[10] HIDEyuki Shimonishi and Yasuhito Takamiya and Yasunobu Chiba and Kazushi Sugyo and
Youichi Hatano and Kentaro Sonoda and Kazuya Suzuki and Daisuke Kotani and Ippei
Akiyoshi. Programmable Network Using OpenFlow for Network Researches and Experiments.
In Proceedings of the Sixth International Conference on Mobile Computing and Ubiquitous
Networking, pages 168–171. Information Processing Society of Japan, May 2012.

[11] Angela Orebaugh, Gilbert Ramirez, Josh Burke, and Larry Pesce. Wireshark & Ethereal
Network Protocol Analyzer Toolkit (Jay Beale’s Open Source Security). Syngress Publishing,
2006.

[12] ProgrammableFlow Networking. http://www.necam.com/SDN/, month 2014.

[13] Ryu SDN Framework. https://osrg.github.io/ryu/.

[14] Open Networking Foundation. Of-config 1.2: Openflow management and configuration proto-
col. Onf specification, ONF, 2014.

[15] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Network Configuration Protocol
(NETCONF). RFC 6241 (Proposed Standard), June 2011.

[16] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informational),
October 2004.

[17] J.D. Case, M. Fedor, M.L. Schoffstall, and J. Davin. Simple Network Management Protocol
(SNMP). RFC 1157 (Historic), May 1990.

[18] B. Pfaff and B. Davie. The Open vSwitch Database Management Protocol. RFC 7047 (Infor-
mational), December 2013.

NetIDE Confidential 61

http://openvswitch.org/development/openflow-1-x-plan
http://www.pica8.org/solutions/openflow.php
http://www.openflowhub.org/display/Indigo/Indigo+-+Open+Source+OpenFlow+Switches
http://www.openflowhub.org/display/Indigo/Indigo+-+Open+Source+OpenFlow+Switches
http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/pox/about-pox/
http://floodlight.openflowhub.org/
https://github.com/trema/
http://www.necam.com/SDN/
https://osrg.github.io/ryu/

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

[19] Python packet creation / parsing library. https://code.google.com/p/dpkt/, 2013.

[20] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271 (Draft
Standard), January 2006. Updated by RFCs 6286, 6608, 6793.

[21] R. Hinden. Virtual Router Redundancy Protocol (VRRP). RFC 3768 (Draft Standard), April
2004. Obsoleted by RFC 5798.

[22] Using Ryu Network Operating System with OpenStack as Network controller. https://

github.com/osrg/ryu/wiki/OpenStack.

[23] David Erickson. Beacon Home. https://openflow.stanford.edu/display/Beacon/Home,
2012. Last visited: Sun, 18 Nov 2012.

[24] What are SDN Northbound APIs. http://www.sdncentral.com/

north-bound-interfaces-api, 2014. note.

[25] Sukhveer Kaur, Japinder Singh, and Navtej Singh Ghumman. Network Programmability
Using POX Controller. ICCCS Conference Proceedings, 2014. Downloaded from http://www.

sbsstc.ac.in/icccs2014/Papers/Paper28.pdf.

[26] Kuang-Ching Wang. How to write a module - Floodlight Controller. http://docs.

projectfloodlight.org/display/floodlightcontroller/How+to+Write+a+Module, Dec
2013.

[27] Your First Beacon Bundle. https://openflow.stanford.edu/display/Beacon/Your+

First+Bundle, Aug 2013.

[28] Frank Drr. Developing OSGi components for OpenDayLight. www.frank-durr.de/?p=84,
Jan 2014.

[29] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid prototyping
for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, Hotnets-IX, pages 19:1–19:6, New York, NY, USA, 2010. ACM.

[30] Mininet at github. https://github.com/mininet/mininet, 2010.

[31] Universit Roma III, Compunet Lab. The poor man’s system to experiment computer net-
working. http://wiki.netkit.org/index.php/Main_Page, May 2011. Last visit: 06 Jun
2014.

[32] Quagga Software Routing Suite. http://www.nongnu.org/quagga/, March 2013. Last visit:
06 Jun 2014.

[33] Sam Burnett. Getting Resonance and OpenFlow to Work with Netkit. http://www.cc.

gatech.edu/~sburnett/posts/2010-05-20-resonance-netkit.html, May 2010. Last visit:
06 Jun 2014.

[34] ns3. http://www.nsnam.org. Last visited: Fri, 09 Nov 2012.

[35] Josh Pelkey. Openflow software implementation distribution. http://code.nsnam.org/

jpelkey3/openflow, Apr 2011. Last visit: Tue, 18 Dec 2012.

[36] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick McK-
eown, and Guru M. Parulkar. Can the production network be the testbed? In OSDI, pages
365–378, 2010.

62 Confidential NetIDE

https://code.google.com/p/dpkt/
https://github.com/osrg/ryu/wiki/OpenStack
https://github.com/osrg/ryu/wiki/OpenStack
https://openflow.stanford.edu/display/Beacon/Home
http://www.sdncentral.com/north-bound-interfaces-api
http://www.sdncentral.com/north-bound-interfaces-api
http://www.sbsstc.ac.in/icccs2014/Papers/Paper28.pdf
http://www.sbsstc.ac.in/icccs2014/Papers/Paper28.pdf
http://docs.projectfloodlight.org/display/floodlightcontroller/How+to+Write+a+Module
http://docs.projectfloodlight.org/display/floodlightcontroller/How+to+Write+a+Module
https://openflow.stanford.edu/display/Beacon/Your+First+Bundle
https://openflow.stanford.edu/display/Beacon/Your+First+Bundle
www.frank-durr.de/?p=84
https://github.com/mininet/mininet
http://wiki.netkit.org/index.php/Main_Page
http://www.nongnu.org/quagga/
http://www.cc.gatech.edu/~sburnett/posts/2010-05-20-resonance-netkit.html
http://www.cc.gatech.edu/~sburnett/posts/2010-05-20-resonance-netkit.html
http://www.nsnam.org
http://code.nsnam.org/jpelkey3/openflow
http://code.nsnam.org/jpelkey3/openflow

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

[37] RouteFlow Project: IP routing on SDN. https://sites.google.com/site/routeflow/.

[38] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C. Mitchell, and Scott Shenker.
Practical declarative network management. In Proceedings of the 1st ACM workshop on Re-
search on enterprise networking, WREN ’09, pages 1–10, New York, NY, USA, 2009. ACM.

[39] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: a language for high-level reactive
network control. In Proceedings of the first workshop on Hot topics in software defined networks,
HotSDN ’12, pages 43–48, New York, NY, USA, 2012. ACM.

[40] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rexford,
Alec Story, and David Walker. Frenetic: a network programming language. SIGPLAN Not.,
46(9):279–291, September 2011.

[41] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David Walker. Mod-
ular SDN Programming with Pyretic. USENIX ;login, 38(5):128–134, Oct. 2013.

[42] Andreas Voellmy and Paul Hudak. Nettle: Taking the sting out of programming network
routers. In Ricardo Rocha and John Launchbury, editors, PADL, volume 6539 of Lecture
Notes in Computer Science, pages 235–249. Springer, 2011.

[43] K. Watsen A. Bierman, M. Bjorklund and R. Fernando. Restconf protocol. Internet-Draft
draft-ietf-netconf-restconf-00, IETF, Mar 2014.

[44] M. Bjorklund. YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF). RFC 6020 (Proposed Standard), October 2010.

[45] L. Lhotka. Json encoding of data modeled with yang. Internet-Draft draft-ietf-netmod-yang-
json-00, IETF, Apr 2014.

[46] IEEE. Information technology – document schema definition language (dsdl). part 2: Regular-
grammar-based validation – relax ng. second edition. International Standard ISO/IEC 19757-2,
IEEE, Dec 2008.

[47] P. V. Biron and A. Malhotra. Xml schema part 2: Datatypes second edition. W3C Recom-
mendation REC-xmlschema-2-20041028, World-Wide Web Consortium, Oct 2004.

[48] M. Bjorklund. A YANG Data Model for Interface Management. RFC 7223 (Proposed Stan-
dard), May 2014.

[49] M. Bjorklund. A yang data model for ip management. Internet-Draft draft-ietf-netmod-ip-
cfg-14, IETF, Mar 2014.

[50] A. Bierman. A yang data model for system management. Internet-Draft draft-ietf-netmod-
system-mgmt-14, IETF, May 2014.

[51] L. Lhotka. A yang data model for routing management. Internet-Draft draft-ietf-netmod-
routing-cfg-14, IETF, May 2014.

[52] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres, and Nick McK-
eown. Where is the debugger for my software-defined network? In Proceedings of the first
workshop on Hot topics in software defined networks, HotSDN ’12, pages 55–60, New York,
NY, USA, 2012. ACM.

[53] Richard Stallman, Roland Pesch, and Stan Shebs. Debugging with GDB: the source level
debugger. GNU Press, Boston, MA, USA, 2002.

NetIDE Confidential 63

https://sites.google.com/site/routeflow/

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

[54] Openflow wireshark disector. http://www.openflow.org/wk/index.php/OpenFlow_

Wireshark_Dissector, 2011. Last visited: Fri, 09 Nov 2012.

[55] Yasunobu Chiba and Yasunori Nakazawa. tremashark: A bridge for printing various events
on Wireshark. git://github.com/trema/trema.gitmaster/tremashark, 2011. Last visited:
Fri, 09 Nov 2012.

[56] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann. Ofrewind: enabling
record and replay troubleshooting for networks. In Proceedings of the 2011 USENIX conference
on USENIX annual technical conference, USENIXATC’11, pages 29–29, Berkeley, CA, USA,
2011. USENIX Association.

[57] Ehab Al-Shaer and Saeed Al-Haj. FlowChecker: configuration analysis and verification of
federated openflow infrastructures. In Proceedings of the 3rd ACM workshop on Assurable and
usable security configuration, SafeConfig ’10, pages 37–44, New York, NY, USA, 2010. ACM.

[58] Marco Canini, Daniele Venzano, Peter Pereš́ıni, Dejan Kostić, and Jennifer Rexford. A NICE
way to test openflow applications. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, NSDI’12, pages 10–10, Berkeley, CA, USA, 2012.
USENIX Association.

[59] Marco Canini, Daniele Venzano, Peter Pereš́ıni, Dejan Kostić, and Jennifer Rexford. nice-of
- A NICE way to test OpenFlow controller applications - Google Project Hosting . http:

//code.google.com/p/nice-of/.

[60] Dan Talayco, Ed Swierk, Jeffrey Townsend, Ken Chiang, Rich Lane, Rob Sherwood, and
Shudong Zhou. LoxiGen. https://github.com/floodlight/loxigen, Jun 2013.

[61] The NetIDE Consortium. NetIDE - An integrated development environment for portable
network applications. Annex I: Description of work 619543, The European Commission, Nov
2013.

[62] Federico M. Facca and Elio Salvadori and Holger Karl and Diego R. López and Pedro Andrés
Aranda Gutiérrez and Dejan Kostic and Roberto Riggio. NetIDE: First Steps towards an Inte-
grated Development Environment for Portable Network Apps. EWSDN-2013 Second European
Workshop on Software Defined Networks, 0:105–110, 2013.

[63] The NetIDE consortium. D5.1 - Use case requirements. Technical report, The European
Commission, 2014.

[64] Josh Juneau, Jim Baker, Frank Wierzbicki, Leo Soto, and Victor Ng. The Definitive Guide to
Jython: Python for the Java Platform. Apress, Berkely, CA, USA, 1st edition, 2010.

[65] Anirudh Ramachandran. App Development Tutorial - GENI.
http://groups.geni.net/geni/raw-attachment/wiki/GEC19Agenda/IntroToOFOpenDaylight/OpenDaylight-
app-development-tutorial.pdf. Last visit: 06 Jun 2014.

[66] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu,
Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. Onix:
A distributed control platform for large-scale production networks. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, OSDI’10, pages 1–6,
Berkeley, CA, USA, 2010. USENIX Association.

64 Confidential NetIDE

http://www.openflow.org/wk/index.php/OpenFlow_Wireshark_Dissector
http://www.openflow.org/wk/index.php/OpenFlow_Wireshark_Dissector
git://github.com/trema/trema.gitmaster/tremashark
http://code.google.com/p/nice-of/
http://code.google.com/p/nice-of/
https://github.com/floodlight/loxigen

Document: CNET-ICT-619543-NetIDE/D 2.1
Date: October 29, 2014 Security: Confidential
Status: Final Version: 1.0

[67] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A framework for efficient and scalable
offloading of control applications. In Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, HotSDN ’12, pages 19–24, New York, NY, USA, 2012. ACM.

[68] Junos XML API and Junos XML Management Protocol Overview.
http://www.juniper.net/techpubs/en_US/junos13.3/topics/concept/

junos-script-automation-junos-xml-protocol-and-api-overview.html, Nov 2013.
Last visit: 29 Apr 2014.

[69] Cisco’s One Platform Kit (onePK). http://www.cisco.com/c/en/us/products/

ios-nx-os-software/onepk.html, May 2014.

[70] Charles Clos. A study of non-blocking switching networks. In Bell System Technical Journal,
pages 406–424. March 1953. doi:10.1002/j.1538-7305.1953.tb01433.x.

[71] Interroute. What is Infrastructure as a Service? http://www.interoute.com/what-iaas,
Jan 2013. Last visit: 14 May 2014.

[72] Interroute. What is Platform as a Service? http://www.interoute.com/what-paas, Jan
2013. Last visit: 14 May 2014.

[73] Sridhar Karnam. Anything-as-a-Service (XaaS): Future of
cloud computing. http://sridharkarnam.com/2010/06/17/

anything-as-a-service-xaas-future-of-cloud-computing/, June 2010. Last visit:
14 May 2014.

[74] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker. Com-
posing software defined networks. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 1–13, Lombard, IL, 2013.
USENIX.

[75] A. Clemm, H. Ananthakrishnan, J. Medved, T. Tkacik, R. Varga, and N. Bahadur. A yang data
model for network topologies. Internet-Draft draft-clemm-i2rs-yang-network-topo-00, IETF,
Feb 2014.

[76] NetIDE Software Repository. http://redmine.netide.eu/.

[77] The Pyretic runtime system. https://github.com/frenetic-lang/pyretic, may 2014.

NetIDE Confidential 65

http://www.juniper.net/techpubs/en_US/junos13.3/topics/concept/junos-script-automation-junos-xml-protocol-and-api-overview.html
http://www.juniper.net/techpubs/en_US/junos13.3/topics/concept/junos-script-automation-junos-xml-protocol-and-api-overview.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
http://www.interoute.com/what-iaas
http://www.interoute.com/what-paas
http://sridharkarnam.com/2010/06/17/anything-as-a-service-xaas-future-of-cloud-computing/
http://sridharkarnam.com/2010/06/17/anything-as-a-service-xaas-future-of-cloud-computing/
http://redmine.netide.eu/
https://github.com/frenetic-lang/pyretic

	List of Figures
	Acronyms
	List of Corrections
	Introduction
	State of the Art
	Open SDN environments based on OpenFlow
	OF switches, controller frameworks and controllers
	Northbound Interface for selected OF controllers

	OpenFlow network emulation/simulation environments
	Applications extending the basic OF control plane
	High-level SDN Programming Languages
	Tools for SDN and legacy networks
	YANG
	Standard Data Models

	Tools supporting the software development cycle in Software Defined Networks
	OpenFlow Debuggers
	LoxiGen

	The NetIDE architecture – A first draft
	Requirements in different phases
	Development phase
	Deployment phase
	Runtime phase
	Requirements conclusions

	Shortcomings of existing solutions
	The control application/controller aspect
	The controller/switch aspect

	Core concept: The IRF and its aspects
	Internal and external DSLs: IRF behavioural aspects
	Topology patterns: IRF structural aspects
	Transformation flow: DoW vs. now

	A simplified architecture: NetIDE v.0

	A proof of concept: Pyretic and Ryu
	Goals of the proof of concept
	Brief reminder: The Data-Centre use case
	Implementation in YANG
	Implementation
	Gap analysis

	Implementation of the use case using Pyretic (standard POX-based client)
	Implementation
	Gap analysis

	Implementation of the use case on Pyretic (using a novel Ryu-based client)
	Implementation
	Gap analysis

	Conclusions on Proof-of-Concept work

	Next steps
	Technological alternatives

	Topology YANG Module
	Pyretic Module
	Main
	Load Balancer
	Firewalls
	Monitor
	Commons

	Bibliography

