

Private Public Partnership Project (PPP)

Large-scale Integrated Project (IP)

D.17.2.2: FIWARE GE Open Specifications (Security Chapter)

Project acronym: FI-Core
Project full title: Future Internet Core
Contract No.: 632893
Strategic Objective: FI.ICT-2011.1.7 Technology foundation: Future Internet Core Platform
Project Document Number: ICT-2013-FI-632893-17-D.17.2.2
Project Document Date: 26.09.2016
Deliverable Type and Security: Public
Author: P. Bisson (Thales Services)
Contributors: Alvaro Alonso (UPM), Joaquin Salvachua (UPM), Cyril Dangerville (Thales
Services)

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:FP7Portrait_logo.jpg
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:FIWARE_Logo.png

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 2

1 Introduction

1.1 Executive Summary

This document describes the Generic Enablers in the Security chapter, their basic functionality and

their interactions. These Generic Enablers form the core business framework of the FIWARE platform

by supporting the business functionality for commercializing services.

The functionality of the framework is illustrated with several abstract use case diagrams, which show

how the individual GE can be used to construct a domain-specific application environment and

system architecture.

Each GE Open Specification is first described at a generic level, elaborating on the functional and

non-functional properties. Then it is supplemented by a number of specifications according to the

interface protocols, API and data formats that are delivered in separate individual documents, one

per GE.

This document has the available Open Specifications that have been created in FIWARE as a result of

the work in Release 5 of the platform.

There is a major shift in the approach of the Open Specifications in FIWARE. Whereas in the initial

Releases (from Release 1 to Release 3) the Open Specification APIs were published on the wiki, from

Release 4 onwards the information will be created and published in a more modern and manageable

format using auxiliary tools such as apiary and github.

This document is accompanied by a set of annexes contained in separate documents, each one

providing the detailed Open Specification API of each GE.

1.2 About This Document

FIWARE GE Open Specifications describe the open specifications linked to Generic Enablers GEs of

the FIWARE platform (and their corresponding components) being developed in one particular

chapter.

GE Open Specifications contain relevant information for users of FIWARE to consume related GE

implementations and/or to build compliant products, which can work as alternative implementations

of GEs developed in FIWARE. The later may even replace a GE implementation developed in FIWARE

within a particular FIWARE instance. GE Open Specifications typically include, but not necessarily are

limited to, information such as:

 Description of the scope, behaviour and intended use of the GE

 Terminology, definitions and abbreviations to clarify the meanings of the
specification

 Legal information with the terms of use

 The Architecture document is generally included as is for the sake of completeness

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 3

 Signature and behaviour of operations linked to APIs (Application Programming
Interfaces) that the GE should export. Signature may be specified in a particular
language binding or through a RESTful interface described using API Blueprint format
as per https://github.com/apiaryio/api-
blueprint/blob/master/API%20Blueprint%20Specification.md.

 Description of protocols that support interoperability with other GE or third party
products

 Description of non-functional features

1.3 Intended Audience

The document targets interested parties in architecture and API design, implementation and usage of

FIWARE Generic Enablers from the FIWARE platform.

1.4 Structure of this Document

The document is generated out of a set of documents provided in the public FIWARE wiki. For the

current version of the documents, please visit the public wiki at http://wiki.fiware.org/

The present document has been created from the wiki using automated tools and part of the links

may not work. You may occasionally find oddities in the text format that side effects of the process

but they do not deter the quality of the technical contents.

1.5 Keyword list

FIWARE, FI-Core, Acceleration Programme, Accelerators, PPP, Architecture Board, Steering Board,

Roadmap, Reference Architecture, Generic Enabler, Open Specifications, I2ND, Cloud, IoT,

Data/Media and Context Management, Applications/Services and Data Delivery, Delivery

Framework, Security, Advanced Middleware, Interfaces to Networks and Robotics, Communities,

Tools , Sustainability Support Tools, ICT, Internet, Apiary, Github, Latin American Platform.

1.6 Changes History

Release Major changes description Date Editor

v1 Insert consolidated content from Thales & UPM 2016-09-26 Thales Services

https://github.com/apiaryio/api-blueprint/blob/master/API%20Blueprint%20Specification.md
https://github.com/apiaryio/api-blueprint/blob/master/API%20Blueprint%20Specification.md
http://wiki.fiware.org/

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 4

1.7 Table of Contents

1 Introduction .. 2

1.1 Executive Summary .. 2

1.2 About This Document .. 2

1.3 Intended Audience .. 3

1.4 Structure of this Document .. 3

1.5 Keyword list ... 3

1.6 Changes History .. 3

1.7 Table of Contents .. 4

1.8 Quick Reference Table .. 5

2 FIWARE.OpenSpecification.Security.IdentityManagement ... 7

2.1 Preface .. 7

2.2 Copyright ... 7

2.3 Legal Notice .. 7

2.4 Overview ... 7

2.5 Target usage ... 8

2.6 Basic Concepts ... 8

2.6.1 User Life-Cycle Management ..10

2.6.2 Flexible Authentication Providers ..11

2.6.3 Third-Party Login ...11

2.6.4 Web Single Sign-On ..11

2.6.5 Hosted User Profile Management..11

2.6.6 Multi-Tenancy..11

2.7 Main Interactions ..12

2.7.1 High-level IdM GE Architecture ...12

2.7.2 User interfaces ..12

2.7.3 Management APIs ...13

2.7.4 Authentication and Authorization Interfaces ..13

2.8 Identity Management GE infrastructure ..20

2.9 References ...21

2.10 Detailed Specifications ...21

2.11 Re-utilised Technologies/Specifications ...21

2.12 Terms and definitions ...21

3 FIWARE.OpenSpecification.Security.PEPProxy ..25

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 5

3.1 Preface ...25

3.2 Copyright ..25

3.3 Legal Notice ...25

3.4 Overview ..25

3.5 Basic Concepts ..27

3.6 Main Interactions ..28

3.7 Basic Design Principles ..28

3.8 Detailed Specifications ...28

3.8.1 Open API Specification ...28

3.8.2 References ..28

3.9 Re-utilised Technologies/Specifications ...29

3.10 Terms and definitions ...29

4 FIWARE.OpenSpecification.Security.AuthorizationPDP ..33

4.1 Preface ...33

4.2 Copyright ..33

4.3 Legal Notice ...33

4.4 Overview ..33

4.5 Basic Concepts ..36

4.6 Main Interactions ..37

4.7 Basic Design Principles ..38

4.8 References ...38

4.9 Detailed Specifications ...38

4.10 Re-utilised Technologies/Specifications ...38

4.11 Terms and definitions ...39

1.8 Quick Reference Table

This table contains a summary of the basic links to the detailed API on our public resources

 Open Specification: link to the Open Specification as included in
http://wiki.fiware.org/Summary of FIWARE Open Specifications (in principle, it is the
same one as in the "Structure of this Document" section.

 API definition source: link to the API Blueprint markdown (apib file) in GitHub. If the
GE does not have a REST interface, link to alternative source if applicable.

http://wiki.fiware.org/Summary_of_FIWARE_Open_Specifications

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 6

 API Specification Document(HTML version): link to the rendered definition and
published as HTML in GitHub (output of the internal automated tool FABRE or
alternatively Apiary output)

 Apiary project (optional): link to the API site in apiary.io

DETAILED OPEN SPECIFICATIONS SUMMARY TABLE

Identity
Management

Open
Specification

http://wiki.fiware.org/FIWARE.OpenSpecification.Security.I
dentityManagement

API definition
source
(or alternative
source)

hthttps://github.com/ging/fiware-
idm/blob/master/extras/keyrock.apib

API Specification
Document
(HTML version)

http://ging.github.io/fiware-idm/api-spec/v3

Apiary project
http://docs.keyrock.apiary.io/

PEP Proxy

Open
Specification

http://wiki.fiware.org/FIWARE.OpenSpecification.Security.P
EPProxy

API definition
source
(or alternative
source)

N/A

API Specification
Document
(HTML version)

http://wiki.fiware.org/FIWARE.OpenSpecification.Security.P
EPProxy.Open_API_Specification

Apiary project N/A

PDP

Open
Specification

http://wiki.fiware.org/FIWARE.OpenSpecification.Security.A
uthorizationPDP

API definition
source
(or alternative
source)

https://github.com/authzforce/fiware/blob/master/apiary.
apib

API Specification
Document
(HTML version)

http://authzforce.github.io/fiware/authorization-pdp-api-
spec/5.2/

Apiary project http://docs.authorizationpdp.apiary.io/

http://wiki.fiware.org/FIWARE.OpenSpecification.Security.IdentityManagement
http://wiki.fiware.org/FIWARE.OpenSpecification.Security.IdentityManagement
https://github.com/ging/fiware-idm/blob/master/extras/keyrock.apib
https://github.com/ging/fiware-idm/blob/master/extras/keyrock.apib
http://ging.github.io/fiware-idm/api-spec/v3
http://docs.keyrock.apiary.io/
http://wiki.fiware.org/FIWARE.OpenSpecification.Security.PEPProxy
http://wiki.fiware.org/FIWARE.OpenSpecification.Security.PEPProxy
http://wiki.fiware.org/FIWARE.OpenSpecification.Security.PEPProxy.Open_API_Specification
http://wiki.fiware.org/FIWARE.OpenSpecification.Security.PEPProxy.Open_API_Specification
http://wiki.fiware.org/FIWARE.OpenSpecification.Security.AuthorizationPDP
http://wiki.fiware.org/FIWARE.OpenSpecification.Security.AuthorizationPDP
https://github.com/authzforce/fiware/blob/master/apiary.apib
https://github.com/authzforce/fiware/blob/master/apiary.apib
http://authzforce.github.io/fiware/authorization-pdp-api-spec/5.2/
http://authzforce.github.io/fiware/authorization-pdp-api-spec/5.2/
http://docs.authorizationpdp.apiary.io/

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 7

2 FIWARE.OpenSpecification.Security.IdentityManagem
ent

Name FIWARE.OpenSpecification.Security.IdentityManagement

Chapter Security,

Catalogue-Link to
Implementation

Keyrock

Owner UPM , Alvaro Alonso

2.1 Preface

Within this document you find a self-contained open specification of a FIWARE generic enabler,

please consult as well the FIWARE Product Vision, the website on http://www.fiware.org and similar

pages in order to understand the complete context of the FIWARE platform.

2.2 Copyright

 Copyright © 2012-2016 by UPM. All Rights Reserved.
 Copyright © 2012-2014 by NSN.
 Copyright © 2012-2014 by DT.
 Copyright © 2016 by Thales.

2.3 Legal Notice

Please check the following Legal Notice to understand the rights to use these specifications.

2.4 Overview

On the one hand, the ever-growing tsunami of today’s shore-bound technologies can often

overwhelm the user, significantly affecting his daily life. On a daily basis, he/she is forced to depend

on his technological competence. The smooth running of his affairs depends on the user’s ability to

handle a whole raft of often transient technologies. On account of very intensive, at times forced

usage of the Internet and diverse services, the user encounters the need to transfer his “network-

duties” to the networks as much as possible.

In other words, he/she seeks to find a convenient problem solver, which will allow him/her to cope

easily and securely with services. Thus, the need arises for a clever composed Identity Management

system, which will address the users’ requirements.

Identity Management (IdM) encompasses some aspects involved with users' access to networks,

services and applications, including secure and private authentication from users to devices,

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Category:Security
http://catalogue.fiware.org/enablers/identity-management-keyrock
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/UPM
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Alvaro_Alonso
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Product_Vision
http://www.fiware.org/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/UPM
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/NSN
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DT
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Thales_sv
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Open_Specification_Legal_Notice_(implicit_patents_license)

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 8

networks and services, user profile and authorization management, Single Sign-On (SSO) to service

domains and Identity Federation towards applications.

An IdM system aims to undertake the complex task of handling the various technologies in the

aforementioned security domains, and provide user-friendly technologies, putting the end user and

his needs squarely at the centre of the architecture (user-centric approach) whilst protecting his/her

privacy.

On the other hand, more and more companies, especially small and medium enterprises are

externalizing the identity management part of their applications – mostly web applications - to cloud

services, so called IDaaS (Identity management as a Service). Indeed, they prefer to buy (or use for

free) such IDaaS solutions rather than develop technology and/or build the infrastructure for

something – identity and access management – they have no expertise in.

The Identity Management Enabler itself aims at providing IDaaS and therefore must comply with the

requirements of an actual cloud-ready service, such as multi-tenancy, scalability, standard-compliant

protocols and APIs, etc. As a result, instead of developing and operating the user and profile

management by themselves, developers can have it hosted in the Cloud (e.g. FIWARE Lab) as a

specific tenant of the IdM GE, and it will be delivered on demand.

2.5 Target usage

This enabler provides authentication, basic authorization and security assertions (such as user

attributes) as a service to relying parties. The relying parties are typically service providers that

provide easy and secure access to their services to users/IoT/other services for instance by means of

SSO and that rely on (personal user) attributes (e.g. preferences, location, home address, etc.). The

users need easy access (SSO) to the growing number of services, and many of them also prefer their

personal/identity attributes to be maintained by a trusted party that also protects the users’ privacy.

The Identity Management Generic Enabler can be used by such a trusted party, which we also call an

identity provider (for SSO) and attribute broker. The Identity Management GE is a core Security GE

that provides services to its relying parties via open protocols such as OAuth and OASIS SAML v2.0

(Security Assertion Markup Language). Motivated by IoT, the enabler also covers new user attributes

such as things – IoT components (e.g. sensors) - owned or used by the user, as well as managing the

identity of the things themselves (attributes, current users, location, usage history, etc.).

Furthermore, the authentication feature of the enabler also covers the authentication of things to

users, services or other things as relying parties; and the authentication of users and services to other

things as relying parties. It also supports user SSO across multiple things.

2.6 Basic Concepts

We give you short definitions of key terms in the context of the Security Chapter in the Security

glossary. We now give you the extended versions of the definitions to improve your understanding of

the field before we tackle the next concepts:

 (Digital) Identity: The term identity and its meaning have been discussed
controversially in the identity community for many years. Until now, there is no
commonly agreed definition of that notion. However, for the purpose of this

http://oauth.net/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Glossary.Security
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Glossary.Security

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 9

document, the Identity Gang’s definition suits well (cf.
http://wiki.idcommons.net/Digital_Identity):

o A digital identity is “a digital representation of a set of Claims made by one
party about itself or another digital subject.”

o A digital identity is just one set of claims about a digital subject. For any given
digital subject there will typically be many digital identities.

o A digital identity can be created on the fly when a particular identity
transaction is desired or persistent in a data store to provide a representation
that can be referenced.

o A digital identity may contain claims made by multiple claimants.
o A digital identity may be signed by a digital identity provider to provide

assurance to a relying party.
 (Entity) Authentication: A simple definition is given by RFC 3588: the act of verifying

the identity of an entity (subject). In his book Trust In Cyberspace [1], Fred Schneider
adds the concept level of confidence to this definition: process of confirming a system
entity’s asserted identity with a specified, or understood, level of confidence. This
definition holds all necessary parts to examine authentication in broad sense. First of
all, it does not narrow the authentication to human users, but refers to a generic
system entity.

 Credential: A set of data presented as evidence of a claimed Identity and/or
entitlements, typically for authentication purposes.

 (Digital) Identity Provider: An identity provider is an entity that acts as an
authentication service to end requestors and as data origin authentication service to
service providers […]. Identity providers are trusted (logical) 3rd parties which need to
be trusted both by the requestor […] and the service provider which may grant access
to valuable resources and information based upon the integrity of the identity
information provided by the identity provider. (WS-Federation specification). The IdM
GE can play the role of Identity Provider. It is actually one of its most important roles
in FIWARE.

 Relying party (RP): An entity that relies on an identity representation or claim (e.g.
security token or assertion) issued by a requesting/asserting entity (e.g. Identity
Provider such as the Identity Management GE) within some request context, typically
for authentication purposes.

 Single Sign-On : From a Principal’s [user’s or application’s] perspective, single sign-on
encompasses the capability to authenticate with some system entity—[…] an Identity
Provider - and have that authentication honored by other system entities, [termed]
Service Providers [aka Relying Parties in this context] […]. Note that upon
authenticating with an Identity Provider, the Identity Provider typically establishes
and maintains some notion of local session state between itself and the Principal’s
user agent. Service Providers may also maintain their own distinct local session state
with a Principal’s user agent. (Liberty Alliance Project).

 Federated Identity Management (aka Federated Identity): Identity management
capabilities that allow the users of one enterprise environment (security domain, aka
realm) to access the services of another without registering them in the user
registries of the other. The WS-Federation specification gives a more formal
definition: A federation is a collection of realms that have established a producer-

http://wiki.idcommons.net/Digital_Identity
http://tools.ietf.org/html/rfc3588

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 10

consumer relationship whereby one realm can provide authorized access to a
resource it manages based on an identity, and possibly associated attributes, that are
asserted in another realm. Federation requires trust such that a relying party can
make a well-informed access control decision based on the credibility of identity and
attribute data that is vouched for by another realm. A practical application of this is
federated SSO (Single Sign-On): This allows users registered in one IdM X to
authenticate to another IdM Y without being previously registered in the IdM Y, and,
as result, to authenticate to all service providers trusting IdM Y. But Federated
identity goes beyond that. For instance, it also deals with cross-domain (e.g. between
IdM X’s domain and Y’s domain) user account provisioning (just-in-time provisioning),
exchange and mapping of user attributes, cross-domain authorization, etc.

 Authorization : Term used interchangeably for two close but distinct meanings
depending on the context:

o Authorization management: Process of assigning permissions to entities. Also
known as user-permission assignment. In the context of FIWARE, the IdM GE
typically handles that part; therefore the term is used with that meaning in
the context of the IdM, unless told otherwise.

o Authorization enforcement: Process of determining whether an entity should
be allowed to do something whenever the entity requests access, followed by
the actual granting of access or not. In the context of FIWARE, the
Authorization PDP GE determines whether access should be allowed, and
based on this PDP’s decision, the PEP Proxy GE actually grants or denies the
requested access to the requesting entity. See the Authorization PDP GE
(§3.2) and PEP Proxy GE (§ 3.3) sections for more information.

The next sections describe the higher-level concepts supporting the aforementioned features.

2.6.1 User Life-Cycle Management

The IdM offers tools for administrators to support the handling of user life-cycle functions. It reduces

the effort for account creation and management, as it supports the enforcement of policies and

procedures for user identity lifecycle management: user registration, user profile update, user profile

removal. Administrators can quickly configure customized pages for the inclusion of different

authentication providers, registration of tenant applications with access to user profile data and the

handling of error notifications. For end users, the IdM provides a convenient solution for registering

with applications since it gives them a means to re-use attributes like address, email or others, thus

allowing an easy and convenient management of profile information. Users and administrators can

rely on standardized solutions to allow user self-service features like:

 User registration/unregistration and login/logout,
 Checks for password strength,
 Password reset or renewal procedures or
 Secured storage of user data.

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 11

2.6.2 Flexible Authentication Providers

In addition to providing a native login, the Identity Provider (IdP) supports the integration of multiple

3rd party authentication providers. Foremost, it supports in a first step the configuration of preferred

identity providers to lower entry barriers for a native user registration to administrators and on user

side to link a preferred 3rd party IdP as alternative authentication provider to a native account. For

instance, using the SAML protocol, you can trust external SAML-compliant IdPs to authenticate the

users. Once the user is authenticated by a trusted external IdP, i.e. he was issued a valid SAML token,

the trusting IdP is able to validate that SAML token because it is signed by a trusted IdP, and

therefore authenticates the user. In this process, you can see that the user did not need to register

with the trusting IdP, therefore saving a lot of registration procedures.

2.6.3 Third-Party Login

3rd party login supports customers of the IdM to enhance the reach of their websites by means of

attracting users without forcing them to register new user accounts on their sites manually. 3rd party

login allows users to register to the customers’ sites with already existing digital identities from their

favorite 3rd party identity providers, such as Google, Facebook or Yahoo. Thus, 3rd party login lowers

the obstacles of registration processes and increases the number of successful business flows on the

customers’ sites.

2.6.4 Web Single Sign-On

As it is possible to configure several applications that shall be linked to his IdM, the main benefit for

users is a single sign-on (SSO) to all these applications.

2.6.5 Hosted User Profile Management

The IdM offers hosted user profile storage with specific user profile attributes. Applications do not

have to run and manage their own persistent user data storages, but instead can use the IdM user

profile storage as a SaaS (Software as a Service) offering.

2.6.6 Multi-Tenancy

A multi-tenancy architecture refers to a principle in software architecture where a single software

instance runs on a server, serving multiple client/customer organizations (tenants). Multi-tenancy

contrasts with a multi-instance architecture where separate and dedicated software instances (or

hardware systems) are set up for different client organizations. With a multi-tenant architecture, a

software application is designed to virtually partition its data and configuration, and each client

organization works with a customized virtual application instance. In a multi-tenancy environment,

multiple customers share the same application, running on the same operating system, on the same

virtualized hardware, with the same data storage mechanism. The distinction between the customers

is achieved during application design, thus customers do not share or see each other's data. The

concept allows each tenant to apply their own branding to login or registration UIs or for user self-

services to create a user experience that is aligned with the one offered in a tenant application.

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 12

2.7 Main Interactions

We here define the mandatory and optional interfaces, including API and protocol standards,

expected from IdM GE implementations; also who interacts with these interfaces, and possible

interactions.

2.7.1 High-level IdM GE Architecture

This section provides an overview of the Identity Management Generic Enabler (IdM GE)’s interfaces.

The general structure of a FIWARE IdM GE is sketched in the following figure:

Identity Management GE - High Level Architecture

The various modules and interactions shown on the figure are described in the next sections.

2.7.2 User interfaces

 End User portal: This is where end users self-register in the IdM with email address,
password, etc. This is typically implemented as a Web user interface. End users may
also review and modify their personal account data and maintain their privacy
settings using this portal.

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:Idm_ge.png
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:Idm_ge.png

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 13

 Application Developer Portal: This is where developers can register and manage
their applications, especially the client applications, including the application
credentials. With such credentials, the application is able to authenticate to the IdM
and participate in an authentication and authorization process (explained in more
details in the Authentication and Authorization Interfaces section later on) to get
access to a protected Service Provider. The developer can also manage access for his
application, and in particular, define application-specific roles.

2.7.3 Management APIs

 User management API: Provides a REST API to create user accounts, retrieve and
modify user attributes, delete user accounts. The interface must be compliant with
SCIM 2.0[2] REST API. The user management API is typically used by web applications
(or any kind of service provider), to retrieve extra information about their users.

 Application management API: REST API for managing applications (registering the
application, retrieving and modifying application data such as credentials, deleting
the application).

 Access Management API: REST API to manage roles globally or for a specific
application. There are two aspects of role management involved here: defining the
role permissions and assigning the roles to the users. The role permissions make up
an authorization policy that may be pushed to the Authorization PDP GE via its PAP
API. Please refer to Basic Concepts section of the Authorization PDP GE architecture
description for more information.

2.7.4 Authentication and Authorization Interfaces

This section focuses on the standards used and made mandatory for the IdM GE’s Authentication and

Authorization interfaces, and SSO by extension, with the help of message flows and reference code

examples, thus offering an easy implementation and usage of the Generic Enabler.

2.7.4.1 SAML

The Identity Management GE supports SAML 2.0[3] to provide federated identity, more specifically

federated Single Sign-On and user attribute exchange between IdM systems (FIWARE IdM GE and

other Identity Providers).

The advantages of SAML 2.0 are:

 Provides a means of exchanging data between security domains (i.e. the Identity
Management GE and its federated service providers (relying parties))

 Provides the SSO feature for the federated service providers to the Users
 Service providers do not need to authenticate users themselves
 Provides security features such as digital signatures to certify the integrity of the

exchanged data (and certified attributes)
 Standardized, non-proprietary protocol (e.g. also supported by Google)

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.AuthorizationPDP
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.AuthorizationPDP

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 14

The diagram below shows an example of a SAML interaction. Details of the request parameters and

flows can be found in the SAML specification [3]. On the picture, the SAML IDM may be in fact the IdM

GE in the context of FIWARE or another SAML Identity Provider that is federated with the FIWARE

IdM GE.

Identity Management GE - SAML Authentication Flow

2.7.4.1.1 Authentication Request
In a SAML Web-SSO flow, whenever the user requests access to a service provider (Relying Party in

the previous figure) for the first time or after his/her session cookie for this service has expired, in

other words, with no valid session cookie, the service redirects the user - the user agent (typically the

web navigator) - to a trusted Identity Provider (SAML IDM on the previous figure) with the following

SAML authentication request. The main parameters are the time when the request is emitted (Issue

Instant) and the service identifier as known by the IDM, so that the IDM knows, which relying party

the user is requesting a SAML token for; and therefore, where to redirect the user after

authentication, which cryptographic protection to apply on the SAML token, which SAML attributes

to include in the token, and so on. Please see an example of such Request below:

1. <samlp:AuthnRequest
2. xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
3. xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
4. ID="aaf23196-1773-2113-474a-fe114412ab72"
5. Version="2.0"
6. IssueInstant="2004-12-05T09:21:59Z"

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:SAML.jpg
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:SAML.jpg

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 15

7. AssertionConsumerServiceIndex="0"
8. AttributeConsumingServiceIndex="0">
9. <saml:Issuer>https://sp.example.com/SAML2</saml:Issuer>
10. <samlp:NameIDPolicy
11. AllowCreate="true"
12. Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"/></samlp:AuthnRequest>

2.7.4.1.2 Authentication Response
The user authenticates to the SAML IDM, and after successful authentication, the SAML IDM returns

a SAML Authentication Response that contains the SAML assertion (aka SAML token) signed by the

IDM. Besides the digital signature, it contains various statements, such as the time when it was

issued, the IDM identifier, the validity period, the Relying Party for which this token may be used, the

method of authentication used to obtain the token, etc. Please see an example below:

1. <samlp:Response
2. xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
3. xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
4. ID="identifier_2"
5. InResponseTo="identifier_1"
6. Version="2.0"
7. IssueInstant="2004-12-05T09:22:05Z"
8. Destination="https://sp.example.com/SAML2/SSO/POST">
9. <saml:Issuer>https://idp.example.org/SAML2</saml:Issuer>
10. <samlp:Status>
11. <samlp:StatusCode
12. Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
13. </samlp:Status>
14. <saml:Assertion
15. xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
16. ID="identifier_3"
17. Version="2.0"
18. IssueInstant="2004-12-05T09:22:05Z">
19. <saml:Issuer>https://idp.example.org/SAML2</saml:Issuer>
20. <ds:Signature
21. xmlns:ds="http://www.w3.org/2000/09/xmldsig#">...</ds:Signature>
22. <saml:Subject>
23. <saml:NameID
24. Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">3f7b3dcf-1674-4ecd-

92c8-1544f346baf8</saml:NameID>
25. <saml:SubjectConfirmation
26. Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
27. <saml:SubjectConfirmationData
28. InResponseTo="identifier_1"
29. Recipient="https://sp.example.com/SAML2/SSO/POST"
30. NotOnOrAfter="2004-12-05T09:27:05Z"/>
31. </saml:SubjectConfirmation>
32. </saml:Subject>
33. <saml:Conditions
34. NotBefore="2004-12-05T09:17:05Z"
35. NotOnOrAfter="2004-12-05T09:27:05Z">
36. <saml:AudienceRestriction>
37. <saml:Audience>https://sp.example.com/SAML2</saml:Audience>
38. </saml:AudienceRestriction>

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 16

39. </saml:Conditions>
40. <saml:AuthnStatement
41. AuthnInstant="2004-12-05T09:22:00Z"
42. SessionIndex="identifier_3">
43. <saml:AuthnContext>
44.

<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</s
aml:AuthnContextClassRef>

45. </saml:AuthnContext>
46. </saml:AuthnStatement>
47. </saml:Assertion>
48. </samlp:Response>

The IDM redirects the user with this Response to the Relying Party, i.e. the service provider. The

latter considers the user is properly authenticated because the SAML token received from the user is

signed and issued by a trusted IDM; and the token proves that the user has successfully

authenticated to this IDM.

2.7.4.2 OAuth2

The OAuth[4] standard is an authentication and authorization framework that initially addresses the

scenario where you have to allow a website or application (Consumer) to access protected

resources of an End User from a web service (Service Provider) via an API, without requiring this End

User to disclose their Service Provider credentials to the Consumer. Then the standard was extended

in its version 2.0 to address other more traditional use cases of web API authentication, in order to

use the same framework for most common scenarios in this domain. We now dare to say that OAuth

creates a generic methodology for web – especially RESTful – API authentication.

We use the term Service Provider here as an equivalent for the term Resource Server used in the RFC

of OAuth 2.0[4] mentioned above, because we think it makes more sense to FIWARE developers with

regards to what the IdM GE’s OAuth capabilities can do for him/her. The term Resource Server may

sound more restrictive in terms of possible use cases than OAuth actually addresses. For the record,

OAuth 1.0 used the term Service Provider instead as well. The same comment goes for Consumer, as

in Service Consumer, used here instead of the term Client in the OAuth 2.0 [4] specification.

OAuth 2.0 presents significant advantages compared to other delegation/authorization frameworks:

 A standardized protocol supported by a wider set of Service Providers (Facebook,
Google, LinkedIn…)

 The end user grants access for a consumer to a specific resource by providing an
access token to the consumer. The user may be offline, when the consumer accesses
the resource, i.e. actually makes use of the access token.

 The end user is in full control of who can access his/her resources. The delegation of
access can be limited in scope and time, and may be revoked any time by the user.

 Mitigation of security risks of sharing credentials with third party: Indeed, if not using
OAuth, for the same kind of requirement, the third party application (Consumer)
gives no choice to the user but to give away their credentials to the third party, with
the associated risks listed below:

o The third party (Consumer) is now storing the end user’s credentials. In
particular, it needs access to the user’s password in clear text in order to

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 17

authenticate on his behalf to the Service Provider. This is different from the
Service Provider’s side, where only a hash of the password is needed for
authenticating the user. As a result, if the third party is compromised, so are
your credentials.

o This solution works well for password authentication only. It is not compatible
with other forms of authentication, more complex, such as the ones relying
on a hardware device and/or biometrics.

o The third party gets the same access as you, i.e. unlimited access to all your
resources on the Service Provider.

o Revocation of the third party’s access by the user is painful, because it
requires a change of password. But then it removes access from every other
third party, which was not intended. Therefore, you have to go find and
replace the password with the new one for all these other third parties that
you still want to grant access to. In other words, the access revocation cannot
be done for a specific third party and only this one.

 Different grant types for different scenarios:
o Authorization Code grant: The most well-known when people think of OAuth,

used whenever you log on some website with the Facebook/Twitter/Google
login button. For example, if you click on the Google button on the website X (
Consumer), you are redirected to Google (OAuth server) for sign-in, then
asked if website X can access your Google name, email address, etc. (your
resources at Google). If you say yes, you are redirected to website X with a
special token called authorization code. Then the website X authenticates to
Google (OAuth server) and then exchanges the authorization code for the
actual access token, in the background, without the end-user being involved;
and uses this access token to get user info from Google API (Service Provider).
This process is explained in further details in the next section. You cannot fail
to notice that in this example, the OAuth server and Service Provider are both
Google’s. However, in FIWARE, the Service Provider may be completely
distinct from the IdM GE that plays the role of the OAuth Server, i.e. not
owned by the same organization at all.

o Implicit grant: This is similar to the Authorization code grant, except the
access token is returned to the Consumer right away, when the user is
redirected back, instead of the authorization code. Therefore, the step where
the Consumer authenticates to the OAuth server is skipped. As a result, the
authorization flow is simpler and the Consumer does not need to store its
credentials for authenticating itself to the OAuth server at all. This is
particularly useful for lightweight applications such as JavaScript embedded in
the browser that are not capable of storing/persisting secret credentials.

o Resource owner credentials grant: this is the old traditional way described
previously in the Mitigation of security risks of sharing credentials with third
party, where the Consumer asks the username and password of the end user
(Resource Owner in OAuth2 terms). This is only suitable for trusted clients
such as the user’s own mobile phone or PC. It can be used for other specific
use cases such as legacy applications for which implementing the
authorization code grant requires too much effort, but then you should be

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 18

perfectly aware of the security implications mentioned earlier and in the
OAuth specification.

o Client credentials grant: similar to the Resource owner credentials grant,
except the Consumer (i.e. Client in OAuth 2 terms) does not ask for the user’s
credentials, but uses its own. In other words, this addresses the traditional
client-server authentication scenario where the client authenticates to the
server (OAuth server in this case) on its own (with its own credentials). In the
context of OAuth, the client gets an access token for the particular Service
Provider specified in the authentication request, as a result.

Implementations of this GE must support at least the authorization code grant (§4.1 of OAuth 2.0[4]

specification) and resource owner password credentials grant (§4.3 of OAuth 2.0[4] specification).

Optionally implicit grant (§4.2 of OAuth 2.0[4] specification) may also be supported. IDM GEis should

also allow configuring trusted FIWARE components to access protected resources using (§4.4 of

OAuth 2.0[4] specification) client credentials grant.

Below it is shown an example of OAuth2 interaction for the Authorization Code grant, already

summarized in the previous paragraph. Details of the request parameters and flows can be found in

the protocol specification[4]. In the context of FIWARE, the OAuth Server role shown on the picture is

played by the IdM GE.

Identity Management GE - OAuth 2.0 Authentication Flow

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:OAuth_20.jpg
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:OAuth_20.jpg

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 19

2.7.4.2.1 Get Request Token

https://api.login.<xyz.com>/oauth/v2/get_request_token?oauth_nonce=ce2130523f788f313f76314e
d3965ea6

&oauth_timestamp=1202956957

&oauth_consumer_key=123456891011121314151617181920

&oauth_signature_method=plaintext

&oauth_signature=abcdef

&oauth_version=1.0

&xoauth_lang_pref="en-us"

&oauth_callback="http://yoursite.com/callback"

2.7.4.2.2 Get Request Token Response

 oauth_token=z4ezdgj

&oauth_token_secret=47ba47e0048b7f2105db67df18ffd24bd072688a

&oauth_expires_in=3600

&xoauth_request_auth_url=https%3A%2F%2Fapi.login.<xyz.com>%2Foauth%2Fv2%2Frequest_auth
%3Foauth_token%3Dz4ezdgj

&oauth_callback_confirmed=true

2.7.4.2.3 Get Access Token Request

 https://api.login.<xyz.com>/oauth/v2/request_auth?oauth_token=j5nyp6

2.7.4.2.4 Get Access Token Response

 http://yoursite.com/callback?oauth_verifierer=svmhhd

2.7.4.2.5 Exchange Token Request

https://api.login.<xyz.com>/oauth/v2/get_token?oauth_consumer_key=dj0yJmk9NG5USlVvTlZsZEpn
JmQ9WVdrOVQwa

zFPRUozTkc4bWNHozlNVE13TXprM01UUTBNZy0tJnM9Y29uc3VtZXJzZWNyZXQmeD1kNg--

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 20

&oauth_signature_method=PLAINTEXT

&oauth_version=1.0

&oauth_verifier=svmhhd

&oauth_token=gugucz&oauth_timestamp=1228169662

&oauth_nonce=8B9SpF

&oauth_signature=5f78507cf0acc38890cf5aa697210822e90c8b1c%261fa61b464613d0d32de80089f
e099caf34c9dac5

2.7.4.2.6 Exchange Token Response

oauth_token=A%3DqVDHXBngo1tEtzox.JMhzd91Rk99.39Al7hos3J80mm1j_3nGP4BiilL777vUj2rsPLj1c
Zw.srbisvw.cz42Lzmlxt

H0Kk9mkXilvS1ll5lNoMKXO5zy5YG4vO3fbGKewp7IESYMIdEi4Md7SroYiv6kBCEjqB4jXr0.8XsMvOlQgZ.
aKNKXwc2sv3n4BOZxs

54tzXV6rGNpEHZUaj9CovPUo44isTgs9FnLIKpXFCU4Jq1BB3_IOTFBNf1vtf5vSxaxe_L5dUhr.i15Hx0LTZ2
tlsWeDcActSGGBWVc

vytPF3cK9mDWy44baBgCVI3AEbGCqg.NGhDPqOh1ZHfKFtYlBZfG4xf2n..CdxcM5x4INxnVz2.biMkfhfk
w8haJuR0RaUY37lBxZ9z

2.7.4.3 Username/Password

Besides the authentication/authorization mechanisms described above, the basic

username/password authentication method is supported. The username and password are verified

against the IdM's backend user database.

2.8 Identity Management GE infrastructure

Beyond the modules and main interactions with other GEs and components described in the previous

sections, the IdM GE may depend on additional security components to secure access to the GE

interfaces. For example, the IdM GE requires a Public Key Infrastructure (PKI) to issue and manage

SSL certificates for transport-level security (authentication, confidentiality and integrity) of

communications with the IdM (e.g. over HTTPS), and message-level security such as digital signatures

of SAML assertions issued by the IdM.

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 21

The IdM GE may also depend on non-security components such as a mail server to communicate

with the users (e.g. for email address confirmation, password recovery...).

2.9 References

1. ↑ F. Schneider, Trust in Cyberspace, 1998. Trust in Cyberspace . National Academy
Press, Washington, DC, USA. 1998.

2. ↑ System for Cross-Domain Identity Management - http://tools.ietf.org/html/draft-
ietf-scim-core-schema-02 and http://tools.ietf.org/html/draft-ietf-scim-api-02

3. ↑ 3.0 3.1 Security Assertion Markup Language - http://saml.xml.org/saml-
specifications, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security#samlv20

4. ↑ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 IETF RFC 6749 - https://tools.ietf.org/html/rfc6749,
http://oauth.net

2.10 Detailed Specifications

The detailed API specification is available on the APIary website: http://docs.keyrock.apiary.io/

2.11 Re-utilised Technologies/Specifications

The Identity Management GEis are based on the following technologies:

 SAML 2.0 protocol,
 RFC 6749 - The OAuth 2.0 Authorization Framework,
 SCIM protocol.

2.12 Terms and definitions

This section comprises a summary of terms and definitions introduced during the previous sections.

It intends to establish a vocabulary that will be help to carry out discussions internally and with third

parties (e.g., Use Case projects in the EU FP7 Future Internet PPP). For a summary of terms and

definitions managed at overall FIWARE level, please refer to FIWARE Global Terms and Definitions

 Access control: is the prevention of unauthorized use of a resource, including the
prevention of use of a resource in an unauthorized manner (ITU-T Recommendation
X.800). More precisely, access control is the protection of resources against
unauthorized access; a process by which use of resources is regulated according to a
security policy and is permitted by only authorized system entities according to that
policy (RFC 2828).

 Account: A (user) account is “typically a formal business agreement for providing
regular dealings and services between principal sand business service providers.”
OASIS Security Assertion Markup Language (SAML).

 Authentication (AuthN): We adopted the following definition of authentication from

http://tools.ietf.org/html/draft-ietf-scim-core-schema-02
http://tools.ietf.org/html/draft-ietf-scim-core-schema-02
http://tools.ietf.org/html/draft-ietf-scim-api-02
http://saml.xml.org/saml-specifications
http://saml.xml.org/saml-specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20
http://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://oauth.net/
http://docs.keyrock.apiary.io/
http://saml.xml.org/saml-specifications
http://tools.ietf.org/html/rfc6749
http://www.simplecloud.info/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Glossary.Global
http://www.itu.int/rec/T-REC-X.800/en
http://www.itu.int/rec/T-REC-X.800/en
http://tools.ietf.org/html/rfc2828

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 22

RFC 3588: "Authentication is “the act of verifying the identity of an entity (subject)”.

TrustInCyberspace adds the term “level of confidence” to this definition:
Authentication is the process of confirming a system entity’s asserted identity with a
specified, or understood, level of confidence.” This definition holds all necessary
parts to examine authentication in broad sense. First of all it does not narrow the
authentication to human users, but refers to a generic “system entity”. See
authentication reference architecture description for a closer look at different
identities that could be authenticated.
Secondly it introduces the often neglected concept of “level of confidence” which
applies to each authentication of an identity. No computer program or computer
user can definitely prove the identity of another party. There is no authentication
method that can be secured against any possible identity-theft attack, be it physical
or non-physical. It is only possible to apply one or more tests, which, if passed, have
been previously declared to be sufficient to go on further. The problem is to
determine which tests are sufficient, and many such are inadequate.
The original Greek word originates from the word 'authentes'='author'. This leads to
the general field of claims and trust management, because authentication could also
mean to verify the “author” / issuer of any claim.
The confirmation or validation process of authentication is actually done by
presenting some kind of proof. This proof is normally derived from some kind of
secret hold by the principal. In its simplest form the participant and the
authentication authority share the same secret. More advanced concepts rely on
challenge/response mechanisms, preventing the secrets to be transmitted. Refer to
Authentication Technologies for a detailed list of authentication methods used today.
As stated above, each authentication method assures only some level of trust in the
claimed identity, but none could be definite. Therefore it makes sense to distinguish
the different authentication methods by an associated assurance level, stating the
level of trust in the authentication process.
As this assurance level depends not only on the technical authentication method, but
also on the overall computer system and even on the business processes within the
organization (provisioning of identities and credentials), there is no ranking of the
authentication methods here.

 Authentication protocol: "Over-the-wire authentication protocols are used to
exchange authentication data between the client and server application. Each
authentication protocol supports one or more authentication methods. The OATH
reference architecture provides for the use of existing protocols, and envisions the
use of extended protocols which support new authentication methods as they are
defined." (OATH)

 Federation: The term federation “is used in two senses - "The act of establishing a
relationship between two entities. An association comprising any number of service
providers and identity providers.” OASIS Security Assertion Markup Language (SAML).

“A federation is a collection of realms that have established a producer-consumer

http://tools.ietf.org/html/rfc3588

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 23

relationship whereby one realm can provide authorized access to a resource it
manages based on an identity, and possibly associated attributes, that are asserted in
another realm.
Federation requires trust such that a relying party can make a well-informed access
control decision based on the credibility of identity and attribute data that is vouched
for by another realm.” WS-Federation @ IBM
Remark: Federation according to WS-Federation @ IBM is similar to the concept of a
Circle of Trust.

 Identifier: Identifiers can be understood as a dedicated, publicly known attribute of
an identity that refers to that identity only. Typically, identifiers are valid within a
specific domain. Special types of identifiers are valid globally, due to the use of
popular domain naming and resolution protocols such as DNS, which implies
addressing capabilities to the identity. OASIS Security Assertion Markup Language
(SAML) defines identifier as follows:

An identifier is “a data object (for example, a string) mapped to a system entity that
uniquely refers to the system entity. A system entity may have multiple distinct
identifiers referring to it. An identifier is essentially a "distinguished attribute" of an
entity.”

 Identity (Digital): The term identity and its meaning have been discussed
controversially in the “identity community” for many years. Until now, there is no
commonly agreed definition of that notion. The IdM and AAA reference architecture
applies the following three definitions of identity.

The Identity Gang defines the term digital identity as follows:
A digital identity is “a digital representation of a set of Claims made by one party
about itself or another digital subject.”
The following comments were added:
A digital identity is just one set of claims about a digital subject. For any given digital
subject there will typically be many digital identities.
A digital identity can be created on the fly when a particular identity transaction is
desired or persistent in a data store to provide a representation that can be
referenced.
A digital identity may contain claims made by multiple claimants.
A digital identity may be signed by a digital identity provider to provide assurance to
a relying party.
This definition emphasizes two facts:
Normally, a principal (subject) has multiple digital identities or personas.
Identities are made out of attributes (claims).
Therefore, the scope of identity management in the reference architecture has two
viewpoints: For once it focuses on identities and personas itself, and on the other
side, it deals with the attributes of these identities and personas.
The Liberty Alliance Project (LAP) defines digital identity as follows:
Digital identity is “the essence of an entity. One’s identity is often described by one’s

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 24

characteristics, among which may be any number of identifiers. A Principal may wield
one or more identities.”
RSA uses the following definition of digital identity:
“Digital identity consists of an identity assertion and the characteristics, sometimes
called attributes that are collected or observed through our computerized
relationships. It is often as simple as a user name and password.”
The definition of RSA adds one important aspect to the identity discussion: Even the
simplest user name and password combinations without any additional attributes or
claims constitute an identity.

 Identity context: is “the surrounding environment and circumstances that determine
meaning of digital identities and the policies and protocols that govern their
interactions.” (Identity Gang)

 Identity management (IdM): comprises “the management of identity information
both internally and when it is passed from one entity to another.” Open Mobile
Alliance (OMA)

 Identity provider: The Open Mobile Alliance (OMA) defines the term identity
provider (IdP) as follows - An identity provider is “a special type of service provider
[…] that creates, maintains, and manages identity information for principals, and can
provide […] assertions to other service providers within an authentication domain (or
even a circle of trust).”

Another notion defines identity provider as “an agent that issues a digital identity
[that] is acting on behalf of an issuing Party.” (Identity Gang)
The following definition of identity provider descends from WS-Federation @ IBM:
“An identity provider is an entity that acts as an authentication service to end
requestors and as data origin authentication service to service providers […]. Identity
providers are trusted (logical) 3rd parties which need to be trusted both by the
requestor […] and the service provider which may grant access to valuable resources
and information based upon the integrity of the identity information provided by the
identity provider.”
The Identity Provider is part of the Identity Management infrastructure.

 Single sign-on: is “From a Principal’s perspective, single sign-on encompasses the
capability to authenticate with some system entity—[…] an Identity Provider - and
have that authentication honored by other system entities, [termed] Service
Providers […]. Note that upon authenticating with an Identity Provider, the Identity
Provider typically establishes and maintains some notion of local session state
between itself and the Principal’s user agent. Service Providers may also maintain
their own distinct local session state with a Principal’s user agent.” Liberty Alliance
Project (LAP)

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 25

3 FIWARE.OpenSpecification.Security.PEPProxy

Name FIWARE.OpenSpecification.Security.PEP Proxy Generic Enabler

Chapter Security,

Catalogue-Link to
Implementation

Wilma

Owner UPM , Alvaro Alonso

3.1 Preface

Within this document you find a self-contained open specification of a FIWARE generic enabler,

please consult as well the FIWARE Product Vision, the website on http://www.fiware.org and similar

pages in order to understand the complete context of the FIWARE platform.

3.2 Copyright

Copyright © 2016 by UPM. All Rights Reserved.

3.3 Legal Notice

Please check the following Legal Notice to understand the rights to use these specifications.

3.4 Overview

A Policy Enforcement Point (PEP) is a component that protects resources against unauthorized

access; unauthorized meaning: which does not comply with the access control policy applicable for

these resources. It represents the final piece of the larger suite of Identity and Access Management

GEs, of which we already mentioned the IdM and the Authorization PDP in previous sections. The

PEP is the one intercepting each access request to the resource, but relies on the IdM to authenticate

the request, and on the PDP to authorize it (deny of permit). In particular, on the contrary to the IdM

and PDP, the PEP understands the particular API requests and protocols for accessing the resource

under its protection. It also knows how to query the authentication and authorization APIs of the IdM

and PDP. Last but not least, the PEP knows where and how to extract which information from the

request that is necessary for authentication and authorization, and how to send it to the IdM and

PDP to do just that.

In the case of the PEP Proxy GE, the protected resource is a HTTP service (API), e.g. a REST service, for

which the GE plays the role of reverse proxy and is deployed as such. In this configuration, it is critical

that any access request goes through the PEP proxy before reaching the protected service. To

prevent any bypass, the application developer, usually with the help of the system and network

administrators of the IT infrastructure where the application is deployed, makes sure that the proper

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Category:Security
http://catalogue.fiware.org/enablers/pep-proxy-wilma
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/UPM
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Alvaro_Alonso
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Product_Vision
http://www.fiware.org/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/UPM
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Open_Specification_Legal_Notice_%28implicit_patents_license%29

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 26

perimeter security controls, e.g. firewall rules, are in place, and the application server (where the

protected application is deployed) is not listening on ports reachable from outside except the one

used by the PEP proxy. If the PEP proxy is deployed locally on the same host, then the application

server only needs to listen locally. If the PEP Proxy is deployed on a different network from the

application, it may result in communications going from the PEP Proxy server to the application

server over an untrusted or uncontrolled network, e.g. Internet. In this case, it is critical to set up a

secure channel between the two servers or two networks to protect the confidentiality and integrity

of the communications, e.g. with TLS. We recommend that security-unaware developers avoid this

last situation whenever possible.

Besides the PEP Proxy’s own TLS server certificate setup, the developer must configure the PEP Proxy

with the HTTPS URL to the IdM GE for token validation. As the communications with the IdM GE must

be secured, the PEP proxy must be configured to trust the IdM GE’s TLS certificate or the issuer

certificate, i.e. a Certificate Authority (CA). Likewise, the PEP Proxy configuration must include the

HTTPS URL to the Authorization PDP GE for authorization and trust the PDP GE’s certificate or issuing

CA. Besides, the developer must configure the URL to the protected service API endpoint, so that the

PEP Proxy knows where to forward the requests.

Furthermore, we assume that the developer has registered his application in the IdM GE, including

the credentials for authenticating the application, and he/she (or any application security

administrator in the developer’s organization) has configured an authorization policy for this

application (REST service), either via the graphical interface of the Developer Portal, calling the

Authorization PDP GE’s PAP API as backend; or sending (with a REST client) the policy directly in

XACML format to the same PAP API. Please refer to the Authorization PDP GE (Overview) section for

more information.

The PEP proxy GE is now able to intercept each incoming access request to the service and perform

the authentication and authorization workflow according to the figure below:

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.AuthorizationPDP
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:PEP_interactions.png

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 27

PEP Proxy - Architecture overview

1. It is expected that the requester has authenticated to the IdM GE using OAuth2 flow,
and got an access token from the IdM GE as a result. (For more information, please
refer to the Identity Management GE architecture description.)

2. The requester sends the API request with the token included as the PEP Proxy GE
expects, that is to say in a specific HTTP header in a specific format – depending on
the GE implementation and configuration. For example, the PEP Proxy GE reference
implementation supports access tokens in the Authorization header as defined by the
OAuth 2.0 Bearer Token standard (IETF RFC 6750). In any case, In order to protect the
confidentiality of access tokens in transit, the access request must be sent by the
requester to the PEP over TLS (HTTPS), following the MUST requirement in Section
10.3 of OAuth 2.0 specification (IETF RFC 6749). This implies that the PEP proxy must
have TLS enabled with a valid server certificate.

3. When the PEP Proxy receives an access request, it extracts the access token from the
specific request header mentioned previously and sends it to the IdM GE for
validation. If it is valid, the IdM GE returns the validation result and other token-
related information, such as information about the authenticated user (e.g. user
role). If the token turns out not valid, the request is not authenticated therefore
denied.

4. The PEP Proxy sends to the Authorization PDP API an XACML authorization decision
request that contains this IdM-issued information with other information about the
access request: Requested resource ID, action ID (HTTP method), etc. For instance,
for a REST API request, the PEP Proxy sends the URL requested for the resource, the
HTTP method for the action ID, and authenticated user attributes. The Authorization
PDP GE computes the authorization decision – Permit or Deny – and returns it to the
PEP

5. If PDP’s decision is Permit, the PEP forwards the API request to the protected service,
and forwards the response back to the requester. If the decision was Deny, the PEP
denies the request, for instance replies with a HTTP response 403 (Forbidden).

3.5 Basic Concepts

The main concepts of this section are:

 Policy Enforcement Point (PEP) that this PEP Proxy GE represents;
 Policy Decision Point (PDP), that this PEP Proxy enforces decisions of.

Please refer to the Basic Concepts sub-section of the Authorization PDP GE architecture description

for more information.

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.IdentityManagement
http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc6749
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.AuthorizationPDP
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.AuthorizationPDP

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 28

3.6 Main Interactions

The figure in the Overview section gave an overview of the GE’s main interactions. To summarize on

the subject, we can say that the PEP Proxy GE interacts with two components in order to check

authentication and authorization:

 Identity Management GE: When PEP Proxy receives a request, it retrieves the
authentication token from the specific header and validates it with the Identity
Management GE.

 Authorization PDP GE: If the component is configured to check not only the
authentication but also the authorization, PEP Proxy will check with Authorization
PDP if the user (from the token) has the correct permissions to access the resource
specified in the request.

3.7 Basic Design Principles

 Compatibility with REST APIs;
 HTTP Reverse-proxy capabilities;
 Gradual authentication and authorization with following options:

o Simple reverse-proxy functionality for whitelist of URLs (no
authentication/authorization);

o Authentication only: the step involving the PDP GE may be skipped for some
use case;

o Full authentication and authorization: includes the step involving the PDP GE.
 Transport-Layer Security support:

o As a server: for securing communications between clients and the PEP Proxy;
o As a client: for securing communications between the PEP Proxy and the IdM

GE and PDP GE.
 OAuth Bearer token (RFC 6750) support.

3.8 Detailed Specifications

3.8.1 Open API Specification

 PEPProxy.Open API Specification

3.8.2 References

 FIWARE.OpenSpecification.Security.IdentityManagement
 FIWARE.OpenSpecification.Security.AuthorizationPDP
 [OAuth2] OAuth 2.0 Authorization Framework
 [XACML3] XACML 3.0

http://tools.ietf.org/html/rfc6750
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Security.PEPProxy.Open_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Security.IdentityManagement
http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Security.AuthorizationPDP_R5
http://tools.ietf.org/html/draft-ietf-oauth-v2-31
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#CURRENT

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 29

3.9 Re-utilised Technologies/Specifications

The PEP Proxy GE is based on RESTful Design Principles. The technologies and specifications used in

this GE are:

 RESTful web services
 HTTP/1.1
 OAuth 2.0
 JSON and XML data serialization formats.

3.10 Terms and definitions

This section comprises a summary of terms and definitions introduced during the previous sections.

It intends to establish a vocabulary that will be help to carry out discussions internally and with third

parties (e.g., Use Case projects in the EU FP7 Future Internet PPP). For a summary of terms and

definitions managed at overall FIWARE level, please refer to FIWARE Global Terms and Definitions

 Access control: is the prevention of unauthorized use of a resource, including the
prevention of use of a resource in an unauthorized manner (ITU-T Recommendation
X.800). More precisely, access control is the protection of resources against
unauthorized access; a process by which use of resources is regulated according to a
security policy and is permitted by only authorized system entities according to that
policy (RFC 2828).

 Account: A (user) account is “typically a formal business agreement for providing
regular dealings and services between principal sand business service providers.”
OASIS Security Assertion Markup Language (SAML).

 Authentication (AuthN): We adopted the following definition of authentication from
RFC 3588: "Authentication is “the act of verifying the identity of an entity (subject)”

TrustInCyberspace adds the term “level of confidence” to this definition:
Authentication is the process of confirming a system entity’s asserted identity with a
specified, or understood, level of confidence.” This definition holds all necessary
parts to examine authentication in broad sense. First of all it does not narrow the
authentication to human users, but refers to a generic “system entity”. See
authentication reference architecture description for a closer look at different
identities that could be authenticated.
Secondly it introduces the often neglected concept of “level of confidence” which
applies to each authentication of an identity. No computer program or computer
user can definitely prove the identity of another party. There is no authentication
method that can be secured against any possible identity-theft attack, be it physical
or non-physical. It is only possible to apply one or more tests, which, if passed, have
been previously declared to be sufficient to go on further. The problem is to
determine which tests are sufficient, and many such are inadequate.
The original Greek word originates from the word 'authentes'='author'. This leads to
the general field of claims and trust management, because authentication could also

http://oauth.net/2/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Glossary.Global
http://www.itu.int/rec/T-REC-X.800/en
http://www.itu.int/rec/T-REC-X.800/en
http://tools.ietf.org/html/rfc2828
http://tools.ietf.org/html/rfc3588

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 30

mean to verify the “author” / issuer of any claim.
The confirmation or validation process of authentication is actually done by
presenting some kind of proof. This proof is normally derived from some kind of
secret hold by the principal. In its simplest form the participant and the
authentication authority share the same secret. More advanced concepts rely on
challenge/response mechanisms, preventing the secrets to be transmitted. Refer to
Authentication Technologies for a detailed list of authentication methods used today.
As stated above, each authentication method assures only some level of trust in the
claimed identity, but none could be definite. Therefore it makes sense to distinguish
the different authentication methods by an associated assurance level, stating the
level of trust in the authentication process.
As this assurance level depends not only on the technical authentication method, but
also on the overall computer system and even on the business processes within the
organization (provisioning of identities and credentials), there is no ranking of the
authentication methods here.

 Authentication protocol: "Over-the-wire authentication protocols are used to
exchange authentication data between the client and server application. Each
authentication protocol supports one or more authentication methods. The OATH
reference architecture provides for the use of existing protocols, and envisions the
use of extended protocols which support new authentication methods as they are
defined." (OATH)

 Federation: The term federation “is used in two senses - "The act of establishing a
relationship between two entities. An association comprising any number of service
providers and identity providers.” OASIS Security Assertion Markup Language (SAML)

“A federation is a collection of realms that have established a producer-consumer
relationship whereby one realm can provide authorized access to a resource it
manages based on an identity, and possibly associated attributes, that are asserted in
another realm.
Federation requires trust such that a relying party can make a well-informed access
control decision based on the credibility of identity and attribute data that is vouched
for by another realm.” WS-Federation @ IBM
Remark: Federation according to WS-Federation @ IBM is similar to the concept of a
Circle of Trust.

 Identifier: Identifiers can be understood as a dedicated, publicly known attribute of
an identity that refers to that identity only. Typically, identifiers are valid within a
specific domain. Special types of identifiers are valid globally, due to the use of
popular domain naming and resolution protocols such as DNS, which implies
addressing capabilities to the identity. OASIS Security Assertion Markup Language
(SAML) defines identifier as follows:

An identifier is “a data object (for example, a string) mapped to a system entity that
uniquely refers to the system entity. A system entity may have multiple distinct

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 31

identifiers referring to it. An identifier is essentially a "distinguished attribute" of an
entity.”

 Identity (Digital): The term identity and its meaning have been discussed
controversially in the “identity community” for many years. Until now, there is no
commonly agreed definition of that notion. The IdM and AAA reference architecture
applies the following three definitions of identity.

The Identity Gang defines the term digital identity as follows:
A digital identity is “a digital representation of a set of Claims made by one party
about itself or another digital subject.”
The following comments were added:
A digital identity is just one set of claims about a digital subject. For any given digital
subject there will typically be many digital identities.
A digital identity can be created on the fly when a particular identity transaction is
desired or persistent in a data store to provide a representation that can be
referenced.
A digital identity may contain claims made by multiple claimants.
A digital identity may be signed by a digital identity provider to provide assurance to
a relying party.
This definition emphasizes two facts:
Normally, a principal (subject) has multiple digital identities or personas.
Identities are made out of attributes (claims).
Therefore, the scope of identity management in the reference architecture has two
viewpoints: For once it focuses on identities and personas itself, and on the other
side, it deals with the attributes of these identities and personas.
The Liberty Alliance Project (LAP) defines digital identity as follows:
Digital identity is “the essence of an entity. One’s identity is often described by one’s
characteristics, among which may be any number of identifiers. A Principal may wield
one or more identities.”
RSA uses the following definition of digital identity:
“Digital identity consists of an identity assertion and the characteristics, sometimes
called attributes that are collected or observed through our computerized
relationships. It is often as simple as a user name and password.”
The definition of RSA adds one important aspect to the identity discussion: Even the
simplest user name and password combinations without any additional attributes or
claims constitute an identity.

 Identity context: is “the surrounding environment and circumstances that determine
meaning of digital identities and the policies and protocols that govern their
interactions.” (Identity Gang)

 Identity management (IdM): comprises “the management of identity information
both internally and when it is passed from one entity to another.” Open Mobile
Alliance (OMA)

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 32

 Identity provider: The Open Mobile Alliance (OMA) defines the term identity
provider (IdP) as follows - An identity provider is “a special type of service provider
[…] that creates, maintains, and manages identity information for principals, and can
provide […] assertions to other service providers within an authentication domain (or
even a circle of trust).”

Another notion defines identity provider as “an agent that issues a digital identity
[that] is acting on behalf of an issuing Party.” (Identity Gang)
The following definition of identity provider descends from WS-Federation @ IBM:
“An identity provider is an entity that acts as an authentication service to end
requestors and as data origin authentication service to service providers […]. Identity
providers are trusted (logical) 3rd parties which need to be trusted both by the
requestor […] and the service provider which may grant access to valuable resources
and information based upon the integrity of the identity information provided by the
identity provider.”
The Identity Provider is part of the Identity Management infrastructure.

Single sign-on: is “From a Principal’s perspective, single sign-on encompasses the
capability to authenticate with some system entity—[…] an Identity Provider - and
have that authentication honored by other system entities, [termed] Service
Providers […]. Note that upon authenticating with an Identity Provider, the Identity
Provider typically establishes and maintains some notion of local session state
between itself and the Principal’s user agent. Service Providers may also maintain
their own distinct local session state with a Principal’s user agent.” Liberty Alliance
Project (LAP)

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 33

4 FIWARE.OpenSpecification.Security.AuthorizationPDP

Name FIWARE.OpenSpecification.Security.AuthorizationPDP

Chapter Security,

Catalogue-Link to
Implementation

AuthZForce

Owner THALES , Cyril Dangerville (TS)

4.1 Preface

Within this document you find a self-contained open specification of a FIWARE generic enabler,

please consult as well the FIWARE Product Vision, the website on http://www.fiware.org and similar

pages in order to understand the complete context of the FIWARE platform.

4.2 Copyright

Copyright © 2014-2016 by THALES.

4.3 Legal Notice

Please check the following Legal Notice to understand the rights to use these specifications.

4.4 Overview

The Authorization PDP Generic Enabler provides two main features:

 Authorization policy decision evaluation: This is the main feature of this GE as a PDP.
Indeed, PDP stands for Policy Decision Point and its main feature consists to evaluate
authorization decisions based on XACML policies and attributes related to a given
access request (e.g. requester’s identity, requested resource, requested action),
following the policy evaluation logic defined in the XACML standard. This feature is
provided to external clients through a REST API that we call the PDP API, where PDP
is short for the term Policy Decision Point defined by the XACML standard.

 Authorization policy administration: creation, retrieval, update and removal of
XACML policies. This feature is provided to external clients through a REST API that
we call the PAP API, where PAP is short for the term Policy Administration Point
defined by the XACML standard. This feature is necessary to support the previous
feature. Indeed, it allows policy administrators (such as application developers
potentially) to configure the XACML policies to be evaluated by the GE when calling
the PDP API.

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Category:Security
http://catalogue.fiware.org/enablers/authorization-pdp-authzforce
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Thales_sv
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Product_Vision
http://www.fiware.org/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Thales_sv
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Open_Specification_Legal_Notice_(implicit_patents_license)

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 34

For more information on XACML, refer to the Basic Concepts section.

To have an overview of how the Authorization PDP GE can be used in FIWARE, especially by

developers, and how it fits in the FIWARE architecture, please consider the figure below.

Authorization PDP - Architecture overview

To understand the various interactions going on in this picture, we will go through a typical scenario.

Let us follow a typical scenario where some developer wants to define an authorization policy for

his/her service, e.g. a RESTful web service, and then enforce this policy to control access to his/her

application. We assume that the developer has registered his/her service like any other application in

the Identity Management GE via the Application Developer Portal (see the Identity Management GE

Architecture description for more information).

1. Via the Application Developer Portal, the developer can define an authorization
policy for his/her service using a GUI (graphical user interface). In this case, we can
say that the developer plays the role of Application Security Administrator pictured
on the above diagram. This role may be played by another person in the developer’s
organization as well, such as a security officer or security architect working with the
developer on the application. In any case, with the Developer Portal, this App
Security Admin may define user roles specific to his/her service with the associated
permissions expressed for example in a RESTful way (a permission HTTP method, and
a resource URL path, ‘*’ used as a wildcard):

1. Role ‘Reader’ can only do GET actions on resource /docs/*
2. Role ‘Publisher’ can only do GET, POST and PUT on resource /docs/*
3. Role ‘Administrator’ can do any operation on any resource (/*).

2. When the App Security Admin (e.g. developer) has defined the access policy and
decides to save and apply it, the IdM GE’s Access management module is called by
the Developer Portal to process this policy. The module converts into a XACML policy
and sends it to the PAP API of the Authorization PDP GE.

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.IdentityManagement
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.IdentityManagement

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 35

3. The developer (or App Security Admin in general) may assign each of the defined
roles to users of his/her choice.

4. The developer deploys an instance of the PEP Proxy GE in front of his/her service
(pictured as Protected Rest Service on the diagram above), as a HTTP reverse-proxy,
and configures it with the URL to the IdM GE, the URL to the Authorization PDP GE
(more specifically the PDP API endpoint), and the URL to the service API endpoint of
his service. Note that in order to protect the communications with the PEP, especially
on a production system, it is necessary to enable SSL on the PEP and therefore
configure the SSL certificate and other SSL settings. For more information on this
part, please refer to the PEP Proxy GE architecture description.

The developer publishes the endpoint of the PEP Proxy instance as the new endpoint of his/her

service, and makes sure it cannot be bypassed, usually by means of network filtering (e.g. firewall).

Everything is now in place to enforce access control. From this point forward, every access request to

the service (REST service in this case) goes like this:

1. We assume that the access requester got a valid access token from the IdM GE
before sending any request. It gets this token from the IdM GE (corresponding to the
URL defined in the PEP configuration earlier). For more information on the process by
which the requester may obtain an access token from the IdM, please refer to the
Identity Management GE Architecture description.

2. The access requester sends a request to the new published endpoint of protected
service, which happens to be the PEP proxy, with the access token included in a
specific HTTP header. For more details on this step, please refer to the PEP Proxy GE
architecture description.

3. The request is intercepted by the PEP Proxy. If the request does not have an access
token (in the HTTP header) as expected by the PEP Proxy, the request is considered
not authenticated and rejected by the PEP. Otherwise, the PEP extracts the access
token from the header and sends it in a request to the IdM to validate the token,
using the IdM token API. If the token is valid, the IdM replies with extra authorization
info about the token, including the authenticated requester’s attributes known by
the IdM, e.g. ID and role. For more details on this step, please refer to the PEP Proxy
GE architecture description.

4. The PEP sends a XACML Request to the Authorization PDP API with all this
information about the requester and the access request, such as the requested
action (HTTP method) and resource (URL path). The Authorization PDP GE evaluates
the policy (defined by the developer and pushed via the Authorization PDP GE’s PAP
API earlier) for the input XACML Request received from the PEP. At the end of the
evaluation, the PDP GE finally returns an authorization decision (Permit or Deny) to
the PEP.

5. Depending on this decision, the PEP blocks (if Deny decision) or forwards (if Permit
decision) the request to the service (REST service in this case). The application replies
and the PEP forwards back the response to the requester, at last.

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.PEPProxy
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.IdentityManagement
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.PEPProxy
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.PEPProxy
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.PEPProxy
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.PEPProxy

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 36

If you want to go into further details on the main interactions between the Authorization PDP GE and

the other components shown on the picture above, please refer to the dedicated section Main

Interactions.

4.5 Basic Concepts

It is useful at this point to give a quick overview of the OASIS XACML standard as it defines the

essential parts of the GE features and APIs.

We can summarize it in three parts:

 Policy language: XACML defines a XML data model for defining authorization policies,
as well as the logic to follow to evaluate them in a given access request context. Rule
, Policy (set of Rules), and PolicySet (set of Policy elements) constitute the main
elements of the model. In short, a rule consists of a condition on the access request
attributes, and a decision – Permit or Deny - to apply if the condition holds true for
the request. A Policy (resp. PolicySet) combines multiple Rules (resp. Policies) and
therefore multiple decisions together in various ways (defined in the standard) to
make the final decision.

 Request-Response protocol: The XACML standard also defines a XML data model for
the authorization decision request (XACML Request) that a PEP (described later)
creates with all the necessary access request attributes and sends to the PDP API for
evaluation; and the resulting response (XACML Response) that contains the final
decision (Permit or Deny).

 Architecture framework: The XACML standard also defines a high-level architecture
that we are re-using and adapting in FIWARE Security Chapter, including the
following major components:

o Policy Decision Point (PDP): The PDP provides authorization decisions based
on various attributes given at runtime by PEPs about each incoming access
request, and XACML policies that define multiple rules checking whether
those attributes (and therefore the access request) satisfy certain conditions.
The attributes provided by the PEP (see below) about each access request
may be attributes about the request itself: The request URL, the HTTP
method; about the requester: The access requester ID, requester role. The
PDP may add attributes to the context on its own, such as the current date
and time when the requested is received. By replacing all the attribute
references in the policy with these input values, PDP is able to evaluate the
policy and determine whether the access should be granted.

o Policy Administration Point (PAP): The PAP provides an interface for policy
administrators to manage XACML policies to be enforced by the PDP. This
endpoint is provided by the Authorization PDP GE as well as a RESTful API
interface. The IdM GE also provides a form of graphical interface for the PAP,
as part of its access management feature. This feature actually uses the
Authorization PDP GE’s PAP API as backend.

o Policy Enforcement Point (PEP): The PEP protects a given resource/service
API – typically a REST API in FIWARE – and enforces the decision of the PDP
whether to allow or deny a particular access request to the API. The PEP is

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 37

worth mentioning here as it is the main component interacting with the PDP
to control access to resources.

The PEP can be deployed as a security proxy that intercepts all HTTP(S) traffic to the Resource Server.

This kind of PEP is specified in FIWARE as a GE (with associated Reference Implementation): The PEP

Proxy GE. Therefore, please refer to the PEP Proxy GE architecture description for more information.

In some more complex use cases, e.g. with non-web services, it is not possible to delegate the PEP

function to the PEP Proxy GE; it is better to develop a custom one, therefore the Custom PEP shown

in the diagram of the Overview section.

4.6 Main Interactions

The main interactions are illustrated in the figure below, already shown in the overview but

reminded here as we go into further details on the interactions with the GE and other components in

FIWARE.

Authorization PDP - Main Interactions

 Interactions with the GE’s PAP API : The RESTful PAP API is used by the Identity
Management GE to have the access policies – defined by developers for their
applications via the Developer Portal (graphical form of PAP) – pushed to the PDP GE
in order to be enforced by the PDP. The IdM may also use it to store and retrieve the
policies managed via the portal. The PAP API may also be used directly by any policy
administration client (or any REST client whatsoever) that has been developed
specifically for some use case, to address specific aspects of access control policy that
the IdM GE’s developer portal cannot address. For example, the portal does not
address the full complexity and expressiveness of XACML, and it is not its goal. But it
is likely that some use cases will need to define policies that require specific features

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Security.PEPProxy
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/File:AuthorizationPDP.Architecture.FMC.Block.png

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 38

of XACML (functions, combining algorithms ...) that are not supported by the IdM
GE’s portal.

The PAP API supports the usual HTTP methods (GET, PUT...) to create, read, update
and delete policies. The data representation type is XML. The main type of XML
element used in requests/responses is the XACML PolicySet as defined in the XACML
schema.

 Interactions with the GE’s PDP API : This REST API is used by PEPs such as the PEP
Proxy GE for REST services, or a Custom PEP for other types of service (depending on
the use case requirements or constraints), to request an authorization decision from
the policy evaluation engine. The PEP sends a HTTP POST request to the API with a
XACML Request (defined by the XACML schema) as body of the request. This request
should contain all the necessary authorization attributes, mentioned in the policy
enforced, for the PDP to be able to evaluate this policy. The PDP returns a XACML
Response (defined by the XACML schema) that contains the Permit or Deny decision.
It may also return Indeterminate if an error occurred during evaluation, for example,
if some attribute was missing (not provided by the PEP). You can also define the
policy in such a way that the PDP returns Deny instead of Indeterminate if such an
error occurs, to avoid any issue on the PEP side.

4.7 Basic Design Principles

 The architecture complies with the XACML standard.
 All APIs (XACML Policy Administration API, XACML PDP API) are RESTful APIs.
 The format of access control policies managed by the PAP and enforced by the PDP is

defined by the XACML standard.
 The PDP computes access decisions based on policies according to the XACML

standard rules for policy evaluation (XACML engine).
 The PDP and PAP should support multi-tenancy.

4.8 References

 OAuth 2.0 Authorization Framework
 OASIS XACML 3.0

4.9 Detailed Specifications

Please refer to FIWARE Authorization PDP API Specification for a detailed specification of the

Authorization PDP Generic Enabler's interfaces.

4.10 Re-utilised Technologies/Specifications

The GE specification is based on the following:

http://tools.ietf.org/html/draft-ietf-oauth-v2-31
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://authzforce.github.io/fiware/authorization-pdp-api-spec/5.2/

Future Internet Core Platform

D.17.2.2: FIWARE GE Open Specifications (Security Chapter) Page 39

 OASIS - eXtensible Access Control Markup Language (XACML) ,
 W3C - Web Application Description Language (WADL)
 IETF - RFC 4122: A Universally Unique IDentifier (UUID) URN Namespace.

4.11 Terms and definitions

This section comprises a summary of terms and definitions introduced during the previous sections.

It intends to establish a vocabulary that will be help to carry out discussions internally and with third

parties (e.g., Use Case projects in the EU FP7 Future Internet PPP). For a summary of terms and

definitions managed at overall FIWARE level, please refer to FIWARE Global Terms and Definitions

 Access control: is the prevention of unauthorized use of a resource, including the
prevention of use of a resource in an unauthorized manner ((ITU-T Recommendation
X.800). More precisely, access control is the protection of resources against
unauthorized access; a process by which use of resources is regulated according to a
security policy and is permitted by only authorized system entities according to that
policy (RFC 2828).

 XACML: OASIS standard for eXtensible Access Control Markup Language (XACML 3.0).
 Policy Decision Point (PDP): The PDP provides authorization decisions based on

various attributes and XACML policies. Attributes may come from the access request
context as provided by PEPs (see below), such as the request URL, the HTTP method
and especially the OAuth access token.

 Policy Enforcement Point (PEP): the PEP protects a given resource/service provider’s
API – typically a REST API in FIWARE - and enforces the decision of the PDP whether
to allow or deny a particular access request from a client to the API.

 Policy Administration Point (PAP): the PAP provides an interface for policy
administrators to manage XACML policies to be enforced by the PDP.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.w3.org/Submission/wadl/
http://www.ietf.org/rfc/rfc4122.txt
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Glossary.Global
http://www.itu.int/rec/T-REC-X.800/en
http://www.itu.int/rec/T-REC-X.800/en
http://tools.ietf.org/html/rfc2828
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

