
FIWARE Advanced Middleware KIARA
Documentation

Release 0.4.0

eProsima, DFKI, ZHAW

October 20, 2016

Manuals

1 KIARA User and Programmer Guide 3
1.1 Introduction . 3
1.2 User guide . 4
1.3 Programmers guide . 4

i

ii

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

KIARA Advanced Middleware is a Java based communication middleware for modern, efficient and secure appli-
cations.

It is an implementation of the FIWARE Advanced Middleware Generic Enabler.

This first release focuses on the basic features of RPC communication:

• Modern Interface Definition Language (IDL) with a syntax based on the Corba IDL.

• Easy to use and extensible Application Programmer Interface (API).

• IDL derived operation mode providing Stubs and Skeletons for RPC Client/Server implementations.

• Synchronous and Asynchronous function calls.

Later versions will include additional features like:

• Application derived and Mapped operation mode providing dynamic declaration of functions and data type
mapping.

• Advanced security features like field encryption and authentication.

• Additional communication patterns like publish/subscribe.

KIARA Advanced Middleware is essentially a library which is incorporated into the developed applications, the
requirements are rather minimal. In particular it requires no service running in the background.

• Manuals

Please also check out our Github repository

Manuals 1

https://github.com/FIWARE-Middleware/KIARA

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

2 Manuals

CHAPTER 1

KIARA User and Programmer Guide

Date: 18th January 2016

• Version: 0.4.0

• Latest version: latest

Editors:

• eProsima - The Middleware Experts

• DFKI - German Research Center for Artificial Intelligence

• ZHAW - School of Engineering (ICCLab)

Copyright 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

1.1 Introduction

KIARA Advanced Middleware is a Java based communication middleware for modern, efficient and secure appli-
cations. It is an implementation of the FIWARE Advanced Middleware Generic Enabler.

This first release focuses on the basic features of RPC communication:

• Modern Interface Definition Language (IDL) with a syntax based on the Corba IDL.

• Easy to use and extensible Application Programmer Interface (API).

• IDL derived operation mode providing Stubs and Skeletons for RPC Client/Server implementations.

• Synchronous and Asynchronous function calls.

Later versions will include additional features like:

• Application derived and Mapped operation mode providing dynamic declaration of functions and data type
mapping.

• Advanced security features like field encryption and authentication.

• Additional communication patterns like publish/subscribe.

KIARA Advanced Middleware is essentially a library which is incorporated into the developed applications, the
requirements are rather minimal. In particular it requires no service running in the background.

1.1.1 Background and Detail

This User and Programmers Guide relates to the Advanced Middleware GE which is part of the Interface to
Networks and Devices (I2ND) chapter. Please find more information about this Generic Enabler in the related
Open Specification and Architecture Description.

3

http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

1.2 User guide

These products are for programmers, who will invoke the APIs programmatically and there is no user interface as
such.

See the programmers guide section to browse the available documentation.

1.3 Programmers guide

1.3.1 Middleware Operation Modes

The KIARA Advanced Middleware supports multiple operation modes. From traditional IDL-based approaches
like Corba, DDS, Thrift up to newer approaches which start with the application data structure and automatically
create the wire format.

We therefore differentiate three operation modes.

IDL derived operation mode

The IDL derived operation mode is similar to the traditional middleware approaches.

Based on the IDL definition we generate with a precompiler stub- and skeleton-classes, which have to be used by
the application to implement the server and client (or Pub/Sub) application parts.

Prerequisite: IDL definition

Generated: Stubs and Skeletons (at compile time) which have to be used by the application

Examples: Corba, DDS, Thrift, ...

Application derived operation mode

This mode is typical for some modern (e.g. RMI, WebService,...) frameworks. Based on an application specific
interface definitions, the framework automatically generates Server- and Client-Proxy-Classes, which serialize the
application internal data structures and send them over the wire. Using Annotations, the required serialization and
transport mechanisms and type mappings can be influenced.

This mode implicitly generates an IDL definition based on the Java interfaces definition and provide this IDL
through a “service registry” for remote partners.

Prerequisite: Application-Interface-Definition (has to be the same on client and server side)

Generated: Server-/Client-Proxies (generated at runtime)

Examples: RMI, JAX-RS, Spring REST, ...

Mapped operation mode

Goal of the mapped operation mode is to separate the application interfaces from the data structure used to trans-
port the data over the wire. Therefore the middleware has to map the application internal data structure and
interfaces to a common IDL definition. Advantage is, that the application interface on client and server (or pub-
lisher/subscriber) side can be different.

Prerequisite: Application-Interface-Definition (can be different on server and client side) IDL Definition

Generated: Server-/Client-Proxis (generated at runtime, which map the attributes & operations

Examples: KIARA

4 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

The current release of KIARA provides support for the traditional IDL derived operation mode, be-
ing able to handle different communication patterns such as RPC or Publish/Subscribe. Application
derived and mapped operation mode will follow in a future release.

1.3.2 A quick example

In the following chapters we will use the following example application to explain the basic concepts of building
an application using KIARA.

Calculator

The KIARA Calculator example application provides an API to ask for simple mathematics operations over two
numbers. Is a common used example when trying to understand how an RPC framework works.

Basically the service provides two functions:

• float add (float n1, float n2) : Returns the result of adding the two numbers introduced as
parameters (n1 and n2).

• float subtract (float n1, float n2) : Returns the result of subtracting the two numbers
introduced as parameters (n1 and n2).

The KIARA Calculator example is provided within this distribution, so itcan be used as starting point.

Basic procedure

Before diving into the details describing the features and configure your projectfor KIARA, the following quick
example should show the basic steps to create a simple client and server application in the different operation
modes.

Detailed instructions on how to execute the particular steps are given in chapter Building a KIARA RPC applica-
tion.

IDL derived application process

In the IDL derived approach, first the IDL definition has to be created:

service Calculator
{

float32 add (float32 n1, float32 n2);
float32 subtract (float32 n1, float32 n2);

};

The developer has to implement the functions inside the class CalculatorServantImpl:

public static class CalculatorServantImpl extends CalculatorServant
{

@Override
public float add (/*in*/ float n1, /*in*/ float n2) {

return (float) n1 + n2;
}

@Override
public float subtract (/*in*/ float n1, /*in*/ float n2) {

return (float) n1 - n2;
}
...

}

Now the server can be started:

1.3. Programmers guide 5

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Context context = Kiara.createContext();
Server server = context.createServer();
Service service = context.createService();

// Create and register an instance of the CalculatorServant implementation.
CalculatorServant Calculator_impl = new CalculatorServantImpl();
service.register(Calculator_impl);

// register the service on port 9090 using CDR serialization
server.addService(service, "tcp://0.0.0.0:9090", "cdr");

// run the server
server.run();

The client can connect and call the remote functions via the proxy class:

Context context = Kiara.createContext();

// setup the connection to the server
Connection connection = context.connect("tcp://192.168.1.18:9090?serialization=cdr");

// get the client Proxy implementation
CalculatorClient client = connection.getServiceProxy(CalculatorClient.class);

// call the remote methods
float result = client.add(3, 5);

Application derived application example

This example will be added, when the feature is implemented.

Mapping application example

This example will be added, when the feature is implemented.

1.3.3 Kiaragen tool

Kiaragen installation

To install kiaragen, please follow the installation instructions that can be found in the .

Generate support code manually using kiaragen

To call kiaragen manually it has to be installed and in your run path.

The usage syntax is:

$ kiaragen [options] <IDL file> [<IDL file> ...]

Options:

-help Shows help information

-version Shows the current version of KIARA/kiaragen

-package Defines the package prefix of the generated Java classes. Default: no package

-d <path> Specify the output diretory for the generated Java classes. Default: Current
working dir

6 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

-replace Replaces existing generated

--example <pattern> Generates the support files (interfaces, classes, stubs, skeletons,...) for the
given target communication pattern. These classes can be used by the de-
veloper to implement his application. It also creates build.gradle files. Sup-
ported values:

• rpc: Creates an example application which uses RPC as a communica-
tion framework.

• ps: Creates an example application which uses Publish/Subscribe as a
communication pattern.

-ppDisable Disables the preprocessor.

--ppPath <path> Specifies the path of the preprocessor. Default: Systems C++ preprocessor

-t <path> Specify the output temploral directory for the files generated by the prepro-
cessor. Default: machine temp path

1.3.4 KIARA IDL

The KIARA Interface Definition Language (IDL) can be used to describe data types, namespaces, constants and
even remote functions the server will offer (when using RPC pattern). In addition the KIARA IDL supports the
declaration and application of Annotations to add metadata to almost any IDL element. These can be used by
the code generator, when implementing the service functionality or configure some specific runtime functionality.
The IDL syntax is based on the OMG IDL 3.5.

The basic structure of an IDL File is shown in the picture in the right.

Following, a short overview of the supported KIARA IDL elements. For a detailed description please see KIARA
IDL Specification chapter KIARA Interface Definition Language.

• Import Declarations: Definitions can be split into multiple files and/or share common elements among
multiple definitions using the import statement.

• Namespace Declarations: Within a definition file the declarations can be grouped into modules. Mod-
ules are used to define scopes for IDL identifiers. KIARA supports the modern keyword namespace.
Namespaces can be nested to support multi-level namespaces.

• Constant Declarations: A constant declarations allows the definition of literals, which can be used as
values in other definitions (e.g. as return values, default parameters, etc.)

• Type Declarations

– Basic Types: KIARA IDL supports the OMG IDL basic data types like float, double, (unsigned)
short/int/long, char, wchar, boolean, octet, etc. Additionally it supports modern aliases like
float32, float64, i16, ui16, i32, ui32, i64, ui64 and byte

– Constructed Types: Constructed Types are combinations of other types like. The following con-
structs are supported:

* Structures: Struct types are mapped as classes in Java code. These structures can contain
every other data type that can be described using KIARA IDL.

* Unions: Union types are mapped into Java by using special classes. These classes use a
discriminator value to distinguish between the different types that form the union.

* Exceptions: Exception types are mapped as classes in Java code. These exceptions can
contain every other data type that can be described using KIARA IDL.

– Template Types: Template types are frequently used data structures like the various forms of collec-
tions. The following Template Types are supported:

* Lists Ordered collection of elements of the same type. “list” is the modern variant of the
OMG IDL keyword “sequence”

1.3. Programmers guide 7

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 1.1: IDL File Structure

8 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

* Sets Ordered collection of different elements of the same type. “list” is the modern variant
of the OMG IDL keyword “sequence”

* Maps Lists of paired objects indexed by a key

* Strings Collection of chars, will be mapped to the String representation of the language.

* Complex Declarations: In addition to the above Type declarations, KIARA
supports multidimensional Arrays using the bracket notation (e.g. int
monthlyRevenue[12][10])

• Service Declarations: KIARA supports interface and service declarations via IDL. Meaning that the user
can declare different services where the operations are going to be placed.

• Operation Declarations: Operations can be declared within the services following the standard OMG IDL
notation.

1.3.5 Using KIARA to create an RPC application

KIARA Advanced Middleware allows the developer to easily implement a distributed application using remote
procedure invocations. In client/server paradigm, a server offers a set of remote procedures that the client can
remotely call. How the client calls these procedures should be transparent.

For the developer, a proxy object represents the remote server, and this object offers the remote procedures imple-
mented by the server. In the same way, how the server obtains a request from the network and how it sends the
reply should also be transparent. The developer just writes the behaviour of the remote procedures.

KIARA Advanced Middleware offers this transparency and facilitates the development.

IDL derived operation mode in RPC

The general steps to build an application in IDL derived operation mode are:

1. Define a set of remote procedures: using the KIARA Interface Definition Language.

2. Generation of specific remote procedure call support code: a Client-Proxy and a Server-Skeleton.

3. Implement the servant: with the needed behaviour.

4. Implement the server: filling the server skeleton with the behaviour of the procedures.

5. Implement the client: using the client proxy to invoke the remote procedures.

This section describes the basic concepts of these four steps that a developer has to follow to implement a dis-
tributed application.

Defining a set of remote procedures using the KIARA IDL

The KIARA Interface Definition Language (IDL) can be used to define the remote procedures (operations) the
server will offer. Simple and Complex Data Types | used as parameter types in these remote procedures are also
defined in the IDL file. The IDL file for our example application (calculator.idl) shows the usage of some
of the above elements.

service Calculator
{

float32 add (float32 n1, float32 n2);
float32 substract (float32 n1, float32 n2);

};

1.3. Programmers guide 9

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Generating remote procedure call support code

KIARA Advanced Middleware includes a Java application named kiaragen. This application parses the IDL
file and generates Java code for the defined set of remote procedures.

All support classes will be generated (e.g. for structs):

• x.y.<StructName>: Support classes containing the definition of the data types as well as the serializa-
tion code.

Using the -example option (described below), kiaragen will generate the following files for each of your mod-
ule/service definitions:

• x.y.<IDL-ServiceName>: Interface exposing the defined synchronous service operation calls.

• x.y.<IDL-ServiceName>Async: Interface exposing the asynchronous operation calls.

• x.y.<IDL-ServiceName>Client: Interface exposing all client side calls (sync & async).

• x.y.<IDL-ServiceName>Process: Class containing the methods that will be executed to process
dynamic calls.

• x.y.<IDL-ServiceName>Proxy: This class encapsulates all the logic needed to call the remote op-
erations. (Client side proxy → stub).

• x.y.<IDL-ServiceName>Servant: This abstract class provides all the mechanisms (transport,
un/marshalling, etc.) the server requires to call the server functions.

• x.y.<IDL-ServiceName>ServantExample: This class will be extended to implement the server
side functions (see Servant Implementation).

• x.y.ClientExample: This class contains the code needed to run a possible example of the client side
application.

• x.y.ServerExample: This class contains the code needed to run a possible example of the server side
application.

• x.y.IDLText: This class contains a String whose value is the content of the IDL file.

The package name x.y. can be declared when generating the support code using kiaragen (see -package
option in kiaragen tool description).

For our example the call could be:

$ kiaragen -example rpc -package com.example src/main/idl/calculator.idl
Loading templates...
org.fiware.kiara.generator.kiaragen
org.fiware.kiara.generator.idl.grammar.Context
Processing the file calculator.idl...
Creating destination source directory... OK
Generating Type support classes...
Generating application main entry files for interface Calculator... OK
Generating specific server side files for interface Calculator... OK
Generating specific client side files for interface Calculator... OK
Generating common server side files... OK
Generating common client side files... OK

This would generate the following files:
.
-- src // source files

-- main
| -- idl // IDL definitions for kiaragen
| | -- calculator.idl
| -- java // Generated support files
| -- com.example
| | // Generated using --example
| -- Calculator.java // Interface of service

10 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

| -- CalculatorAsync.java // Interface of async calls
| -- CalculatorProcess.java // Process methods for dynamic operations
| -- CalculatorClient.java // Interface client side
| -- CalculatorProxy.java // Client side implementation
| -- CalculatorServant.java // Abstract server side skeleton
| -- CalculatorServantExample.java // Dummmy servant impl.
| -- ClientExample.java // Example client code
| -- ServerExample.java // Example server code
| -- IDLText.java // IDL File contents
-- build.gradle // File with targets to compile the example

Servant implementation

Please note that the code inside the file x.y.<IDL-ServiceName>ServantExample.java (which in this
case is CalculatorServantExample.java) has to be modified in order to specify the behaviour of each
declared function.

class CalculatorServantExample extends CalculatorServant {

public float add (/*in*/ float n1, /*in*/ float n2) {
return (float) n2 + n2;

}

public float substract (/*in*/ float n1, /*in*/ float n2) {
return (float) n1 - n2;

}

}

Implementing the server

The source code generated using kiaragen tool (by using the -example rpc option) contains a simple imple-
mentation of a server. This implementation can obviously be extended as far as the user wants, this is just a very
simple server capable of executing remote procedures.

The class containing the mentioned code is named ServerExample, and its code is shown below:

public class ServerExample {

public static void main (String [] args) throws Exception {

System.out.println("CalculatorServerExample");

Context context = Kiara.createContext();
Server server = context.createServer();

CalculatorServant Calculator_impl = new CalculatorServantExample();

Service service = context.createService();

service.register(Calculator_impl);

//Add service waiting on TCP using CDR serialization
server.addService(service, "tcp://0.0.0.0:9090", "cdr");

server.run();

}

}

1.3. Programmers guide 11

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Creating a secure TCP server (SSL)

In order to create a secure TCP server, the URL specified to listen into must be different. In this case, we would
use tcps as a network protocol instead of tpc. The only change that has to be done in the code is to change the
service address.

This is shown in the following snippet:

//Add service waiting on SSL TCP using CDR serialization
server.addService(service, "tcps://0.0.0.0:9090", "cdr");

Implementing the client

The source code generated using kiaragen tool (by using the -example rpc option) contains a simple im-
plementation of a client. This implementation must be extended in order to show the output received from the
server.

In the KIARA Calculator example, as we have defined first the add function in the IDL file, this will be the one
used by default in the generated code. The code for doing this is shown in the following snippet:

public class ClientExample {
public static void main (String [] args) throws Exception {

System.out.println("CalculatorClientExample");

float n1 = (float) 3.0;
float n2 = (float) 5.0;

float ret = (float) 0.0;

Context context = Kiara.createContext();

//Connect to server listening in 127.0.0.1:9090 (TCP)
Connection connection =

context.connect("tcp://127.0.0.1:9090?serialization=cdr");
Calculator client = connection.getServiceProxy(CalculatorClient.class);

try {
ret = client.add(n1, n2);
System.out.println("Result: " + ret);

} catch (Exception ex) {
System.out.println("Exception: " + ex.getMessage());
return;

}
}

Kiara.shutdown();
}

The previous code has been shown exactly the way it is generated, with only two differences:

• Parameter initialization: Both of the parameters n1 and n2 have been initialized to random values (in this
case 3 and 5).

• Result printing: To have feedback of the response sent by the server when the remote procedure is executed.

Creating a secure TCP client (SSL)

In order to create a secure TCP client, the URI to connect to must be that of the server (who must also be using
SSL TCP for a full secure communication).

This is shown in the following snippet:

//Connect to server listening in 127.0.0.1:9090 (SSL)
Connection connection =

context.connect("tcps://127.0.0.1:9090?serialization=cdr");

12 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Compiling the client and the server

For the client and server examples to compile, some jar files are needed. These files are located under the lib
directory provided with this distribution, and they must be placed in the root working directory, under the lib
folder:
.
-- src // source files
-- lib // generated support files
-- build.gradle // Gradle compilation script

To compile the client using gradle, the call would be the next one (change target clientJar to serverJar to compile
the server):

$ gradle clientJar
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:clientJar

BUILD SUCCESSFUL

Total time: 3.426 secs

After compiling both of them the following files will be generated:
.
-- src // source files
-- build // generated by gradle

| -- classes // Compiled .class files
| -- dependency-cache // Inner gradle files
| -- libs // Executable jar files
| -- tmp // Temporal files used by gradle
-- lib
-- build.gradle // Gradle compilation script

In order to execute the examples, just cd where they are placed (build/libs directory), and execute them using the
command java -jar file_to_execute.jar.

1.3.6 Using KIARA to create an RPC application (using the dynamic API)

The “KIARA RPC Dynamic API” allows the developers to easily execute calls in an RPC framework without
having to statically generate code to support them. In the following sections, the different concepts of this feature
will be explained.

Using the dynamic API we still need the IDL file, which declares the “contract” between server and client by
defining the data types and services (operations) the server offers.

For the dynamic API the IDL format is identical to the one used for the static/compile time version. For example
the IDL file for our demo application (calculator.idl) is identical to the static use-case:

service Calculator
{

float32 add (float32 n1, float32 n2);
float32 substract (float32 n1, float32 n2);

};

Declaring the remote calls and data types at runtime

In the dynamic approach, the comple time kiaragen code-generator will not be required anymore. Instead,
the middleware provides a function to load the IDL definition from a String object. The generation of the IDL

1.3. Programmers guide 13

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

String has to be done by the developer. For example it can be loaded from a File, from a URL or generated by an
algorithm.

The process to declare the dynamic part is as follows:

• The server loads the IDL String (e.g. from a file).

• The IDL definition will then be provided to the clients connecting with the server.

• On the server the developer has to provide objects to act as servants and execute code depending on the
function the client has requested.

Loading the IDL definition

On the server side, in order to provide the user with a definition of the functions that the server offers, the first
thing to be done is to load the IDL definition into the application.

Therefore, the Service class provides a public function that can be used to load the IDL information from a
String object. It is the developers responsibility to load the String from the source (e.g. from a file).

The following snippet shows an example on how to do this:

// Load IDL content string from file
String idlString = new String(Files.readAllBytes(Paths.get("calculator.idl")));
/* This is just one way to do it. Developer decides how to do it */

// Load service information dynamically from IDL
Service service = context.createService();
service.loadServiceIDLFromString(idlString);

Implementing the service functionality

Unlike in the static approach, in the dynamic version exists no Servant class to code the behaviour of the functions.
To deal with this, KIARA provides a functional interface DynamicFunctionHandler that acts as a servant
implementation. This class must be used to implement the function and register it with the service, which means
to map the business logic of each function with its registered name.

// Create type descriptor and dynamic builder
final TypeDescriptorBuilder tdbuilder = Kiara.getTypeDescriptorBuilder();
final DynamicValueBuilder dvbuilder = Kiara.getDynamicValueBuilder();
// Create type descriptor int (used for the return value)
final PrimitiveTypeDescriptor intType =

tdbuilder.createPrimitiveType(TypeKind.INT_32_TYPE);

// Implement the functional interface for the add function
DynamicFunctionHandler addHandler = new DynamicFunctionHandler() {

@Override
public void process(

DynamicFunctionRequest request,
DynamicFunctionResponse response

) {
// read the parameters
int a = (Integer)((DynamicPrimitive)request.getParameterAt(0)).get();
int b = (Integer)((DynamicPrimitive)request.getParameterAt(1)).get();
// create the return value
final DynamicPrimitive intValue =

(DynamicPrimitive)dvbuilder.createData(intType);
intValue.set(a+b); // implmement the function
response.setReturnValue(intValue);

}
}

14 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

// Register function and map handler (do this for every function)
service.register("Calculator.add", addHandler);

Implementing the server

Because the server functionality is not encapsuled in generated Servant classes, the server implmentation is a bit
more extensive. It still follows the same pattern as in the static API, but the implementation and registration of the
dynamic functions has to be done completely by the developer.

The following ServerExample class shows, how this would look like:

public class ServerExample {
public static void main (String [] args) throws Exception {

System.out.println("CalculatorServerExample");

Context context = Kiara.createContext();
Server server = context.createServer();

// Enable negotiation with clients
server.enableNegotiationService("0.0.0.0", 8080, "/service");

Service service = context.createService();
String idlContent =
new String(Files.readAllBytes(Paths.get("calculator.idl")))
service.loadServiceIDLFromString(idlContent);

// Create descriptor and dynamic builder
final TypeDescriptorBuilder tdbuilder = Kiara.getTypeDescriptorBuilder();
final DynamicValueBuilder dvbuilder = Kiara.getDynamicValueBuilder();

// Declare handlers
DynamicFunctionHandler addHandler;
DynamicFunctionHandler substractHandler;
addHandler = /* Implement handler for the add function */;
substractHandler = /* Implement handler for the substract function */;

// Register services
service.register("Calculator.add", addHandler);
service.register("Calculator.substract", substractHandler);

//Add service waiting on TCP with CDR serialization
server.addService(service, "tcp://0.0.0.0:9090", "cdr");

server.run();
}

}

Creating a secure TCP server (SSL)

In order to create a secure TCP server, the URL specified to listen into must be different. In this case, we would
use tcps as a network protocol instead of tpc. The only change that has to be done in the code is to change the
service address.

This is shown in the following snippet:

// Enable negotiation with clients
server.enableNegotiationService("0.0.0.0", 8080, "/service");

...

//Add service waiting on SSL TCP using CDR serialization
server.addService(service, "tcps://0.0.0.0:9090", "cdr");

1.3. Programmers guide 15

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Please note that the negotiation service has to be enabled first, otherwise the client will not be able to retrieve the
connection information from the server.

Implementing the client

On the client side the key point is the negotiation with the server to download the IDL it provides. After down-
loading, it will automatically parse the content and generate the necessary information to create the dynamic
objects.

When the DynamicProxy is created the functions provided by the server can be executed by using
DynamicFunctionRequest objects. The parameters of the functions have to be set in the request using
DynamicData objects. The call of the request function execute() will finally perform the call to the server
and return the result in a DynamicFunctionResponse object.

The following code shows the client implementation:

public class ClientExample {
public static void main (String [] args) throws Exception {

System.out.println("CalculatorClientExample");

Context context = Kiara.createContext();

// Create connection indicating the negotiation service
Connection connection =

context.connect("kiara://127.0.0.1:9090/service");

// Create client by using the proxy's name
DynamicProxy client = connection.getDynamicProxy("Calculator");

// Create request object
DynamicFunctionRequest request = client.createFunctionRequest("add");
((DynamicPrimitive) request.getParameterAt(0)).set(8);
((DynamicPrimitive) request.getParameterAt(1)).set(5);

// Create response object and execute RPC
DynamicFunctionResponse response = request.execute();
if (response.isException()) {

DynamicData result = response.getReturnValue();
System.out.println("Exception = " + (DynamicException) result);

} else {
DynamicData result = response.getReturnValue();
System.out.println("Result = " + (DynamicPrimitive) result);

}
// shutdown the client

Kiara.shutdown();
}

}

Creating a secure TCP client (SSL)

In order to create a secure TCP client, the URI to connect to must be that of the server’s negotiation endpoint.
When using the dynamic API, KIARA will automatically match the type of connection the server is using, whether
it is TCP or TCPS (if the networking card of the computer supports it)

For this, the code for the client is exactly the same (note this in the following snippet):

// Create connection indicating the negotiation service
Connection connection =

context.connect("kiara://127.0.0.1:9090/service");

16 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

1.3.7 Using KIARA to create a Pub/Sub application

KIARA Advanced Middleware allows the developer to easily implement a distributed application using a Pub-
lish/Subscribe pattern. In software architecture, publish/subscribe is a messaging pattern when messages of a
specific data type (topic) are sent by entities called publishers, and received by entities who are subscribed to that
same data type, called subscribers.

From the point of view of the developer, all he knows is that he has a certain data type in his application and he
wants it to be sent. How the publisher publishes this data in the network and how the subscriber gets it must be
transparent.

KIARA Advanced Middleware offers this transparency and facilitates the development.

IDL derived operation mode using Pub/Sub

The general steps to build an application in IDL derived operation mode are:

1. Define the application data types using KIARA IDL: using the KIARA Interface Definition Language.

2. Generation of specific support code: those classes representing the types defined using IDL.

3. Generate the Pub/Sub example: using the kiaragen tool.

4. Implementing the Publisher side: using the Publisher entity and the generated type support classes.

5. Implementing the Subscriber side: using the Subscriber entity and the generated type support classes.

This section describes the basic concepts of these steps that a developer has to follow to implement a distributed
application.

Defining the application data types using KIARA IDL

The KIARA Interface Definition Language (IDL) can be used to define the application data types to be published.
Simple and Complex Data Types inside the structures can also be defined in the IDL file, but take into account
that only structures will count as Topic types.

The IDL file for our RPC example application shows the definition of a temperature sensor whose value is going
to be published over the wire when changed.

struct TSensor
{

float32 temperature;
};

Generate Pub/Sub code using kiaragen

KIARA Advanced Middleware includes a Java application named kiaragen. By using this application, the type
support code for the structure defined in the IDL file can be generated. The files that will result as the output of
the kiaragen execution are the following:

• x.y.: Support classes containing the definition of the data types as well as the serialization code.

• x.y.Type: Topic class for the data type. This class will be the one used to register the data types in a specific
topic.

Using ps as -example option, kiaragen will generate the following files for the data type definitions:

• x.y.SubscriberExample: This class contains the code needed to run a simple application with a Subscriber.

• x.y.PublisherExample: This class contains the code needed to run a simple application with a Publisher.

1.3. Programmers guide 17

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

The package name x.y. can be declared when generating the support code using kiaragen (see -package option
below).

For our example the call could be:

$ kiaragen -example ps -package com.example src/main/idl/calculator.idl
Loading templates...
org.fiware.kiara.generator.kiaragen
org.fiware.kiara.generator.idl.grammar.Context
Processing the file calculator.idl...
Creating destination source directory... OK
Generating Type support classes...
Generating Type support class for structure TSensor... OK
Generating Topic class for structure TSensor... OK
Generating Publisher example main code for Topic TSensor... OK
Generating Subscriber example main code for Topic TSensor... OK

Generating GRADLE compilation script... OK

This would generate the following files:
.
-- src // source files

-- main
| -- idl // IDL definitions for kiaragen
| | -- sensor.idl
| -- java // Generated support files
| -- com.example
| | // Generated using --example ps
| -- TSensor.java // User data type
| -- TSensorType.java // Topic class for user data type
| -- TSensorPublisherExample.java // Publisher example code
| -- TSensorSubscriberExample.java // Subscriber example code
-- build.gradle // File with targets to compile the example

Static Endpoint Discovery (SED) using XML files

In this version of the Publish/Subscribe pattern implemented in KIARA, the discovery of endpoints is done stati-
cally by loding the information of those endpoints from an XML file. It supports loading such information from a
String variable with the contents of the XML discovery file as well.

The discovery information than can be represented into the XML file includes the participant (with its name), and
the endpoints this participant might have (readers or writers). it also supports adding multiple participant entities
as well as multiple reader or writer configurations.

The XML tags supported by KIARA are described below, grouped into different categories according to the entity
they belong to.

staticdiscovery

This tag is used to define that the XML file is going to contain information about the RTPS Endpoint Discovery
protocol.

The available tags inside staticdiscovery are the following:

Tag Type Description
<participant> complexType Participant entity.

18 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

participant

The participant tag is the one used to define a grouping entity for readers and writers. It allows to add as many
endpoints as the user wants, as well as to configure the participant name.

The available tags inside participant are the following:

Tag Type Description
<name> element Name of the Participant entity
<writer> complexType Writer entity
<reader> complexType Reader entity

writer

The writer tag is the use used to describe all the characteristics of the reader endpoint. There can be multiple
writers, as long as their values do not interfere one another.

The available tags inside writer are the following:

1.3. Programmers guide 19

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Tag Type Description
<userId> element Integer defining the user ID for this

endpoint.
<entityId> element Integer defining the specific ID of

the endpoint.
<topicName> element Indicates the name of the Topic used

by the endpoint.
<topicDataName> element Indicates the name of the data type

that can be sent by the endpoint.
<topicKind> element Indicates whether the endpoint uses

keyed topics or not. Supported val-
ues:

• WITH_KEY
• NO_KEY

<reliabilityQos> element Indicates which kind of reliability
is used by the endpoint. Supported
values:

•
RELIABLE_RELIABILITY_QOS

•
BEST_EFFORT_RELIABILITY_QOS

<unicastLocator> complexType List of unicastLocator types indicat-
ing the unicast IP adresses of this
endpoint. Attributes:

address IP address
of the endpoint.

port Integer indicat-
ing the port for
communication.

<multicastLocator> complexType List of unicastLocator types indicat-
ing the multicast IP adresses of this
endpoint. Attributes:

address IP address
of the endpoint.

port Integer indicat-
ing the port for
communication.

<topic> complexType Entity inticading the name, data
type and kind of the topic this end-
point is related to. Attributes:

name Name of the
topic.

dataType Name of
the dataType re-
lated to this topic.

kind Indicates
whether it is a
keyed topic or
not. Supported
values:

• WITH_KEY
• NO_KEY

<durabilityQos> element String element indicating the dura-
bility of the data send by the end-
point. Supported values:

•
TRANSIENT_LOCAL_DURABILITY_QOS

•
VOLATILE_DURABILITY_QOS

<ownershipQos> element Complex type that describes the
ownership of the data sent by the
endpoint. Attributes:

kind Indicates the
kind of owner-
ship. Supported
values:

•
SHARED_OWNERSHIP_QOS

•
EXCLUSIVE_OWNERSHIP_QOS

strength Integer
value used to
give priority of
the data owner-
ship over other
endpoints.

<livelinessQos> complexType It describes the Lliveliness QoS se-
lected for the endpoint. Attributes:

kind Indicates the
kind of liveli-
ness selected.
Supported values:

•
AUTOMATIC_LIVELINESS_QOS

•
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

•
MANUAL_BY_TOPIC_LIVELINESS_QOS

leaseDuration_ms
Integer indicating
the lease duration
in milliseconds.

20 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

reader

The reader tag is the use used to describe all the characteristics of the reader endpoint. There can be multiple
readers, as long as their values do not interfere one another.

The available tags inside reader are the following:

1.3. Programmers guide 21

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Tag Type Description
<userId> element Integer defining the user ID for this

endpoint.
<entityId> element Integer defining the specific ID of

the endpoint.
<topicName> element Indicates the name of the Topic used

by the endpoint.
<topicDataName> element Indicates the name of the data type

that can be received by the endpoint.
<expectsInlineQos> element Boolean value inticating whether

the reader endpoint expects to re-
ceive inline QoS in the RTPS mes-
sages or not.

<topicKind> element Indicates whether the endpoint uses
keyed topics or not. Supported val-
ues:

• WITH_KEY
• NO_KEY

<reliabilityQos> element Indicates which kind of reliability
is used by the endpoint. Supported
values:

•
RELIABLE_RELIABILITY_QOS

•
BEST_EFFORT_RELIABILITY_QOS

<unicastLocator> complexType* List of unicastLocator types indicat-
ing the unicast IP adresses of this
endpoint. Attributes:

address IP address
of the endpoint.

port Integer indicat-
ing the port for
communication.

<multicastLocator> complexType* List of unicastLocator types indicat-
ing the multicast IP adresses of this
endpoint. Attributes:

address IP address
of the endpoint.

port Integer indicat-
ing the port for
communication.

<topic> complexType Entity inticading the name, data
type and kind of the topic this end-
point is related to. Attributes:

name Name of the
topic.

dataType Name of
the dataType re-
lated to this topic.

kind Indicates
whether it is a
keyed topic or
not. Supported
values:

• WITH_KEY
• NO_KEY

<durabilityQos> element String element indicating the dura-
bility of the data send by the end-
point. Supported values:

•
TRANSIENT_LOCAL_DURABILITY_QOS

•
VOLATILE_DURABILITY_QOS

<ownershipQos> element Complex type that describes the
ownership of the data received by
the endpoint. Attributes:

kind Indicates the
kind of owner-
ship. Supported
values:

•
SHARED_OWNERSHIP_QOS

•
EXCLUSIVE_OWNERSHIP_QOS

strength Integer
value used to
give priority of
the data owner-
ship over other
endpoints.

<livelinessQos> complexType It describes the Lliveliness QoS se-
lected for the endpoint. Attributes:

kind Indicates the
kind of liveli-
ness selected.
Supported values:

•
AUTOMATIC_LIVELINESS_QOS

•
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

•
MANUAL_BY_TOPIC_LIVELINESS_QOS

leaseDuration_ms
Integer indicating
the lease duration
in milliseconds.

22 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Implementing the Publisher

The PubliserExample class is the one containing the main entry point for creating an application capable of pub-
lishing the user’s data types over the wire. This class is automatically generated by using the kiaragen tool,
and it contains a basic initialization of QoS (Qualities of Service), a participant, and one simple Publisher entity.

The following PublisherExample class shows how this would look like:

public class TSensorPublisherExample {

private static final TSensorType type = new TSensorType();

public static void main (String [] args) throws InterruptedException {

The generated class has a static final variable named type, and it will be used to register the user’s data type.

The predefined arguments this example will handle are:

• domainId: This parameter is a number indicating the domain identifier for the RTPS communication. If not
specified, the default value is 0.

• sampleCount: Number of samples the publisher will send. If not specified, the publisher will send examples
without stopping.

int domainId = 0;
if (args.length >= 1) {

domainId = Integer.parseInt(args[0]);
}

int sampleCount = 0;
if (args.length >= 2) {

sampleCount = Integer.parseInt(args[1]);
}

In the following lines, the data itself is created by using the generated Topic class. The developer can now edit the
created object before sending it over the network.

TSensor instance = type.createData();

// Initialize your data here

Now, the participant’s attributes are initialized. Note that the domainId introduces as a parameter will be used
here, and also that the attributes specify the participant to activate the static discovery protocol.

To use the static discovery, either an XML file or a String variable with the XML contents can be used. In the gen-
erated example, the chosen approach is to load the XML discovery information by using a single String variable.
In this String, the known endpoints have to be defined. In this case, a participant containing a BEST_EFFORT
reader.

ParticipantAttributes pAtt = new ParticipantAttributes();
pAtt.rtps.builtinAtt.domainID = domainId;
pAtt.rtps.builtinAtt.useStaticEDP = true;

final String edpXml = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"
+ "<staticdiscovery>"
+ " <participant>"
+ " <name>SubscriberParticipant</name>"
+ " <reader>"
+ " <userId>1</userId>"
+ " <topic name=\"TSensorTopic\" dataType=\"TSensor\" kind=\"NO_KEY\"></topic>"
+ " <expectsInlineQos>false</expectsInlineQos>"
+ " <reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>"
+ " </reader>"
+ " </participant>"
+ "</staticdiscovery>";

1.3. Programmers guide 23

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

pAtt.rtps.builtinAtt.setStaticEndpointXML(edpXml);

pAtt.rtps.setName("PublisherParticipant");

At this point, the only thing remaining to be done before creating the Publisher is to finally create the Participant
and register the user’s data type. To do so, the generated Topic class must be used after the participant has been
correctly initialized.

Participant participant = Domain.createParticipant(pAtt, null /* LISTENER */);
if (participant == null) {

throw new RuntimeException("createParticipant");
}

Domain.registerType(participant, type);

The Publisher’s attributes must specify the topic name and the name of the data type, and this information has to
be the same in the other endpoints so that they can communicate with each other. In this generated example, the
topic data name will be the same of the defined structure. Note that the example uses by default a BEST_EFFORT
configuration for the Publisher.

// Create publisher
PublisherAttributes pubAtt = new PublisherAttributes();
pubAtt.setUserDefinedID((short) 1);
pubAtt.topic.topicDataTypeName = "TSensor";
pubAtt.topic.topicName = "TSensorTopic";
pubAtt.qos.reliability.kind = ReliabilityQosPolicyKind.BEST_EFFORT_RELIABILITY_QOS;

org.fiware.kiara.ps.publisher.Publisher<TSensor> publisher = Domain.createPublisher(participant, pubAtt, null /* LISTENER */);

if (publisher == null) {
Domain.removeParticipant(participant);
throw new RuntimeException("createPublisher");

}

Finally, the examples are sent according to the number of samples specified via parameter (without stopping if
this number is not set).

int sendPeriod = 4000; // milliseconds
for (int count=0; (sampleCount == 0) || (count < sampleCount); ++count) {

System.out.println("Writing TSensor, count: " + count);
publisher.write(instance);
Thread.sleep(sendPeriod);

}

In order for the Participant to stop succesfully, it must be removed from the Domain (all the associated endpoints
will be stopped as well), and then the method named shutdown belonging to the Kiara class will be the one to stop
all running services.

Domain.removeParticipant(participant);

Kiara.shutdown();

System.out.println("Publisher finished");

}

}

Implementing the Subscriber

The SubscriberExample class is the one containing the main entry point for creating an application capable of sub-
scribing to a topic representing the user’s data types. This class is automatically generated by using the kiaragen

24 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

tool, and it contains a basic initialization of QoS (Qualities of Service), a participant, and one simple Subscriber
entity.

The following PublisherExample class shows how this would look like:

public class TSensorSubscriberExample {

private static final TSensorType type = new TSensorType();

public static void main (String [] args) throws InterruptedException {

as it happened with the PublisherExample, the generated class has a static final variable named type, and it will be
used to register the user’s data type.

The predefined arguments this example will handle are:

• domainId: This parameter is a number indicating the domain identifier for the RTPS communication. If not
specified, the default value is 0.

• sampleCount: Number of samples the subscriber expects to receive. If not specified, the will run without
stopping.

int domainId = 0;
if (args.length >= 1) {

domainId = Integer.parseInt(args[0]);
}

int sampleCount = 0;
if (args.length >= 2) {

sampleCount = Integer.parseInt(args[1]);
}

Now, the participant’s attributes are initialized. Note that the domainId introduces as a parameter will be used
here, and also that the attributes specify the participant to activate the static discovery protocol.

To use the static discovery, either an XML file or a String variable with the XML contents can be used. In the gen-
erated example, the chosen approach is to load the XML discovery information by using a single String variable.
In this String, the known endpoints have to be defined. In this case, a participant containing a BEST_EFFORT
writer.

ParticipantAttributes pAtt = new ParticipantAttributes();
pAtt.rtps.builtinAtt.domainID = domainId;
pAtt.rtps.builtinAtt.useStaticEDP = true;

final String edpXml = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"
+ "<staticdiscovery>"
+ " <participant>"
+ " <name>PublisherParticipant</name>"
+ " <writer>"
+ " <userId>1</userId>"
+ " <topicName>TSensorTopic</topicName>"
+ " <topicDataType>TSensor</topicDataType>"
+ " <topicKind>NO_KEY</topicKind>"
+ " <reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>"
+ " <livelinessQos kind=\"AUTOMATIC_LIVELINESS_QOS\" leaseDuration_ms=\"100\"></livelinessQos>"
+ " </writer>"
+ " </participant>"
+ " </staticdiscovery>";

pAtt.rtps.builtinAtt.setStaticEndpointXML(edpXml);

pAtt.rtps.setName("SubscriberParticipant");

At this point, the only thing remaining to be done before creating the Subscriber is to finally create the Participant
and register the user’s data type. To do so, the generated Topic class must be used after the participant has been

1.3. Programmers guide 25

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

correctly initialized.

Participant participant = Domain.createParticipant(pAtt, null /* LISTENER */);
if (participant == null) {

throw new RuntimeException("createParticipant");
}

Domain.registerType(participant, type);

The Publisher’s attributes must specify the topic name and the name of the data type, and this information has to
be the same in the other endpoints so that they can communicate with each other. In this generated example, the
topic data name will be the same of the defined structure. Note that the example uses by default a BEST_EFFORT
configuration for the Subscriber.

// Create publisher
SubscriberAttributes satt = new SubscriberAttributes();
satt.setUserDefinedID((short) 1);
satt.topic.topicDataTypeName = "TSensor";
satt.topic.topicName = "TSensorTopic";
satt.qos.reliability.kind = ReliabilityQosPolicyKind.BEST_EFFORT_RELIABILITY_QOS;

// CountDown object to store the number of received samples
final CountDownLatch doneSignal = new CountDownLatch(sampleCount);

For this Subscriber, a SubscriberListener object is implemented below. It will print out when a new saple has
been received by the Subscriber, and it will also take care of the total number of samples that have already been
received.

org.fiware.kiara.ps.subscriber.Subscriber<TSensor> subscriber = Domain.createSubscriber(participant, satt, new SubscriberListener() {

@Override
public void onNewDataMessage(Subscriber<?> sub) {

TSensor type = (TSensor) sub.takeNextData(null /* SampleInfo */);
while (type != null) {

System.out.println("Message received");
type = (TSensor) sub.takeNextData(null);
doneSignal.countDown();

}
}

@Override
public void onSubscriptionMatched(Subscriber<?> sub, MatchingInfo info) {

// Write here you handling code
}

});

if (subscriber == null) {
Domain.removeParticipant(participant);
throw new RuntimeException("createSubscriber");

}

int receivePeriod = 4000; // milliseconds
while ((sampleCount == 0) || (doneSignal.getCount() != 0)) {

System.out.println("$ctx.currentSt.name$ Subscriber sleeping for " + receivePeriod/1000 + " seconds..");
Thread.sleep(receivePeriod);

}

In order for the Participant to stop succesfully, it must be removed from the Domain (all the associated endpoints
will be stopped as well), and then the method named shutdown belonging to the Kiara class will be the one to stop
all running services.

26 Chapter 1. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Domain.removeParticipant(participant);

Kiara.shutdown();

System.out.println("Publisher finished");

}

}

1.3.8 Concerns

Connection compatibilities when using SSL over TCP

A secure connection is made by using TLS v1.2 (Transport Layer Security), an updated version of the SSL
v3.1(Secure Sockets Layer). The use of this security layer carries a procedure to establish a connection between
two endpoints, more than the classical Three-Way Handshake used in standard TCP. When using SSL, after the
Three-Way Handshake, the client sends a Client Hello package that the server must answer with a Server
Hello, and then the connection can be negotiated and established.

When the connection protocol specified is TCPS (SSL), there are some minor compatibility concerns that must be
taken into account. The following table shows how the secure connections work depending on the side (client or
server).

Server Protocol TCP Client TCPS Client
TCP OK ERROR*
TCPS ERROR OK

• The problem when only the client is TCPS is that the TCP connection is succesfully established, but the
server will not answer the Hello package from the client, so this last one will never detect the connection
as literally finished.

1.3. Programmers guide 27

	KIARA User and Programmer Guide
	Introduction
	User guide
	Programmers guide

