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Executive summary
This document is a report on online adaptation of dialogue systems (deliverable 1.5), due at month 36 of
the CLASSIC project.
It consists of four contributions. First, it demonstrates fast policy adaptation using the GP-SARSA algo-
rithm applied to Hidden Information State (HIS) dialogue manager. Second, it describes online adapta-
tion of dialogue model parameters using the NBC algorithm within the Belief Update of Dialogue State
(BUDS) dialogue manager. Third, it proposes the Kalman Temporal Differences algorithm for manage-
ment of uncertainty in estimate of the optimal value function. Finally, it details optimisation techniques
for industrial spoken dialogue systems based on compliance-based reinforcement learning.
Work related to this deliverable has been published in Gašić et al. (2010), Jurčı́ček et al. (2010b), Laroche
et al. (2010b), and Geist and Pietquin (2010, 2011).
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1 Introduction
Spoken dialogue systems allow a human user to interact with a machine using voice as the pri-
mary communication medium. A typical dialogue system consists of a speech understanding
component, a dialogue manager, and a speech generation component. Speech understanding
usually consists of a speech recogniser and a semantic parser, and speech generation requires a
natural language generator and a speech synthesiser.
In recent years, Partially Observable Markov Decision Processes (POMDPs) have been proposed
as a principled way of modelling the uncertainty in spoken dialogue systems (Young et al., 2009).
A POMDP dialogue manager includes three main parts: a dialogue model representing state
information such as the user’s goal, the user’s dialogue act and the dialogue history; a policy
which selects the system’s responses based on the inferred dialogue state; and a reward function
which specifies the desired behaviour of the system.
In a POMDP system, the dialogue model provides a compact representation for the distribution
of the unobserved dialogue state called the belief state and it is updated every turn based on
the observed user inputs in a process called belief monitoring. Exact belief monitoring of the
full dialogue state is intractable for all but the simplest systems. One way to address this issue
is to represent the state in the compact and approximate form of a dynamic Bayesian Network
(BN) (Thomson and Young, 2009). Another way is to maintain probabilities only for the most
likely dialogue states. To achieve efficient belief monitoring, indistinguishable states can be
grouped into partitions and consequently the belief monitoring is performed on partitions instead
of the individual states(Young et al., 2009).
The policy selects the dialogue system’s responses (actions) based on the belief state at each
turn, and it is typically trained using reinforcement learning with the objective of maximising the
expected cumulative reward. The use of reinforcement learning algorithms for POMDP systems
usually relies on the observation that a POMDP system can be transformed into a continuous state
Markov decision process (MDP) and that the policy optimization problem can then be solved for
this newly defined MDP with the guarantee that the solution also optimises the original POMDP
(Kaelbling et al., 1998). However, without approximations this is not tractable for any real-world
dialogue system. Significant reduction in complexity can be achieved if notions of a summary
space and summary actions are introduced. The basic idea is that a successful policy does not
need access to all of the information in the belief state and the database, and that summary
actions produced by the policy can be mapped back into full actions through a heuristic mapping
(Williams and Young, 2005).
The choice of reward function is a dialogue design issue, but it will typically provide positive
rewards for satisfying the user’s goal, and negative rewards for failure and wasting time. Ideally
both the dialogue model and the policy would be designed to maximise the reward function. A
typical structure of a POMDP dialogue manager embodying these ideas is depicted in Figure 1.
Adaptivity in the area of spoken dialogue systems can be defined in many ways. For example,
Litman and Pan (2002); Chu-Carroll (2000) define adaptivity as ability to change the dialogue
management strategy over the course of a dialogue based on user observation and its measure
of uncertainty. However, this approach can be shown to be already incorporated in POMDP
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Figure 1: Structure of a POMDP dialogue system: au is a user act produced given the user
state su, ãi

u is an estimate of the users’ dialogue acts, b(sm) is the belief state, b̃ is a summary
representation of the belief state, ã is a summary action which is later expanded into full dialogue
act, am, by a heuristic mapping based on the full belief state and the database.

dialogue systems in a very natural way. POMDP dialogue systems explicitly maintain proba-
bility over all dialogue states in the form of a belief state; therefore, the policy has access to
uncertainty about the estimate of the current dialogue state. This information is then used in the
dialogue policies to change its behaviour, e.g. to confirm some information whenever the system
is not sure about what was said or to offer when all necessary information is available with high
certainty.
Another way is to define adaptivity as the ability to change the dialogue strategy depending
on the user being classified as a novice, moderate, or expert (?). This method can be easily
incorporated into the POMDP dialogue system by adding a variable representing the user type
into the dialogue model. Once the dialogue model is extended, the user type is estimated during
the course of the conversation as it is done with other parts of the dialogue model. Consequently,
the policy takes into account the estimated user type and proposes such system actions that serves
the needs of the current users better.
In this report, adaptivity is understood as the ability to learn parameters of a dialogue system
from the interaction with real users over a short period of. However, training the parameters of
a dialogue system is currently very time consuming task and most of the available algorithms
require millions of dialogues (Young et al., 2009; Thomson and Young, 2009). Therefore, train-
ing normally takes place in interaction with a simulated user, rather than real users. This raises
questions regarding the quality of the approximation as well as the potential discrepancy between
simulated and real user behaviour.
As a result, there is a need for efficient fast online learning algorithms that allow the parameters
obtained in interaction with the simulated user to be further refined in interaction with real users.
Section 2 presents the use of Gaussian processes for fast policy learning which in fact can lead
to online policy adaptation with real users. Section 3 describes the Natural Belief Critic algo-
rithm for online dialogue model parameter learning. Section 4 proposes the Kalman Temporal
Differences algorithm for management of uncertainty in estimate of the optimal value function.
Another part of this report concerns FT work on the integration of online reinforcement learn-
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ing functionality into a handcrafted spoken dialogue system. It is motivated by the following
industrial constraint: every system behaviour must be anticipated and controlled. Following
the same goal than Singh et al. (2002) and Williams (2008), the objective is to automatically
choose online the best alternative among those proposed by the developer in the design tool.
This design-centred approach differs from the classical reinforcement learning methods used in
the dialogue literature, which make their decisions at the dialogue turn level. Using a novel
technique Laroche et al. (2009), the validity of this approach has been demonstrated at multiple
occasions Laroche et al. (2010b); Putois et al. (2010). It guarantees a full control of the system
by its developers thanks to a unified tool enabling to project the monitoring information in the
design view Laroche et al. (2010a). Section 5 concentrates on the description of the proposed
technique, while section 6 reports on the evaluation with real users.
The report is concluded in section 7.

2 GP-SARSA: adaptation of a dialogue policy
Gašić et al. (2010) suggested the use of the GP-SARSA algorithm in order to make the learning
process faster. The GP-SARSA algorithm approximates the value function by a Gaussian Pro-
cess. Given the observation of rewards, it estimates the value function utilising its correlations in
different parts of the state and the action space defined by the kernel function. There are many
kernels that can be used in the approximation of the value function. The main purpose of a kernel
is to define a prior knowledge about the value function correlations. Typical kernels are polyno-
mial, parametrised polynomial, and Gaussian. Some of the kernel functions are in a parametrised
form, such as Gaussian or parametrised polynomial kernel. These parameters are estimated by
an algorithm maximising the marginal likelihood on a corpus of dialogues.
The main advantage of a Gaussian Process approximation lies in efficient use of all the available
data points. When this is combined with availability of information about the uncertainty for the
current estimate of the policy, it leads to a fast active learning algorithm.
The GP-SARSA was evaluated on a real-world dialogue task showing that this method can learn
faster than a grid-based algorithm (Young et al., 2009; Jurčı́ček et al., 2010a). The results also
showed that the variance that a Gaussian Process is estimating can be used to further accelerate
policy optimisation.
For more details see the appendix: “Gaussian Processes for Fast Policy Optimisation of POMDP-
based Dialogue Managers.”
An interesting by-product of the GP-SARSA algorithm is that it provides an explicit measure
of uncertainty at every point in the state space. This could provide a basis for rapid on-line
adaptation whereby a set of policies are trained off-line for different user types and then the best
policy is selected on-line to minimise the uncertainty. This will be a topic of future work.
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3 NBC: adaptation of a dialogue model
A key feature of the POMDP approach is that it includes a specific model of user behaviour. It
is important therefore to develop methods by which the parameters can be adapted to specific
users.
Jurčı́ček et al. (2010b) proposed the Natural Belief Critic (NBC) algorithm for learning the dia-
logue model parameters. The NBC algorithm is based on policy gradient methods (Peters et al.,
2005); however, generalisation of these methods was necessary. When using the policy gradient
methods, derivatives of the expected reward function with respect to all parameters of the dia-
logue systems are required. However, this might not be always possible as scalable dialogue sys-
tems usually use some form of summary space (Jurčı́ček et al., 2010a). The difficulty with using
summary space is that the mapping from the master space to the summary space depends on the
dialogue model parameters through a handcrafted function extracting non-continuous features
from the belief state. Consequently, closed form derivatives of the dialogue model parameters
are not available. Nevertheless, this problem can be alleviated by assuming that the dialogue
model parameters come from a prior distribution that is differentiable with respect to its parame-
ters. In summary, the NBC algorithm estimates the natural gradient of the expected reward based
on observed rewards. Then, the resulting gradient is used to adapt the prior distribution of the
dialogue model parameters.
The experiments showed that model parameters estimated to maximise the expected reward func-
tion result in significantly improved performance compared to the baseline handcrafted parame-
ters. Although the algorithm was evaluated on a user simulator, it is designed for online adapta-
tion of the model parameters in interaction with real users. The method can, for example, utilise
rewards provided by real users or automatically measured rewards based on some metrics, e.g.
successful completion of a task (uninterrupted call transfer in a call routing application, or a
booking of an appointment).
For more details see the appendix: “Natural Belief-Critic: a reinforcement algorithm for param-
eter estimation in statistical spoken dialogue systems.”

4 Uncertainty management with Kalman Temporal Differences
The Kalman Temporal Differences algorithm Geist and Pietquin (2010) for reinforcement learn-
ing has been developed in the framework of task 1.2 and has been reported in deliverable D.1.2.
This framework casts the value function approximation into the paradigm of Kalman filtering.
The value function is parameterized and Kalman filtering is used to estimate the parameters from
the observation of transitions in the state-action space and associated rewards. Kalman filtering
computes naturally the uncertainty associated to the estimation of the parameters. This uncer-
tainty can consequently be retro-propagated to the value function itself, traducing the uncertainty
one has on the estimation of this function. Since the policy is deducted from the estimated value
function, the learnt policy can be very far from optimality in highly uncertain areas of the state-
action space. Uncertainty being higher in areas that have been visited less frequently, it is reason-
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able to actively try to reduce the uncertainty by forcing the visit of these areas. This is actually
related to the well-known exploration vs. exploitation dilemma. Several strategies of exploration
can be investigated, based on different usages of the estimated uncertainty, like reported in Geist
and Pietquin (2011). In this paper, the results of these different exploration schemes applied to
the TownInfo problem are exposed. These results show that choosing adequately the exploration
scheme, that is adapting online the policy so as to explore the state-action space, improves the
learning rate and enables to learn online a fair policy in few hundreds of dialogue turns.
For more details see the appendix: “Managing Uncertainty within the KTD Framework.”

5 Optimising a Handcrafted Dialogue System Design
In the Spoken Dialogue System literature, all studies consider the dialogue move as the unques-
tionable unit for reinforcement learning. Rather than learning at the dialogue move level, Laroche
et al. (2010b) proposes to apply the learning at the design level for three reasons: 1/ to alleviate
the high-skill prerequisite for developers, 2/ to reduce the learning complexity by taking into
account just the relevant subset of the context and 3/ to have interpretable learning results that
carry a reusable usage feedback. Unfortunately, tackling the problem at the design level weakens
the Markovian assumptions that are required in most Reinforcement Learning techniques.
Consequently, it was experienced to use a recent non-Markovian algorithm called Compliance
Based Reinforcement Learning Laroche et al. (2009). This algorithm tries to identify optimal
and suboptimal actions. It learns from optimal actions instead of sub-optimal. The first step of
this algorithm consists in the computation of the local compliance of a past system actions to
the current optimal policy. This local compliance indicates how this decision deviates from the
policy that we consider optimal at that moment. The compliance is computed as a difference
between the expected performance implied by the action chosen during the past decisions and
the optimal action according to the current policy.
The results show a fast and significant improvement of the system performance of one system
misunderstanding less per dialogue in average. For more details see the appendix: “Optimising
a Handcrafted Dialogue System Design.”

6 CBRL: evaluation on 1013+ appointment scheduling ser-
vice

Putois et al. (2010) used the same approach as Laroche et al. (2010b). But this time, the algorithm
was evaluated on real user of 1013+ appointment scheduling service provided by FT R&D for FT
customers in France. When the user calls the system, she/he is presented with an open question
asking her/him for the reason of her/his call. If her/his landline is out-of-order, then the SDS
performs some automated tests on the line, and if the problem is confirmed, tries and schedules
an appointment with the user for a manual intervention. The experiment presented in this article
is restricted to the appointment scheduling task, which receives more than 8,000 calls every
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month. If the system and the user cannot agree on an appointment slot, the call is transferred
to a human operator. The evaluation of real users showed that compliance-based reinforcement
learning significantly improved overall performance of the system when compared to the system
using the handcrafted setup.
In addition to the support of a large-scale application, Putois et al. (2010) proposes a novel mon-
itoring tool. Thanks to this experience, it was demonstrated that the learning algorithm and the
SDS developers are not in conflict. They are two actors working on the same object: the dia-
logue system. But, they work at a different time scales. The learning algorithm updates its policy
after each dialogue while the SDS developers monitor the system behavior more occasionally.
The same kind of opposition can be made on their action spaces and their scopes. The learning
algorithm is concentrated on the alternative sets and automatic evaluation and ignores the rest,
while the SDS developers can apprehend the dialogue application as a whole, as a system or as a
service
For more details see the appendix: “Online Reinforcement Learning for Spoken Dialogue Sys-
tems: The Story of a Commercial Deployment Success.”

7 Conclusions
This report presented research into fast online learning algorithms for the policy and the dialogue
model parameters. In this report were proposed several reinforcement learning algorithms. The
GP-SARSA algorithm is suitable for fast learning and adaptation of the dialogue policy while
the NBC algorithm allows training the dialogue model parameters. Both algorithms are designed
to be used in interaction with real users. Whilst both methods still require several hundred dia-
logues, this is much better than the tens of thousands needed by standard RL algorithms and it
opens up the possibility of on-line incremental adaptation in live applications. The KTD algo-
rithm was showed that it actively exploits the information about the uncertainty of the estimate
of the value function. Also, the results suggest that this active behaviour translates into improve-
ment of learning rate which enables the policy to be learned online in a few hundreds of dialogue
turns. The CBRL algorithm was tested on real users of a real world spoken dialogue system. The
results show that a system optimised by the CBRL algorithm has significantly better performance
than the baseline system using a carefully tuned handcrafted setup.
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Abstract

Modelling dialogue as a Partially Observ-
able Markov Decision Process (POMDP)
enables a dialogue policy robust to speech
understanding errors to be learnt. How-
ever, a major challenge in POMDP pol-
icy learning is to maintain tractability, so
the use of approximation is inevitable.
We propose applying Gaussian Processes
in Reinforcement learning of optimal
POMDP dialogue policies, in order (1) to
make the learning process faster and (2) to
obtain an estimate of the uncertainty of the
approximation. We first demonstrate the
idea on a simple voice mail dialogue task
and then apply this method to a real-world
tourist information dialogue task.

1 Introduction
One of the main challenges in dialogue manage-
ment is effective handling of speech understand-
ing errors. Instead of hand-crafting the error han-
dler for each dialogue step, statistical approaches
allow the optimal dialogue manager behaviour
to be learnt automatically. Reinforcement learn-
ing (RL), in particular, enables the notion of plan-
ning to be embedded in the dialogue management
criteria. The objective of the dialogue manager is
for each dialogue state to choose such an action
that leads to the highest expected long-term re-
ward, which is defined in this framework by the Q-
function. This is in contrast to Supervised learn-
ing, which estimates a dialogue strategy in such a
way as to make it resemble the behaviour from a
given corpus, but without directly optimising the
overall dialogue success.
Modelling dialogue as a Partially Observable
Markov Decision Process (POMDP) allows action
selection to be based on the differing levels of un-
certainty in each dialogue state as well as the over-
all reward. This approach requires that a distribu-
tion of states (belief state) is maintained at each
turn. This explicit representation of uncertainty in
the POMDP gives it the potential to produce more
robust dialogue policies (Young et al., 2010).
The main challenge in the POMDP approach is

the tractability of the learning process. A dis-
crete state space POMDP can be perceived as a
continuous space MDP where the state space con-
sists of the belief states of the original POMDP.
A grid-based approach to policy optimisation as-
sumes discretisation of this space, allowing for
discrete space MDP algorithms to be used for
learning (Brafman, 1997) and thus approximating
the optimal Q-function. Such an approach takes
the order of 100, 000 dialogues to train a real-
world dialogue manager. Therefore, the training
normally takes place in interaction with a simu-
lated user, rather than real users. This raises ques-
tions regarding the quality of the approximation
as well as the potential discrepancy between sim-
ulated and real user behaviour.
Gaussian Processes have been successfully used
in Reinforcement learning for continuous space
MDPs, for both model-free approaches (Engel et
al., 2005) and model-based approaches (Deisen-
roth et al., 2009). We propose using GP Rein-
forcement learning in a POMDP dialogue man-
ager to, firstly, speed up the learning process and,
secondly, obtain the uncertainty of the approxima-
tion. We opt for the model-free approach since it
has the potential to allow the policy obtained in
interaction with the simulated user to be further
refined in interaction with real users.
In the next section, the core idea of the method is
explained on a toy dialogue problem where differ-
ent aspects of GP learning are examined. Follow-
ing that, in Section 3, it is demonstrated how this
methodology can be effectively applied to a real
world dialogue. We conclude with Section 4.

2 Gaussian Process RL on a Toy Problem
2.1 Gaussian Process RL
A Gaussian Process is a generative model of
Bayesian inference that can be used for function
regression (Rasmussen and Williams, 2005). A
Gaussian Process is fully defined by a mean and a
kernel function. The kernel function defines prior
function correlations, which is crucial for obtain-
ing good posterior estimates with just a few ob-
servations. GP-Sarsa is an on-line reinforcement
learning algorithm for both continuous and dis-
crete MDPs that incorporates GP regression (En-



gel et al., 2005). Given the observation of rewards,
it estimates the Q-function utilising its correlations
in different parts of the state and the action space
defined by the kernel function. It also gives a vari-
ance of the estimate, thus modelling the uncer-
tainty of the approximation.

2.2 Voice Mail Dialogue Task
In order to demonstrate how this methodology
can be applied to a dialogue system, we first ex-
plain the idea on the voice mail dialogue prob-
lem (Williams, 2006).
The state space of this task consists of three states:
the user asked for the message either to be saved
or deleted, or the dialogue ended. The system can
take three actions: ask the user what to do, save or
delete the message. The observation of what the
user wants is corrupted with noise, therefore we
model this as a three-state POMDP. This POMDP
can be viewed a continuous MDP, where the MDP
state is the POMDP belief state, a 3-dimensional
vector of probabilities. For both learning and eval-
uation, a simulated user is used which makes a
mistake with probability 0.3 and terminates the di-
alogue after at most 10 turns. In the final state, it
gives a positive reward of 10 or a penalty of −100
depending on whether the system performed a cor-
rect action or not. Each intermediate state receives
the penalty of −1. In order to keep the problem
simple, a model defining transition and observa-
tion probabilities is assumed so that the belief can
be easily updated, but the policy optimisation is
performed in an on-line fashion.

2.3 Kernel Choice for GP-Sarsa
The choice of kernel function is very important
since it defines the prior knowledge about the Q-
function correlations. They have to be defined on
both states and actions. In the voice mail dialogue
problem the action space is discrete, so we opt for
a simple δ kernel over actions:

k(a, a′) = 1 − δa(a
′), (1)

where δa is the Kronecker delta function. The
state space is a 3-dimensional continuous space
and the kernel functions over the state space that
we explore are given in Tab 2.3. Each kernel

kernel function expression
polynomial k(x,x′) = 〈x,x′〉

parametrised poly. k(x,x′) =
P

D

i=1

xix
′

i

r2
i

Gaussian k(x,x′) = p2 exp
− ‖x − x

′‖2

2σ2

k

scaled norm k(x,x′) = 1 −
‖x − x

′‖2

‖x‖2‖x′‖2

Table 1: Kernel functions

function defines a different correlation. The poly-
nomial kernel views elements of the state vector

as features, the dot-product of which defines the
correlation. They can be given different relevance
ri in the parametrised version. The Gaussian ker-
nel accounts for smoothness, i.e., if two states are
close to each other the Q-function in these states
is correlated. The scaled norm kernel defines posi-
tive correlations in the points that are close to each
other and a negative correlation otherwise. This
is particularly useful for the voice mail problem,
where, if two belief states are very different, tak-
ing the same action in these states generates a neg-
atively correlated reward.

2.4 Optimisation of Kernel Parameters
Some kernel functions are in a parametrised
form, such as Gaussian or parametrised polyno-
mial kernel. These parameters, also called the
hyper-parameters, are estimated by maximising
the marginal likelihood1 on a given corpus (Ras-
mussen and Williams, 2005). We adapted the
avaliable code (Rasmussen and Williams, 2005)
for the Reinforcement learning framework to ob-
tain the optimal hyper-parameters using a dialogue
corpus labelled with states, actions and rewards.

2.5 Grid-based RL Algorithms
To assess the performance of GP-Sarsa, it was
compared with a standard grid-based algorithm
used in (Young et al., 2010). The grid-based ap-
proach discretises the continuous space into re-
gions with their representative points. This then
allows discreteMDP algorithms to be used for pol-
icy optimisation, in this case theMonte Carlo Con-
trol (MCC) algorithm (Sutton and Barto, 1998).

2.6 Optimal POMDP Policy
The optimal POMDP policy was obtained us-
ing the POMDP solver toolkit (Cassandra, 2005),
which implements the Point Based Value Itera-
tion algorithm to solve the POMDP off-line using
the underlying transition and observation proba-
bilities. We used 300 sample dialogues between
the dialogue manager governed by this policy and
the simulated user as data for optimisation of the
kernel hyper-parameters (see Section 2.4).

2.7 Training set-up and Evaluation
The dialogue manager was trained in interaction
with the simulated user and the performance was
compared between the grid-based MCC algorithm
and GP-Sarsa across different kernel functions
from Table 2.3.
The intention was, not only to test which algo-
rithm yields the best policy performance, but also
to examine the speed of convergence to the opti-
mal policy. All the algorithms use an ε-greedy
approach where the exploration rate ε was fixed
at 0.1. The learning process greatly depends on

1Also called evidence maximisation in the literature.



the actions that are taken during exploration. If
early on during the training, the systems discovers
a path that generates high rewards due to a lucky
choice of actions, then the convergence is faster.
Therefore, to alleviate this, we adopt the follow-
ing procedure. For every training set-up, exactly
the same training iterations were performed using
1000 different random generator seedings. After
every 20 dialogues the resulting 1000 partially op-
timised policies were evaluated. Each of them was
tested on 1000 dialogues. The average reward of
these 1000 dialogues provides just one point in
Fig. 1.

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 620

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Training dialogues

Av
er

ag
e 

re
w

ar
d

polynomial kernel → 

← Gaussian kernel with learned hyper−parameters

← scaled norm kernel

polynomial kernel with learned hyper−parameters

↓

 

 

Optimal POMDP Policy
GP−Sarsa
Grid−based Monte Carlo Control

Figure 1: Evaluation results on Voice Mail task

The grid-based MCC algorithm used a Euclid-
ian distance to generate the grid by adding every
point that was further than 0.01 from other points
as a representative of a new region. As can be
seen from Fig 1, the grid-Based MCC algorithm
has a relatively slow convergence rate. GP-Sarsa
with the polynomial kernel exhibited a learning
rate similar to MCC in the first 300 training di-
alogues, continuing with a more upward learning
trend. The parametrised polynomial kernel per-
forms slightly better. The Gaussian kernel, how-
ever, achieves a much faster learning rate. The
scaled norm kernel achieved close to optimal per-
formance in 400 dialogues, with a much higher
convergence rate then the other methods.

3 Gaussian Process RL on a Real-world
Task

3.1 HIS Dialogue Manager on CamInfo
Domain

We investigate the use of GP-Sarsa in a real-
world task by extending the Hidden Information
State (HIS) dialogue manager (Young et al., 2010).
The application domain is tourist information for
Cambridge, whereby the user can ask for informa-
tion about a restaurant, hotel, museum or another

tourist attraction in the local area. The database
consists of more than 400 entities each of which
has up to 10 attributes that the user can query.
The HIS dialogue manager is a POMDP-based di-
alogue manager that can tractably maintain belief
states for large domains. The key feature of this
approach is the grouping of possible user goals
into partitions, using relationships between differ-
ent attributes from possible user goals. Partitions
are combined with possible user dialogue actions
from the N-best user input as well as with the di-
alogue history. This combination forms the state
space – the set of hypotheses, the probability dis-
tribution over which is maintained during the di-
alogue. Since the number of states for any real-
world problem is too large, for tractable policy
learning, both the state and the action space are
mapped into smaller scale summary spaces. Once
an adequate summary action is found in the sum-
mary space, it is mapped back to form an action in
the original master space.

3.2 Kernel Choice for GP-Sarsa
The summary state in the HIS system is a four-
dimensional space consisting of two elements that
are continuous (the probability of the top two hy-
potheses) and two discrete elements (one relating
the portion of the database entries that matches the
top partition and the other relating to the last user
action type). The summary action space is discrete
and consists of eleven elements.
In order to apply the GP-Sarsa algorithm, a kernel
function needs to be specified for both the sum-
mary state space and the summary action space.
The nature of this space is quite different from the
one described in the toy problem. Therefore, ap-
plying a kernel that has negative correlations, such
as the scaled norm kernel (Table 2.3) might give
unexpected results. More specifically, for a given
summary action, the mapping procedure finds the
most appropriate action to perform if such an ac-
tion exists. This can lead to a lower reward if
the summary action is not adequate but would
rarely lead to negatively correlated rewards. Also,
parametrised kernels could not be used for this
task, since there was no corpus available for hyper-
parameter optimisation. The polynomial kernel
(Table 2.3) assumes that the elements of the space
are features. Due to the way the probability is
maintained over this very large state space, the
continuous variables potentially encode more in-
formation than in the simple toy problem. There-
fore, we used the polynomial kernel for the con-
tinuous elements. For discrete elements, we utilise
the δ-kernel (Eq. 2.3).

3.3 Active Learning GP-Sarsa
The GP RL framework enables modelling the un-
certainty of the approximation. The uncertainty
estimate can be used to decide which actions



to take during the exploration (Deisenroth et al.,
2009). In detail, instead of a random action, the
action in which the Q-function for the current state
has the highest variance is taken.

3.4 Training Set-up and Evaluation
Policy optimisation is performed by interacting
with a simulated user on the dialogue act level.
The simulated user gives a reward at the final state
of the dialogue, and that is 20 if the dialogue was
successful, 0 otherwise, less the number of turns
taken to fulfil the user goal. The simulated user
takes a maximum of 100 turns in each dialogue,
terminating it when all the necessary information
has been obtained or if it looses patience.
A grid-based MCC algorithm provides the base-
line method. The distance metric used ensures
that the number of regions in the grid is small
enough for the learning to be tractable (Young et
al., 2010).
In order to measure how fast each algorithm
learns, a similar training set-up to the one pre-
sented in Section 2.7 was adopted and the aver-
aged results are plotted on the graph, Fig. 2.
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Figure 2: Evaluation results on CamInfo task

The results show that in the very early stage of
learning, i.e., during the first 400 dialogues, the
GP-based method learns faster. Also, the learning
process can be accelerated by adopting the active
learning framework where the actions are selected
based on the estimated uncertainty.
After performing many iterations in an incremen-
tal noise learning set-up (Young et al., 2010) both
the GP-Sarsa and the grid-based MCC algorithms
converge to the same performance.

4 Conclusions
This paper has described how Gaussian Processes
in Reinforcement learning can be successfully ap-
plied to dialogue management. We implemented
a GP-Sarsa algorithm on a toy dialogue prob-
lem, showing that with an appropriate kernel func-

tion faster convergence can be achieved. We also
demonstrated how kernel parameters can be learnt
from a dialogue corpus, thus creating a bridge
between Supervised and Reinforcement learning
methods in dialogue management. We applied
GP-Sarsa to a real-world dialogue task showing
that, on average, this method can learn faster than
a grid-based algorithm. We also showed that the
variance that GP is estimating can be used in an
Active learning setting to further accelerate policy
optimisation.
Further research is needed in the area of kernel
function selection. The results here suggest that
the GP framework can facilitate faster learning,
which potentially allows the use of larger sum-
mary spaces. In addition, being able to learn ef-
ficiently from a small number of dialogues offers
the potential for learning from direct interaction
with real users.
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Abstract
This paper presents a novel algorithm for learning parameters
in statistical dialogue systems which are modelled as Partially
Observable Markov Decision Processes (POMDPs). The three
main components of a POMDP dialogue manager are a dialogue
model representing dialogue state information; a policy which
selects the system’s responses based on the inferred state; and
a reward function which specifies the desired behaviour of the
system. Ideally both the model parameters and the policy would
be designed to maximise the reward function. However, whilst
there are many techniques available for learning the optimal
policy, there are no good ways of learning the optimal model
parameters that scale to real-world dialogue systems.

The Natural Belief-Critic (NBC) algorithm presented in this
paper is a policy gradient method which offers a solution to this
problem. Based on observed rewards, the algorithm estimates
the natural gradient of the expected reward. The resulting gra-
dient is then used to adapt the prior distribution of the dialogue
model parameters. The algorithm is evaluated on a spoken di-
alogue system in the tourist information domain. The experi-
ments show that model parameters estimated to maximise the
reward function result in significantly improved performance
compared to the baseline handcrafted parameters.
Index Terms: spoken dialogue systems, reinforcement learn-
ing, POMDP, dialogue management

1. Introduction
A POMDP dialogue manager includes three main parts: a di-
alogue model representing state information such as the user’s
goal, the user’s dialogue act and the dialogue history; a policy
which selects the system’s responses based on the inferred di-
alogue state; and a reward function which specifies the desired
behaviour of the system. In a POMDP system, the dialogue
model provides a compact representation for the distribution of
the unobserved dialogue state called the belief state and it is up-
dated every turn based on the observed user inputs in a process
called belief monitoring. Exact belief monitoring of the full di-
alogue state is intractable for all but the simplest systems. How-
ever, if the state is represented in the compact and approximate
form of a dynamic Bayesian Network (BN), factored accord-
ing to the slots in the system then by exploiting the conditional
independence of the network nodes, a tractable system can be
built [1]. In this case, the parameters of the model are the con-
ditional distributions describing the nodes in the network.

The policy selects the dialogue system’s responses (actions)
based on the belief state at each turn, and it is typically trained
using reinforcement learning with the objective of maximising
the reward function. While there are many efficient techniques
for learning the policy parameters [2, 3, 4], there are no good

ways of learning the model parameters which scale to real-
world dialogue systems. Hence, in virtually all current systems,
the dialogue model parameters are handcrafted by a system de-
signer [1, 3]. Ideally, one would like to estimate the parameters
from the interactions with the user and some attempts have been
made in this direction. For example, maximum likelihood esti-
mates can be obtained by annotating the correct dialogue state
in a corpus of real dialogues. However, in many real dialogues,
some components of the dialogue state, especially the user’s
goal, are hard to determine. Hence, in practice this approach
is restricted to cases where the user’s goal remains constant and
the dialogue is simple to annotate [5]. An alternative is to use al-
gorithms such as Expectation-Maximization [6] or Expectation-
Propagation [7] which can infer hidden state information. How-
ever, again these algorithms usually require the user goal to re-
main constant and even then it is not clear to what extent like-
lihood maximisation over a dialogue corpus correlates with the
expected reward of the dialogue system.

This paper presents a novel reinforcement algorithm called
Natural Belief-Critic (NBC) for learning the parameters of a di-
alogue model which maximise the reward function. The method
is presented and evaluated in the context of the BUDS POMDP
dialogue manager which uses a dynamic Bayesian Network to
represent the dialogue state. However, the method is sufficiently
general that it could be used to optimise virtually any parame-
terised dialogue model. Furthermore, unlike most of the maxi-
mum likelihood methods used so far, the NBC algorithm does
not require that the user goal remains constant.

The paper is structured as follows. Section 2 briefly de-
scribes the BUDS dialogue manager and the method it uses for
policy representation [1]. Section 3 then describes policy gradi-
ents methods and a specific form called the Natural Actor-Critic
(NAC) algorithm which is used to optimise the BUDS policy. In
Section 4, the proposed Natural Belief-Critic algorithm is pre-
sented as a generalisation of the NAC algorithm and then in
Section 5 it is evaluated on a system designed for the tourist
information domain. Finally, Section 6 presents conclusions.

2. BUDS dialogue manager
In a POMDP dialogue system, the true dialogue state st is un-
known. Therefore, the policy selects an action at at time t based
on the distribution over all states called the belief state, b(st).
The estimate of the belief state depends on past observations
and actions. If the system is Markovian then the belief state
bt depends only on the previous belief state bt−1, the current
observation ot and the last system action at−1:

b(st; τ) = k·p(ot|st; τ)
�

st−1

p(st|at−1, st−1; τ)b(st−1|ht−1; τ)

(1)
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Figure 1: An example factorisation for the Bayesian network
representing part of a tourist information dialogue system.

where the transition probability function p(st|at−1, st−1; τ)
and the observation probability p(ot|st; τ) represent the dia-
logue model which is parameterised by τ and k is a normali-
sation constant.

2.1. The dialogue model
A naive implementation of (1) is not tractable since there are
billions of states in a real-world spoken dialogue system1. Thus,
the BUDS dialogue manager uses a Bayesian Network (BN) to
represent the state of the POMDP system, where the network
is factored according to the slots in the system [1]. Provided
that each slot or network node has only a few dependencies,
tractable systems can be built and belief estimates maintained
with acceptable accuracy using approximate inference [8].

The BUDS dialogue state is factored into three components:
the user goal g, the user action u and the dialogue history h. In
addition, the goal and the history are further factored into sub-
goals gi and sub-histories hi according to a set of slots, i ∈ I, in
the system. For example, in a tourist information system typical
sub-goals might be the type of venue required (“type”) or the
type of food (“food”). The sub-history nodes allow the system
designer to store information about whether a user requested
information or the system informed the user about some slot.
The user action u is the estimate of the true dialogue act from
the observation o.2 Fig. 1 shows the resulting network for two
time-slices of a two-slot system based on this idea.

The BN model parameters τ comprise the set of con-
ditional probabilities of the node values. For example,
the “food” sub-goal values are described by the probability
p(g��food|g�food, g��type, a�; τfood) parameterised by τfood. To re-
duce the number of parameters specifying the distributions in
the sub-goals, some parameters are tied together on the assump-
tion that the probability of change in the sub-goals is constant
given the last system action and the parent sub-goal. For ex-
ample, the probability of change from “Chinese” to “Indian” in
the sub-goal “food” is equal to the probability of change from
“Chinese” to “Italian”.

2.2. The Policy
The BUDS dialogue manager uses a stochastic policy π(a|b; θ)
which gives the probability of taking action a given belief state
b and policy parameters θ. When used in the dialogue manager,
the policy distribution is sampled to yield the required action at
each turn. To reduce complexity, for every action a, the belief

1Note that if a dialogue system has 10 slots and each slot has 10
different values then there are 1010 distinct states.

2In the BUDS dialogue manager, the observations and system ac-
tions are implemented as dialogue acts. A dialogue act conveys the user
or system intention (such as inform, request, etc) and a list of slot-value
pairs (e.g. type=hotel, area=east).

state is mapped into a vector of features, Φa(b) and the policy
is then approximated by a softmax function:

π(at|b(·; τ)); θ) ≈
eθ

T ·Φat (b(·;τ))
�

ã e
θT ·Φã(b(·;τ))

. (2)

To estimate the policy parameters, BUDS uses the Natural
Actor-Critic (NAC) algorithm [4] ( see Section 3).

A further reduction in complexity can be achieved by utilis-
ing summary actions [1]. For example, if the dialogue manager
confirms the value of some sub-goal then it should always con-
firm the most likely value. As a result, the full set of actions
is not needed. The mapping of the summary actions into full
dialogue acts is performed by a handcrafted function based on
the information in the belief state.

There are a variety of possible forms for the Φ function [2].
The BUDS dialogue manager uses factored grid-based approxi-
mation. In this case, for every node in the BN a set of binary fea-
tures is generated based on the probabilities of two most likely
values. BUDS also supports handcrafted policies which are de-
signed by an expert. These policies deterministically choose
which action to take given the features.

3. Policy gradients
The objective of reinforcement learning is to find a policy π
which maximises the expected reward J(θ):

J(θ) = E
� 1
T

T�

t=1

r(st, at) | πθ

�
,

where r(st, at) is the reward when taking action at in state st.
Learning θ can be achieved by a gradient ascent which it-

eratively adds a multiple of the gradient to the parameters be-
ing estimated. Using “the log likelihood-ratio trick” and Monte
Carlo sampling, the gradient can be estimated as follows:

∇J(θ) =
1
N

N�

n=1

Tn�

t=1

∇ log π(an
t |bnt ; θ)Rn (3)

where the sampled dialogues are numbered n = 1, . . . , N ,
the n-th dialogue has a length of Tn turns, and Rn =
1
Tn

�Tn
t=1 r(st, at) is the reward accumulated in dialogue n. To

obtain a closed form solution for the gradient ∇J , the policy π
must be differentiable w.r.t. θ. Conveniently, the softmax func-
tion in ( 2) is “linear” w.r.t. the parameters θ. Thus, it is easy to
derive an analytic form for the gradient ∇J .

Although (3) can provide an estimate for the “vanilla” gra-
dient, it has been shown that the natural gradient �∇ J(θ) =
F−1
θ ∇J(θ) is more effective for optimisation of statistical

models where Fθ is the Fisher Information Matrix [9]. Based on
this idea, Peters et al. developed the Natural Actor-Critic (NAC)
algorithm which estimates a natural gradient of the expected re-
ward function [4]. The appealing part of the NAC algorithm is
that in practice the Fisher Information Matrix does not need to
be explicitly computed. To obtain the natural gradient, w, of
J(θ), NAC uses a least square method to solve the following
set of equations:

Rn =

�
Tn�

t=1

∇ log π(an
t |bnt ; θ)T

�
·w+C ∀n ∈ {1, . . . , N}.

Once w has been found, the policy parameters can be iteratively
improved by θ� ← θ + βw, where β is a step size.

Of all the policy optimisation algorithms tested with BUDS,
the NAC algorithm has proved to be the most robust suggest-
ing that the use of the natural gradient is critical. The question



therefore arises whether this type of policy gradient method can
be generalised to optimise not just the policy but the parameters
of the dialogue model as well.

4. Natural Belief-Critic algorithm
The difficulty with using policy gradient methods for learning
the parameters of the dialogue model is that since the function
Φ, which extracts features from the belief state, is usually a
handcrafted function of non-continuous features, the policy is
not usually differentiable w.r.t. τ . However, this problem can
be alleviated by assuming that the model parameters τ come
from a prior distribution p(τ ;α) that is differentiable w.r.t. the
parameters α. This leads to a generalisation of the NAC algo-
rithm called the Natural Belief-Critic (NBC) algorithm.

The goal of NBC is to learn the parameters α of the prior
distribution while maximising the expected reward. The algo-
rithm assumes that the policy is fixed during training. At each
iteration, the NBC algorithm samples the model parameters, ex-
ecutes dialogues, and stores the rewards observed at the end of
each dialogue. After collecting sufficient statistics, the algo-
rithm updates the prior distribution based on the observed re-
wards. Finally, the expected values for τ given the distribution
p(τ ;α) provide the new estimates for τ .

The techniques used in NAC to compute the natural gradi-
ent can be extended to the NBC algorithm since both algorithms
sample from the distribution for which they are learning the pa-
rameters. The only difference is that NBC samples only at the
beginning of a dialogue. As a result, NBC solves the following
set of equations:

Rn = ∇ log p(τn;α)T · w + C ∀n ∈ {1, . . . , N} (4)

to obtain the natural gradient w of the expected reward.
In order to use NBC in practice a prior for the model pa-

rameters τ is needed. Since the parameters of the BN described
in Section 2.1 are parameters of multiple multinomial distribu-
tions, a product of Dirichlet distributions provides a convenient
prior.

Formally, for every node j ∈ {1, . . . , J} in the BN,
there are parameters τj describing a probability p(j|par(j); τj)
where the function par(j) defines the parents of the node j.
Let |par(j)| be the number of distinct combinations of val-
ues of the parents of j. Then, τj is composed of parame-
ters of |par(j)| multinomial distributions and it is structured
as follows: τj =

�
τj,1, . . . , τj,|par(j)|

�
. Consequently, a prior

for τj can be formed from a product of Dirichlet distribu-
tions:

�|par(j)|
k=1 Dir(τj,k;αj,k) parameterised by αj,k. Let the

vector τ = [τ1, . . . , τJ ] be a vector of all parameters in the
BN. Then, the probability p(τ ;α) from (4) can be defined as
p(τ ;α) =

�J
j=1

�|par(j)|
k=1 Dir(τj,k;αj,k) which has a closed

form log-derivative w.r.t. α and can be used in (4) to compute
the natural gradient w. The complete NBC algorithm is de-
scribed in Algorithm 1.

5. Evaluation
An experimental evaluation of the Natural Belief-Critic algo-
rithm was conducted using the BUDS dialogue system de-
scribed in Section 2. The goal of the evaluation was to test
whether the NBC algorithm could improve on a set of carefully
handcrafted model parameters which had been refined over time
to optimise performance. The evaluation was in two parts.
Firstly a set of model parameters were estimated using a finely
tuned handcrafted policy, and secondly, a set of model param-
eters were estimated using a stochastic policy trained using the

Algorithm 1 Natural Belief-Critic
1: Let τ be the parameters of the dialogue model
2: Let p(τ ;α) be a prior for τ parameterised by α
3: Let α1 be the initial parameters of the prior for τ
4: Let π be a fixed policy
5: Let N be the number of dialogues sampled in each iteration
6: Let M be the number of training iterations
7: Let β be a step size

8: for i = 1 to M do
Collecting statistics:

9: for n = 1 to N do
10: Draw parameters τn ∼ p(τn;αi)
11: Execute the dialogue according the policy π
12: Observe the reward Rn
13: end for

Critic evaluation:
14: Choose wi to minimize the sum of the squares of the errors of

Rn = ∇ log p(τn;α)T · wi + C
Parameter update:

15: αi+1 ← αi + βwi
16: end for

NAC algorithm. In both cases, the results were compared to
the performance obtained using the initial handcrafted model
parameters.

The systems were trained and tested using an agenda based
user simulator, for the Town-Info domain which provides tourist
information for an imaginary town [1, 3]. The user simulator in-
corporates a semantic concept confusion model, which enables
the systems to be trained and tested across a range of semantic
error rates. The reward function used in all experiments awards
100 minus the number of dialogue turns for a successful dia-
logue and 0 minus the number of turns for an unsuccessful one.

5.1. Dialogue model for the Town-Info domain

The Bayesian Network for the Town-Info domain contains nine
sub-goals: name of the venue, type of venue, area, price range,
nearness to a particular location, type of drinks, food type, num-
ber of stars and type of music. Every sub-goal has a correspond-
ing sub-history node. The network also has nodes to represent
address, telephone number, a comment on the venue and the
price. However, for these only their sub-history nodes are used
since a user can only ask for values of these slots and cannot
specify them as query constraints. Finally, the network has two
special nodes. The “method” node stores the probability that
the user is searching for a venue by constraint rather than by
name. The “discourse” node infers whether a user wants the
system to repeat the last system action, restart the dialogue, end
the dialogue or provide the user with more information about
the last offered venue. Although the dialogue manager does not
ask about these nodes explicitly, their values are inferred just
like any other node.

The history, “method”, and “discourse” nodes use fully pa-
rameterised conditional probabilities in order to capture the de-
tailed characteristics of dialogue flow. All of the other sub-goal
nodes use parameter tying as described in Section 2.1. Overall
this results in a total of 577 parameters in the dialogue model.

5.2. Experiments

Dialogue model parameters using the handcrafted policy were
estimated by running the NBC algorithm for 50 iterations with
the simulator set to give a 40% error rate. In each iteration,
16k dialogues were sampled. Both the baseline system and the
system with the learnt BN parameters were evaluated over error
rates ranging from 0% to 50%. At each error rate, 5000 dia-



Figure 2: Comparison of the mean rewards of the handcrafted
BN model parameters and the parameters learnt by NBC when
trained using both a handcrafted policy and a trained policy.

logues were simulated and to reduce the variance of results, this
training and evaluation procedure was executed 5 times. The
averaged results along with 95% confidence intervals are de-
picted in Fig. 2. As can be seen, the system with trained BN pa-
rameters significantly outperforms the system with handcrafted
parameters especially at high error rates. For example, at 40%
error rate, the mean reward was increased by 8.3% (p < 0.05).
Inspection of the results suggests that this improvement can be
mostly attributed to the sub-optimality of the handcrafted policy
and the ability of the learnt BN parameters compensate for this.

In the second experiment, the NBC algorithm was used to
estimate a set of model parameters for a system using an opti-
mised stochastic policy. The full training procedure was exe-
cuted in three steps. First, a stochastic policy was learnt using
a dialogue model initialised with handcrafted parameters. To
train the policy, the NAC algorithm was executed for 200 iter-
ations at a 40% error rate and in each iteration 4000 dialogues
were simulated. Second, NBC was used to train BN parame-
ters using the newly trained stochastic policy. Thirdly, the pol-
icy was retrained using NAC to take advantage of the improved
model parameters. The final system was evaluated as in the first
task; although in this case, the training and evaluation procedure
was executed 20 times. The results, depicted in Fig. 2, show
that a system with model parameters trained using NBC signif-
icantly improves on the system with handcrafted model param-
eters even when used with a trained policy. At 40% error rate,
the mean reward was increased by 2.2% (p < 0.05). Further it-
erations of model parameter estimation and policy optimization
did not lead to any further improvement in performance.

Inspection of the learnt model parameters compared to
the handcrafted parameters based on KL-divergence showed
that greatest effect of the NBC-based optimisation was on the
“method” and “discourse” nodes. This is in line with expecta-
tions since the probabilities of change in these nodes are less
intuitive and they are therefore much harder to set manually.

The NBC algorithm was also tested with initial model pa-
rameters different to the handcrafted ones. Simulations showed
that although the algorithm is able to improve on arbitrary ini-
tialisations, the maximum performance achieved is sensitive to
the initialisation, presumably because the algorithm converges
to differing local optima.

Experiments were also conducted with uninformative (uni-
form) priors on the model parameters; though, they were not en-
tirely successful since in this case, the final rewards were lower

by 10%-20% in comparison with the rewards obtained when
using the handcrafted parameters. It appears that the NBC al-
gorithm too quickly reduces the variance of the prior distribu-
tion. Consequently, it limits exploration of the dialogue model
parameters.

The NBC algorithm can also be understood as a random
search algorithm. Thus, other state-of-the-art random search
techniques such as SPSA [10] and CMA-ES [11] can be used.
However, informal testing with these techniques yielded no fur-
ther improvement to the results reported here.

6. Conclusion
This paper has proposed a novel method called the Natural Be-
lief Critic algorithm for estimating the model parameters of a
POMDP-based dialogue system so as to maximise the reward.
Based on observed rewards obtained in a set of training dia-
logues, the algorithm estimates the natural gradient of the ex-
pected reward of a dialogue system and then adapts the Dirichlet
prior distributions of the model parameters. Simulations have
shown that the NBC algorithm significantly improves upon an
initial set of handcrafted model parameters when used with both
handcrafted and trained policies. Although the NBC algorithm
converges reliably, the achievable maximum reward is sensitive
to the initialisation. Thus the algorithm is most effective for
improving on an existing set of model parameters which have
either been handcrafted or estimated by other methods such as
maximum likelihood.
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Abstract
The dilemma between exploration and exploitation is an important topic in reinforcement

learning (RL). Most successful approaches in addressing this problem tend to use some

uncertainty information about values estimated during learning. On another hand, scal-

ability is known as being a lack of RL algorithms and value function approximation has

become a major topic of research. Both problems arise in real-world applications, however

few approaches allow approximating the value function while maintaining uncertainty in-

formation about estimates. Even fewer use this information in the purpose of addressing

the exploration/exploitation dilemma. In this paper, we show how such an uncertainty

information can be derived from a Kalman-based Temporal Differences (KTD) framework

and how it can be used.

Keywords: Value function approximation, active learning, exploration/exploitation dilemma

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 1996) is the machine learning answer to
the well-known problem of optimal control of dynamic systems. In this paradigm, an agent
learns to control its environment (i.e., the dynamic system) through examples of actual
interactions. To each of these interactions is associated an immediate reward which is a
local hint about the quality of the current control policy. More formally, at each (discrete)
time step i the dynamic system to be controlled is in a state si. The agent chooses an
action ai, and the dynamic system is then driven in a new state, say si+1, following its
own dynamics. The agent receives a reward ri associated to the transition (si, ai, si+1). The
agent’s objective is to maximize the expected cumulative rewards, which it internally models
as a so-called value or Q-function (see later). In the most challenging cases, learning has to
be done online and the agent has to control the system while trying to learn the optimal
policy. A major issue is then the choice of the behavior policy and the associated dilemma
between exploration and exploitation (which can be linked to active learning). Indeed at
each time step, the agent can choose an optimal action according to its (maybe) imperfect
knowledge of the environment (exploitation) or an action considered to be suboptimal so
as to improve its knowledge (exploration) and subsequently its policy. The �-greedy action
selection is a popular choice which consists in selecting the greedy action with probability
1− �, and an equally distributed random action with probability �. Another popular scheme
is the softmax action selection (Sutton and Barto, 1996) drawing the behavior action from
a Gibbs distribution. Most successful approaches tend to use an uncertainty information

c� 2010 M. Geist & O. Pietquin.
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to choose between exploration and exploitation but also to drive exploration. Dearden
et al. (1998) maintain a distribution for each Q-value. They propose two schemes. The
first one consists in sampling the action according to the Q-value distribution. The second
one uses a myopic value of imperfect information which approximates the utility of an
information-gathering action in terms of the expected improvement of the decision quality.
Strehl and Littman (2006) maintain a confidence interval for each Q-value and the policy
is greedy respectively to the upper bound of this interval. This approach allows deriving
probably-approximately-correct (PAC) bounds. Sakaguchi and Takano (2004) use a Gibbs
policy. However a reliability index (actually a form of uncertainty) is used instead of the
more classic temperature parameter. Most of these approaches are designed for problems
where an exact (tabular) representation of the value function is possible. Nevertheless,
approximating the value in the case of large state spaces is another topic of importance
in RL. There are some model-based algorithms which address this problem (Kakade et al.,
2003; Jong and Stone, 2007; Li et al., 2009b). They imply approximating the model in
addition to the value function. However we focus here an pure model-free approaches (just
the value function is estimated). Unfortunately quite few value function approximator allow
deriving an uncertainty information about estimated values. Engel (2005) proposes such a
model-free algorithm, but the actual use of value uncertainty is left as a perspective. In this
paper, we show how some uncertainty information about estimated values can be derived
from the Kalman Temporal Differences (KTD) framework of Geist et al. (2009a,b). We
also introduce a form of active learning which uses this uncertainty information in order to
speed up learning, as well as some adaptations of existing schemes designed to handle the
exploration/exploitation dilemma. Each contribution is illustrated and experimented, the
last one on a real-world dialogue management problem.

2. Background

2.1. Reinforcement Learning

This paper is placed in the framework of Markov decision process (MDP). An MDP is a
tuple {S, A, P,R, γ}, where S is the state space, A the action space, P : s, a ∈ S × A →
p(.|s, a) ∈ P(S) a family of transition probabilities, R : S×A×S → R the bounded reward
function, and γ the discount factor. A policy π associates to each state a probability over
actions, π : s ∈ S → π(.|s) ∈ P(A). The value function of a given policy is defined as
V π(s) = E[

�∞
i=0 γiri|s0 = s, π] where ri is the immediate reward observed at time step

i, and the expectation is done over all possible trajectories starting in s given the system
dynamics and the followed policy. The Q-function allows a supplementary degree of freedom
for the first action and is defined as Qπ(s, a) = E[

�∞
i=0 γiri|s0 = s, a0 = a, π]. RL aims at

finding (through interactions) the policy π∗ which maximises the value function for every
state: π∗ = argmaxπ(V π). Two schemes among others can lead to the optimal policy. First,
policy iteration involves learning the value function of a given policy and then improving the
policy, the new one being greedy respectively to the learnt value function. It requires solving
the Bellman evaluation equation, which is given here for the value and Q-functions: V π(s) =
Es�,a|π,s[R(s, a, s�)+γV π(s�)] and Qπ(s, a) = Es�,a�|π,s,a[R(s, a, s�)+γQπ(s�, a�)]. The second
scheme, value iteration, aims directly at finding the optimal policy. It requires solving
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the Bellman optimality equation: Q∗(s, a) = Es�|s,a[R(s, a, s�) + γ maxb∈A Q∗(s�, b)]. For
large state and action spaces, exact solutions are tricky to obtain and value or Q−function
approximation is required.

2.2. Kalman Temporal Differences - KTD

Originally, the Kalman (1960) filter paradigm is a statistical method aiming at online track-
ing the hidden state of a non-stationary dynamic system through indirect observations of
this state. The idea behind KTD is to cast value function approximation into such a fil-
tering paradigm: considering a function approximator based on a familly of parameterized
functions, the parameters are then the hidden state to be tracked, the observation being the
reward linked to the parameters through one of the classical Bellman equations. Thereby
value function approximation can benefit from the advantages of Kalman filtering and par-
ticularly uncertainty management because of statistical modelling.

The following notations are adopted, given that the aim is the value function evaluation,
the Q-function evaluation or the Q-function direct optimization:

ti =






(si, si+1)
(si, ai, si+1, ai+1)
(si, ai, si+1)

gti(θi) =






V̂θi(si)− γV̂θi(si+1)
Q̂θi(si, ai)− γQ̂θi(si+1, ai+1)
Q̂θi(si, ai)− γ maxb Q̂θi(si+1, b)

(1)

where V̂θ (resp. Q̂θ) is a parametric representation of the value (resp. Q-) function, θ being
the parameter vector. A statistical point of view is adopted and the parameter vector is
considered as a random variable. The problem at sight is stated in a so-called state-space
formulation: �

θi = θi−1 + vi

ri = gti(θi) + ni
(2)

Using the vocabulary of Kalman filtering, the first equation is the evolution equation. It
specifies that the searched parameter vector follows a random walk which expectation cor-
responds to the optimal estimation of the value function at time step i. The evolution noise
vi is centered, white, independent and of variance matrix Pvi . The second equation is the
observation equation, it links the observed transitions and rewards to the value (or Q-) func-
tion through one of the Bellman equations. The observation noise ni is supposed centered,
white, independent and of variance Pni .

KTD is a second order algorithm: it updates the mean parameter vector, but also the
associated covariance matrix after each interaction. It breaks down into three steps. First,
predictions of the parameters first and second order moments are obtained according to
the evolution equation and using previous estimates. Then some statistics of interest are
computed. The third step applies a correction to predicted moments of the parameters vector
according to the so-called Kalman gain Ki (computed thanks to the statistics obtained in
second step), the predicted reward r̂i|i−1 and the observed reward ri (their difference being
a form of temporal difference error).

Statistics of interest are generaly not analytically computable, except in the linear case.
This does not hold for nonlinear parameterizations such as neural networks and for the
Bellman optimality equation (because of the max operator). Nevertheless, a derivative-free
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approximation scheme, the unscented transform (UT) of Julier and Uhlmann (2004), allows
estimating first and second order moments of a nonlinearly mapped random vector. Let X
be a random vector (typically the parameter vector) and Y = f(X) its nonlinear mapping
(typically the gti function). Let n be the dimension of the random vector X. A set of 2n+1
so-called sigma-points and associated weights are computed as follows:






x(0) = X̄ j = 0
x(j) = X̄ + (

�
(n + κ)PX)j 1 ≤ j ≤ n

x(j) = X̄ − (
�

(n + κ)PX)n−j n + 1 ≤ j ≤ 2n

and

�
w0 = κ

n+κ j = 0
wj = 1

2(n+κ) 1 ≤ j ≤ 2n
(3)

where X̄ is the mean of X, PX is its variance matrix, κ is a scaling factor which controls
the accuracy, and (

√
PX)j is the jth column of the Cholesky decomposition of PX . Then

the image of each sigma-point through the mapping f is computed: y(j) = f(x(j)),0 ≤ j ≤
2n. The set of sigma-points and their images can then be used to compute the following
approximations:Ȳ ≈ ȳ =

�2n
j=0 wjy(j), PY ≈

�2n
j=0 wj(y(j) − ȳ)(y(j) − ȳ)T and PXY ≈

�2n
j=0 wj(x(j) − X̄)(y(j) − ȳ)T .
Thanks to the UT, practical algorithms can be derived. At time-step i, a set of sigma-

points is computed from predicted random parameters characterized by mean θ̂i|i−1 and
variance Pi|i−1. Predicted rewards are then computed as images of these sigma-points using
one of the observation functions (1). Then sigma-points and their images are used to compute
statistics of interest. This gives rise to a generic algorithm valid for any of the three Bellman
equations and any parametric representation of V or Q summarized in Alg. 1, p being
the number of parameters. More details as well as theoretical results (such as proofs of
convergence) about KTD are provided by Geist and Pietquin (2010).

Algorithm 1: KTD
Initialization: priors θ̂0|0 and P0|0;
for i← 1, 2, . . . do

Observe transition ti and reward ri;
Prediction Step;
θ̂i|i−1 = θ̂i−1|i−1;
Pi|i−1 = Pi−1|i−1 + Pvi ;
Sigma-points computation;
Θi|i−1 = {θ̂(j)

i|i−1, 0 ≤ j ≤ 2p} /* from θ̂i|i−1 and Pi|i−1 */
W = {wj , 0 ≤ j ≤ 2p} ;
Ri|i−1 = {r̂(j)

i|i−1 = gti(θ̂
(j)
i|i−1), 0 ≤ j ≤ 2p} /* see Eq. (1) */

Compute statistics of interest ;
r̂i|i−1 =

P2p
j=0 wj r̂

(j)
i|i−1;

Pθri =
P2p

j=0 wj(θ̂
(j)
i|i−1 − θ̂i|i−1)(r̂

(j)
i|i−1 − r̂i|i−1);

Pri =
P2p

j=0 wj(r̂
(j)
i|i−1 − r̂i|i−1)

2 + Pni ;
Correction step;
Ki = PθriP

−1
ri

;
θ̂i|i = θ̂i|i−1 + Ki(ri − r̂i|i−1) ;
Pi|i = Pi|i−1 −KiPriK

T
i ;
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Figure 1: Uncertainty computation.  0
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Figure 2: Dialog management results.

3. Computing Uncertainty over Values

The parameters being modeled as random variables, the parameterized value for any given
state is a random variable. This model allows computing the mean and associated uncer-
tainty. Let V̂θ be the approximated value function parameterized by the random vector θ of
mean θ̄ and variance matrix Pθ. Let V̄θ(s) and σ̂2

Vθ
(s) be the associated mean and variance

for a given state s. To propagate the uncertainty from the parameters to the approximated
value function a first step is to compute the sigma-points associated to the parameter vec-
tor, that is Θ = {θ(j), 0 ≤ j ≤ 2p}, as well as corresponding weights, from θ̄ and Pθ as
described before. Then the images of these sigma-points are computed using the parameter-
ized value function: Vθ(s) = {V̂ (j)

θ (s) = V̂θ(j)(s), 0 ≤ j ≤ 2p}. Knowing these images and
corresponding weights, the statistics of interest are computed: V̄θ(s) =

�2p
j=0 wj V̂

(j)
θ (s) and

σ̂2
Vθ

(s) =
�2p

j=0 wj(V̂
(j)
θ (s)− V̄θ(s))2. This is illustrated on Fig. 1. Extension to Q-function

is straightforward. So, as at each time-step uncertainty information can be computed in the
KTD framework.

4. A Form of Active Learning

4.1. Principle

It is shown here how this available uncertainty information can be used in a form of active
learning. The KTD algorithm derived from the Bellman optimality equation, that is Alg. 1
with third equation of Eq. (1), is named KTD-Q. It is an off-policy algorithm: it learns
the optimal policy π∗ while following a different behaviorial policy b. A natural question is:
what behaviorial policy to choose so as to speed up learning? Let i be the current temporal
index. The system is in a state si, and the agent has to choose an action ai. The predictions
θ̂i|i−1 and Pi|i−1 are available and can be used to approximate the uncertainty of the Q-
function parameterized by θi|i−1 in the state si and for any action a. Let σ̂2

Qi|i−1
(si, a) be

the corresponding variance. The action ai is chosen according to the following heuristic:

b(.|si) =
σ̂Qi|i−1

(si, .)�
a∈A σ̂Qi|i−1

(si, a)
(4)

This totally explorative policy favours uncertain actions. The corresponding algorithm which
is called active KTD-Q (Alg. 1 with 3rd Eq. of (1) and policy (4)).
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4.2. Experiment

The second experiment is the inverted pendulum benchmark. This task requires maintaining
a pendulum of unknown length and mass at the upright position by applying forces to the
cart it is attached to. It is fully described by Lagoudakis and Parr (2003) and we use
the same parameterization (a mixture of Gaussian kernels). The goal is here to compare
two value-iteration-like algorithms, namely KTD-Q and Q-learning, which aim at learning
directly the optimal policy from suboptimal trajectories (off-policy learning). As far as we
know, KTD-Q is the first second-order algorithm for Q-function approximation in a value
iteration scheme, the difficulty being to handle the max operator (Yu and Bertsekas (2007)
propose also such an algorithm, however for a restrictive class of MDP). That is why we
compare it to a first-order algorithm. The active learning scheme is also experimented: it
uses the uncertainty computed by KTD to speed up convergence.

For Q-learning, the learning rate is set to αi = α0
n0+1
n0+i with α0 = 0.5 and n0 = 200,

according to Lagoudakis and Parr (2003). For KTD-Q, the parameters are set to P0|0 = 10I,
Pni = 1 and Pvi = 0I. For all algorithms the initial parameter vector is set to zero.
Training samples are first collected online with a random behavior policy. The agent starts
in a randomly perturbed state close to the equilibrium. Performance is measured as the
average number of steps in an test episode (a maximum of 3000 steps is allowed). Results
are averaged over 100 trials. Fig. 3 compares KTD-Q and Q-learning (the same random
samples are used to train both algorithms). Fig. 4 adds active KTD-Q for which actions
are sampled according to (4). Average length of episodes with totally random policy is 10,
whereas it is 11 for policy (4). Consequently the increase in length can only slightly help to
improve speed of convergence (at most 10%, much less than the real improvement which is
about 100%, at least at the beginning).

According to Fig. 3, KTD-Q learns an optimal policy (that is balancing the pole for the
maximum number of steps) asymptotically and near-optimal policies are learned after only a
few tens of episodes (notice that these results are comparable to the LSPI algorithm). With
the same number of learning episodes, Q-learning with the same linear parameterization
fails to learn a policy which balances the pole for more than a few tens of time steps.
Similar results for Q-learning are obtained by Lagoudakis and Parr (2003). According to
Fig. 4, it is clear that sampling actions according to uncertainty speeds up convergence. It
is almost doubled in the first 100 episodes. Notice that this active learning scheme could not
have been used for Q-learning with value function approximation, as this algorithm cannot
provide uncertainty information.
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5. Exploration/Exploitation Dilemma

In this section, we present several approaches designed to handle the dilemma between
exploration and exploitation (which can be linked to active learning). The first one is the
well known �-greedy policy, and it serves as a baseline. Other approaches are inspired from
the literature and use the available uncertainty information (see Sec. 3 for its computation).
The corresponding algorithms are a combination of KTD-SARSA (Alg. 1 with 2nd Eq. of (1))
with policies (5-8).

5.1. �-greedy Policy

With an �-greedy policy (Sutton and Barto, 1996), the agent chooses a greedy action respec-
tively to the currently estimated Q-function with a probability 1− �, and a random action
with a probability � (δ is the Kronecker symbol):

π(ai+1|si+1) = (1− �)δ(ai+1 = argmax
b∈A

Q̄i|i−1(si+1, b)) + �δ(ai+1 �= argmax
b∈A

Q̄i|i−1(si+1, b)) (5)

This policy is perhaps the most basic one, and it does not use any uncertainty information.
An arbitrary Q-function for a given state and 4 different actions is illustrated on Fig. 6. For
each action, it gives the estimated Q-value as well as the associated uncertainty (that is ±
estimated standard deviation). For example, action 3 has the highest value and the lowest
uncertainty, and action 1 the lowest value but the highest uncertainty. The probability dis-
tribution associated to the �-greedy policy is illustrated on Fig. 5.a. The highest probability
is associated to action 3, and other actions have the same (low) probability, despite their
different estimated values and standard deviations.

5.2. Confident-greedy Policy

The second approach we propose consists in acting greedily according to the upper bound of
an estimated confidence interval. The approach is not novel (Kaelbling, 1993), however some
PAC (probably approximately correct) guarantees have been given recently by Strehl and
Littman (2006) for a tabular representation (for which the confidence interval is proportional
to the inverse of the square root of the number of visits to the considered state-action pair).
In our case, we postulate that the confidence interval width is proportional to the estimated
standard deviation (which is true if the parameters distribution is assumed to be Gaussian).
Let α be a free positive parameter, we define the confident-greedy policy as:

π(ai+1|si+1) = δ
�
ai+1 = argmax

b∈A

�
Q̄i|i−1(si+1, b) + ασ̂Qi|i−1

(si+1, b)
��

(6)

The same arbitrary Q-values are considered (see Fig. 6), and the confident-greedy policy is
illustrated on Fig. 5.b which represents the upper bound of the confidence interval. Action
1 is chosen because it has the highest score (despite the fact that it has the lowest estimated
value). Notice that action 3, which is greedy respectively to the estimated Q-function, has
only the third score.
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a. �-greedy. b. Confident-greedy. c. Bonus-greedy. d. Thompson.

Figure 5: Policies.

5.3. Bonus-greedy Policy

The third approach we propose is inspired from the method of Kolter and Ng (2009). The
policy they use is greedy respectively to the estimated Q-function plus a bonus, this bonus
being proportional to the inverse of the number of visits to the state-action pair of interest
(which can be interpreted as a variance, instead of the square-root of this quantity for
interval estimation-based approaches which can be interpreted as a standard deviation).
The bonus-greedy policy we propose uses the variance rather than the standard deviation,
and is defined as (β0 and β being two free parameters):

π(ai+1|si+1) = δ
�
ai+1 = argmax

b∈A

�
Q̄i|i−1(si+1, b) + β

σ̂2
Qi|i−1

(si+1, b)

β0 + σ̂2
Qi|i−1

(si+1, b)
��

(7)

The bonus-greedy policy is illustrated on Fig. 5.c, still using the arbitrary Q-values and
associated standard deviations of Fig. 6. Action 2 has the highest score, it is thus chosen.
Notice that the three other actions have approximately the same score, despite the fact that
they have quite different Q-values.

5.4. Thompson Policy

Recall that the KTD algorithm maintains the parameters mean vector and variance matrix.
Assuming that the parameters distribution is Gaussian, we propose to sample a set of
parameters from this distribution, and then to act greedily according to the resulting sampled
Q-function. This type of scheme was first proposed by Thompson (1933) for a bandit
problem, and it has been recently introduced into the reinforcement learning community in
the tabular case (Dearden et al., 1998; Strens, 2000). Let the Thompson policy be:

π(ai+1|si+1) = argmax
b∈A

Q̂ξ(si+1, b) with ξ ∼ N (θ̂i|i−1, Pi|i−1) (8)

We illustrate the Thompson policy on Fig. 5.d by showing the distribution of the greedy
action (recall that parameters are random, and thus the greedy action too). The highest
probability is associated to action 3. However, notice that a highest probability is associated
to action 1 than to action 4: the first one has a lower estimated Q-value, but it is less certain.
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Figure 6: Q-values and associated
uncertainty. Figure 7: Bandit results.

5.5. Experiment

The bandit problem is an MDP with one state and N actions. Each action a implies a
reward of 1 with probability pa, and a reward of 0 with probability 1− pa. For an action a∗

(randomly chosen at the beginning of each experiment), the probability is set to pa∗ = 0.6.
For all other actions, the associated probability is uniformly and randomly sampled between
0 and 0.5: pa ∼ U[0,0.5],∀a �= a∗. Presented results are averaged over 1000 experiments.
The performance of a method is measured as the percentage of time the optimal action
has been chosen, given the number of interactions between the agent and the bandit. A
tabular representation is adopted for KTD-SARSA, and the following parameters are used1:
N = 10, P0|0 = 0.1I, θ0|0 = I, Pni = 1, � = 0.1, α = 0.3, β0 = 1 and β = 10. As the
considered bandit has N = 10 arms, a random policy has a performance of 0.1. Notice also
that a purely greedy policy would choose systematically the first action for which the agent
has observed a reward.

Results presented in Fig. 7 compare the four schemes. The �-greedy policy serves as a
baseline, and all proposed schemes using the available uncertainty performs better. Thomp-
son policy and confident-greedy policy perform approximately equally well, and the best
results are obtained by the bonus-greedy policy. Of course, these quite preliminary results
do not allow to conclude about guarantees of convergence of the proposed schemes. How-
ever, they tend to show that the computed uncertainty information is meaningful and that
it can provide useful for the dilemma between exploration and exploitation.

6. Dialogue management application

In this section is proposed an application to a real world problem: spoken dialogue man-
agement. A spoken dialog system (SDS) generally aims at providing information to a user
through natural language-based interactions. An SDS has roughly three modules: a speech
understanding component (speech recognizer and semantic parser), a dialogue manager and
a speech generation component (natural language generator and speech synthesis). Dialogue
management is a sequential decision making problem where a dialogue manager has to select

1. For an empirical study of the sensitivity of performance of the proposed policies as a function of parameter
setting, see Geist (2009).
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which information should be asked or provided to the user when in a given situation. It
can thus be cast into the MDP framework (Levin et al., 2000; Singh et al., 1999; Pietquin
and Dutoit, 2006). The set of actions a dialog manager can select is defined by so called
dialog acts. There can be different dialog acts such as: greeting the user, asking for a piece
of information, providing a piece of information, asking for confirmation about a piece of
information, closing the dialog etc. The state of a dialog is usually represented efficiently by
the Information State paradigm (Larsson and Traum, 2000). In this paradigm, the dialogue
state contains a compact representation of the history of the dialogue in terms of dialog
acts and user responses. It summarizes the information exchanged between the user and the
system until the considered state is reached. A dialogue management strategy π is therefore
a mapping between dialogue states and dialogue acts. According to the MDP framework, a
reward function has to be defined. The immediate reward is often modeled as the contribu-
tion of each action to the user’s satisfaction (Singh et al., 1999). This is a subjective reward
which is usually approximated by a linear combination of objective measures.

The considered system is a form-filling spoken dialog system. It is oriented toward tourism
information, similarly to the one described by Lemon et al. (2006). Its goal is to provide
information about restaurants based on specific user preferences. There are three slots in
this dialog problem, namely the location of the restaurant, the cuisine type of the restaurant
and its price-range. Given past interactions with the user, the agent asks a question so as to
propose the best choice according to the user preferences. The goal is to provide the correct
information to the user with as few interactions as possible. The corresponding MDP’s state
has 3 continuous components ranging from 0 to 1, each representing the averaging of filling
and confirmation confidence scores (provided by the automatic speech recognition system)
of the respective slots. There are 13 possible actions: ask for a slot (3 actions), explicit
confirmation of a slot (3 actions), implicit confirmation of a slot and ask for another slot
(6 actions) and close the dialog by proposing a restaurant (1 action). The corresponding
reward is always 0, except when the dialog is closed. In this case, the agent is rewarded 25
per correct slot filling, -75 per incorrect slot filling and -300 per empty slot. The discount
factor is set to γ = 0.95. Even if the ultimate goal is to implement RL on a real dialog
management problem, in this experiment a user simulation technique was used to generate
data (Pietquin and Dutoit, 2006). The user simulator was plugged to the dipper dialogue
management system (Lemon et al., 2006) to generate dialogue samples. The Q-function is
represented using one RBF network per action. Each RBF network has three equi-spaced
Gaussian functions per dimension, each one with a standard deviation of σ = 1

3 (state
variables ranging from 0 to 1). Therefore, there are 351 (i.e., 33 × 13) parameters.

KTD-SARSA with �-greedy and bonus-greedy policies are compared on Fig.2 (results are
averaged over 8 independent trials, and each point is averaged over 100 past episodes: a
stable curve means a low standard deviation). LSPI, a batch and off-policy approximate
policy iteration algorithm (Lagoudakis and Parr, 2003), serves as a baseline. It was trained
in an off-policy and batch manner using random trajectories, and this algorithm provide
competitive results among the state of the art (Li et al., 2009a; Chandramohan et al., 2010).
Both algorithms provide good results (a positive cumulative reward, which means that the
user is generally satisfied after few interactions). However, one can observe that the bonus-
greedy scheme provides faster convergence as well as better and more stable policies than
the uninformed �-greedy policy. Moreover, results for the informed KTD-SARSA are very
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close to LSPI after few learning episodes. Therefore, KTD-SARSA is sample efficient (it
provides good policies while the insufficient number of transitions prevents from using LSPI
because of numerical stability problems), and the provided uncertainty information is useful
on this dialogue-management task.

7. Conclusion

In this paper, we have shown how an uncertainty information about estimated values can be
derived from KTD. We have also introduced an active learning scheme aiming at improving
speed of convergence by sampling actions according to their relative uncertainty, as well
as some adaptations of existing schemes for exploration/exploitation. Three experiments
have been proposed. The first one shown that KTD-Q, a second-order value-iteration-
like algorithm, is sample efficient. The improvement gained by using the proposed active
learning scheme was also demonstrated. The proposed schemes for exploration/exploitation
were also successfully experimented on a bandit problem and the bonus-greedy policy on
real-world problem. This is a first step toward combining the dilemma between exploration
and exploitation with value function approximation.

The next step is to adapt more existing approaches dealing with the exploration/exploitation
dilemma designed for tabular representation of the value function to the KTD framework,
and to provide some theoretical guarantees for the proposed approaches. This paper focused
on model-free reinforcement learning, and we plan to compare our approach to model-based
RL approaches.
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Abstract
In the Spoken Dialogue System literature, all studies consider
the dialogue move as the unquestionable unit for reinforcement
learning. Rather than learning at the dialogue move level, we
apply the learning at the design level for three reasons : 1/ to
alleviate the high-skill prerequisite for developers, 2/ to reduce
the learning complexity by taking into account just the relevant
subset of the context and 3/ to have interpretable learning results
that carry a reusable usage feedback. Unfortunately, tackling the
problem at the design level breaks the Markovian assumptions
that are required in most Reinforcement Learning techniques.
Consequently, we decided to use a recent non-Markovian algo-
rithm called Compliance Based Reinforcement Learning. This
paper presents the first experimentation on online optimisation
in dialogue systems. It reveals a fast and significant improve-
ment of the system performance with by average one system
misunderstanding less per dialogue.
Index Terms : Spoken Dialogue Systems, Reinforcement Lear-
ning, Online Learning, Hybrid System

1. Introduction
Spoken Dialogue Systems (SDS) with learning capabilities

have been deeply investigated these last ten years [1]. The pri-
mary goal pursued by these studies is to reduce the development
cost by automating the SDS design. They use Markov Decision
Process (MDP) to learn the best dialogue move according to
the current dialogue state. This approach has led to promising
results but, as some researchers [2] acknowledge, some obs-
tacles are difficult to overcome (Reinforcement Learning skill
prerequisite, simulated users, . . .). The high dimensionality of
the dialogue states and actions is the main reason for all these
troubles. As a consequence, reducing this space complexity re-
presents a big part of the scientific effort with for instance hie-
rarchy of states [3] and summary of states [4]. In fact, these
works endeavour to improve the system performance by inser-
ting expert knowledge.

Other studies [5, 6] propose to mix a handcrafted SDS with
an MDP based SDS. The goal is completely different : to op-
timise the dialogue capabilities of a conventional SDS. In sub-
stance, the idea consists in handcrafting almost totally the SDS
so that it provides a small collection of options among which
the MDP based SDS picks the action to generate to the user. We
completely agree with this objective. We endeavour to improve
these previous works by using a novel framework that learns
at the handcrafting design level (which question, which words,
which prosody, . . .), instead of the dialogue move level. This
enables to drastically reduce the dimensionality of the learning
and to consequently speed up the convergence [7].

Section 2 gives a detailed description of the problem and
recalls the Compliance Based Reinforcement Learning algo-
rithm [7] that we use for design optimisation. Then, section 3

describes the experimented system and the goal of the experi-
mentation. Next, section 4 presents the experimentation results.
Finally, section 5 concludes the paper with the next steps.

2. Problem Constraints and Theoretical
Resolution

This section first recalls how conventional SDS are de-
signed by developers. Then, it explains why the Markovian
assumption cannot be maintained in this design environment.
Thus, the Module-Variable-Decision Process is introduced. Fi-
nally, the section ends with the presentation of the Compliance-
Based Reinforcement Learning : a reinforcement learning algo-
rithm that does not use the Markovian assumption.

2.1. The conventional SDS design environment

Industry follows the VUI-completeness principle [8] : “the

behaviour of an application needs to be completely specified

with respect to every possible situation that may arise during

the interaction. No unpredictable user input should ever lead

to unforeseeable behaviour”. The SDS developers consider re-
liable the technologies, tools, and methodologies that help them
to reach the VUI-completeness and to control it.

The graphical abstraction used for SDS design conforms to
the general graph representation of finite state automata, with
the difference that global and local variables (or context) en-
able to factorise several system states in a single node. A sys-
tem state is therefore described by the automata node and the
global context aggregating the global context with all the local
contexts. Transitions relate to user inputs or to internal appli-
cation events such as conditions based on internal information
from the current dialogue state, from the back-end, or from the
dialogue history. In that sense, dialogue design in the industry
generally covers more than strict dialogue management, since
its specification may indicate the type of spoken utterance ex-
pected from the user at each stage of the dialogue, up to the pre-
cise speech recognition model and parameter values to use, and
the generation of the system utterance, from natural language
generation to speech synthesis or audio recordings.

2.2. Problem Constraints

Most dialogue moves can be split up into several internal
decisions that are represented by as many automata nodes : type
of feedback, insertion of contextual help or presentation of ad-
ditional information and choices of questions. These internal
decisions are conventionally specified with handcrafted rules
designed from a very localised view of the system state. For
instance, the system’s decision to welcome the user with “good
morning” or “good afternoon” will depend solely on the current
time at the place from where the user calls. Another more com-
plex example : the decision to insert one help message depends



on the expected expertise of the user. It is easy to understand that
this expected expertise depends on the service users’ average
expertise and on the number of errors that occurred during the
current dialogue. However, it is very complex for the developer
to estimate the users average expertise or to design a function
between those context elements and the decision to make. This
is an example where the decision has to be based on statistics.
The developer designs the decision alternatives and the relevant
information to take into account for making this decision. Lear-
ning at a decision level complies with the way developers are
currently designing their application.

Learning at a decisional level is also motivated by the lear-
ning improvement demonstrated on simulated examples in [7].
Indeed, it enables to use for each decision only the precise rele-
vant context, instead of taking into account the whole dialogue
context. This leads to a space reduction and therefore to a faster
convergence.

In addition to providing a tool for experimenting several al-
ternatives and optimising the system’s behaviour, this approach
offers reporting capabilities. In fact, it delivers a usage feed-
back inside the very dialogue automata the developer designed
in the first place. Contrary to MDP-based methods that flourish
in the literature, our method enables the explanation and thus
the understanding of what the system learnt. Then, this inferred
knowledge can be reused in a another context or even another
dialogue application. This ability to generate expert knowledge
acquired with online learning is new in SDS literature.

Unfortunately, in spite of these advantages, our approach
has a strong technical shortcoming : it breaks the Markovian
assumptions. Indeed, at a time t, the decision process state st

is described by the automata node mt and the local context vt

taken into account for making the decision. The next decision
process state st+1 cannot be forecast because its local context
vt+1 is generally not included into st. As the decision process
is non-Markovian, in a given decision process state, we cannot
assume to be able to anticipate the next reached decision pro-
cess state. As a consequence, we cannot use any bootstrapping
method [9], i.e. any method that updates expectation estimates
on the basis of the estimates of the following decision process
states. The fastest reinforcement learning algorithms use boots-
trapping, such as Dynamic Programming or Temporal Diffe-
rence Learning.

2.3. Module-Variable Decision Process

This subsection recalls a recent framework [7] for learning
at a decision level. Contrarily to MDP that consider the system
state as a whole, in this framework, the system global state is not
represented in the decision process. The decision process states
are the locally relevant subset of the information included in the
system state. Further in this paper, a state refers to the decision
process state and the global system state concept is abandoned.

A module is the terminology we use for an automata node.
For practical purpose, it is a processing unit that can execute an
internal action according to its local context. This leads to the
definition of the Module-Variable Decision Process (MVDP)
framework (M, VM , AM ) where :

– M is the set of modules.
– ∀m ∈ M , Vm is the local context used in module m.
– ∀m ∈ M , Am is the set of possible actions for m.
In our previous example, we called st the decision process

state at time t. This state is a tuple made of the module mt

accessed at time t and its local context vt. Each module has a
policy. The policy governs the choices that are made when rea-

ching the corresponding automata node given a local context. A
policy is a function from the context space into the action space
πm : Vm �→ Am. In order to build its policy, the module may
generate a state-action value function Qm : Vm × Am �→ R
which intends to predict the dialogue-term reward given the lo-
cal context and the chosen action. The exploitation policy aims
to maximise the dialogue-term reward expectations after a given
decision d :

rd =
�

k

γtk−tdRk (1)

Where γ ∈ [0, 1] is the discount factor, used in order to
encourage the shortest path to a dialogue success, td is the time
when decision d has been made and tk > td is the time when
reward Rk has been received.

2.4. Compliance Based Reinforcement Learning

A decision d has the following features : the module m
where d is made, the local context v reduced to the relevant
information concerning d, chosen action a and timestamp t.

d = (m, v, a, t) ∈ M × Vm ×Am × R (2)

From the reinforcement learning algorithm point of view, an
episode is the chain of decisions and rewards generated during
a dialogue. The CBRL idea consists in avoiding to learn that
an upfront decision is bad because the episode that tried it made
further bad decisions. The basic idea of the algorithm is to avoid
that an episode (da, db) where db is bad (and thus engendered
a low reward) leads the system to learn that da is bad too based
on this episode poor performance. In order to prevent this, the
algorithm rates to what extent each episode is reliable for lear-
ning. Thus, the CBRL may consider that an episode should not
be taken into account for evaluating a decision da because the
further decisions are considered not good enough. This rating
cπ(e) ∈ R− is called the compliance of an episode e with the
policy π. It represents the deviation of the episode e decisions
from the policy π and it is computed as follows :

cπ(e) =
|e|�

k=1

γtk−t0

�
Qmk (vk, ak)− sup

a∈Amk

Qmk (vk, a)

�

(3)
This compliance measures how well a decision has been

evaluated by computing how compliant the further decisions of
the episode are according to the current policy. Once the deci-
sion corpus C = {mk, vk, ak, rk, ck = cπ(ek)} is generated
(ek is the episode after making decision dk), the Monte Carlo
method [9] is adapted to accept weighted average on the returns.
Therefore, Q expectation is computed as follows :

Cm,v,a = {rk, ck} with {m, v, a, rk, ck} ∈ C (4)

Qm(v, a) =

�

{rk,ck}∈Cm,v,a

rkeτck

�

{rk,ck}∈Cm,v,a

eτck
(5)

Where τ is a parameter expressing the impact level of the
compliance on the weights.



3. Experimentation Settings
Our experimentation is a proof of concept on a small set of

users before implementing these learning capabilities on a com-
mercial system receiving dozens of thousands calls per month.
In order to observe an improvement of the system after less than
200 calls, we had to reduce the alternative sets to four design
points and also to limit the local context of each point to the
empty set. With these limitations, an MDP system would pro-
bably have performed as well. The goal of this experimenta-
tion was not to show the performance superiority of the CBRL
approach, which has been proven in a previous paper [7]. The
goal was to prove that it was possible to improve dramatically
a system’s performance by optimising it through a simple and
reduced set of alternatives.

We insist that the goal was not to learn a reusable policy
as with batch learning which are trained with simulated users
(even if it’s technically possible). Indeed, our algorithm is desi-
gned for online learning, i.e. learning during runtime and our
experimentation shows how a commercial system would im-
prove during its lifetime, on the basis of its interactions with
real customers.

The experimented system helps the user to install her DSL-
box (called Livebox). The system and the evaluation forms were
in French only, but for an easier understanding, all the informa-
tion is here translated into English.

3.1. Implementation

As carrying out the Livebox installation by phone is a bit
clunky, the system first tries to find another means to help the
user with her Livebox installation. As a result, during the first
part of the service, the system asks whether the user wants a
technician to install her Livebox (if she does, the user is di-
rected to the appointment scheduling service), whether the user
is at home (if not, the user is asked to call again when she is)
and whether the user has access to the internet (if she does, the
system provides her with a URL where she can find the Live-
box installation process). Once the system has checked that it
could not bypass the installation process, the hardware instal-
lation process is described to the user. The installation process
involves the plugging of the power cable, the DSL cable, the
Ethernet cable and the DSL filters.

3.2. Proposed Alternatives

Instead of designing a completely deterministic service, we
experimented several alternatives at four locations (or modules
in the MVDP framework, see section 2.3) in the design. As we
knew that the dialogue corpus would be limited to 160 units,
we decided not to condition on context space Vm. The set of
alternatives Am are the following ones :

Orange Labs state-of-the-art unit selection speech synthe-
sizer1 was used with different acoustic inventories of the same
professional female speaker to generate acoustic variants of the
greeting message : neutral, calm and expressive.

Two orders for the bypassing questions were experimented :
1) home/internet/technician and 2) technician/home/internet.

Two natural language generation variants of the “are you at
home” message were tested : a directive variant (“I would like
to know if you are at home now.”) and an interrogative variant
(“Are you now at home ?”). Three speaking style TTS variants
were tested for the interrogative variant : neutral, expressive and

1demonstrator available at http ://tts.elibel.tm.fr

FIG. 1 – Overall performance evolution

calm.
During the installation process, there are a lot of infor-

mation to present to the user : how they should plug the po-
wer cable, the DSL cable, the Ethernet cable, the ToIP adap-
ter (which is not used in the installation process) and the DSL
filters. There is no straightforward relevant order for these pro-
cedures. For instance, we have considered that the user might
be more comfortable if the system first ask her to identify each
element, before undertaking the plugging. Eventually, five dif-
ferent strategies have been tested.

4. Evaluation and Analysis
The system evaluation was completed using 40 subjects

each performing four scenarios, corresponding to each three by-
passing questions plus the full installation procedure.

4.1. System Auto-evaluation

4.1.1. Settings

The System auto-evaluation is the metrics used as rewards
for the CBRL. In this experiment, they were task-based as fol-
lows :

– -1 for each ASR/SLU reject or time-out
– -10 for a hang-up or after an unsuccessful Livebox ins-

tallation
– +5 after providing the user with an alternative way to

install her Livebox.
– +10 after a successful Livebox installation

4.1.2. Overall Performance Evolution

The experimental results in figure 1 show that the learning
algorithm choices triggered an overall dialogue performance
improvement through time in a window of 40 dialogues.

The flat performance at the first stage can be explained by
the exploration policy that let the first testers experience an al-
most fully exploration strategy, to be able to rate the fully explo-
ratory policy. Then, around abscissa points [11,50] and [31,70],
there follows a strong performance improvement probably due
to what the learning algorithm learnt. The small decreasing of
the plot around the [81,120] abscissa is probably due to tes-
ters that were performing under average. Similarly, the very
high average rewards obtained at the end of the experimenta-
tion should be put into perspective with the fact that no lear-
ning has been done at this time, and this improvement can only
be explained by users performing over the average. The dotted
curve shows how we can extrapolate the system’s performance



FIG. 2 – Evolution of the error rate based KPIs

expectations over time. This results shows that very similar sys-
tems can vary a lot in performance. It also shows that our al-
gorithm significantly improved a handcrafted system in a very
short time.

4.2. Objective Evaluation

In order to prove that reward’s optimisation led to a real ob-
jective improvement of the system, we made two sets of objec-
tive Key Performance Indicators (KPI) : the duration based KPI
such as call duration in seconds and number of dialogue turns,
and the error rate based KPI such as ASR and SLU error rate.
The duration based KPI were obtained automatically, while the
error rate KPI were based on manual dialogue annotations.

Experimentation showed that the duration based KPI are
not significantly connected with the dialogue performance as
defined with the system rewards.

Concerning the error-based KPI, we considered ASR noise
(ASR errors caused by the surrounding noise, the Livebox
manipulation triggered a lot of them), ASR errors, ASR
noise+error (the sum of the two previous KPI) and ASR+SLU
errors (errors after the ASR+SLU chain).

Figure 2 shows that the main KPI to be affected by the sys-
tem’s learning is the ASR noise. That is how the choice of the
best alternative expresses its improvement. To the contrary, the
ASR errors do not look much affected by the learning. The er-
ror rates for ASR and ASR+SLU are directly influenced by the
ASR noise curve and eventually the average number of errors
per dialogue is divided by 2, which constitutes a strong result.

5. Conclusion
This paper presented the first experimentation in a real Spo-

ken Dialogue System optimising online. It recalled the MVDP
framework and the CBRL algorithm that were used for the ap-
plication design. An evaluation on the Livebox installation ap-
plicatin was made : auto-evaluation of the system and objective
evaluation. The auto-evaluation results showed that the break of
the Markovian assumption did not endanger the convergence of
the learning algorithm. The objective evaluation confirmed that
the reward optimisation led to a dialogue error cut, and that the
system really performed better at the end of the experimentation
than at the beginning.

This paper proved the validity of our approach for optimi-
sation in SDS with a significant error reduction along the lear-
ning. In addition, the experimentation showed other less quanti-
fiable advantages of our approach, when compared to dialogue

move optimisation. First, it is easier to implement. The applica-
tive implementation does not require any technical skills. The
developer just has to define the alternatives, the local context
and the rewards, as opposed to dialogue turn based learning that
suppose a summary/hierarchy of the dialogue state set. Second,
although dialogue move learning only provides a general opti-
misation that cannot be interpreted or explained, our approach
provides a valuable usage return for the application designers.
In addition to that, a call flow monitoring tool has been integra-
ted to the design studio, so that the developers or project ma-
nagers can overview how each alternative performed and how
they correlate to key performance indicators.
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Abstract

Building an industrial spoken dialogue
system (SDS) requires several iterations
of design, deployment, test, and evalua-
tion phases. Most industrial SDS develo-
pers use a graphical tool to design dia-
logue strategies. They are critical to get
good system performances, but their eva-
luation is not part of the design phase.
We propose integrating dialogue logs into
the design tool so that developers can
jointly monitor call flows and their asso-
ciated Key Performance Indicators (KPI).
It drastically shortens the complete deve-
lopment cycle, and offers a new design ex-
perience.
Orange Dialogue Design Studio (ODDS),
our design tool, allows developers to de-
sign several alternatives and compare their
relative performances. It helps the SDS
developers to understand and analyse the
user behaviour, with the assistance of
a reinforcement learning algorithm. The
SDS developers can thus confront the dif-
ferent KPI and control the further SDS
choices by updating the call flow alterna-
tives.

Index Terms : Dialogue Design, Online Learning,
Spoken Dialogue Systems, Monitoring Tools

1 Introduction

Recent research in spoken dialogue systems
(SDS) has called for a “synergistic convergen-
ce” between research and industry (Pieraccini and
Huerta, 2005). This call for convergence concerns
architectures, abstractions and methods from both
communities. Under this motivation, several re-
search orientations have been proposed. This pa-
per discusses three of them : dialogue design, dia-
logue management, and dialogue evaluation. Dia-

logue design and dialogue management reflect in
this paper the respective paths that industry and re-
search have followed for building their SDS. Dia-
logue evaluation is a concern for both communi-
ties, but remains hard to put into operational pers-
pectives.

The second Section presents the context and
related research. The third Section is devoted to
the presentation of the tools : the historical design
tool, its adaptation to provide monitoring functio-
nalities and the insertion of design alternatives. It
is eventually concluded with an attempt to reasses-
sing the dialogue evaluation. The fourth Section
describes the learning integration to the tool, the
constraints we impose to the learning technique
and the synergy between the tools and the embed-
ded learning capabilities. Finally, the last Section
concludes the paper.

2 Context

The spoken dialogue industry is structured
around the architecture of the well known in-
dustrial standard VoiceXML 1. The underlying
dialogue model of VoiceXML is a mapping of
the simplistic turn-based linguistic model on the
browser-server based Web architecture (McTear,
2004). The browser controls the speech engines
(recognition and text-to-speech) integrated into
the voice platform according to the VoiceXML do-
cument served by an application server. A Voi-
ceXML document contains a set of prompts to
play and the list of the possible interactions the
user is supposed to have at each point of the dia-
logue. The SDS developers 2, reusing Web stan-
dards and technologies (e.g. J2EE, JSP, XML. . .),
are used to designing directed dialogues model-
led by finite state automata. Such controlled and

1. http ://www.w3c.org/TR/voicexml20/
2. In this paper, the term “SDS developers” denotes wi-

thout any distinction VUI designers, application developers,
and any industry engineers acting in SDS building.



deterministic development process allows the spo-
ken dialogue industry to reach a balance between
usability and cost (Paek, 2007). This paper argues
that tools are facilitators that improve both the usa-
bility vs. cost trade-off and the reliability of new
technologies.

Spoken dialogue research has developed va-
rious models and abstractions for dialogue mana-
gement : rational agency (Sadek et al., 1997), In-
formation State Update (Bos et al., 2003), func-
tional models (Pieraccini et al., 2001), planning
problem solving (Ferguson and Allen, 1998). Only
a very small number of these concepts have been
transferred to industry. Since the late 90’s, the re-
search has tackled the ambitious problem of auto-
mating the dialogue design (Lemon and Pietquin,
2007), aiming at both reducing the development
cost and optimising the dialogue efficiency and
robustness. Recently, criticisms (Paek and Pierac-
cini, 2008) have been formulated and novel ap-
proaches (Williams, 2008) have been proposed,
both aiming at bridging the gap between research
–focused on Markov-Decision-Process (Bellman,
1957) based dialogue management– and industry
–focused on dialogue design process, model, and
tools. This paper contributes to extend this effort.
It addresses all these convergence questions toge-
ther as a way for research and industry to reach a
technological breakthrough.

Regarding the dialogue evaluation topic, Paek
(Paek, 2007) has pointed out that while research
has exerted attention about “how best to evaluate
a dialogue system ?”, the industry has focused on
“how best to design dialogue systems ?”. This pa-
per unifies those two approaches by merging sys-
tem and design evaluation in a single graphical
tool. To our knowledge, ODDS is the only indus-
trial tool which handles the complete system life-
cycle, from design to evaluation.

The tools and methods presented below have
been tested and validated during the design and
implementation of a large real-world commercial
system : the 1013+ service is the Spoken Dialogue
System for landline troubleshooting for France.
It receives millions of calls a year and schedules
around 8, 000 appointments a week. When the
user calls the system, she is presented with an open
question asking her for the reason of her call. If
her landline is out of service, the Spoken Dialogue
System then performs some automated tests on the
line, and if the problem is confirmed, try and sche-

dule an appointment with the user for a manual in-
tervention. If the system and the user cannot agree
on an appointment slot, the call is transferred to a
human operator.

3 The tools

Industry follows the VUI-completeness prin-
ciple (Pieraccini and Huerta, 2005) : “the beha-
viour of an application needs to be completely
specified with respect to every possible situation
that may arise during the interaction. No unpre-
dictable user input should ever lead to unfore-
seeable behaviour”. The SDS developers consider
reliable the technologies, tools, and methodologies
that help them to reach the VUI-completeness and
to control it.

3.1 The Dialogue Design Tool

The graphical abstraction proposed by our dia-
logue design tool conforms to the general graph
representation of finite state automata, with the
difference that global and local variables enable to
factorise several dialogue states in a single node.
Transitions relate to user inputs or to internal ap-
plication events such as conditions based on in-
ternal information from the current dialogue state,
from the back-end, or from the dialogue history.
In that sense, dialogue design in the industry ge-
nerally covers more than strict dialogue manage-
ment, since its specification may indicate the type
of spoken utterance expected from the user at each
stage of the dialogue, up to the precise speech re-
cognition model and parameter values to use, and
the generation of the system utterance, from na-
tural language generation to speech synthesis or
audio recordings.

Our dialogue design tool offers to the SDS de-
velopers a graphical abstraction of the dialogue lo-
gic, sometimes also named the call flow. Thanks
to a dynamic VoiceXML generation functiona-
lity, our dialogue design tool brings the SDS de-
velopers the guarantee that VUI-completeness at
the design level automatically implies a similar
completeness at the implementation level. During
maintenance, If the SDS developers modify a spe-
cific part of the dialogue design, the tool gua-
rantees that solely the corresponding code is im-
pacted. This guarantee impacts positively VUI-
completeness, reliability, and development cost.

Figure 1 presents the design of a typical Voi-
ceXML page. This page is used when the system



FIGURE 1 – 1013+ design excerpt : the system asks the user to confirm an appointment slot

asks the user to accept an appointment time slot.
It first begins with a prompt box mixing static and
dynamic prompts (the dynamic parts are underli-
ned and realised by service-specific java code). A
log box is then used some contextual session va-
riables. Then, an interaction box is used to mo-
del the system reaction to the user behaviour : on
the lower part of the Figure, we program the reac-
tion to user inactivity or recognizer misunders-
tanding. In the upper part, we use a recognition
box followed by a Natural Language Understan-
ding (NLU), and we program the different out-
put classes : repeat, yes, no and not understood.
Each output is linked to a transition box, which in-
dicates which VoiceXML page the service should
call next.

3.2 Monitoring Functionalities inside the

Design Tool

While researchers are focused on measuring the
progress they incrementally reach, industry engi-
neers have to deal with SDS tuning and upgrade.
Their first dialogue evaluation KPI is task com-
pletion also called the automation rate because a
SDS is deployed to automate specifically selec-
ted tasks. Most of the time, task completion is es-
timated thanks to the KPI. The KPI are difficult
to exhaustively list and classify. Some are related
to system measures, others are obtained thanks to
dialogue annotations and the last ones are collec-
ted from users through questionnaires.

Some studies (Abella et al., 2004) investigated
graphical monitoring tools. The corpus to visualise
is a set of dialogue logs. The tool aims at revealing
how the system transits between its possible states.
As a dialogue system is too complex to enumerate
all its possible states, the dialogue logs are regar-
ded as a set of variables that evolve during time
and the tool proposes to make a projection on a
subset of these variables. This way, the generated
graphs can either display the call flow, how the dif-

ferent steps are reached and where they lead, or
display how different variables, as the number of
errors evolve. This is mainly a tool for understan-
ding how the users behave, because it has no di-
rect connection with the way how the system was
built. As consequence to this, it does not help to
diagnose how to make it better. In other words, it
does evaluate the system but does not meet one
of our goal : the convergence between design and
evaluation.

On the opposite, our graphical design tool pro-
vides an innovative functionality : local KPI pro-
jection into the original dialogue design thanks
to an extensive logging. A large part of the KPI
are automatically computed and displayed. As a
consequence, it is possible to display percentage
of which responses the system recognised, the
users actually gave, and see how these numbers
match the various KPI. It is one example among
the numerous analysis views this graphical tool
can provide.

3.3 Insertion of Alternatives

The 1013+ service has been used to test three
kinds of design alternatives. The first kind is a stra-
tegy alternative : the service can choose between
offering an appointment time slot to the client, or
asking her for a time slot. This decision defines
whether the next dialogue step will be system-
initiative or user-initiative. The second kind is a
speaking style alternative : the service can either
be personified by using the “I” pronoun, adopt
a corporate style by using the “We” pronoun, or
speak in an impersonal style by using the passive
mode. The third kind is a Text-To-Speech alterna-
tive : the service can use a different wording or
prosody for a given sentence.

Figure 2 displays a monitoring view of an in-
teraction implementation with alternatives. The re-
cognition rate is the projected KPI on the graph at
each branch. Other performance indicators are dis-



FIGURE 2 – Some user experience feedbacks related to a selected prompt alternative.

played at the bottom of the window : here, it is the
actual rate of correct semantic decoding, the se-
mantic substitution rate, and the semantic rejection
rate. The selection of the highlighted box condi-
tions the displayed logs.

Our design tool also provides a multivariate tes-
ting functionality. This method consists in testing
multiple alternatives and selecting the best one on
a fixed set of predetermined criteria. Regarding the
VUI-completeness, presenting the complete auto-
maton to the SDS developers is acceptable, as long
as they can inspect and control every branch of the
design. In general, they even come up with several
competing designs or points of choice, which can
only be properly selected from in a statistical man-
ner. The ability to compare all the dialogue design
alternatives in the same test-field is a major fac-
tor to boost up SDS enhancement by drastically
reducing the time needed. When we were develo-
ping the current 1013+ version, we have been able
to develop the 5 main alternatives in less than a
month, where it had taken a month and a half for
a unique alternative in previous versions. It brings
a statistical relevance in the causal link between
the tested alternatives and the differences in per-
formance measures, because it ensures a good ran-
dom input space coverage.

The KPI graphical projection into the dialogue
design covers the dialogue alternatives : KPI com-
putation just needs to be conditioned by the alter-
natives. Figure 2 illustrates the merge of several
system prompt alternatives inside a single design.
It represents the prompt alternatives the system
can choose when proposing an appointment time
slot. An action block informs the Learning Mana-
ger about the current dialogue state and available
dialogue alternatives. An “If” block then activates

the prompt alternative corresponding to a local va-
riable “choixPDC” filled by the Learning Mana-
ger. The rest of the design is identical to the design
presented in Figure 1.

The displayed KPI are conditioned by the selec-
ted alternative (here, the second wording circled in
bold grey). ODDS then indicates how the dialogue
call flow is breakdown into the different alterna-
tives. As we have here conditioned the displayed
information by the second alternative, this alter-
native receives 100% of the calls displayed, when
the other alternatives are not used. We can then see
the different outcomes for the selected alternative :
the customer answer have lead to a timeout of the
recognition in 11.78% of the cases, and amongst
the recognised sentences, 80% were an agreement,
13.33% were a reject, and 6.67% were not unders-
tood.

On the bottom-left part, one can display more
specific KPI, such as good interpretation rate, sub-
stitution rate, and reject rate. These KPI are com-
puted after the collected logs have been manually
annotated, which remains an indispensable pro-
cess to monitor and improve the recognition and
NLU quality, and thus the overall service quality.

Conditioning on another alternative would have
immediately led to different results, and someway,
embedding the user experience feedback inside the
dialogue design forms a new material to touch and
feel : the SDS developers can now sculpt a unique
reactive material which contains the design and
the KPI measures distribution. By looking at the
influence of each alternative on the KPI when gra-
phically selecting the alternatives, the SDS develo-
pers are given a reliable means to understand how
to improve the system.



3.4 Reassessing Dialogue Evaluation

The traditional approaches to dialogue evalua-
tion attempt to measure how best the SDS is adap-
ted to the users. We remind that each interaction
between the user and the SDS appears to be a
unique performance. First, each new dialogue is
co-built in a unique way according to both the
person-specific abilities of the user and the pos-
sibilities of the SDS. Second, the user adapts very
quickly to new situations and accordingly changes
her practices. The traditional approaches to dia-
logue evaluation are eventually based on the fra-
gile reference frame of the user, not reliable en-
ough for a scientific and an industrial approach of
the spoken dialogue field, mostly because of the
inability to get statistical call volumes for all the
dialogue alternatives.

This suggests for a shift in the reference frame
used for dialogue evaluation : instead of trying to
measure the adequacy between the SDS and the
user in the user’s reference frame, one can mea-
sure the adequacy between the user and the SDS
in the design reference frame composed by the
dialogue logic, the KPI and their expected values.
Taking the design as the reference allows reasses-
sing the dialogue evaluation. The proposed basis
for dialogue evaluation is reliable for the SDS de-
velopers because it is both stable and entirely un-
der control. Deviations from the predicted situa-
tions are directly translated into anomalous values
of measurable KPI that raise alerts. These automa-
tically computable alerts warn the SDS developers
about the presence of issues in their dialogue de-
sign.

4 Dialogue design learning

As presented in previous Section, the alternative
insertion is an enabler for the dialogue system ana-
lysis tools. It provides the SDS developers with a
novel call flow visualisation experience. The fur-
ther step to this approach is to automate at least a
part of those analyses and improvements with lear-
ning capabilities.

4.1 Constraints

The objective is to automatically choose online
the best alternative among those proposed in the
design tool, and to report this choice to the SDS
developers via the monitoring functionalities that
are integrated to the design tool. This approach
differs from the classical reinforcement learning

methods used in the dialogue literature, which
make their decisions at the dialogue turn level.

We use a technique from a previous work (La-
roche et al., 2009). It does not need to declare the
reachable states : they are automatically created
when reached. This is also a parameter-free al-
gorithm, which is very important when we consi-
der that most dialogue application developers are
not familiar with reinforcement learning theory.
We keep the developer focussed on its main task.
The two additional tasks required for the reinfor-
cement learning are to define the variable set on
which the alternative choice should depend, and
to implement a reward function based on the ex-
pected evaluation of the task completion, in or-
der to get a fully automated optimisation with an
online evaluation. The dialogue system automatic
evaluation is a large problem that goes beyond the
scope of this paper. However, sometimes, the dia-
logue application enables to have an explicit vali-
dation from the user. For instance, in an appoint-
ment scheduling application, the user is required
to explicitly confirm the schedule he was propo-
sed. This user performative act completes the task
and provides a reliable automatic evaluation.

4.2 Learning and Monitoring Synergy in the

Design Optimisation

The learning algorithm and the SDS develo-
pers are two actors on the same object : the dia-
logue system. But, they work at a different time
space. The learning algorithm updates its policy
after each dialogue while the SDS developers mo-
nitor the system behaviour more occasionally. The
same kind of opposition can be made on the action
space of those actors. The learning algorithm can
only change its policy among a limited amount of
alternatives, while the SDS developers can make
deeper changes, such as implementing a new dia-
logue branch, adding new alternatives, new alter-
native points, removing alternatives, etc. . .

Last but not least, their sight ranges vary a lot
too. The learning algorithm is concentrated on
the alternative sets and automatic evaluation and
ignores the rest, while the SDS developers can ap-
prehend the dialogue application as a whole, as a
system or as a service. They can also have access
to additional evaluations through annotations, or
user subjective evaluations.

These functionality differences make their res-
pective roles complementary. The SDS developers
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have the responsibility for the whole application
and the macro-strategic changes while the learning
manager holds the real-time optimisation.

4.3 Control vs. Automation : the Trusting

Threshold

As argued by Pieraccini and Huerta (Pieraccini
and Huerta, 2005), finite state machine applied to
dialogue management does not restrict the dia-
logue model to strictly directed dialogues. Finite
state machines are easily extensible to powerful
and flexible dialogue models. Our dialogue de-
sign tool offers various extensions : dialogue mo-
dules, hierarchical design, arbitrary function invo-
cation at any point of the design, conditional state-
ments to split the flow in different paths. All those
extensions allow designing any topology of the
finite state machine required to handle complex
dialogue models like mixed-initiative interaction.
Dialogue model is not the point where research
and industry fail to converge.

The divergence point concerns the control as-
pect of VUI-completeness versus the automation
of the dialogue design. As pointed out by recent
works (Paek and Pieraccini, 2008), MDP-based
dialogue management aiming at automating the
whole dialogue design is rejected by the SDS de-
velopers. Even more adaptive, it is seen as an un-
controllable black box sensitive to the tuning pro-
cess. The SDS developers do not rely on systems
that dynamically build their dialogue logic without
a sufficient degree of monitoring and control.

Williams (Williams, 2008) has made a substan-
tial effort to meet this industrial requirement. His
system is a hybridisation of a conventional dia-
logue system following an industrial process, with
a POMDP decision module, which is a MDP-
based approach to dialogue management enhan-
ced with dialogue state abstractions to model un-
certainties. The responsibilities of each part of the
system are shared as follows : the conventional
system elects several candidate dialogue moves
and the POMDP decision module selects the most
competitive one. This is a great step towards in-
dustry because the dialogue move chosen by the
POMDP module has been first controlled by the
conventional system design. Nevertheless, the so-
built hybrid system is still not fully compliant with
the industrial constraints for the following reasons.

First, contrary to our approach, the SDS deve-
loper is called upon specific skills that cannot be
demanded to a developer (modeling and tuning a
(PO)MDP). This is a no-go for further integration
in an industrial process.

Second, such a predictive module is not self-
explanatory. Although the SDS developers have
the control on the possible behaviour presented to
the POMDP decision module, they are given no
clue to understand how the choices are made. In
fact, a learnt feature can never be exported to ano-
ther context. At the opposite, our approach allows
us to learn at the design level and consequently
to report in the automaton the optimisation. The
learning results are therefore understandable, ana-



lysable and replicable on a larger scale, in a way
similar to classical ergonomics guidelines (but sta-
tistically proved).

4.4 Learning results on the 1013+ service

In the 1013+ service, our experiments have fo-
cused on the appointment scheduling domain. We
have chosen to integrate the following rewards in
the service : each time a user successfully manages
to get an appointment, the system is given a +30
reward. If the system is unable to provide an ap-
pointment, but manages to transfer the user to a
human operator, the system is given a +10 (a “re-
sit”). Last, if the user hangs up, the system is not
given any positive reward. Every time the system
does not hear nor understand the user, it is given a
penalty of 1.

In the beginning of the experiment, when the
system is still using a random policy, the comple-
tion rate is as low as 51%, and the transfer rate
is around 36%. When the system has learned its
optimal policy, the completion rate raises up to
70%, with a transfer rate around 20%. In our expe-
riment, the system has learned to favour an imper-
sonal speaking style (passive mode) and it prefers
proposing appointment time slots rather than as-
king the user to make a proposition (the later case
leading to lot of “in private” user talks and hesita-
tions, and worse recognition performance).

Figure 3 shows the evolution of the mean dia-
logue score during the first month. Each server
have its own Learning Manager database, and op-
timises separately. This is a welcome feature, as
each server can address a different part of the user
population, which is a frequent operational requi-
rement.

The dialogue score drawn on Figure 3 is com-
puted by averaging the mean dialogue score per
server. The crossed line represents the daily mean
dialogue score. The normal line represents the 3-
day smoothed dialogue mean score. The grayed
area represents the 95% confidence interval. Du-
ring this first month of commercial exploitation,
one can notice two major trends : at first, the dia-
logue score is gradually increasing until day 20,
then the performances noticeably drops, before ri-
sing up again. It turns out that new servers were
introduced on day 20, which had to learn the op-
timal dialogue policy. Ultimately (on the second
month), they converge to the same solution as the
first servers.

5 Conclusion

5.1 A New Basis for Trusting Automatic

Learning

This paper presents an original dialogue design
tool that mixes dialogue design and dialogue eva-
luation in the same graphical interface. The design
paradigm supported by the tool leads the SDS de-
velopers to predict value ranges of local KPI while
designing the dialogue logic. It results a new eva-
luation paradigm using the system design as the
reference and trying to measure deviations bet-
ween the predicted and the measured values of
the designed local KPI. The SDS developers rely
on the tool to fulfil the VUI-completeness prin-
ciple. Classically applied to dialogue design, the
tool enables its application to the dialogue evalua-
tion, leading to the comparison of dialogue design
alternatives.

This places the SDS developers in a dialogue
design improvement cycle close to the reinforce-
ment learning decision process. Moreover, the ins-
pector offered by the user experience feedback
functionality allows the SDS developers to un-
derstand, analyse and generalize all the decisions
among the dialogue design alternatives. Combi-
ning the learning framework and the design tool
guarantees the SDS developers keep control of the
system. It preserves VUI-completeness and opens
the way to a reliable learning based dialogue ma-
nagement.

5.2 Implementation

This approach to learning led us to deploy in
October 2009 the first commercial spoken dia-
logue system with online learning. The system’s
task is to schedule an appointment between the
customer and a technician. This service receives
approximately 8, 000 calls every month. At the
time those lines are written, we are already in a
virtuous circle of removing low-rated alternatives
and replacing them with new ones, based on what
the system learnt and what the designer unders-
tands from the data.

5.3 Future Work

On a social studies side, we are interested in
collaborations to test advanced dialogue strategies
and/or information presentation via generation. In-
deed, we consider our system as a good opportu-
nity for large scope experiments.
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