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1	
  Introduction	
  
This document reports on our initial efforts towards the design space exploration (DSE) of adaptive 
MPSoC systems. As a driver for adaptivity, we have chosen to address fault tolerance, as this 
perfectly aligns with the other system reliability research going in within the MADNESS project. 
The report will describe the steps we have taken to make our Sesame modeling and simulation 
environment as well as the DSE process using Sesame fault-tolerance aware. These steps are 
prerequisite for modeling, simulating and performing DSE of adaptive, fault-tolerant MPSoCs. 

MPSoC design deals with many objectives. One of them is reliability. A MPSoC needs to be able to 
cope with soft and hard errors. Soft errors are transient errors that cause a temporal malfunction in 
the system. These soft errors are often called single upset event. This is due to one cause of soft 
errors: high energy neutrons resulting from cosmic rays colliding with particles in the atmosphere. 
More generally, soft errors are failures in processor execution due to electrical noise or external 
radiation. 

Traditionally, soft errors were only an issue in electronic circuits used in space. However, due to the 
reduction in feature size and voltage levels, MPSoCs become more susceptible to soft errors [8]. 
Therefore, the MPSoC needs to be able to cope with these errors. 

One software-based technique to deal with soft errors is active redundancy in space or time. If 
active redundancy is used in the space domain different resources are used to run the same tasks. 
Another possibility is to run the task multiple times on the same resource (space domain). A 
combination of both is also possible. The outcomes of the different runs are collected (no response 
within a certain time frame is also a response) and compared. Based on these results majority voting 
can be applied to do fault detection and possible fault masking. 

When mapping an application onto a MPSoC, there are already many ways resulting in results of 
different quality (for example with respect to performance or power). Taking the reliability into 
account, the number of possible MPSoC designs becomes even larger. There are many ways of 
applying active redundancy to an application. This active redundancy also affects the quality of the 
system (it becomes slower, consumes more energy). For that reason, we have extended the DSE to 
include the reliability of the system. 

Moving further, we can also exploit the fault-tolerance by adjusting the MPSoC to the dynamic 
circumstances. Whenever the quality of the output drops, the MPSoC can change the mapping at 
runtime. In this way, also hard failures can be handled. 

The contribution of this research is as follows: 1) Realtime semantics, 2) Checkpoint modeling, 3) 
High-level Active Redundancy modeling, 4) KPN Segregation to trade-off checkpointing overhead, 
and 5) Reliability-aware DSE in Sesame. In the rest of the report, we describe the fault-tolerant 
extension in more detail. The second section describes the Sesame environment. Next, the third 
section describes the real-time extension of Sesame. The fourth and fifth sections describe the fault-
tolerance and the application segregation. 

2	
  Sesame	
  
In this work, we are using the high-level MPSoC simulation framework Sesame [6]. The advantage 
of high-level modeling is that it allows for a quick exploration of the space of possible MPSoC 
designs. The Sesame framework, which is illustrated in Figure 1, enables fast performance 
evaluation using separate application and architectural models. An application model describes an 
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application using a Kahn Process Network (KPN) [3], while the architecture model models the 
MPSoC architecture in a cycle-approximate fashion. Subsequently, there is an explicit mapping of 
the application model(s) onto the architecture model, implemented using trace-driven co-simulation 
of the two aforementioned models. Mapping solves two aspects concurrently: 1) allocation and 2) 
binding. Allocation selects the architectural components used on the MPSoC platform, whereas the 
binding defines on which architectural component the application tasks and communications are 
executed. During the evaluation of a mapping, each process in an application model generates a 
trace of application events, representing the application workload at a high level of abstraction. 
These event traces are simulated by the architecture model to obtain non-functional metrics like 
execution time, energy consumption and cost. 

The applications that need to be mapped on the MPSoC become more and more dynamic. 
Therefore, we are using scenario based design [5]. More precisely, we are using the scenario-based 
Sesame [9] that deploys workload scenarios [2] to model the dynamic applications. The scenario-
based Sesame distinguishes two types of workload scenarios: intra and inter application scenarios. 
Intra-application scenarios describe the different behaviors, or operation modes, within an 
application. For example, an MP3 application can play music in mono or stereo sound. An inter-
application scenario describes the behavior of multiple applications. In our case, it specifies which 
applications can run concurrently. In the example of Figure 1, the inter-application scenario 
describes simultaneous execution of the MP3 application and the video application. In order to fully 
describe what a system is doing, a complete application scenario bundles the possible intra-
application scenarios of all the active applications. The set of active applications is described using 
an inter-application scenario, whereas each intra-application scenario specifies a particular 
operation mode of an individual application. An example application scenario in Figure 1 is that the 
MP3 application is playing music in mono sound, while the video is decoded at a low bitrate. 

Important to notice is that between scenarios processes do not have any state. This makes the 
modeling of fault-tolerance and migration easier. 
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Figure 1: High level scenario-based MPSoC simulation

drops, the MPSoC can change the mapping at runtime. In this way also hard
failures can be handled.

The contribution of this research is as follows: 1) Realtime semantics, 2)
Checkpoint modeling, 3) High-level Active Redundancy modeling, 4) KPN Seg-
regation to trade-o↵ checkpointing overhead 5) Reliability-aware DSE in Sesame.
In the rest of the report, we describe the fault-tolerant extension in more detail.
The second section describes the Sesame environment. Next, the third sec-
tion describes the real-time extension of Sesame. The fourth and fifth section
describes the fault-tolerance and the application segregation.

2 Sesame

Research o↵ered multiple ways to model multimedia applications. In this work,
we are using the high-level MPSoC simulation framework Sesame [6]. The ad-
vantage of high-level modeling is that it allows for a quick exploration of the
space of possible MPSoC designs. The Sesame framework, which is illustrated in
Figure 1, enables fast performance evaluation using separate application and ar-
chitectural models. An application model describes an application using a Kahn
Process Network (KPN) [3], while the architecture model models the MPSoC
architecture in a cycle-approximate fashion. Subsequently, there is an explicit
mapping of the application model(s) onto the architecture model, implemented
using trace-driven co-simulation of the two aforementioned models. Mapping
solves two aspects concurrently: 1) allocation and 2) binding. Allocation selects
the architectural components used on the MPSoC platform, whereas the binding
defines on which architectural component the application tasks and communi-
cations are executed. During the evaluation of a mapping, each process in an
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3	
  Realtime	
  KPN	
  applications	
  
When performing fault-tolerant MPSoC design it is not sufficient to seek mappings that are as fast 
as possible. The total running time of the application is not relevant, but the timing of the perceived 
output by the user is. Take for example a multimedia application that displays a video. The user 
does not want to play the video as fast as possible, but he/she wants a timely display of the 
individual frames. Therefore, we need realtime behavior. In order to obtain realtime behavior, we 
have extended the scenario-based Sesame with two aspects: explicit I/O modeling and explicit 
frame barriers. Implementing explicit frame barriers is rather straightforward: an intra application 
scenario corresponds with a single frame. To communicate the frame barriers to the architecture 
special event types are introduced signaling the start and the end of a frame. With the use of these 
barriers, the frame rate can be determined. We should note that simulation cannot give any 
guarantees about the realtime behavior. However, this is also not yet required in our point in the 
design phase. Sesame aims to do DSE in the early stages. Therefore, it prunes the design space 
before more detailed (and probably more expensive) analysis is done in later design phases. 
Especially in the case of hard-realtime behavior, the modeling investment in later design phases is 
quite large. Therefore, it is useful to already leave out designs that are not likely to perform well. 

Additionally, I/O is modeled explicitly. For this purpose, the model of Sesame is extended in both 
the application layer and the architecture layer. The application in the application layer is extended 
with a special Outside World Process (OWP). All output that is visible to the user must be 
communicated to the OWP. Additionally, external input is modeled by reading from the OWP. All 
of the other behavior that happens inside the application is invisible for the user. The MPSoC 
designer can program the OWP to model data that becomes available periodically. The end of an 
application frame is communicated to the OWP by the KPN node that receives the end-frame event. 
As a result, the OWP can determine the frame rate of each individual application during the 
simulation. Next, the architecture layer has an additional I/O component. The OWP in the 
application layer must be mapped onto one of the I/O components in the specific architecture. 

An example of a Sesame model extended with I/O support is given in Figure 2. It is a MJPEG 
decoder (Figure 2a) with a simple four-processor architecture (Figure 2b). The Video-In process 
reads in the encoded frames from the OWP. Depending on the situation, all frames can be available 
instantaneously (i.e. the rate of incoming frames is only bound by the buffer sizes of the 
communication channels) or arrive with a certain interval. The MJPEG application will decode the 
frame and after a certain amount of simulated cycles the Video-Out process will send the decoded 
frame to the OWP. Since the processes know where the frame barriers are, there is no restriction on 
communication tokens. It can be done frame by frame, but it can also be done pixel by pixel. After 
the OWP received the complete frame, the delay since the previous frame can be calculated. 
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Figure 2: An example MPSoC model extended with I/O support

application model generates a trace of application events, representing the appli-
cation workload at a high level of abstraction. These event traces are simulated
by the architecture model to obtain non-functional metrics like execution time,
energy consumption and cost.

The applications that need to be mapped on the MPSoC become more and
more dynamic. Therefore, we are using scenario based design[5]. More pre-
cisely, we are using the scenario-based Sesame[9] that deploys workload scenar-
ios [2] to model the dynamic applications. The scenario-based Sesame distin-
guishes two types of workload scenarios: intra and inter application scenarios.
Intra-application scenarios describe the di↵erent behaviors, or operation modes,
within an application. For example, an MP3 application can play music in mono
or stereo sound. An inter-application scenario describes the behavior of multiple
applications. In our case, it specifies which applications can run concurrently.
In the example of Figure 1, the inter-application scenario describes simultane-
ous execution of the MP3 application and the video application. In order to
fully describe what a system is doing, a complete application scenario bundles
the possible intra-application scenarios of all the active applications. The set
of active applications is described using an inter-application scenario, whereas
each intra-application scenario specifies a particular operation mode of an in-
dividual application. An example application scenario in Figure 1 is that the
MP3 application is playing music in mono sound, while the video is decoded at
a low bitrate.

Important to notice is that between scenarios processes do not have any
state. This allows us to ease the modeling of fault-tolerance and migration.

3 Realtime KPN applications

When performing fault-tolerant MPSoC design it is not su�cient to seek map-
pings which are as fast as possible. The total running time of the application
is not relevant, but the timing of the perceived output by the user is. Take
for example a multimedia application that displays a video. The user does not
want to play the video as fast as possible, but it wants a timely display of the
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When performing such a simulation, one must take care of how the frame rate is determined. The 
nice aspect of a KPN-based MJPEG decoder (or any other pipelined application) is that different 
parts of the MJPEG application can work on different frames. Figure 3 shows some experimental 
results of the MJPEG application with an application mapping where the four processors are shared 
between all the nodes in the MJPEG applications. Two metrics are displayed: processing time and 
latency. 

The processing time is the number of cycles an image is processed in the pipeline. More precisely, 
this is the elapsed time between the read of the frame in the Video-In process (all encoded frames 
are available instantaneously) and the point in time where the decoded frame is written to the OWP. 
Initially, the processing time is increasing (until frame 8). In this phase, there is a transition from an 
empty pipeline to a saturated pipeline. In the empty pipeline the processors are fully dedicated to a 
single frame, whereas in the saturated case the application is completely occupied with decoding 
multiple frames simultaneously. At the final frames the reverse behavior can be obtained. No more 
new frames are fed into the application and the pipeline becomes less saturated. 

For the frame rate only the saturated case is realistic. The first frame has a rather large delay as the 
pipeline was completely empty. After that, every 333 cycles a new frame is received. For this 
simple example the first two frames need to be discarded. With this knowledge, based on 10kHz 
processors, a frame rate of 30 fps can be obtained. To calculate the real frame rate during the 
simulation, for arbitrary applications, an automatic warm-up procedure is used. As long as the 
processing time of a frame is increasing, the frames are discarded. After the first frame with a non-
increasing processing time, the real quality metrics of the mapping are obtained. 

4	
  Fault-­tolerant	
  KPN	
  Model	
  
Our fault-tolerant KPN model provides fault-tolerance at the computation level. For the 
communication network, it is assumed that it is implemented in a fault-tolerant manner [4]. In order 
to achieve a fault-tolerant KPN there are two required aspects that need to be modeled. First, the 
active redundancy must be implemented. The active redundancy network is implemented using 
replicates, a splitter and a voter. The replicates do the processing, the splitter and voter handle the 
external communication. This is visualized in Figure 4. Looking at the application model (Figure 
4a), the incoming data from the OWP must be split for the replicates. All of the replicates will 
process the data. This data is sent to a majority voter. The majority voter compares the different 
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Figure 3: The frame processing time of a MJPEG application

the point in time where the decoded frame is written to the OWP. Initially, the
processing time is increasing (until frame 8). In this phase, there is a transi-
tion to an empty pipeline and a saturated pipeline. In the empty pipeline the
processors are fully dedicated to a single frame, whereas in the saturated case
the application is completely occupied with decoding multiple frames simulta-
neously. At the final frames the reverse behavior can be obtained. No more new
frames are fed into the application and the pipeline becomes less saturated.

For the frame rate only the saturated case is realistic. The first frame has a
rather large delay as the pipeline was completely empty. After that, every 333
cycles a new frame is received. For this simple example the first two frames need
to be discarded. With this knowledge, based on 10kHz processors, a frame rate
of 30 fps can be obtained. To calculate the real frame rate during the simulation,
for arbitrary applications, an automatic warmup procedure is used. As long as
the processing time of a frame is increasing, the frames are discarded. After the
first frame with a non-increasing processing time, the real quality metrics of the
mapping are obtained.

4 Fault-tolerant KPN Model

Our fault-tolerant KPN model provides fault-tolerance at the computation level.
For the communication network, there is already assumed it is implemented in
a fault-tolerant manner[4]. In order to achieve a fault-tolerant KPN there are
two required aspects that need to be modeled. At first, the active redundancy
must be implemented. The active redundancy network is implemented using
replicates, a splitter and a voter. The replicates do the processing, the splitter
and voter handle the external communication. This is visualized in Figure 4.
Looking to the application model (Figure 4a), the incoming data from the OWP
must be split along the the replicates. All of the replicates will process the data.
This data is sent to a majority voter. The majority voter compares the di↵erent
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outcomes and in case of a majority it can send the verified output to the OWP1. As a consequence 
of the use of majority voting, we only support deterministic processes. This means that, given error-
free execution, that the same input will always generate one unique outcome. These splitters and 
voters do not only need to be modeled in the application layer, but also in the architecture layer  
(Figure 4b). 

Having a majority voting mechanism is not enough. Take the example in Figure 4, which introduces 
fault-tolerance using two replicates. As long as the execution is error-free, the voter always 
observes a majority. However, with the occurrence of a transient failure, the error is detected and 
not masked. In the case of fault masking the transient failure can be masked and is thus invisible to 
the external world. Fault detection is the case where the fault is detected without the possibility to 
mask it. In that case, there are two options: restarting and skipping. In the case of skipping, the 
frame is discarded and (hopefully) the next frame will be available again. Without too many 
skipped frames, the user can still have a descent quality. In the case of a restart, the decoding of the 
frame is retried. In order to guarantee that the data of incoming I/O is still present, it must be 
temporarily stored in stable storage (SS). As the example in Figure 4b shows, both the splitter and 
the voter have a shared access to the stable storage. When receiving a frame, it is stored in stable 
storage by the splitter, and once the frame is verified the voter removes it from stable storage again. 

Restarting in such a way is fairly coarse grained. After a failure, all the work performed on future 
frames must be redone. This does not only introduce a lot of restart overhead, but it also results in 
an empty pipeline that needs to be refilled. Remember the experiment from Figure 3 where we 
showed that it takes time before a pipelined application is running at full capacity. Therefore, we 
also implemented a checkpointing model. The checkpointing model can ensure a restart with a full 
pipeline (e.g. all the processes have work to do, not only the sink node). Additionally, less work 
needs to be redone. Finally, it also allows us to use fault-tolerant techniques like Roll Forwarding 
Checking Schemes (RFCS) where the voter activates a spare replica when there is no majority. The 
work of [10] already discussed the implementation of fault-tolerance techniques in KPNs. However, 
this work misses the discussion of checkpointing, which is required for the RFCS pattern. This 
section is structured as follows: The first subsection gives a more detailed description of the 
implementation of the majority voting and the second subsection describes the checkpoint model. 

4.1	
  Majority	
  voting	
  
A first prerequisite in order to simulate transient failures is a way too incorporate them in the 
simulation model. As we provide fault-tolerance on a computation level, the only sources of errors 
are the processors. The processor models the occurrence of failures using an exponential random 
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  Fault-tolerant is not the same as fault free: there is a slight probability that a majority has the same incorrect answer.	
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Figure 4: An example MPSoC model extended with majority voting

outcomes and if in case of a majority it can sent the verified output to the OWP1.
As a consequence of the use of majority voting, we only support deterministic
processes. This means that, given error-free execution, that the same input will
always generate one unique outcome. These splitter and voter do not only need
to be modeled in the application layer, but also in the architecture layer (Figure
4b).

Having a majority voting mechanism is not enough. Take the example in
Figure 4. This introduces fault-tolerance using two replicates. As long as the
execution is error-free, the voter always observes a majority. However, with the
occurrence of a transient failure, the error is detected and not masked. In the
case of fault masking the transient failure can be masked and is thus invisible
to the external world. Fault detection is the case where the fault is detected
without the possibility to mask it. In that case, there are two options: restarting
and skipping. In the case of skipping, the frame is discarded and (hopefully)
the next frame will be available again. Without too many skipped frames, the
user can still have a descent quality. In the case of a restart, the decoding of
the frame is retried. In order to guarantee that the data of incoming I/O is still
present, it must be temporarily be stored on stable storage (SS). As the example
in Figure 4b shows, both the splitter and the voter have a shared access to the
splitter. When receiving a frame, it is stored on stable storage by the splitter.
Once the frame is verified it is removed from stable storage by the voter.

Restarting in such a way is a bit coarse grained. After a failure, all the work
performed on future frames must be redone. This does not only introduces a
lot of restart overhead, but it also results in an empty pipeline that need to be
refilled. Remember the experiment from Figure 3 where we showed that it takes
time before a pipelined application is running at full capacity. Therefore, we
also implemented a checkpointing model. The checkpointing model can make
sure that there is restarted with a full pipeline (e.g. all the processes have work
to do, not only the sink node). Additionally, less work needs to be redone.
Finally, it also allows us to also fault-tolerant techniques like Roll Forwarding

1
Fault-tolerant is not the same as fault free: there is a slight probability that a majority

has the same incorrect answer
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distribution. An exponential distribution describes the time between events in a Poisson process. 
Events in a Poisson process occur continuously and independently at a constant average rate. This is 
true for transient failures in the form of SUEs (Special Uncorrectable Error). SUE errors are 
infrequent and the occurrence of it is independent of the previous one. During the simulation, the 
processor will iteratively ’schedule’ transient failures by picking a random exponential number. It 
depends whether or not the transient error affects the execution of the application. If no process is 
active at the time the transient failure occurs, the failure does not have any consequences. However, 
in case a process is active, it will invalidate all future output of the process. In reality, it may the 
case that the failure does not affect the output, but in our high level approach we cannot know the 
exact effect. Therefore, we take the most pessimistic assumption. 

Processes enclosed in the active redundancy network have two types of communication: internal 
and external. Internal communication is communication between two processes in the same active 
redundant network. This communication is unchecked and there is no interaction with the splitter or 
the voter. External communication must pass via the splitter or the voter. In our fault tolerant KPN 
model all computation is guarded. This means that of all computation there must be at least two 
replicates. Rationale is that unguarded computation is not desirable. We take an imperfect 
architecture as a starting point, hence we need to check all computation on it to be able to obtain 
correct results. 

The splitter is responsible of delivering data to the replicates. As discussed before, this occurs in 
two steps. At first, the data is temporarily stored in stable storage. This ensures that in case of a 
restart the data is still available. After the data has been temporarily stored, the data is delivered to 
the nodes in the replicates that are expecting the data. At this point in time the data is assumed to be 
correct. The cached data at the splitter may be removed if the frame to which the data corresponds 
is completely handled and the voter has verified all outgoing data. The caching of data required for 
restarting introduces another degree of freedom in the design of the fault-tolerant MPSoC. When 
restarting is enabled (the designer can also choose to leave out the possibility of restarting and save 
the overhead of caching the data and the silicon cost of the stable storage), the simulation also 
analyses the amount of stable storage that is required at the splitter. There are two options during 
simulation: no limitation on the amount of data that can be stored in stable storage (in that case the 
simulation learns us how much data is required) and a limited amount of storage. With a limited 
amount of storage, the splitter will limit the number of frames that can be processed simultaneously. 
Obviously, the stable storage must at least have the size to store the input data of a single frame. 

Outgoing external communication always passes the voter. The voter will perform majority voting 
on the data and in case of a successful voting (e.g. there is a majority), data will be sent to its 
destination. In case the voting fails (e.g. there is no majority or data comes in too late) it depends on 
the setting on what the consequence will be. Each voter has a restarting budget. The restarting 
budget determines the number of times the voter restarts during a frame. If there is still budget for 
restarting, the connected nodes and splitter will restart from the last checkpoint (more about 
checkpointing in the next subsection). It can also be the case that the voter has already used its 
restarting budget for the current frame. In that situation, the output data is flagged on its possible 
inconsistency and sent out. Voting is done with best effort for the remaining tokens in the frame. 
The skip flag will be set, irrespective of the existence of a majority during the voting. We have 
chosen to flag the output because in some applications it can be the case that still something can be 
done with the possible incorrect output. In case the output communication directly goes to I/O, the 
frame will be skipped. 

4.2	
  Checkpoint	
  modeling	
  
Earlier, we already motivated the use of checkpoints. A checkpoint involves overhead, but it allows 
the reduction of skipped frames on faulty processors. The usage of checkpoints depends on the 
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application and the failure rate of the processors. The higher the failure rate of processors, the 
higher the fraction of skipped frames will be. Additionally, the type of application determines the 
fraction of errors that can be tolerated. Clearly, for a safety critical application, no error can be 
tolerated. Multimedia applications typically allow for a part of the frames to be skipped, but this 
fraction must be small enough to be sure the user would not notice it. 

As illustrated in Figure 5, there are two types of checkpoints: implicit and explicit. Apart from the 
cached data in the splitter, implicit checkpoints do not take any overhead. Implicit checkpoints are 
exactly at the frame barriers. Since there is not state between frames (see Section 2), restarting the 
application from this execution point is trivial. No state between frames means that the internal 
communication channels are empty (no state means no internal messages left) and the application is 
only triggered by incoming external communication. This incoming external communication is 
already cached by the splitter. Restarting from an implicit checkpoint involves the restart of a 
process and reading the cached external data from stable storage into the splitter. 

The downside of an implicit checkpoint is that with restarting from a specific frame all the work 
that is done on newer frames is lost. Take the simple application in Figure 5. On a restart from an 
implicit checkpoint at the end of frame 2, both processes start at the barrier of frame 2. Before any 
new frame can be delivered both process A and process B need to do some processing. Moreover, 
process B needs to wait on output of process A before it can do any work. In this time this process 
is only idling. To resolve this, explicit checkpoints can be taken during the lifetime of an 
application. Explicit checkpoints are initiated by one of the processes and store the state of all the 
processes in the active redundancy network and their internal communication channels at a specific 
point in time. 

First, let us discuss the initiation of an explicit checkpoint. For each process, the designer can 
specify a checkpoint interval. The checkpoint interval decides the number of read events after 
which the process will request a checkpoint. If before the end of this interval an explicit checkpoint 
is already made, the interval is reset. The explicit checkpoint is requested at the voter. The voter 
will determine if it is granted. A reason to dismiss the explicit checkpoint is that the voter is 
currently handling an earlier error by starting up a restart or skip procedure. If the checkpoint is 
granted, the voter will ask the splitter to perform a checkpoint procedure. In this way, the voter can 
handle other votes in the meanwhile. To obtain a consistent checkpoint, all the replicas must stop at 
the same point in the program. Therefore, each process is queried about its state and based on that a 
halting point will be determined and communicated to the processes. The processes will execute up 
to the specific point and make a checkpoint. One of the processes in the active redundancy network 
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CB.3.1CB.2.1

Figure 5: The di↵erence between an implicit and an explicit checkpoint as
illustrated by a timeline of a simple application.

of data that can be stored on stable storage (in that case the simulation learns
us how much data is required) and a limited amount of storage. With a limited
amount of storage, the splitter will limit the number of frames that can be
processed simultaneously. Obviously, the stable storage must at least have the
size to store the input data of a single frame.

Outgoing external communication always passes the voter. The voter will
perform majority voting on the data and in case of a successful voting (e.g.
there is a majority), data will be sent to its destination. In case the voting fails
(e.g. there is no majority or data comes in too late) it depends on the setting on
what the consequence will be. Each voter has a restarting budget. The restarting
budget determines the number of times the voter restarts during a frame. If
there is still budget for restarting, the connected nodes and splitter will restart
from the last checkpoint (more about checkpointing in the next subsection). It
can also be the case that the voter has already used its restarting budget of
the current frame. In that situation, the output data is flagged on its possible
inconsistency and sent out. There is chosen to flag the output because in some
applications it can be the case that still something can be done with the possible
incorrect output. In case the output communication directly goes to I/O the
frame will be skipped.

4.2 Checkpoint modeling

Earlier, we already motivated the use of checkpoints. Checkpoint involves over-
head,but it allows the reduction of skipped frames on faulty processors. The
usage of checkpoints depends on the application and the failure rate of the pro-
cessors. The higher the failure rate of processors, the higher the fraction of
skipped frames will be. Additionally, the type of application determines the
fraction of skipped frames that can be tolerated. For a safety critical appli-
cation, none of the frames may be skipped. Multimedia applications typically
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will be responsible for collecting the checkpoint. This process will send the checkpoint to the voter. 
The voter will compare the checkpoints of the different replicas. In case they are unequal, the 
checkpoint is discarded. Before there can be voted on the checkpoint all the voting on other external 
output must be completed. In case any of this voting fails, the checkpointing procedure is aborted 
and the restart or skip procedure is started. 

The size of the checkpoint is dependent on the process and the amount of data in the internal 
communication channels. To reduce the checkpointing overhead, all the processes of the same 
replica must be running on the same processor. In the example of Figure 5, this can for example 
mean that processes A and B of replica index 0 are running on processor p1 and processes A and B 
of replica index 1 are running on processor p3. The checkpoint of each replica is stored in the local 
stable storage of the specific processor. Simulation will analyze how large this storage is required to 
be. The voting time of a checkpoint is also dependent on the size of the checkpoint. This is partly 
due to the contents of the internal communication channels that are checked in order to be sure 
about correct data once the program is started from the explicit checkpoint. 

Implicit and explicit checkpoints can also enhance each other. Take for example the checkpoints in 
Figure 5. In this Figure a timeline shows the checkpoints. A checkpoint link CB.2.1 is a checkpoint 
state of process B after 2 implicit checkpoints and 1 explicit checkpoint. If there is a restart just 
after the implicit checkpoint of frame 3, the system can be restarted from a combination of the 
explicit and the implicit checkpoints. First, the application is restarted to the state of the explicit 
checkpoint. Next, process B can be shifted to the implicit checkpoint by discarding the messages of 
frame 3 in the internal communication channel. 

5	
  Fault-­tolerant	
  KPN	
  Segregation	
  
Until now, only the complete replication of an application has been discussed. However, this is only 
one alternative in applying active redundancy. The two extreme methods are: replicate the entire 
application or replicate each individual process. In the individual case, each process has its own 
splitter and voter and no internal communication is present. However, there are many other ways of 
applying active redundancy. 

In the general case, the application can be segregated into a number of sub-networks. The active 
redundancy pattern is applied to these sub-networks. The sub-network should be connected (for the 
connectivity analysis, the communication channels are considered to be undirected). In case it is 
not, the sub-network is split in multiple sub-networks in such a way that all the sub-networks are 
connected. 

Figure 6 gives an example of a possible segregation of an application. In this case, there are three 
sub-networks: A, BC and D. The choice of how to implement the active redundancy is independent 
for each sub-network. It can be the case that A is implemented using Triple Modular Redundancy 
(TMR), whereas BC only has Double Modular Redundancy (DMR). Additionally, A can be 
instrumented to do checkpointing, whereas in the case of D checkpointing is completely disabled. 

From the example in Figure 6, it also becomes clear why the sub-networks need to be connected. If 
we would have taken AD and BC as a sub-network, A and D are not connected but still in the same 
active redundancy network. As a consequence, D will be restarted together with A in the case there 
is an error in the output of A. However, D is not connected to A and it is perfectly possible to 
continue execution of D because it only has verified input from the splitter. 
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The benefit of exploring the application segregation is the possibility to leverage between fault-
tolerance overhead and performance. The more communication is done within a sub-network, the 
less checking has to be done by the voter. However, larger sub-networks also involve larger 
overheads for restarting and checkpointing. On top of that, computational intensive parts of an 
application can be implemented using TMR (less probability that it needs to be restarted) while the 
less computationally parts can be put in DMR (restarting is not expensive, and with DMR voting is 
easier and cheaper). There are many ways to segregate an application with unpredictable 
consequences on the quality of the resulting MPSoC. Therefore, an automated Design Space 
Exploration (DSE) is required, which is fault-tolerance aware. 

6	
  Fault-­tolerant	
  aware	
  DSE	
  
The fault-tolerant MPSoCs as we presented so far have many degrees of freedom. Therefore, there 
are many ways of implementing an MPSoC. To guide this complex process, we need to perform a 
DSE. The DSE is performed using a python module called DEAP [7], deploying NSGA2 [1] to 
search the design space. The degrees of freedom that are encoded in the chromosome are as 
follows: 
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Figure 6: An example of application segregation in order apply active redun-
dancy on parts of the application instead of applying it on the complete appli-
cation.
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• Per Process  
 – Sub-network id 
 – Explicit Checkpoint Interval 
 • Per Sub-network 
 – Used type of active redundancy (DMR / TMR)  
 – Architectural processors selection  
 – Max Restarts per frame 

For each process in the applications, a voter is selected and an interval for the request of an explicit 
checkpoint. In case this interval is zero, it will not request explicit checkpoints. The application 
segregation will be determined based on which processes are assigned to the same voter. If the sub-
network assigned to the voter is not connected, the chromosome is repaired by splitting the sub-
network and assigning the new sub-networks to other (unused) voters. 

To make a fixed length chromosome, the maximal number of sub-networks is described in the 
chromosome. This maximal number of sub-networks is equal to the number of processes. Each sub-
network has a different implementation of the active redundancy network (2 or 3 replicas). 
Additionally, the architectural processors are selected that are used to map the replicated processes 
on. The number of processors that is selected is equal to the number of replicas and can contain 
duplicated entries. In case of a duplicated entry, redundancy in time is modeled. Different entries 
indicate redundancy in space. The maximal number of restarts indicates the maximal number of 
restarts within a frame before it is skipped. In case the maximal number of restarts is 0, the 
checkpointing of the sub-network is completely disabled. 

The DSE performs a multi-objective optimization. The objectives that we are using are as follows:  

 • Missed deadlines  
 • Energy  
 • Skipped frames  
 • Used Stable Storage 

7	
  Adaptive	
  System	
  perspective	
  
As a next step in the coming year, we plan to incorporate real adaptivity. The adaptivity allows the 
MPSoC not only to tolerate failures, but also to adapt the system to maintain a certain Quality of 
Service. For this purpose, the DSE is extended to search for optimal mappings for multiple so-
called architecture scenarios. Architecture scenarios are run-time scenarios describing the state of 
the system (which processors are active and which are not). In case of errors, the adaptive MPSoC 
can re-map the processes that are executing on the defective processor and restart them on a 
different processor, which is facilitated by the checkpointing mechanism that has been described in 
this report. To this end, the re-mapping process uses information from the design-time DSE and, 
based on the state of the system, applies the mapping of the “nearest” architecture scenario to 
provide graceful degradation on the MPSoC. 

Important to notice is that remapping may be expensive, but that this is not an issue in our case. 
Remapping will be done in case of processors having an unexpected high failure rate or are 
completely broken down. This is not expected to happen regularly. Therefore, it is acceptable to 
take some time. However, a complete DSE on chip is in most cases unfeasible. Therefore, some 
preprocessed information must be available in order to take the right decisions. 
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8	
  Interactions	
  with	
  other	
  MADNESS	
  partners	
  and	
  WPs	
  
The work described in this document has been aligned to the work performed by USI in WP 5. We 
should note that WP 5 is mainly focusing on permanent failures, whereas in our case transient 
failures (and thus checkpointing) are also taken into account. This, for example, allows us to reason 
about the amount of skipped frames, which is relevant for multimedia applications that can tolerate 
some missing frames. So far, however, we did not yet have the opportunity (as our work has started 
only recently) to arrange physical meetings with USI for more detailed harmonization of our 
research. This is planned for the first quarter of 2012. Moreover, meetings with Leiden University 
are also planned to align our work with their work on the support for run-time management of 
MPSoCs within WP 6. 

Summary	
  
In this report, we provided an overview of the work that has been performed by the University of 
Amsterdam in WP 6 during the second year of the MADNESS project. More specifically, we 
described the steps we have taken to make our Sesame modeling and simulation environment as 
well as the DSE process using Sesame fault-tolerance aware. These steps are prerequisite for 
modeling, simulating and performing DSE of adaptive, fault-tolerant MPSoCs. 
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