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D1.2 Intermediate QPM SPDC: Intermediate report with a first analysis of 
the performances of the transversequasi-phase-matching (QPM) approach for 
OAM SPDC generation. Quasi-phase-matching will be achieved by 
modulating the material composition and structure, as well as by tailoring the 
pump beam transverse profile, and spectral and/or temporal shape. 
[Excerpt from GA-Annex I DoW] 
 
 

1. THE ROLE OF TRANSVERSE QUASI-PHASE MATCHING 
 
The main advantage of using a nonlinear crystal with transverse QPM is to generate new types of 
quantum states with orbital angular momentum, even though the flux of down-converted photons 
generated might be reduced. For the sake of simplicity, let assume a short crystal where the 
diffraction of the pump beam, and the signal and idler photons, can be neglected. In this case, the 
quantum state of the down-converted photons can be written as 
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where ! is the transverse varying nonlinear coefficient of the crystal, and Ep is the pump beam 
profile. We notice that now, the nature of the quantum state is determined by the multiplication of 
the pump beam and the nonlinear coefficient (!Ep). If the nonlinear coefficient is constant, we 
recover the usual result 
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In usual configurations, if the pump beam is Gaussian, the probability to project the down-converted 
photons into Gaussian modes is higher than projecting into higher order modes (see the paper 
mentioned in the following section).  The question is: Can we make use of transverse QPM to 
modify this? Can we devise a spatial transverse pattern ! so that the maximum efficiency takes place 
for a higher order mode? Some simple calculations show that the efficiency of generation of modes 
with indexes l1 and p1, and l2 and p2 is given by: 
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The effect of the transverse QPM configuration is to generate an effective pump beam which 
modifies the characteristics of the down-converted photons. 
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Let us consider the simple transverse QPM structure depicted in Figure 1. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1. Transverse QPM configuration, where the nonlinear coefficient is 
positive for half the nonlinear crystal (x>0), and negative for the other half (x<0). 

 
 
In this case, since the nonlinear function is now an odd function, the expansion of the down 
converted photons in terms of OAM modes does not contain paired photons in Gaussian Modes. It 
remains to be explored which are the optimum configurations for specific applications. 
 
 
2. ROLE OF THE PUMP BEAM SHAPE IN THE EFFICIENCY OF SPDC 

 
Let us consider the excitation of a second-order nonlinear crystal with an intense pump beam, so 
that pairs of photons entangled in the spatial degree of freedom (orbital angular momentum, OAM) 
are generated by means of spontaneous parametric down conversion (SPDC). The main requirement 
of the source is that it should offer a high output flux. More specifically: 
 

• We aim at generating entanglement in a 2 ! 2 dimensional space (such it is the 
Hilbert space spanned by the polarization degree of freedom alone).  This is the case 
of quantum states that make use of the polarization and OAM degrees of freedom 
and are of the form 
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Heresub-index 1 and 2 refer to two distinguishable photons (for instance, photons 
with different frequency or different direction of propagation). The symbols R,L 
stands for right-handed (left-handed) circular polarization and m=+1,-1 represent 
Laguerre-Gauss modes with winding numbers m=-1,+1 and radial index p=0. 
 

• We aim for high efficiency. Typical experiments in quantum optics count photon 
coincidences after the photons have traversed appropriately designed optical systems, 
which reveal the properties of interest of the quantum state generated. SPDC is a 
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highly inefficient process, so that even under optimum conditions, quantum optics 
experiments barely show efficiencies greater than 10!7. Therefore, once determined 
the spatial modes of interest in a particular application, it is of great interest to 
optimize the SPDC process so that most of the photons generated belong to the 
ensemble of modes of interest. 

 
In order to generate quantum states with the sought-after correlations, and implement high 
efficiency sources of entangled photons, the SPDC configurations considered in this report 
will make use of: 
 

• A Collinear configuration: the pump beam, and the photons generated (signal and 
idler) propagate along the same direction in the nonlinear crystal. Increasing the 
efficiency usually require focusing the pump beam into a narrow spot. Non-collinear 
configurations are not so easily handled under tight focusing of all waves involved. 
 

• A Non-critical configuration: We assume a direction of propagation inside the 
nonlinear crystal so that all waves do not show Poynting-vector walk-off, i.e. spatial 
walk-off. Under tight focusing conditions, the presence of spatial walk-off (critical 
configuration) produces undesirable spatial correlations between the paired photons. 
 

• Quasi-phase matching: Taking into account the two conditions stated above, in 
most cases, it is necessary to use the technique called quasi-phase matching (QPM) 
to fulfill the necessary phase-matching condition between the pump, signal and idler 
waves. In QPM, the sign of the nonlinear coefficient of the crystal alternate 
periodically between positive and negative values. Moreover, the use of QPM 
usually allows the use of the highest nonlinear coefficient of the nonlinear medium, 
which results in the corresponding increase of the efficiency. 

 
3. ENHANCING THE EFFICIENCY OF OAM ENTANGLEMENT 

In the SPDC configuration considered here, and given a specific nonlinear crystal with a length 
L, the design parameters are: 

• The beam waist of the pump beam (indicated as wp). 
• The beam waist of the collection mode (indicated as ws). 

 
The question is: 
 

Once chosen a specific target (spatial modes), what is the optimum 
configuration (values of wp and ws) that maximizes the flux of down-
converted photons generated? 
 

The answer is reported in the paper (which is part of the present deliverable): 
 

Silvana Palacios, R. de J.  Leon-Montiel, Martin Hendrych, Alejandra 
Valencia and Juan P. Torres, Flux enhancement of photons entangled 
in orbital angular momentum, Optics Express 19, 14108 (2011). 
 

For generating a quantum state of the form given in Eq. (1), the optimum configuration is given 
in the Figure. In this case, an estimated 82% of all photons generated (see Eq. 26 of the paper) 
belong to the Hilbert space of interest. For instance, let us consider a degenerate SPDC process 
in a L = 20 mm PPKTP nonlinear crystal with nonlinear coefficient "(2)=10 pm/V, pumped by 
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a CW pump at #p= 405 nm and refractive indices np=n1=n2 = 1.8. If the total losses of the 
optical systems are $ = 0.1, the spectral brightness F is 
 

F = %Pp(mW) with % !1"105 photons/s/nm/mW 
 

Here Pp is the pump power. Comparing with the flux of down-converted photons measured in 
other experiments that also make use of the quantum state given by Eq. (1), we see that by 
properly choosing the optimum value of the pump beam waist wpand the optimum size of the 
collection mode ws, one could observe a noteworthy enhancement of the spectral brightness of 
the source. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Scheme of the combination of a type-II SPDC source embedded in a Sagnac interferometer and diffractive 
elements to generate photons entangled in the polarization and spatial degrees of freedom with maximum efficiency. 
SMF: Single-mode fiber; QWP: Quarter-wave plate; HWP: Half-wave plate; PBS: Polarization beam splitter; DF: 
Diffractive element. The linked dot lines represent the existence of entanglement. 
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Abstract: Entangled photons are generally collected by detection systems
that select their certain spatial modes, for example using single-mode
optical fibers. We derive simple and easy-to-use expressions that allow us
to maximize the coupling efficiency of entangled photons with specific
orbital angular momentum (OAM) correlations generated by means of
spontaneous parametric downconversion. Two different configurations are
considered: one in which the beams with OAM are generated by conversion
from beams without OAM, and the second when beams with OAM are
generated directly from the nonlinear medium. Also, an example of how to
generate a maximally entangled qutrit is presented.
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1. Introduction

Spontaneous parametric downconversion (SPDC), a nonlinear optical process in which two
lower-frequency photons (signal and idler) are generated when a strong pump interacts with
the atoms of a nonlinear material, is a reliable source for generating pairs of entangled pho-
tons. When SPDC is properly engineered, the photon pairs can be entangled in any degree of
freedom: polarization, frequency, space or time. The entanglement can reside in one degree of
freedom, or can also be shared between them [1,2]. In the case of the spatial degree of freedom,
spatial entanglement can be depicted as residing in the quantum correlations between spatial
modes that bear orbital angular momentum (OAM) [3]. The use of the OAM of photons allows
the generation of quantum states in a high-dimensional Hilbert space [4].
In general, one of the drawbacks of SPDC is that the flux of generated paired photons is

very low. For instance, Dayan et al. [5] generated an ultra-high flux of downconverted photons
(∼ 0.3µW), that even while being orders of magnitude greater than what is typically utilized in
quantum optics experiments, it still shows an efficiency of only∼ 10−7. In order to increase the
flux of paired photons, one has to choose longer nonlinear materials or materials with higher
nonlinear coefficients.
Moreover, any experimental detection system selects only part of the total number of gener-

ated photon pairs. Therefore, to increase the flux of paired photons, one should also add to the
optimization toolkit the use of the most appropriate configuration that collects as many pho-
tons as possible without disturbing the sought-after quantum correlations between them. For
instance, in most SPDC sources that generate photons entangled in polarization, the signal and
idler photons are collected with single-mode optical fibers before being detected. In this case,
the goal is then to maximize the coupling efficiency of paired photons into the fundamental
Gaussian mode of the fiber. A number of studies have established some basic rules to optimize
the efficiency of these particular SPDC configurations [6–10] and several experiments have
confirmed some of the predictions [11]. However, a similar study to optimize the collection
efficiency of entangled photons with OAM has not been reported.
In this paper, we address the question of what is the optimum SPDC configuration, i.e., the

#147298 - $15.00 USD Received 10 May 2011; revised 20 Jun 2011; accepted 20 Jun 2011; published 8 Jul 2011
(C) 2011 OSA 18 July 2011 / Vol. 19,  No. 15 / OPTICS EXPRESS  14109



pump beam waist and the size of the collection mode for a given crystal length, that maximizes
the flux of entangled photons that exhibit specific OAM correlations. For this, it is necessary
to calculate the spiral spectrum of the photons generated in SPDC, i.e., the decomposition of
the biphoton mode function in a basis of spatial modes with OAM. Even though the decompo-
sition has been calculated [12] and experimentally demonstrated [13], the implications of the
engineering of the spiral spectrum for enhancing the flux of paired photons in selected SPDC
configurations have not yet been fully explored.
Along these lines, we will consider two scenarios. On the one hand, the case where OAM

correlations are generated by making use of spin-orbital coupling devices that starting from
polarization entangled photons with a Gaussian spatial shape, generate photon pairs with OAM
and polarization correlations [14]. In this case, to increase the flux it is necessary to maximize
the generation of pairs of photons with a Gaussian spatial shape. On the other hand, we can
make use of the OAM correlations that are directly harvested at the output face of the nonlinear
crystal [15]. This is necessarily the case if the goal is to generate quantum states in multidi-
mensional Hilbert spaces. Here the aim is to maximize the generation of photons with specific
non-Gaussian spatial shapes.
The paper is organized as follows. In Section 2, we derive the main equations that lay the

foundations of our analysis. In Section 3, we obtain the optimum configuration that maximizes
the generation and coupling efficiency of photon pairs into single-mode optical fibers. In Sec-
tion 4, we address the enhancement of the flux when downconverted photons are projected into
Laguerre-Gaussian spatial modes.

2. General equations

Let us consider a periodically-poled nonlinear crystal of length L and nonlinear coefficient
χ(2) illuminated by a continuous wave (CW) pump beam, with central frequency ωp. All the
interacting waves (the pump, signal and idler) propagate along the same direction (collinear
configuration), and the signal-idler pairs can be distinguished because either they show orthog-
onal polarizations or because they have different central frequencies. We consider a non-critical
configuration, i.e., neither of the interacting waves experiences a Poynting-vector walk-off. The
absence of spatial walk-off allows one to employ longer nonlinear media. Narrowband filters
are located in front of the single-photon counting modules that detect in coincidence the arrival
of a pair of photons.
The spatial distribution of the pump beam at the center of the nonlinear crystal, in the trans-

verse wavevector domain, writes

Ep (q) = E0 (qx+ iqy)mp exp
(
−|q|2w2p/4

)
, (1)

which corresponds to a beam with an OAM of mph̄ per photon. q = (qx,qy) is the transverse
wavevector and wp is the beam waist. E0 is a normalizing constant, so that

∫
dq

∣∣Ep (q)
∣∣2 = 1.

The signal and idler photons are projected into specific spatial modes before detection. The
use of Laguerre-Gaussian modes (Um,p) allows one to describe the spatial quantum correlations
of the paired photons in a straightforward and clear way. The Laguerre-Gaussian modes are
characterized by two integer indices, p and m. The positive index p is the radial index, and the
winding number m, which can be any integer number, determines the azimuthal phase depen-
dence of the mode, which is of the form ∼ exp(imϕ). The functions Um,p are normalized, i.e.,∫
dq|Ump(q)|2 = 1.
The use of a collinear configuration and the absence of spatial walk-off makes hold the

selection rule mp =m1+m2. Here mp is the optical vortex winding number of the pump beam,
and m1 and m2 are the winding numbers of the modes into which the quantum states of the
signal and idler photons are projected, respectively. The configuration considered here allows
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to establish clear spatial correlations between the photons in terms of modes with OAM. For
instance, if the pump beam has a Gaussian spatial shape (mp = 0), only paired photons with
m1 = −m2 can be detected in coincidence. It is important to remark that this might not be the
case for other non-collinear or critical SPDC configurations [16].
Most analyses of the spatial characteristics of photons entangled in OAM usually follow the

Schrödinger picture, where it is the quantum state that evolves in time. The quantum theoretical
analysis presented in this paper will use the Heisenberg picture, where it is the signal and
idler field operators, a1 and a2, that evolve as a function of the propagation distance inside the
nonlinear medium. In the Heisenberg picture, all the coherence functions of interest can be
easily calculated, even when a first-order approximation of the quantum evolution equations is
used, as it is the case here [17].
In the framework of the Heisenberg picture, the propagation equations for the signal and idler

operators are given by [18]

∂a1(q1,z)
∂ z = −iσ̃

∫
dq2a†2(q2,z)Ep(q1+q2)

×exp [ikp(q1+q2)− ik1(q1)− ik2(q2)] ,
∂a2(q2,z)

∂ z = −iσ̃
∫
dq1a†1(q1,z)Ep(q1+q2)

×exp [ikp(q1+q2)− ik1(q1)− ik2(q2)] , (2)

where the dimensionless nonlinear coefficient σ̃ = σ
√
Fp writes

σ̃ =




h̄ω1ω2ωp

[
χ(2)

]2
Fp

32π2ε0c3 n1(ω1)n2(ω2)np(ωp)





1/2

. (3)

q1 and q2 are the transverse wavenumbers of the signal and idler photons, respectively, and
ω1 = ω2 = ωp/2 are the central frequencies. ni (i = p,1,2) are the refractive index at the
corresponding central frequency, ki(q) = (ω2

i n2i /c2−|q|2)1/2 are the longitudinal wavevectors
and Fp is the total flux (photons/s) of pump photons that traverse the nonlinear crystal.
The quantities 〈a†1(q0)a1(q0)〉∆q and 〈a†2(q0)a2(q0)〉∆q designate the spectral brightness

(photons/s/Hz) of signal and idler photons, respectively, generated with transverse wavenum-
bers between q0−∆q/2 and q0+∆q/2. Therefore, the overall spectral brightness is

F =
∫
dq〈a†1(q)a1(q)〉. (4)

We are interested in calculating the spectral brightness Fm1,p1,m2,p2 of photons that are de-
tected in coincidence, when the signal photon is projected into a spatial mode with index
(m1, p1) and the idler photon is projected into a spatial mode with index (m2, p2). The nature
and strength of the correlations between paired photons projected into specific spatial modes is
determined by the second-order correlation function between signal and idler photons

G(2)
12 (m1, p1,m2, p2) = 〈b†m1,p1c

†
m2,p2cm2,p2bm1,p1〉, (5)

where bm1,p1 and cm2,p2 are operators acting on the signal and idler photons, respectively, that
write

bm1,p1 =
∫
dqUm1,p1(q)a1(q),

cm2,p2 =
∫
dqUm2,p2(q)a2(q). (6)
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The second-order correlation function given by Eq. (5) can be written in terms of the first-
order correlation functions 〈a†1(q)a1(q′)〉, 〈a

†
2(q)a2(q′)〉 and 〈a

†
1(q)a

†
2(q′)〉 as

G(2)
12 (m1, p1,m2, p2) = Fm1,p11 Fm2,p22 +Fm1,p1,m2,p21,2 , (7)

where

Fm1,p11 =
∫
dq1dq′1U∗

m1,p1(q1)Um1,p1(q
′
1)〈a

†
1(q1)a1(q

′
1)〉,

Fm2,p22 =
∫
dq2dq′2U∗

m2,p2(q2)Um2,p2(q
′
2)〈a

†
2(q2)a2(q

′
2)〉 (8)

are the spectral brightness of signal and idler photons detected after projection into spatial
modes with indices (m1, p1) and (m2, p2), respectively, and Fm1,p1,m2,p21,2 = | f m1,p1,m2,p212 |2, where

f m1,p1,m2,p212 =
∫
dq1dq2Um1,p1(q1)Um2,p2(q2)〈a1(q1)a2(q2)〉. (9)

In most situations of interest, the nonlinearity is weak. In this case, one can describe the evo-
lution of the signal and idler operators with first-order approximations in the nonlinear coeffi-
cient [19], so that the first-order correlation functions can be written as

〈a†1(q1)a1(q
′
1)〉=

∫
dq2Φ∗(q1,q2)Φ(q′1,q2),

〈a1(q1)a2(q2)〉= Φ(q1,q2). (10)

The biphoton or mode function writes

Φ(q1,q2) = σ̃LEp(q1+q2)sinc
[

∆kL
2

]
, (11)

where ∆k = kp(q1+q2)− k1(q1)− k2(q2)−Kg is the phase-matching function, Kg = 2π/Λ is
the grating vector of the periodically-poled crystal and Λ is the period of the nonlinear grating.
If we make use of the paraxial approximation ki(q)∼ k0i −|q|2/(2k0i ) (i= p,1,2), where k0i

is the wavenumber at the corresponding central frequency, and of the condition np ∼= n1 ∼= n2,
we obtain [20]

∆k ∼
|q1−q2|2
2k0p

. (12)

Finally, using Eqs. (9), (10) and (11), the spectral brightness Fm1,p1,m2,p212 can be written as

Fm1,p1,m2,p212 =

∣∣∣∣
∫
dq1dq2Φ(q1,q2)U∗

m1(q1)U
∗
m2(q2)

∣∣∣∣
2
. (13)

Using Eqs. (4) and (10), the total spectral brightness F can be calculated

F =
∫
dq1dq2 |Φ(q1,q2)|2 . (14)

Additionally, using Eq. (12), we obtain

F =
π2σ2Fpk0p

2
L . (15)
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Fig. 1. Scheme of the combination of a type-II SPDC source embedded in a Sagnac inter-
ferometer and diffractive elements to generate photons entangled in the polarization and
spatial degrees of freedom. SMF: Single-mode fiber; QWP: Quarter-wave plate; HWP:
Half-wave plate; PBS: Polarization beam splitter; DF: Diffractive element. The linked dot
lines represent the existence of entanglement.

F depends on the total flux of pump photons Fp that traverse the nonlinear crystal, but not on
the specific spatial shape of the pump beam. Notice also that it increases linearly with the length
of the crystal.
The role of Fm1,p1,m2,p212 as the spectral brightness of interest here is more clearly revealed

when we notice that
F = ∑

m1,p1,m2,p2
Fm1,p1,m2,p212 . (16)

To obtain Eq. (16), one has to make use of the completeness relationship
∑m1,p1,m2,p2Um1,p1(q1)U

∗
m1,p1(q2) = δ (q1−q2).

Regarding the spatial shape of the projection modes Um,p, in what follows we will restrict
ourselves to the case p1 = p2 = 0. The spatial shape of the LG modes in which the signal and
idler photons will be projected,Um ≡Um,p=0 writes

Um (p) =
(

w2s
2π|m|!

)1/2(ws|p|√
2

)|m|
exp

(
−|p|2w2s/4

)
exp(imϕ) . (17)

In order to simplify the notation, we will designate Fm1,m212 ≡ Fm1,p1=0,m2,p2=012
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3. Generation of two-photon entangled states with correlations in polarization andOAM

Let us consider the generation of a quantum state entangled in the polarization and OAM de-
grees of freedom of the form [14]

|Ψ〉= 1√
2
{|R,m1 = 1〉1|L,m1 =−1〉2+ |L,m1 =−1〉1|R,m1 = 1〉2} , (18)

where R and L represent right-handed and left-handed circular polarizations, respectively. The
procedure to generate such a state consists of two steps. First, a polarization entangled state
embedded in Gaussian modes is generated. And second, properly designed diffractive elements
are used to transform the polarization and spatial shape of the photons. For instance, one can
use a diffractive element that performs the following transformation [21]:

|R,m= 0〉 ⇒ |L,m=+1〉 ,
|L,m= 0〉 ⇒ |R,m=−1〉 . (19)

The configuration used to generate the quantum state given by Eq. (18) makes use of a non-
collinear SPDC configuration with a type-II BBO crystal. The use of a such a non-collinear
configuration, which also shows spatial walk-off, prevents from using long crystals to enhance
the spectral brightness, since in that case the degree of polarization entanglement would de-
crease.
A possibility to overcome such a limitation is to use a non-critical collinear SPDC config-

uration with a Sagnac interferometer ( [22], see Fig. 1). In this case, the pump beam induces
the generation of pairs of photons with orthogonal polarizations that propagate clock-wise or
counter-clockwise in the Sagnac interferometer. Before any polarization or OAM transforma-
tion takes place, the quantum state of the generated paired photons can be written as

|Ψ〉= 1√
2

∫
dqsdqiΦ(qs,q1){|H〉1|V 〉2+ |V 〉1|H〉2} . (20)

The absence of spatial walk-off allows the use of long crystals, and since the spatiotemporal
shape of the generated photons is the same for photons propagating clock-wise or counter-
clockwise, no spatiotemporal compensation is necessary after the signal and idler photons leave
the interferometer.
Paired photons generated in the quantum state given by Eq. (20) are projected into Gaussian

modes. The coupling efficiency of interest in this case is P0,0 = F0,012 /F . With the help of Eqs.
(11), (13) and (15), we obtain

P00 =
16k0pw2p

πL

[
w2s

2w2p+w2s
arctan

(
2L
kpw2s

)]2
. (21)

In order to maximize the flux of generated paired photons, we should choose optimum values of
the pump beam waist (woptp ) and signal beam waist (wopts ) that maximize the coupling efficiency
P0,0. It reaches its maximum value when the conditions

wopts =
√
2woptp (22)

1
2
arctan(α) =

α
1+α2 with α =

L
k0p(w

opt
p )2

(23)

are fulfilled. The non-zero value of α that fulfills Eq. (23) is easily found to be α = 1.39. This
solution gives us the optimum value of the pump beam waist,

woptp =

√
L

αk0p
, (24)
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Equations (22) and (24) give us the optimum values of the pump beam waist and the collection
system that maximizes the number of generated photons with the desired spatial shape.
Some authors [9, 11, 23] make use of the parameters ξp = L/zp and ξs = L/zs, where zp =

k0pw2p/2 and zs = k0s w2s/2 are the Rayleigh ranges of the pump and signal waves. With these
parameters, the result given by Eq. (24) can be rewritten in terms of ξp and ξs, so that the
optimum values are ξ̄ optp = ξ̄ opts = 2.8.
Figure 2(a) shows the optimum value of the waist of the collection beam, namely w̄s, that

yields the maximum value of coupling efficiency P0,0 for a given value of the pump beam waist
wp. Figure 2(b) shows the maximum value of P0,0 for each value of the pump beam waist. We
see that for all lengths, the global maximum of P0,0 is Pmax0,0 ∼ 82%. However, as expected from
Eq. (24), the optimum value of the pump beam waist depends on the length of the crystal. In
Fig. 2(a) we also plot the condition ws =

√
2wp. In both figures, we consider two different

values of the nonlinear crystal length: L= 10 mm and L= 20 mm.
As we have demonstrated above, the globalmaximum of P0,0 is obtained for woptp = L/(αk0p)

and wopts =
√
2woptp . However, if we fix a value of the pump beam different from the optimum

value, i.e., wp #= woptp , the optimum size of the signal collection system that maximizes the
efficiency (w̄s), no longer fulfills the condition w̄s =

√
2wp. We can observe this in Fig. 2(a).

For wp = woptp , the condition is fulfilled (open circles), and it corresponds to a global maximum
of the coupling efficiency (open circles) in Fig. 2(b). But for larger values of the pump beam
(wp > woptp ), w̄s is indeed smaller than

√
2wp, whereas for smaller values (wp < woptp ), w̄s is

larger than
√
2wp. In other words, w̄s yields a local maximum of the coupling efficiency for a

fixed value of wp. To highlight the different coupling efficiency achieved when ws = w̄s and
when ws =

√
2wp, we plot both cases in Fig. 2(b).

The maximum value of collection efficiency P0,0 that can be achieved with a pump beam
waist given by Eq. (24) and collection system ws =

√
2wp, is

Pmax0,0 =
4

απ
(
tan−1α

)2
, (25)

which yields Pmax0,0 = 82.1%. Maximally, some 82% of photons can be collected into a Gaussian
mode. This is a universal value that does not depend on the crystal length.
This maximum value is obtained because we are approximating the exact field of the fiber’s

fundamental mode with a Gaussian function. It is expected that when considering the exact
field, the coupling efficiency would decrease. This is analogical to what happens with single-
mode fiber-coupled receivers in optical free-space communications [24]: When the optical input
field is focused in a single-mode fiber, the maximum coupling efficiency is ηmax = 81.5% if the
field of the fundamental mode of the fiber is approximated by a Gaussian function. On the other
hand, if the exact form of the fundamental mode is used [25], the maximum coupling efficiency
turns out to be ηmax = 78.6%.
As an example of the usefulness of the results obtained in this section, let us estimate the

spectral brightness that can be achieved in the considered SPDC configuration. If η accounts for
all the losses of the experimental set-up, i.e., efficiency of the diffractive elements, losses of the
singlemode-fibers and quantum efficiency of the detectors, the spectral brightness F̄ = Pmax0,0 ηF
of generated paired photons is

F̄ = 0.41ηπ2σ2Fpk0pL . (26)

For example, let us consider a degenerate SPDC process in a L = 20 mm PPKTP nonlinear
crystal with nonlinear coefficient χ(2) ∼ 10 pm/V, pumped by a CW pump at λp = 405 nm and
refractive indices np % n1 % n2 = 1.8. If the total losses of the optical systems are η = 0.1, the
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Fig. 2. (a) Optimum beam waist of the collection mode, w̄s that maximizes the coupling
efficiency P0,0 for a given pump beam waist wp for two different nonlinear crystal lengths
(blue dashed line: L= 20 mm ; red dash-dotted line: L= 10 mm). The dotted line represents
the condition ws =

√
2wp. The open circles designate the values when wp = woptp . (b)

Maximum coupling efficiency P0,0 as a function of pump beam waist wp. Blue dashed line:
maximum for L = 20 mm when the optimum value of ws shown in Fig. 2(a) is used. Red
dash-dotted line: maximum for L = 10 mm when the optimum value of ws in Fig. 2(a) is
used. Blue (dotted) and red (dash dot-dotted) lines show the coupling efficiency when the
signal beam waist is ws =

√
2wp for L = 20 mm and L = 10 mm. respectively. Horizontal

line: Maximum value of P0,0 for any crystal length. The open circles designate the global
maxima of P0,0, when wp = woptp .

spectral brightness is F̄ = γPp(mW ), where γ ∼ 1×105 photons/s/nm/mW and Pp is the pump
power. Comparing with the flux of downconverted photons measured in [14], we see that by
properly choosing the optimum value of the pump beam waist wp and the optimum size of the
collection mode ws, one could observe a noteworthy enhancement of the spectral brightness of
the source.

4. Generation of two-photon entangled states with OAM correlations

In the previous section, we considered the maximization of the spectral brightness of photons
entangled in the polarization degree of freedom with a Gaussian spatial shape. Even though
the entanglement in the polarization degree of freedom is transformed to entanglement in the
polarization and OAM degrees of freedom, the dimension of the working Hilbert space is still
d = 2. If the goal is to generate entanglement in a multidimensional Hilbert space (d > 2), we
can take advantage of the OAM correlations directly generated in the process of SPDC (see
Fig. 3).
In this section, first a general calculation is performed to show how to maximize the cou-

pling efficiency of photons with OAM and then an example of how to employ it to generate a
maximally entangled qutrit is presented.
Let us consider an SPDC process pumped by a beam with OAM winding number mp. The

two-photon state, which is entangled in the OAM degree of freedom, can be written as

|Ψ〉= ∑
m1
Cm1,m2 |m1〉1|m2〉2, (27)

where Fm1,m212 = |Cm1,m2 |2 is the weight of each mode of the decomposition with mp =m1+m2.
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PBS

Dichroic
mirror

Collinear Type II SPDC
|V>pump            |H>signal |V>idler

|V>idler

|H>signal

|V> pump

Coincidence
counter

Laser

Fig. 3. Scheme of a type-II SPDC configuration for generating photons entangled in the
OAM degree of freedom. Photons in Laguerre-Gaussian modes are directly produced in
the nonlinear crystal and later separated by a polarization beam splitter (PBS). The linked
dot lines represent the existence of entanglement.

In this section, the goal is to maximize the overall coupling efficiency P = ∑m1,m2 Pm1,m2 for a
selected set of values of m1, where Pm1,m2 = Fm1,m212 /F .
When projecting the paired photons into non-Gaussian modes, two cases should be consid-

ered. Firstly, the case when the winding numbers m1 and m2 have the same sign, i.e., sgn(m1)
· sgn(m2) = 1, and secondly, the case with sgn(m1) · sgn(m2) = −1. The first situation cor-
responds, for instance, to cases where the pump beam, and the signal and idler modes are
described by Laguerre-Gaussian modes with positive indices mp, m1 and m2. Making use of
Eqs. (13) and (15), we obtain

Pm1,m2 =
16k0pw2s

πL
mp!

m1!m2!

[
wpws

2w2p+w2s

]2mp+2[
tan−1

(
2L
k0pw2s

)]2
. (28)

Notice that by setting mp = m1 = m2 = 0, we recover Eq. (21).
Inspection of Eq. (28) shows that the optimum signal and idler mode widths are obtained

when ws =
√
2wp and L/(kpw2p) = α , as in Section 3. The maximum coupling efficiency is

now
Pmaxm1,m2 =

mp!
8mp m1!m2!

4
απ

(
tan−1α

)2
. (29)

Notice that in this case the coupling efficiency of coincidence rates between signal and idler
photons into higher-order modes decreases as Pmaxm1,m2/P

max
0,0 = mp!/(8mp m1!m2!), when com-
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Fig. 4. (a) Optimum beam waist of the collection mode ws that maximizes the coupling
efficiency P1,−1 for a given pump beam waist (blue solid line). For the sake of comparison,
the optimum beam waist of the collection mode that maximizes the coupling efficiency P0,0
for a given pump beam waist is also plotted (red dash-dotted line). (b) Maximum coupling
efficiency P1,−1 as a function of pump beam waist. Blue solid line: maximum coupling
efficiency P1,−1 when the optimum value of ws, as shown in Fig. 4(a), is used. For the sake
of comparison, we also plot the coupling efficiency P0,0 for two cases. Red dash-dotted line:
maximum coupling efficiency P0,0. Red dash-dot-dotted line: coupling efficiency when the
signal beam waist is ws =

√
2wp. The nonlinear crystal length is L= 10 mm in all cases.

pared with the case of the projection of the signal and idler photons into Gaussian modes. For
instance, for a pump beam with mp = 1, the fraction of signal photons with m1 = 0 detected
in coincidence with idler photons with m2 = 1 is Pmax1,0 = Pmax0,1 ∼ 0.1. For mp = 2, we obtain
Pmax2,0 = Pmax0,2 ∼ 0.013 and Pmax1,1 ∼ 0.026.
Results are different for the case sgn(m1) · sgn(m2) =−1. For a Gaussian pump beam (mp =

0), the coupling efficiency is given by a somehow more cumbersome expression that writes

Pm,−m =
41−m

(m!)2
k0pw2p
πL

[
2w2s

2w2p+w2s

]2m+2 ∣∣∣∣∣

m

∑
p=0

(−1)p
[

m!
p!(m− p)!

]2

× Γ(m− p+1)Γ(p)
[
(w2s/8)

2+
(
L/4k0p

)2]p/2

[
w2p
4

+
w2s
8

]p
sin

{
p arctan

(
2L
k0pw2s

)}∣∣∣∣∣∣∣

2

. (30)

Without loss of generality, let us consider that the signal and idler modes are projected into
spatial modes with m1 = 1 and m1 =−1. In this case, Eq. (30) can be written as

P1,−1 =
16k0pw2pw8s

πL
(
2w2p+w2s

)4

∣∣∣∣∣arctan
(
2L
kpw2s

)
−
2k0pL

(
2w2p+w2s

)

4L2+(k0pw2s )2

∣∣∣∣∣

2

. (31)

The qualitative behaviour of P1,−1 turns out to be quite different from the previously considered
cases, where m1 and m2 had the same sign. This can be clearly observed in Fig. 4(b), which
shows the maximum coupling efficiency that can be achieved as a function of the pump beam
waist, when the optimum value of ws, given by Fig. 4(a), is chosen. Figure 4(b) also shows the
optimum value of P0,0 (red dash-dotted line), and P0,0 when setting ws =

√
2wp (red dash-dot-

dotted line).
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As an example of the application of the results depicted in Fig. 4(b), let us consider a de-
tection system that projects the generated photons into a particular form of the state given by
Eq. (27) in a three-dimensional Hilbert subspace

|Ψ〉=C0,0|m1 = 0〉1|m2 = 0〉2+C−1,1 {|m1 =−1〉1|m2 = 1〉2+C−1,1|m1 = 1〉1|m2 =−1〉2} ,
(32)

where

C0,0 =
∫
dqsdqiΦ(qs,qi)U0(qs)U0(qi) , (33)

C−1,1 =
∫
dqsdqiΦ(qs,qi)U1(qs)U−1(qi) . (34)

The detection arrangement of such a state would be as follows. The generated paired pho-
tons show orthogonal polarizations, so they can be separated with a polarizing beam splitter,
as shown in Fig. 3. To detect a specific spatial mode with winding number m1,2 = −1,+1,
we can make use of a properly designed hologram of order M = +1,−1, or a spatial light
modulator. The hologram projects the incoming photons into outgoing photons (in reflection or
transmission) that propagate along the first diffraction order of the hologram, and have a wind-
ing number m+M. After the hologram, a single-mode fiber detects photons with a Gaussian
shape, i.e., with winding number m+M = 0. For instance, if M = +1, detection of a photon
after traversing the single-mode fiber implies the presence of an incoming photon with winding
number m=−1, since any other incoming photon with a different winding number would not
be allowed to propagate inside the single-mode fiber.
Notice that the beam waists w0s and w1s of the modesU0 andU1 in Eq. (33) can be different to

achieve a maximum efficiency. In the detection arrangement described above, the beam waist of
the modes detected can be controlled by modifying the optical coupling system of light into the
single-mode fiber. The weights of each mode, P0,0 = |C0,0|2 and P1,−1 = P−1,1 = |C−1,1|2 can be
read in Fig. 4(b). To generate a maximally entangled qutrit, i.e., a quantum state that fulfills the
condition P1,−1 = P0,0, one has to use specific values of wp and ws. For instance, from Fig. 4(b),
we can see that if we make use of the condition ws =

√
2wp, the value of wp ∼ 55µm where the

curves intersect corresponds to a high-flux configuration for a maximally-entangled qutrit with
P0,0 = P−1,1. For this value of wp, the quantum state given by Eq. (32) represents roughly a 46%
of the whole parameter space, i.e., P0,0 = P−1,1 =

√
0.46/3, which is the coupling efficiency of

this particular SPDC configuration. That means that by choosing appropriate values of wp, w0s
and w1s , the coupling efficiency of the projection into a maximally-entangled quantum state of
the form given by Eq. (32) can reach a value of 46 %.

5. Conclusions

We have presented an analysis of how to design optimum SPDC configurations that maximize
the coupling efficiency of entangled photon pairs with specific OAM correlations in detection
systems sensitive to the spatial shape of photons. Collinear non-critical SPDC configurations
have been considered, as they facilitate the use of longer nonlinear crystals with the correspond-
ing enhancement of the flux of the generated photons. Furthermore, they allow for a simpler
description of the quantum spatial correlations of the two-photon states in terms of spatial
modes that bear orbital angular momentum.
The optimization consists in shaping the spiral spectrum of the two-photon state by choosing

appropriate values of the pump beam waist (wp) and the waist of the collection mode (ws).
If the aim is to generate a quantum state that bears quantum correlations in the OAM and

polarization degrees or freedom, the optimum approach is to maximize the flux of polarization
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entangled photons projected into Gaussian modes and then transform them into modes with
OAM using diffractive elements, such as holograms. We have found that fraction of photon
pairs that can be detected under ideal conditions can approach a value of ∼ 82%.
On the other hand, if the aim is to generate higher-dimensional quantum states, we have to

maximize the spectral brightness of photons with a Laguerre-Gaussian shape directly coming
out of the nonlinear material. In the case of a maximally-entangled qutrit, a coupling efficiency
of ∼ 46% can be achieved.
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