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D1.6 Final QPM SPDC: Final analysis of the performances and features of the transverse quasi-
phase-matching (QPM) approach for OAM SPDC generation. Quasi-phase-matching will be 
achieved by modulating the material composition and structure, as well as by tailoring the pump 
beam transverse profile, and spectral and/or temporal shape. [Excerpt from the GA-Annex I 
describing the deliverables of WP1, page 8] 
 
 
1. Previous work described in Deliverable D1.2 (intermediate report)  
 
In the intermediate report delivered at Month 12 (see paper [1] S. Palacios, R. de J.  Leon-Montiel, 
M. Hendrych, A. Valencia and J. P. Torres, Flux enhancement of photons entangledin orbital 
angular momentum, Optics Express 19, 14108 (2011), corresponding to Deliverable D1.2) we 
designed high-flux SPDC configurations aimed at generating specific qubit and qutrit states with 
specific OAM correlations. 
 
For instance, for generating the important state quantum state of the form  
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where R represents right-handed circularly polarized light, L left-handed circularly polarized light, 
and m=+1 (m=-1) an orbital angular momentum mode with the corresponding index and p=0, the 
optimum configuration is given in Fig. 1. In this case, an estimated 82% of all photons generated 
belong to the Hilbert space of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Scheme of the combination of a type-II SPDC source embedded in a Sagnac 
interferometer and diffractive elements to generate photons entangled in the polarization and 
spatial degrees of freedom with maximum efficiency. SMF: Single-mode fiber; QWP: Quarter-
wave plate; HWP: Half-wave plate; PBS: Polarization beam splitter; DF: Diffractive element. 
The linked dot lines represent the existence of entanglement. This figure comes from Palacios, 
Leon-Montiel, M. Hendrych, Valencia and Torres [1]. 
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2. Generation of high entanglement making use of chirped quasi-phase-
matching 
 
One of the promises of using the spatial degree of freedom (or Orbital Angular Momentum  modes) 
of two-photon states generated in Spontaneous Parametric Down-Conversion (SPDC) is to produce 
truly high entanglement, i.e., tens of ebits of entanglement when measured in terms of the entropy 
of entanglement. One of the advantages of using the spatial degree of freedom over other 
continuous degrees of freedom that characterize photons, as the frequency, is that there is a myriad 
of efficient optical tools to generate, control and detect spatial modes. 
 
The amount of spatial entanglement generated depends on the SPDC geometry used (collinear vs 
non-collinear), the length of the nonlinear crystal (L) and the size of the pump beam (w0). Under 
certain approximations, the entropy of entanglement can be shown to be dependent on the ratio 
L/Ld, where Ld = kpw0

2/2 is the Rayleigh range of the pump beam and kp is its longitudinal wave-
number. Therefore, large values of the pump beam waist w0 and shorter crystals are ingredients for 
generating high entanglement [2]. However, the use of shorter crystals also reduces the total flux-
rate of generated entangled photon pairs [2]. Moreover, certain applications might benefit from the 
use of focused pump beams. For instance, for L = 1 mm, w0 = 200µm and kp = 15.7µm-1, one 
obtains E !9. For a longer crystal of L = 20 mm, the amount of entanglement is severely reduced to 
E ! 5 ebits. 
 
We put forward here [3] a scheme to generate massive spatial entanglement, i.e., a staggering large 
value of the entropy of entanglement, independently of some relevant experimental parameters such 
as the crystal length or the pump beam waist. This allows to reach even larger amounts of 
entanglement that possible nowadays with the usual configurations used, or to attain the same 
amount of entanglement but with other values of the nonlinear crystal length or the pump beam 
waist better suited for specific experiments. The scheme described below is based on the use of 
Quasi-phase-matching (QPM) engineering of nonlinear crystals (see Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Scheme of SPDC in a linearly chirped quasi-phase-matched nonlinear crystal. The pump 
beam is a Gaussian beam, and p and q designate the transverse wave numbers of the signal and 
idler photons, respectively. K0 is the grating wave-vector at the input face of the nonlinear crystal, 
and K0-!L at its output face. The signal and idler photons can have different polarizations or 
frequencies. The different colors (or different direction of arrows) represent domains with different 
sign of the nonlinear coefficient. This figure comes from Svozilik, Perina and Torres [3]. 
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QPM is a technique that was originally invented [4] to achieve the condition of phase matching 
between the waves that take part in nonlinear processes such as Second Harmonic Generations or 
Spontaneous Parametric Down-Conversion (SPDC). In its simplest version, it produces a periodic 
reversal (with period ") of the sign of the nonlinear coefficient of the nonlinear material along the 
direction of propagation of all interacting waves.  
 
But the capabilities of QPM go beyond making possible phase matching in configurations where 
phase matching cannot be achieved otherwise. Since present-day technology allows mapping nearly 
any spatial distribution of signs of the nonlinear coefficient into the nonlinear material, QPM 
becomes also a tool to tailor the shape in frequency and space of the down-converted photons. In 
transverse QPM, the sign of the nonlinear coefficient changes in the transverse plane, and it 
produces spatial shaping of the photons [5].  
 
In the more common longitudinal QPM, the nonlinear coefficient change along the direction of 
propagation of the waves (z), producing in general, a change of the spectrum of the down-converted 
[6]. But this type of QPM can also produce spatial tailoring of the down-converted photons, 
something that even was observed experimentally in [6], its consequences for tailoring spatial 
entanglement were not fully appreciated. The key point is to realize that when considering a focused 
pump beam, and the whole spatial shape of the down-converted photons, the phase matching 
condition depends on the transverse wave number of the signal (p) and idler photons (q), so that 
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where ks and ki are the transverse wave numbers of the signal and idler photons, respectively. 
 
Now, by modifying the period " along the direction of propagation (chirped QPM), different 
values of the transverse wave-numbers qs and qi might achieve phase matching at different 
locations of nonlinear crystal.  In this way, the decomposition of the spatial quantum state of the 
down-converted photons into the Orbital Angular Momentum (OAM) modes can be enhanced, 
producing a corresponding enhancement of the spatial entanglement.  
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High spatial entanglement via chirped quasi-phase-matched optical parametric

down-conversion

Jǐŕı Svoziĺık,1, 2, ∗ Jan Peřina Jr.,2 and Juan P. Torres1, 3
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By making use of the spatial shape of paired photons, parametric down-conversion allows the gen-
eration of two-photon entanglement in a multidimensional Hilbert space. How much entanglement
can be generated in this way? In principle, the infinite-dimensional nature of the spatial degree
of freedom renders unbounded the amount of entanglement available. However, in practice, the
specific configuration used, namely its geometry, the length of the nonlinear crystal and the size
of the pump beam, can severely limit the value that could be achieved. Here we show that the
use of quasi-phase-matching engineering allows to increase the amount of entanglement generated,
reaching values of tens of ebits of entropy of entanglement under different conditions. Our work
thus opens a way to fulfill the promise of generating massive spatial entanglement under a diverse
variety of circumstances, some more favorable for its experimental implementation.

PACS numbers: 03.67.Bg, 03.65.Aa, 42.50.Dv, 42.65.Lm

Entanglement is a genuine quantum correlation be-
tween two or more parties, with no analogue in classi-
cal physics. During last decades it has been recognized
as a fundamental tool in several quantum information
protocols, such as quantum teleportation [1], quantum
cryptography [2] and quantum key distribution [3], and
distributed quantum computing [4].

Nowadays, spontaneous parametric down-conversion
(SPDC), a process where the interaction of a strong
pump beam with a nonlinear crystal mediates the emis-
sion of two lower-frequency photons (signal and idler), is
a very convenient way to generate photonic entanglement
[5]. Photons generated in SPDC can exhibit entangle-
ment in the polarization degree of freedom [6], frequency
[7] and spatial shape [8, 9]. One can also make use of a
combination of several degrees of freedom [10, 11].

Two-photon entanglement in the polarization degree of
freedom is undoubtedly the most common type of gener-
ated entanglement, due both to its simplicity, and that
it suffices to demonstrate a myriad of important quan-
tum information applications. But the amount of en-
tanglement is restricted to 1 ebit of entropy of entangle-
ment [12], since each photon of the pair can be generally
described by the superposition of two orthogonal polar-
izations (two-dimensional Hilbert space). On the other
hand, frequency and spatial entanglement occurs in an
infinite dimensional Hilbert space, offering thus the pos-
sibility to implement entanglement that inherently lives
in a higher dimensional Hilbert space (qudits).

Entangling systems in higher dimensional systems (fre-
quency and spatial degrees of freedom) is important both
for fundamental and applied reasons. For example, noise
and decoherence tend to degrade quickly quantum corre-

lations. However, theoretical investigations predict that
physical systems with increasing dimensions can main-
tain non-classical correlations in the presence of more
hostile noise [13, 14]. Higher dimensional states can also
exhibit unique outstanding features. The potential of
higher-dimensional quantum systems for practical appli-
cations is clearly illustrated in the demonstration of the
so-called quantum coin tossing, where the power of higher
dimensional spaces is clearly visible [15].

The amount of spatial entanglement generated de-
pends of the SPDC geometry used (collinear vs non-
collinear), the length of the nonlinear crystal (L) and
the size of the pump beam (w0). To obtain an initial es-
timate, let us consider a collinear SPDC geometry. Un-
der certain approximations [16], the entropy of entan-
glement can be calculated analytically. Its value can be
shown to depend on the ratio L/Ld, where Ld = kpw2

0/2
is the Rayleigh range of the pump beam and kp is its
longitudinal wavenumber. Therefore, large values of the
pump beam waist w0 and short crystals are ingredients
for generating high entanglement [17]. However, the use
of shorter crystals also reduce the total flux-rate of gen-
erated entangled photon pairs. Moreover, certain ap-
plications might benefit from the use of focused pump
beams. For instance, for L = 1 mm, w0 = 200µm and
kp = 15.7µm−1, one obtains E ∼ 9 [16]. For a longer
crystal of L = 20 mm, the amount of entanglement is
severely reduced to E ∼ 5 ebits.

We put forward here a scheme to generate massive spa-
tial entanglement, i. e., an staggering large value of the
entropy of entanglement, independently of some relevant
experimental parameters such as the crystal length or
the pump beam waist. This would allow to reach even

http://arxiv.org/abs/1208.4531v1
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FIG. 1. Scheme of SPDC in a linearly chirped quasi-phase-
matched nonlinear crystal. The pump beam is a Gaussian
beam, and p and q designate the transverse wave numbers of
the signal and idler photons, respectively. K0 is the grating
wave-vector at the input face of the nonlinear crystal, and
K0 −αL at its output face. The signal and idler photons can
have different polarizations or frequencies. The different col-
ors (or different direction of arrows) represent domains with
different sign of the nonlinear coefficient.

larger amounts of entanglement that possible nowadays
with the usual configurations used, or to attain the same
amount of entanglement but with other values of the
nonlinear crystal length or the pump beam waist better
suited for specific experiments.
Our approach is based on a scheme originally used to

increase the bandwidth of parametric down-conversion
[18–20]. A schematic view of the SPDC configuration
is shown in Fig.1. It makes use of chirped quasi-phase-
matching (QPM) gratings with a linearly varying spatial
frequency given by Kg(z) = K0 − α(z + L/2), where K0

is the grating’s spatial frequency at its entrance face (z =
−L/2), and α is a parameter that represents the degree
of linear chirp. The period of the grating at distance z is
p(z) = 2π/Kg(z), so that the parameter α writes

α =
2π

L

pf − pi
pfpi

(1)

where pi is the period at the entrance face of the crystal,
and pf at its output face.
The key idea is that at different points along the non-

linear crystal, signal and idler photons with different fre-
quencies and transverse wavenumbers can be generated,
since the continuous change of the period of the QPM
gratings allows the fulfillment of the phase-matching con-
ditions for different frequencies and transverse wavenum-
bers. If appropriately designed narrow-band interference
filters allow to neglect the frequency degree of freedom
of the two-photon state, the linearly chirped QPM grat-
ing enhance only the number of spatial modes generated,
leading to a corresponding enhancement of the amount
of generated spatial entanglement.

FIG. 2. Weight of the Schmidt coefficients λnl for (a) α =
0 µm−2 and (b) α = 10× 10−6 µm−2. The nonlinear crystal
length is L = 20 mm and the pump beam waist is w0 =
200 µm.

In order to determine how much spatial entanglement
can be generated in SPDC with the use of chirped QPM,
let us consider a nonlinear optical crystal illuminated
by a quasi-monochromatic laser Gaussian pump beam
of waist w0. Under conditions of collinear propagation
of the pump, signal and idler photons with no Poynting
vector walk-off, which would be the case of a noncrit-
ical type-II quasi-phase matched configuration, the am-
plitude of the quantum state of the generated two-photon
pair generated in SPDC reads in transverse wavenumber
space

|Ψ〉 =
∫

dpdqΨ (p,q) |p〉s|q〉i, (2)
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where p (q) is the transverse wavenumber of the sig-
nal (idler) photon. Ψ is the joint amplitude of the two-
photon state, so that |Ψ (p,q) |2 is the probability to de-
tect a signal photon with transverse wave-number p in
coincidence with an idler photons with q.

The joint amplitude that describes the quantum state
of the paired photons generated in a linearly chirped
QPM crystal, using the paraxial approximation, is equal

to

Ψ (p,q) = C exp

(

−
w2

0

4
|p+ q|2

)

(3)

×
∫ L/2

−L/2
dz exp

[

i
|p− q|2

2kp
z + iα

(

z +
L

2

)

z

]

,

where C is a normalization constant ensuring
∫

dq
∫

dp|Ψ (p,q) |2 = 1. After integration along
the z-axis one obtains

Ψ(p,q) = C

√

iπ

4α
exp

[

−
w2

0

4
|p+ q|2 − i

(

αL2

16
+

L|p− q|2

8kp
+

|p−q|4

16αk2p

)]

×

[

erf

(

3
√
αL

4
√
i

+
|p− q|2

4kp
√
iα

)

− erf

(

−
√
αL

4
√
i
+

|p− q|2

4kp
√
iα

)]

, (4)

where erf refers to the error function. Notice that Eq.
(4) is similar to the one describing the joint spectrum of
photon pairs in the frequency domain, when the spatial
degree of freedom is omitted [19, 20].
Since all the configuration parameters that define the

down conversion process show rotational symmetry along
the propagation direction z, the joint amplitude given by
Eq. (4) can be written as

Ψ (p,q) =
∞
∑

l=−∞

Bl (p, q) e
il(ϕp−ϕq). (5)

Here, we have made use of polar coordinates in
the transverse wave-vector domain for the signal,
p = (p cosϕp, p sinϕp), and idler photons q =
(q cosϕq, q sinϕq), where ϕp,q are the corresponding az-
imuthal angles, and p, q are the radial coordinates. The
specific dependence of the Schmidt decomposition on the
azimuthal variables ϕp and ϕp reflects the conservation
of orbital angular momentum in this SPDC configuration
[21], so that a signal photon with OAM winding number
+l is always accompanied by a corresponding idler pho-
ton with OAM winding number −l. The probability of
such coincidence detection for each value of l is the spi-
ral spectrum [22] of the two-photon state, i.e., the set
of values Pl =

∫

pdp qdq |Bl(p, q)|2. Recently, the spiral
spectrum of some selected SPDC configuration have been
measured [23].
The Schmidt decomposition [24, 25] of the spiral func-

tion, i.e., Bl(p, q) =
∑

∞

n=0

√
λnlfnl(p)gnl(q), is the tool to

quantify the amount of entanglement present. λnl are the
Schmidt coefficients (eigenvalues), and the modes fnl and
gnl are the Schmidt modes (eigenvectors). Here we obtain
the Schmidt decomposition by means of a singular-value
decomposition method. Once the Schmidt coefficients
are obtained, one can obtain the entropy of entangle-

ment as E = −
∑

nl λnl log2 λnl. An estimation of the
overall number of spatial modes generated is obtained
via the Schmidt number K = 1/

∑

nl λ
2
nl, which can be

interpreted as a measure of the effective dimensionality
of the system. Finally, the spiral spectrum is obtained as
Pl =

∑

n λnl.
For the sake of comparison, let us consider first the

usual case of a QPM crystal with no chirp, i.e., α =
0µm−2, and length L = 20 mm, pumped by a Gaussian
beam with longitudinal wavenumber kp = 15.7µm−1 and
pump beam waist w0 = 200µm. In this case, the inte-
gration of Eq. (3) leads to [26]

Ψ(p,q) = C exp

(

−
w2

0

4
|p+ q|2

)

sinc

(

L|p− q|2

4kp

)

.

(6)
The Schmidt coefficients are plotted in Fig. 2(a), and the
corresponding spiral spectrum is shown in Fig. 3(a). The
main contribution to the spiral spectrum comes from the
spatial modes with l = 0. The entropy of entanglement
for this case is E = 5.1 ebits and the Schmidt number is
K = 18.3.
Nonzero values of the chirp parameter α lead to an in-

crease of number of generated modes, as it can be readily
seen in Fig. 2(b) for α = 10×10−6 µm−2. This broaden-
ing effect is also reflected in a corresponding broadening
of the spiral spectrum, as shown in Fig. 3(b). Indeed,
Fig. 4(a) shows that the entropy of entanglement in-
creases with increasingly larger values of the chirping pa-
rameter, even though for a given value of w0, its increase
saturates for large values of α. For w0 = 200µm and
α = 10 × 10−6 µm−2, we reach a value of E = 13.47
ebits. On the contrary, the Schmidt number K rises lin-
early with α, as can be observed in Fig. 4(b), for all
values of w0. For sufficiently large values of w0 and α,
K reaches values of several thousands of spatial modes,
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FIG. 3. The spiral spectrum Pl for (a) α = 0 µm−2 and (b)
α = 10× 10−6 µm−2. The nonlinear crystal length is L = 20
mm and the pump beam waist is w0 = 200 µm.

i.e. K = 8097.76 for the same w0 and α. For large val-
ues of E, a further increase of E requires an even much
larger increase of the number of spatial modes involved,
which explain why an increase of the number of modes
involves only produces a modest increase of the entropy
of entanglement.

For the sake of comparison, when considering fre-
quency entanglement, the entropy of entanglement de-
pends on the ratio between the bandwidth of the pump
beam (typically Bp ∼ 5 MHz) and the bandwidth of the
down-converted two-photon state (Bdc) [27]. For type II
SPDC, one has typically values of E ∼ 1 − 2 [7]. In-
creasing the bandwidth of the two-photon state, one can
reach values of Bdc > 1000 THz, therefore allowing typi-
cal ratios greater than Bdc/Bp # 108, with E > 25 [28].

In conclusion, we have presented a new way to increase
significantly the amount of two-photon spatial entangle-
ment generated in SPDC by means of the use of chirped
quasi-phase-matching nonlinear crystals. This opens the
door to the generation of high entanglement under var-
ious experimental conditions, such as different crystal
lengths and sizes of the pump beam.

QPM engineering can also be an enabling tool to gener-
ate truly massive spatial entanglement, with state of the
art QPM technologies [19] potentially allowing to reach
entropies of entanglement of tens of ebits. Therefore, the
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FIG. 4. (a) The entropy of entanglement E and (b) the
Schmidt number K as a function of the chirp parameter α
for w0 = 40 µm (solid black line), w0 = 100 µm (dashed blue
line) and w0 = 200 µm (dotted-and-dashed red line).

promise of reaching extremely high degrees of entangle-
ment, offered by the use of the spatial degree of freedom,
can be fulfilled with the scheme put forward here. The
experimental tools required are available nowadays.

The shaping of QPM gratings are commonly used in
the area of non-linear optics for multiple applications
such as beam and pulse shaping, harmonic generation
and all-optical processing [29]. In the realm of quan-
tum optics, its uses are not so widespread, even though
QPM engineering has been considered, and experimen-
tally demonstrated, as a tool for spatial [30, 31] and fre-
quency [19] control of entangled photons. In view of the
results obtained here concerning the enhancement of the
degree of spatial entanglement, it could be possible to de-
vise new types of gratings that turn out to be beneficial
for other applications in the area of quantum optics.

This work was supported by the Government of
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of Education, Youth and Sports of the Czech Republic
and by project PrF-2012-003 of Palacký University.
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