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This work builds upon our earlier study where we demonstrated the effect of integer OAM on the 
reflection of an optical beam by a dielectric interface. In that case we found beam shifts that were 
linearly enhanced by the OAM value of the beam. In the present work we study the dielectric 
reflection behavior of beams with non-integer OAM. 
 
We have started by exploring various methods to generate a non-integer OAM beam. Meaningful 
beam shifts require that the non-integer OAM beam is structurally stable upon propagation, apart 
from the overall scaling due to diffraction. We have opted to use a so-called Hermite-Laguerre-
Gaussian (HLG) beam; this is an analytic interpolation of a Hermite-Gaussian (HG) mode and a 
Laguerre-Gaussian (LG) mode. Such a beam is indeed structurally propagation invariant and carries 
generally non-integer OAM. This HLG beam is not cylindrically symmetric. Such a beam requires 
that we properly use our quadrant detector for measuring the beam shift of a HLG beam. In fact, our 
experimental set-up generates a HLG beam with fixed symmetry axes that coincide with the axes of 
the quadrant detector. We published this work recently in Optics Express [1]. 
 
Subsequently, we theoretically analyzed the non-integer OAM beam shifts of a HLG beam. We 
found that, contrary to naïve expectation, the non-integer OAM beam shifts do not linearly 
interpolate between the shifts corresponding to the neighboring integer OAM values. Finally we 
have used our experimental set-up to verify this prediction. We started with non-integer OAM 
values between -1 and +1; very recently we found convincing non-linearity in the interpolation in 
this generalized “first-order”  HLG case. We have recently published this result in Optics 
Communications [2]. Presently we aim to extend our work to higher-order HLG beams. 
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Abstract: We present a design to generate structurally propagation
invariant light beams carrying non-integer orbital angular momentum
(OAM) using Hermite-Laguerre-Gaussian (HLG) modes. Different
from previous techniques, the symmetry axes of our beams are fixed
when varying the OAM; this simplifies the calibration technique for
beam positional measurement using a quadrant detector. We have
also demonstrated analytically and experimentally that both the
OAM value and the HLG mode orientation play an important role
in the quadrant detector response. The assumption that a quadrant
detector is most sensitive at the beam center does not always hold for
anisotropic beam profiles, such as HLG beams.
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1. Introduction

Light carrying orbital angular momentum (OAM) is characterized by a helical wave-
front shape and a doughnut-like intensity profile with a dark center (vortex). In a single
round trip about the propagation axis, the phase of an OAM beam increases linearly
and gains the value of 2πN, with N an integer value that is equivalent to the OAM
content of such a beam. After the first investigation of the astigmatic transformation
of Hermite-Gaussian (HG) modes into Laguerre-Gaussian (LG) modes [1], it was the-
oretically proven that LG laser modes carry a well defined OAM which is equivalent
to the azimuthal mode index ! of the LG modes [2]. Since then, the generation of LG
modes has opened up a broad range of applications, including optical trapping with
OAM beam structures [3, 4], quantum communication at higher dimensional entangle-
ment using OAM beams [5, 6], OAM beam for high sensitivity Raman spectroscopy
in molecule detection [7], stellar detection using OAM beam [8, 9], and nanometer
precision metrology by using the effect of OAM on beam shifts [10].
Recently, there is a growing interest in addressing non-integer values of OAM that

potentially broadens the OAM beams applications. By applying non-integer OAM
beams to existing OAM beams applications, we introduce a degree of freedom of opti-
cal manipulation. Non-integer OAM beams have found uses in high-dimensional quan-
tum information processing [6] as well as edge-sensitive microscopy [11]. In this paper,
we present the technique to generate non-integer OAM beams and discuss the differ-
ence between our technique and the existing ones. Note that, the non-integer OAM
value does not refer to the value of the beam vorticity but to the mean value of the
OAM. Subsequently, we treat the position measurement of such a beam that is an in-
herent part of many applications using OAM beams.
During the first decade after the initial realization of an OAM beam, many differ-

ent integer OAM beam generation techniques have been introduced. The first demon-
stration used the so-called ‘π/2-mode converter’, which belongs to a family of astig-
matic mode converters that applies the appropriate Gouy phase to create well defined
mode indices of LG beams carrying integer OAM [12]. This was soon followed by the
demonstration of a spiral phase plate (SPP) operating at optical wavelength [13] and
at milimeter range [14] for creating helical-wavefront to directly transform Gaussian
beam to OAM beams. At the same time, computer-generated holograms with pitch-
fork structures were applied using a spatial light modulator (SLM) to convert Gaussian
beams into LG beams [3, 15]. Different from the astigmatic mode converter, both SPP
and SLM are not pure mode converters. They convert a fundamental Gaussian mode
into a superposition of LG modes that contain the same azimuthal mode index ! but dif-
ferent radial mode index p. Although the OAM content of such a beam is well defined,
the spatial field distribution evolves during propagation. This mode impurity problem
holds also when employing q plates [16] that convert spin-to-orbital angular momen-
tum in an anisotropic and inhomogeneous media to create helical waves. Mitigating the

�����������������86' 5HFHLYHG����6HS�������UHYLVHG���1RY�������DFFHSWHG���1RY�������SXEOLVKHG����1RY�����
(C) 2012 OSA 3 December 2012 / Vol. 20,  No. 25 / OPTICS EXPRESS  27431



radial mode impurity to obtain a more robust beam profile during propagation when us-
ing SLM and SPP has then been the focus of several studies [17–21].
In the field of non-integer OAM beam generation, only a handful of studies have

been carried on. One of the initial ideas was to use off-axis illumination of an SPP;
equivalently, one may use a non-integer 2π phase step SPP [5]. These techniques, how-
ever, yield non-integer OAM beams with neither ! nor p mode purity [22]. A more
structurally stable non-integer OAM beam has been demonstrated recently, by using
an SLM when applying a synthesis of a finite number of LG modes with carefully
chosen Gouy phases [23]. It was, however, demonstrated only for half-integer OAM
values. Another proposition is by exploiting the internal conical diffraction where a
circularly polarized beam with a fundamental Gaussian mode is converted into a non-
integer OAM beam with a Bessel mode, having only a limited OAM value range of
|!|≤ 1 [24].
Our paper focuses on two issues. The first concerns with the generation of beams

carrying arbitrary non-integer OAM values that is structurally stable during propaga-
tion, apart from the overall scaling due to diffraction. This can be achieved by employ-
ing the concept of generally astigmatic mode converters, as was initially introduced in
Ref. [25]. Later on, it was theoretically demonstrated that the output of a general astig-
matic transformation is the intermediate beam between HG and LG beams, known as
Hermite-Laguerre-Gaussian (HLG) beams [26–28]. Since such a HLG mode is an an-
alytic interpolation between a HG mode and a LG mode, it is structurally propagation
invariant. Moreover, this HLG beam carries non-integer OAM.
The second issue concerns with the positional detection of generated HLGmodes for

applications of non-integer OAM beams, e.g. in precision metrology, optical tweezing
or scanning near-field optical microscopy. Popular device to measure beam position is
a quadrant detector, made of 2 by 2 array of photodiodes that are equally spaced and
produce four electronic signals that are proportional to the beam position. The sensi-
tivity of the position measurement using a quadrant detector is limited within a small
spatial range, where the detector response to the shift of the beam is linear. This holds
even for the position detection of a typical fundamental Gaussian beam. The non-linear
response of a quadrant detector has been addressed and improved, but only for funda-
mental Gaussian beams [29, 30]. Recently, we have also investigated the response and
correspondingly the calibration of a quadrant detector for LG modes carrying integer
OAM beams [31]. In this paper, we are going to discuss the use of a quadrant detector
for beam positional detection non-integer OAM beams based upon HLG modes.
We start our paper by presenting the design of a mode converter which transforms a

HG mode of arbitrarily high order to a HLG mode [26]. We demonstrate that the output
beam is structurally propagation invariant, and characterize the non-integer OAM value
using an interferometer set-up. Different from the previous designs [25,26], our exper-
imental set-up generates HLG beam with fixed symmetry axes when varying the non-
integer OAM; these axes thus overlap with the quadrant detector measurement axes.
This proves to be very beneficial when detecting the beam position of HLG modes as
shown in the second part of the paper. Further, we derive an analytical expression of a
quadrant detector response towards general astigmatic modes and introduce a calibra-
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tion procedure required for detecting the positional shifts of non-integer OAM beams.

2. Generation of structurally propagation invariant light carrying non-integer
OAM

2.1. Experimental set-up

A

D

B

C

open cavity
He-Ne laser

α

HG1,0

wire

quadrant 
detector (QD)π/2 - mode converter

mode matching
lens

collimating lens

y
x

Fig. 1. Our experimental set-up to generate HLG modes as non-integer OAM
beams, equipped with a quadrant detector for measuring the beam positional
shifts, discussed in Section 3.

A conventional π/2 astigmatic mode converter [12] transforms a pure HG mode
into a pure LG mode by passing an incoming HG beam through a pair of identical
cylindrical lenses with focal lengths f , separated at a distance d= f

√
2, as illustrated in

Fig. 1. A mode matching lens is normally used to tailor the beam waist of the outgoing
laser mode into the desired beam waist in between the cylindrical lens. A well defined
integer OAM is achieved when the symmetry axes of the HG beam are oriented at an
angle α = 45o with respect to the symmetry axes of the cylindrical lenses [12]. This
can be done using an open laser cavity that is forced to operate at a high order HG
mode by insertion of a thin metal wire, oriented at α = 45o.
Belonging to the family of astigmatically transformed HG beams, HLG beams can

be created by tuning the beam parameter α , i.e. the angle between the symmetry axes of
cylindrical lenses and the symmetry axes of the input HG beam [28]. The non-integer
OAM value of HLG beam is ! = (n−m)sin2α , with n and m the mode index of high
order HG beams [26,27]. Another way to generate HLG beams is to tailor the required
Gouy phase by simultaneously tuning the separation distance of the cylindrical lenses
d and the position of the cylindrical lenses pair with respect to the mode matching
lens [32]. However, for aligning purposes, the approach of varying α is more attractive
when tuning the non-integer OAM value.
A general astigmatic mode converter transforms a HG mode of arbitrarily high order

to a HLGmode. In essence, a pure mode transformation projects an incoming HGmode
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Fig. 2. An incoming HG0,1 mode at varying orientation angle α projected onto
the orthogonal symmetry axes of the cylindrical lenses of a ‘π/2-mode converter’.
The symmetry axes of the outgoing HLG modes are always aligned to the projec-
tion axes. The outgoing HLG modes experience Gouy phase ϕ = 2α .

into two orthogonal axes of the astigmatic mode converter. The outgoing HLG beam
is a superposition of the projected mode with the additional Gouy phase. In Fig. 2, we
show the projection of an incoming HG01 mode with varying orientation angle α on
a ‘π/2-mode converter’. The Gouy phase ϕ experienced by the projected mode after
traversing the cylindrical lenses is 2α . Note that the symmetry axes of the outgoing
HLG beam are always aligned to the projection axes of the cylindrical lenses.
In this paper, we demonstrate the non-integer OAM beam generation using a HeNe

gain tube (Spectra Physics 120S) operating at a wavelength λ = 632.8 nm, situated
at the centre of an open two-mirror cavity allowing for a generation of up to the third
order of the HG mode family (i.e. HG3,3). The laser is forced to operate in a single
higher order HG mode by insertion of a 18 µm diameter copper wire normal to and
rotatable with respect to the axis of the laser cavity. The strength and location of a
mode matching lens and a pair of cylindrical lenses are chosen such that they create
integer OAM beams when the wire is orientated at α = 45o. By rotating the wire about
the optical axis, we tune the parameter α to generate the HLG modes. This is different
from the two previous techniques; where two Dove prisms and two cylindrical lenses
are rotated to flip the HG mode before being converted into HLG modes [25], or where
α is tuned by rotating the cylindrical lenses [26]. By rotating the metal wire inside the
open laser cavity in Fig. 1, our technique generates HLG modes with a fixed symmetry
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axes for any arbitrary non-integer OAM value. Therefore, the profile mode axes are
always aligned to the quadrant detector measurement axes which greatly simplifies the
quadrant detector operation.

2.2. Characterization of non-integer OAM beams

Figure 3 shows the resulting generated HLG beams as a function of varying orientation
angle α . The open laser cavity is forced to operate at the first higher order HG mode,
i.e HG0,1. The first two rows display the measured intensity profiles of Fig. 3(a) the
incoming HG0,1 and Fig. 3(b) the outgoing HLG0,1|[α:0o,90o] beams at the far-field after
the collimating lens. Our generated HLG beam profiles match with the calculation
shown in Fig. 3(c). In the calculated images, we have used a color map to indicate
the phase profile of the generated HLG modes. For outgoing HLG profiles being the
analytic interpolation between a HG mode and a LG mode, we observe a more flat
wavefront inside the high intensity areas (note the even color tone). Inside the dark
intensity areas, the phase value increases non-linearly along the azimuthal direction.
The phase singularity of zero-OAM beams at α = N×90o forms a line (most left and
most right images of Fig. 3(c)), whereas for integer OAM beams at α = (2N+1)×45o
it forms a vortex (the center image of Fig. 3(c)), with N an integer number. Apart from
the overall scaling due to diffraction and slight astigmatism due to imperfect alignment,
the generated HLG beams are structurally stable during propagation, as shown in Fig. 4.

(a)

(b)

(c)

α = 0o α = 15o α = 30o α = 45o α = 60o α = 75o α = 90o

2π0

Fig. 3. (a) Measured intensity profiles of the impinging HG0,1 mode as a function
of the orientation angle α with respect to the symmetry axes of the ‘π/2-mode
converter’; the white lines correspond to the wire orientation in the open laser
cavity of Fig. 1. (b) Measured far-field intensity profiles after the collimating lens
of the outgoing Hermite-Laguerre-Gauss (HLG) modes. (c) Calculated intensity
profiles to compare with the measurement results in (b). The color map in the cal-
culated intensity profiles (c) corresponds to the HLG phase profile that gradually
increases from 0 to 2π .
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~ 0zR ~ 1zR ~ 2zR

α = 60o

Fig. 4. Mode profiles at several Rayleigh distance zR, representing the near- and
far-field planes for the outgoing HLG0,1|[α:60o] mode.

To characterize the OAM content of the generated HLG beams, we look at the inter-
ference patterns between the outgoing HLG beam and a reference beam that comes out
of the laser cavity. A typical interference pattern of an integer OAM beam shows phase
dislocation features, i.e. a pitchfork that branches out into ! number of lines at the dark
centre of the beam, which is also the case for the centre image of Fig. 5. In the case of
beams with non-integer OAM values, the branching gradually dissolves into separated
shifted lines as shown by the measurement result (a) and confirmed by the calculation
(b).
The perfect match between our measurement results and calculation, for both the

intensity and the interference profiles, demonstrates that non-integer OAM values do
indeed depend on the orientation angle of the incoming HG beam, expressed as ! =
(n−m)sin2α [26, 27]. There are two consequences of this relation when generating
HLG beams using our set-up. First, the sign of ! changes each time α crosses the value
of N× 90o. Secondly, the HLG mode profile rotates by 90o each time α crosses the
value of (2N+ 1)× 45o with N an integer number. Take the example of Fig. 3(b) and
3(c), where we have tuned the angle 0o ≤ α ≤ 90o to obtain 0 ≤ ! ≤ 1. Although all
the HLG modes shown have positive values of !, the mode profiles for α ≤ 45o are
rotated 90o with respect to the profiles for α ≥ 45o. Therefore, for an identical ! or
OAM values, there are two possible orthogonal orientations of the HLG beams. The
orthogonal orientation of HLG beams also greatly simplifies the calibration procedure
when measuring the beam position using a quadrant detector, as will be discussed in
the next section.

3. Quadrant detector response to HLG beam displacement

In this section we deal with the response of a quadrant detector as a beam positional
detector of HLG beams. A quadrant detector is a 2x2 array of individual p-n junction
photodiodes, separated by a small gap of typically less than 0.05% of the active area, as
depicted in the inset of Fig. 1. The photodiodes provide the photocurrents IA, IB, IC and
ID which are generated when an optical beam strikes the active area. Its position-current

�����������������86' 5HFHLYHG����6HS�������UHYLVHG���1RY�������DFFHSWHG���1RY�������SXEOLVKHG����1RY�����
(C) 2012 OSA 3 December 2012 / Vol. 20,  No. 25 / OPTICS EXPRESS  27436



(a)

(b)

α = 0o α = 15o α = 30o α = 45o α = 60o α = 75o α = 90o

Fig. 5. The (a) measured and (b) calculated interference patterns showing the
phase singularity of the HLG beams. The black color corresponds to zero inten-
sity and zero phase, whereas the white color corresponds to maximal intensity and
phase φ = 2π .

relation can be written as:

Ix
IΣ

=
IA+ ID− (IB+ IC)
IA+ ID+ IB+ IC

=

∫ x
−∞

∫ ∞
−∞|U(x,y)|2 dydx−

∫ ∞
x
∫ ∞
−∞|U(x,y)|2 dydx

∫ ∞
−∞

∫ ∞
−∞|U(x,y)|2 dydx

=
2
∫ x
0
∫ ∞
0 |U(x,y)|2 dydx

2
∫ ∞
0
∫ ∞
0 |U(x,y)|2 dydx =

∫ x
0
∫ ∞
0 |U(x,y)|2 dydx

∫ ∞
0
∫ ∞
0 |U(x,y)|2 dydx , (1a)

Iy
IΣ

=
IA+ IB− (IC+ ID)
IA+ IB+ IC+ ID

=

∫ y
0
∫ ∞
0 |U(x,y)|2 dxdy

∫ ∞
0
∫ ∞
0 |U(x,y)|2 dydx , (1b)

with |U(x,y)|2 the intensity of the impinging beam, for shifts along the x− and y−axis
of the quadrant detector, respectively. When using our generation technique, the quad-
rant detector axes coincide with the transverse beam axes. To obtain the nominal beam
displacement, the quadrant detector signal Ix,y/IΣ has to be normalized to the slope of
this relationship curve, i.e. the calibration constant K.
Typically, positional beam measurements using a quadrant detector involve a funda-

mental Gaussian mode profile that is cylindrically symmetric, i.e. having an isotropic
profile in the cylindrical coordinate system. In that case, the quadrant detector response
is most sensitive around the beam center for a small displacement ∆x " w, and the
calibration constant K is derived around the beam center where the slope of positional-
current relationship is linear. Previously, the quadrant detector calibration constant for
LG beams as a function of ! has also been derived for small displacements around
the beam center [31], which is valid since LG beams have also isotropic intensity pro-
files. For the case of HLG beams, however, one can immediately sees from Fig. 3
that the intensity profile is not cylindrically symmetric. In other words, HLG beams
carrying non-integer OAM have anisotropic profiles. As will be discussed in the next
paragraphs, there are two things to note when operating a quadrant detector for position
measurement of anisotropic beams such as HLG beams.
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First, the orientation of the HLG beam profile influences the quadrant detector re-
sponse. Due to the rectangular geometry of a quadrant detector, it is most natural to
align the symmetry axes of the beam with respect to the quadrant detector displace-
ment axes, as in the case of Fig. 3. When these axes are aligned, the quadrant detector
calibration constant K for the displacement along the x−axis of HLGn,m|α mode is also
valid for the displacement along the y−axis of HLGm,n|α mode.
Second, operating a quadrant detector around the HLG beam center to detect small

displacement ∆x" w will not always give the most sensitive position measurement.
This is due to the fact that for some cases, the profile cross section |U(x,y)|2 of the HLG
modes along the axis of displacement, has near zero values across one displacement
axis. As an example, let us observe HLG modes for α > 45o in Fig. 3(b). The low
intensity values at the beam centre across the y-axis is certainly the least sensitive
area to measure beam displacement along the x−axis. Interchangeably, the quadrant
detector is least sensitive for beam displacement along the y−axis around the centre
area of HLG modes for α < 45o. Therefore, it is important to find the region where the
quadrant detector can operate with the highest sensitivity.

3.1. Analytical solutions of quadrant detector calibration

Now, we derive the analytical expression for the position-current relationship of a quad-
rant detector for HLG beams carrying non-integer OAM, in the case that both of the
symmetry axes overlap. This expression can be easily extended for an arbitrarily high
order HLGn,m|α mode. For didactic purposes, we take the example of a radial mode
index p = 0 and an azimuthal mode index ! = 1 (i.e. HLG0,1|α ), and investigate the
quadrant response for the beam displacement along the x−axis. By applying the dis-
tribution function of HLG0,1|α given in Ref. [26] into Eq. (1a), we can write the x-axis
displacement relationship normalized to the beam radius w for HLG0,1|α to be

Ix
IΣ

=−2
√
2x√

πw
exp

[
−2

( x
w

)2]
cos2 (α)+ erf

(√
2
x
w

)
. (2)

Note that due to the symmetry axes, the same expression is found for the beam dis-
placement of HLG1,0|α mode along the y-axis, substituting the index x with y.
We present the 1-D cross section profile in Fig. 6(a) to help visualizing the general

intensity distribution of HLG0,1|α beams. The position-current relationship curves in
Fig. 6(b) reveal that there are different linear regions with a constant slope (calibration
constant K) for different values of α . The linear region shifts to a higher x/w value for
α > 45o, coinciding with the peak intensity cross section along the displacement axis,
at around x/w = 0.7. For α < 45o the beam cross-section along the x-axis resembles
that of a Gaussian profile and the range of linearity is around the beam center.
To confirm our analytical expression, we measure the quadrant detector response

for HLG0,1|α modes, where we have used a quadrant detector from NewFocus model
2921 with an active area of 10mm×10mm. Figure 6(b) shows the the match between
our data (open circles and dots) and the analytical solution (solid and dashed lines).
It is important to realize that there exists two values of α for each HLGn,m|α mode
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Fig. 6. (a) The cross section of the HLG0,1|α mode profile along the x-axis. (b) The
corresponding response of a quadrant detector for beam displacement along the
x−axis. Lines (both solid and dashed) and data points correspond to the analytical
solution and experimental data, respectively.
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Fig. 7. The calibration constant K as a function of non-integer OAM ! is derived
analytically for HLG0,1 modes with varying α . The white lines on the top row
images illustrate the x-positions at which K is derived for several α values.
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that give the same ! values but with orthogonally oriented spatial distribution. These
orthogonally oriented modes have different calibration constants K, as plotted in Fig. 7.
To use a quadrant detector for displacement measurement of non-integer OAM

beams having anisotropic profile distributions, such as HLG beams, one must pay atten-
tion to the linear range of the position-current relations, i.e. at the peak of the intensity
cross section along the axis of displacement. Since the orientation of our generated
HLG beam are aligned with the symmetry axes of a quadrant detector, we can easily
obtain the linear range and the calibration constant K. This calibration procedure is
particularly relevant for potential applications using HLG modes as non-integer OAM
beams: in beam shifts measurements, high precision metrology, optical manipulation
using tweezers or scanning near-field optical microscopy.

4. Conclusion

In this paper, we demonstrate a technique to generate HLG modes as non-integer OAM
beams that are structurally propagation invariant and having a fixed symmetry axes
for arbitrary non-integer OAM values. The experimentally demonstrated HLG beams
agree with the calculation, both for the intensity profile distribution and the phase fea-
tures measured with interferometric set-up.
Unlike an integer OAM beam, the phase of a HLGmode increases non-linearly along

the azimuthal axis. Note that any integer OAM beam can be created from an arbitrarily
higher order HLGmode having the appropriate orientation angle α . For example, != 1
can be constructed from HLG0,2|[α:15o], which actually produces a phase distribution
that is different from that of a LG0,1 mode. In applications such as OAM beams shifts
or optical manipulation using OAM beams, noticeable differences will occur when
addressing an integer OAM value by using either LG modes or HLG modes.
For many applications using OAM beams, it is of high interest to measure accurately

the beam position. Down to nanometer precision of beam displacement is typically
measured using a quadrant detector. Different from previous techniques, the symme-
try axes of our generated non-integer OAM beams are always aligned to the axes of
quadrant detectors; which simplifies the operation and calibration of the detector.
We have derived the analytical expression and demonstrate experimentally the re-

sponse of a quadrant detector towards the generated HLG beams. The obtained cali-
bration constant K of a quadrant detector for HLG beams agrees with Ref. [31] only at
integer !, where the beam profile is isotropic or cylindrically symmetric. The assump-
tion that a quadrant detector is most sensitive at the beam center does not always hold
for general astigmatic modes, i.e. HLG modes, that has an anisotropic beam profiles.
In conclusion, we have shown that both the ! values and the HLG mode orienta-

tion play a role in the quadrant detector response. Furthermore, the anisotropic nature
of HLG beams creates different regions having linear response of a quadrant detector
when measuring beam positional shift. The beam positional measurement is most sen-
sitive around the peak of the HLG mode profile. Our result can easily be extended to
arbitrarily higher order HLG beams as solutions of light carrying higher order non-
integer OAM.
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a b s t r a c t

We have studied the effect of non-integer Orbital Angular Momentum (OAM) on OAM enhanced beam
shifts, for in-plane (Goos–Hänchen) and out-of-plane (Imbert–Fedorov) shifts, using Hermite–Laguerre–
Gaussian beams. Contrary to naive expectation we find, theoretically and experimentally, that the non-
integer OAM beam shifts do not interpolate linearly between the integer OAM beam shifts.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Beams having a finite transverse extent are known to be deflected
differently from the geometric prediction, upon interaction with
interfaces [1–4]. Recently, an extensive research has been carried
out addressing how this interaction is affected by the Orbital Angular
Momentum (OAM) of the beam, which so far has been focussed on the
integer OAM case. Specifically, OAM couples to the Goos–Hänchen
(GH) shift [1] that is a longitudinal shift and in-plane with the
incoming light, and the Imbert–Fedorov (IF) shift [2,3] that is
transversal and out-of-plane of incidence. Each of these two shifts
can be separated into (i) the spatial type of shift ðΔGH;ΔIFÞ that is
independent of beam focussing, and (ii) the angular type of shift
ðΘGH;ΘIFÞ that is enhanced by beam propagation upon focussing [5,6].
The angular shift is closely related to the Spin Hall Effect of Light [7–9].
In this Communication our interest is in partial (e.g. external) reflec-
tion of OAM beams. In this case, it has been reported [5,6,10–13] that
the shifts are linearly enhanced by the (integer) OAM content of the
beam. For completeness we note that in the case of total (internal)
reflection the beam shifts are purely spatial and are not affected by the
OAM value of the beam [11,14].

In OAM beam generation one uses typically Laguerre–Gaussian
(LG) beams since their (integer) azimuthal mode index ℓ is directly
proportional to the OAM value [15]. Such integer OAM beams have
a cylindrically symmetric beam profile. Our interest is in beam
shifts of non-integer OAM beams; such beams have anisotropic
beam profiles. Several techniques have been introduced to gen-
erate non-integer OAM beams [16–19], mainly motivated by their
potential in carrying higher density classical and quantum infor-
mation. A light beam carrying a non-integer OAM value can be

made in such a way [11,19,20] that the (anisotropic) beam profile
is preserved upon propagation, apart from the overall scaling and a
quadratic phase factor. This is crucial for their use in beam shift
experiments since it eliminates the dependence on the position of
the reflecting (or transmitting) interface. In this Communication,
we report our study of beam shifts of a structurally propagation
invariant beam carrying non-integer OAM, upon external reflec-
tion on a dielectric surface. We find, theoretically and experimen-
tally, that the angular type of beam shifts (shown in Fig. 1) has a
strong nonlinear dependence on the non-integer OAM value, that
is different from the linear dependence in the case of integer OAM
[10,12,13].

2. Theory

We start with an input Hermite–Gaussian ðHGn;mÞ beam having
the mode indices n,m entering a ‘π=2#mode converter’ [20].
By varying the orientation angle α of its transverse profile with
respect to those of the converter (see Fig. 2), the output beam is a
propagation invariant Hermite–Laguerre–Gaussian ðHLGn;mðx; yjαÞÞ
beam carrying an arbitrary non-integer OAM value; i.e.
ℓ¼ ðm#nÞ sin 2α [19]. At α¼Nπ=2 and α¼ ð2N þ 1Þπ=4 where N is
an integer, the output beams are HGn;m and LGp;ℓ modes, respec-
tively, with ℓ¼ ðm#nÞ and p¼minðm;nÞ;p≥0 the radial mode index.

To derive the beam shifts for non-integer OAM beams, we
follow the general expression of a HLG mode given by Abramoch-
kin and Volostnikov [19],

HLGn;mðx; yjαÞ ¼ e#x2#y2 ∑
nþm

k ¼ 0
ik cos n#k α sinm#k α

Pðn#k;m#kÞ
k ð# cos 2αÞHnþm#kð

ffiffiffi
2

p
xÞHkð

ffiffiffi
2

p
yÞ; ð1Þ

with P the Jacobi and H the Hermite polynomials. We further use
the expression given by Aiello [21] for the observable GH and IF
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shifts (〈x〉 and 〈y〉, respectively) of general beams. The contribution
of the angular and the spatial shifts of the fundamental TEM00

mode, denoted by the superscript ‘0’, to the total shifts is given by

〈x〉
〈y〉

" #

¼
Δ0
GH

Δ0
IF

" #

þ
a11 a12
a21 a22

" #
Θ0

GH

Θ0
IF

" #

; ð2Þ

where the dimensionless shifts of the TEM00 mode are

Δ0
GH ¼w⊥ Im

∂ ln r⊥
∂θ

! "
þw∥ Im

∂ ln r∥
∂θ

! "
; ð3aÞ

%Θ0
GH ¼w⊥ Re

∂ ln r⊥
∂θ

! "
þw∥ Re

∂ ln r∥
∂θ

! "
; ð3bÞ

Δ0
IF ¼%

a∥a⊥ cot θ
R2
∥a2∥ þ R2

⊥a2⊥
½ðR2

∥ þ R2
⊥Þ sin ηþ 2R∥R⊥ sin ðη%φ∥ þ φ⊥Þ'; ð3cÞ

Θ0
IF ¼%

a∥a⊥ cot θ
R2
∥a2∥ þ R2

⊥a2⊥
R2
∥ þ R2

⊥

# $
cos η

h i
; ð3dÞ

with w∥=⊥ ¼ R2
∥=⊥a

2
∥=⊥=ðR

2
∥a

2
∥ þ R2

⊥a
2
⊥Þ, r∥=⊥ ¼ R∥=⊥ expðiφ∥=⊥ÞÞ is the

Fresnel reflection coefficient at incident angle θ, a∥=⊥ the electric
field components, and η their phase difference. The matrix elements
in Eq. (2) are expressed as

aij ¼

2 Im
R
f n βi

∂
∂βj

 !

f dx dy

R
jf j2 dx dy

; ð4Þ

with f the general beam expression and i; j the indices of the matrix
elements ðβ1 ¼ x; β2 ¼ yÞ. This matrix has been derived by Aiello for
integer OAM beam shifts [21].

For completeness, we would like to point out that the matrix ai;j
is the same as the 4-by-4 matrix for the dimensionless OAM
beam shifts in Merano et al. [11] with the GH shift k0〈x〉¼ Δℓ

GH þ
ðz=zRÞΘℓ

GH and the IF shift k0〈y〉¼ Δℓ
IF þ ðz=zRÞΘℓ

IF, having the OAM
content ℓ, the wavenumber k0, and the Rayleigh length zR. Note
the z dependency of the angular shifts [5], in both expressions of
beam shifts.

We introduce now a simple method to derive non-integer OAM
beam shifts: we decompose the HLG mode into two integer OAM
beams with opposite signs (i.e. two LG modes with 7ℓ signs). For
clarity we restrict ourselves to the beam shifts of the HLG1;0ðx; yjαÞ
mode but our approach is generally true for arbitrary HLGn;m.
By varying α, we realize any non-integer OAM value between
%1≤ℓ≤1. The decomposition of the mode is

HLG1;0ðx; yjαÞ ¼
cos α þ sin αffiffiffi

2
p LG0;1 x; yð Þ

þ
cos α% sin αffiffiffi

2
p LG0;%1 x; yð Þ; ð5Þ

where LG0;71ðx; yÞ ¼ e%x2%y2 ðx7 iyÞ71L71
0 ð2x2 þ 2y2Þ and L the

Laguerre polynomial. Finally, substituting Eq. (5) in Eq. (4) yields
the matrix elements

a11 ¼ ð1þ jm%njÞð2þ cos 2αÞ=2; ð6aÞ

a12 ¼%jm%nj sin 2α; ð6bÞ

a21 ¼ jm%nj sin 2α; ð6cÞ

a22 ¼ ð1þ jm%njÞð2% cos 2αÞ=2; ð6dÞ

of our non-integer OAM enhanced beam shifts.
The antidiagonal matrix elements (a12 and a21), corresponding to

the spatial beam shifts, behave similar to the integer case [11,12] in
the sense that they are linearly dependent on the non-integer OAM
value ðm%nÞ sin 2α. However, for the diagonal matrix elements (a11
and a22), corresponding to the angular shifts (ΘGH and ΘIF),
the results for the non-integer case are essentially different from
the integer case. Apart from the contribution of jm%nj to the shift,
that is similar to the integer case [11], there is an extra factor
ð27 cos 2αÞ=2 showing the beam shift dependency on the angle α.
This leads to a nonlinear interpolation between the integer OAM
shifts.

3. Experiment

To demonstrate the nonlinear interpolation of the angular
beam shifts for non-integer OAM beams at partial external reflec-
tion, we use the set-up shown in Fig. 2. A HLG1;0 beam is generated
by modifying the orientation angle α of the incoming HG1;0 mode
with respect to the ‘π=2%mode converter’. The converter consists
of a mode matching lens and a pair of cylindrical lenses separated
at the appropriate distance [15]. The generated beam is collimated
and by using a half waveplate and a polarizer we tune the
intensity and the input polarization, respectively. This beam is
reflected from the hypothenusa air–glass interface of a glass prism
(n2¼1.51). To measure the angular beam shift, we use a quadrant
detector and obtain the relative beam displacement between two
orthogonal directions of the incoming polarization states. Our
generated HLG beams have the same symmetry beam axes (see
inset of Fig. 2) as those of a standard quadrant detector, which
greatly simplifies the beam shift measurement [20]. To maximize
the observable shift, we switch the polarization state of the beam
between 01/901 for ΘGH and %451/451 for ΘIF, by means of a variable
retarder. We further focus the beam to reach the condition for purely

Fig. 1. Schematic of angular Goos–Hänchen ðΘGHÞ and Imbert–Fedorov ðΘIFÞ shifts
normalized to the wavenumber k0 and Rayleigh length zR ðΛ¼ k0zRÞ. We deal with
partial external reflection, i.e. refractive index n1on2.

Fig. 2. Set-up for measuring non-integer OAM beams. Inset: a typical HLG beam
with the intensity profile cross sections along the detector transverse axes.
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angular beam shifts to occur, i.e. zozR [21]. The angle of incidence at
the air–glass interface is fixed at θ¼ 451 and we read the displace-
ment signal of the reflected beam by using a lock-in amplifier.

For completeness, we would like to point out that a quadrant
detector furnishes the median instead of the centroid of the beam
intensity distribution [11,21]. This leads to an additional factor in
the matrix elements aij for beam profiles that does not have the
fundamental Gaussian distribution. We avoid this ‘problem’ when
using a quadrant detector, by choosing HLG beams that have a
Gaussian cross section (see the inset of Fig. 2) along the measured
shifts [20].

Our result, shown in Fig. 3, clearly demonstrates the nonlinear
dependence of angular beam shifts on the non-integer OAM value.
The data follows the theoretical prediction given in Eqs. (6a) and (6d).
Due to the chosen HLG beams orientations, as discussed in the
previous paragraph, we obtain the same curve for both ΘGH and
ΘIF. It is straightforward to generalize our two-component decom-
position method in Eq. (5) to any arbitrary non-integer OAM values
carried by any higher order HLG beams. This is illustrated in Fig. 4,
which shows the nonlinear interpolation of the beam shifts between
higher-order integer OAM values.

4. Conclusion

In conclusion, we have reported, theoretically and experimen-
tally, the angular GH and IF shifts of HLG beams carrying non-
integer OAM values. HLG beams are chosen to fulfill the require-
ment for meaningful beam shifts, in which the beam should be
structurally stable upon propagation, apart from the overall scaling
due to diffraction.

Previous work has reported that the beam shifts in the external
reflection case are linearly dependent on the integer OAM value
[12]; it would seem natural that for non-integer OAM case, one
should interpolate linearly between the integer OAM beam shifts.
We have found, however, that the interpolation of beam shifts to
non-integer OAM values by using HLG beams is highly nonlinear.
Not only the OAM value, but also the OAM density [22] affects the
overall beam shifts; the latter is more pronounced for non-integer
OAM beams and the nonlinearity depends on the chosen mode
profile.
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Fig. 3. Result of the angular shifts for HLG1;0jα carrying non-integer OAM value
"1oℓo1, normalized to that for TEM00.
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Fig. 4. Calculated angular shifts of higher order non-integer OAM beams.
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