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This Letter reports an experimental and theoretical study of the response of a quadrant detector (QD) to an incident
vortex beam, specifically a Laguerre–Gaussian (LG) beam.We have found that the LG beam response depends on the
vorticity index ℓ. We compare LG beams with hard-ringed beams and find that at higher ℓ values, the QD response to
LG beams can be approximated by its response to hard-ringed beams. Our findings are important in view of the
increasing interest in optical vortex beams. © 2011 Optical Society of America
OCIS codes: 040.5160, 120.4640.

Great attention has been given to optical vortex beams
such as the Laguerre–Gaussian (LG) donut beams [1].
This is reflected by the range of research from diverse
fields such as optical tweezing and micromanipulation
[2,3], second-harmonic generation [4], spontaneous and
stimulated parametric downconversion [5,6], microscopy
[7], quantum communication [8], plasma physics [9], and
even in antennas designed for advanced gravitational
waves detection [10]. This broad spectrum of applica-
tions makes it useful to develop methods for accurate
determination of the spatial position of such beams.
A direct method of position measurement of beams in

general, is by means of a quadrant detector (QD). The QD
is a position sensitive device which is composed of four
identical p − n junction photodiodes separated by very
small gaps. Being part of the family of position-sensitive
devices that includes the lateral effect photodiodes [11],
the QD has an advantage of higher resolution and lo-
wer inherent noise, making it more useful for micro/
nanometer displacement measurement compared to
lateral effect photodiodes [12].
There is currently an interest in the response charac-

teristics of quadrant detectors in general. Cui et al. in-
creased the QD’s measurement accuracy by improving
its linearity index [12], while two other groups have fo-
cused on other characteristics, one on the detection sen-
sitivity of these detectors with respect to optical beam
sizes [13], and the other on the influence of the intensity
of the incident beam [14]. However, all investigations
have focused so far on the fundamental Gaussian beams.
Recently, we have used a QD in experiments on reflec-

tive beam shifts of Gaussian vortex beams [15]. This re-
quires a proper understanding of the response of the QD
to such beams. The purpose of our letter is to present this
understanding in detail. Specifically, we look at the re-
sponse of the QD to Gaussian optical vortices (i.e., LG
donut beams) with different values of ℓ. We also compare
these results to the responses when “hard-ringed” beams
are used, as opposed to the “soft-ringed” LG donut
beams. We defined a “hard-ringed” beam as having step-
like edges compared to the “soft-ringed” beam with a
Gaussian dependence of the intensity profile. In the suc-
ceeding paragraphs, we present theoretical calculations
and experimental results.
We determine the response of the quadrant detector to

ring-type beams by defining its dimensionless response in

both the X and Y directions. These responses are given
by the expressions

Ix
I
¼ IA þ IC − ðIB þ IDÞ

IA þ IB þ IC þ ID
;

Iy
I
¼ IA þ IB − ðIC þ IDÞ

IA þ IB þ IC þ ID
;

ð1Þ

where IA, IB, IC , and ID are the photocurrents detected
by the photodiode panels A, B, C, and D of the quadrant
detector as shown in Fig. 1; Ii ∝

R R
Iðx; yÞdxdy, where

i ¼ A, B, C, and D are the panels of the QD, and Iðx; yÞ is
the intensity distribution at the QD. First, we restrict our-
selves to LGℓ;p beams with p ¼ 0 (i.e., one-ring donut
beams) whose intensity distribution is given by

Iðx; yÞ ¼ 2
πω2

z

1
jℓj!

!
2
ω2
z
ðx2 þ y2Þ

"jℓj
e
−

2
ω2z
ðx2þy2Þ

; ð2Þ

where ω0 is the waist of the fundamental Gaussian beam,

z is the axis of propagation, ωZ ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

L2

q
is the beam

radius at position z, and L ¼ kω2
0

2 is the Rayleigh length.
The dimensionless response IX

I that is given by

Fig. 1. LG beam incident on a quadrant detector. The differ-
ence in the photocurrents from the four panels is related to
the displacement of the beam from the center.
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ð3Þ

reduces, when using Eq. (2), to

Ix
I
¼

23=2Γ
!

1
2 þ jℓj

"
x

ωzπjℓj!
ð4Þ

when the displacement x is much less than the width of
the beam.
Table 1 summarizes the different theoretical responses

of the QD in the limit of small beam displacements. We
give results for LG beams (as discussed above), for hard-
ringed beams and for a top-hat beam. It is interesting to
compare these cases, although of course only the LG
beams are vortex beams.
In our experiment, we used a commercial quadrant de-

tector (New Focus, model 2901) mounted to a linear
translator (Newport LTA-HL) controlled by a computer.
The overall size of the QD is 3 mm × 3 mm while the
separation channel between the photodiodes is 100 μm
wide. The QD was connected to a nanovoltmeter that
measured the minute voltage differences as the QD
was translated in its own plane (<150 μm). A He–Ne la-
ser (632:8 nm) was used as the light source and was care-
fully aligned such that it impinged orthogonal to the QD.
The LG beams (LGℓ0) were produced with a cylindrical
lens mode-converter from a He–Ne laser that was forced
to oscillate with higher-order Hermite Gaussian beams
(HGn0), as described in [16]. The beam waist ω0 of the
fundamental Gaussian beam was measured to be 620 μm.
The hard-ringed and top-hat beams were produced as

follows. The waists of the fundamental Gaussian laser
beam was expanded up to 20 times (i.e., up to 12 mm)
and was apertured to an outer radius R1 of 1:2 mm for
the top-hat beam and additionally to an inner radius
R2 of 0:300 mm, 0:600 mm, and 0:900 mm to produce
the hard-ringed beams. These apertures were placed very
close to the QD to reduce diffraction effects.
Figure 2 shows the theoretical prediction (curve)

based on Table 1 for an LG beam with beam waist of
620 μm and z ¼ 0, as one goes from ℓ ¼ 0 to higher ℓ val-
ues. There is a good agreement with our experimental
data (squares). Note that the experiment is restricted
to integer values of ℓ; the theoretical curve is continuous
since ΓðjℓjÞ and jℓj! are defined for all values of jℓj. The K
values displayed in Fig. 2 are the slopes of the dimension-
less response ðIx=IÞ as a function of the translationΔx of
the QD perpendicularly to the incident beam while still

remaining in the linear region of the response of the QD.
The calibration constant for LG beams KLG decreases
asymptotically as ℓ values are increased. The change
of the value of KLG is drastic, with a drop of 50% from ℓ ¼
0 to ℓ ¼ 1. By ℓ ¼ 10, the value of KLG has dropped to
∼17% of its value at ℓ ¼ 0.

It is interesting to compare the QD response on LG
beams to that of hard-ringed beams. In this context,
we choose the thickness of the equivalent hard-ringed
beam as the FWHM of the soft ring of the LG beam.
We approximate the outer radius R1 of the hard ring with

the sum of the radius of the LG mode (Rmax I ¼ ω
ffiffi
ℓ
2

q
) and

half of the FWHM thickness of the LG ring. For the inner
radius R2, we subtract half of the FWHM ring thickness
from the LG ring radius. The dashed curve in Fig. 2 gives
the theoretical calibration constant for an LG beam when
we use the hard-ring approximation as discussed above.
The inset shows a decreasing difference in the K values
as ℓ increases. The difference between the KLG and

Table 1. Calibration ConstantsK for the Dimensionless
Response (IxI ¼ KΔx) of the Quadrant Detector with
Different Beam Profiles at Displacement Δx Much

Smaller Than the Diameter of the Beam

Beam Profile Calibration Constant K

Laguerre–Gaussian beam 23=2Γð12þjℓjÞ
ωzπjℓj!

Hard-ringed beam of outer radius R1
and inner radius R2

4
πR1ð1þ

R2
R1
Þ

Top-hat beam of radius R 4
πR

Fig. 2. (Color online) Calibration constant KLG varies for dif-
ferent values of ℓ. Larger ℓ values give smaller calibration con-
stants. The drawn curve is the theoretical prediction, while the
points marked by open squares are experimentally obtained,
both for LG beams. The error bars are mainly attributed to
the imperfect purity of the LG mode. The dashed curve shows
the theoretical prediction when the LG soft-ring beam is ap-
proximated as a hard ring (see text). The hard-ring beam at ℓ ¼
0 is a top-hat beam. The inset is the percent difference between
the solid curve and the dashed curve.

Fig. 3. (Color online) Calibration constant K of a hard-ring
beam as a function of ðR2=R2Þ. Solid curve, the theoretical pre-
diction while the points marked by open squares are experi-
mentally obtained. We ascribed the error bars to the noise
implied by the low intensity of the hard-ring beams.
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KHard ring at ℓ ¼ 1 is 6.5%, while at ℓ ¼ 10 this becomes as
small as ∼0:7%. However the value of KLG at ℓ ¼ 0 differs
largely from its approximation as a top-hat beam.
Figure 3 shows the response of the QD for hard-ringed

beams as a function of the ratio ðR2=R1Þ. A top-hat beam
corresponds to R2 ¼ 0. Our experimental results agree
with the theoretical prediction that is calculated based
on the experimental parameters: R1 ¼ 1:2 mm and R2 ¼
0:300 mm, 0:600 mm, and 0:900 mm. As the ratio of the
radii becomes larger, the value of KHard ring becomes
smaller.
In conclusion, we have reported the response of a

quadrant detector to LG beams. The accurate measure-
ment of positional displacement of an LG beam is impor-
tant in view of the growing interest in vortex beams. We
see both in theory and experiments that the calibration
constant KLG depends on the topological charge, ℓ. With
higher ℓ values, the LGs can be considered as hard-ringed
beams when exciting a QD. Such high-ℓ vortex beams are
important for optical tweezing and trapping, see [17], and
possibly for gravitational-wave detection [18].

Our work is part of the Foundation for Fundamental
Research of Matter (FOM). It is also supported by the
European Union (EU) within FET Open-FP7 ICT as part
of the STREP Program 255914 PHORBITECH. A. Aiello
acknowledges support from the Alexander von Humboldt
Foundation.
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Demonstration of a quasi-scalar angular
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We show experimentally that the angular Goos–Hänchen (GH) effect can be easily observed, also without employing
its resonant enhancement at Brewster incidence. An s-polarized beam was used to decouple the polarization from
the propagation dynamics of the beam. We found that, in this case, the angular GH effect can be strongly enhanced
by increasing the angular aperture of the Gaussian beam. Our experiments suggest a route toward observing the
angular GH effect for true scalar waves, such as acoustic waves and quantummatter waves. © 2010 Optical Society
of America
OCIS codes: 240.3695, 260.5430.

The Goos–Hänchen (GH) effect is the longitudinal displa-
cement, with respect to the predictions of geometrical op-
tics, of a light beam totally reflected by a planar interface
[1]. As one of the corrections to the law of reflection when
a bounded beam is considered instead of planewaves, the
GH shift has been extensively investigated, both for its
fundamental interest and for its relevance in optical
metrology. The GH shift, typically of the order of a wave-
length, was first observed in the case of a light beam
undergoing a series of total internal reflections (TIRs)
at a glass–air interface [1]. In recent years, much progress
has been made in the observation of the GH effect using
different techniques (see papers cited in [2,3]), including
investigations of the effect in single reflection [2,4].
The corrections to geometrical reflection for a light

beam incident at an interface between two media are
not limited to positional shifts alone. We have recently
reported the first experimental observation of a new ef-
fect in optics [3], an angular deviation of the beam axis
with respect to ray optics predictions (Fig. 1). A similar
angular deviation was recently observed in the micro-
wave domain [5]. This was theoretically proposed in
the 1970s [6,7] and, since then, has been the subject of
a number of theoretical investigations [8–10]. Its name,
angular GH shift (ΘAGH), comes from the fact that the
angular displacement of the beam axis takes place in
the plane of incidence. This angular effect appears only
in a non-TIR configuration (e.g., in external reflection) in
contrast to the positional GH shift that occurs only in TIR
[3]. Both effects belong to a whole category of perturba-
tive corrections to geometrical optics [10–14]. In our pre-
vious work [3], we greatly magnified the angular effect by
exploiting the Brewster resonance. This resonance is a
direct consequence of the vector nature of light, which
appears when the light field vector oscillates in the plane
of incidence (p polarization). It is, therefore, relevant to
ask: Can the angular GH effect be observed for scalar
waves or is it practically restricted to vector waves?
It is well known that the positional GH shift can be

observed for scalar waves. For example, the displace-
ment of an acoustic wave beam, reflected at a liquid–
solid interface [15] has been reported [16]. In acoustics,
the positional GH shift is most prominent at or near the

Rayleigh angle, where a leaky surface wave is generated
by the incident beam [17]. In analogy with optics, posi-
tional GH shifts of acoustic beams are also observed
on more complex structures, such as periodically corru-
gated interfaces; this also allows the positional GH to
become negative [18,19].

Another scalar variety of the positional GH effect oc-
curs for particles; propagation of particles in quantum
mechanics is described by wave functions (matter
waves). It was predicted that an electron beam, totally
reflected at a potential barrier, experiences a positional
GH [20]. This effect is expected also in atom optics where
ultracold atoms are manipulated by laser fields [21]. Re-
cently, the observation of the positional GH with neu-
trons was reported as a first experimental evidence of
this effect in matter waves [22]. We note that the equation
for the GH shift of a neutron beam is the same as that for
the GH shift of an s-polarized light beam [23,24]. This
allows us to realize a quasi-scalar implementation of the
angular GH effect.

Our experimental setup is shown in Fig. 2. A Gaussian
light beam is obliquely incident on a BK7 prism
(n ¼ 1:51). A superluminescent single-mode-fiber-
pigtailed diode (SLED) that provides 2 mW of cw radia-
tion at λ ¼ 820 nm is used as the light source. The beam
that leaves the exit facet of the SLED fiber is collimated
by a microscope objective. The 1=e2 intensity radius w0
of the collimated beam after the microscope objective is
1:62 mm. The beam is then s polarized by means of a
Glan polarizing prism. A cylindrical lens (f ¼ 7:5 cm)

Fig. 1. (Color online) A TEM00 Gaussian beam hits an
air–glass interface. The reflected beam suffers the angular
Goos–Hänchen effect. The angular deviation of the axis of
the reflected beam relative to the specular direction is labeled
as ΘAGH.
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is used to avoid cross polarization [25,26], which would
otherwise spoil the pure s polarization. The cylindrical
lens produces a sheet beam that is focused in one plane
to w0 ¼ 12 μm (θ0 ¼ 22 mrad); this focus is located 1 cm
in front of the air–prism interface. We exploit the fact
that, theoretically, ΘAGH scales with θ20, where θ0ðθ0 ¼
λ=πw0Þ is the beam angular aperture and w0 is the beam
waist (see below) [3,9]. We use a quadrant detector
(QD1) to measure the angular deviation of the reflected
beamwith respect to reflection of a collimated beam. The
QD1 signal is fed into a nanovoltmeter in order to detect
the beam displacement. The distance in between the QD1
and the prism reflecting surface is 5 cm. The lens, the
quadrant detectors, and the prism are mounted on linear
translation stages, while the prism is mounted on a rota-
tion stage.
The beam is carefully aligned by first removing the

prism and the focusing lens. The collimated beam at
the exit of the polarizer is sent to a second quadrant de-
tector (QD2). With the help of a translation stage, the
beam is centered on QD2 by reading a null signal on
the nanovolmeter. A focusing lens is inserted exactly on
the beam axis, making sure that the beam is still perfectly
centered on QD2. The prism is then introduced in the set-
up, while the reflected beam is centered exactly on QD1.
The final step consists of removing the focusing lens and
recording the displacement of the beam with respect to
its position with the focusing lens. This can be done in
two ways: (1) by reading the nanovolmeter and calculat-
ing the displacement using a calibration curve, and/or (2)
by linearly translating the stage of QD1 and recording the
distance traversed by the translation stage until a null sig-
nal is read.
Figure 3 shows the theoretical prediction (line) of

ΘAGH as a function of the angle of incidence. The equa-
tion giving ΘAGHðθÞ as a function of the angle of inci-
dence for an s-polarized beam is [3,6,9]

ΘAGHðθÞ ¼ θ20
sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
− sin2θ

p : ð1Þ

There is good agreement with the experimental data (cir-
cles). In our experiment, the value ofΘAGH is of the order
of a few 100 μrad, i.e., 4 orders of magnitude enhanced

relative to the value expected for a “standard” laser beam
with a width of, say, 1 mm. In fact, Fig. 3 displays the
angular shift for the focused beam with respect to the
collimated beam. The 1 mm width laser beam is used
as a reference for perfect (”geometrical”) reflection, be-
cause its angular deviation is negligible, being very much
smaller than our experimental error of 50 μrad.

Although the nominal spot size w0 expected as a con-
sequence of focusing by an ideal cylinder lens is 12 μm,
the measured value is larger, namely, 17 μm. This is due
to the aberrations introduced by the cylindrical lens, a
simple plano-convex lens. We observe anyway that
ΘAGH is not affected by aberrations (the theoretical shift
for a Gaussian beam focused by an ideal cylinder lens to
a w0 ¼ 17 μm is a factor of 2 smaller that what we ob-
serve). Indeed, geometrical-optics aberrations do affect
the focal spot size but do not affect the wave-vector
spreading of our beam. For instance, spherical aberration
simply corresponds to an NA-dependent axial displace-
ment of the ideal focus.

Fig. 2. Setup to measure nonspecular reflection over a wide
range of incident angles and with different beam angular aper-
tures θ0. Reflection takes place at the surface of a right-angle
BK7 glass prism. We measure the angular shift for a light beam
focused by a cylindrical lens. See the text for details of the
experimental procedure. Fig. 3. The theoretical curve gives the angular shift versus the

angle of incidence for an s-polarized light beam with a wave-
length of 820 nm, focused to a spot size of 12 μm. Dots are
experimental data.

Fig. 4. The angular GH shift increases with the square of the
beam’s angular aperture. The solid curve corresponds to the
theoretical prediction from Eq. (1). The angular aperture was
changed by using cylindrical lenses of different focal lengths.
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Finally, we verified the relationship of ΘAGH and the
beam’s angular aperture θ0. This aperture can be varied
by using cylindrical lenses of different focal lengths while
keeping the angle of incidence on the prism constant at
65°. Figure 4 shows that our experimental results agree
well with the theoretical prediction given by the solid
curve: ΘAGH increases with the square of the beam’s an-
gular aperture. By tightly focusing the beam,ΘAGH can be
enhanced.
In conclusion, we have reported the experimental ob-

servation of ΘAGH for a quasi-scalar wave beam. The
polarization of the incident light beam (s-polarized beam)
is orthogonal to the plane of incidence and does not play
a role in the angular deviation of the beam. We have
found that the key to easy observation of ΘAGH is by en-
hancing the effect with a relatively large angular aperture
of the beam θ0; this should hold equally for true scalar
beams, such as acoustic and matter beams.

This work is part of the program of the foundation for
“Fundamenteel Onderzoek der Materie”; it is also sup-
ported by the European Commission as part of the
FET-Open program 255914 (“PHORBITECH”). A. A. ac-
knowledges support from the Alexander von Humboldt
Foundation.
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It is well known that reflection of a Gaussian light beam (TEM00) by a planar dielectric interface leads to four
beam shifts when compared to the geometrical-optics prediction. These are the spatial Goos-Hänchen (GH) shift,
the angular GH shift, the spatial Imbert-Fedorov (IF) shift, and the angular IF shift. We report here, theoretically
and experimentally, that endowing the beam with orbital angular momentum leads to coupling of these four
shifts; this is described by a 4 × 4 mixing matrix.
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I. INTRODUCTION

The reflection of a light beam by a mirror shows subtle
aspects that were first conjectured by Newton [1]: The center
of the reflected beam may show a small spatial shift in the plane
of incidence relative to the position predicted by geometrical
optics. This shift has been named after Goos and Hänchen
(GH), who were the first to observe it in total internal reflection
(TIR) [2]. Additionally, there is a spatial shift perpendicular
to the plane of incidence, the so-called Imbert-Fedorov shift
(IF) [3,4]. There exist also angular GH and IF shifts, both of
which have been demonstrated recently in external reflection
[5,6]. The angular shifts can be seen as shifts in wave-vector
space [6–8]. All these shifts depend on the polarization of
the incident photons. Accurate calculations of either GH or
IF shifts (or both) can be found in Refs. [9–11]. In more
recent years the GH shift has been studied in a large diversity
of cases, ranging from photonic crystals [12] to neutron
optics [13].

We are interested in the question of how these beam shifts
are affected when the light beam is endowed with orbital
angular momentum (OAM). OAM is a relatively novel degree
of freedom of a light beam that can be found in applications
from optical tweezers to quantum information science [14,15].
Theoretically, a treatment of the effect of OAM on beam shifts
has already been given, first by Fedoseyev [16–18] and then
by Bliokh et al. [19]. Here we prefer to develop our own
theoretical treatment based on straightforward application of
Snell’s law and the Fresnel equations, in order to derive a
unified matrix formalism for the four basic shifts: spatial GH,
angular GH, spatial IF, and angular IF. Experimentally, Okuda
and Sasada have studied the deformation of an OAM carrying
beam using TIR very close to the critical angle [20]; however,
they did not report GH and IF shifts. Dasgupta and Gupta have
measured the IF shift of an OAM beam reflected by a dielectric
interface, but only for the spatial case [21].

It is the purpose of this article to report a theoretical
and experimental study of the effect of OAM on the four
basic shifts: spatial GH, angular GH, spatial IF, and angular
IF. We find that these shifts are coupled by OAM; this is
described by an OAM-dependent 4 × 4 mixing matrix. We
have experimentally confirmed this mixed occurrence of GH
and IF shifts.

II. THEORY

In this section we furnish a thorough theoretical analysis for
the problem of the reflection of an OAM-carrying light beam
by a dielectric interface.

Consider a monochromatic beam containing a continuous
distribution of wave vectors k centered around k0 = k0 ẑi ,
where ẑi is a unit vector along the central propagation
direction of the incident beam: k = k0k̂ = k0 + q, with q =
qT + qL ẑi and qT · ẑi = 0. Using the notation of Fig. 1, we
write qT /k0 = sin α and qL/k0 = 1 − cos α with qT = |qT |
and α = arccos(k̂ · k̂0). A collimated beam has a narrow
distribution of wave vectors around k0 such that sin α ∼= α $ 1
with qT /k0 ∼= α $ 1 and qL/k0 ∼= (qT /k0)2/2. Thus, if we
write k = k0(x̂iU + ŷV + ẑiW ) with W =

√
1 − U 2 − V 2,

we can assume U,V $ 1 without significant error. Let EI (r,t)
be the electric field of the incident beam. Upon reflection,
this field evolves to ER(r,t), which is to be found. From the
linearity of the wave equation it follows that ER(r,t) can be
determined by studying the action of the interface upon each
plane-wave field,

AI (k) = f ⊥(k) exp (ik · r − iωt), (1)

that constitutes EI (r,t), with ω = |k|c. According to
Refs. [22,23], we assume the polarization-dependent ampli-
tude of AI (k) equal to f ⊥(k) = f̂ − k̂(k̂ · f̂ ) = ap(k) x̂k +
as(k) ŷk, with

ap(k) = fp + Vfs cot θ, as(k) = fs − Vfp cot θ, (2)

up to first order in U,V and θ = arccos( ẑi · ẑ). Here f̂ =
fp x̂i + fs ŷ is a unit complex vector that fixes the polarization
of the incident beam, and ŷv = ẑ × v/| ẑ × v| and x̂v = ŷv × v
denote a pair of mutually orthogonal real unit vectors that
together with the arbitrary vector v̂ = v/|v| form a right-
handed Cartesian reference frame Kv = {x̂v, ŷv,v̂} attached
to v.

When the beam is reflected at the interface, each plane wave
evolves as AI (k) → AR(k), where

AR(k) = [rp(θk)ap x̂k̃ + rs(θk)as ŷk̃]χ (r̃,t) (3)

and χ (r̃,t) = exp (ik̃ · r − iωt) = exp (ik · r̃ − iωt). The no-
tation ṽ indicates the mirror image of the vector v with
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FIG. 1. (Color online) Geometry of beam reflection at a dielectric
interface. The reflected wave vector k̃ is the mirror image of the
incident wave vector k. (Inset) Quadrant detector with sensitive areas
a, b, c, and d .

respect to the interface: ṽ = v − 2ẑ( ẑ · v), with ṽ · u = v · ũ
[24]. Moreover, rp(θk) and rs(θk) are the Fresnel reflection
coefficients at incidence angle θk = arccos(k̂ · ẑ) for p and s
waves, respectively. By direct calculation it is not difficult to
show that, up to first order in U,V ,

x̂k̃ = x̂r − V (cot θ ) ŷ + U ẑr , (4)

ŷk̃ = V (cot θ )x̂r + ŷ − V ẑr , (5)

rλ(θk) = rλ + Ur ′
λ, (6)

where λ ∈ {p,s}, rλ = rλ(θ ), and r ′
λ = ∂rλ(θ )/∂θ . With the

use of Eqs. (2) and (4)–(6) in Eq. (3), we obtain

AR(k) = x̂rA
R
p (k) + ŷAR

s (k) + ẑrA
R
L(k), (7)

where, up to first order in U,V ,

AR
λ (k) = fλrλ(1 + iXλU − iYλV )χ (r̃,t), (8)

AR
L(k) = (fprpU − fsrsV )χ (r̃,t). (9)

Here we have defined

Xp = −i
∂ ln rp

∂θ
, Yp = i

fs

fp

(
1 + rs

rp

)
cot θ, (10)

with Xs = Xp|p↔s and Ys = −Yp|p↔s . The limit of specular
reflection is achieved by letting rp → 1 and rs → −1, where
Eq. (10) reduces to Xp = 0 = Xs and Yp = 0 = Ys . Notice
that from Eqs. (8) and (9) it follows that for a paraxial
beam the longitudinal electric-field energy density |AR

L|2
scales as ∼α2 and it is therefore negligible with respect
to the transverse electric-field energy density |AR

p |2 + |AR
s |2

that scales as ∼1 + 2α. Thus, up to first order in α, we
can neglect the longitudinal term AR

L(k) and write AR(k) '
x̂rA

R
p + ŷAR

s . Moreover, for small shifts Xλ and Yλ one
can write 1 + iXλU − iYλV ' exp(iXλU − iYλV ), and in
the Cartesian coordinate system attached to the reflected
beam χ (r̃,t) = exp[i(−UX + V Y + WZ)] exp(−iωt), with
X = k0xr, Y = k0y, and Z = k0zr , where zr is the distance
from the waist of the incident beam to the quadrant detector
measured along the trajectory of the beam. Thus, Eq. (8) can
be rewritten as

AR
λ (k) ' fλrλχ (−X + Xλ,Y − Yλ,Z,t). (11)

The passage from the single plane-wave field AR(k) to the
total electric field ER(r,t) is realized by substituting the plane-
wave scalar amplitude χ (r,t) into Eq. (11), with the electric-
field scalar amplitude E(r,t) describing the spatial distribution
of the incident beam. In the present case, because we want to
study the behavior under reflection of OAM beams, we choose
E(r,t) = ψ((r) exp(−iωt), ψ((r) being the Laguerre-Gauss
paraxial field with OAM index ( ∈ {0, ± 1, ± 2, . . .} and
radial index p = 0: ψ((X,Y,Z) ∝ exp[−(X2 + Y 2)/(2) +
i2Z)] (X + is(Y )|(|, with s( = sign(() and ) = k0(k0w

2
0/2)

denoting the dimensionless Rayleigh range of the beam with
waist w0 [25]. Thus, the transverse electric field of a Laguerre-
Gauss beam reflected by a plane interface can be written as

ER
λ (r,t) ' fλrλψ((−X + Xλ,Y − Yλ,Z) exp(−iωt). (12)

In this expression the terms Xλ and Yλ are responsible for the
GH [8] and IF [19] shifts of the center of the beam, respectively.
These displacements can be assessed by measuring the position
of the center of the reflected beam with a quadrant detector
centered at xr = 0,y = 0 along the reference axis zr attached
to the reflected central wave vector k̃0 = k0 ẑr . A quadrant
detector has four sensitive areas, denoted a, b, c, and d in
the inset of Fig. 1, each delivering a photocurrent Ia , Ib,
Ic, and Id , respectively, when illuminated. The two currents
Ix = (Ia + Ib) − (Ic + Id ) and Iy = (Ib + Id ) − (Ia + Ic) are
thus proportional to the x and the y displacement of the beam
intensity distribution relative to the center of the detector,
respectively.

If ( = 0, ψ0(−X + Xλ,Y − Yλ) reduces to a shifted fun-
damental Gaussian beam, and in the hypothesis of small
deviations Xλ,Yλ ) 1, a straightforward calculation furnishes

Ix

I
= N0

(
*GH + Z

)
+GH

)
,

Iy

I
= N0

(
*IF + Z

)
+IF

)
,

(13)

where I = Ia + Ib + Ic + Id and N0 =
√

2/(πσ 2), with σ 2 =
()/2)

√
1 + Z2/)2. Here we have defined the two spatial (*)

and the two angular (+) shifts,

*GH =
∑

λ=p,s

wλRe(Xλ), *IF =
∑

λ=p,s

wλRe(Yλ), (14)

and

+GH =
∑

λ=p,s

wλIm(Xλ), +IF =
∑

λ=p,s

wλIm(Yλ), (15)

respectively, where the non-negative coefficients wλ are
defined as the fraction of the electric-field energy with
polarization λ = p,s in the reflected beam:

wλ ≡ |rλfλ|2

|rpfp|2 + |rsfs |2
. (16)

If ( += 0, Eq. (13) becomes

Ix

I
= N(

(
*(

GH + Z

)
+(

GH

)
,

Iy

I
= N(

(
*(

IF + Z

)
+(

IF

)
,

(17)
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where N! = N0"(|l| + 1/2)/
[
"(|l| + 1)

√
π

]
["(x) denotes

the " function] and




$!
GH

%!
IF

$!
IF

%!
GH




=





1 −2! 0 0
0 1 + |2!| 0 0
0 0 1 2!

0 0 0 1 + |2!|









$GH

%IF

$IF

%GH




. (18)

Equation (18) clearly displays the mixing between spatial and
angular GH and IF shift, occurring only for ! #= 0, and it is in
agreement with the results presented in Ref. [19], apart from
the factor “2” in front of ! [26]. Notice that the polarization
dependence of the four !-dependent shifts on the left side of
Eq. (18) resides in the four !-independent shifts on the right
side of the same equation. It turns out that the 4 × 4 mixing
matrix itself is polarization independent. It should be noticed
that in TIR, in contrast to partial reflection, both GH and
IF angular shifts %GH and %IF are identically zero since the
Fresnel coefficients are purely imaginary [27]. Thus, in this
case it follows from Eq. (18) that mixing vanishes.

III. EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 2. A home-built
HeNe laser (λ0 = 633 nm) is forced to operate in a single
higher-order Hermite-Gaussian (HGnm) mode with m = 0 by
insertion of a 40-µm-diameter wire normal to the axis of the
laser cavity [28]. The HGn0 beam is sent through an astigmatic
mode converter consisting of two cylinder lenses, with their
common axis oriented at 45◦ relative to the intracavity wire.
This introduces a Gouy phase which converts the HGn0 beam
to a LG!p beam with ! = n and p = 0 [28]. Lenses 1 and
2 are used for mode matching; the beam leaving lens 2 is
collimated with a waist parameter w0 = 775 µm, a power of
typically 600 µW, and a polarization set by a linear polarizer.
We have incorporated the option to greatly enhance the angular
spread of the beam by inserting lens 3 (f = 70 mm), leading to
w0 = 19 µm. Either with or without lens 3 present, the beam
is externally reflected by the base plane of a glass prism (BK7,
n = 1.51). We measured the polarization-differential shifts of
the reflected LG!0 beam with a calibrated quadrant detector.
We also obtained these shifts for the fundamental LG00 beam
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FIG. 2. (Color online) Experimental setup. The insets show the
HG10 and LG10 mode profiles. The quadrant detector measures the
OAM-controlled shift of the reflected beam in the plane of incidence
(GH shift) and perpendicular to it (IF shift). Both the GH shift and
the IF shift have a spatial and an angular contribution. See text for
further details.

(=TEM00) by simply removing the intracavity wire from the
HeNe laser.

It follows from Eqs. (13)–(17) that using a collimated
incident beam, that is, ' & Z, leads to total predominance of
the spatial shift. On the other hand, the use of a focused beam,
that is, ' ' Z, leads to total predominance of the angular
shift. These two extreme cases were realized in our experiment
by the removal (respectively, insertion) of lens 3. Specifically,
the value of the Rayleigh range L = k0w

2
0/2 was 2.96 m and

1.8 mm, respectively; as standard we have chosen the distance
zr between the beam waist and the quadrant detector to be
9.5 cm. We experimentally checked the angular nature of the
shift (where expected) by verifying that the detector signal
depended linearly on changes in zr .

We performed all measurements by periodically (2.5 Hz)
switching the polarization of the incident beam with a
liquid-crystal variable retarder and synchronously measuring
(with a lock-in amplifier) the relative beam position for one
polarization with respect to the other [5,29]. Experimentally,
we were restricted to using the first-order LG modes (! = ±1)
by the low gain of the HeNe laser.

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORY

Our experimental results for the polarization-differential
shifts versus the angle of incidence are reported in Fig. 3,
together with the theoretical curves (! = 0 and ! = ±1) which
are based upon Eqs. (13)–(17). The four panels show the
spatial and angular varieties of GH and IF shifts. Note that
we have plotted here the true GH and IF shifts $/k0 and

FIG. 3. (Color online) Reflective beam shift for partial dielectric
reflection from an air-glass interface as a function of the angle of
incidence. Plotted curves are the theoretical polarization-differential
shifts for the two polarizations indicated in each panel. Experimental
data and theoretical curves refer to ! = 0 and ! = ±1. The panels
display the spatial GH shift (a), angular IF shift (b), spatial IF shift
(c), and angular GH shift (d). Here k0 = 2π/λ0; see text for further
details.
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FIG. 4. (Color online) Reflection of an OAM-carrying Laguerre-
Gaussian (LG) beam at a dielectric interface. Depending on the input
polarization, this may lead to a longitudinal shift (GH effect) or to
a transverse shift (IF effect), where longitudinal and transverse refer
to the plane of incidence. Each of these shifts consists of a spatial
part and an angular part, which are observed, respectively, in the near
field and in the far field of the LG beam. The magnitude of the shifts
increases with the OAM index !. (a) The spatial GH effect; (b) the
angular IF effect; (c) the spatial IF effect; (d) the angular GH effect.
Note that " and # are dimensionless quantities; $ and k0 are the
dimensionless Rayleigh range and the wave number of the LG beam,
respectively. See text for further details.

#/$, respectively, and not the dimensionless shifts " and #.
In each individual case the polarization modulation basis has
been chosen so as to maximize the magnitude of the OAM
effect.

Figure 4 shows a cartoonlike representation of the four
cases that we address.

The overall agreement between experiment and theory is
reasonable if we realize that there is no fitting parameter in-
volved; we ascribe the remaining discrepancies to insufficient
modal purity of the LG10 beam (we are very sensitive to this
since we use a quadrant detector).

Figure 3(a) shows the spatial GH shift for a polarization
basis of diagonal linear polarizations. In this case, the GH
shift is absent for ! = 0 but it appears for ! = ±1; the sign
of the shift reverses when going from ! = +1 to ! = −1. In
Fig. 3(b) we show that the angular IF shift is different for
! = 0 and ! = ±1, using again diagonal linear polarizations.
No difference occurs for ! = +1 versus ! = −1. Proceeding
to Fig. 3(d) we observe an angular GH shift when using a linear
polarization basis (s,p) for both ! = 0 and ! = ±1. Both cases

show a dispersive resonance at the Brewster angle; for ! = 0
these experimental results have been reported recently [5],
whereas the data for ! = ±1 (with opposite sign for ! = +1
and ! = −1) are new. Figure 3(c) shows the OAM dependence
of the spatial IF shift, observed in a linear polarization basis
(p,p − 2◦) [21,30]. Here the shift is zero for ! = 0, whereas
it shows a dispersive Brewster resonance for ! = ±1 (with
opposite sign for ! = +1 and ! = −1).

Finally, we have confirmed experimentally that OAM did
not affect spatial and angular GH and IF shifts in the TIR case
(not shown); TIR was realized by flipping the glass prism in
Fig. 2.

V. CONCLUSIONS

We have presented a unified theoretical description of how
the OAM of a light beam affects its kinematic degrees of
freedom when the beam is reflected by a dielectric interface.
Without OAM the reflection leads to four beam shifts relative
to geometrical optics, namely, the GH and IF shifts, each of
which may have a positional and an angular part. We introduce
a 4 × 4 polarization-independent (but !-dependent) coupling
matrix that describes the OAM-induced mixing of these four
shifts when using a quadrant detector. Experimentally, we have
confirmed this theory by measuring the four shifts as a function
of the angle of incidence, for OAM values ! = 0 and ±1. We
have observed for the first time the OAM-induced spatial GH
shift as well as the OAM-affected angular GH and IF shifts
[see Figs. 3(a)–3(c)]. Extension of all this from reflection to
transmission (i.e., refraction) is straightforward.

Understanding these effects is important since they gener-
ally affect control of OAM beams by mirrors and lenses. The
angular shifts are particularly interesting from a metrology
point of view, both classically and quantum mechanically,
since the corresponding transverse excursion of the beam
center grows without limits when the beam propagates; this
greatly promotes its detectability [5,31].
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Abstract   
We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, 
we observe the spatial Goos-Hänchen shift in which the beam is displaced parallel to the plane of incidence and angular 
Imbert-Fedorov shift which is a transverse angular deviation from geometric optics prediction. Experimental results 
agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured 
these for OAM indices up to 3. Moreover, the OAM couples these two shifts. Our results are significant for optical 
metrology since optical beams with OAM have been extensively used in both fundamental and applied research.  

Keywords: Orbital angular momentum (OAM), Goos-Hänchen shift, Imbert-Fedorov shift 
 

1. INTRODUCTION  
It is well established that a bounded beam upon reflection and transmission on a planar interface differs in propagation 
with plane waves due to diffraction corrections. The more dominant shifts are the Goos-Hänchen1 (GH) shift in which 
the beam is displaced parallel to the plane of incidence, and the Imbert-Federov2 (IF) shift in which the shift is 
perpendicular.  Moreover, it has been shown that each of these two beam shifts can be separated into a spatial and an 
angular shift.3 The main distinction between spatial and angular shifts is the enhancement of the latter with the 
propagation of the beam. 

Angular Goos-Hänchen (AGH) shifts and angular Imbert-Fedorov (AIF) shifts occur only in the case of partial 
reflection.3 Fig.1 shows a schematic representation of these shifts. The centroid of the reflected beam is deflected with a 
small angular deviation with respect to the geometric optics center.  These small deviations, described by Aiello and 
Woerdman3 as AGH and AIF shifts (as opposed to the conventional spatial shifts), can drastically affect the measured 
shifts in the position of the beam under certain experimental conditions, such as when the beam is focused.  In this case, 
the centroid of the beam’s excursion increases as the beam propagates. Merano et al.4 showed experimental proof of the 
AGH effect while a quantum version of the AIF effect - the spin Hall effect of light - was demonstrated by Hosten and 
Kwiat5.  

 

   

Glass 

Air 

x 

y
x 

x y 

!!!!GH/"""" 

(a) 

 

 

Glass 

Air 
y

x 

y 

x !!!!IF/"""" 
(b) 

 

Figure 1: Schematic of the (a) Angular Goos-Hänchen and (b) Angular Imbert-Federov shifts when a beam reflects from air 
to glass. !GH/" and !IF/" are the deflection with respect to the geometric optics center (in radians),  "= kL where k is 
the wave number and L is the Rayleigh length of the beam. 
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Recently, the GH and IF shifts were extended theoretically for the case of beams with Orbital Angular 
Momentum (OAM).6,7  Fedoseyev6 calculated spatial and angular IF shifts that depended on the beam’s OAM. Bliokh7, 
on the other hand, described the OAM-induced coupling between angular and spatial GH and IF shifts. Experimentally, 
Dasgupta and Gupta8 verified the OAM-induced IF shift predicted by Fedoseyev but only for the spatial case.  

We presented the complete four OAM-induced beam shifts- spatial GH and IF, and there angular cases, for 
1,1 !=!  in our recent publication.9  In the present paper, we report for the first time experimental measurements of the 

OAM-induced spatial GH shift angular and IF shift for a beam with higher ! .  We show that these shifts are coupled by 
the OAM and increased proportionally to !  .  We compare this to our theoretical predictions derived directly from 
Snell’s law and Fresnel equations.   Also, we verify the angular nature of the IF shift by measuring the deflection of the 
beam as we move the detection distance. 

1.1 Theory 

The electric field of an LG beam for the case of p = 0 is given by, 
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where zr ,,"  are the coordinates, !  is the azimuthal mode index, k  is the wave number, 2
02

1 $kL =  is the Rayleigh 

range, and 0$ is the beam waist. The reflected electric field is calculated based on the fact that the reflecting surface acts 
upon each plane wave in the incident field with different Fresnel coefficients. This results in a complex shift, with an 
imaginary part corresponding to an angular shift (“tilt”), and a real part corresponding to a spatial shift.3 The resulting 
lateral and transverse displacements of the beam are combinations of both angular and spatial contributions given by; 
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GH 0=& !  are the transverse and lateral spatial shifts for a Gaussian beam, respectively, and 
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z  are the transverse and lateral angular shifts also for a Gaussian beam, respectively.  For 

a complete derivation of these quantities, we refer you to references 3 and 9. Though the calculation method was 
different from the one employed by Bliokh7, the results obtained were similar, except for the factor of ‘2’ which is due to 
our use of a quadrant detector. 

2. EXPERIMENT 
Laguerre-Gaussian (LG) beams were used in the experimental setup shown in Fig. 2.  LG beams have well-defined 
OAM equivalent to !"  per photon.10 To be able to produce such beams, an open cavity HeNe laser (632.8nm) was used 
and forced to oscillate in higher order Hermite-Gaussian modes with a 40!m-diameter wire at the axis of the beam.  
These beams were then converted into higher-order LG modes by two cylindrical lenses as implemented by 
Beijersbergen et al10.  Lens 1 and 2 were used for mode-matching in such a way that the beam left lens 2 collimated.  
Lens 3 focused the beam into a waist of mµ$ 190 =  to enhance its angular spread.  The beam was reflected by a prism 
glass (BK7, n = 1.51) supported by a stage whose rotation angle can be controlled.  The beam’s excursion in the 
transverse and lateral positions was detected by a calibrated quadrant detector (New Focus 2901) when the input 
polarization was periodically varied between 450 and -450 with a liquid crystal variable retarder. A lock-in amplifier was 
used to reduce technical noise.   

We measure the angular nature of the shift in a separate experiment using the same setup.  Here, the angle of 
incidence was held constant while the distance of the quadrant detector to the position of the focus was varied. 



 
 

 
 

 

 
Figure 2. (a) The experimental setup. (b) LG beams produced before passing through Lens 3 (left to right, LG00, LG01, LG02) 

 

3. RESULTS AND DISCUSSION 
We measured the beam shifts with linearly polarized beams where we switched the polarization between 450 and -450; 
and under external reflection. Hence, eqns. 2 and 3 reduce to the following expressions; 
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 is  the angular IF shift of a Gaussian beam, ( )AAA iRr $## exp)()( =  is the Fresnel coefficient 
with { }SPA ,% , #  is the angle of incidence 
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Figure 3.  Angular IF shifts !IF/& (radians, kL=& )of beams with different azimuthal mode index !  as a function of the 

angle of incidence # .  The polarization was switched between 450 and -450.  The solid lines represent the theoretical 
curves. The filled and unfilled shapes of data points represent the positive and negative signs of ! , respectively. We 
used ' for 0=! , ! for 1=! , ! for 2=!  and ( for 3=! . 



 
 

 
 

Figure 3 shows a plot of the polarization differential transverse shifts when the polarization of the beam is 
switched between 450 and -450.  No fit parameter was used in the plots.  The AIF or the angular tilt at small angles was 
determined by dividing the differential transverse shift with the distance between the quadrant detector and the waist of 
the beam.  At any given angle of incidence, the ratios of the shifts with different ! ’s have values almost the same as the 
ratios of the factor ||21 !+ , with the slight difference attributed to the difficulty of producing perfect higher order LG 
modes.  

Note also that in Fig. 3 that there was no difference between the positive and negative values of !  in the AIF.  

 We verified the angular nature of the AIF by measuring the differential transverse shifts when the distance of 
the QD was increased.  In Fig. 4, the linearly increasing value of the differential transverse spatial shifts showed the 
angular nature of the IF shifts.  At a polarization state of 450, the centroid of the beam was deflected with respect to the 
geometric optics center.  It was oppositely deflected in the case of a polarization state of -450.  At small angles, the 
difference between these deflections should increase linearly, as was observed. The geometry of this has been illustrated 
in Fig. 5.  The two linear fit lines did not cross at zero distance, as they should do theoretically. We ascribed the 
discrepancy to imperfections in our experimentally realized LG modes. 

 

-5

5

15

25

35

-1 1 3 5 7 9 11
Distance from focus (cm)

l = 0

l = 1

l = -1

<Y
> 4

5 
- <

Y>
-4

5 (
!m

)
 

)
(

45
45

m
Y

Y
µ

!
!

 
Figure 4.  Transverse shifts at a constant angle of incidence" , as the distance of the detector is changed. The lines are linear 

fits.  As the distance of the quadrant detector is moved farther from the position of the focus, the beam’s transverse 
excursion increases linearly proving that the shift is angular in nature. 
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Figure 5. Transverse shifts as the distance of the detector is changed.  The excursions of the beam for 450 and -450 

polarization are symmetric along the axis of propagation. 



 
 

 
 

 The spatial Goos-Hänchen shift is zero for a planar dielectric interface for a non-OAM carrying beam in 
external reflection geometry.  In our previous publication9, we show experimentally that this not the case for an OAM 
endowed beam.  Also, we verified that the maximum shift happens when the polarization is at 450.9  Fig. 6 is a plot of the 
spatial GH shift from 3!=!  to 3=!  at a constant angle of incidence of 450 which shows the linear dependence of the 
GH shift with !  values.  The line is the theoretical fit from eqn. 4 and corresponds very well with the experimentally 
obtained data.  A schematic diagram of the spatial GH shifts is shown in Fig. 7 as the polarization is switched. 

 

  
Figure 6.  OAM-induced Goos-Hänchen shift at a constant angle of incidence (450).  The shift is linear with increasing !  

values of the beam. The inset shows the GH shift for 1,0,1!=!  at different angle of incidence.   
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Figure 7.  Schematic of the spatial GH shift.  This shift on a planar dielectric in external reflection happens only for OAM 

carrying beams because of the coupling brought about by the OAM. 

 

 The spatial GH shift comes from the same factor responsible for the angular IF shift as seen in eqns 4 and 5.  
The OAM of the beam couples this factor, such that there is a spatial GH shift observed in planar dielectric surface even 
in external reflection.  In the experiment, the AIF and the spatial GH (as shown in the inset) have the same shape except 
for 0=!  where the GH is zero.  From experimental data on both the AIF and spatial GH shifts, we can deduce the 



 
 

 
 

value of ( )0=! !IF  by a simple multiplication of experimental parameters, 
!21+

kL  and 
!2
k  for 0"! , for the AIF 

and spatial GH, respectively.  The values of ( )0=! !IF  from AIF and spatial GH shifts are within 5% difference with 
each other on average which proves the same origin of the effect.  

 

4. CONCLUSION  
We observe the spatial Goos-Hänchen (GH)shift in which the beam is displaced parallel to the plane of incidence, and  
the angular Imbert-Fedorov (AIF) shift which is a transverse angular deviation from geometric optics prediction. Both 
beam shifts are seen to increase with the OAM of the beam. Moreover, the OAM couples these two shifts. Our 
experimental and our theoretical predictions agree well.  

The AIF shift of a beam with an OAM has been measured for ! = 0, 1, 2, and 3, when the beam reflects from a 
planar dielectric material.  It is observed that the magnitudes of the shift increased with !  but are not influenced by the 
sign of ! .  The angular nature of the AIF is also verified experimentally. 

Moreover, the spatial GH shift is seen to be linearly dependent on ! and reverses its sign when the sign of !  is 
flipped.  The spatial GH shift in external reflection happens only because of the OAM of the beam. 
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We report the first measurement of the Spin Hall Effect of Light (SHEL) on an air-metal interface. The SHEL
is a polarization-dependent out-of-plane shift on the reflected beam. For the case of metallic reflection with
a linearly polarized incident light, both the spatial and angular variants of the shift are observed and are
maximum for −45◦/45◦ polarization, but zero for pure s- and p-polarization. For an incoming beam with
circular polarization states however, only the spatial out-of-plane shift is present. c© 2011 Optical Society of
America

OCIS codes: 240.3695, 260.3910, 260.5430.

The Spin Hall Effect of Light (SHEL) is the photonic
analog of the Spin Hall Effect in solid state physics in
which the spin of the particles are replaced by the spin of
photons (i.e. polarization) and the electric potential gra-
dient by the refractive index gradient [1–3]. The SHEL
appears as a very small but detectable polarization de-
pendent out-of-plane (namely, transverse to the plane of
incidence) displacement of the reflected beam at a dielec-
tric interface relative to the geometric-optics prediction.
Introduced in [1] as a transport phenomenon, the effect
was in fact first theoretically derived by Fedorov in 1955
for the case of total internal reflection in glass [4]. Its ex-
perimental verification was done by Imbert in 1972 [5];
hence the SHEL is also known as the Imbert-Fedorov
(IF) effect. Recently, there has been a renewed interest
in the SHEL both regarding its theoretical understand-
ing [1,2,6–8] and its potential for metrology applications.
A considerable amount of experimental work has been
reported for an air-dielectric interface [3, 9–13] and for
an air-semiconductor interface [14].
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Fig. 1. (Color online) An illustration of out-of-plane spa-
tial (∝ ∆) and angular (∝ Θ) shifts of a beam incident at
an angle θi, upon reflection at an interface of two media.

The SHEL is part of the diffraction correction on the
path of a bounded beam upon its reflection or refraction,
which cannot be exactly described by the geometrical-
optics (Snell’s law and Fresnel formulas) alone [2]. This

small correction also includes the in-plane shift [15],
known as Goos-Hänchen (GH) shift. For both the SHEL
and GH cases, there exist two variants of shift namely
the spatial and angular shift; the latter being enhanced
by propagation [6]. Figure 1 illustrates the spatial and
angular shift for the SHEL.
In this Letter, we report for the first time, experimen-

tal measurements of the SHEL on an air-metal interface
for different states of polarizations. We are interested
in the SHEL on an air-metallic interface because met-
als have complex refractive indices, as compared to the
purely real refractive indices of dielectric media.
Theoretically, a consequence of using metallic reflec-

tion has been reported previously [16], demonstrating
that the spatial and angular shifts can be described by a
common formalism; experimental evidence for this was
provided for the GH case but not for the SHEL. Several
studies have in fact shown that GH shifts is effectively a
scalar effect in the sense that s- and p-polarized light un-
dergo individual (uncoupled) GH effects [6, 17, 18]. The
SHEL on the other hand, requires simultaneous s- and p-
component (see Eq. 2), otherwise a transverse shift can-
not occur due to symmetry reasons.
To calculate the out-of-plane shift of a beam with finite

transverse extent, one can use either the law of conser-
vation of angular momentum [1–3, 7] or more directly,
using angular spectrum decomposition [6, 19]. We used
the latter method to derive the equations below. The in-
cident and reflected beams are assumed to be Gaussian;
they are decomposed into plane wave components, and
the Fresnel reflection coefficients are applied for both the
s- and p-component of the waves, respectively. The shift
is then obtained in the paraxial approximation by inte-
grating over the reflected plane waves.
Following the notations described in Eq. (5) of [6], we

express the dimensionless out-of-plane shift as:

Yr = ∆+ Zr
Θ

Λ
, (1)

1
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where Yr = k0yr, Zr = k0zr, and Λ = k0(k0w2
0/2) =

2/θ20 with k0 the wavenumber of beam center, w0 the
beam waist, and θ0 the opening angle of the incoming
beam. Eq. (1) yields the total out-of plane shift yr that
consists of two parameters with measurable units: the
spatial shift ∆/k0 as a dimensional length and the angu-
lar shift Θ/Λ in radian dimension, respectively. Variables
∆ and Θ are expressed as

∆ = −
apas cot θi

R2
pa

2
p +R2

sa
2
s

[(

R2
p +R2

s

)

sin η + 2RpRs sin (η − ϕp + ϕs)
]

,

(2a)

Θ =
apas cot θi

R2
pa2p +R2

sa2s

[(

R2
p −R2

s

)

cos η
]

, (2b)

with rs/p = Rs/p exp(iϕs/p) the Fresnel reflection coeffi-
cient evaluated at incident angle θi and as/p the electric
field components for perpendicular and parallel direc-
tions, respectively. The phase shift between these two
components is given by η.
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Fig. 2. Theoretical curves for (a) spatial and (b) angular
shifts of linear (solid lines: −45◦/45◦, dotted lines: s/p)
and circularly (dashed lines: σ−/+) polarized light as a
function of incident angles, calculated for gold at λ =
826 nm, n = 1.88 + i5.39 [20].

For a somewhat lossy surface such as gold, the differ-
ence in the phase acquired by the s- and p-component
of the waves after reflection varies gradually with angle
of incidence, between 0 or π [21]. The theoretical curve
for various polarization states of the spatial ∆/k0 and
angular Θ/Λ shifts is shown in Fig. 2. A key distinction,
as compared to the case of dielectric reflection, is that
these two shifts can coexist, due to the finite losses of
the metal (Au) [16]. For linearly but oblique polarized
light both spatial and angular shifts contribute to the
measurable beam shift yr. The shifts are maximum at
±45◦ polarization angle and becomes zero for s- and p-
polarized light. Only the spatial shift occurs when using
circularly polarized (σ−/+) light.
Upon reflection on metal, a linearly polarized light

will emerge elliptically polarized [21] due to the differ-
ent phase acquired by the s- and p-component of the
waves. This makes post-selection scheme necessary to
observe the SHEL via a weak measurement [3, 11] im-
practical. We employ a different scheme, shown in Fig. 3.
We use an 826 nm superluminescent light-emitting diode

Fig. 3. (Color online) The optical set-up to measure the
polarization-differential shift as a function of incident an-
gle θi. See text for details.

(SLED) which is spatially filtered by a single-mode op-
tical fiber to yield a TEM00 mode, collimated at a beam
waist of w0 = 690µm and polarized by a Glan po-
larizer. To measure polarization-differential shifts, we
switch between orthogonal polarization states (−45◦/45◦

or σ−/σ+) at 2.5Hz, with a liquid-crystal variable re-
tarder (LCVR, Meadowlark). To create circularly po-
larized right, a QWP is inserted. Our sample is a pla-
nar (Wyko optical profiler gives 0.8 nm rms roughness)
200 nm thick Au film that is deposited on a chromium
film-coated Duran ceramic glass (diameter = 10 cm,
surface flateness = λ/20). The polarization-differential
shifts of the reflected beam are detected by a calibrated
quadcell photodetector (QD, model 2901/2921 NewFo-
cus). To increase the opening angle of the beam, we insert
a lens before the beam hits the sample. We determine the
contribution of the angular shift from the measured total
shift by varying the position of the detector with respect
to the waist of the focused beam.
With the use of a lock-in amplifier (EG&G 5210),

all measurements are performed by synchronously
measuring the relative transverse position (along the yr-
axis) of the beam while switching polarizations with the
LCVR. We obtained the direction (positive vs negative)
of the transverse shift of the beam by noting the phase
of the lock-in amplifier. Due to the different intensities
between s- and p-polarization, the signal being detected
by the detector and read by the lock-in amplifier needs a
correction, where we have generalized the recipe in [22]
for any state of polarization, into:

δyr =
δU

CΣ1

−
U1

CΣ1

(Σ2 − Σ1)

Σ1

, (3)

with δyr is the transverse shift in length units, δU the
measured voltage difference read by the lock-in amplifier,
and C the calibration constant. Note that the subscripts
{1,2} are assigned to the switching polarization states in
our experiments. The second term on the right hand side
of Eq. (3) is the necessary correction to the read signal. It
is minimum when U1 is zero, i.e. the reflected beam with
one of the switching polarization states is centered to the
QD. Both U1 and the total intensity Σ are measured by
a voltmeter (HP 34401A).

2
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Fig. 4. Measured (top row) spatial and (bottom row)
angular polarization-differential shifts between (a,c)
−45◦/45◦ and (b,d) σ−/+ polarized light, as a function
of angle of incidence. Solid lines are theoretical curves,
dots with error bars represent data with its standard
deviation (3σ).

Figure 4 shows our experimental results for the
polarization-differential shifts as a function of the angle
of incidence together with theoretical predictions based
on Eqs. (1-2). The data agrees with the theory without
the use of fit parameters. The experimental error is of
the order of 30 nm (to be compared with the 1 nm error
in the weak-measurement method for dielectrics [3,11]).
In Fig. 4(a) and 4(c), the angle of polarization is

switched between −45◦/45◦. Both the out-of-plane spa-
tial and angular polarization-differential shifts are ob-
served and peak at an incident angle of 65◦. The
measurement of the spatial Fig. 4(b) and angular
Fig. 4(d) polarization-differential shifts between right
and left circularly polarized light (σ−/+) shows that
only the spatial out-of-plane shift is present. We have
also measured the out-of-plane shift for pure s- and p-
polarization (plots not shown), and the results agree with
predicted zero values within the limits of uncertainty.
In agreement with theory described in Eqs. (1-2)

above, our measurements of the SHEL in metal reflec-
tion do not show an existence of a backward energy
flow, unlike in the GH case where the in-plane shift be-
comes negative for gold. In the GH shift, the energy flow
of the evanescent field parallel to the interface changes
sign when the sign of the permittivity ε of the reflecting
medium changes [23, 24]. This argument does not hold
with the SHEL in metallic reflection as the shift is per-
pendicular to the incoming wave vector and therefore the
sign is independent of ε.
In summary, we have demonstrated the SHEL on an

air-gold interface for different polarizations. The SHEL
is specially interesting in applications where minute shift

can play an important role, e.g. in metrology. On a more
fundamental level, our measurements add to the under-
standing of how the conservation law of angular momen-
tum plays a role when light undergoes reflection [2, 25].
This work is supported by the Foundation for Fun-

damental Research of Matter (FOM) and the European
Union within FET Open-FP7 ICT as part of STREP
Program 255914 Phorbitech.
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Goos–Hänchen (GH) and Imbert–Fedorov (IF) shifts are diffractive corrections to geometric optics that have been
extensively studied for a Gaussian beam that is reflected or transmitted by a dielectric interface. Propagating in free
space before and after reflection or transmission, such a Gaussian beam spreads due to diffraction. We address here
the question of how the GH and IF shifts behave for a “nondiffracting” Bessel beam. © 2011 Optical Society of
America
OCIS codes: 240.3695, 260.5430.

It has been known for a long time that the behavior of a
finite-diameter light beam in reflection and transmission
at a dielectric interface differs from the predictions of
geometric optics. Because of diffractive corrections,
the beam is shifted in directions parallel and perpendi-
cular to the plane of incidence [1]. The parallel shift is
known as the Goos–Hänchen (GH) effect [2,3], and the
transverse shift is known as the Imbert–Fedorov (IF) ef-
fect [4–6]. These effects have been extensively studied
not only for total internal reflection, which is the context
wherein the GH and IF effects were originally addressed,
but also in partial dielectric reflection and transmission
[7–9]. We note that the IF effect is closely related to the
spin Hall effect of light [7,10–12]. Further generalizations
concern angular varieties of the GH and IF effects; these
are observed in the far field of the reflected (or trans-
mitted) beam [13]. Recently, the influence of orbital an-
gular momentum (OAM) of the incident beam on these
diffractive shifts has also been investigated [14–16]; for
the transverse case, this may be called the orbital Hall
effect of light [17].
The diffractive origin of these effects raises the ques-

tion of how they behave when the incident beam is a
so-called nondiffracting Bessel beam. Such beams were
perceived by Durnin and Miceli et al. as propagation-
invariant solutions of the free-space scalar wave equation
[18,19]. These solutions have amplitudes proportional to
the Bessel functions. The zero-order Bessel beam has a
bright central maximum (“needle beam”), which propa-
gates in free space without diffractional spreading; the
higher-order beams have a dark central core. Most of
the work on Bessel beams has been restricted to the
paraxial limit [20,21], but also the nonparaxial case
(described by the Helmholtz wave equation) has been
reported [6,22,23].
Ideal Bessel beams have an infinite transverse diam-

eter and cannot, therefore, be generated experimentally.
However, there exist several experimental methods to
generate finite-diameter approximations to a Bessel
beam; these propagate over a finite axial distance in a
nondiffracting manner (i.e., over distances much larger
than the Rayleigh length corresponding to the needle-
beam diameter) [24]. So, one may speculate that such

a needle beam corresponds to a geometric optics ray that
would not show GH and IF shifts. Verification or rebut-
tal of this speculation requires proper theory; this is
reported in the present Letter.

Let us begin by briefly recalling what a Bessel beam is.
The scalar mth-order Bessel beam is a cylindrically sym-
metric monochromatic optical beam whose electric field
has the following form:

EðR;φ; zÞ ¼ JmðK0RÞeimφeiz
ffiffiffiffiffiffiffiffiffiffi
k20$K2

0

p
≡ AðR;φÞeiz

ffiffiffiffiffiffiffiffiffiffi
k20$K2

0

p
;

ð1Þ

where m is an integer number that fixes the value of the
OAM of the beam and ðR;φ; zÞ are the cylindrical spatial
coordinates defined with respect to the main axis of
propagation ẑ:

"
x ¼ R cosφ;
y ¼ R sinφ: ð2Þ

For a needle beam, one has m ¼ 0. In Eq. (1), k0 > 0 and
0 ≤ K0 ≤ k0 are two independent parameters, where K0
determines the angular width ϑ0 of the central lobe
(cone) of the corresponding Bessel function via the
definition

K0 ¼ k0 sinϑ0; ð0 ≤ ϑ0 ≤ π=2Þ: ð3Þ

Throughout this Letter we will consider only paraxial
Bessel beams characterized by the condition

sinϑ0 ¼ K0=k0 ≪ 1: ð4Þ

It should be noticed that while EðR;φ; zÞ is an exact solu-
tion to the Helmholtz equation ð∂2x þ ∂

2
y þ ∂

2
z þ k20ÞE ¼ 0

in free space, the amplitude AðR;φÞ satisfies the reduced
equation ð∂2x þ ∂

2
y þ K2

0ÞA ¼ 0.
For actual calculations of both the GH and IF shifts, it

is convenient to work in Fourier space and calculate the
Fourier transform ~AðK;ϕÞ of the amplitude AðR;φÞ ¼
JmðK0RÞeimφ as
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JmðK0RÞeimφ ¼ 1
2π

Z
~Aðkx; kyÞeiK·Rdkxdky; ð5Þ

where

~Aðkx; kyÞ ¼ ~AðK;ϕÞ ¼ 1
imK0

δðK − K0Þeimϕ; ð6Þ

with K ¼ðk2xþk2yÞ1=2, K ·R¼xkxþyky¼KRcosðϕ−φÞ,
and kx ¼ K cosϕ, ky ¼ K sinϕ. It is worth noticing that
in the literature, Eq. (6) is often written in spherical co-
ordinates ðk0;ϑ;ϕÞ with K ¼ k0 sinϑ, K0δðK − K0Þ ¼
δðϑ − ϑ0Þ= cosϑ0, and dkxdky ¼ k20 sinϑ cosϑdϑdϕ.
Having written explicitly the Fourier representation of

a scalar Bessel beam, we can now proceed as in [17] and
write the Fourier amplitude of a vector Bessel beam as

~Aðkx; kyÞ → ~Aðkx; kyÞ ¼ f
⊥

ðKÞ~Aðkx; kyÞ; ð7Þ

where f
⊥

ðKÞ ¼ f̂ − k̂ðk̂ · f̂ Þ, with k̂ ¼ kxx̂þ kyŷþ ðk20 −
K2Þ1=2ẑ and f̂ ¼ f px̂þ f sŷ, j f̂ j2 ¼ 1. Here, according to
[17], the three unit vectors fx̂; ŷ; ẑg form a right-handed
Cartesian reference frame attached to the incident beam
propagating along the axis ẑ.
The spatial and angular GH and IF shifts for a Bessel

beam impinging at the angle θ upon a planar interface
orthogonal to n̂, can be calculated from Eqs. (54–62)
given in Sec. III of [25] by putting Eλðk0U; k0VÞ ¼
êλðkÞ · ~Aðkx; kyÞ, λ ∈ fp; sg, where êsðkÞ ¼ n̂ × k̂=jn̂ × k̂j
and êpðkÞ ¼ êsðkÞ × k̂, with k̂ · n̂ ¼ cos θ. To express the
results of such a calculation, it is useful to adopt the no-
tation introduced in [17] and to define the “intrinsic”
(namely, beam-independent) longitudinal and transverse
beam shifts as, respectively,

Xλ ¼ −i
∂ ln rλ
∂θ ¼ ϕ0

λ − i
R0
λ

Rλ
; ð8Þ

Yp ¼ i
f s
f p

!
1þ rs

rp

"
cot θ; Y s ¼ −i

f p
f s

!
1þ

rp
rs

"
cot θ;

ð9Þ

where rλ ¼ Rλ expðiϕλÞ, λ ∈ fp; sg are the Fresnel coeffi-
cient of the interface, and the prime indicates derivatives
with respect to the incidence angle θ. Moreover, we re-
write the complex-valued coefficients f p and f s in terms
of the real valued parameters ap, as, and η defined as
f p ¼ ap, f s ¼ as expðiηÞ. Finally, we define the relative
energies wp and ws of the reflected beam as

wp ¼
a2pR2

p

a2pR2
p þ a2sR2

s
; ws ¼

a2sR2
s

a2pR2
p þ a2sR2

s
ð10Þ

and the complex-valued longitudinal and transversal
shifts Ξ and Ψ as

Ξ ¼ wpXp þwsXs; Ψ ¼ wpYp þwsYs; ð11Þ

where

ReðΞÞ ¼ a2pR2
pϕ0

p þ a2sR2
sϕ0

s

a2pR2
p þ a2sR2

s
; ð12aÞ

ImðΞÞ ¼ −

a2pRpR0
p þ a2sRsR0

s

a2pR2
p þ a2sR2

s
; ð12bÞ

ReðΨÞ ¼ −

apas cot θðR2
p þ R2

sÞ sin η
a2pR2

p þ a2sR2
s

−

apas cot θ½2RpRs sinðη − ϕp þ ϕsÞ&
a2pR2

p þ a2sR2
s

; ð12cÞ

ImðΨÞ ¼
apas cot θðR2

p − R2
sÞ cos η

a2pR2
p þ a2sR2

s
: ð12dÞ

At this point, we have gathered all the formulas that we
need to write explicitly the results from our calculations
for both GH and IF shifts of a mth-order Bessel beam. A
straightforward application of Eqs. (58–59) in [25] fur-
nishes the following results:

k0ΔGH ≡ k0hxrijzr¼0 ¼ ReðΞÞ −mImðΨÞ; ð13aÞ

k0ΔIF ≡ k0hyrijzr¼0 ¼ ReðΨÞ þmImðΞÞ; ð13bÞ

for the spatial part of the shifts and

ΘGH ≡

∂hxri
∂zr

¼ sin2ðϑ0ÞImðΞÞ; ð14aÞ

ΘIF ≡
∂hyri
∂zr

¼ sin2ðϑ0ÞImðΨÞ; ð14bÞ

for the angular part [9]. These formulas are the main re-
sult of this Letter. Here, and in the subsequent formulas,
the three Cartesian coordinates fxr; yr; zrg are referred
to a reference frame attached to the reflected beam of
central wave vector ~k0, with zr directed along ~k0 ¼ k0 −
2n̂ðn̂ · k0Þ [17]. Before proceeding with the discussion of
these formulas, a caveat is in order here. From Eq. (6), it
follows that the electric field energy density of a Bessel
beam is represented by a highly singular function (square
of a Dirac-delta). However, it is possible to show that a
careful treatment of such singularities (see also the dis-
cussion about angular shift [26]) always leads to finite
results for the first-order moments of the electric field
energy density distribution.

Some relevant issues follow from Eqs. (13) and (14)
above. First, for paraxial beams where Eq. (4) holds,
one has sinϑ0 ∼ ϑ0, and from Eqs. (14) it follows that
the angular shift of a Bessel beam is a second-order effect
in a perturbation expansion of the beam (with respect to
the expansion parameter ϑ0). This is consistent with the
fact that at the first-order perturbation theory, a Bessel
beam is not deformed upon reflection and, because its
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energy density does not change during propagation, in
principle it cannot show any angular shift [26]. In particu-
lar, form ¼ 0, i.e., for a needle beam, this fact implies that
at the first order of the perturbation expansion, both GH
and IF shifts also occur for the central nondiffracting core
of the beam. However, this is no longer true if one goes to
perturbation orders higher than two (i.e., relatively strong
focusing); this reduces the length overwhich diffraction is
effectively absent to a propagation length of the order of
the diameter of the full Bessel beam.
Second, it should be noticed that for a Laguerre–Gauss

beam with the same expðimϕÞ functional dependence,
both GH and IF angular shifts are proportional to the “en-
hancement” factor 1þ jmj [17]. Conversely, in Eqs. (14),
such a term is absent. It is not difficult to show that this is
due to the term Rm, which is present in the expression of
the amplitude of a Laguerre–Gauss beam but not in
Eq. (1).
Finally, Eq. (13) shows a spatial/angular mixing analo-

gous to the one present for a Laguerre–Gauss beam of
OAM m first discovered in [15] and further developed
in [17]. It may be shown that this mixing is a common
feature of all paraxial beams with an expðimϕÞ func-
tional dependence. However, a complete treatment for
arbitrary beams in this regime is outside the scope of this
Letter [27].

A. Aiello acknowledges support from the Alexander
von Humboldt Foundation.
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