
Server-driven Outbound Web-application Sandboxing
FP7-ICT-2009-5, Project No. 256964

https://www.websand.eu

Deliverable D2.1
Secure Interaction Specification

Abstract
This deliverable reports on the results of the WebSand work package on Se-
cure Web Interaction. It provides a wording definition and technical specifi-
cation of the term and builds the basis for the development of the server-side
framework that achieves Secure Web Interaction.

Deliverable details
Deliverable version: v1.0 Classification: public
Date of delivery: 30.09.2011 Due on: 30.09.2011
Editors: Bastian Braun Total pages: 51

List of Contributors:
Bastian Braun, Philippe De Ryck, Lieven Desmet, Stefan Gentsch, Wouter
Joosen, Martin Johns, Sebastian Lekies, Peng Liu, Nick Nikiforakis, Frank
Piessens, Joachim Posegga, Walter Tighzert, Steven Van Acker, Jan Wolff

Project details
Start date: October 01, 2010 Duration: 36 months
Project Coordinator: Martin Johns
Partners: SAP, Siemens, CHALMERS, KUL, UNI PASSAU

https://www.websand.eu
https://www.websand.eu

D2.1: Secure Interaction Specification 3/51

Executive Summary
After the consolidation of the state-of-the-art, the present deliverable D2.1
provides details about secure interaction specification. These details include
the requirements on the server-side WebSand framework which is supposed to
provide secure web interaction, the addressing mechanism of this framework,
and the policy attributes that rule the secure handling of requests by the
framework. As a next step, we will develop and implement the framework
prototype. The documentation and first case study on the policy enforcement
and requirements on the client side will be given in the next deliverable
D2.2. This includes the applicability of the addressing mechanism, the policy
attributes, and the operational requirements as they are identified in this
document.

In this first deliverable of WP2, we start with defining the term Secure
Web Interaction (Sec. 1) which is crucial to be clear for the following sections
and the upcoming activities in WP2. We argue that Secure Web Interaction
is ensured if all incoming requests carry information that allows the Web
server to uniquely determine the session and cross-domain context, track
authentication and authorization, and enforce control-flow integrity.

Five real-world scenarios serve as a benchmark to show the effectiveness of
our proposed means to achieve secure web interaction (Section 2). They deal
with distributed two-factor authentication and authorization, authorization
delegation with OAuth, cross-domain interaction, control flow over several
domains, and race conditions respectively.

The basis for advanced approaches in the course of secure web interaction
is session security. We summarize our recent progress in that field. To sum
up, we identified issues in the usage of cookies as session authentication
credentials and provided countermeasures to Cross-Site Scripting (XSS) and
Session Fixation attacks. These attacks aim to steal an authenticated session
either by gaining knowledge of the session cookie of the victim or by setting
an attacker-controlled session cookie at the victim. Finally, an often overseen
problem related to server-side session storage has been identified and will be
avoided in the WebSand framework implementation. This problem allows
the attacker to share his authentication status between different applications
that are hosted on the same server.

The specification of secure web interaction in terms of operational and
policy requirements for authentication, authorization, cross-domain commu-
nication, and control-flow integrity is given in Section 4. With operational
requirements, we define requirements on the functionality of the WebSand
framework. Such requirements are, for instance, an API for the application
to provide the control-flow graph to the framework. On the other hand, pol-

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 4/51

icy requirements describe prerequisites on the policy language concerning its
expressive power and enforcement capabilities.

In Section 5, we define our customized addressing mechanism. It allows
fine-grained and unambiguous identification of resources of the application’s
external interface. For standard conformity, clients address all resources by
URLs. An internal, application-specific component, the Gatekeeper, trans-
lates the incoming HTTP requests into framework-compatible request ob-
jects including the requested resource and respective request attributes like
HTTP headers and URL parameters. The addressing mechanism is essential
for creating policies that can define properties, attributes, and restrictions in
respect to client interaction with these resources. The policies address the
requests’ attributes and are enforced based on the internal request object
representation.

Section 6 unifies the required policy attributes needed for specifying the
security requirements with respect to authentication, authorization, cross-
domain communication, and control-flow integrity. We demonstrate that the
policy attributes have the ability to define secure web interaction with respect
to the scenarios given in Section 2.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 5/51

Contents
1 Introduction 9

1.1 Motivation . 9
1.2 Secure Web Interaction . 9

1.2.1 The four pillars of Secure Web Interaction 10
1.2.2 The WebSand approach to Secure Web Interaction . . 11

1.3 Organisation . 11
1.4 Related WebSand Publications 12

2 Overview of Web Interaction Scenarios 13
2.1 Mobile Apps for Enhanced Security 13
2.2 Delegation of Privilege in Distributed Workflows 13
2.3 Cross-domain Interaction . 15
2.4 Online Shopping Workflow over Two Domains 16
2.5 Web Portal to Send Limited Number of Text Messages 16

3 Session Security 18
3.1 Separation of Application and Session Data 18
3.2 Abusing Locality in Shared Web Hosting 19
3.3 Session Fixation Protection 19

4 Deducing Requirements for Secure Web Interaction 22
4.1 Authentication and Authorization 22

4.1.1 Operational Requirements 22
4.1.2 Policy Requirements 23

4.2 Cross-Domain Interaction . 24
4.2.1 Operational Requirements 24
4.2.2 Policy Requirements 26

4.3 Control Flow Integrity . 26
4.3.1 Operational Requirements 26
4.3.2 Policy Requirements 29

5 Framework Design 31
5.1 Framework Architecture . 31
5.2 Framework Components . 33

5.2.1 Gatekeeper . 33
5.2.2 Application Program Interfaces 33
5.2.3 Request Objects and Attributes 33
5.2.4 Request Processing . 33
5.2.5 Modules . 34

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 6/51

5.3 Addressing Mechanism . 34
5.3.1 Syntax . 34
5.3.2 Application Resources Types 35

5.4 Usage in the Framework Architecture 36
5.5 Summary . 36

6 Secure Web Interaction Policies 37
6.1 Policy Format . 37
6.2 Required Policy Attributes . 38

6.2.1 Authentication and Authorization 38
6.2.2 Cross-Domain Interaction 40
6.2.3 Control Flow Integrity 40

6.3 Application to Scenarios . 42
6.3.1 Mobile Apps for Enhanced Security 42
6.3.2 Delegation of Privilege in Distributed Workflows 43
6.3.3 Cross-domain Interaction 43
6.3.4 Online Shopping Workflow over Two Domains 45
6.3.5 Web Portal to Send Limited Number of Text Messages 46

7 Conclusion 48

References 50

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 7/51

List of Figures
1 Graphical user interface of the Google Authenticator 14
2 OAuth workflow for automatic Twitter updates originating

from Facebook. 14
3 Cross-Domain Workflow for a Web Shop with PayPal 17
4 Exemplified Session Fixation attack 20
5 Introduction of the proxy session identifier. 21
6 Verification of the proxy session identifier. 21
7 (Simple) Mapping of server resources to a control-flow graph . 28
8 Software architecture of the WebSand security framework. . . 32
9 Workflow graph for the CaaS scenario. 46
10 Control flow graph for the CaaS scenario. 46
11 Control flow graph for the text message scenario. 47

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 9/51

1 Introduction

1.1 Motivation
The Web is ever evolving. There are now multitudes of server-side Web tech-
nologies and on the client-side the Web browsers are constantly expanding
the set of available capabilities and features. Furthermore, the initial two-
party client/server model of the Web makes place for an increasing number
of multi-party scenarios.

However, the underlying basic interaction scheme of the Web has not
significantly changed since its birth in 1990. The client(s) and server(s) com-
municate using a series of HTTP request/response pairs. In addition, one
of the defining characteristics of HTTP has also not changed: The inher-
ent statelessness of the HTTP protocol and its inability to provide reliable
context information which span more than one single request/response-pair.

As a consequence, up to this date, it is the Web application’s duty to
ensure that basic security sensitive characteristics, such as robust session
management or authentication tracking, are enforced. This enforcement hap-
pens solely on the application layer without any substantial support from the
protocol layers. All the application’s external interface sees is a stream of
independent incoming HTTP requests which might or might not belong to a
preexisting user/session/authentication context. The precise security char-
acteristics for each incoming HTTP request have yet to be determined. The
only information the server can rely on for this process, are its current server-
side state and the information contained in the HTTP request itself. Thus,
it is the application’s (or the utilized application framework’s) responsibility
to ensure that all necessary information are available in the incoming HTTP
requests, which are needed to allow correct and secure reactions.

This deliverable explores the features and capabilities of the WebSand
framework in respect to enforcement of robust, policy-driven secure Web
interaction, to enable the server-side application’s HTTP handling to meet
the security challenges of modern Web applications.

1.2 Secure Web Interaction
In the context of WebSand, we summarize all security decisions and actions
that directly relate to incoming or outgoing HTTP traffic under the term
Secure Web Interaction.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 10/51

1.2.1 The four pillars of Secure Web Interaction

Within WebSand, we concentrate on the main areas of Web interaction:

• Authentication and Authorization: For each incoming HTTP re-
quest the authentication/authorization context has to be established
prior to causing any state changing action on the server-side and prior
to generating any HTTP response. This in particular includes non-
trivial scenarios, which might implement features such as federated
identity management, authorization delegation, or two-factor authen-
tication.

• Cross-domain interaction:1 In the past, the Web’s same-origin pol-
icy was preventing all client-side cross-domain HTTP interaction. With
the introduction of modern browser-based capabilities, such as Flash’s
crossdomain.xml-mechanism or CORS [20], this has changed funda-
mentally. New paradigms have been widely adopted in the meantime
(see [9] for current deployment figures). These expanded interaction
capabilities create new security challenges. Hence, if permitted by the
application, cross-domain interaction policies have to be well main-
tained and well integrated in the whole server-side security interaction
model.

• Control-flow integrity: In the context of Web applications, any given
control-flow consists of a series of connected HTTP requests/responses.
Each of these incoming requests corresponds to one to-be-committed
server-side actions. ModernWeb applications utilize sophisticated work-
flows that require the enforcement of strict control-flow requirements,
in order to ensure the integrity of the server-side state of the respective
workflow. HTTP provides no means to enforce such request channel-
ing. Hence, malicious parties could aim to send HTTP requests out of
their intended order to create server-side state confusion, which might
lead to security-sensitive issues. In consequence, the Web application
itself or the Web application’s underlying framework has to conduct
the control-flow enforcement.

In addition, it is crucial to embed all Web interaction security solutions
into a framework that provides Secure Session Management. Secure

1Please note: Whenever we refer to cross-domain interaction in this document, we refer
to client-side cross-domain communication, i.e. client-side code from one domain context
requests content from a different domain. Server-driven cross-domain flows are handled
as part of the control-flow integrity considerations.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 11/51

session management is the fundamental pillar on which all further Web in-
teraction is based. If this foundation is faulty, all further security measures
may fail (e.g., as we have demonstrated in [13]).

1.2.2 The WebSand approach to Secure Web Interaction

The policy-driven solution, which we will develop in this document, is based
on a fundamental observation: All four major fields of secure Web interaction
are, on a technical level, handled in a mostly identical fashion: Identifier
tokens are obtained from the data contained in the received HTTP request
in order to determine the context in which the request has to be interpreted.
Based on the values of the tokens, the corresponding security decision is
taken.

While the precise nature of such tokens can vary (the applicable set in-
cludes at least cryptographically generated tokens, random nonces, and do-
main values), the basic mechanism is the same for all four purposes, namely
session management, authentication/authorization tracking, cross-domain
interaction, and control-flow enforcement.

This observation allows us to design a solution which handles all aspects of
secure Web interaction in a unified fashion and to introduce a single reference
monitor which is the central point of enforcement.

1.3 Organisation
This document is organized as follows: In Section 2, we present five generic
application scenarios which illustrate the various facets of secure Web inter-
action and help to identify the connected security challenges. These scenarios
will be used through the remainder of the deliverable to aid the understand-
ing of the presented solution design. In Section 3, we document our findings
in the field of secure session management, which will significantly influence
the design of the WebSand framework. Based on the presented scenarios, we
deduct operational and policy requirements in Section 4 which have to be
fulfilled by the WebSand framework. In Section 5, we present a first archi-
tectural outline of WebSand’s Web interaction enforcement. In particular,
we discuss the two main components: A modular gatekeeper, which serves
as the central reference monitor for incoming HTTP requests, and a uniform
addressing mechanism that allows reliable assignment of request resources
to policy rules. We provide the information at this point, as an insight in
the mechanism’s basic architecture is helpful to understand the secure Web
interaction policy mechanism, which we then present in Section 6. The pol-
icy mechanism takes up the identified policy requirements from Section 4

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 12/51

and integrates them into a uniform, declarative format. Subsequently, we
show how this policy mechanism can be utilized in connection with the out-
lined enforcement architecture to solve the security challenges of Section 2’s
application scenarios. We end the document with a conclusion in Section 7.

1.4 Related WebSand Publications
Several of the insights and solutions that we will outline in this document
have been supported and substantiated by academic WebSand publications.
Please refer to [19, 7, 9, 8, 13, 14] for details.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 13/51

2 Overview of Web Interaction Scenarios
This section provides an overview over the scenarios that are used as a basis
for deriving concrete requirements for work package 2. Each scenario presents
a special use case that should be implementable in a secure fashion with the
help of the WebSand framework.

2.1 Mobile Apps for Enhanced Security
In different scenarios, mobile phones are used as a trusted, secondary commu-
nication channel and as a second factor for authentication and authorization.
For web mashups, a mobile app can provide a trusted channel that allows to
implement stronger authentication and authorization mechanisms, for exam-
ple two-factor authentication, user consent, and separation of duties (SoD).
These security features are relevant for applications that have high security
requirements, which includes financial applications and applications handling
highly sensitive personal information, e.g. electronic health systems.

The WebSand framework is supposed provide functionality to implement
enhanced security checks based on second factor authentication and autho-
rization. Existing examples include the Google Authenticator, MobileOTP
and online banking systems using mobile transaction numbers (mTAN, sm-
sTAN). In the following, the Google Authenticator example is described in
more detail to illustrate the usage scenario.

The Google Authenticator [4] provides 2-step authentication using mobile
devices and one-time passcodes. The passcodes are generated based on the
HMAC-Based One-time Password (HOTP) algorithm [11] and the Time-
based One-time Password (TOTP) algorithm [12].

Implementations are available as apps for Android and Blackberry phones
and as a PAM-module (Pluggable Authentication Modules).

The two-phase process provides stronger authentication than the default
password-based login for access to a Google account, all the more if performed
on an untrusted device like a public PC, e.g. in hotels and Internet cafes.

2.2 Delegation of Privilege in Distributed Workflows
Mashups that involve back-end communication of mashup components must
provide a mechanism for delegation of a set of access control privileges. An
example of this delegation of user privilege is used by Facebook and Twitter
and makes use of the OAuth protocol [2]. The OAuth protocol is designed to
provide a simple and secure way for users of a web application, in our case
Twitter, to grant access privilege to a third party, in our case Facebook, to

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 14/51

Figure 1: Graphical user interface of the Google Authenticator

their data and resources without forwarding their authentication credentials.
In our example, the user wants that the posts he creates on Facebook should
automatically also update his status on Twitter.

Figure 2: OAuth workflow for automatic Twitter updates originating from
Facebook.

Figure 2 shows a screenshot of the related functionality on Facebook and
the confirmation page on Twitter. To start the authorization workflow, the
user clicks on the button with the label “Link a page to Twitter”. Facebook
now communicates with the Twitter OAuth Service in the back-end and
requests a so called ‘request_token’. After receiving the token, Facebook
redirects the browser window of the user to the Twitter web page, where he
has to authenticate. On Twitter, the user is asked whether he authorizes the
requesting domain ‘facebook.com’ to have access to his Twitter account. Af-
ter giving his consent, Facebook is able to use the ‘request_token’ to request
an ‘access_token’, which allows access to the Twitter account on behalf of
the user.

In the WebSand framework, support for OAuth will be implemented al-
lowing delegation of access privileges to other mashup components. The

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 15/51

focus will be on the case that a WebSand-equipped web application gives
access to a user’s personal account. Mashup components will thus be en-
abled to access another application’s resources on behalf of the user as part
of back-end workflows.

2.3 Cross-domain Interaction
In the recent years on-demand solutions such as SAP’s Business By Design
are becoming more and more important. By being provided over the Internet
these solutions offer companies more flexibility when designing their internal
IT systems. Instead of buying and installing software on-premise, the on-
demand solution can be rented for a certain amount of time and be accessed
through a web browser. As information systems often need to communicate
with each other, a communication channel is needed between on-demand
and on-premise systems. Often, however, there are multiple network barriers
such as firewalls between those systems. Hence, alternative communication
channels such as cross-domain requests are used in order to connect remote
systems.

In the following, we consider an on-demand application that provides a
feature to display a personalized catalogue, in which the customer can view
items that are currently running low or are out of stocks in his warehouse.
Furthermore, the customer is able to receive recommendations for items that
might be of interest to him. In order to gain the necessary warehouse data
the on-demand system queries the customer’s on-premise warehouse system
via client-side cross-domain requests through the user’s web browser. In or-
der to enable this indirect communication channel the on-premise system has
to open up parts of its API to client-side cross-domain requests by setting up
a so-called cross-domain policy. This can be accomplished by several tech-
nologies such as Adobe Flash, Silverlight or Cross-Origin Resource Sharing.

In order to support old legacy browsers as well as modern mobile browsers,
the several different approaches have to be combined. So the server (here the
on-premise system) has to setup multiple different policies for different envi-
ronments. As each policy format is very different and as there are multiple
security pitfalls in each technology, it is tedious to manually maintain these
policies in a secure fashion. The WebSand framework will address this issue
by offering an automatic way to maintain the different policies while avoiding
the security pitfalls.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 16/51

2.4 Online Shopping Workflow over Two Domains
A merchant implements the online shopping workflow following his business
logic. The payment step, however, is external from his point of view. So,
he redirects his customers to a Cashier-as-a-Service (CaaS). The CaaS is
a service provider that takes money from customers and passes it on to
the merchant after discounting his rate. So, after being redirected to the
CaaS, customers are supposed to supply payment details which are checked
by the CaaS. Then, the workflow drives customers back to the merchant’s
domain. The merchant expects a payment confirmation by the CaaS. In
case of success, customers receive an approval notification and the checkout
details are displayed.

The employment of the WebSand framework is supposed to be at the
merchant’s site. The workflow step to the CaaS as well as the redirection
back to the merchant’s domain contain a number of pitfalls. For example,
data that is part of the redirection must not be reusable and the respective
customer and amount of money must be verifiable.

Popular examples for such a CaaS include Google Checkout [5], Amazon
Payments [1], and PayPal [17] (cf. Figure 3).

Besides self-developed online stores, there are off-the-shelf merchant sys-
tems, e.g. nopCommerce [15] and Interspire [6]. However, the WebSand
framework is supposed to be independent of the merchant application in this
scenario.

2.5 Web Portal to Send Limited Number of Text Mes-
sages

A telco provider offers its customers to send a maximum number of text
messages (SMS) per day for free. Provided that they access the service via
its mobile or wired network, another authentication is not needed. For other
access paths, customers have to authenticate (login) first. Then, they can
access the text message preparation form. After providing the recipients’
phone numbers and the respective text, the form is sent to the provider’s
gateway in order to be processed. However, sending of more messages is
denied when the threshold is reached.

The provider stores the respective amount of sent messages in a database.
Before a message is processed, the current quota is checked. The message
is sent if the threshold is not yet reached. After successfully sending the
message, the server increases the number of sent messages in the database.

Modern multi-threaded web servers process different requests almost in
parallel. Malicious customers could try to send a large number of requests

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 17/51

Figure 3: Cross-Domain Workflow for a Web Shop with PayPal2

at the same time to exploit a race condition. In this scenario, more messages
might be processed (and thus sent) in a short time before the database record
is updated to the threshold value because the database update happens after
sending the message to prevent counting failed transmissions.

The problem is even more complicated due to the fact that web users can
access the application’s API (i.e. URLs) in arbitrary sequence. This way,
the presence of race conditions in web applications is harder to detect than
in local programs.

There are numerous providers for sending free SMS in the Web. In fact,
most of them are localized. The above described scenario is taken from a
real world case study [16].

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 18/51

3 Session Security
A solution that enables the enforcement of secure web interaction has to
rely on one basic pillar: Session Security. The concept of session tracking
is indispensable for the web application paradigm as most security critical
interactions and decisions are taken based on the identity of a user. This
identity is proven to the server by presenting a valid session ID that is only
known to the legitimate user. However, in the wild many attacks such as
session fixation exist that aim on hijacking a user’s session in order to conduct
malicious actions in his name. If an attacker is able to obtain a valid session,
the server is by no means able to decide whether a request came from a
legitimate user or not. For mechanisms that enforce secure web interaction
this is a major point of concern as they heavily rely on the legitimacy of
a requestor. Hence without a secure session handling such mechanisms are
useless. Therefore, this section explores pitfalls and protection mechanisms
regarding session security that will be implemented within the WebSand
framework to enforce secure session handling. Thereby, this section is based
on three papers created within the WebSand project [7, 14, 13]. If we are
able to identify further threats regarding session management, we will address
these threats in future work during the Websand project.

3.1 Separation of Application and Session Data
One very common attack nowadays is cross-site scripting (XSS). A main goal
of such an attack is to steal a user’s session identifier. In order to do so, an
attacker injects a piece of JavaScript code into a website that reads out the
session cookie via the document.cookie directive and sends the received value
to a web page that is controlled by the attacker. Later on, the adversary
can use the obtained cookie in order to impersonate a legitimate user. The
basic problem behind this attack is that the cookie values are handed over
to JavaScript via the document.cookie directive. On the one hand, this is a
necessary feature that is used to process user-specific application data which
is stored within a cookie with JavaScript. On the other hand this opens
an attack vector for adversaries to steal session information in the outlined
fashion. As there is no need to pass session data to JavaScript a new opt-in
feature was introduced to prevent the hand over of cookie data to JavaScript.
In order to do so a webmaster has to set the so called HTTPOnly flag on
a cookie. By setting this flag, the cookie is passed to the browser, but the
browser protects the cookie value from being read by document.cookie. How-
ever, a recent study [14] showed that only 22,3 % of all session cookies are
protected by the HTTPOnly flag. This number suggests that there is still a

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 19/51

significant attack vector for stealing session information. Therefore, the Web-
Sand framework turns this opt-in flag into an opt-out feature. Technically
speaking, this means that the WebSand framework automatically deploys
the HTTPOnly flag for any cookie leaving the web server in order to protect
any session cookie that might appear. As it is sometimes desirable to pass
cookie data to a piece of JavaScript the WebSand framework offers a way
within its policy to opt-out the flag for single cookies. So by specifying the
cookie name within the policy a webmaster has to intentionally remove the
cookie protection.

3.2 Abusing Locality in Shared Web Hosting
As shown in [13] web applications tend to leave the default session storage
location unchanged. Hence, server-side session information is often stored
in the same location (e.g. /tmp on UNIX systems). For a web applica-
tion running on a server in isolation this is not a problem, but for shared
hosting environments this fact opens up an additional attack vector for ma-
licious adversaries. If an attacker controlled web application and a victim’s
web application share the same session storage the attacker can arbitrarily
tamper the victim’s sessions stored in this location. In order to do so, an
attacker forces the victim’s application to issue a new session ID for example
by registering and logging-in to a low privileged account. After obtaining
the corresponding session ID the attacker advises his application to use this
session ID to store arbitrary data to it (e.g. Administrator = true or UserId
= 1). In this fashion the attacker can change his identity or escalate his
privileges in the victim’s application depending on the underlying applica-
tion logic. As this is obviously very undesired a security framework for web
applications needs to enforce a strong separation between different applica-
tions running on the same machine. Therefore, the Websand framework will
strictly isolate the underlying session storage in order to avoid the outlined
attack.

3.3 Session Fixation Protection
Another common attack to hijack a session is session fixation [19]. Thereby,
a victim is tricked into authenticating a session ID (SID) that is known by
the attacker. Thereby, the attack basically works as follows (see Figure 4):

1. The attacker obtains a SID value from the server (1,2)

2. He tricks the victim to issue an HTTP request using this SID during
the authentication process (3,4)

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 20/51

Figure 4: Exemplified Session Fixation attack

3. The server receives a request that already contains a SID. Consequently,
it uses this SID value for all further interaction with the user and along
with the user’s authorization state (5).

4. Now, the attacker can use the SID to access otherwise restricted re-
sources utilizing the victim’s authorization context (6).

In order to counter the attack, a web application needs to issue a new
session ID whenever the authentication state of a user changes. This still en-
ables an attacker to trick the user into using a previously known SID, but if
the user authenticates, the ID is renewed and consequently the attacker can-
not escalate the privileges of the ID known to him. Although the WebSand
framework focuses on security by construction and thus expects a web ap-
plication to address such a vulnerability during development, we present an
approach that even secures vulnerable web applications from being exploited.
In order to do so, the WebSand framework intercepts incoming requests and
establishes a second level session identifier management. In addition to the
SIDs that are set by the application, the interceptor issues a second identifier
(the ‘proxy SID’ - PSID). Whenever an HTTP request without a PSID value
is received by the interceptor, this request is regarded to be the user’s very
first request to the application. If the request carries any stale SID values,
such data is discarded. For the corresponding HTTP response a fresh PSID
value is generated and attached to the response via set-cookie (see Figure 5).
In the course of the following HTTP communication, the application’s re-
sponses are monitored for outgoing SID values that are to be assigned from
the application to the user. If such a value is detected, the combination of
the PSID and SID value is stored by the interceptor. From now on, only
requests that contain a valid combination of these two values are forwarded
to the application (see Figure 6). Requests that are received with an in-
valid combination of SID/PSID are treated as if they would carry no session

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 21/51

information. Consequently, they are stripped off all cookie headers before
sending them to the application and are outfitted with a fresh PSID value
upon response.

Figure 5: Introduction of the proxy session identifier.

Figure 6: Verification of the proxy session identifier.

To provide protection against Session Fixation, the interceptor monitors
the HTTP requests’ data for incoming password parameters. If a request
contains such a parameter, the interceptor assumes that an authentication
process has happened and renews the PSID value, adds an according Set-
Cookie header to the corresponding HTTP response, and invalidates the
former PSID/SID combination. This way, only the PSID/SID combination
is renewed whereas the server-side session record remains unchanged. The
SID is even renewed if the authentication attempt fails. This, however, is no
threat as the new SID does not carry any security assumptions. The Web-
Sand policy language needs to provide a configuration option for the session
cookie names and the requests that trigger a change of the authentication
state.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 22/51

4 Deducing Requirements for SecureWeb In-
teraction

This section provides details about the requirements on the WebSand frame-
work and the WebSand policy mechanism respectively. The requirements on
the WebSand framework are listed as ‘operational requirements’, those on the
WebSand policy mechanism as ‘policy requirements’. We derived these re-
quirements from the scenarios given in Section 2 and the lessons learned from
our recent advances on session security (Section 3). Requirements are given
with respect to authentication and authorization (Section 4.1), cross-domain
interaction (Section 4.2), and control-flow integrity (Section 4.3).

4.1 Authentication and Authorization
This section describes the operational and policy requirements with respect
to authentication and authorization. These requirements are motivated by
the challenges posed by the scenarios Mobile Apps for Enhanced Security, de-
scribed in Section 2.1, and Delegation of Privilege in Distributed Workflows,
described in Section 2.2.

4.1.1 Operational Requirements

While the username/password authentication mechnism is the de-facto stan-
dard for authentication, some applications require a higher level of security
for authentication and authorization. Three different types of requirements
have been identified that are especially important in the mashup context.

1. federated identity management

2. stronger authentication

3. stronger authorization

4. delegation of privilege

Federated Identity Management Support for external identity manage-
ment allows to delegate the management of users and their authentication
credentials to an external service provider, which reduces implementation
effort and can provide single-sign-on functionality with applications that use
the same service provider. In the WebSand framework, it is planned to
support OpenID[18], which is the established, open standard for decentral
authentication and identity management.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 23/51

Stronger Authentication Examples for applications that require stronger
authentication can be all applications that operate on sensitive data or func-
tionality, e.g. management of personal information like electronic health
records or management interfaces for industrial plants. Some implementa-
tions of stronger authentication schemes use mobile phones as a secondary,
trusted channel, e.g. Google’s mobile authenticator [4] for two-factor authen-
tication. Here the possession of the mobile device and the secret key that is
stored in the device serves as a second factor to increase the confidence in the
identity of the client. In some cases, stronger authentication is only required
for sensitive functionality that has a high impact when abused. When ac-
cessing sensitive functionality like this, the user is required to reauthenticate
using the stronger mechanism, and is only allowed to continue the workflow
after successful completion.

Stronger Authorization Stronger authorization is typically required when
sensitive actions are to be performed for example adding a new adminis-
trative user or changing of the contact email address. Accessing sensitive
functionality would then trigger a workflow that explicitly asks for the user’s
consent to perform the sensitive action on the server side, which may require
re-authentication or the use of a trusted secondary communication chan-
nel. Examples of this are online banking with mobile TANs and business
processes that require the application of the separation of duties principle
asking for the consent of at least two different users. In a business context, it
is important for auditability to be able to prove that a user gave his explicit
consent to sensitive actions that have been performed. The requirement of
stronger authorization is closely linked to the requirement of stronger au-
thentication, because authorization always relies on the authenticity of the
requesting entity.

Delegation of Privilege In some mashup scenarios, the user needs to del-
egate the privilege to perform specific actions on his behalf against a third
party. This allows to create mashups with workflows running in the back-
ground as server-to-server communication, but without giving up the user’s
authentication credentials. An example is the scenario of Twitter integration
with Facebook described in Section 2.2.

4.1.2 Policy Requirements

For representation in a policy, the requirements for stronger authentication,
stronger authorization and delegation of privilege are subsequently described
more formally.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 24/51

Sensitive operations can be described by the following properties, which
must be expressable by the security policies:

• the identity of the requesting principal,

• the identifier of the operation or action to be performed, and

• the identifier of additional properties.

The requesting principal represents the identity of the user of the active
session, which is necessary for access control checks. The policy must be
able to express the requirement of authentication for non-public resources
and must facilitate the use of external identity providers via OpenID. For
more sensitive actions, it must be possible to request stronger authentication
mechanisms, for example two-factor authentication.

For access control, the operation or action to be performed is represented
by a unique identifier that represents the logical operation to be performed by
the web application. In combination with the principal basic access control
policies can be defined. For Mash-up scenarios that contain back-end work-
flows without direct user involvement, it must be possible for the mashup to
delegate a subset of the user’s privileges to third-party systems. One possible
implementation mechanism is given by the OAuth protocol used by Twitter.

Additional properties should be available to model specific requirements,
for example membership in a specific organisational unit or association of
users to tenants in multi-tenant applications. Additional attributes should
be available to request stronger authorization or explicit user consent checks
using a secondary communication channel.

4.2 Cross-Domain Interaction
This section covers the operational and policy requirements that are related
to cross-domain interactions. Thereby, the requirements are derived based
on the scenario outlined in Section 2.3 and two papers created within the
Websand project [9, 8].

4.2.1 Operational Requirements

Client-side cross-domain requests are requests that are created within the
user’s browser across domain boundaries. Hence, these requests are outfitted
with the user’s session cookies and thus executed within the corresponding
authentication context. In general, three mechanisms exist that can be lever-
aged to conduct such requests: Flash, Silverlight and Cross-Origin Resource

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 25/51

Sharing (CORS). Basically, all these approaches follow the same server-side
opt-in security model: In order to grant cross-domain access to a resource,
a server has to setup a policy that defines a set of access grants to one or
more foreign domains. The main differences between the three approaches
can, thereby, be divided into three different categories:

1. Availability for different environments: Nowadays the browser land-
scape is situated in a transitional phase. While a lot of older browsers
make use of plug-ins in order to enrich their functionality, modern
browsers and especially those deployed in mobile environments do not
support plug-ins anymore, but rather focus on new HTML5 capabili-
ties for novel use cases. This fact has a severe impact on cross-domain
interactions as plug-in technologies like Flash and Silverlight are only
available in legacy browsers and CORS is only available in modern
browsers capable of HTML5.

2. Policy transport mechanism: While Silverlight and Flash provide their
policies within a file, CORS utilizes HTTP request and response head-
ers to transfer the policy to the client. While policy files are easier to
deploy, HTTP headers allow a much more fine-grained categorization
mechanism.

3. Policy expressiveness: While CORS provides a very expressive and
mighty policy language that can be applied on request level, Silverlight
and Flash provide a mechanism that can only be applied on folder level.

In order to provide cross-domain access to a heterogeneous environment,
servers have to offer more than one policy in order to cover the whole browser
spectrum. At the same time, multiple security pitfalls exist in each technol-
ogy that web developers have to be aware of. As shown in [9], web developers
tend to issue insecure policies by utilizing a wildcard that grants cross-domain
access to any other domain in the web. A wildcard alone however is not suf-
ficient enough to cause insecurities, but in many cases these access grants
are also given to resources that contain personalized information which is
only available to the user. There are ways to offer cross-domain services in
a secure fashion, but these ways are on the one hand hardly known to web
developers and on the other hand sometimes difficult to deploy. Thus, one
requirement on the WebSand framework is to take over the task of generating
and deploying such cross-domain policies in a secure fashion. Thereby, the
web administrator specifies a list of domains for each resource that should
be shared via cross-domain requests. The WebSand framework then gener-
ates and deploys the different policy formats and at the same time avoids

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 26/51

security pitfalls, like sharing private data to any other domain. One chal-
lenge here, will be the harmonization of the different approaches that allows
a fine-grained, but still easy-to-use configuration.

4.2.2 Policy Requirements

Cross-domain interactions depend on four different factors:

1. Target domain: The domain that deploys the cross-domain policy and
serves the requested resource

2. Requested resource: The resource that is passed back to the requestor’s
domain

3. Requestor’s domain: The domain that initiates the cross-domain re-
quest and receives the response (that could contain sensitive data)

4. Header fields: HTTP request header fields sent along with the HTTP
request for the requested resource.

In order to generate the different cross-domain policies, the WebSand
policy language needs to offer a mechanism that can be used to specify a
set of access grants. An access grant thereby exists of a list of resources
(requested resource) and a list of domains (requestor’s domain) to which
cross-domain requests are granted. Additionally, a cross-domain request can
carry a set of custom header fields. As these fields are often used for security
sensitive checks these fields must explicitly be allowed by the cross-domain
policy. In order so, the web developer should be able to define a set of HTTP
header fields that can be sent to the requested resource.

4.3 Control Flow Integrity
This section discusses operational and policy requirements in respect to
control-flow integrity. The requirements are derived from the scenarios de-
scribed in Section 2.4 and Section 2.5.

4.3.1 Operational Requirements

In the beginning, the web was meant to be a mechanism for delivering and
connecting static documents via a computer network. In the recent years,
however, the basic technologies of the web (HTTP, HTML) were more and
more used to build sophisticated applications such as online shops or social

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 27/51

networks. As opposed to classical desktop applications, these web applica-
tions face one major shortcoming when it comes to control-flow integrity:
While a desktop application has full control over it’s execution sequence a
web application cannot enforce the sequence in which it’s functionalities are
called. Though control-flow integrity can be enforced for one specific resource
on the web server, it cannot be enforced easily for functionality that is spread
across several server resources. The main reason for this shortcoming is the
fact, that an adversary could chain a series of requests in an arbitrary se-
quence. With the upcoming workflow-based web applications this problem
becomes a serious vulnerability. Web developers can only make assumptions
upon the sequence in which requests are arriving at the web server. Thus,
WebSand aims at addressing this issue by implementing an approach that
enforces control-flow integrity across multiple requested resources.

Control-Flow Graph: In order to enforce control-flow integrity, a machine-
readable representation of the underlying business logic is needed. A work-
flow can be represented by a finite state automaton consisting of several
states and transitions (see Figure 7 for an example). While the automa-
ton’s states represent generic business logic related server-side states within
a workflow, the transitions represent the requests that a client sends to the
server. In each state, only specific transitions and thus only specific requests
are allowed.

For the sake of good usability it should be possible for a user to enter
multiple different control-flows at the same time as well as entering the same
control-flow twice. Furthermore, it is also possible that one resource is part
of multiple control-flows. In order to assign incoming requests to existing
control-flow graphs, the WebSand framework utilizes a token-based approach.
Whenever such a request arrives, it has to carry a unique token that identifies
the corresponding workflow. If a request does not include this token it is
considered as a request that is either not part of a workflow or that arrived
out of order.

Enforcing Control-Flow Integrity Upon a Graph: The afore-mentioned
graph representation allows the WebSand framework to understand an appli-
cation’s requirements regarding control-flow integrity. After the application
delivers a specification of it’s control-flow graphs to the WebSand frame-
work, the framework tracks the application’s state by investigating incoming
HTTP requests and responses. If a user session is situated within a work-
flow, incoming requests that are related to this workflow are mapped to state
transitions in the graph. The corresponding mapping of requests to transi-

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 28/51

tions is thereby defined within WebSand’s policy. If a valid mapping can be
established the transition is carried out and the request is forwarded to the
requested resource. If the request would cause a transition that is not defined
in the control-flow graph, the WebSand framework rejects the request and
thus enforces control-flow integrity.

Example:

Address	
 Informa-on	

Entered	

Payment	

Completed	

Goods	

Transfered	

enterAddress.php	
 handlePayment.php	
 requestTransfer.php	

Server	
 Resources	

State	
 Machine	

Ini-al	

State	

Figure 7: (Simple) Mapping of server resources to a control-flow graph

Figure 7 shows an exemplary control-flow graph for a shopping cart check-
out process of an online shop consisting of four different states. After clicking
the checkout button the user is prompted to insert his address data. In a
second step, the payment of the ordered goods is conducted and in a third
step the transfer of the goods is automatically triggered. In case this ap-
plication is vulnerable to attacks that aim on subverting the control-flow,
an attacker could skip over the payment step and directly trigger the phys-
ical transfer of arbitrary goods. In order to enforce control-flow integrity
WebSand monitors the incoming requests. After entering the “Address In-
formation Entered” step, only requests to handlePayment.php are allowed.
Requests to requestTransfer.php would be rejected by the framework as such
a transition is not foreseen in the control-flow graph.

Critical Section: In general it should be possible for a user to enter a
control-flow more than once at the same time to provide good usability. For
example, a user of an online banking application should be able to conduct
several money transfers in parallel in order to easily copy and paste the re-
cipient data (this is not possible in many online banking applications today).
However, there are parts of such control-flows that should not be entered
simultaneously to avoid state confusions or race conditions. Thus, the Web-
Sand framework has to be able to enforce critical sections in a workflow. In
this context, a critical section is a clearly specified subgraph which can only
be entered once per user at the same time.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 29/51

Ensuring User-Intended Actions: In the past, several types of attacks
against Web applications have been documented, that cause the Web appli-
cation to mistake adversary initiated HTTP requests to be intended actions
initiated by the attacked victim. Examples for such attacks include phishing
(submitting the victims’s credentials to the application), click-jacking (trick-
ing the victim to interact with the application’s front end without his knowl-
edge), cross-site scripting (hijacking the victim’s browser to interact with
the Web application), and cross-site request forgery (causing the victim’s
Web browser to send HTTP requests that carry the victim’s authentication
context to the application).

Unlike other problems in the field of secure Web interaction, this class
cannot be solved on the server-side alone. Instead, it has to take the ap-
plication’s front-end into consideration, as a user’s actions and intents are
deeply interwoven with the application/device the user interacts with (which
is in most cases the Web browser but can also include various other HTTP
enabled applications and devices). Due to the vast heterogeneity of potential
Web front ends of applications/devices, a universally applicable solution to
this type of threat has not yet been developed, and it is highly doubtful that
such a general solution is even possible.

To protect security sensitive actions within a workflow from attacker ini-
tiated HTTP requests, the WebSand framework requires the capability to
demand and verify proof that the incoming HTTP request was indeed trig-
gered by the client-side because of intended actions of the user. As motivated
above, the technical solution how such a verifying step can be implemented,
is highly dependent on the utilized front-end technology that the user is cur-
rently interacting with. The situation on a mobile browser on a smart phone
might differ completely from a full-fledged desktop browser or an internet
appliance. It is the framework’s duty to translate the abstract demand for
a given workflow step to be protected into the applicable technical solution
which applies to the encountered client-side execution context (or, if the cur-
rently utilized client-side environment does not offer the required security
characteristics, for instance if the front-end is an outdated Web browser in
an internet cafe, to terminate the workflow due to security reasons).

4.3.2 Policy Requirements

The main goal of the policy mechanism is to define the application specific
security requirements in a way that the WebSand framework is able to en-
force the necessary security measurements. For control-flow integrity these
requirements are mainly encoded within the control-flow graph. Hence, Web-
Sand’s policy language must be expressive enough to define such a graph in

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 30/51

a sophisticated fashion (details can be found in Section 6). Such a graph can
be described as a set of states and a set of transitions between the different
states. As mentioned in Section 4.3.1, it must be possible to enforce critical
sections for critical subgraphs. This means that the policy mechanism must
provide features in order to mark subgraphs of a workflow as a critical sec-
tion. Finally, the policy mechanism must be capable to flag a workflow step
to require special protection, to ensure user-intended actions.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 31/51

5 Framework Design
This section describes the software architecture of the WebSand framework
for secure web interaction and the addressing mechanism for resources of
the web application’s external interface, which allows to formulate security
policies that define properties, attributes, and restrictions in respect to in-
teraction with these resources.

5.1 Framework Architecture
Figure 8 shows a functional view of the architecture of the WebSand security
framework.

The WebSand security framework for secure web interaction provides
functionality for two main purposes, each with its own application program-
ming interface: the gatekeeper API and the application API. The gatekeeper
API serves as the entry point for the gatekeeper, which are components of
web application code that intercept HTTP request and response messages
on their way in and out of the application. The gatekeeper serve as an
adapter between a web application’s specific usage of HTTP and the generic
WebSand security framework. It is the responsibility of the gatekeeper to
extract the security relevant information out of the HTTP messages and to
forward this information in form of request objects and associated security
attributes to the security framework. While the gatekeeper API handles the
processing of HTTP messages, the application API provides direct access to
the functionality of the security modules. The application API is intended to
be called directly by application code, for example to perform authorization
checks in the business logic.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 32/51

Figure 8: Software architecture of the WebSand security framework.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 33/51

5.2 Framework Components
5.2.1 Gatekeeper

The gatekeeper component is the part of the application code that integrates
the security framework into the request processing of the application. Inter-
cepted HTTP messages must be processed by the gatekeeper and security
relevant information must be extracted. This information is then forwarded
to the gatekeeper API in the form of request objects and associated request
attributes. The gatekeeper also needs to handle the decision of the secu-
rity framework to accept or deny the request. The implementation of the
gatekeeper depends on the web framework that is used to implement the
application. In a Java web container, a possible implementation would be a
ServletFilter or a Valve.

5.2.2 Application Program Interfaces

The security framework exports two main programming interfaces to the
web application, the gatekeeper API and the application API. The gate-
keeper API is called by the gatekeeper to verify the permissibility of an
HTTP message. The application API provides direct access to functionality
of the security modules to application logic. It can be used, for example, to
implement access control checks on the business layer.

5.2.3 Request Objects and Attributes

In the framework, one has to differentiate between HTTP requests and in-
ternal requests. HTTP requests originate from the client and are intercepted
by the gatekeeper. The gatekeeper in turn creates an internal request object,
which is then passed on to the request processor via the gatekeeper API. This
request contains those attributes which are needed by the security modules
to perform the actual security checks. These attributes are directly extracted
from HTTP requests, such as the client IP address, GET/POST parameters
and the requested URI.

5.2.4 Request Processing

The Module Selector evaluates the policy and determines the set of security
checks that are necessary to decide whether a request can be accepted or
must be dropped. Requests to public resources, for example the login page,
may not need an access control check. In some cases, the security modules
will have dependencies on request attributes that are generated by other

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 34/51

modules. For example, the authorization module relies on the user identity,
but most requests will not a-priori contain that attribute because the session
management is responsible to deduce it from the session.

5.2.5 Modules

The Security Modules are modular software components that encapsulate the
functionality of one security aspect. Each module has an interface used for
request processing and one interface that is exported via the application API.
For example, the module for authorization may contain an implementation
for role-based access control.

A special module is the ResourceManager module, which manages a list
of application resources on which access control checks can be defined. Re-
sources represent entities that can be addressed by requests and also include
actions that can be performed, such as adding a new user, submitting a
report, or processing a financial transaction. The addressing mechanism is
a central aspect of the framework and is described in more detail in the
following section.

5.3 Addressing Mechanism
In this section, an addressing mechanism for application resources is de-
scribed that serves to identify application resources in the security policies
and determine when security checks are performed. There are three default
resource types that can be addressed by the mechanism: web resources, func-
tionality and data objects, but the addressing mechanism can be extended
by application specific attributes. In the following, the proposed addressing
mechanism is described.

5.3.1 Syntax

The addressing mechanism that is proposed is similar to the concept of URNs,
as defined in RFC2141 [10], and URIs, as defined in RFC3986 [3]. The main
idea is to identify resources by a string of characters, which consists of a
namespace identifier and an resource identifier part. Default namespaces
are defined for standard resource types: url, action, and data. Custom
namespaces may be defined by client applications.

The two parts are separated by a colon, and the namespace part is re-
quired to only contain upper-case and lower-case characters in US-ASCII
encoding. The resource identifier part is only restricted to be a valid unicode

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 35/51

sequence. The maximum total lenght of resource addresses should be con-
figurable by the client application, a default value of 2000 bytes is proposed.
The following strings are examples for valid resource addresses:

• url:http://websand/admin/doit?action=adduser

• action:admin_adduser

• data:table-admin-users

5.3.2 Application Resources Types

There are three different types of application resources that typically need
to be addressed by web applications: web resources, functionality and data
objects. Each of these types maps to one of the default namespaces identifiers
of the addressing mechanism: url, action, and data. Custom resource types
can be defined to satisfy special requirements, for example multi-tenancy. To
be recognizable by the security framework, all resources need to be registered
by the web application on start-up.

Web Resources Web resources are handled by the url namespace, which
contains the URL in the resource identifier part. This allows direct handling
of HTTP resources and covers the external interface of web pages and web
services.

Which parts of the URL will be included in the resource identifier depends
on the application code that integrates the security framework. For dynamic
pages or services, the URL will often need to be trimmed to not contain the
URL parameters, e.g.
url:http://websand/admin/adduser?username=johndoe. In case of URLs
that act as command processors, the URL might contain the part of the URL
that specifies the command, e.g.
url:http://websand/admin/do?action=adduser. This mechanism offers
flexibility to client applications in the way the framework is integrated.

Functionality and Data Resources Functionality and data elements
are both addressed by a default namespace identifier and an unstructured
resource identifier. Resources that are supposed to be handled by the se-
curity framework must be registered before use. In principle, this kind of
identifiers only serve as keys to elements in a set of known resources. After
the registration of a resource, it is possible to define policy rules that address
this resource.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 36/51

Custom Namespaces The freedom to define new namespaces and arbi-
trary identifiers makes the mechanism very flexible. It would be, for example,
possible for an application to define a namespace orgunit to model the or-
ganisational structure of a company. This would allow to define access control
restrictions based on the organisation, for example by performing an access
control check on the resource orgunit:sales.

5.4 Usage in the Framework Architecture
The addressing mechanism is used mainly in three different places of the ar-
chitecture of the WebSand security framework: the gatekeeper API, the ap-
plication API, and the policy representation. In these places the addressing
mechanism is needed to identify resources of the web application at the pro-
gramming interface or the configuration mechanism. Often, the gatekeeper
components that process HTTP messages may plainly use the URL from the
HTTP requests to specify the target resource in the request attribute, for
example: url:http://websand/admin/do?action=adduser. But the gate-
keeper might also parse the URL and attach several request attributes of
different types to the request object, for example:
url:http://websand/admin/do and action:adduser, which would allow
policy rules for both resources.

5.5 Summary
This section describes an addressing mechanism for application resources
that is used to identify application resources on the external interface of the
security framework and in security policies. The mechanism is able to handle
different resource types and is flexible enough to be extended with custom
resource types.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 37/51

6 Secure Web Interaction Policies
This section describes the policy attributes that are necessary to implement
a policy that is capable of fulfiling the requirements deducted in Section 4.

6.1 Policy Format
As described in Section 5.1, the WebSand framework follows a modular design
principle. Each module covers one functionality such as checking for valid
user credentials or deploying cross-domain capabilities. Depending on the
requirements for a specific request, modules are activated to perform their
checks or simply ignored if a particular check should not be performed. The
security requirements that are needed to decide upon this fact need to be
specified within a policy. Basically, the policy consists of a set of rules that
trigger the activation of a certain module upon a request that is targeted
towards a certain resource and that fulfill certain conditions. Therefore,
such a rule is structured into four different elements:

1. Module name: A name that identifies the corresponding module and
sets the semantics for the elements Conditional Criteria and Additional
Parameters

2. Resources: A list of resources for which the corresponding module is
triggered. Thereby, the resources are identified by the addressing mech-
anism described in Section 5.3.

3. Conditional Criteria: An expression that returns a boolean value. De-
pending on the evaluation of the expression, the module triggers a re-
spective security event for the request. Such events could be allow and
deny as well as appending HTTP headers to the respective response or
logging the event. The conditions can thereby address the context of
the request such as the origin and authentication information in terms
of GET and POST data or HTTP header fields. It is also possible
to define custom evaluation criteria. These criteria are individually
designed for each module.

4. Additional Parameters: In this element, additional parameters can be
set that are passed to the module in order to influence the exact be-
havior. As opposed to the Conditional Criteria, Additional Parameters
do not directly influence the outcome of the module’s security decision
but are needed by the module to take a decision in the first place. The

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 38/51

format and purpose of these parameters is highly dependent on the cor-
responding module that is triggered by the policy rule. See Section 6.2
for details.

The following section defines the modules and the corresponding condi-
tional criteria and additional parameters for authentication, authorization,
cross-domain interaction and control-flow integrity.

6.2 Required Policy Attributes
In this section, we list the WebSand policy attributes which are required for
secure web interaction. For this purpose, we utilize the policy format which
was described in Section 6.1. The listed policy attributes directly correspond
to the identified policy requirements from Section 4.

6.2.1 Authentication and Authorization

In the following, the requirements described in Section 4.1 for authentication
and authorization are transformed into a description of policy requirements.

The authentication module is responsible for authentication and man-
aging different authentication mechanisms, for example username/password
and OpenID.

• Module Name: AuthenticationModule
This modules enforces authentication for protected resources and, if
successfull, provides the user’s principal as an attribute to other mod-
ules, for example the authorization module.

• Resources: the set of resources, for which authentication is required.

• Conditional Criteria: none

• Additional Parameters: the authentication mode. If not specified,
the default authentication mode for the application is used, for example
username/password or OpenID.

The authorization module enforces access control checks.

• Module Name: AuthorizationModule
This modules performs access control for non-public resources. It de-
pends on the authentication module to provide the user’s principal.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 39/51

• Resources: the set of resources, for which access should be granted.

• Conditional Criteria: none

• Additional Parameters: the access control model and additional
model specific parameters, for example ‘role-based access control’ and
the required role. Authorization of delegated privileges using OAuth
are represented by a special module. Optional parameters might be
specified to model Section 5.

For stronger authorization, the explicit consent module can be used to
request confirmation that the requested action should be performed.

• Module Name: ExplicitConsentModule
This modules performs a stronger authorization check by triggering a
workflow that asks a specified user for explicit consent to perform the
required action.

• Resources: the set of resources, for which access should be granted.

• Conditional Criteria: none

• Additional Parameters: the user’s principal which should be asked
for his consent and a query string.

The OAuth Service Access module allows to define access control policies
based on privileges that have been previously granted to third-party services,
which are thereby enabled to invoke service calls on the user’s behalf.

• Module Name: OAuthServiceAccessModule
This modules performs access control based on OAuth and also authen-
tication of the requesting service.

• Resources: the set of resources, for which access should be granted
based on OAuth.

• Conditional Criteria: none

• Additional Parameters: OAuth parameters, for example the OAuth
consumer for which access should be allowed.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 40/51

6.2.2 Cross-Domain Interaction

As mentioned in Section 4.2 one requirement of the WebSand framework is to
deploy cross-domain policies in a secure fashion. Following the policy format
defined in Section 6.1 we deduct the following rule definition.

• Module Name: CrossDomainModule
This module configures the deployment of necessary cross-domain poli-
cies. On the one hand, this rule is used at startup time of the framework
to generate and deploy the necessary policies for Silverlight and Flash.
Furthermore, the rule is used on a request-basis to deploy the CORS
header to the response on an incoming cross-domain request.3

• Resources: Set of resources for which client-side cross-domain access
is enabled.

• Conditional Criteria: The main conditional criteria for a policy en-
try of this type is a list of whitelisted external domains, which are
permitted to access the specified resource in a client-side cross-domain
fashion.
In order to trigger this module for incoming requests, such requests
have to carry the necessary CORS request headers and the domain
specified within the header has to be whitelisted in the instantiated
policy.

• Additional Parameters: In order to tell the WebSand framework
what kind of custom request header fields are allowed for this cross-
domain request, a webmaster can specify a set of header field names
within the additional instructions element. On the technical level this
information will be used for compiling the static Flash and Silverlight
policy files, as well as for potentially happening CORS pre-flight com-
munication [20].

6.2.3 Control Flow Integrity

Section 4.3 explains the requirements concerning the enforcement of control-
flow integrity within the WebSand framework. We transfer these require-
ments to the policy format provided in Section 6.1.

• Module Name: ControlFlowIntegrityModule
3An example application of this policy can be found in Section 6.3.3

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 41/51

This module enforces the control-flow graphs that are deployed by the
web application. For every incoming request, the module determines
whether the respective step in the control-flow is granted or not. Re-
quests that belong to a workflow are fitted with tokens to keep apart
different workflows in the same session. After processing a request, the
module conducts a transition and, thus, tracks the application’s state.

• Resources: A set of resources which are part of a control-flow graph.

• Conditional Criteria: As a user session is not situated within a work-
flow at startup time, the first request that is made towards a control-
flow integrity protected resource must be targeted at an entry point of
a workflow. Any subsequent request can be processed if the current
state allows the requested transition.

• Additional Parameters: Additional information that must be pro-
vided to the ControlFlowIntegrityModule includes whether the transi-
tion belongs to a critical section. This information is crucial to prevent
race conditions.

Next, a module is needed to ensure that security-critical actions can only
be triggered if evidence is given for the user’s intent to send the respective
HTTP request. For resources that are registered by the module through
corresponding policy entries, the module verifies the user’s intent and that
the request is not triggered by an attacker before running the respective
action.

• Module Name: IntendedActionsModule
This module controls the access to dedicated critical actions which
have to be secured more thoroughly. Such actions generally have a
particular high impact. Thus, the web application has to ensure that
the user indeed intended the respective action and that it has not been
triggered by an attacker.

• Resources: A set of resources for which user intent has to be ensured.

• Conditional Criteria: In order to be processed, a request needs to
carry attributes that can be used to prove the user’s intent (details
were provided in Section 4.3).

• Additional Parameters: none

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 42/51

6.3 Application to Scenarios
We will show how the policy attributes defined in the preceding sections help
to compile secure web interaction policies. Therefore, the scenarios from
Section 2 serve as problem statements.

6.3.1 Mobile Apps for Enhanced Security

In the scenario Mobile Apps for Enhanced Security, described in Section 2.1,
modes of authentication and authorization are proposed which are based on
apps running on mobile phones. To integrate the planned feature for stronger
authentication and authorization, the web application that integrates the
WebSand framework has to configure the ‘ExplicitConsentModule’ for the
ressources to be protected. For two-factor authentication, this would be the
login-URL. The associated policy would need to have an additional entry
that requires the ‘ExplicitConsentModule’ to trigger the workflow that asks
for the user’s consent. Since the workflow is asynchronous, the application
must actively support this out-of-band authorization of sensitive actions.

In the following, the workflow for two-factor authentication is described
as an example.

1. The user accesses the main page and enters his credentials, e.g. user-
name / password.

2. The application processes the request, reads the additional ‘Explicit-
ConsentModule’ requirement from the policy, and starts the out-of-
band authentication workflow.

3. The WebSand framework sends the request for explicit user consent to
the preregistered mobile phone of the user.

4. In the server-side, internal response object, the need for the out-of-band
process is signalled to the web application, which displays a message
and prompts the user to confirm the request for explicit consent on his
mobile phone.

5. The user checks his mobile phone and acknowledges the request for
authentication to the web application.

6. The app on the mobile phone signals to the WebSand framework that
the explicit user consent has been acknowledged. The acknowledgement
is forwared to the web application.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 43/51

7. The web application queries the WebSand framework for the status of
the explicit user consent, either by polling or triggered by user interac-
tion.

8. When the explicit user consent has been accepted by the WebSand
framework, the web application triggers a new authentication request
in the user’s browser, which can now be processed.

6.3.2 Delegation of Privilege in Distributed Workflows

The scenario Delegation of Privilege in Distributed Workflows, desribed in
Section 2.2, describes the need for a mechanism for delegation of user privi-
leges to a third party. These delegated privileges can then be used in back-end
server-to-server communication to perform operations on the user’s behalf.
Since this type of communication is targeted at resources that expose a pro-
gramming API via web services, the OAuthServiceAccessModule will only
be used on a small number of ressource elements in the policy.

As the semantics of the programming API to which access privileges are
delegated are determined by the web application, it must also implement the
user interface for delegation of privilege. In the user interface for delegation
of privilege, it is important to communicate clearly what set of privileges is
delegated, to which third-party and for what purpose. The application of the
WebSand framework facilitates that by exporting a programming interface in
the application API, which allows to delegate privilege, and by providing the
OAuthServiceAccessModule, which allows to express the need for delegated
privilege in the policy for protection of service endpoints.

6.3.3 Cross-domain Interaction

In Section 2.3 an example scenario is given that needs to be accomplished
in a secure fashion with the help of the WebSand framework. Basically, the
scenario covers two domains: The domain used by the on-demand sales appli-
cation and the domain used by the on-premise warehousing system. For this
section we consider the domain example-company.sales-on-demand.com to
be the domain of the on-demand system and warehousing.corp as the inter-
nal intranet DNS name of the warehousing system. As there is a firewall in
between those two domains, the respective systems cannot use a direct com-
munication channel, but have to rely on client-side cross-domain requests.
For this purpose, multiple different techniques namely Silverlight, Flash and
CORS are utilized in order to cover the broad browser spectrum used within
the company. In order to ensure the smooth communication between the sys-
tems, the warehousing system has to open up it’s API by setting up a distinct

FP7-ICT-2009-5
Project No. 256964

example-company.sales-on-demand.com
warehousing.corp

D2.1: Secure Interaction Specification 44/51

server-side policy for each of the mentioned techniques. The cross-domain
policy is thereby enforced on the client-side either by the respective plug-in
(Silverlight, Flash) or by the browser itself (CORS). Only if the requesting
domain is whitelisted within the corresponding policy the request is allowed,
otherwise it is blocked within the user’s browser. In order to handle the de-
ployment of these policies in a secure fashion, the WebSand framework is used
to take over the responsibility of generating and deploying these policies. The
API of the warehousing system basically consists of set of server-side scripts
that are located in the folder "API" in the root directory of the server i.e.
the complete URL for the API folder is warehousing.corp/API/. Thereby,
the API consists of two files called RetrieveProductInformation.php and Re-
trieveStockData.php In order to access the API in a proper way, the applica-
tion deployed on example-company.sales-on-demand.com has to addition-
ally add some custom HTTP headers to it’s cross-domain requests (Namely
CUSTOM_HEADER1 and CUSTOM_HEADER2). In order to configure
the WebSand framework according to these requirements the company sets
up following policy rule within the WebSand’s policy file:

• Module Name: CrossDomainModule

• Resources:
url:http://warehousing.corp/API/RetrieveStockData.php
url:http://warehousing.corp/API/RetrieveProductInformation.php
url:https://warehousing.corp/API/RetrieveStockData.php
url:https://warehousing.corp/API/RetrieveProductInformation.php

• Conditional Criteria:
OriginDomain == "example-company.sales-on-demand.com"

• Additional Parameters:
AllowedHeaderFields = "CUSTOM_HEADER1, CUSTOM_HEADER"

Actually, WebSand processes this rule multiple times. Once at startup
time in order to generate the respective Flash and Silverlight policy files and
whenever a request arrives that targets one of the listed resources in order
to trigger the deployment of the necessary CORS headers onto the HTTP
response. Besides, triggering and unifying this deployment process for the
different techniques, WebSand conducts sanity checks upon the complete
WebSand policy file. If it detects a security issues it prevents the deployment
of cross-domain policies and thus avoids sensitive data to be leaked to an
untrusted application. One such security issue could be a cross-domain access

FP7-ICT-2009-5
Project No. 256964

warehousing.corp/API/
example-company.sales-on-demand.com

D2.1: Secure Interaction Specification 45/51

grant for a resources that has additional security requirements such as the
enforcement of a trusted path. As such a path cannot be guaranteed by
a cross-domain request this inconsistency will be prevented by WebSand.
Hence, WebSand is not only able to unify and ease the deployment process,
but it also increases security of the existing cross-domain access grants by
conducting cross-checks with other security requirements.

6.3.4 Online Shopping Workflow over Two Domains

In this section, we show the necessary policy rules to secure the merchant
web application in the scenario given in Section 2.4.

The merchant first defines valid workflows. We simplify the scenario and
reduce the workflow to the most interesting steps. The customers are allowed
to access all article descriptions in arbitrary sequence and put arbitrary many
items in the cart. After a cart addition, a cart summary with all costs
including shipping and taxes is shown. Then, either more items can be
inspected or a checkout can be requested. In the latter case, the user is
redirected to the CaaS provider. As the following steps are off-domain and,
thus, out of scope for the framework, the user’s return is the next action
concerning control-flow integrity. A summary of the purchase is presented in
case the return request fits control-flow restrictions.

In the first place, we present the intuitive control-flow graph in Figure 9.
A request to x leads to the overview page of the shopping cart, either by
putting a new item to the cart or by just requesting an overview of the
current shopping cart status. The resource a that is requested afterwards
denotes a click on a “Checkout” button. This transaction needs a verified
intended action to prevent attackers to shop on behalf of a victim. When in
state 2, the user is immediately redirected to the CaaS in order to provide
the payment details and acknowledge the money transfer. Finally, after a
number of unknown steps in the CaaS domain, the user is redirected back
to the merchant’s site where he sends a request to resource c resulting in
state 3. There, a summary and confirmation page could be shown that can
be printed and serves as a receipt for the user. State 2 is a critical section
because a malicious user driving two workflows to this state might mix up the
parameters in the subsequent requests to c and probably present a payment
acknowledgement token gained for a cheaper item to cause the merchant’s
web application to accept it for a more expensive item [21]. So, for each
session, at most one payment notification must be expected.

Taking into account that only the control-flow in the local domain is
subject to control-flow integrity enforcement by the WebSand framework, we
can state that the redirection step b in fact causes a request to a foreign

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 46/51

Figure 9: Workflow graph for the CaaS scenario.

domain and is thus out of scope for the ControlFlowIntegrityModule. So, the
respective control-flow graph ignores the redirection and results in the graph
given in Figure 10. Special requirements can be put on the request to c in the
conditional criteria including cryptographic tokens in the request parameters
and state 2 as the current state from the merchant’s web application’s point
of view.

Figure 10: Control flow graph for the CaaS scenario.

To sum up, the access to the domain re-entry point can be secured by
the ControlFlowIntegrityModule in conjunction with appropriate policy rules
that are derived from the control-flow graph. We could show that a multi-
domain control-flow does not cause more control-flow protection measures
than a local control-flow except the check of cryptographic tokens in the
request.

6.3.5 Web Portal to Send Limited Number of Text Messages

The web portal scenario given in Section 2.5 provides potential race condition
vulnerabilities. That means a malicious user could request the same resource
more often than it is allowed by the business logic. In the example scenario,
the SMS sending API has to be protected against such an attack. The
control-flow graph is provided in Figure 11.

So, the respective workflow starts with a request on the text input page
x, either after login or by access via the provider’s network, resulting in state
1. Then, a request to the SMS sending API a with attached information like
message text, sender, and recipients leads to state 2 where a redirection to
a confirmation page b is issued. Finally, the workflow ends in state 3. The
crucial part in this workflow are states 1 and 2 together with requests to

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 47/51

Figure 11: Control flow graph for the text message scenario.

a. The latter need a trusted path because these requests consume free SMS
quota and, thus, cause some kind of cost. State 2 and 3 together build a
critical section because a user accessing state 2 in parallel more often than
his remaining quota could succeed to send more messages than allowed. The
secure section only allows sequential sending of messages and prevents the
exploitation of race conditions.

In the end, the definition and enforcement of critical sections in the poli-
cies effectively prevents exploitation of race conditions without major efforts.
Together with the results from Section 6.3.4, we could show that the pro-
posed policy mechanism is suitable to provide the intended security measures
in terms of control-flow integrity.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 48/51

7 Conclusion
This deliverable has reported on the specification of secure web interaction.
First, we have defined secure web interaction to be ensured if all incoming
requests carry information that allows the Web server to uniquely determine
the session and cross-domain context, track authentication and authorization,
and enforce control-flow integrity.

Five scenarios have been described that represent the problems which are
supposed to be solved within the context of this work package. They deal
with distributed two-factor authentication and authorization, authorization
delegation with OAuth, cross-domain interaction, control-flow over several
domains, and race conditions respectively.

The basis for advanced approaches in the course of secure web interaction
is session security. We have summarized our recent progress in that field. To
sum up, we identified issues in the usage of cookies as session authentication
credentials and provided countermeasures to Cross-Site Scripting (XSS) and
Session Fixation attacks. These attacks aim to steal an authenticated session
either by gaining knowledge of the session cookie of the victim or by setting an
attacker-controlled session cookie at the victim. Finally, an often overseen
problem related to server-side session storage has been identified and will
be prevented in the WebSand framework implementation. This problem
allows the attacker to share or even escalate his authentication status between
different applications that are hosted on the same server.

Based on the insights we have gained during research on the topic and the
defined scenarios, we compiled security requirements that are needed to ob-
tain secure web interaction. These requirements are divided into operational
and policy requirements. While operational requirements define needs on the
functionality and features of the WebSand framework, policy requirements
specify what the policy language with its attributes has to fulfill. All these
requirements have been provided with respect to authentication, authoriza-
tion, cross-domain interaction, and control-flow integrity.

Then, the first design details of the WebSand framework have been pro-
vided. We have described the framework architecture with its components
and their communication links. A central entity of the framework is an
application-dependent gatekeeper which directs incoming requests to the ac-
tual WebSand framework and translates requests from their external repre-
sentation to their internal format. The security modules work on the in-
ternal format. As a central aspect of the deliverable, we have presented
the WebSand addressing mechanism that allows fine-grained, unambiguous
identification of the resources of the web application’s external interfaces.

Finally, the WebSand policy mechanism has been described. The policy

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 49/51

format and the policy attributes have been explained. The policy format
includes the name of the respective security module which is developed in
the context of WebSand, the application’s resources that are protected by the
respective policy rule, a set of conditional criteria that direct the security
module’s outcome, and a set of additional parameters that are needed in
order to facilitate the request handling in special cases. The suitability of
the policy mechanism has been shown for each of the five scenarios.

FP7-ICT-2009-5
Project No. 256964

D2.1: Secure Interaction Specification 50/51

References
[1] Amazon Payments. https://payments.amazon.com.

[2] M. Atwood, R. M. Conlan, B. Cook, L. Culver, K. Elliott-McCrea,
L. Halff, E. Hammer-Lahav, B. Laurie, C. Messina, J. Panzer, S. Quigley,
D. Recordon, E. Sandler, J. Sergent, T. Sieling, B. Slesinsky, and
A. Smith. OAuth Core 1.0. [online], OAuthCore1.0, December 2007.

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource iden-
tifier (uri): Generic syntax. http://tools.ietf.org/html/rfc3986,
August 2005.

[4] Google Authenticator – two-step verification. http://code.google.
com/p/google-authenticator.

[5] Google Checkout. https://checkout.google.com.

[6] Interspire. http://www.interspire.com.

[7] M. Johns, B. Braun, M. Schrank, and J. Posegga. Reliable Protection
Against Session Fixation Attacks. In Proceedings of the 2011 ACM Sym-
posium on Applied Computing, SAC ’11, pages 1531–1537. ACM, 2011.

[8] M. Johns and S. Lekies. Biting the hand that serves you: A closer look at
client-side flash proxies for cross-domain requests. In Proceedings of the
8th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2011.

[9] S. Lekies, M. Johns, and W. Tighzert. The state of the cross-domain
nation. In Proceedings of the 5th Workshop on Web 2.0 Security and
Privacy (W2SP), 2011.

[10] R. Moats. Urn syntax. http://tools.ietf.org/html/rfc2141, May
1997.

[11] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen.
Hotp: An hmac-based one-time password algorithm. http://tools.
ietf.org/html/rfc4226, December 2005.

[12] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. Totp: Time-
based one-time password algorithm. http://tools.ietf.org/id/
draft-mraihi-totp-timebased-06.txt, September 2010.

FP7-ICT-2009-5
Project No. 256964

https://payments.amazon.com
OAuth Core 1.0
http://tools.ietf.org/html/rfc3986
http://code.google.com/p/google-authenticator
http://code.google.com/p/google-authenticator
https://checkout.google.com
http://www.interspire.com
http://tools.ietf.org/html/rfc2141
http://tools.ietf.org/html/rfc4226
http://tools.ietf.org/html/rfc4226
http://tools.ietf.org/id/draft-mraihi-totp-timebased-06.txt
http://tools.ietf.org/id/draft-mraihi-totp-timebased-06.txt

D2.1: Secure Interaction Specification 51/51

[13] N. Nikiforakis, W. Joosen, and M. Johns. Abusing Locality in Shared
Web Hosting. In 4th European Workshop on System Security (EU-
ROSEC’11), 2011.

[14] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen. Ses-
sionShield: Lightweight Protection against Session Hijacking. In 3rd
International Symposium on Engineering Secure Software and Systems
(ESSoS ’11), 2011.

[15] nopCommerce. http://www.nopcommerce.com.

[16] R. Paleari, D. Marrone, D. Bruschi, and M. Monga. On race vulnerabil-
ities in web applications. In DIMVA ’08: Proceedings of the 5th interna-
tional conference on Detection of Intrusions and Malware, and Vulner-
ability Assessment, pages 126–142, Berlin, Heidelberg, 2008. Springer-
Verlag.

[17] Paypal. https://www.paypal.com.

[18] D. Recordon and D. Reed. Openid 2.0: a platform for user-centric
identity management. In DIM ’06: Proceedings of the second ACM
workshop on Digital identity management, pages 11–16, New York, NY,
USA, 2006. ACM.

[19] M. Schrank, B. Braun, M. Johns, and J. Posegga. Session fixation:
the forgotten vulnerability? In Sicherheit 2010: Sicherheit, Schutz und
Zuverlässigkeit, pages 341–352. Gesellschaft für Informatik, 2010.

[20] A. van Kesteren (Editor). Cross-Origin Resource Sharing. W3CWorking
Draft, Version WD-cors-20100727, http://www.w3.org/TR/cors/, July
2010.

[21] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to Shop for Free
Online - Security Analysis of Cashier-as-a-Service Based Web Stores. In
IEEE Symposium on Security and Privacy, pages 465–480, 2011.

FP7-ICT-2009-5
Project No. 256964

http://www.nopcommerce.com
https://www.paypal.com
http://www.w3.org/TR/cors/

	Introduction
	Motivation
	Secure Web Interaction
	The four pillars of Secure Web Interaction
	The WebSand approach to Secure Web Interaction

	Organisation
	Related WebSand Publications

	Overview of Web Interaction Scenarios
	Mobile Apps for Enhanced Security
	Delegation of Privilege in Distributed Workflows
	Cross-domain Interaction
	Online Shopping Workflow over Two Domains
	Web Portal to Send Limited Number of Text Messages

	Session Security
	Separation of Application and Session Data
	Abusing Locality in Shared Web Hosting
	Session Fixation Protection

	Deducing Requirements for Secure Web Interaction
	Authentication and Authorization
	Operational Requirements
	Policy Requirements

	Cross-Domain Interaction
	Operational Requirements
	Policy Requirements

	Control Flow Integrity
	Operational Requirements
	Policy Requirements

	Framework Design
	Framework Architecture
	Framework Components
	Gatekeeper
	Application Program Interfaces
	Request Objects and Attributes
	Request Processing
	Modules

	Addressing Mechanism
	Syntax
	Application Resources Types

	Usage in the Framework Architecture
	Summary

	Secure Web Interaction Policies
	Policy Format
	Required Policy Attributes
	Authentication and Authorization
	Cross-Domain Interaction
	Control Flow Integrity

	Application to Scenarios
	Mobile Apps for Enhanced Security
	Delegation of Privilege in Distributed Workflows
	Cross-domain Interaction
	Online Shopping Workflow over Two Domains
	Web Portal to Send Limited Number of Text Messages

	Conclusion
	References

