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Executive Summary
The overall goal of the WebSand project is to empower web application develop-
ers, hosters, and users in designing, implementing, and using secure applications.
As introduced in Deliverable 1.1, web applications share a number of properties
that make them different from many other application domains. One example of
such a property is that web applications are frequently built from a number of
collaborating, but mutually distrusting components.

This deliverable reports on the results on information-flow security policies
that have been accomplished by the project during the first year. To this end
we investigate decentralized security policies for confidentiality and information
release in the presence of mutual distrust. We present a framework that enables
collaboration among different participants without compromising their respective
security policies. A key feature is that information release is permitted only if the
owners of the data agree on releasing it.

To ensure secure information release it is important that the decision when to
release and what to release cannot be tampered with, i.e., cannot be influenced
from the outside. This pertains to the notion of information integrity. Information
integrity has important consequences for information security, but remains rela-
tively uninvestigated. In this deliverable we explore different facets of information
integrity and propose a unified framework for integrity policies.

Further, to lay the ground for Deliverable 3.3, we investigate a number of
approaches to enforcement of the developed security policies including static type
system based enforcement, enforcement via secure multi-execution, and dynamic
enforcement via runtime monitors. These alternatives provide an excellent base
for exploring whether the enforcement should be placed on client side, server side
or as a collaboration between the two. On a related path we investigate the tradeoff
between the expressiveness of security policies and enforceability. We present an
information security policy — multi-run security — that can be seen as a middle
ground between two common existing security policies.
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1 Introduction
The overall goal of the WebSand project is to empower web application devel-
opers, hosters, and users in designing, implementing, and running secure appli-
cations. As introduced in Deliverable 1.1, web applications share a number of
properties that make them different from many other application domains. One
example of such a property is that web applications frequently are built from a
number of collaborating, but mutually distrusting components. A typical example
of this is the application paradigm of web mashups — a web service that inte-
grates a number of independent services into a single web service. As an example
of a common mashup consider a web application that combines information on
available apartments and a map service (such as Google Maps) in an interactive
service that displays apartments for sale on a map.

Mashup applications, by their nature, involve interaction between various page
components of potentially different origin. Cross-origin interaction within the
browser is currently regulated by the so-called Same-Origin Policy (SOP). The
SOP classifies documents based on their origins. Documents from the same ori-
gin may freely access each other’s content, while such access is disallowed for
documents of different origins.

However, the SOP mechanism is insufficient to guarantee information secu-
rity, since it allows only for binary “all-or-nothing” policies to be expressed, where
different components are either prevented from accessing each others data or al-
lowed full access. This leads to a conflict between the need to share information
between the collaborating components and the need to protect the information.
Since collaboration is impossible if the components are completely isolated from
each other, the current solution is to allow full access at the expense of the confi-
dentiality and integrity of the respective data.

Consider, for instance, a loan calculator provided by some financial institution,
with the purpose that current and future customers can download the calculator,
input their financial data and get details about the loans the financial institution
can offer them. In order to enhance the loan calculator and future products the
financial institution collects different statistics pertaining to the use of the applica-
tion, e.g., the popularity of certain features of the loan calculator, and the relative
popularity of the different loan setups.

This scenario contains a number of information-flow challenges. From the
perspective of the user, it is important that the private financial information is not
leaked to the statistics collected by the application.

Further, the loan calculator might be a part of a mashup providing a compari-
son of the offers of different financial institutions — c.f. best price services. From
the perspective of the financial institution, it is important that the information pro-
vided by the user is not tampered with. Such tampering could for instance be used
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by external parties to skew the offers to favor a competitor.
A crucial challenge for building secure web applications is hitting the sweet

spot between separation and integration, i.e., finding security policies that allow
for controlling how information is shared between the mutually distrusting parts.
It is this challenge that is tackled in the work package on information flow (work
package 3) of the WebSand project.

This deliverable reports on the results on information-flow security policies
that have been accomplished by the project during the first year. To this end
we investigate decentralized security policies for confidentiality and information
release in the presence of mutual distrust. We present a framework that enables
combination of data owned by different participants without compromising their
respective security policies. A key feature is that information release is permitted
only when the owners of the data agree on releasing it.

This framework allows for securing the interaction in the scenario described
above from the perspective of the user by making it possible to ensure that the
financial information provided by the user is not leaked to the statistics without
the consent of the user.

To ensure secure information release it is important that the decision when to
release and what to release cannot be tampered with, i.e., cannot be influenced
from the outside. This pertains to the notion of information integrity. Information
integrity has important consequences for information security, but remains rela-
tively uninvestigated. In this deliverable we explore different facets of information
integrity and propose a unified framework for integrity policies.

This framework allows for securing the interaction in the scenario described
above from the perspective of the financial institution by making it possible to
ensure that the financial information provided to the loan calculator originates
from the user, and has not been tampered with.

Further, to lay the ground for Deliverable 3.3, we investigate a number of ap-
proaches to enforcement of the developed security policies including static type
system based enforcement, static enforcement via secure multi-execution, and dy-
namic enforcement via runtime monitors. These alternatives provide an excellent
base for exploring whether the enforcement should be placed on client side, server
side or as a collaboration between the two. On a related path we investigate the
tradeoff between the expressiveness of security policies and enforceability. We
present an information security policy — multi-run security — that can be seen
as a middle ground between two common existing security policies.

Overview The rest of this section gives background on information-flow secu-
rity and introduces the technical contributions of this deliverable. First, Section 2,
based on [79], explores declassification in the setting of web applications that are
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built up by collaborating, mutually distrusting components. Thereafter, Section 3,
based on [104], explores the tradeoff between expressiveness and enforceability
for information-flow policies by investigating policies falling between two well-
known extremes. This is followed by Section 4, based on [22], which explores
practical enforcement of reactive noninterference by secure multi-execution.

Finally, Section 5, based on [24], explores a unifying model for integrity going
beyond the standard interpretation of integrity as a dual to confidentiality.

1.1 Information flow
The research of secure information flow goes back to the early 70’s [20, 48], pri-
marily in the context of military systems. Secure information flow comprises of
two related aspects: information confidentiality and information integrity — intu-
itively pertaining to the reading and writing of the information.

Confidentiality and integrity The prevailing basic notion of secure informa-
tion flow for confidentiality is noninterference [58], demanding that the secret
input of a program does not influence the public output. As the field has matured,
numerous variations of noninterference [105], as well as other semantic charac-
terizations have been explored [30, 28, 29, 10, 8].

Information integrity has received increasing attention [73, 74, 24, 7]. Information-
flow integrity often means that trusted output is independent from untrusted input.
This flavor of integrity is dual to the classical models of confidentiality, where
public output is required to be independent from secret input.

Declassification and endorsement For many applications — e.g., applications
built by collaborating components — such strong separation between secret and
public information is too restrictive. Consider, for instance, a component that
computes average salaries — even though each individual salary may be secret
we might want to be able to share the average with other components.

Clearly, we need a way to declassify information, i.e., lowering the security
classification of selected information. For integrity as the dual of confidentiality,
the notion dual to declassification is endorsement, which allows for raising the
integrity classification.

Aspects of information-flow policies There are two important aspects when
designing security policies for secure information flow. First, different attack sce-
narios give rise to different attacker models which affects the demands placed on
the security policies. Thus, the first aspect is capturing attacker models by ade-
quate security policies. Second, for practical information-flow security, there is
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frequently a tradeoff between the expressiveness of the security policy and its en-
forceability. This means that policies must be rich enough to describe fine-grained
security but at the same time it is desirable that these policies are amenable to au-
tomatic enforcement.

1.2 Confidentiality
1.2.1 From attacker models to confidentiality policies

Information flow security aims at protecting confidentiality and integrity of in-
formation. It is common to use a program-centric attacker model similar to the
following: the attacker is assumed to have access to the program source code and
to public observable behavior, e.g., public outputs. In addition, it is assumed that
the attacker is in control of the public input of the programs.

Deliverable 1.1 argues that for web applications a program-centric attacker
model is not adequate. For collaborative distributed programs the classical Dolev-
Yao attacker model [53] is frequently employed. In the Dolev-Yao model it is
assumed that the attacker is able to overhear, intercept and modify messages on
the network. In the web setting, however, a weaker notion of web attacker [17]
is of interest. The model is built on the assumption of an honest user who runs a
trusted browser on a trusted machine and that the attacker is an owner of malicious
web sites that the user might be accessing. Hence, the web attacker is assumed
to be unable to overhear, intercept or modify messages on the network, which
implies that the web attacker is unable to mount man-in-the-middle attacks.

1.2.2 Decentralized delimited release

Information flow security for programs built from collaborating, mutually dis-
trusting parts requires decentralized security policies. Decentralization is a major
challenge for secure computing. The key challenge is to provide possibilities for
expressing and enforcing expressive decentralized policies, that allows principals
to trust or distrust other principals.

Further, collaboration requires not only protection of information, but also the
ability to share information. Section 2 focuses on decentralized declassification
policies, i.e., policies for intended information release. We propose a decentral-
ized language-independent framework for expressing what information can be re-
leased. The framework enables combination of data owned by different principals
without compromising their respective security policies. A key feature is that in-
formation release is permitted only when the owners of the data agree on releasing
it. We instantiate the framework for a simple imperative language to show how
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the decentralized declassification policies can be enforced by a runtime monitor
and discuss a prototype that secures programs by inlining the monitor in the code.

1.2.3 Multi-run security

For practical information flow security, however, the choice of security policy can
not be decided based on the capabilities of the attacker alone. In addition, there
is a tradeoff between the expressiveness and precision of the security policy, and
the enforceability. The state of the art in the area of policies for information flow
security consists of two extremes described in Deliverable 1.1.

On one side are batch-job program models corresponding to termination in-
sensitive noninterference, where programs are run only once and where the initial
memory is the only input and the final memory is the only output. While securing
batch-job programs without being over-restrictive is feasible, the assumption that
programs are run only once is often too strong.

On the other side are fully interactive programs with channels for input/out-
put communication corresponding to progress sensitive noninterference. While
this model is more powerful, securing interactive programs is notoriously hard:
intermediate observations can be exploited to leak information [6].

For this reason it is interesting to explore the territory for intermediate models.
Section 3 studies information-flow control for batch-job programs that are allowed
to be re-run with new input provided by the attacker. We argue that directly adapt-
ing two major security definitions for batch-job programs, termination-sensitive
and termination-insensitive noninterference, to multi-run execution would result
in extremes. While the former readily scales up to multiple runs, its enforcement
is typically over-restrictive. The latter suffers from insecurity: secrets can be
leaked in their entirety by multiple runs of programs that are secure according to
batch-job termination-insensitive noninterference. Seeking to avoid the extremes,
we present a framework for specifying and enforcing multi-run security in an
imperative language. The policy framework is based on tracking the attacker’s
knowledge about secrets obtained by multiple program runs. Inspired by previous
work on robustness, the key ingredient of our type-based enforcement for multi-
run security is preventing the dangerous combination of attacker-controlled data
and secret data from affecting program termination.

1.3 Integrity
Where declassification is a relatively well understood concept, what is meant by
integrity is still partly unexplored. It is clear that there are different facets of
integrity.
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1.3.1 From attacker models to integrity policies

The most prevalent facet of integrity is when integrity is taken to mean that infor-
mation can be trusted if it cannot be influenced by the attacker. Phrased in terms
of information flow, trusted output should be independent from untrusted input.
In this interpretation standard models used for confidentiality suffice.

Integrity in the area of access control [111] is concerned with improper/unau-
thorized data modification. The focus is on preventing data modification opera-
tions, when no modification rights are granted to a given principal. Integrity in
the context of fault-tolerant systems is concerned with preservation of actual data.
For example, a desired property for a file transfer protocol on a lossy channel is
that the integrity of a transmitted file is preserved, i.e., the information at both
ends of communication must be identical (which can be enforced by detecting
and repairing possible file corruption). Integrity in the context of databases often
means preservation of some important invariants, such as consistency of data and
uniqueness of database keys. The list of different interpretations of integrity can
be continued, including rather general notions as integrity as expectation of data
quality and integrity as guarantee of accurate data and meaningful data [111, 98].

Sabelfeld and Myers [105] observe that integrity has an important difference
from confidentiality: a computing system can damage integrity without any ex-
ternal interaction, simply by computing data incorrectly. (This can happen as a
consequence of either programming errors or system faults.) Thus, strong en-
forcement of integrity requires proving program correctness. Seeking to clarify
the area of integrity policies, Li et al. [73] suggest a classification for data integrity
policies into information-flow, data invariant and program correctness policies. In
a similar spirit, Guttman [60] identifies causality and invariance policies as two
major types of data integrity policies. Furthermore, we argue that integrity via in-
variance is itself multi-faceted. For example, the literature (cf. [73]) features for-
malizations of invariance as predicate preservation (predicate invariance), which
is not directly compatible with invariance of memory values (value invariance).

1.3.2 Unifying facets of information integrity

Section 5 offers a unified framework for integrity policies that include all of the
facets above. Despite the different nature of these facets, we show that a straight-
forward enforcement mechanism adapted from the literature is readily available
for enforcing all of the integrity facets at once.
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1.4 Enforcement
Deliverable 1.1 presents two fundamentally different approaches to enforcing se-
cure information flow: static, i.e., before running the program, and dynamic, i.e.,
during the running of the program. The choice frequently amounts to a tradeoff
between efficiency and precision, but certain programming language features may
pose more fundamental obstacles for either static or dynamic approaches. Regard-
less, hybrid analyses, i.e., a combination of both static and dynamic enforcement
may be used to increase precision. For web application the additional aspect of
where enforcement takes place — on the server, on the client, or in collaboration
between the two – is important.

With respect to the policies presented above, we explore both static and dy-
namic enforcement. The policies of Section 3 are enforced by a static type system,
which prevents looping on expressions that both depend on secrets and attacker
input. At the other end, the policies of Section 2 and Section 5 are both enforced
dynamically via runtime monitors. Further, we develop a hybrid version of the
mechanism from Section 2, where the dynamic monitor is inlined into the code of
a given program using static program analysis and transformation.

Section 4 explores an enforcement technique for reactive non-interference
based on secure multi-execution [50]. It is shown that Featherweight Firefox [25]
(in fact any reactive system in the sense of Bohannon et al. [26]) is reactive non-
interferent when executed under this secure multi-execution regime, and that, for
inputs for which Featherweight Firefox is “well-behaved” with respect to the pol-
icy, execution under the secure multi-execution regime will not result in changes
in observable behavior for an observer at any security level.

In addition, the value for web browsers of the technique is shown, by imple-
menting it for Featherweight Firefox. To the best of our knowledge, this proposal
is the first to enforce a general non-interference policy for the browser as a whole.

Finally, this implementation of a secure and precise enforcement mechanism
for a model browser allows us to experiment with suitable policies. We inves-
tigate three classes of policies, ranging from simple policies that can provide
high-assurance confidentiality guarantees for user-private data to more compli-
cated policies that support common web-patterns like third-party library script in-
clusion while maintaining strong restrictions on the flow of information between
different origins.
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2 Decentralized delimited release

2.1 Introduction
Decentralization is a major challenge in particular for secure computing. In a de-
centralized setting, principals are free to distrust each other. The key challenge is
to provide support for expressing and enforcing expressive decentralized policies.
Decentralization is of major concern for language-based information-flow secu-
rity [105]. Information-flow security ensures that the flow of data through program
constructs is secure. Information-flow based techniques are helpful for establish-
ing end-to-end security, in the sense that the flow of information is tracked through
the entire system from information sources to sinks. For example, a common se-
curity goal is noninterference [44, 58, 122, 105] that demands that public output
does not depend on secret input. There has been much progress on tracking in-
formation flow in languages of increasing complexity [105], and, consequently,
information-flow security tools for languages such as Java, ML, and Ada have
emerged [92, 114, 118].

A particularly important problem in the context of information-flow security
is declassification [110] policies, i.e., policies for intended information release.
These policies are intended to allow some information release as long as the in-
formation release mechanisms are not abused to reveal information that is not
intended for release. Revealing the result of a password check is an example of
intended information release, while revealing the actual password is unintended
release. Similarly, the average grade for an exam is an example of intended infor-
mation release, while revealing the individual grades of all students is unintended
release. Abusing the underlying declassification mechanism for unintended re-
lease constitutes information laundering.

Decentralization makes declassification particularly intriguing. When is a
piece of data allowed to be released? The answer might be simple when the piece
of data originates from a single principal and needs to be passed to another one.
However, when the piece of data originates from several sources, data release
needs to satisfy security requirements of all parties involved. Despite a large body
of work on declassification (discussed in Section 2.5), providing a clean semantic
treatment for decentralized declassification has been so far out of reach. Con-
cretely, the unresolved challenge we address is prevention of information launder-
ing in decentralized security policies.

Consider a scenario of a web mashup. A web mashup is a web service that
integrates a number of independent services into a single web service. A common
example is a mashup that combines information on available apartments and a map
service (such as Google Maps) in an interactive service that displays apartments
for sale on a map. Components of a mashup typically originate from different
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Internet domains.
A crucial challenge when building secure mashups [46] is hitting the sweet

spot between separation and integration. The components need to communicate
with each other but without stealing sensitive information. For example, a mashup
that displays trucks with dangerous goods on a map might reveal the corner points
of a required map to the map service but it must not reveal sensitive information
about displayed objects such as the type of dangerous goods [78].

Collaboration in the presence of mutual distrust requires solid policy and en-
forcement support. Pushing the mashup scenario further, consider two web ser-
vices (say, Gmail and Facebook) that are willing to swap sensitive information
under the condition that both provide their share. For example, this might be a
client-side mashup that allows cross-importing Gmail’s and Facebook’s address
books. We want the policy framework to support the swap but prevent stealing
Gmail’s address book by Facebook.

A prominent line of work on declassification in a decentralized setting is the
decentralized label model (DLM) [88]. This model underlies the security labels
tracked by the Java-based information-flow tracker Jif [92]. DLM labels explicitly
records owners. Owners are allowed to introduce arbitrary declassification on the
part of labels they own. However, no soundness arguments for Jif’s treatment of
the labels are provided.

While inspired by DLM, our goal is precise semantic specification of decen-
tralized security and its sound enforcement. Our focus is on exactly what can be
released, which prevents information laundering. Unlike the DLM enforcement
as performed by Jif, we do distinguish between programs that reveal the result of
matching against a password from programs that reveal the password itself.

Combining the decentralization in the fashion of DLM and the laundering
prevention in the fashion of delimited release [106], this work proposes a decen-
tralized language-independent framework for expressing what information can be
released. The framework enables release of combination of data owned by dif-
ferent principals without compromising their respective security policies. A key
feature is that information release is permitted only when the owners of the data
agree on releasing it.

To illustrate that the framework is realizable at language level, we instantiate
the framework for a simple imperative language to show how the decentralized
declassification policies can be enforced by a runtime monitor. We resolve the
challenge of respecting decentralized policies while at the same time preventing
laundering. Further, the monitor allows on-the-fly addition of new declassification
polices by different principles. The monitor provides a safe approximation for the
security policy. As it is often the case with automatic enforcement of nontrivial
policies, the monitor is incomplete in the sense that some secure runs are blocked.

Further, we have implemented a prototype for a small subset of JavaScript that
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secures programs by inlining the information-flow monitor in the code. The in-
lining transformation transforms an arbitrary, possibly insecure, program into one
that performs inlined information-flow checks, so that the result of the transfor-
mation is secure by construction.

2.2 Decentralized delimited release
Principals and security levels Our model is built upon a notion of principals
which we denote via p, q. We assume that principals are mutually distrusting and
that there are no “actsfor” or “speaks-for” relations [89, 70] between them.

We consider a lattice of security levelsL and denote byv the ordering between
elements of the lattice. A simple security lattice consists of two elements L and
H , such that L v H i.e., L is no more restrictive than H . The structure of the
security lattice does not have to be connected to principals in general, though they
may be related as illustrated in Section 2.2.2.

We assume that different parts of global state (or memory) are labeled with
different security levels: the higher the security level, the more sensitive the in-
formation which is labeled with that level. We also associate every security level
in our model with an adversary that may observe memory states at that level: the
higher the security level, the more powerful the adversary associated with that
level. For two-level security lattice, an adversary corresponding to level L can
observe only low (or public) parts of the state, while adversary corresponding to
level H can observe all parts of the state.

Policies as equivalence relations Our model uses partial equivalence relations
(PERs) over memories for use in confidentiality policies [2, 108]. The PER repre-
sentation allows for fine granularity in individual policies. We believe that inten-
tional models of security such as DLM [89] or tag-based models [54, 69, 126, 35]
can be easily interpreted using PERs. Section 2.2.2 is an example of one such
translation for a simple subset of DLM.

Intuitively, two memories m and m′ are indistinguishable according to an
equivalence relation I if m I m′. Two particular relations that we use are Id
and All introduced by the following definition:

Definition 1 (Id and All relations) Assuming that M ranges over all possible
memories, define Id , {(m, m) |m ∈ M} and All , {(m, m′) |m, m′ ∈ M}

Assume an extension of memory mappings from variables to expressions, so that
m(e) corresponds to the value of expression e in memory m. We also introduce
an indistinguishability induced by a particular set of expressions.

FP7-ICT-2009-5
Project No. 256964



D3.1: Confidentiality and Integrity Policies 16/97

Definition 2 (Indistinguishability induced by E) Given a set of expressions E ,
define indistinguishability induced by E as Ind(E) , {(m, m′) | ∀e ∈ E . m(e) =
m′(e)}.

In set-theoretical terminology, operator Ind(E) is the kernel of the function that
maps memories to values according to a given expression. When E consists of a
single expression e we often write Ind(e) instead of Ind({e}).

Restriction We define an operator of restriction induced by a set of variables.
The operator is useful in the following examples and in the translation in Sec-
tion 2.2.1.

Definition 3 (Restriction induced by variables X) Given a set of variables X ,
define restriction induced by X to be a relation S(X) , Ind({y | y 6∈ X}) i.e.,
indistinguishability relation for all variables y that are different from the ones
in X .

It can be easily shown that for disjoint sets of variables X and Y it holds that
S(X ∪ Y ) = S(X) ∪ S(Y ). We often omit the set notation and write S(x, y)
for S({x, y}).

Example: Consider memory with three variables x, y and z, and relation S(z).
According to Def. 3, S(z) = Ind({x, y}) = {m, m′ | m(x) = m′(x) ∧ m(y) =
m′(y)}. Here S(z) relates memories that must agree on all variables but z. In
particular, given memories m1 in which x 7→ 1, y 7→ 1, z 7→ 1, m2 in which
x 7→ 1, y 7→ 1, z 7→ 0, and m3 in which x 7→ 1, y 7→ 2, z 7→ 1 we have that
m1 S(z) m2 but not m1 S(z) m3.

Confidentiality policies Confidentiality policy is a mapping from security levels
in L to corresponding indistinguishability relations. Consider an example secu-
rity lattice consisting of three security levels L, M, H , such that L v M v H .
Assume also that our memory contains two variables x and y, and consider a
confidentiality policy I such that I(L) = All , I(M) = S(x), and I(H) = Id

According to this policy, an attacker at level L can observe no part of the state,
which is specified by I(L) = All . An attacker at level M can not observe the
value of x but may observe the value of y. This is specified by using a restriction
induced by x for I(M). Finally, I(H) establishes that an attacker at level H can
observe all variables.

Say that a confidentiality policy I is well-formed when I(>) = Id , where
> is the most restrictive element in L. Moreover, for any two labels ` v `′ it
must hold that I(`) ⊇ I(`′). Our example policy above is well-formed. Indeed,
I(H) = Id and I(L) = All ⊇ I(M) = S(x) = Ind(y) ⊇ I(H) = Id . It is
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also easy to show that a policy obtained from point-wise union and intersection of
well-formed policies is well-formed. The rest of the work assumes that all policies
are well-formed.

2.2.1 Decentralized policies

In a decentralized setting every principal provides its confidentiality policy. We
denote a confidentiality policy of principal p as Ip. In particular, Ip(`) is a re-
lation specifying what memories must be indistinguishable at levels ` and below
according to principal p. Given two principals p and q with policies Ip and Iq, the
combination of these policies is policy I ′ s.t. for all ` we have I ′(`) = Ip(`)∪Iq(`).
Note that I ′ combines restrictions of both p and q and is as restrictive as both Ip

and Iq. The following definition generalizes combination of trusted policies.

Definition 4 (Combination of confidentiality policies) Given a number of prin-
cipals p1 . . . pn with policies Ipi

, 1 ≤ i ≤ n, the combination of these policies is a
policy I ′ such that for all ` it holds that I ′(`) =

⋃
i Ipi

(`).

Example: Consider a lattice with three levels L, M , and H as before and a
memory with two variables x and y. Consider two principals p and q with the
policies Ip(L) = All , Ip(M) = Ind(x), Ip(H) = Id , Iq(L) = All , Iq(M) =
Ind(y), Iq(H) = Id . According to these policies p and q have different views on
what can be observable at level M . Combining these two policies, we obtain a
policy I ′, such that I ′(L) = All , I ′(M) = All , and I ′(H) = Id . Combining
restrictions of both p and q means I ′(M) allows an attacker at level M to observe
neither x nor y.

Declassification Declassification corresponds to relaxing individual policies Ip.
We assume that every principal provides a set of escape hatches [106] that corre-
spond to that principal’s view on what data can be declassified.

Definition 5 (Escape hatches) An escape hatch is a pair (e, `) where e is a de-
classification expression, and ` is a level to which e may be declassified.

Given a set of escape hatches Ep for principal p and an initial indistinguishabil-
ity policy of this principal Ip we can obtain a less restrictive indistinguishability
policy as follows.

Definition 6 Given a confidentiality policy I and a set of escape hatches E , let de-
classification operator D return a policy that relaxes I with E . We define D point-
wise for every level ` so that D(I, E)(`) , I(`)∩ Ind(E`) where E` = {e | (e, `′) ∈
E ∧ `′ v `} is the selection of escape hatches from E that are observable at `.

FP7-ICT-2009-5
Project No. 256964



D3.1: Confidentiality and Integrity Policies 18/97

` Ip(`) Iq(`) D(Ip, Ep)(`) D(Iq, Eq)(`)
H Id Id Id Id
L S(x) All S(x) ∩ Ind(x) Ind(x + y)

Figure 1: Declassification and composite policies

Example: Consider Ip as in Section 2.2.1 and escape hatch (y, L). Let us
assume I ′ = D(Ip, {(y, L)}). We have I ′(L) = Ind(x), I ′(M) = Id , and I ′(H) =
Id .

Example: declassification and composite policies. Consider again memory
with two variables x and y, a simple two-level security lattice with security levels
L and H such that L v H , and two principals p and q. Assume that p’s pol-
icy specifies that a low attacker cannot observe x, and that q specifies that low
observer cannot observe any parts of the memory. The corresponding security
policies can be given by the second and third columns of Figure 1, where S(x) =
Ind(y). The combination of policies of both p and q at level L is Ind(y) ∪ All =
All . That is, principals agree on no information being observable to an adversary
at the level L.

Assume principal p declassifies the value of x to L, and principal q declassifies
the value of x+y to L, i.e., Ep = {(x, L)} and Eq = {(x+y, L)}. The correspond-
ing policies are given by the last two columns of Figure 1. The result of combining
policies at level L is captured by the relation (Ind(y)∩ Ind(x))∪ Ind(x+ y) which
is equivalent to Ind(x + y). That is, both principals allow x + y to be observed at
level L.

Security Our security condition is based on decentralized confidentiality poli-
cies. For generality, this section uses an abstract notion of a system with memory,
denoted by S(·). A transition of system S(m) with memory m to a final state with
memory m′ is written as S(m) ⇓ m′. Section 2.3 instantiates this abstraction with
standard program configurations. We call our security condition decentralized
delimited release (DDR).

Definition 7 (Batch-style DDR) Assume principals p1, . . . , pn with confidential-
ity policies I1 . . . In and declassification policies given by escape hatch sets E1 . . . En.
Say that a system with memory S(·) satisfies decentralized delimited release when
for every level ` and for all memories m1, m2 for which m1

⋃
1≤i≤n D(Ii, Ei)(`)

m2 it holds that whenever S(m1) ⇓ m′
1 and S(m2) ⇓ m′

2 it must be that m′
1

⋃
i Ii(`)

m′
2.

DDR borrows its intuition from the original definition of delimited release [106],
and generalizes it to the case of several principles. In fact, in case of a single
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principal this definition matches the original definition in [106].
The key element of this definition is that it prevents laundering attacks. To

see an example of a laundering attack, consider the following examples. Assume
a memory with three variables x, y, z and individual policies of two principals p
and q, as shown in the second and third columns of Figure 2. Here S(x, y) is
restriction induced by x and y, and S(x, y) = Ind(z), i.e., this relation allows only
variable z to be observable.

Assume escape hatch sets where p declassifies x + y to L, i.e., Ep = {(x +
y, L)}, and q declassifies both x and y individually to L, i.e., Eq = {(x, L), (y, L)}.
Taking the escape hatches into account we obtain the relations shown by the last
two columns of Figure 2. According to these policies the program z := x+y is se-
cure. On the other hand the program x := y; z := x+y is insecure. To see this con-
sider two memories m1 and m2 where in m1 we have x 7→ 1, y 7→ 1, z 7→ 0 and in
m2 we have x 7→ 0, y 7→ 2, z 7→ 0. We have that m1 D(Ip, Ep)(L) ∪ D(Iq, Eq)(L)
m2, but not m′

1 Ip(L) ∪ Iq(L) m′
2.

DLM0 We adopt the Decentralized Label Model (DLM) [88] as our model of
expressing security policies sans actsfor relation, that we dub DLM0 . We nev-
ertheless, retain top and bottom principals ⊥ and > that allow us to express the
most and the least restrictive security policies. In DLM a security level of a vari-
able records policy owners, reviewed below. On the intuitive level policy owner
is a principal who cares about the sensitivity of the data. This is more than simply
a principal who can read data — not every principal who reads data is necessarily
interested in preserving its confidentiality.

DLM policies are the basic building blocks for expressing security restrictions
by principals. A (confidentiality) policy is written o → r1, . . . , rn, where o is the
owner of the policy, and r1, . . . , rn is the set of readers. Here principal o restricts
the flow of data to the principals in the readers set. For example, in the policy
Alice → Bob,Carol Alice constraints the set of readers to only Bob, Carol, and
herself (the owner is implicitly a reader). Similarly, a policy Carol → Carol
restricts all but Carol from reading data.

Security labels, denoted by `, are either DLM policies or are composed from
other labels in one of the two ways: (i) conjunction of two labels, written `1 t `2,
is a label that enforces restrictions of both `1 and `2. (ii) disjunction of two labels,

` Ip(`) Iq(`) D(Ip, Ep)(`) D(Iq, Eq)(`)
H Id Id Id Id
L S(x, y) S(x, y) S(x, y) ∩ Ind(x + y) S(x, y) ∩ Ind(x) ∩ Ind(y)

Figure 2: Policies for example laundering attack
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written `1 u `2, is a label that enforces restrictions of either `1 or `2. An example
of a conjunction label is {Alice → Bob,Carol}t{Carol → Carol}. Carol is the
only reader; because of the Carol’s policy, this label restricts either Alice or Bob
from reading data. Disjunction label {Alice → Alice} u {Bob → Bob} allows
both Alice and Bob to read data.

Labels can be ordered by the “no more restrictive than” [90, 38] relation: `1 v
`2 when `1 restricts data no more than `2 does. We use {⊥ → ⊥} to denote the
least restrictive label (also denoted simply ⊥), i.e., for all ` it holds that {⊥ →
⊥} v `. For example, {Alice → Alice,Bob} v {Alice → Alice}, because
in the right label, Alice imposes stricter restrictions by allowing only her to be
the reader. However (assuming there is no actsfor relationship between Alice and
Bob), {Alice → Bob} 6v {Bob → Alice}. Here Alice’s constraints are not
satisfied. Her label on the left restricts the flow to Bob, but there are no Alice’s
policies on the right.

2.2.2 From DLM0 to families of indistinguishability relations

This section shows how DLM0 labels can be translated to confidentiality policies.
The translation is parametrized by the principals. We define two operators in this
translation — the top level translation operator T̃p and a helper operator Tp. The
top level translation operator T̃p, that returns a confidentiality policy for principal
p, takes the variable environment Γ as a single argument. It is defined so that
when Γ = ∅ then in the resulting confidentiality policy T̃p(Γ), the corresponding
indistinguishability relation for all labels ` is Id . This indeed matches the DLM
intuition that no restrictions imply the most permissive confidentiality policy. To
translate restrictions that are captured by DLM labels, we define a helper operator
Tp(Ip, `, x).

Definition 8 (Translation of a single label Tp) Given a principal p with an ini-
tial policy Ip, label `, and variable x, define Tp(Ip, `, x) inductively based on the
structure of `.

case ` is an empty label Return Ip.

case ` is `′ t {q → ~r} such that q 6= p and q 6= > Return Tp(Ip, `
′, x).

case ` is `′ t {q → ~r} such that q = p or q = > Define policy I ′p, where for all

`′′ let I ′p(`
′′) =

{
Ip(`

′′) ∪ S(x) if {q →~r} 6v `′′

Ip(`
′′) otherwise

and return Tp(I
′
p, `

′, x).
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case ` is `′ u {q → ~r} such that q = p or q = > Define policy I ′p where for all

`′′ let I ′p(`
′′) =

{
Ip(`

′′) ∪ S(x) if {q →~r} 6v `′′ ∧ `′ 6v `′′

Ip(`
′′) otherwise

and return

Tp(I
′
p, `

′, x).

With the definition of Tp at hand we define the top-level translation operator T̃p.

Definition 9 (Translation of DLM0 policies) Assume that Γ maps variables to
DLM0 labels. Define an operator T̃p that translates restrictions recorded in Γ to
confidentiality policies as follows. We let T̃p(∅) = Ĩd , when Γ = ∅, and otherwise
T̃p(x 7→ `; Γ′) = Tp(T̃ p(Γ

′), `, x). Here Ĩd is a policy s.t. for all levels ` it holds
Ĩd(`) = Id .

Example: Consider memory consisting of four variables x, y, z and w. As-
sume two principals p and q, and variable environment Γ, s.t. Γ(x) = {p →
p}, Γ(y) = {q → q}, Γ(z) = {p → p, q} t {q → p, q}, and Γ(w) = {p →
p} u {q → q}. Translation of labels in Γ is represented by the second and third
columns in the table below.

` T̃p(Γ)(`) T̃q(Γ)(`) D(T̃p(Γ), Ep)(`) D(T̃q(Γ), Eq)(`)
{> → >} Id Id Id Id
{p → p} Id S(y) Id S(y) ∩ Ind(x + y)
{q → q} S(x) Id S(x) ∩ Ind(x + y) Id
{p → p, q} t {q → p, q} S(x) S(y) S(x) ∩ Ind(x + y) S(y) ∩ Ind(x + y)
{p → p} u {q → q} S(x) S(y) S(x) S(y)
{⊥ → ⊥} S(x) S(y) S(x) S(y)

Here S(x) = Ind(y) ∩ Ind(z) ∩ Ind(w) and S(y) = Ind(x) ∩ Ind(z) ∩ Ind(w).
Consider escape hatches provided by each principals such that Ep = Eq = {(x +
y, {p → p, q} t {q → p, q})}. Taking escape hatches into account the policies
obtained from declassification operator are illustrated in fourth and fifth columns
of the table above.

2.3 Enforcement
This section illustrates the realizability of our framework for a simple imperative
language. We formalize the language along with a runtime enforcement mecha-
nism that ensures security.

Language and semantics The syntax of the language is displayed in Figure 3.
Expressions e operate on values n and variables x and might involve composition
with operator op. Commands c are standard imperative commands. The only non-
standard primitive in the language is a declassification primitive declassify(p, e, `)
that declares an escape hatch (e, `) of principal p.
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e ::= n | x | e op e

c ::= skip | x := e | c; c | declassify(p, e, `) |
if e then c1 else c2 | while e do c

Figure 3: Syntax

〈declassify(p, e, `), m〉d(p,e,`)−→ 〈stop, m〉
m(e) = v

〈x := e,m〉a(x,e,m)−→ 〈stop, m[x 7→ v]〉
m(e) = n n 6= 0 =⇒ i = 1 n = 0 =⇒ i = 2

〈if e then c1 else c2, m〉
b(e)−→〈ci; end , m〉

〈end , m〉 f−→〈stop, m〉

Figure 4: Monitored semantics: selected rules

〈st , i, E , Γ〉 b(e)−→〈lev(e) : st , i, E , Γ〉 〈hd : st , i, E , Γ〉 f−→〈st , i, E , Γ〉

〈st , i, E , Γ〉d(p,e,`)−→ 〈st , i, E [p 7→ Ep ∪ {(e, `, lev(st))}], Γ〉

lev(st) v Γ(x) ` , substEH(lev(e), x, e, E , Γ) lev(e) 6v ` =⇒ m(e) = i(e)

〈st , i, E , Γ〉a(x,e,m)−→ 〈st , i, E , Γ[x 7→ lev(st) t `]〉

substEH({o → r̃}, x, e, E , Γ) , {o → r̃} u {` | (e, `, pc) ∈ Eo ∧ pc v Γ(x)}
substEH(`1 t `2, x, e, E , Γ) , substEH(`1, x, e, E , Γ) t substEH(`2, x, e, E , Γ)

substEH(`1 u `2, x, e, E , Γ) , substEH(`1, x, e, E , Γ) u substEH(`2, x, e, E , Γ)

Figure 5: Monitor semantics: selected rules
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Figure 4 contains the semantic rules for evaluating commands. A memory is a
mapping from variables to values, where values range over some fixed set of val-
ues (say, without loss of generality, the set of integers). We assume an extension
of memories to expressions that is computed using a semantic interpretation of
constants as values and operators as total functions on values. This allows us writ-
ing m(e) for the value of expression e in memory m. A configuration has the form
〈c, m〉 where c is a command in the language and m is a memory. A transition has
the form 〈c, m〉 β−→〈c′, m′〉 representing a computation step from configuration
〈c, m〉 to 〈c′, m′〉. Events β are there to communicate relevant information about
program execution to an execution monitor (this style of presenting monitors fol-
lows recent work on information-flow monitoring, e.g., [107, 10]). When events
are unimportant, we may omit explicitly writing them out as in 〈c, m〉−→〈c′, m′〉.
The meaning of the particular events is spelled out in the description of the moni-
tor below.

Monitor Our enforcement mechanism is a runtime monitor. Listening to a given
program event, the monitor either grants execution (possibly updating its inter-
nal state) or blocks it. Following the idea sketched in [78], we obtain security
by requiring two conditions on declassification (in addition to standard tracking
“regular” flows orthogonal to declassification). The first condition is to check that
all declassifications are allowed. The second condition ensures that the value of
an escape hatch expression has not changed since the start of the program. The
former is in charge of the who dimension of declassification, preventing release to
unauthorized principals, whereas the latter controls the what dimension, prevent-
ing information laundering. Section 2.5 discuses these and other dimensions of
declassification [110] in further detail.

Figure 5 presents selected monitor rules. Monitor configurations have the form
〈st , i, E , Γ〉, where st is a stack of security levels, i stores the initial program
memory, E is an indexed collection of sets of escape hatches, and Γ is the current
security environment. Escape hatches are also extended to the form (e, `, pc),
where pc records the level of the monitor stack when that escape hatch has been
added. The monitor features a form of flow-sensitivity: security level of a variable
Γ(x) can be updated, but only when the decision to update does not give away
secret information [12].

Assume an overloaded function lev(·) that returns the least upper bound on the
security level of components in the argument. For expressions, the components
are the subexpressions and for lists the components are the list elements. When
monitor stack is empty lev(·) is the least restrictive label ⊥ → ⊥.

The event b(e) is generated by conditionals and loops when branching on an
expression e. This is interesting information for the monitor because it intro-
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duces risks for implicit information flow [49] through control-flow structure of the
program. For example, program if h then l := 1 else l := 0 leaks whether
the initial value of (secret) variable h is (non)zero into the final value of (public)
variable l. The essence of an implicit flow is a public side effect in a secret com-
putation context. To record the computation context, we keep track of the security
levels of the variables branched on. Thus, the monitor always accepts branching
on an expression, pushing the level of the expression on the stack. The event f is
generated by conditionals and loops on reaching a joint point of branching. The
monitor always accepts this event, popping the top security level from the stack.
The event d(p, e, `) is generated upon declassification of expression e to level ` by
principal p. In response, the monitor includes the newly declared escape hatch in
its environment and records the current level of the stack lev(st).

The event a(x, e, m) is generated by assignment of an expression e to a vari-
able x in memory m. First, the monitor blocks implicit flows by requiring that
the level of the x is at least as restrictive as the least upper bound of the security
levels on the stack. Next, the monitor checks if this assignment can be treated as
a declassification. The operator substEH performs a label substitution and returns
the least restrictive label that can be obtained by using declassifications in E . Note
that all information used by substEH check is bounded by Γ(x) — we only look
up escape hatches that syntactically agree on expression e and that were updated
in the contexts with pc v Γ(x). If expression can be declassified to a level that is
more permissive than lev(e), the monitor checks that the escape-hatch expression
must be the same in the initial and current memories. This prevents information
laundering as in declassify(p, h, p → ⊥); h := h′; l := h where h is declared
to be declassified whereas h′ is actually leaked. Finally, the monitor updates the
level of Γ(x), featuring flow-sensitivity mentioned earlier in this Section.

The monitor accepts program l := x + y, if both A’s and B’s escape hatches
contain x + y, and rejects it if either A or B do not explicitly list x + y in their
escape hatches.

While, as we will show, the enforcement is sound, it is obviously incomplete.
In the setting of the example above, the program is rejected when A’s escape-hatch
set is {x} and B’s is {y}. A and B are willing to release all of their data, and so
the program is rightfully accepted secure by the security definition. However, the
monitor rejects the program because expression x + y is not found in the escape-
hatch sets.

Soundness The monitor guarantees secure execution in the presence of mutual
distrust. We instantiate the notion of system with memories of Definition 7 with
monitored program configurations (〈c, m〉, 〈st , i, E , Γ〉). Assume all declassifi-
cation policies are expressed in E and c contains no further declassify state-
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ments. This is consistent with our implementation (cf. Section 2.4) in which
escape hatches are collected at parse time. We write (〈c, m〉, 〈st , i, E , Γ〉) ⇓ m′, Γ′

when (〈c, m〉, 〈st , i, E , Γ〉) −→∗(〈stop, m′〉, 〈st ′, i, E , Γ′〉), where −→∗ is a transi-
tive closure of −→. Assume principals p1, . . . , pn with individual declassification
policies Epi

. Formally, we have:

Theorem 1 (Soundness) Assume principals p1, . . . , pn with initial DLM0 poli-
cies expressed in the environment Γ and declassification policies expressed by
the collection of sets of escape hatches E , indexed by pi. Consider program c
free of declassify statements. Then for all levels ` and memories m1, m2 s.t.
m1

⋃
p D(T̃p(Γ), Ep)(`) m2 if (〈c, m1〉, 〈ε, m1, E , Γ〉) ⇓ m′

1, Γ
′
1, and (〈c, m2〉,

〈ε, m2, E , Γ〉) ⇓ m′
2, Γ

′
2, then

⋃
p T̃p(Γ

′
1)(`) =

⋃
p T̃ p(Γ

′
2)(`) and m′

1

⋃
p T̃p(Γ

′
1)(`)

m′
2.

The proof of Theorem 1 is available in the accompanying technical report [80].
Example: We revisit the example with aggregate computation from Section 2.2.1.

Consider variable environment consisting of three variables x, y and z. Assume
two principals p and q s.t. Γ(x) = {p → p}, Γ(y) = {q → q}, and Γ(z) =
{p → p, q} t {q → p, q}. and escape hatch sets for every principal s.t. Ep =
Eq = {(x + y, {p → p, q} t {q → p, q},⊥ → ⊥)}. Then basic declassifi-
cation of the form z := x + y is accepted, while laundering as in the program
x := y; z := x + y is rejected.

2.4 Experiments
Next, we present the experiments conducted on enforcement of the monitor in
practice. The inlining transformation converts a program in a language from Sec-
tion 2.3 into a program in JavaScript with inlined security checks. In this exper-
iment we have successfully implemented two scenarios in a restricted subset of
JavaScript.

Experiment setup To implement runtime source transformation we need func-
tionality for parsing and rewriting of JavaScript code, written in JavaScript. We
use ANTLR [5] to generate such a parser/rewriter from a JavaScript grammar. The
generated parser is 7650 LOC of JavaScript, not counting additional 165 LOC for
the user-defined JavaScript and 6139 LOC in the runtime library. For perfor-
mance, the code can be further reduced using JavaScript compression tools. All
sources are available on demand.

The monitor must be inlined before the code is parsed by the browser, or else
the code is executed unmonitored. The Opera browser [95] allows the user to
include privileged JavaScript called “User JavaScript”. User JavaScript can access
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functions and events not accessible to ordinary JavaScript, including the event
“BeforeScript”, that enables rewriting the script source before the source reaches
the browser’s parser. This allows us to inline the monitor whenever a new script
is loaded.

This approach introduces two sources of runtime overhead. The first is the
parsing and rewriting, performed once per code segment. The second is the ex-
ecution of the inlined monitor. Previous work [82] shows the total overhead of
2–10 times the untransformed runtime, depending on the code structure of, the
browser, and the system used.

One alternative to implementing the monitor is using aspect-oriented tech-
niques along the lines of, e.g., [81]. However, such an implementation would
demand low-level access to program operations. For example, performing an as-
signment or reaching a joint point must be observable events in order to serve as
pointcuts.

Transformation The generated parser parses and, in the process, rewrites the
code, transforming it on the fly. If the parser cannot parse the input it throws an
error and the code is not evaluated by the browser. The monitored code is hence
limited by the parser.

The source language is a subset of JavaScript, as described in Section 2.3.
The target language is full JavaScript. This means there are no restrictions on
the monitor itself, only on the code being monitored. We identify different stages
in the transformation that are closely related to the stages of the browser as it
requests content. While other JavaScript-specific features, such as prototyping
and objects, would make an interesting complement, more research on how such
features affect information-flow analysis is required before extending the language
and incorporating them in the framework.

Transformation in stages Based on information available at a given moment,
only certain actions can be taken. Thus, we distinguish between parse-time and
run-time.

Parse-time As scripts are encountered we enumerate their origins and for each
origin load the associated escape hatches and initial levels for variables. The
scripts are parsed on the fly. During parsing, when a security critical part of
the source is encountered, we rewrite the source inlining the monitor according
to a set of rules. Because JavaScript lacks a declassification primitive, unlike the
monitor in Section 2.3, escape hatches are defined at parse-time. Note that while
it is clear at parse-time which variables are used in an expression, their run-time
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values are unknown. This is crucial for declassification as it relies on which vari-
ables are used in expressions to determine which information to declassify. This
transformation is detailed below.

var x; // User variable
var _x_; // Level of x
var __x; // Initial value

of x
var _pc; // Special

variable

Listing 1: Naming
convention

Run-time At run-time, as the program is eval-
uated, all variables have their actual values, but
when following an execution path we lose informa-
tion about the control-flow structure of the program.
Thus, the inlining transformation needs to encode
necessary control-flow structure information for the
monitor. As the transformed script is executed, the
monitor validates the inlined checks.

Shadow variables To track information flow in the program we use shadow
variables. Two kinds of shadow variables are used: one for the level of the vari-
able, and one for its initial value. The shadow variables that hold the initial values
are set when the corresponding variable is declared, while the shadow variable
that hold the level are updated whenever the corresponding variables are initially
assigned. The set of shadow variables corresponds to Γ in the formal monitor.
Also, a small set of monitor specific variables is described below.

To prevent the code being monitored from interfering with state of the monitor,
the shadow variables must be isolated. One could create a separate namespace for
shadow variables, with minimal impact on the source program. The drawback is
mimicking the scoping and variable lookup mechanisms of JavaScript, to prevent
clashes between equally named variables from different scopes. Implementing
this can be non-trivial.

Antoher possibility is to reserve an infrequently used character, such as “_”,
for shadow variables, thereby excluding it from the set of allowed characters for
identifiers in the source language. This would prevent valid code, according to the
parser, from referring to variables using this character. The benefit in this case is
that we can piggy-back on JavaScripts built in scoping mechanism. The drawback
is that we moderately restrict the set of valid programs. As a design choice, we
chose this option. The chosen naming convention can be seen below in Figure 1.

Special variables A few special variables exist to store the state of the monitor
at run-time. For tracking implicit informations flows, the level of the cusrrent
execution context is stored in the special variable _pc. The _pc works like a stack
and is updated whenever a new execution context is entered. The variable _E

stores all escape hatches and their associated levels. Finally the variable _init

stores all initial levels of variables as defined by the owner of each variable.
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Transformation rules We focus on the interesting cases of the transformation:
assignment, declassification, and branching.

// Implicit flow check
while(!_pc.leq(_x_));
if (’y+z’ in _E) {

// Laundering check
while((__y+__z)!=(y+

z));
_x_=_pc.join(_E[’y+z

’]);
} else {

_x_=_pc.join(_y_,_z_
)

}
x=y+z;

Listing 2: Assignment
rule

Assignment and declassification Following the se-
mantics in Figure 4, the transformed code updates both
the value of variable being assigned and the level of the
corresponding shadow variable. Which level it updates
to depend on whether the assignment expression is in
the set of escape hatch expressions or not. In the case
of declassification, the level is determined from the es-
cape hatch, otherwise the new level is determined from
the variables used in the expression. When determin-
ing the level, the current level of the execution context
(the _pc) is also considered.

Insecure upgrade refers to assignment of a lower
level variable in a higher level context, implying an
information leak [101]. Insecure upgrade is prevented by checking that the _pc is
less than or equal to the level of the variable [12]. If it is not, the program gets
stuck. Information laundering through declassification is prevented by checking
that the current value is the same as the initial value of the expression. If this
check fails, the program gets stuck. Listing 2 gives an example of an assignment
after transformation.

Branches To prevent implicit information flows, the monitor tracks the level of
the context in each branch. When a branch is encountered, the current level of
the _pc is stored. The _pc is updated with the join of its current level and the level
of the expression that is branched upon. Each of the two alternative code paths are
transformed and after the two branches join again, the level of the _pc before the
branch is restored. In the implementation, management of the _pc is done through
helper methods, e.g., _pc.branch(_x_); if(x){...}; _pc.joinPoint();.

Scenarios We have applied the transformation to two simple yet illustrative sce-
narios. We believe that the approach of using inline transformation and escape
hatches for tracking information flow scales to more complex scenarios: no mat-
ter how complex the language is, the secure use of escape hatches is restricted to
simple patterns (with no modification of data involved in them).

Social E-commercing In this scenario we have an e-commerce site (A) and a
social networking site (B) who have an agreement that the users of the social
networking site get a discount (d) on the products of the e-commerce site if they
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while(!_pc.leq(_d_));
if (’orderOf(f)/p’ in _E) {

while((orderOf(__f)/__p)!=
(orderOf(f)/p));

_d_=_pc.join(_E[’orderOf(f)/p’]);
} else

_d_=_pc.join(_f_,_p_);
d=orderOf(f)/(10*p);

Listing 3: Scenario 1 transformed
while(!_pc.leq(_a_));
if (’a.concat(b)’ in _E) {

while((__a.concat(__b))!=
(a.concat(b)));

_a_=_pc.join(_E[’a.concat(b)’]);
} else

_a_=_pc.join(_a_,_b_);
a = a.concat(b);

Listing 4: Scenario 2 transformed

recommend the store to their friends. The size of the discount is determined by the
price (p) and the number of friends (f ) that the user recommends the site to. To
protect the privacy of the user, the social networking site does not want to release
the exact number of friends so the discount is calculated by the following formula:
d = e(f, p) = orderOf (f)

10∗p . For declassification the A specifies the escape hatch
E(A) = {(e(f, p),⊥)}. An example of the transformed code for this scenario is
available in Listing 3. In this scenario A could maliciously try to find the exact
number of friend recommendations, e.g. using either var x=f; or while(x<f)x
++;. Regardless, since both explicit and implicit information-flows are tracked

this information is labeled as belonging to B.

Contact Swap Consider a mashup where the user can synchronize his contact
lists on several social networking sites. In this scenario we have a truly distributed
and collaborative release of information. The sites need to collaborate on which
contacts to share and whom to share them with. That is, the user might be unwill-
ing to share the contacts marked as business associates across networks, but still
want to share contacts marked as friends. A sample of the transformed scenario
code is available in Listing 4. Here both A and B would need to declassify the
expression a.concat(b) to the other. As can be seen in this sample, the rewritten
code prevents potential attacks. Malicious code could try to launder some other
information by assigning it to either a or b, as such b=secret; a=a.concat(b);.
However, the transformation of this code gets stuck in the initial value check since
the value of b no longer matches its initial value.
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2.5 Related work
There is a large body of work on declassification, much of which is discussed in
Sabelfeld and Sands’ recent overview [110]. The overview presents dimensions
and principles of declassification. The identified dimensions correspond to what
data is released, where and when in the program and by whom. The what and
where dimensions and their combinations have been studied particularly inten-
sively [83, 9, 14, 18, 10].

Our approach integrates the what and who dimensions. It is the who dimen-
sion that has received relatively little attention so far. The precursor to work on
the who dimension in the language-based setting is the decentralized label model
(DLM) [88]. DLM allows principals expressing ownership information as well as
explicit read/write access lists in security labels. Chen and Chong [33] general-
izes DLM to describe a range of owned policies from information flow and access
control to software licensing.

Work on robustness [91, 7], addressed the who dimension by preventing attacker-
controlled data from affecting what is released. Lux and Mantel [76] investigate a
bisimulation-based condition that helps expressing who (or, more precisely, what
input channels) may affect declassification.

Our approach builds on the composite release [78] policy that combines the
what and who dimensions. The escape hatches express the what and the owner-
ship of the principals of the escape-hatch policies expresses the who. However,
for composite release to be allowed, the principals have to syntactically agree on
escape hatches. This work removes this limitation and generalizes the principal
model to handle DLM. The experimental part is another added value with respect
to the previous work [78].

Broberg and Sands [30] describe paralocks, a knowledge-based framework for
expressing declassification and role-based access-control policies. Broberg and
Sands show how to encode DLM’s actsFor relation using paralocks. However,
paralocks do not address the what dimension of declassification.

Our enforcement draws on the ideas sketched by us earlier [78], where we
present considerations for practical enforcement of composite release. The for-
malization of the enforcement fits well into the modular framework [107, 10] for
dynamic information-flow monitoring where the underlying program and monitor
communicate through the interface of events. The what part of declassification is
enforced similarly to [10], by ensuring that the values of escape-hatch expressions
have not been modified. This work extends the formalization of the enforcement
with the who part.

Recent efforts approach inlining for information flow. Chudnov and Nau-
mann [40] inline a flow-sensitive hybrid monitor by Russo and Sabelfeld [101].
The monitor does not offer support for declassification. As in this work, Maga-
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zinius et al. [82] concentrate on inlining purely dynamic monitors under the no-
sensitive-upgrade discipline. The distinct feature is inlining on the fly, which al-
lows a smooth treatment of dynamic code evaluation. While the inlining rules [82]
offer no support for declassification, it is still a useful starting point for our exper-
iments in Section 2.4.

In the web setting, work on language-based sandboxing such as object capabil-
ities (e.g., [87, 77]) is less related because separation does not allow information
flow and intended release. The most closely related project is the Mozilla project
FlowSafe [55] that aims at extending Firefox with runtime information-flow track-
ing, where dynamic information-flow monitoring [12, 13] lies at its core.

2.6 Conclusion
We have presented a framework for specitying and enforcing decentralized infor-
mation-flow policies. The policies express possibilities of collaboration in the
environment of mutual distrust. By default, no information flow is allowed across
different principals. Whenever principals are willing to collaborate, the policy
framework ensures that a piece of data is revealed only if all owners of the data
have provided sufficient authorization for the release. While the policy framework
is independent, we have demonstrated that is realizable with language support. We
have showed how to enforce security by runtime monitoring for a simple impera-
tive language.

A major direction of future work is integrating support for decentralized secu-
rity policies into the line of work on information-flow controls in a web setting,
where we have already investigated the treatment of dynamic code evaluation [10],
timeout events [102], and interaction with the DOM tree [103].

Another intriguing avenue for integration is with Chong’s required release [36]
policy. This policy ensures that if a principal promises to release a piece of data,
then this piece of data must be released. Such a policy is an excellent fit for thwart-
ing attempts of cheating. For example, suppose three principals have agreed on
releasing the average of their three pieces of data to each other. However, a cheat-
ing principal might attempt to withdraw its escape hatch or declassify to a level
that is not sufficient for the other principals to be able to access the result. These
attempts can be prevented by required release, where principals must release data
according to the declared policies.
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3 Multi-run security

3.1 Introduction
Imagine a scenario of a web service with a medical database at the back-end. An-
alysts are allowed to access the database through a web interface. The goal is
to allow deriving interesting statistics (say, by age groups or by larger residential
areas) but disallow leaking sensitive information about individuals. In this sce-
nario, the server-side program that accommodates queries has two inputs: one is
the database itself, which contains sensitive data and which is not controlled by
the attacker, and the other one is a public query that originates from a possibly
malicious analyst. For the program to function, it must have access to the entire
database. At the same time, it must not reveal sensitive data about individual en-
tries in the database. Hence, we are interested in securing information flow from
secret inputs to public outputs. This problem arises both when the code is writ-
ten by non-malicious developers, in which case we want prevent accidental leaks,
and when the code is supplied by untrusted third parties, when we want to prevent
malicious leaks. Settling for the worst case, we do not appeal to trust assumptions.

Language-based information-flow security [105] is focused on providing strong
security guarantees for underlying programs. In the context of confidentiality, it
is intended to prevent information flow from secret inputs to public outputs. The
dominating baseline security policy is noninterference [44, 58] that requires that
a variation of secret input does not result in a variation of public outputs.

However, the state of the art in the area consists of two extremes. One ex-
treme is batch-job program models, where programs are run only once and where
the initial memory is the only input and the final memory is the only output. A
large body of research on language-based information-flow security is limited to
batch-job models. In a language-based setting, noninterference has been largely
considered for batch-job models [122, 105]. Major efforts on information flow
in functional [99], object-oriented [127, 15, 62], concurrent [117, 125, 101], and
other languages [105] assume a batch-job model.

While securing batch-job programs without being over-restrictive is feasible,
the assumption that programs are run only once is often too strong. The other ex-
treme is fully interactive programs with channels for input/output communication.
While this model is more powerful, securing interactive programs is notoriously
hard: intermediate observations can be exploited to leak information [6].

This section explores middle ground between the extremes: batch-job pro-
grams that are allowed to be re-run with new input provided by the attacker. We
believe this model captures many practical scenarios such as the medical database
above. Our attacker model allows issuing queries to the database as described
by a batch-job program whose secret input is the database and public input is
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the attacker-controlled part of the query. The goal is to prevent the attacker from
learning sensitive information by re-running the program with modified public
parameters and observing the public outcome.

Leaks via termination behavior of programs turn out to be the bottleneck for
generalizing batch-job style security to multiple runs. We argue that directly
adapting two major security definitions for batch-job programs, termination-sensitive
and termination-insensitive noninterference, to multi-run execution would result
in further extremes. The former, termination-sensitive noninterference [121, 105],
readily scales up to multiple runs. This definition demands that the public out-
come and termination behavior of the underlying program do not depend on se-
cret data. No run leaks any information about secrets, and so we can safely re-run
programs. Thus, batch-job termination-sensitive security implies multiple-run se-
curity. However, enforcing termination-sensitive noninterference without being
overly restrictive is far from trivial because it requires tracking abnormal termina-
tion and divergence. Typically, enforcement mechanisms (e.g., [121]) place Dra-
conian restrictions whenever abnormal termination is possible in sensitive context.
For example, no sensitive data is allowed in loop guards.

The latter, termination-insensitive noninterference [122, 105], where secrets
are allowed to affect termination behavior, suffers from insecurities in the multi-
run case. Let us illustrate the problem with examples. The program

while h do skip (1)

where h contains a secret, is deemed secure. Termination-insensitive noninter-
ference quantifies over all possible input memories that agree on the public part
and makes sure that terminating runs agree on the public part of the final memo-
ries. The termination behavior is not considered to have a significant effect, even
though the termination depends on secret data. Although the condition quantifies
over possible runs, its guarantees are only about differences between two single
runs. The implicit assumption is that the program is run only once. A common
argument is that if a batch-job program that satisfies termination-insensitive non-
interference is run only once, then it leaks at most one bit [6].

With the same rationale, flavors of this program are also accepted by main-
stream information-flow security tools Jif [92], FlowCaml [114], and the SPARK
Examiner [16, 32] for Java, Caml, and Ada, respectively.

Similarly, the program

while h = l do skip (2)

where h contains a secret and l is an attacker-controlled public variable, is also
considered secure.
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However, the single-run assumption is in many cases inadequate. As in the
database scenario above, attackers are often capable of re-running the program.
Further, in a smartcard setting, the attacker may try to leak the secret key by mul-
tiple attempts of feeding public inputs and observe the properties of public out-
puts. A web attacker can initiate multiple runs of a server-side computation that
involves secrets by providing a request with public input. Similarly, the attacker
can initiate multi-run computation on the client side of an honest user by provid-
ing scripts that keep re-running after recovering from divergence (rather straight-
forward to accomplish with the modern browsers’ interpretation of JavaScript).
A recent exploit of ASP.NET analyzes the difference between error messages of
multiple requests to collect information for a padding oracle attack [100].

This ability does not make a difference for program 1 (given the value of the
secret is unchanged between the runs), but it is fatal for program 2: the attacker
can learn the entire secret by brute-force guessing the value of h with different
choices for l. Multi-run leaks are particularly devastating for single-run secure
programs like:

while h&&l do skip (3)

where && is the bitwise “and” operation. By walking through the bits of h in sub-
sequent runs, the attacker can learn the entire value in linear time (of the bit-size of
the secret) bit-by-bit. Thus, secrets can be leaked in their entirety by multiple runs
of programs that are single-run secure. A quick experiment with a Jif-certified
program that contains a termination leak of this kind shows that it is straightfor-
ward to leak one secret bit per second even on a modest modern desktop machine
(tested with Jif 3.0). This implies that a credit card number can be leaked within
a minute. The Jif program and a simple Python script that exploits its termination
leak are shown in Appendix B of [104].

Seeking to avoid the extremes, we present a framework for specifying and en-
forcing multi-run security. For specification, we are inspired on knowledge-based
attacker models [51, 8]. The policy framework is based on tracking the attacker’s
knowledge about secrets obtained by multiple program runs. The multi-run set-
ting for such a framework is novel. The framework supports possibilities for in-
tended information release (illustrated by examples below). Further, it connects
to quantitative security, where we reason about how many bits of information can
be leaked by multiple program runs.

For enforcement, we are inspired by previous work on robustness [124, 91, 7].
The key ingredient of our type-based enforcement for multi-run security is pre-
venting the dangerous combination of attacker-controlled data and secret data
from affecting program termination. It is particularly gratifying that we can draw
on the type system for robustness for enforcing a policy that it has not been de-
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signed for. This connection leads us to clean enforcement, providing a simple
solution to a nontrivial problem of multi-run security.

For information-flow tracking, we deploy data labels that combine confiden-
tiality and integrity information. Confidentiality distinguishes secret information
from public by high and low confidentiality labels. Integrity distinguishes un-
trusted information from trusted by low and high integrity labels. For confiden-
tiality the use of high information is more restrictive: secrets may not leak to
public; and dually for integrity use of low is restricted: untrusted data may not
affect trusted. Typically, lattices [48] are used to reason about more complex
structures than low/high for confidentiality and integrity. Of particular interest to
us are product lattices that combine confidentiality and integrity labels. In the ex-
ample of a product lattice that combines two low/high lattices, the top element is
high confidentiality and low integrity. Data at this level is most restrictive to use.
The bottom element is low confidentiality and high integrity, which may arbitrar-
ily affect data at other levels. Integrity plays a key role for the enforcement: the
enforcement ensures that combinations of high-confidentiality (secret) and low-
integrity (attacked-controlled) data do not affect the termination behavior.

As foreshadowed above, we extend our approach to specify and track inten-
tional information release (or declassification). The extended enforcement guar-
antees that the program does not release more information than described by
escape-hatch [106] expressions. The purpose of escape hatches is to describe
what is allowed to be released. The job of the underlying security condition is
to ensure than nothing else about secret data may be learned by the attacker. For
example, program

l := h%4 (4)

releases two least-significant bits about the secret variable h. When this is desired,
it is expressed in our framework by the escape-hatch expression h%4. The type
system accommodates intentional release by labeling escape-hatch expressions
as low confidentiality and high integrity. Hence, the program above is accepted
while, for example, program

l := h%6 (5)

is rejected because the type system detects a mismatch with the escape hatch h%4.
Next, assuming the same escape-hatch policy h%4, consider the following

program:

while h%4 + l do skip (6)

This program may also release two least-significant bits about h. Indeed, the
attacker may experiment by supplying inputs −2, −1, and 0 for l and observing
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whether the program diverges. Our type system rightfully accepts this program
because the loop guard h%4+l has low integrity and low confidentiality, inheriting
its restrictions from variable l, which has low integrity, and h%4, which has low
confidentiality.

A final example illustrates how intended declassification is distinguished from
unintended. Assuming the escape-hatch policy h, consider the program

h := h′; l := h (7)

that attempts to leak the initial value of h′ by laundering its value through the de-
classified (syntactic) variable h. This program is rejected because the enforcement
mechanism detects that a variable involved in declassification has been modified.

3.2 Security condition
This section presents some key definitions, in particular the definition of when
we consider programs multi-run secure. Command c represents a deterministic
program in the rest of this section. As before, h and l represent secret (high) and
public (low) variables. Without loss of generality, we treat a program as a function
of two inputs (secret and public) coming from some finite domain D, to the set
D ∪ {⊥}. The result c(h, l) expresses the observed low output of the program,
with the special value ⊥ representing nontermination.

Definition 1 (Single-run knowledge) Let c be a program taking two inputs, a
fixed secret one vh and a (non-fixed) public one vl each from some domain D, and
yielding a public output c(vh, vl) ∈ D ∪ {⊥}.

An attacker (with full knowledge of c itself) is allowed to execute c, providing
the public input vl and observing only the public output c(vh, vl). The attacker’s
knowledge of the (fixed) secret input is then represented by the set of values that
would lead to the observed outcome. This set is written as:

kvh
(c, vl) = {x ∈ D | c(x, vl) = c(vh, vl) }

Programs with more than two inputs are modeled by collecting all secret and
public inputs into two separate tuples, and similar for programs which have more
than one output.

Note that by allowing c(vh, vl) to take the special value ⊥ (meaning that c
has an infinite derivation for those inputs), we make nontermination observable.
This is important because in reality, nontermination can for example be (approxi-
mately) inferred from programs that time out.
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Assume an attacker has some previous knowledge of h, represented by the set
K0 ⊆ D. Then the attacker is potentially able to increase that knowledge (which
corresponds to shrinking the set of possibilities) by running the program. The
attacker’s new knowledge will be the single-run knowledge intersected with the
previous knowledge. Repeating this process (possibly with different low inputs)
results in a sequence of increasing knowledge (decreasing sets of possibilities).
For an attacker with no initial knowledge we can simply start with K0 = D.
Obviously, a program may potentially leak more if the attacker gets the chance to
invoke it multiple times and has control over some of the input.

The maximum knowledge attainable by the attacker is the result of the above
process repeated for every possible low input. Note that this models a powerful
attacker, as the number of possibilities is exponential in the bit-size of the input.
This maximum knowledge, or multi-run knowledge is now defined as follows.

Definition 2 (Multi-run knowledge) Let c, vh, vl, and D be as in Definition 1.
The attacker’s knowledge about vh produced by multiple runs of program c is
defined as:

Kvh
(c) =

⋂
vl∈D

kvh
(c, vl)

To highlight the contrast between multi-run knowledge and single-run knowl-
edge captured by the definitions, we come back to the examples from Section 3.1.
Assume D = {0, . . . , 255}. Recall program 1:

while h do skip

The single-run knowledge kvh
(c, vl) for this program is {0}, when c(vh, vl) = vl,

and {1, . . . , 255}, when c(vh, vl) = ⊥. The multi-run knowledge Kvh
(c) is {0},

when vh = 0, and {1, . . . , 255}, when vh 6= 0, which directly corresponds to the
two cases for the single-run knowledge. Recall now program 2:

while h = l do skip

The single-run knowledge kvh
(c, vl) for this program is {0, . . . , vl− 1, vl + 1, . . . ,

255}, when c(vh, vl) = vl, and {vl}, when c(vh, vl) = ⊥. However, the multi-
run knowledge Kvh

(c) is simply {vh}, which corresponds to leaking all of vh into
variable l. The intersection in the definition of multi-run knowledge corresponds
to traversing all possible low inputs in the attempt to match them to vh, which is a
worst-case model for multi-run attackers.

Now that we have definitions of attacker knowledge obtained after running
the program, we wish to express a policy which sets limits on this knowledge.
A knowledge policy states a lower bound on the attacker’s uncertainty by parti-
tioning the input domain into classes. Each class lists values that must remain
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indistinguishable to the attacker. In other words, the attacker may identify from
which class the secret input comes, but any more precision is disallowed. This
view corresponds to partial release [44, 109] of information. This leads to the
following definition.

Definition 3 (Knowledge-policy) A knowledge policy P for an input with do-
main D is a partition of D into classes Pi:

P = {P1, . . . , Pn} Pi ⊆ D i 6= j =⇒ Pi∩Pj = ∅ P1∪ . . .∪Pn = D

For a value v ∈ D we write [[v]]P to represent the class of P to which v belongs.

Note that as a partition of D, a policy represents an equivalence relation on values.
Two values are equivalent if they come from the same class. This equivalence
relation is often referred to as an indistinguishability relation [44, 109].

We illustrate the definition with simple examples. A policy that allows the
attacker no knowledge is simply P = {D}. A policy that allows full knowledge
is {{x} |x ∈ D}. If D is the set of unsigned 8-bit integers, then a policy that
allows the attacker to know the parity of the secret is:{

{0, 2, . . . , 254}, {1, 3, . . . , 255}
}
.

We are now ready to state the formal definition of multi-run secure programs.

Definition 4 (Multi-run security) Let c be a program that takes a secret input vh

and an arbitrary public, attacker-controlled input. c is multi-run secure (or simply
secure) with respect to a knowledge policy P if and only if [[vh]]P ⊆ Kvh

(c).

Observe that multi-run security with policy {D} corresponds to termination-
sensitive noninterference [121, 105] for single runs, which prevents the termina-
tion behavior of the program (as well as its public output) from being affected by
secrets.

Recall programs 4 and 5 from Section 3.1. Program 4 (l := h%4) is secure for
all high input with respect to the policy P = {{0, 4, . . . } , {1, 5, . . . } , {2, 6, . . . } ,
{3, 7, . . . }}. Indeed, the multi-run knowledge from running the program has to
be one of the four sets in the policy because the attacker only learns the two least-
significant bits.

On the other hand, program 5 (l := h%6) is insecure for all high input ac-
cording to the policy P . To illustrate this, take vh = 0. The multi-run knowledge
K0(c) is {0, 6, . . . }, while [[0]]P = {0, 4, . . . } which is clearly not contained in the
knowledge.

As we are interested in an enforcement mechanism that allows limited leaks
through the termination channel, Definition 4 will serve as the basis for a relaxed
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definition which we apply to the enforcement mechanism presented in Section 3.3.
This relaxation draws on ideas from quantitative security. Smith [116] defines the
notion of vulnerability V (X), which is the worst-case probability of guessing the
value of secret X by an adversary in one try. The measure of information quantity
is then defined as − log V (X). Based on the intuition “information leaked = ini-
tial uncertainty - remaining uncertainty”, Smith defines information leakage and
shows that for deterministic programs and uniformly distributed secrets it amounts
to log |S|, where |S| is the size of the set of possible public outputs given the pub-
lic input is fixed. The intuition is that the more different observations the attacker
can observe, the more secret information about might leaked through them. In the
multi-run case, the size of the set of possible outputs translates to the number of
indistinguishability classes for the high input, which, in effect, is the number of
different values Kvh

(c) can take when vh varies. This is in line with Lowe [75],
who measures the number of secret behaviors distinguished by an attacker in a
nondeterministic setting. This motivation brings us to the following definition of
security of programs that operate on uniformly distributed secrets:

Definition 5 (k-bit security) Let c be a program that takes a uniformly distributed
secret input vh and an arbitrary public, attacker-controlled input vl. c is k-bit
secure if k = log n and Kvh

(c) takes at most n distinct values as vh varies.

For example, program 1 is 1-bit secure because there are only two possibilities
for Kvh

(c) as vh varies. On the other hand, program 2 is k-secure, where k is the
bit size of h because Kvh

(c) ranges over all possible singleton sets as vh varies.
1-bit security is a particularly interesting case. Intuitively it means that an

attacker can at most infer that vh is in some set A or that it is in A’s complement. In
an extreme case, either set might contain only one element, meaning the attacker
would know the exact value of that particular vh, but since there are only two
possible “knowledges” this is equivalent to the attacker being allowed only one
boolean test on the secret.

Ultimately we will prove that our enforcement mechanism is multi-run secure
with respect to a policy, with the relaxation that 1-bit leaks are allowed. For sim-
plicity we combine Definition 4 and the 1-bit version of Definition 5 as follows.

Definition 6 (1-bit security w.r.t. a policy) Assume c, vh, vl are as in Definition 5,
and P is a knowledge policy. We say that c is 1-bit secure with respect to P if and
only if for each class Pi ∈ P , Kvh

(c) takes at most two distinct values (knowl-
edges) K1, K2 as vh varies within Pi, and furthermore Pi ⊆ K1 ∪K2.

In other words, Kvh
(c) can vary arbitrarily for vh from different indistinguishabil-

ity classes, but within each class we only allow for revealing one additional bit of
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n ∈ D, x ∈ Vars , op ∈ {+,−, . . . }
e ::= n |x | e op e

c ::= skip |x := e | c; c | if e then c else c | while e do c

Figure 6: Syntax

information. The last part ensures that an attacker cannot otherwise exclude any
values from the policy class of the secret, any value considered impossible in one
knowledge must be considered possible according to the other knowledge.

3.3 Enforcement
We illustrate our approach to enforcement for an imperative language. To keep the
exposition clear, we have deliberately chosen a simple language, but the ideas here
scale to more complex languages. Figure 6 shows the syntax of the language. Ex-
pressions take literals from a finite domain D (e.g., 32-bit integers) and variables
from a set Vars . We present a type system for this language such that typable
programs are robust against multi-run attacks that try to magnify single-run ter-
mination leaks into leaking more than one bit. The type system represents a static
analysis, conveniently referring to security labels for variables and expressions as
security types.

We will continue to treat programs as functions D × D → D ∪ {⊥}, and in
concrete examples the inputs will be represented by the variables h and l. The
final value of l will be the output for terminating programs.

The important feature of this type system is that it does not allow looping
on expressions that both depend on secrets and attacker input. Thus we need to
consider both the confidentiality and integrity levels of expressions at the same
time. To achieve this we label variables with labels from the following product
lattice L that combines confidentiality and integrity.

HL
~~

~ ==
=

HH LL

LH

@@@ ���

Here a label lists first the confidentiality level and then the
integrity level. For example, the attacker provided input l has
level LL (low confidentiality, low integrity) since it is both
known and controlled by the attacker, and the secret input h has
level HH since it is neither. An expression combining a secret
with untrusted input will be assigned level HL (high confiden-
tiality, low integrity). We use the standard symbolsv,t, etc. for lattice operators.
This lattice has been used for enforcing robust declassification [124, 91, 7], which
demands that the attacker may not affect what is released by programs by ensur-
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SKIP
pc ` skip

ASSIGN
lev(e) t pc v lev(x)

pc ` x := e

SEQ
pc ` c1 pc ` c2

pc ` c1; c2
IF

pc t lev(e) ` c1 pc t lev(e) ` c2

pc ` if e then c1 else c2

WHILE
pc t lev(e) ` c pc t lev(e) 6= HL

pc ` while e do c

Figure 7: Typing rules

ing that only high-integrity data can be declassified, and only in a high-integrity
context. The work on robust declassification is a direct inspiration for our treat-
ment of the termination channel in multi-run security. However, as we explain
in Section 3.6, the policy that robust declassification enforces is rather different
from our security model. Our observation that connects robust declassification
with multi-run security enables us to cleanly reuse the enforcement technique, but
still requires us to show soundness with respect to our security goals.

3.4 Enforcing 1-bit security
We start by showing that with a simple type system, we can make sure that typable
programs cannot be used to magnify termination leaks beyond the traditional one-
bit limit. The core idea is that the type system prevents information that is a mix of
secrets and untrusted inputs from affecting termination behavior, by disallowing
it in loop guards.

We equip the set of variables with a function giving the label of each variable,
label : Vars → L. For expressions in general we define the function lev, as-
signing each expression with its security level. Function lev is defined as follows,
pattern matching on the form of expression:

lev(n) = LH lev(x) = label(x) lev(e1 op e2) = lev(e1) t lev(e2)

While variables have their corresponding label as a level, literals are always low
confidentiality and high integrity, as we assume the program source to be public
but trusted. Other expressions take the least upper bound of their component
levels.

Figure 7 gives the typing relation. The typing context consists only of the
level of the program counter, pc. This level represents expressions on which the
control flow context depends, namely if and while guards. If a command c
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is typable under context pc, written pc ` c, the intention is that c does not leak
when executed, even if the execution itself is conditioned on data of level pc or
higher. Branches of an if-command must be typable under the outer pc level joined
with the level of the guard expression (rule IF). The rule ASSIGN uses this to
prevent implicit flows: assignments to a variable are only allowed when both the
expression and the program counter are below or at the same level as the level of
the assigned variable.

The rule WHILE propagates the level of the guard in the same way as IF, but
in addition requires that the guard expression joined with the context pc is strictly
below HL. The intention here is to prevent the attacker from selectively inducing
nontermination that depends on the secret.

For example, program 1

while h do skip

is typable, because the level of the guard is HH . As we show below, this implies
that it only leaks one bit and the attacker is not able to change termination behavior
by varying the public input. Same goes for program

while l do skip

since although the attacker can control termination, it does not reveal anything
about the secret. The level of the guard here is LL. However program 2

while h = l do skip

is not typable, as the level of the guard is HL. Indeed, recall that the attacker
is able to try different inputs until one is found that corresponds to the secret, in
which case the whole of h is revealed.

Our goal is to prove that the type system enforces that programs leak at most
one bit (via a termination leak) even in the multi-run setting. To prove that ty-
pable programs leak at most one bit, we will start by excluding leaks other than
termination leaks. This means that terminating programs satisfy noninterference,
i.e., the observable output is independent of the secret input. First, we show that
programs typable with a high-confidentiality pc cannot modify the low output.

Lemma 1 Let c be a program. If HL ` c or HH ` c, then for any choice of
vh, vl ∈ D, if c(vh, vl) 6= ⊥ then c(vh, vl) = vl.

The proofs of this lemma and other statements can be found in Appendix A of
[104].

We now establish noninterference for terminating runs.

FP7-ICT-2009-5
Project No. 256964



D3.1: Confidentiality and Integrity Policies 43/97

Lemma 2 Assuming a typable program c and ignoring diverging runs, c satisfies
noninterference:

∀vh, vh
′, vl ∈ D : if c(vh, vl) 6= ⊥ 6= c(vh

′, vl) then c(vh, vl) = c(vh
′, vl).

In particular, the above lemma tells us that (ignoring nonterminating runs), the
single-run knowledge is unaffected by variation in the secret input. Thus, consid-
ering nontermination, the attacker can only observe one of two results, meaning
the program only leaks one bit. The following lemma shows that this extends to
the multi-run case, by showing that either termination depends only on the secret,
or only on the public input. This means that the attacker can not improve their
knowledge of vh beyond the one bit already leaked, by varying the public input.

Lemma 3 Assume c is a typable program. Then for arbitrary vh, vh
′, vl, vl

′ ∈ D
either one of the following condition holds.

1. Fixing the secret input, varying the public input reveals nothing:

kvh
(c, vl) = kvh

(c, vl
′)

2. Fixing the public input, varying the secret input reveals nothing:

kvh
(c, vl) = kvh

′(c, vl)

The basic idea of the proof for this lemma, is that using Lemma 2 and assuming
that neither condition holds, we can find a pair of high and low inputs that cause
the program to diverge, while either of them can be combined with other inputs to
cause the program to terminate successfully. By looking at the guard for the loop
that causes divergence, its value must be governed by both high and low data, and
so it cannot possibly have been allowed by the type system. Thus the assumption
that neither condition holds must be false. As before, the full proof is presented in
Appendix A of [104].

We can now use the above results to prove that typable programs leak at most
one bit.

Theorem 1 Assume c is a typable program. Then c leaks at most one bit, i.e., for
all vh ∈ D there are at most two distinct values for Kvh

.

3.5 Enforcing general knowledge policies
We now draw on ideas of delimited release [106] to change our type system so
that it enforces a general knowledge policy. Delimited release specifies a declas-
sification policy as a set of expressions called escape hatches. Such expressions
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can refer to secret variables, but their computed values may be assigned to public
variables. Thus, an escape hatch defines what secret information may be declassi-
fied as public. Note that the value of an escape hatch is not released automatically,
but the program can use it to compute low confidentiality information that is then
released explicitly as the public output.

The knowledge policy, a partition of D, is specified with an expression eP . In
terms of delimited release, this expression is an escape hatch, and to focus on the
interesting ideas of this section we assume it is the only one. Since the point of a
policy expression is to partition the input space of h, any useful policy expression
will only depend on h. Thus, we consider escape hatches that only involve high
variables and generate policies from escape hatches as follows:

Definition 7 An expression e, involving no other variables than h, generates a
knowledge policy P as follows:

P = {P1, . . . , Pn}

where for all v and v′ we have e(v) = e(v′) if and only if [[v]]P = [[v′]]P .

In order to support knowledge policies, we extend the type system with the
possibility of declassification. The escape hatch expression is explicitly declassi-
fied to have the level LH , even though it may involve high confidentiality or low
integrity variables. We adapt the definition of lev accordingly:

lev(e) =


LH if e = eP or e = n

label(x) if e 6= eP and e = x

lev(e1) t lev(e2) if e 6= eP and e = e1 op e2

The only typing rule that needs to be changed from Figure 7 is the one for
assignment, which disallows updates to any variable involved in the escape hatch:

ASSIGN
lev(e) t pc v lev(x) x 6∈ vars(eP )

pc ` x := e

This is done in order to prevent information about the secret input being laundered
through the escape hatch and is standard in delimited release [106]. See Program 7
for an example of laundering.

If the high input is a tuple of multiple high inputs, as described earlier, the
ASSIGN rule should simply require that x is not one of them. We have left it as is
in the interest of readability.

We return to the examples of Section 3.1 to illustrate the soundness and pre-
cision of the enforcement. Program 1 is still typable independently of escape
hatches. Programs 2 and 3 are rightfully rejected in the absence of escape hatches
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because they might leak the entire secret. Given the escape hatch h%4, the se-
cure programs 4 and 6 are accepted by the type system because declassification
relabels h%4 to LH , which is under LL in the lattice, the label of l. Given the
same escape hatch, the insecure program 5 is rejected because h%6 of type HH
is assigned to variable l of type LL. Program 7 is also rejected because variable h
(which is involved in an escape hatch) is modified.

The soundness of the type system is guaranteed by the following theorem.

Theorem 2 Assume c is a typable program and eP is an escape hatch that induces
a policy P . Then c is 1-bit secure with respect to the policy P .

3.6 Related work
Language-based information-flow security is a large and continuously-evolving
field [105]. We focus on discussing most related work on knowledge-based secu-
rity, interactive security, and declassification policies.

Knowledge-based security Dima et al. [51] consider sets as representation of
attacker’s knowledge in nondeterministic systems. Askarov and Sabelfeld [8]
present a knowledge-based condition of gradual release for declassification, as
well as enforcement for a language with communication primitives. Gradual re-
lease allows the knowledge of the attacker to increase only when the program
passes a declassification point.

Van der Meyden [120] expresses intransitive noninterference policies using a
classical model of knowledge in terms of different agents’ views of the world [56].

Banerjee et al. [14] enhance the knowledge-based representation of attackers
with powerful program specification policies. As a result, they are able to express
declassification policies of both what can be released and where in the code.

Askarov and Sabelfeld [10] use knowledge to describe both termination-insensitive
and -sensitive security definitions with possibilities of expressing of what can be
released and where, as well as dynamic enforcement for a language with dynamic
code evaluation and communication primitives.

Broberg and Sands [30] describe paralocks, a knowledge-based framework for
expressing versatile declassification policies, including role-based policies.

Demange and Sands [47] allow tuning sensitivity to (non)termination depend-
ing on the size of the secret that is involved in loop guards: looping is disallowed
when loop guards depend on secrets of small size.

None of the above approaches model the attacker’s knowledge obtained by
running the program multiple times.
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Interactive security Multi-run security is related to interactive security. In par-
ticular, multi-run security of a batch-job program c that operates on secret variable
h and public variable l can be related to single-run security of the following inter-
active program:

h′ := h; while 1 do (in(l); c; out(l); h := h′)

where h′ is an auxiliary variable. This encoding allows us for direct comparison
with security definitions of interactive programs.

Le Guernic et al. [72] as well as Askarov and Sabelfeld [8] ignore diverging
runs of interactive programs, which, as pointed out previously [14, 6], always
allows program like c in the encoding above to be arbitrarily insecure.

ONeil et al. [94] investigate termination-sensitive security for programs that
interact with input/output strategies, where strategies are represented as functions
that compute the next input to the program based on the previous communica-
tion history. Being termination-sensitive and declassification-free, their condition
rejects all of programs 1–7 from Section 3.1, if plugged to the encoding above.

Clark and Hunt [41] show that for deterministic programs, it makes no dif-
ference whether the user is represented by a strategy or an input/output stream.
Askarov et al. [6] and Bohannon et al. [26] consider stream-based termination-
insensitive security. However, as shown in [6], brute-force attacks similar to pro-
grams 2–3 are allowed.

Köpf and Basin [68] propose an information-theoretic model for multi-run
security in the context of side-channel attacks. The timing side channel can be
thought of as a generalization of the termination channel as nontermination man-
ifests itself as long-lasting computation for a real-world attacker. Their model is
based on refining the attacker’s knowledge over multiple runs, well in line with
our approach. However, as the motivation of Köpf and Basin’s model is quan-
titative information leaks, they reason about finite numbers of runs and explore
the space between our single-run and multi-run security definitions. Further, their
enforcement is of rather different nature from ours: it is based on quantitative
approximation using greedy heuristic.

Askarov and Sabelfeld [10] explore stream-based definitions for both termination-
insensitive and -sensitive security in the presence of declassification policies. How-
ever, similar to the approaches above, the termination-sensitive condition rejects
programs all of programs 1–7 and the termination-insensitive condition allows
attacks 2–3, when plugged to the encoding above.

We have studied extensions of the multi-run secure type system presented
here to interactive programs. Maintaining the 1-bit guarantee of termination-
insensitive enforcement across all high inputs is non-trivial, as any public side
effect (both input and output) will reveal information about the program counter
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to an attacker. If such an effect appears after a potentially diverging loop on high
data, this will already leak one bit before the program has stopped. We envision
that full integration of robust declassification and delimited release for interactive
programs might be promising in this direction (see the discussion of dimensions
of declassification below), but we expect problems with permissiveness of the
enforcement. This indicates a fundamental trade-off between interactivity and se-
curity. This section identifies a niche, where it is possible to gain permissiveness
without sacrificing security.

Declassification Recall that our declassification policy is an adaptation of de-
limited release [106]. Similarly to Askarov and Sabelfeld [10], we derive knowl-
edge sets from escape-hatch expressions. The treatment of integrity by the type
system is inspired by robust declassification [124, 91, 7]. Robust declassification
guarantees that the attacker may not affect what is released by programs by en-
suring that only high-integrity data can be declassified, and only in high-integrity
context. In a similar spirit, our type system demands that loop context and guards
may not mix high confidential data with attacker-controlled data.

In order to prevent unintended laundering of secrets, delimited release ensures
that values of escape-hatch expressions do not change within a single run. In gen-
eral, this guarantee does not extend over multiple runs, which potentially provides
a laundering opportunity if the expression depends on data that is provided by an
attacker, or is otherwise non-deterministic between runs. We avoid this issue at its
root by not allowing non-secrets in escape hatches.

As we have foreshadowed earlier, we are able to cleanly reuse the robust de-
classification enforcement technique. However, note that we cannot automatically
extract soundness guarantees from soundness results for robust declassification
(e.g., [91]). The reason is that robust declassification addresses the where di-
mension of declassification: ignoring exactly what is leaked, but making sure the
active attacker may not affect the declassification mechanism to leak more than
the passive attacker. In contrast, our declassification policies are strict about what
is leaked: the escape hatches describe the upper bound on leaks in programs.

Other, less related, work on declassification is described in a recent overview
of the area [110]. The overview is organized by the dimensions of declassification.

3.7 Conclusions
We have showed how that extremes of insecurity (as with termination-insensitive
noninterference) and over-restrictiveness of enforcement (as with termination-
sensitive noninterference) can be avoided when generalizing batch-job security
to multiple runs. Addressing the problem, we have presented a knowledge-based
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framework for specifying and enforcing multi-run security policies. The policy
framework includes possibilities for declassification. The type-based enforcement
tracks both confidentiality and integrity labels and guarantees multi-run security.

We expect interesting implications of our result for multi-threaded programs.
The termination channel can be magnified in single-run multi-threaded programs
in a fashion similar to using multiple runs of sequential programs. Assume we
have as many threads as there are bits in secret h. Then, the multi-threaded pro-
gram, where individual thread i is described as follows

Ti : (while h&&bi do skip); out(i)

where bi contains all zeros in the boolean representation except for bit i, leaks the
entire secret in a single run. Our type-based enforcement can be straightforwardly
applied to prevent this kind of leaks by considering the thread-dependent data
bi as low integrity. We expect that whenever a collection of threads is typable
according to our type system, then the multi-threaded program that consists of
the collection of threads is both single-run and multi-run secure (for a notion of
possibilistic [86, 117, 109] security suitable for reasoning about nondeterministic
programs).

As mentioned earlier, the termination channel can be seen as an instance of the
timing side channel as nontermination manifests itself as long-lasting computation
for a real-world attacker. We can offer protection against timing attacks that is
similar to the protection against termination attacks: when the computation does
not mix secret and attacker-controlled data in branch guards, then the timing leaks
cannot be magnified. Otherwise, we resort to such existing approaches as cross-
copying [3] and predictive black-box mitigation [11].

Note that there is nothing fundamental about our enforcement being static. We
expect a dynamic mechanism, such as a monitor for delimited-release like policies
by Askarov and Sabelfeld [10] to be easily adaptable to dynamically track both
confidentiality and integrity in order to enforce our security condition.

Although this work operates on a simple two-level security lattice, we do not
anticipate difficulties with extending our approach to arbitrary lattices. Requiring
the confidentiality level of a loop guard to be bounded by its integrity level gives
us a way to prevent the dangerous mix of high-confidentiality and low-integrity
data to affect the termination behavior. Other future work focuses on expressing
multi-run security for richer languages. Further, we plan to extend the framework
to take into account modifications of secret data between program runs. We are
also exploring decentralized security policies by knowledge-based representations
of multiple attackers.
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4 Reactive non-interference for the browser

4.1 Introduction: Problem statement
A browser interacts with a variety of web sites, and possibly executes JavaScript
code downloaded from them. In order to make sure that these sites do not interfere
in undesirable ways, today’s browsers enforce the same-origin policy, an access-
control policy where browser resources are tagged with their origin, and access to
resources is limited to code coming from the same origin. Origin is defined as a
triple (protocol, host, port), so two origins are considered to be the same only if
all the elements of their tuples are equal.

The same-origin-policy has many problems, and has been criticized by many
authors [115, 66]. Some of the issues, such as the fact that different browser re-
sources use different definitions of origin, can be considered implementation bugs
or inconsistencies, and they could in principle be addressed without fundamen-
tally changing the same-origin access control policy (even though, as Singh et
al. point out [115], the incompatibility burden of such fixes can be substantial).
While such issues are important, they are not what we try to address here.

Other limitations of the same-origin-policy are more fundamental, and do not
seem to be solvable without significant changes to the policy enforced by the
browser. In particular, there are several scenarios that indicate that a policy based
on non-interference would have advantages over the current access control policy.
A first, very simple, motivating example is a scenario where a website sends code
to perform calculations on user private data.

Example 1 (Tax Calculator) Suppose the fictitious website http://taxcalc.
com offers the service of pre-calculating the amount of tax in function of income,
age, marital status and so forth. The service sends an HTML form for entering
the user’s information, and JavaScript code for calculating the tax based on the
information entered in the form.

The user wants assurance that the information he enters does not leave his
computer — not even to the website providing the service. The same-origin-
policy does not offer any protection for this scenario since the origin of the script
for calculating the tax is the same as the origin of the including page.

More fundamentally, if we assume that further interactions between the user
and the website are essential (for instance to pay for the service), no access-control
policy can provide this assurance: the script needs access to the private data to per-
form its function, and it needs access to the network to send invoicing information
to the service. What is needed is an information flow enforcement mechanism that
can ensure that the script cannot leak private information to the network.
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Example 2 (Flight ticket) Consider an e-commerce site where users can order
flight tickets. Obviously, the user will be fine with sharing some private informa-
tion such as name, birth date and even credit-card information with the website.
However, the user would like to have assurance that this information does not leak
to other sites.

The same-origin-policy provides some protection for this scenario: it ensures
that scripts running in the user’s browser and belonging to web pages from other
origins cannot access the information entered by the user. However, scripts that
are part of the e-commerce web pages will have the same origin, so they can ac-
cess and easily transmit information to other sites. This can be done by initiating
an HTTP request to that other site where some information to be leaked is encoded
in the URL or parameters of the request [65]. The script that leaks the informa-
tion does not necessarily come from the trusted site, there are many ways in which
malicious scripts can find their way into pages from trusted websites. Two com-
mon attack vectors are (1) cross-site scripting (XSS), where a vulnerability in the
server software enables an attacker to inject scripts in the web pages served by the
server [66], and (2) the inclusion of advertisements from third-party ad-providers;
such advertisements are regularly implemented as scripts that run within the same
origin as the including page [119].

An important additional challenge is that for many web applications, some
form of information flow between origins is actually desired. So any proposed
browser security policy should not block such information flows. It is, for in-
stance, common to include content (e.g. images and scripts) from other origins in
web pages. A strict non-interference policy would prohibit such techniques and
hence be strongly incompatible with the current web.

The examples above illustrate that non-interference is a promising candidate
for a (baseline) browser security policy, but two important problems need to be
addressed.

First, an enforcement mechanism for non-interference at the level of the browser
is needed. While several browser security countermeasures based on informa-
tion flow security techniques have been proposed, none of them can enforce non-
interference for the full browser and for a broad class of security lattices in a se-
cure and precise way (see the Related Work section). We propose an enforcement
mechanism, and prove it secure and precise.

Second, non-interference is parameterized with a policy: a poset of security
levels, and an assignment of such levels to browser inputs and outputs. Selecting
suitable policies is a challenge. We analyze several interesting policies and show
that they can securely handle the scenarios above, yet stay compatible with desired
cross-origin information flows such as image and script loading.
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4.2 Background
To address the first problem (the development of a general, secure and precise en-
forcement mechanism for a full browser), we need a formal model of a browser
and a formalization of non-interference for such a model. This section summa-
rizes work by Bohannan et al. on Featherweight Firefox [25] and reactive non-
interference [26] that we build on in this work.

4.2.1 Reactive systems

At the highest level of abstraction, a browser is modeled as a reactive system
[25, 26], a particular kind of automaton that reacts to inputs by changing state and
emitting outputs.

Definition 8 A reactive system is a tuple

(ConsumerState, ProducerState, Input, Output,→)

where→ is a labelled transition system whose states are State = ConsumerState∪
ProducerState and whose labels are Act = Input ∪ Ouput, subject to the con-
straints:

• for all C ∈ ConsumerState, if C
a−→ Q, then a ∈ Input and Q ∈

ProducerState,

• for all P ∈ ProducerState, if P
a−→ Q, then a ∈ Output,

• for all C ∈ ConsumerState and i ∈ Input, there exists a P ∈ ProducerState

such that C
i−→ P , and

• for all P ∈ ProducerState, there exists an o ∈ Output and Q ∈ State
such that P

o−→ Q.

The system is idle and is waiting for inputs in consumer states, and it emits out-
puts in producer states. A reactive system can only handle one input event at a
time (thus correctly modeling the fact that JavaScript event handlers are single
threaded). The definition allows for non-termination: it is possible that the system
never returns to a consumer state. We limit our attention in this work to determin-
istic reactive systems.

Reactive systems transform streams of input events into streams of output
events. A stream is defined as a coinductive interpretation of the grammar S ::=
[] | s :: S, where s ranges over stream elements. A coinductive definition of the
grammar defines the set of finite and infinite objects that can be built with re-
peated applications of the term constructors, so a stream is a finite or infinite list
of elements.

FP7-ICT-2009-5
Project No. 256964



D3.1: Confidentiality and Integrity Policies 52/97

Table 1: Selected user and network I/O events.
User load_in_new_window(url)
input input_text(user_window, nat, string)
User window_opened
output page_loaded(user_window, url, ren-

dered_doc)
page_updated(user_window, ren-
dered_doc)

Network
input

receive(domain, nat, cookie_updates,
resp_body)

Network
output

send(domain, request_uri, cookies, string)

We use metavariables I and O to range over streams of inputs i and outputs o,
respectively. The behavior of a reactive system in a state Q is defined as a relation
between the input streams and output streams.

Definition 9 Coinductively define Q(I) ⇒ O (state Q transforms the input stream
I to the output stream O) by the following rules, where C and P are respectively
consumer and producer states: C([]) ⇒ []

C
i−→ P P (I) ⇒ O

C(i :: I) ⇒ O

P
o−→ Q Q(I) ⇒ O

P (I) ⇒ o :: O

4.2.2 Featherweight Firefox

The notion of reactive system is very abstract. To analyze potential security poli-
cies, we use a browser model that concretizes the abstract states, inputs and out-
puts. The Featherweight Firefox browser model [25] does exactly that. It in-
cludes many browser features such as multiple browser windows; cookies; send-
ing HTTP requests and receiving HTTP responses; essential HTML elements;
building document node trees, and also the basic features of JavaScript. It is im-
plemented as an executable model in OCaml [1].

Featherweight Firefox (FF) is a reactive system, with a much more detailed
definition of the input and output events, and the internal state of the browser.
Input events can either come from the user (loading a URL in a new window
load_in_new_window, entering text in a text box input_text, etc.), or from
the network (receiving an HTTP response receive). Output events can be to the
user (web page is updated page_updated, window is opened window_opened)
or to the network (sending HTTP request send). The FF browser model defines
precisely how the browser will react to these inputs by emitting outputs. Some of
input and output events are shown in Table 1.
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The FF model is surprisingly rich. We will see examples including for instance
the execution of event handlers implemented as scripts in an html page.

4.2.3 ID-security, or reactive non-interference

It remains to define what it means for a reactive system (and hence FF) to be non-
interferent. Bohannon et al. [26] propose a notion of ID-security, a termination
insensitive variant of non-interference. We specialize their definitions to this case.

Let us assume that a poset of security levels is given. The predicate visiblel(s)
models what observers of security level l can see: visiblel(s) is true iff the stream
element s is visible to an observer at level l. First, we define what it means for
two (input or output) streams to be equivalent up to level l.

Definition 10 Coinductively define S ≈ID
l S ′ (S is ID-similar to S ′ at l) with the

following rules:

[] ≈ID
l []

visiblel(s) S ≈ID
l S ′

s :: S ≈ID
l s :: S ′

¬visiblel(s) S ≈ID
l S ′

s :: S ≈ID
l S ′

¬visiblel(s) S ≈ID
l S ′

S ≈ID
l s :: S ′

This definition is coinductive, meaning that the property holds on the largest pos-
sible set fixed under all the rules. We can now define when a reactive system is
secure in a state Q.

Definition 11 A state Q is ID-secure or (reactive) non-interferent if, for all l,
I ≈ID

l I ′ implies O ≈ID
l O′ whenever Q(I) ⇒ O and Q(I ′) ⇒ O′.

The definitions in this section allow us to state our first goal for this work:
we want to build an enforcement mechanism ensuring that FF is reactive non-
interferent.

4.3 Informal overview
Our enforcement mechanism is based on a relatively new dynamic technique for
achieving non-interference: secure multi-execution [50]. The core idea of this
mechanism is to execute the program multiple times (one sub-execution of the
program for each security level), and to ensure that (1) outputs of a given level
l are only done in the sub-execution at level l, and (2) inputs at level l are only
done at level l (the sub-executions above l reuse the inputs obtained by level l;
sub-executions not above l are fed a default value). So the sub-execution at level
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1 var a = parseInt(document
2 .getElementById(’a’).value);
3 var b = parseInt(document
4 .getElementById(’b’).value);
5 var sum = a + b;
6 document.getElementById(’c’).value = sum;
7 document.getElementById(’banner’)
8 .src = ’http://attacker.com?t=’ + sum;

Figure 8: JavaScript code example

l only sees inputs of levels below l and its output could not have been influenced
by inputs of a higher level. Non-interference follows easily from this observation.

Devriese and Piessens [50] have worked out this mechanism for a simple se-
quential programming language with synchronous I/O, and have proven its secu-
rity and precision. Capizzi et al. [31] have implemented it at the level of operating
system processes for the case of two security levels.

The mechanism we propose adapts this technique to reactive systems, and
we prove its security (weaker than what Devriese and Piessens have shown in
their setting: we lose termination- and timing-sensitivity), as well as its precision
(stronger than the result by Devriese and Piessens: we show precision under much
weaker assumptions).

Let us explain the mechanism by means of an example. Consider again the
tax calculation example from Section 4.1. The JavaScript code in Fig. 8 models
the essence of this example: the user provides private inputs (two integers) in the
text fields a and b, and the JavaScript code computes their sum and displays this
in text field c. We can assume this JavaScript code is a part of an event handler
that fires whenever the user changes the contents of a or b.

The code in Fig. 8 shows a potential attack: the script will leak the (secret)
sum to "attacker.com" by sending an HTTP request to that domain with the secret
as a parameter (setting the src property of an image HTML element in JavaScript
will have as a side effect that the image is reloaded from the URL assigned to the
src property). Recall that the JavaScript code was not necessarily endorsed by
the tax calculation site. It could have been injected through a cross-site scripting
(XSS) attack or hidden in an advertisement running on the page. Under a policy
that assigns a high security level (H) to text field inputs, and a low security level
(L) to all the outputs (including the one to "attacker.com"), this program is clearly
not secure: high inputs leak to low outputs. Notice that all current browsers are
vulnerable to such attack since a script gets assigned the same origin as the in-
cluding page and hence is able to leak any (secret) user information.

Our enforcement mechanism runs several sub-executions of the web browser,
one for each security level. Tables 2 and 3 show what happens at L and H sub-
executions. The level of every input event is shown in column 1, while levels of
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Table 2: Run of L sub-execution of the browser.
L load_in_new_window("http://taxcalc.com")

H window_opened
L send("taxcalc.com", request_uri, cookies,

...)
L receive("taxcalc.com", 0, cookie_updates,

doc(a=0, b=0, c=0, js_inline))
H page_loaded(user_window(“taxcalc.com”),

..., doc(a=0, b=0, c=0, js_inline))
H input_text(user_window(“taxcalc.com”), 1, "2")
L (further L input)

L send("attacker.com", request_uri, cookies,
"?t=0")

output events are shown in column 2. The tables show which events get sup-
pressed. For instance, for the L sub-execution, the following events get sup-
pressed: (1) the input events of level H (and also all output events that would
have been the result of the input event), and (2) the output events at level H.

The offending output to "attacker.com" is suppressed, as the L sub-execution
never gets the H input event where the user is typing secret data in the text box.
In the tables, we show that even if the script would try to send the contents of a
and b later in response to further L input, the actual output sent to “attacker.com”
would only contain the sum of the default values in both text boxes. Notice the
proposed mechanism also ensures that there are no implicit flows, since the low
sub-execution (that is allowed to send) does not contain any high-level information
(the user secret data). There is never any information flow from H inputs to L
outputs.

4.4 Formalization
We propose to apply the secure multi-execution technique to a reactive system.
Given an information flow policy, we build a new reactive system that is called
a wrapper. The wrapper runs multiple sub-executions of the original reactive
system: one for each security level. When it consumes an input event, it is passed
to those sub-executions that are allowed to see it, i.e. the sub-executions at a level
higher or equal than level of this event. A sub-execution produces output events
only at the level of this sub-execution. Because of space constraints, proofs are
provided in a separate technical report [23].
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Table 3: Run of H sub-execution of the browser.
L load_in_new_window("http://taxcalc.com")

H window_opened
L send("taxcalc.com", request_uri, cookies,

...))
L receive("taxcalc.com", 0, cookie_updates,

doc(a=0, b=0, c=0, js_inline))
H page_loaded(user_window(“taxcalc.com”),

... doc(a=0, b=0, c=0, js_inline))
H input_text(user_window(“taxcalc.com”), 1, "2")

H page_updated(user_window(“taxcalc.com”),
doc(a=0, b=2, c=2, ...))

H window_opened
L send("attacker.com", request_uri, cookies,

"?t=2")
L (further L input)

L send("attacker.com", request_uri, cookies,
"?t=2")

4.4.1 Secure multi-execution of reactive systems

The information flow policy contains a partially ordered set of security levels
(L,≤) and a function lbl : Act → L assigning security levels to all inputs and
outputs of the reactive system. The output · is invisible at all levels, and can be
used to represent internal activity of the system. (For instance to return from a
producer state to a consumer state without producing real output [26].)

A state of the wrapper is a tuple (R,L), where

• R is a function mapping security levels to states of the reactive system,
R : L → State. R(l) is the state of the sub-execution at level l.

• L is the list of the levels of all the sub-executions that are in producer state
(you can think of it as the scheduler’s ready queue).

States (R, ∅) are consumer states of the wrapper and states (R,L) with L 6= ∅ are
producer states. The initial state of the wrapper is a state (R, ∅) such that for all
l ∈ L, the state R(l) is the initial state of the original reactive system.

Fig. 9 shows the semantics of the wrapper. When a new input event i arrives,
it is passed to the copies at the levels in Upper(i) (defined as a list of security
levels higher or equal than the level of i), and the wrapper makes a transition to a
producer state ([LOAD]). Once the wrapper is in producer state (R, l :: L), it gives
the sub-execution at level l a chance to proceed. If this sub-execution produces an
output at level l, the wrapper outputs it ([OUT-P] and [OUT-C]), otherwise a silent
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LOAD
R(l)

i−→ Pl if lbl(i) ≤ l then R′(l) = Pl else R′(l) = R(l) for all l

(R, ∅) i−→ (R′, Upper(i))

OUT-P
R(l)

o−→ P lbl(o) = l

(R, l :: L)
o−→ (R[l 7→ P ], l :: L)

OUT-C
R(l)

o−→ C lbl(o) = l

(R, l :: L)
o−→ (R[l 7→ C], L)

DROP-P
R(l)

o−→ P lbl(o) 6= l

(R, l :: L)
·−→ (R[l 7→ P ], l :: L)

DROP-C
R(l)

o−→ C lbl(o) 6= l

(R, l :: L)
·−→ (R[l 7→ C], L)

Figure 9: Semantics for secure multi-execution of a reactive system.

output (·) is produced instead ([DROP-P] and [DROP-C]). If the sub-execution at
the level l reaches a consumer state, then this level is removed from L ([OUT-C]
and [DROP-C]).

It is intuitively clear that this construction guarantees non-interference. Output
at level l is only produced from the sub-execution at level l, which only gets input
at level l or lower, so leaks from higher levels are impossible. On the other hand,
the sub-execution at level l receives identical input on level l or lower. Therefore,
if the program is non-interferent, then our wrapper still produces the same output
as the original. It is possible that the order of outputs will be reordered though.
We will discuss both of these aspects (security and precision).

4.4.2 Security

First, we show formally that our technique guarantees termination-insensitive
non-interference: for any reactive system and any information flow policy, our
wrapper will never produce information leaks.

Bohannon et al. proposed a bisimulation-based proof technique based on ID-
bisimulation relation (written ∼l)[26, Definition 4.1]. Our proof is based on the
key theorem of Bohannon et al.[26, Theorem 4.5] stating that if Q ∼l Q for all
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l, then Q is ID-secure. In order to obtain ID-bisimulation relation on the wrapper
states, we propose a definition of l-similarity.

Definition 12 The state of the wrapper (R1, L1) is l-similar to the state (R2, L2)
(written (R1, L1) ≈l (R2, L2)) iff a) R1 ≈l R2 meaning ∀l′ ≤ l : R1(l

′) =
R2(l

′)), and b) L1|l = L2|l, where L|l represents the list of levels l′ in L such that
l′ ≤ l.

Then we have proved the following key lemma.

Lemma 4 The l-similarity relation is an ID-bisimulation.

Since for every state (R,L) of the wrapper we have (R,L) ≈l (R,L), we can
finally use the Theorem 4.5 from [26] and prove the security theorem.

Theorem 3 (Security) All the states of the wrapper are ID-secure.

4.4.3 Precision

On the other hand, we need to prove that our enforcement mechanism is precise:
since it will sometimes modify the behaviour of programs, we need to prove that
it does this in a sensible way, i.e. it does not observably modify behaviour for pro-
grams that already are secure. We show precise formal results to explain exactly
what we mean by this.

First, we need to define what we mean by saying that our enforcement mecha-
nism does not observably modify the behaviour of programs. It is important to no-
tice that even for well-behaved programs, the wrapper can change the relative or-
der of output events at different security levels. We assume that any observer will
only observe at a single security level. This assumption is valid for the policies
we will consider in Section 4.5. Then, we define the observer-indistinguishablel

relation that relates input or output streams that “look the same” for observers at
security level l. Like Bohannon et al., we use a coinductive definition to clearly
specify this definition for infinite streams.

Definition 13 Define observer-indistinguishablel(S, S ′) coinductively with the
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following rules:

observer-indistinguishablel([], [])

lbl(s) 6= l observer-indistinguishablel(S, S ′)

observer-indistinguishablel(s :: S, S ′)

lbl(s′) 6= l observer-indistinguishablel(S, S ′)

observer-indistinguishablel(S, s′ :: S ′)

observer-indistinguishablel(S, S ′)

observer-indistinguishablel(s :: S, s :: S ′)

This notion is weaker than Bohannon et al.’s ID-similarity. In fact, we have
the following result:

Lemma 5 If O ≈ID
l O′, then: observer-indistinguishablel′(O,O′) for all l′ ≤ l.

Another notion we need is the projection of a finite stream at a certain security
level l. The projection function πl removes from the stream those events that are
at a level not below l.

Definition 14 Define, for finite I0

πl([]) = [] πl(i :: I0) =

{
πl(I0) if lbl(i) 6≤ l

i :: πl(I0) if lbl(i) ≤ l

Our enforcement mechanism produces observably equivalent outputs for those
inputs for which the original reactive system is already “well-behaved” with re-
spect to the security policy. We use the following precise definition:

Definition 15 Given a reactive system state Q and a finite input I and output O
such that Q(I) ⇒ O we say that Q behaves securely for input I iff for all l ∈ L,
we have that Q(πl(I)) ⇒ Ol with observer-indistinguishablel(O, Ol).

These are the definitions we need to state the first of our precision theorems.
The following theorem is the most detailed result, and shows that for those in-
puts for which the reactive system behaves securely, the corresponding wrapper
produces results that are observationally equivalent.
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Theorem 4 (Precision for individual runs) Suppose a given reactive system state
Q behaves securely for input I and Q(I) ⇒ OQ. Define the corresponding wrap-
per W = (RQ, L) with RQ(l) = Q for all l ∈ L, L = ∅ if Q ∈ ConsumerState
and L = L if Q ∈ ProducerState. For OW such that W (I) ⇒ OW , we have
that OQ ≈obs OW .

This theorem is actually not a typical precision result for an information flow
enforcement technique, because it does not require non-interference of the original
system, as would be more typical (see e.g. Devriese and Piessens [50]). Instead,
the theorem gives a sufficient condition for an individual execution to “behave
securely” and produce observationally equivalent results. However, we can show
that the previous theorem is stronger, by showing that if the original system was
non-interferent, then all of its executions “behave securely”.

Lemma 6 If a given reactive system state Q is ID-secure, then it behaves securely
for any input I .

This lemma easily leads to the following, more classical, precision theorem.

Theorem 5 (Precision) Suppose a given reactive system state Q is ID-secure,
and Q(I) ⇒ O. Define the corresponding wrapper W = (RQ, L) with RQ(l) =
Q for all l ∈ L, L = ∅ if Q ∈ ConsumerState and L = L if Q ∈ ProducerState.
For O′ such that W (I) ⇒ O′, we have that O ≈obs O′.

The stronger result is important in practice. Featherweight Firefox (without se-
cure multi-execution) is never ID-secure: even if all scripts that have been loaded
up to now behaved fine, somewhere in the future a malicious script might be
loaded that leaks information. So the classical precision theorem does not apply,
and it does not allow us to conclude precision for runs of the browser that actually
behave well.

So what we need is a theorem that says: if the run of the browser up to some
point behaved well, then our enforcement will not modify that run in an observable
way. This is exactly what our first precision theorem does.

Note that we are only talking about precision here: security is never at stake.
Featherweight Firefox with our enforcement mechanism will always be ID-secure.
The point here is that we want to relate the behavior of the secured browser with
the unsecured one, and this cannot be done with a classical precision theorem.

4.5 Information flow policies
We have implemented our information flow enforcement technique for Feather-
weight Firefox model in OCaml 1. This implementation allows us to demonstrate

1It can be accessed here: http://disi.unitn.it/~bielova/sme-firefox.
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valuable information flow policies for web browsers. The three basic policies we
show demonstrate on the one hand the power of information flow policies, allow-
ing us to define precisely the property that we want to enforce. On the other hand,
our examples show that it is our technique that enforces the policies in a way that
non-complying programs are dealt with as precisely as possible.

4.5.1 Policy 1: High/Low Policy

A first, very simple but useful policy that can be enforced classifies all user in-
puts as H and all network outputs as L. This is essentially the policy we used in
Section 4.3 to explain our enforcement mechanism.

According to this simple High/Low policy, no public outputs are possible after
secret inputs. It might seem that this will block any request to a website. But this
is not the case. Intuitively, the reason why the request to “attacker.com” is being
blocked is that it is made in response to a user input event, which is considered a
private (H) information by our policy. Toward observers on the L security level,
the policy enforcement therefore replaces this behavior by default behavior com-
ing from the L execution, which is kept under the illusion that no user input has
occurred.

Note that this policy is a very simple information flow policy, but already
achieves something that previously was not possible. We can run a website mak-
ing sure that certain user information is never leaked. For example, we can think
of a “Keep all information in this field inside my browser” button that you can
push to prevent information entered into a field from leaving your browser. The
browser’s policy enforcement could then use an enforcement technique like ours
to guarantee security of the information, and in many cases without affecting the
further behaviour of the site.

4.5.2 Policy 2: Separating origins

The airplane tickets e-commerce site example is more typical for a general web
site. In this scenario, a level of trust is assumed between the user and the company
hosting the ticketing website, in order for the ticketing company to provide useful
information or services. Nevertheless, the standard same-origin-policy (SOP) is
not sufficient as it allows (in practice) this data to be sent anywhere.

We believe that the basic model of SOP is actually correct. When a user enters
information on a website, it is typically his intent to disclose this information to
the owner of that website, but not others. Likewise, information received from a
website can be trusted to be sent back to this website but not to others.

A somewhat evident idea here is to use a security lattice with three types of
levels: L, M(dom) for any domain dom and H. The L and H levels are smaller
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Table 4: Origin separation policy
User
input

load_in_new_window(. . . ) L
input_text(user_window(dom),
. . . )

M(dom)

User
output

window_opened H
page_loaded(. . . ) H
page_updated(. . . ) H

Network
input

receive(dom, . . . ) M(dom)

Network
output

send(dom, . . . ) M(dom)

resp. bigger than all others and the M(...) domains are mutually incomparable.
The M(dom) level is assigned to all network events originating from or going to
this domain and to all user input events that contain information destined for a
page on this domain. Output events going to the user are classified as H. This
policy is summarized in Table 4.

Table 5 shows the execution of a prototypical airline ticketing website script
under origin separation policy. A level of input event is in column 1, a level of
sub-execution that receives this input is in column 2, and a level of an output is
in column 3. We see that network output to “air.com” is now permitted to be
influenced by information from user input.

Something interesting happens when we consider a page that tries to down-
load a third-party script at page load time. Imagine that upon receiving an HTTP
response receive (at level M1), the browser attempts to send the request for
a third-party script (or image) at “remote.com”. Our policy marks input event
receive as information that must be revealed only to the “air.com” domain.
Hence the request to the “remote.com” should not be sent.

Of course, there is a good reason why the receive event should be classified
at this level. If we suppose the page that is received represents the third step in the
airline ticket purchasing process, and contains a summary of all data previously
input by the user, then this is clearly information that we want to protect and the
policy is correct to not allow this info to leak to third-party sites.

One option would be to provide support for declassification. Such techniques
allow higher security information to be disclosed at lower levels under certain con-
ditions. Declassification typically requires involvement from the sandboxed code
and necessarily introduces extra complexity and weakens security guarantees. In
our case, we are looking for a mechanism that can be transparently applied to
existing code and declassification is not the best solution.

In fact, the problem in our example is that our information flow policy is not
fine-grained enough. If we want to refine the SOP retaining maximum compat-
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ibility, we need to define a policy that does a better job of formalizing the as-
sumptions in the current web security model. In this case, the policy does not
capture the implicit notion that an HTML document contains information at dif-
ferent confidentiality levels. If the document specifies that it requires a certain
script to function then this information must be permitted to leak to the website
serving the script. In the next subsection, we discuss how this is possible without
disclosing the entire document.

4.5.3 Policy 3: Sub-input-event security policies

The key to solving the issue is to assign different labels to different parts of a sin-
gle input event. One simple solution is to model such an input event as a number
of separate input events, so that we can give each of these parts a different level.
Then our enforcement mechanism and our security and precision theorems can be
applied as before. An alternative, more intuitive way of thinking about this split-
ting of an input event (where different levels can see a different subset of the parts
of the split event), is to consider security-level dependent projections that project
an input event on the part of the event visible to a specific level. Space limitations
keep us from discussing this policy in more detail. An extensive discussion can
be found in the technical report [23]. With these final refinements, our approach
realizes a substantial improvement over the standard SOP, while maintaining com-
patibility with typical cross-origin interactions in modern web applications.

4.6 Related Work
Since related work has already been described broadly in an earlier deliverable,
we focus on the work that is most closely related to the work reported in this
Section. A first very related line of work is the work by Bohannon et al. which has
been discussed extensively in Section 4.2. Next, there are several other security
countermeasures that have strong similarities to our approach.

The technique of secure multi-execution as proposed by Devriese and Piessens
[50] is the most closely related. This new technique is proved it to be sound and
precise for a simple sequential programming language with synchronous I/O. Our
work extends their work to reactive systems and hence browsers. Interestingly, the
formal guarantees we get are different. Whereas [50] can prove timing-sensitive
non-interference, we have to settle for termination-insensitive non-interference.
The main reason for this is that we are more restricted in the reordering of output
events. On the other hand, we get a substantially stronger precision result. We
show precision for any well-behaved run, whereas Devriese and Piessens can only
prove precision for programs that are termination-sensitively non-interferent.

FP7-ICT-2009-5
Project No. 256964



D3.1: Confidentiality and Integrity Policies 64/97

A similar approach was proposed by Capizzi et al. [31] where they run two
executions of operating system processes for the H (secret) and L (public) security
level. They limit themselves to this simple two-element poset, but they provide an
actual implementation, and report on benchmarks.

In a very recent paper, Kashyap et al. [67], generalize the technique of secure
multi-execution to a family of techniques that they call the scheduling approach
to non-interference, and they analyze how the scheduling strategy used impacts
the security properties offered.

4.7 Conclusion and future work
We have studied the suitability of non-interference as a replacement for the same-
origin-policy in browsers. We have shown that it is possible to enforce non-
interference for a browser securely and precisely for a broad class of informa-
tion flow policies. In addition we have shown that, even without any support for
declassification, useful information flow policies for a browser can be defined.

In many cases, we can detect that the reactive system was not non-interferent
to begin with, but it is future work to investigate what can be done in these cases.
A clear possibility is to inform the user that this is the case, but we could also try
to apply certain heuristics to improve precision.

An important remaining challenge is the development of efficient implemen-
tation techniques for our enforcement mechanism. A naive implementation of
secure multi-execution will incur a substantial performance and/or memory over-
head, since multiple copies of the same program are executed. However, given
that in many cases (in particular in cases where the program being executed is
non-interferent) these copies will be in sync, and significant optimizations will
apply.

It is also important to evaluate the impact of the proposed policies on real web
sites: while the security benefits of a non-interference policy are high, there will
be a price to pay. Even though we have shown by example that some level of
compatibility with the current web can be maintained, it is to be expected that
many detailed incompatibilities will show up, and evaluating the cost of these –
and how they could be mitigated – is a key challenge for future work.
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Table 5: Origin separation policy. M1 = M(“air.com”), M2 = M(“attacker.com”).
L load_in_new_window("http://air.com")

L
H window_opened
M1 send("air.com", request_uri, cookies,

""))

H
H window_opened
M1 send("air.com", request_uri, cookies,

""))
M1 receive("air.com", 0,

cookie_updates, doc(age=0, ...))
M1 H page_loaded(user_window,

"http://air.com", doc(age=0, ...))
H H page_loaded(user_window,

"http://air.com", doc(age=0, ...))
M1 input_text(user_window, 0, "25")

M1

H page_updated(user_window,
doc(age=25, ...))

H window_opened
M1 send("air.com", request_uri, cookies,

"?t=25")
H window_opened
M2 send("attacker.com",

request_uri, cookies, "?t=25")

H

H page_updated(user_window,
doc(age=25, ...))

H window_opened
M1 send("air.com", request_uri, cookies,

"?t=25")
H window_opened
M2 send("attacker.com",

request_uri, cookies, "?t=25")
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5 Unifying Facets of Information Integrity

5.1 Introduction
Information integrity is a vital security property in a variety of applications. How-
ever, there is clearly more than one facet to integrity. Indeed, security text-
books [98, 59] agree that it is hard to pin down the essence of integrity, and
surveys [84, 112, 105] and tutorials [60] identify a range of integrity flavors.

Integrity in the area of information flow often means that trusted output is
independent from untrusted input [21]. This is dual to the classical models of
confidentiality [20, 71, 44, 58], where public output is required to be independent
from secret input. Integrity in the area of access control [112] is concerned with
improper/unauthorized data modification. The focus is on preventing data modi-
fication operations, when no modification rights are granted to a given principal.
Integrity in the context of fault-tolerant systems is concerned with preservation of
actual data. For example, a desired property for a file transfer protocol on a lossy
channel is that the integrity of a transmitted file is preserved, i.e., the information
at both ends of communication must be identical (which can be enforced by de-
tecting and repairing possible file corruption). Integrity in the context of databases
often means preservation of some important invariants, such as consistency of data
and uniqueness of database keys.

The list of different interpretations of integrity can be continued, including
rather general notions as integrity as expectation of data quality and integrity as
guarantee of accurate data and meaningful data [112, 98].

Sabelfeld and Myers [105] observe that integrity has an important difference
from confidentiality: a computing system can damage integrity without any exter-
nal interaction, simply by computing data incorrectly. Thus, in general, enforce-
ment of integrity requires proving program correctness.

Seeking to clarify the area of integrity policies, Li et al. [73] suggest a classi-
fication for data integrity policies into information-flow, data invariant, and pro-
gram correctness policies. In a similar spirit, Guttman [60] identifies causality
and invariance policies as two major types of data integrity policies.

With the classification by Li et al. [73] as a point of departure, we present a
general framework for the different facets of integrity that include information-
flow, invariance, and correctness aspects. Furthermore, we argue that integrity via
invariance is itself multi-faceted. For example, the literature (cf. [73]) features for-
malizations of invariance as predicate preservation (predicate invariance), which
is not directly compatible with invariance of memory values (value invariance).

This section offers a unified framework for integrity policies that include all
of the facets above. A key feature of the framework is generalized invariants
that can represent a range of properties from program correctness to predicate
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and value invariance. Our formalization shows that program correctness (which
was previously identified as a separate type of integrity [73]) in fact subsumes
invariance-based integrity.

Correctness

Value 
invariance

Predicate 
invariance

x’=5)x=5
(x=5,     )

x=x’
(x, =)

x>0)x’>0
(x>0, ))

)

Figure 10: Generalized invariance

Figure 10 illustrates the policy set
inclusion. We comment on the char-
acteristic policy examples that corre-
spond to points in the diagram (the
formal definitions of these policies are
postponed to Section 5.2). Notation x
and x′ denotes the values of the cor-
responding variable before and after
program execution. An example of
a value invariance policy is x = x′,
i.e., the value of the variable stays un-
changed. An example of a predicate
invariance policy is x > 0 ⇒ x′ > 0,
i.e., if the variable is positive initially,
it must stay positive at the end of exe-
cution. Value invariance is inherently
about the relation of some expression before and after the execution. On the other
hand, predicate invariance is inherently about preservation of some predicate on
the current memory. As we explain in detail in Section 5.2, these policies are not
directly compatible because (i) in order to mimic value invariance (as in x = x′)
by predicate invariance, the final memory needs to explicitly include the initial
memory, and (ii) in order to mimic predicate invariance (as in x > 0 ⇒ x′ > 0)
by value invariance, the predicate to be preserved needs to be encoded, if at all
possible, into expression equality.

Further, there are properties beyond invariance that are integrity properties.
For example, x′ = 5 ⇒ x = 5 is a property that assures that if the final value of
the variable is 5, then it has not been modified compared to its initial value. This
corresponds to a general class of properties, called program correctness proper-
ties. Thanks to its generality, program correctness can model all of the integrity
flavors, including meaningfulness and consistency. In fact, any program prop-
erty can be represented as long as it can be described by a generalized predicate
that has access to initial and final memories. (As we remark in Section 5.8, an
extension of the framework to handle intermediate states appears natural.)

Note that the goal of this work is not to achieve as much expressiveness as
possible. Indeed, a wide range of formalisms exists for reasoning about program
correctness from Hoare logic [64] to refinement types [57], and a large body of
work in-between [93]. Furthermore, logic-based mechanisms have been explored
for reasoning about confidentiality [45, 19, 4, 14]. Instead, we aim at a treat-

FP7-ICT-2009-5
Project No. 256964



D3.1: Confidentiality and Integrity Policies 68/97

ment of integrity that allows us to express the different flavors in a uniform and
convenient fashion that is directly connected to enforcement.

Indeed, despite the different nature of the integrity facets, we show that a
straightforward enforcement mechanism adapted from the literature is readily
available for enforcing all of the integrity facets at once. This mechanism, as
proposed by Askarov and Sabelfeld [10], is originally for enforcing an informa-
tion release (or declassification) policy of delimited release [106]. It guarantees
that the values of declassification expressions (called escape hatches) have not
changed compared to their initial values by performing a dynamic check at de-
classification time. We observe that the dual of this mechanism allows tracking
both safe endorsement (i.e., intentional increase in trust to a given expression),
and it is readily available to track correctness and therefore invariance proper-
ties. Indeed, the latter facets of integrity can be straightforwardly guaranteed by
checking immediately before termination whether the desired correctness/invari-
ance property is satisfied and terminating normally only in the case of positive
outcome.

The possibility of easily deploying Askarov and Sabelfeld’s enforcement [10]
for a wide range of integrity policies (for which the enforcement was not originally
designed) is a one of the greatest benefits of our approach. It liberates us from the
necessity of designing a multi-dimensional enforcement framework of complexity
similar to the policy framework.

A summary on the tightness of integration offered by our approach follows.
We achieve tight integration on the enforcement side: a single enforcement mech-
anism is suitable to support all facets of integrity, including those that it has not
been designed to support. On the policy side, the integration between informa-
tion flow and correctness facets is not tight as these facets are inherently distinct.
Nevertheless, within the correctness facet, we achieve tight integration of various
flavors of invariants into our generalized invariant framework.

In the rest of the section, we present a generalized definition for integrity as in-
variance (Section 5.2), recap a standard definition of integrity as information flow
(Section 5.3), show how to enforce all facets of integrity with a single enforcement
mechanism (Section 5.4), discuss endorsement (Section 5.5), extensions and prac-
tical aspects (Section 5.6), related work (Section 5.7), and offer some concluding
remarks (Section 5.8).

To clarify the scope of this work, we note that the focus is on information
integrity (or data integrity), i.e., the integrity of data (in contrast to system integrity
that addresses the integrity of the processing software and hardware units). Hence,
integrity refers to information integrity throughout this section.
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5.2 Integrity via invariance
Before we launch into formal definitions of the concepts described above, we need
some preliminaries. In particular, we must define what it means for a program to
terminate. We use the term memories for mappings from variables to values. We
work with semantics given as a small-step transition system with configurations
of some form C, where the transition system defines transitions of the forms

C −→ C and C −→ m

where m is a memory. A transition of the second kind represents the terminating
transition. If such a transition is contained in a trace, then it will always be the
last one given that there are only transitions of the above forms. An example of a
configuration is the tuple 〈c, m〉where c is a syntactic term (command or program)
and m is a memory.

Definition 10 (Termination) We say that configuration C0 terminates in a mem-
ory m, written C0 ↓ m if and only if there exists a trace

C0 → C1 → . . . → Cn → m

(according to some particular semantics which is usually clear from the context.)
If no such trace exists, we write C0

9
.

Note that C0

9
covers both the cases when programs diverge, i.e., they have an

infinite execution trace, or when they get stuck before reaching a terminal state.

5.2.1 Value invariance

A value invariant states that the value of an expression should not change by exe-
cuting a program. We define value invariants to be expressions which are required
to evaluate to the same value only in the initial and the final memory of a terminat-
ing program. We write m(e) to denote the value of an expression e with respect
to a memory m.

Definition 11 (Value invariant) Let e be an expression. We say that a program c
satisfies the value invariant e if and only if

∀m . 〈c, m〉 ↓ m′ =⇒ m(e) = m′(e).

A simple example of a value invariant would be the expression x, correspond-
ing to x = x′ in Figure 10. This value invariant states that the variable x is not
modified by running the program. Note that it may be modified during the execu-
tion of the program, as long as its original value is restored in the end. Another
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simple example is the expression x + y, which allows x and y to change, as long
as their changes are balanced so that their sum stays constant.

On the other hand, there are some interesting “invariants” which we cannot
describe by value invariants. This includes, for example, the invariant x > 42,
which in some ways resembles a pair of a pre- and a postcondition. Treating this
boolean expression as a value invariant requires that if the expression is false in
the initial memory, it must also be false in the final memory. However, by our
intuition, starting from a memory where the expression is false, we would like the
program to be valid no matter the final value of the expression. This leads us to
another notion of invariance from the literature.

5.2.2 Predicate invariance

Predicate invariance [73] resembles very much pre- and postconditions from Hoare
logic [64, 93]. A predicate invariant consists of a boolean predicate on memories
that programs must preserve.

Definition 12 (Predicate invariant) For a predicate ϕ on memories, a program
c satisfies the predicate invariant ϕ if and only if

∀m . 〈c, m〉 ↓ m′ =⇒ ϕ(m) ⇒ ϕ(m′).

Predicate invariants allow us to easily describe invariants such as x > 0 (see
Figure 10) with the intuitive semantics described above. The intuitive idea de-
scribed by Li et. al. is that ϕ can be used to describe when a memory has a good
property, where it is desirable that programs preserve that property in the final
memory.

However, there are also important examples of invariants which are not cap-
tured by predicate invariance. For example, the simple value invariant x, i.e., a
given variable maintains it value, cannot be modeled as a predicate invariant with-
out passing the initial value of the variable to the final memory. Thus, the two
types of invariants are incompatible. In the next section we define a new notion of
invariance which unifies the two.

5.2.3 Generalized invariance

We can observe that both of the above notions of invariance quantify over all
initial memories, which for deterministic languages corresponds to quantifying
over all runs of a particular program. If we treat (terminating) programs purely
as a transformation on memories, then a possible general notion of invariance is
simply a predicate on the initial and final memories. A given program satisfies
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Generalized invariance e1 e2 P
Value invariance e e =

Predicate invariance ϕ ϕ ⇒

Figure 11: Kinds of invariance

such an invariant if all pairs of initial and final memories that it relates satisfy the
predicate. Obviously, this captures the two notions of invariance above.

We provide a particularly convenient policy language that is equivalent in ex-
pressiveness to a general predicate on initial and final memory. The goal is that
an invariant can be easily specified by the programmer and enforced by, e.g., a
runtime monitor. Thus, we specify invariants by two expressions, one to be eval-
uated in initial memory and one in final memory, along with a binary predicate on
those values. As we will see in Section 5.5, this is a particularly beneficial way to
specify invariants because of smooth integration with endorsement.

Definition 13 (Generalized invariant) A generalized invariant is a triple (e1, e2, P ),
where e1, and e2 are expressions, and P is a binary predicate on values. A pro-
gram c satisfies such an invariant if and only if

∀m . 〈c, m〉 ↓ m′ =⇒ P
(
m(e1), m

′(e2)
)

We can explore the expressiveness of this notion of invariance. We can im-
mediately observe that it captures the previously defined notions of invariance.
Any value invariant e is represented by the generalized invariant (e, e, =). Sim-
ilarly, any predicate invariant ϕ is represented by (ϕ, ϕ,⇒). These observations
are depicted in Figure 11.

Generalized invariants can also describe more general notions of correctness.
Our example of x′ = 5 ⇒ x = 5 from Section 5.1 can be described by (x =
5, x = 5,⇐). If we want to make sure a certain variable increases by running a
program, we can write (x, x, <).

It may not be clear why we would call such a condition as the last one an
invariant, as it appears to state that something has to change. However, the prop-
erty m(x) < m′(x) must hold for all initial and final memories m and m′, if we
are to say that the program in question satisfies it. In other words, the property
predicate by itself is an invariant for all runs of a program.

Another important facet of integrity is that we do not want untrusted inputs to
have any influence on trusted outputs. This facet cannot be described by general-
ized invariants [85, 113], and is the topic of the next section.
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5.3 Integrity via information flow
Information-flow integrity policies restrict how untrustworthy data flows inside
programs. These policies seek to prevent corrupting critical information. For ex-
ample, the (untrusted) data input of an in-flight entertainment system must not
affect the auto-pilot control system (critical component), but the auto-pilot con-
trol system might be allowed to display information in the in-flight entertainment
systems, such as estimated time of arrival. For simplicity, we only consider two
integrity levels: Hi (high integrity) for trustworthy and Li (low integrity) for un-
trustworthy data. A common baseline policy for information flow is the noninter-
ference policy [44, 58]. This policy states that trustworthy data cannot be affected
by untrustworthy values (written as Li 6v Hi). However, there is no risk for un-
trusted data to be affected by trusted data. In this case, we indicate Hi v Li. The
integrity levels Hi and Li form a two-point security lattice [48] that indicates how
information can flow inside programs.

As before, we write 〈c, m〉 ↓ m′ for a terminating execution of program c un-
der the initial memory m and final memory m′. We assume that every variable
in memory is assigned an integrity level. Memories m1 and m2 are high-integrity
equivalent, written m1 =Hi

m2, if they agree on high integrity values. The fol-
lowing definition captures the noninterference security policy.

Definition 14 (Noninterference) A program c satisfies noninterference if for any
memories m1 and m2 such that 〈c, m1〉 ↓ m′

1, and 〈c, m2〉 ↓ m′
2, then

m1 =Hi
m2 =⇒ m′

1 =Hi
m′

2.

The definition above ignores nonterminating executions of programs. This kind
of definition is known as termination-insensitive noninterference [122, 105, 6].
In some cases, attackers can still affect the termination behavior of the program.
However, we ignore the termination channel because its bandwidth is negligible
[6] in our setting.

Information-flow integrity can be seen as the dual to confidentiality. To illus-
trate this connection, we assume confidentiality levels Lc and Hc for public and
secret information, respectively. Observe that the integrity requirements Li 6v Hi

and Hi v Li are the duals to the ones Lc v Hc and Hc 6v Lc, which indicate
that secret information cannot be leaked to public recipients. This confidentiality
policy underlies the original definitions of noninterference [44, 58]. Due to this
duality, the techniques developed for confidentiality can also be used to guarantee
information-flow integrity. In the next section, we extend a runtime monitor for
enforcing information-flow confidentiality to enforce both information-flow and
invariance integrity.
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n ∈ Z, x ∈ Vars , op ∈ {+,−, . . . }
e ::= n |x | e op e

c ::= skip |x := e | c; c | if e then c else c | while e do c

Figure 12: Syntax

5.4 Enforcement
To illustrate the idea behind enforcement, we consider a simple imperative lan-
guage with the syntax and semantics given in Figures 12 and 13, respectively.
The syntax and semantic rules are mostly standard [123] except for minor exten-
sions. We include a pseudo-term end that indicates leaving the scope of an if or
a while. This term generates a transition described by the rule END. The rule
TERMc is also nonstandard and, together with the empty term ε, it guarantees that
a terminating run of any program ends with a transition generated by this rule.
Transitions in the semantics are labeled with an event β. The purpose of labeled
events as well as rules END and TERMc is communication with the runtime moni-
tor, which is described next.

We present an extension to the dynamic monitor found in [10] in order to
enforce both information-flow integrity and generalized invariants.

Figure 14 gives the monitor semantics. The monitor is a separate transition
system whose transitions are labeled with the same kind of events β as the com-
mand transitions. This is used to synchronize the two executions. Furthermore,
the monitor may block progress of the program, in case the program can do a
transition with a certain event but the monitor is not able to match it.

The monitor enforces information-flow integrity with the rules FLOW, BRANCH

and FINISH, in the same way as [10]. The first rule allows direct assignments of an
expression e to a variable x, indicated by the event a(x, e), only if e has the same
or higher integrity than x (Γ maps variables to their integrity levels.) The rule also
ensures that the minimum level lev(st) on the context stack st is at least as high
as x’s level. This is to prevent implicit flows [49], i.e., flows via control flow. The
stack contains the levels of expressions affecting control flow. It is maintained by
the rules BRANCH and FINISH, which synchronize with the program entering or
leaving an if or while block, as indicated by the events b(e) and f , respectively.

The rule TERMm synchronizes with program termination and enforces the in-
variance integrity policy. The monitor carries in its state a set of generalized
invariants, as well as a snapshot of the initial memory, and uses these to ensure all
the invariants are satisfied by the execution. If not, this rule blocks the program
from terminating.
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SKIP

〈skip, m〉 nop−→ 〈ε, m〉
ASSIGN

〈x := e,m〉 a(x,e)−→ 〈ε, m[x 7→ m(e)]〉

SEQ1

〈c1, m〉
β−→ 〈c′1, m′〉 c′1 6= ε

〈c1; c2, m〉
β−→ 〈c′1; c2, m

′〉
SEQ2

〈c1, m〉
β−→ 〈ε, m′〉

〈c1; c2, m〉
β−→ 〈c2, m

′〉

IF1

m(e) 6= 0

〈if e then c1 else c2, m〉
b(e)−→ 〈c1; end, m〉

IF2

m(e) = 0

〈if e then c1 else c2, m〉
b(e)−→ 〈c2; end, m〉

WHILE1

m(e) 6= 0

〈while e do c, m〉 b(e)−→ 〈c; end; while e do c, m〉

WHILE2

m(e) = 0

〈while e do c, m〉 b(e)−→ 〈end, m〉

END

〈end, m〉 f−→ 〈ε, m〉
TERMc

〈ε, m〉 term(m)−→ m

Figure 13: Command semantics

Before proving the desired properties of our monitor we should make a small
note about its practicality. While it is certainly infeasible to store a snapshot of
the initial memory of a program, this is only a feature of our theoretical model.
In practice the only additional state required to enforce a set of invariants I, are
the values of the first expression of each one, as evaluated in initial memory. A
monitor needs only evaluate these expressions at the start, store their values and
then at the end evaluate the second expression as well as the predicate of each
invariant. Since we expect the set of invariants to be relatively small given their
expressiveness, the overhead of adding invariant enforcement is small compared
to the information flow enforcement overhead of the original monitor from [10].
Controlling the complexity of the expressions and predicates of course remains
the responsibility of the policy writer.

In the rest of the section, we will talk about monitored programs which refers
to a program which is run in lockstep with a monitor. For convenience, we repre-
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NOP
〈i, st, I〉 nop−→ 〈i, st, I〉

FLOW
lev(e) v Γ(x) lev(st) v Γ(x)

〈i, st, I〉 a(x,e)−→ 〈i, st, I〉
BRANCH

〈i, st, I〉 b(e)−→ 〈i, lev(e) :st, I〉
FINISH

〈i, hd :st, I〉 f−→ 〈i, st, I〉

TERMm

∀(e1, e2, P ) ∈ I : P (i(e1), m(e2))

〈i, st, I〉 term(m)−→ 〈i, st, I〉

Figure 14: Monitor semantics

sent monitored programs with a monitor combination operator ], whose semantics
is defined with the following two rules, where Cc is the configuration of program
semantics, and Cm is that of the monitor semantics.

Cc
β−→ C ′c Cm

β−→ C ′m
Cc ] Cm −→ C ′c ] C ′m

Cc
β−→ m Cm

β−→ C ′m
Cc ] Cm −→ m

(8)

Note that ] is a meta-operator, it works on configurations rather than syntactic
terms.

We can immediately state and prove one useful property of such monitored
processes. If an unmonitored program does not terminate, then adding a monitor
can not make it terminate. This is obvious from the right rule above, a terminat-
ing transition of the unmonitored program is a premise for proving a terminating
transition of the monitored one. Nevertheless it is useful to state this explicitly as
a lemma.

Lemma 1 (Failstop correctness) For any monitored program Cc ] Cm, we have

Cc ] Cm ↓ m =⇒ Cc ↓ m.

Proof. If the monitored program terminates, there is a terminating trace with tran-
sitions proved by the rules (8). By taking the left premise of each transition proof,
it is straight-forward to construct a terminating trace for the unmonitored program
〈c, m〉.
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Since the terminating transition must be due to the right rule, it is obvious that
both traces terminate in the same memory. 2

Throughout this work, we assume finite sets of generalized invariants I. Given
a set of generalized invariants I, we can now prove that the monitor presented in
Figure 14 is sound, in the way that a monitored program that terminates satisfies
all invariants of I and satisfies noninterference. An important ingredient to this
is that all invariants are decidable. We assume evaluation of their expressions is
decidable, but we also require that checking each invariant’s predicate is decidable
as well.

Theorem 2 (Soundness) Let c be a command and I a set of (generalized) invari-
ants with decidable predicates. Then, for all memories m it holds that

〈c, m〉 ]〈m, [], I〉 ↓ m′ =⇒ ∀(e1, e2, P ) ∈ I : P (m(e1), m
′(e2)),

i.e., the monitored program satisfies all of the invariants in I. Furthermore, if m1

and m2 are high-integrity equivalent memories, and 〈c, mi〉 ]〈mi, [], I〉 ↓ m′
i, with

i ∈ {1, 2}, then m′
1 is high-integrity equivalent to m′

2, i.e., the monitored program
satisfies noninterference.

Proof. We note that I stays unchanged by the monitor. Since 〈c, m〉 terminates
in m′, there exists a trace

〈c, m〉 ]〈m, [], I〉 −→ · · · −→ C ′c ] C ′m −→ m′

The last rule of a monitored execution can only be the right rule of (8), which in
turn means the rule used to prove the left premise is TERMc and that C ′c = 〈ε, m′〉.
Consequently, the last transition of this trace must have the following proof tree:

TERMc

〈ε, m′〉 term(m′)−→ m′
TERMm

∀(e1, e2, P ) ∈ I : P (m(e1), m
′(e2))

〈m, st, I〉 term(m′)−→ 〈m, st, I〉
〈ε, m′〉 ]〈m, st, I〉 −→ m′

The only premise in this proof must thus hold, which concludes the proof of the
invariance part.

For proof of the noninterference part we refer to [10]. 2

It is a natural question to ask also if the monitor is complete. Informally,
we would formulate this in the following way: If a program satisfies a set of
invariants to begin with, a monitored version will not diverge unless the program
does also. The presented monitor enforces both information flow integrity as well
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as invariant integrity. The monitor is not complete in enforcing noninterference.
For example, the program h := l; h := 0, where h and l are high- and low-
integrity variables, respectively, is blocked by the monitor although it satisfies
noninterference. However, we can prove that if the information-flow integrity is
set aside, then the monitor is complete in enforcing invariance integrity.

We will use the following fact (that is straightforward to prove): If all variables
used in a program have the same integrity level, then no execution of the moni-
tored version 〈c, m〉 ]〈m, [], I〉 (where I is arbitrary) will get stuck due to the rule
FLOW being disabled. This is obvious since the premises of the rule are always
true if all integrity levels are equal. We can now state and prove the completeness
of the monitor with respect to invariant integrity policies.

Theorem 3 (Completeness of invariance enforcement) Let c be a command, m
some memory, and I a set of generalized invariants with decidable predicates.
Assume all variables used in c have the same integrity level. Then, if the (unmon-
itored) program 〈c, m〉 satisfies the invariants in I, i.e.,

〈c, m〉 ↓ m′ =⇒ ∀(e1, e2, P ) ∈ I : P (m(e1), m
′(e2)),

then the program either diverges by itself or the monitored version also terminates
(in some memory):

〈c, m〉
9
∨ 〈c, m〉 ]〈m, [], I〉 ↓ m′′.

Proof. If the premise holds because 〈c, m〉 does not terminate, then the conclu-
sion holds trivially. In the other case, when 〈c, m〉 ↓ m′ and

∀(e1, e2, P ) ∈ I : P (m(e1), m
′(e2)), (9)

then we consider the terminating trace

〈c, m〉 = 〈c0, m0〉 −→ . . . −→ 〈cn, mn〉 −→ m′. (10)

From the command semantics we can see that the last transition is due to rule
TERMc.

Now consider the monitored version 〈c, m〉 ]〈m, [], I〉. If this does not termi-
nate, it must be because the monitor blocks the execution at some point. This
can only happen if rules FLOW or TERMm are disabled. However, the rule FLOW

is never disabled since there is no violation of information-flow integrity, and
so the monitor can only block due to the termination rule being disabled. This
would mean that the monitored program gets stuck just before the last transi-
tion of (10), since this is the only transition that can potentially synchronize with
TERMm. This means mn = m′ and thus we are already in final memory at this
point. Since TERMm is disabled, its premise is false. However being in final
memory, its premise is exactly (9), which we assumed true. Thus, the monitored
program must terminate. 2
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The completeness theorem states that our monitor will never stop an otherwise
terminating and correct program. In other words, the monitor does not raise false
alarms.

However, completeness alone is not enough, since the monitor could poten-
tially terminate in a different final memory than the original, correct program
does. Of course, this is not desirable, so we follow with a proof that our mon-
itor is transparent, i.e., it does not alter the semantics of correct programs.

Theorem 4 (Transparency of invariance enforcement) Let c be a command, m
a memory, and I a set of generalized invariants with decidable predicates. We
assume that all variables in c have the same integrity level. If the (unmonitored)
program satisfies the invariants in I, formally

〈c, m〉 ↓ m′ =⇒ ∀(e1, e2, P ) ∈ I : P (m(e1), m
′(e2)),

then, the following implications hold:

〈c, m〉 ↓ m′ =⇒ 〈c, m〉 ]〈m, [], I〉 ↓ m′, and
〈c, m〉

9
=⇒ 〈c, m〉 ]〈m, [], I〉

9

Proof. First, assume that 〈c, m〉 ↓ m′. By the completeness theorem above, the
monitored version terminates in some memory m′′. To see that m′ = m′′, observe
the last transition of the monitored trace. This transition is due to the right rule
of (8) whose first premise can only be met by the last transition of (10) from the
last proof. By the definition of that rule, the conclusion indeed “returns” the same
memory m′. This proves the first implication. The second implication is a simple
contrapositive of Lemma 1. 2

5.5 Endorsement
When dealing with confidentiality, it is sometimes necessary to intentionally re-
lease, or declassify, some confidential information [110]. Analogously for in-
tegrity, it is sometimes necessary to boost the integrity of some piece of untrust-
worthy data to trustworthy. For example, the integrity of user-provided data can be
raised after the data is sanitized. Dually to declassification, endorsement converts
low integrity into high integrity data.

This section introduces a security condition and an enforcement mechanism
for endorsement that can be seen as the dual of delimited release [106, 10]. We
include the command x := endorse(e) in our language for boosting the integrity
of expression e from low to high. The semantic rule, depicted in Figure 15, simply
performs the assignment and triggers the event end(x, e, m) for communication
with the monitor.
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〈x := endorse(e), m〉 end(x,e,m)−→ 〈ε, m[x 7→ m(e)]〉
i(e) = m(e) lev(st) v Γ(x)

〈i, st, I〉 end(x,e,m)−→ 〈i, st, I〉

Figure 15: Rules for endorsement

The security condition, dubbed delimited endorsement, captures what it means
to be secure for programs involving endorsements.

Definition 15 (Delimited endorsement) Consider a program c containing exactly
n endorsement commands x1 := endorse(e1), . . . , xn := endorse(en), where
expressions e1, . . . , en are called escape hatches. Command c is secure if for all
memories m1 and m2 such that m1 =Hi

m2, ∀i.m1(ei) =Hi
m2(ei), 〈c, m1〉 ↓ m′

1,
and 〈c, m2〉 ↓ m′

2, we have m′
1 =Hi

m′
2.

Intuitively, delimited endorsement establishes that a program is secure if when-
ever two high-integrity equivalent memories are indistinguishable by escape hatches,
then they must also be indistinguishable by the program itself: terminating runs of
the program in these memories leads to high-integrity equivalent final states. One
way to enforce this condition is by checking whether the value of any escape-
hatch expression at the time of endorsement is the same as it was at the beginning
of computation. This brings us to the enforcement.

The monitor rule for endorsement is also given in Figure 15. It checks that
the endorsed value m(e) of expression e in memory m is indeed the same in the
initial and current memory (i(e) = m(e)). This restriction avoids laundering, i.e.,
abusing the endorsement mechanisms to endorse other data than the one indicated
by x := endorse(e) [106, 10]. Similar as for regular assignments, restriction
lev(st) v x is used to avoid implicit flows.

The mechanisms to enforce invariants in Figure 14 can be easily reused for
enforcing endorsement. Observe that i(e) = m(e) can be interpreted as a par-
ticular kind of invariant P (i(e), m(e′)), where P is the equality predicate =, and
expressions e and e′ are the same.

The following theorem establishes the formal guarantees obtained by the en-
forcement rules.

Theorem 5 For any program c, the monitored execution of c (with the initial con-
figuration 〈c, m〉 ]〈m, [], I〉 for memory m) satisfies delimited endorsement.

Proof. It follows by an adaptation of Askarov and Sabelfeld’s proof [10] for de-
limited release. The failstop property of the monitor allows for a straightforward
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adaption of the proof: the invariant-checking part is largely orthogonal since all
the monitor can do is to block the execution, in which case the high-integrity
equivalence does not need to be tracked. 2

As it was for the information-flow part of the monitor in Section 5.4, the de-
limited endorsement monitor is incomplete in the information-flow part for the
same reason.

5.6 Extensions and practical aspects
The enforcement mechanisms presented in Section 5.4 and 5.5 can be naturally
extended to support I/O operations and a form of access control. We briefly outline
the principles behind such extensions and discuss practical aspects.

5.6.1 I/O

Programs often require to take inputs as well as produce outputs during execution.
Defining and tracking delimited release in the presence of communication prim-
itives is described in [10]. When considering inputs, the restriction i(e) = m(e)
needs to be revised because it does not allow to declassify (endorse in our case)
variables that have been updated by inputs.

Askarov and Sabelfeld [10] remark that inputs may introduce fresh data into
programs and, therefore, they distinguish them from regular updates. They pro-
pose a monitor that allows to declassify information when the value being declas-
sified (m(e)) matches the value of the expression in a memory that records most
recent inputs. If no inputs where performed for a given variable e, the value con-
sidered for that variable is the one found in the initial memory. In a similar fashion,
it is possible to modularly extend the rules in Figures 14 and 15 to consider a con-
text level input label ct, which records if there has been an input in a high context,
and update memory i in the monitor’s state every time that an input is produced.
The extended monitor then disallows endorsement if the input context label ct has
low integrity. This is necessary because inputs, unlike branch/loop guards, are
not lexically-bounded in their impact. The update of memory i on every input
allows the monitor to have a memory where each variable’s value refers either to
its last input or its value at the initial memory (i.e., no inputs are performed for
that variable).

In the presence of outputs, checking invariants at the end of program execution
needs to be revised. Data invariants could refer to outputs produced by programs,
e.g., every credit-card number sent to a server must be formed by 16 digits. To
express this, it is sufficient to apply rule TERMc at every output produced by the
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program. In principle, it is possible to allow programmers to indicate what invari-
ants must be checked at what outputs.

When considering inputs and outputs, the security condition for declassifica-
tion in [10] is based on the attacker’s knowledge [51, 8, 14]. With this in mind, it is
possible to use the same semantics techniques to handle endorsement in presence
of communication primitives. In fact, the dual of the attacker knowledge in [10]
can be interpreted as the attacker capabilities to control or affect computations
regarding high integrity data [7].

5.6.2 Access control

As mentioned in Section 5.1, integrity in the area of access control [112] focuses
on preventing data modification operations when no modification access is granted
to a given principal. Policies of the kind “resource R cannot be written by prin-
cipal P ” cannot be naturally enforced by noninterference. The main reason is
the degree of freedom that noninterference allows regarding entities at the same
security level. Noninterference only restricts how information flows among dif-
ferent security levels. To illustrate this, assume an information-flow enforcement
mechanism is in place. Whatever security level variable R is assigned to, it is still
possible to read its content, concatenated with itself, and save it back to R. Ob-
serve that these operations only manipulate data at security level R. In contrast,
our monitor can be easily adapted to enforce that no write operation is invoked on
R by P or, more generally, no changes are performed on resource R by just es-
tablishing, through an invariant, that the content of R is the same at the beginning
and at the end of the program. Moreover, if considering endorsement as given in
Figure 15, it is possible to enforce no changes on R by endorsing it at the end of
the program. Direct enforcement of no unauthorized write operations is of course
also possible when the monitor has access to the entire trace.

5.6.3 Practical aspects

Preliminary results from a Haskell-based library for integrity [52] suggest light
implementation overhead to enforce integrity policies in presence of I/O and ac-
cess control requirements. Diserholt [52] shows how to build a secure password
administrator that preserves confidentiality of passwords as well as several facets
of integrity policies, e.g., password must be difficult to guess (integrity via in-
variance), certain operations should not write the contents of some files (access
control), and user input cannot determine the utilized hash function (integrity via
information flow). We argue that it is not difficult to reformulate the concrete case
study in [52] using our approach and obtain similar results.

FP7-ICT-2009-5
Project No. 256964



D3.1: Confidentiality and Integrity Policies 82/97

5.7 Related work
As one of the most fundamental security properties, integrity is subject to a vast
area of research. We refer to security textbooks [98, 59] that discuss assorted fla-
vors of integrity, and integrity surveys [84, 112] and tutorials [60] that develop
integrity classifications. Section 5.1 also contains pointers to various interpreta-
tions of integrity in various disciplines.

To the best of our knowledge, our framework is the first to unify information
integrity for programs. As mentioned previously, our departure point is the clas-
sification by Li et al. [73]. Our contribution compared to this classification is a
more general model of invariants (Li et al. only discuss predicate invariants), a
more general model of information flow (Li et al. do not consider endorsement),
and a unified view, where we show that program correctness subsumes invariance
policies. In addition, we also offer a unified enforcement mechanism that guaran-
tees all aspects of integrity at once.

Information-flow integrity dates back to Biba’s integrity model [21], which
dualizes Bell and LaPadula’s model [20, 71] for mandatory access control. The
Clark-Wilson integrity model [42] is a classical model that focuses on separation
of duties and transactions.

Although information integrity for programs has been unexplored compared
to confidentiality, it has recently received increasing attention. Languages such as
Perl, PHP, and Ruby offer dynamic integrity checks that are based on tainting, a
runtime mechanism for tracking explicit flows.

Ørbæk and Palsberg [96, 97] define instrumented information-flow semantics
for integrity in λ-calculus. The semantics is based on integrity label manipulation.
An unsoundness related to the impact of flow sensitivity on information flow has
been recently uncovered [101].

Heintze and Riecke [63] consider integrity as dual to confidentiality in their
study of information flow for a language based on λ-calculus. Li and Zdancewic
unify confidentiality and integrity policies [74] in the context of information down-
grading.

A line of work on robust declassification [124, 91, 7] is based on an inter-
play between confidentiality and integrity, where information release (of high
confidentiality data) is allowed only if it cannot be manipulated by the attacker
(through attacker-controlled low integrity data) to release additional information.
The Java-based Jif tool [92], as well as its web-based extensions [39, 37], imple-
ment robustness policies.

Sabelfeld and Sands [110] introduce dimensions of declassification, with the
main focus on declassification of confidentiality levels. They informally discuss
the dual of dimensions of declassification: dimensions of endorsement.

We draw on delimited release [106] when it comes to enforcement of integrity
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policies. Although delimited release is a confidentiality property, its enforcement
includes information-flow aspects and is capable of enforcing generalized invari-
ants. This work builds on a runtime mechanism for delimited release by Askarov
and Sabelfeld [10]. A static alternative to tracking delimited release has been
explored by Sabelfeld and Myers [106].

Boudol and Kolundzija [27] combine programming constructs for express-
ing access-control and declassification policies. Access control is represented
at language level, with explicit granting, restricting, and testing access rights.
Information-flow policies and access control have been also integrated at language
level by Banerjee and Naumann [15], although without considering declassifica-
tion.

Haack et al. [61] explore reasoning about explicit flows in program logic. They
arrive at two kinds of integrity notions: flow-based and format-based. The former
is an information-flow policy, and the latter is concerned with proper formatting
(they give an example policy such as “a phone number field should only contain
numbers”). This latter type of integrity is subsumed by generalized invariance.

Cheney et al. [34] investigate semantic foundations for data provenance in
databases. Provenance is concerned with tracking the origin of information, and
so Cheney et al. model it as a dependency analysis.

Diserholt [52] proposes a library that handles confidentiality and integrity poli-
cies in Haskell. Besides handling confidentiality, the library is also able to com-
bine information-flow integrity, predicate invariants, and some means for access
control. Similarly to this work, they are inspired by the classification of integrity
policies in [73].

Clarkson and Schneider [43] propose contamination and suppression as quan-
titative definitions of integrity. The former is dual to quantitative information
leakage, whereas the later measures how much information is lost from outputs.
The study of suppression includes program suppression due to malicious influence
and implementation errors as well as channel suppression due to information loss
about inputs to a noisy channel.

5.8 Conclusions
We have presented a uniform framework for information integrity. The frame-
work incorporates a range of integrity aspects from information-flow integrity to
program correctness. The framework integrates different types of integrity as in-
variance. We show that some of the invariant-based policies are not compati-
ble with each other (cf. value vs. predicate invariance). Nevertheless, they are
naturally represented in our framework as program correctness properties. En-
dorsement policies naturally extend information-flow policies and also fit into the
framework.
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Despite being general, our integrity framework is realizable. A single enforce-
ment mechanism [10] (for tracking delimited information release) turns out to be
an excellent match for enforcement of integrity. It supports both information-flow
integrity, including extensions with endorsement policies, as well as correctness
properties, including the various flavors of invariance. This mechanism is scalable
to handling communication primitives.

Future work is focused on the directions outlined in Section 5.6. We explore
both formal aspects of policies in the presence of communication and access con-
trol and practical aspects of enforcement, with inlining transformation and library-
based enforcement as our main goals. Another direction of work is an extension
of the framework to represent trace properties, i.e., properties of sequences of in-
termediate states. We expect the extension of the framework and monitor rather
straightforward: generalized invariants can just as well refer to the full traces, and
enforcement corresponds to enforcing safety [113] properties.

It is important to support our results with practical findings from case studies.
Preliminary results from a Haskell-based library for integrity [52] suggest light
implementation overhead.
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6 Conclusion
Web applications are different from many other application domains in that they
are frequently built up by collaborating, but mutually distrusting components.

Section 2 presents a framework for reasoning about and enforcing decentral-
ized information-flow policies. The policies express possibilities of collaboration
in the environment of mutual distrust. By default, no information flow is allowed
across different principals. Whenever principals are willing to collaborate, the
policy framework ensures that a piece of data is revealed only if all owners of the
data have provided sufficient authorization for the release.

While the policy framework is independent, we have demonstrated that is real-
izable with language support. We have showed how to enforce security by runtime
monitoring for a simple imperative language.

Different attack scenarios demand different security policies. For instance,
the standard program-centric attacker model is not necessarily suitable for Web
applications. In addition, for practical information flow security, there is a tradeoff
between the the expressiveness of the security policy and its enforceability.

With respect to this, Section 3 shows how that extremes of insecurity (as with
termination-insensitive noninterference) and over-restrictiveness of enforcement
(as with termination-sensitive noninterference) can be avoided when generalizing
batch-job security to multiple runs. Addressing the problem, we have presented a
knowledge-based framework for specifying and enforcing multi-run security poli-
cies. The policy framework includes possibilities for declassification. The type-
based enforcement tracks both confidentiality and integrity labels and guarantees
multi-run security.

On the enforcement side, Section 4 explores an enforcement technique for
reactive non-interference based on secure multi-execution [50]. The value of the
technique is shown by implementing it for Featherweight Firefox. To the best
of our knowledge, this proposal is the first to enforce a general non-interference
policy for the browser as a whole.

Another property of the web that makes it stand out from the standard program-
centric view of security is that web applications frequently are built from a number
of collaborating, but mutually distrusting components. A typical example is the
mashup. This leads to the need for the creation of rich decentralized information-
flow policies.

As Section 3 shows, the notion of integrity is paramount for secure information
flow. In this case the notion of integrity is dual to confidentiality. However, the
we argue that there are additional facets of integrity that must be considered.

To this end, Section 5 presents a uniform framework for information integrity.
The framework incorporates a range of integrity aspects from information-flow
integrity to program correctness. The framework integrates different types of in-
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tegrity as invariance. We show that some of the invariant-based policies are not
compatible with each other (cf. value vs. predicate invariance). Nevertheless, they
are naturally represented in the framework as program correctness properties. En-
dorsement policies naturally extend information-flow policies and also fit into the
framework.

Despite being general, the integrity framework is realizable. A single enforce-
ment mechanism [10] (for tracking delimited information release) turns out to be
an excellent match for enforcement of integrity. It supports both information-flow
integrity, including extensions with endorsement policies, as well as correctness
properties, including the various flavors of invariance. This mechanism is scalable
to handling communication primitives.

As discussed, the choice of security policy does not only depend on the at-
tacker model. In addition, the question of enforceability is important for practical
information flow security. There are a number of different choices guiding the
design of information flow enforcement for web applications. A major choice is
whether to use a static, a dynamic, or a hybrid method of enforcement. Our work
offers extensive coverage of these alternatives. Section 3 provides static enforce-
ment in the form of a type system, whereas Section 5 develops dynamic enforce-
ment in the form of a runtime monitor. Section 2 features a hybrid method where a
dynamic monitor is inlined into the code using static analysis and transformation.
Further, Section 4 features a language-independent approach that achieves secure
information flow by multiple runs of a given program at different security levels.

These alternatives provide an excellent base for exploring whether the enforce-
ment should be placed on client side, server side or as a collaboration between the
two. This work is planned for the rest of the activities in the information-flow
work package, to be reported in Deliverable 3.3.
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