.

SEVENTH FRAMEWORK
ACCOMPANY PROGRAMME

DELIVERABLE 4.5

Evaluation of the activity recognition system

Author(s): Ninghang Hu, Ben Krose
Project no: 287624
Project acronym: ACCOMPANY

Project title: Acceptable robotiCs COMPanions for
AgeiNg Years

Doc. Status: Draft

Doc. Nature: Template

Version: 0.1

Actual date of delivery: 30 March 2014
Contractual date of delivery: Month 30
Project start date: 01/10/2011

Project duration: 36 months

Peer Reviewer: IPA

Project Acronym: ACCOMPANY
Project Title: Acceptable robotiCs COMPanions for AgeiNg Years

EUROPEAN COMMISSION, FP7-ICT-2011-07, 7th FRAMEWORK PROGRAMME
ICT Call 7 - Objective 5.4 for Ageing & Wellbeing

Grant Agreement Number; 287624

B e —
SEVENTH FRAMEWORK

PROGRAMME



DOCUMENT HISTORY

ACCOMPANY

Version Date Status Changes Author(s)

0.0 2013-10-8 Draft Initial Draft Ben Krdse

0.1 2013-10-8 Draft Ninghang Hu
AUTHORS & CONTRIBUTERS

Partner Acronym Partner Full Name Person

UVA University of Amsterdam Ben Krose

UVA University of Amsterdam Ninghang Hu

<ACCOMPANY Deliverable D4.5 Report > Page 2 of 24



ACCOMPANY

Short description

This deliverable reports on the evaluation of the activity recognition system in household
chores in WP4 of the ACCOMPANY project.

We have already built a system to recognize low-level sub-activity sequence (accepted at
ICRA 14") as well as a hierarchical approach for recognizing high-level activities (submitted to
ROMAN 14"). Our experiments consist of multiple activities of users.

To evaluate the system, we use the benchmark dataset CAD-120 [1]. We choose the CAD-
120 dataset for evaluation because of the following reasons: 1) CAD-120 is a very
challenging dataset that presents significant variations of activities, cluttered background,
viewpoint changes, and partial occlusions. 2) The dataset has been used in many recent
works in the robotics research [1]-[3]. Therefore we can easily compare the performance to
the state-of-the-art approaches. 3) The dataset is captured by a RGB-D camera mounted on
the robot, which is closely related to the applications in robotics.

In order to incorporate confidence of annotation into our activity recognition framework, we
proposed the method of soft labeling, which allows annotators to assign multiple, weighted,
labels to data segments.

We are working on creating a new benchmark dataset in Troyes. The dataset will incorporate
data from ambient sensors, robot sensors, overhead cameras, therefore it can be used for
multi-dimensional research. The dataset will be recorded with real elderly people and will be
annotated by the soft labeling method that we have proposed.
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1 Introduction

This deliverable reports on the evaluation of the activity recognition system in household
chores in WP4 of the ACCOMPANY project.

We developed a novel discriminative model for the recognition of human activities. The novel
model was tested on the (CAD-120 benchmark data set. Experimental results on this data
set indicate that our model outperforms the current state-of-the-art approach by over 5% in
both precision and recall, while our model is more efficient in terms of computation.

Based on the recognized sub-level activities, we proposed a two-layered approach that can
recognize sub-level activities and high-level activities successively. In the first layer, the low-
level activities are recognized based on the RGB-D video. In the second layer, we use the
recognized low-level activities as input features for estimating high-level activities. Our model
is embedded with a latent node, so that it can capture a richer class of sub-level semantics
compared with the traditional approach. Our model is evaluated on a challenging benchmark
dataset. We show that the proposed approach outperforms the single-layered approach,
suggesting that the hierarchical nature of the model is able to better explain the observed
data. The results also show that our model outperforms the state-of-the-art approach in
accuracy, precision and recall.

In order to incorporate confidence of annotation into our activity recognition framework, we
proposed the method of soft labeling, which allows annotators to assign multiple, weighted,
labels to data segments. This is useful in many situations, e.g. when the labels are uncertain,
when a part of the labels are missing, or when multiple annotators assign inconsistent labels.
We treat the activity recognition task as a sequential labeling problem. Latent variables are
embedded to exploit sub-level semantics for better estimation. We propose a novel method
for learning model parameters from soft-labeled data in a max-margin framework. The model
is evaluated on a challenging dataset (CAD-120), which is captured by a RGB-D sensor
mounted on the robot. To simulate the uncertainty in data annotation, we randomly change
the labels for transition segments. The results show significant improvement over the state-
of-the-art approach.

The systems are evaluated on the benchmark dataset in order to compare with the state-of-
the-art approaches. We are working on creating a new benchmark dataset in Troyes. The
dataset will incorporate data from ambient sensors, robot sensors, and overhead cameras,
therefore it can be used for multi-dimensional research. The dataset will be recorded with
real elderly people and will be annotated by the soft labeling method that we have proposed.

The report is structured as follows: Section 2 describes our new approach for activity
recognition. This work has been accepted for publication at ICRA14. Section 3 describes the
method of recognizing high-level activities. The full papers and submissions are attached as
Appendices A, B. The work of soft annotation is still under review. It will be provided once the
paper gets accepted. In this paper, we present a method to train discriminative graphical
models, which allows annotation uncertainty to be explicitly incorporated, in the form of soft
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labeling. The advantage of soft labeling is that it incorporates the uncertainty of labels during
annotation and can deal with missing labels or annotator disagreement.

2 Learning Latent Structure for Activity Recognition

Robotic companions which help people in their daily life are currently a widely studied topic.
In Human-Robot Interaction (HRI), it is very important that the human activities are
recognized accurately and efficiently.

In this section, we present a novel graphical model for human activity recognition. The task of
activity recognition is to find the most likely underlying activity sequence based on the
observations generated from the sensors. Typical sensors include ambient cameras, contact
switches, thermometers, pressure sensors, and the sensors on the robot, e.g. RGB-D sensor
and Laser Range Finder.

. Latent-state layer

* Target-state layer

* Observation layer

Probabilistic Graphical Models have been widely used for recognizing human activities in
both robotics and smart home scenarios. The graphical models can be divided into two
categories: generative models [4], [5] and discriminative models [1], [6], [7]. The generative
models require making assumptions on both the correlation of data and on how the data is
distributed given the activity state. The risk is that the assumptions may not reflect the true
attributes of the data. The discriminative models, in contrast, only focus on modeling the
posterior probability regardless of how the data are distributed. The robotic and smart
environment scenarios are usually equipped with a combination of multiple sensors. Some of
these sensors may be highly correlated, both in the temporal and spatial domain, e.g. a
pressure sensor on the mattress and a motion sensor above the bed. In these scenarios, the
discriminative models provide us a natural way of data fusion for human activity recognition.

The linear-chain Conditional Random Field (CRF) is one of the most popular discriminative
models and has been used for many applications. Linear-chain CRFs are efficient models
because the exact inference is tractable. However, they are limited in the way that they
cannot capture the intermediate structures within the target states [8]. By adding an extra
layer of latent variables, the model allows for more flexibility and therefore it can be used for
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modeling more complex data. The names of these models are interchangeable in the
literature, such as Hidden-Unit CRF [9], Hidden-state CRF [8] or Hidden CRF [10].

In this section, we present a latent CRF model for human activity recognition. For simplicity,
we use “latent variables” to refer to the augmented hidden layer, as they are unknown either
in training or testing. The “target variables”, which are observed during training but not
testing, represent the target states that we would like to predict, e.g. the activity labels. See
Figure 1 for the graphical model and the difference between latent variables and target
variables. We evaluate the model using the RGB-D data from the benchmark dataset [1]. The
results show that our model performs better than the state-of- the-art approach [1], while the
model is more efficient in inference.

Our contributions can be summarized as follows:

1) We propose a novel Hidden CRF model for predicting underlying labels based on the
sequential data. For each temporal segment, we exploit the full connectivity among
observations, latent variables, and the target variables, from which we can avoid
making inappropriate conditional independence assumptions.

2) We show an efficient way of applying exact inference in our graph. By collapsing the
latent states and the target states, our graphical model can be considered as a linear-
chain structure. Applying exact inference under such a structure is very efficient.

3) Our software is open source and will be fully available for comparison.

Details of this work can be found in Appendix A.
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3 Recognition of High-level Activities

Recently, there has been a considerable amount of work focusing on graphical models for
human activity recognition. Notably, Hu et al. [3] use latent variables to exploit sub-level
semantics over the activities, and their approach shows state-of-the-art results on a
benchmark dataset. However, their work only allows activities to have very short duration.
For real tasks in HRI, it is desirable to recognize high-level activities that have a longer
duration.

We distinguish between sub-level activities and high-level activities as follows. The sub-level
activities are defined as the atomic actions that relate to a single object in the environment,
e.g. reaching, placing, opening, closing, etc. Most of these sub-level activities are completed
in a relatively short time. In contrast, high-level activities usually refer to a whole sequence
that is composed of different sub-level activities. For example, “microwaving food” is a high-
level activity and it can be decomposed into a number of sub-level activities such as opening
the microwave, reaching for the food, moving food, placing food, and closing the microwave.

RGB-D
Video
~— 1% Layer
Low-level Obeni . ] _ _
Activities PE?LNFT Reachhlng — Mo:.flng — Plaﬂcmg—clopsmg -
-"“n-.__‘““"-._‘ I - -—:‘.‘.‘.‘-‘_,.-—'
BRSO Pt = 2nd Layer
High-level Activity Microwave Food

The task of recognizing sub-level activities is usually formulated as a sequential prediction
problem, see Figure 2. The RGB-D video is firstly divided into smaller video segments, so
that each segment contains more or less one low-level activity. This can be done either by
manual annotation or by automated temporal segmentation based on appearance. Spatial-
temporal features are extracted for each temporal segment. Based on the input features, we
need to predict the most likely underlying sequence of low-level activities. The predicted sub-
level activities can be viewed as the input for inferring high-level activities. In this paper, we
propose an approach for learning high-level human activities. Our approach can be
decomposed into two layers, i.e. recognition of sub-level activities and inferring high-level
activities based on the sub-level activities. For the first layer, we model the correlation of sub-
level activities between two consecutive video segments. Similar to [3], we use latent
variables to exploit the underlying semantics among sub-level activities. For example, the
sublevel activity closing may refer to closing a bottle or closing the microwave. Although the
two activities share the same label closing, they belong to different sub-types of closing. The

latent variables are able to capture such a difference and are able to model the rich
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variations of the sub-level activities. For recognizing high-level activities, we treat the output
sub-level activities from the first layer as the input in the second layer, and the high-level
activities are predicted based on the sequence of sub-level activities. We use a max-margin
approach for learning the parameters of the model. Benefiting from the discriminative
framework, our method does not need to model the correlation between the input data, thus
providing us with a natural way for data fusion.

Details of this work can be found in Appendix B.
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4 Conclusion and Future Work

The novel model for activity recognition was tested on a standard benchmark data set (CAD-
120 benchmark). Experimental results on this data set show that our model outperforms the
state-of-the-art approach by over 5% in both precision and recall, while our model is more
efficient in computation.

We present a two-layered approach that can recognize low-level and high-level human
activities simultaneously. We investigate the effect of using latent variables, segmentation
methods, as well as different feature representations. Our results show that the two-layered
approach performs better than the approach with only a single layer. Our model is also
shown to outperform the state-of-the-art on the same dataset. Currently, our approach only
uses the RGB-D videos for activity recognition. In our future work, we would like to fuse
different cues, e.g. human locations [11], human identities [12] and ambient sensors [13], for
robust estimation of human activities.

The systems are evaluated on the benchmark dataset in order to compare with the state-of-
the-art approaches. We are working on creating a new benchmark dataset in Troyes. The
dataset will incorporate data from ambient sensors, robot sensors, and overhead cameras,
therefore it can be used for multi-dimensional research. The dataset will be recorded with
real elderly people and will be annotated by the soft labeling method that we have proposed.
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Learning Latent Structure for Activity Recognition*

Ninghang Hu', Gwenn Englebienne!, Zhongyu Lou! and Ben Kriise!:?

Abstraci— We present a novel latent discriminative model
for human activity recognition. Unlike the approaches that
require conditional independence assumptions, our model is
very flexible in encoding the full connectivity among observa-
tions, latent states, and activity states. The model is able to
capture richer class of contextunal information in both state-
state and observation-state pairs. Although loops are present
in the model, we can consider the graphical model as a linear-
chain structure, where the exact inference is tractable. Thereby
the model is very efficient in both inference and learning.
The parameters of the graphical model are learned with the
Structured-Support Vector Machine (Structured-SVM). A data-
driven approach is used to initialize the latent variables, thereby
no hand labeling for the latent states is required. Experimental
results on the CAD-120 benchmark dataset show that our
maodel outperforms the state-of-the-art approach by over 5%
in both precision and recall, while our model is more efficient
in computation.

I. INTRODUCTION

Robotic companions to help people in their daily life are
currently a widely studied topic. In Human-Robot Interaction
(HRI) it is very important that the human activities are rec-
ognized accurately and efficiently. In this paper, we present
a novel graphical model for human activity recognition.

The task of activity recognition is to find the most likely
underlying activity sequence based on the observations gen-
erated from the sensors. Typical sensors include ambient
cameras, contact switches, thermometers, pressure sensors,
and the sensors on the robot, e.g. RGB-D sensor and Laser
Range Finder.

Probabilistic Graphical Models have been widely used
for recognizing human activities in both robotics and smart
home scenarios. The graphical models can be divided into
two categories: generative models [1], [2] and discriminative
maodels [3], [4]. [5]. The generative models require making
assumptions on both the correlation of data and on how the
data is distributed given the activity state. The risk is that
the assumptions may not reflect the true attributes of the
data. The discriminative models, in contrast, only focus on
maodeling the posterior probability regardless of how the data
are distributed. The robotic and smart environment scenarios
are usually equipped with a combination of multiple sensors.
Some of these sensors may be highly correlated, both in
the temporal and spatial domain. e.g. a pressure sensor on

*The research has received funding from the Ewropean Union's Sev-
enth Framework Programme (FPT/2007-2013) under grant agresment
Moo 28TA24.

1 M. Hu, . Englebienne, Z. Lou and B. Krése are with Intelligent System
Lab Amsterdam, University of Amsterdam, 1098XH Amsterdam. The
Netherlands {n.hu, g.englebienne,z.lou,b.j.a.krose}
B uva.nl

2 B. Krlise is also with the Amsterdam University of Applicd Science
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Fig. 1. The proposcd graphical model. Nodes that represent the obscrva-
tions @ arc rendered in black, and they arc obscrved both in training and
testing. Grey nodes i are only observed during training but not testing, and
they represent the target labels to be predicted, e.g activity labels. White
nodes = refer to the latent variables, which are unknown either in training
or testing. MNote that @y, 3. 2 are fully connected in our model, and also
fior nodes of transition.

the mattress and a motion sensor above the bed. In these
scenarios, the discriminative models provide us a natural way
of data fusion for human activity recognition.

The linear-chain Conditional Random Field (CRF) is one
of the most popular discriminative models and has been
used for many applications. Linear-chain CRFs are efficient
models because the exact inference is tractable. However,
they are limited in the way that they cannot capture the
intermediate structures within the target states [6]. By adding
an extra layer of latent variables, the model allows for
more flexibility and therefore it can be used for modeling
more complex data. The names of these models are inter-
changeable in the literature, such as Hidden-Unit CRF [7],
Hidden-state CRF [6] or Hidden CRF [8].

In this paper, we present a latent CRF model for human
activity recognition. For simplicity, we use latent variables
to refer to the augmented hidden layer, as they are unknown
either in training or testing. Intuitively, one can imagine that
the latent variables represent subtypes of the activities. e.g.
For the activity “opening”. using latent variables we are
able to model the difference between “opening a bottle” and
“opening a door”™. The rargei variables, which is observed
during training but not testing, represent the target states that
we would like to predict, e.g. the activity labels. See Fig. |
for the graphical model and the difference between latent
variables and target variables. We evaluate the model using
the RGB-D data from the benchmark dataset [3]. The results
show that our model performs better than the state-of-the-art
approach [3]. while the model is more efficient in inference.

The contributions of this paper can be summarized as fol-
lows: We propose a novel Hidden CRF model for predicting
underlying labels based on the sequential data. For each
temporal segment, we exploit the full connectivity among
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observations, latent variables, and the target variables, from
which we can avoid making inappropriate conditional inde-
pendence assumptions. We show an efficient way of applying
exact inference in our graph. By collapsing the latent states
and the target states, our graphical model can be considered
as a linear=chain structure. Applying exact inference under
such a structure is very efficient. Our software is open source
and will be fully available for comparison'.

II. RELATED WORK

Human activity recognition has been extensively studied
in recent decades. Different types of graphical models have
been applied to solve the problem, e.g. Hidden Markov Mod-
els (HMMs) [1]. [2], Dynamic Bayesian Networks (DBNs)
[9]. linear-chain CRFs [10]. loopy CRFs [3], Semi-Markov
Models [4], and Hidden CRFs [11], [8].

As has been discussed in the introduction, the discrimi-
native models are more suitable for data fusion tasks which
are very common in HRI applications, where many different
sensors are used. Here we focus on reviewing the most
related work that uses discriminative models for activity
recognition.

Recently Koppula et al. [3] presented a model for the
temporal and spatial interactions between human and objects
in loopy CRFs. More specifically, they built a model that
has two types of nodes to represent sub-activity labels of the
human and the object affordance labels of the objects. Human
nodes and objects nodes within the same temporal segment
are fully connected. Over time, the nodes are transited to the
nodes with the same type. The results show that by modeling
the human-ohject interaction, their model outperforms the
earlier work in [2] and [12]. For inference in the loopy
graph, they solve it as a quadratic optimization problem
using the graph-cut method [13]. Their inference method,
however, is less efficient compared with the exact inference
in a linear-chain structure as the graph cut method takes
multiple iterations before convergence, and usually more
iterations are preferred to ensure of a good solution.

Other work [14] augments an additional layer of latent
variables to the linear-chain CRFs. They explicitly model
the new latent layer to represent the duration of activities.
In contrast with [3], Tang et al. [14] solve the inference
problem by reforming the graph into a set of cliques. so that
the exact inference can be solved efficiently using dynamic
programming. In their model. the latent variables and the
observation are assumed to be conditionally independent
given the target states.

Our work is different from the previous approaches in both
the graphical model and the efficiency of inference. Firstly,
similar to [14], our model also uses an extra latent layer. But
instead of explicitly modeling what the latent variables are,
‘we learn the latent variables directly from the data. Secondly,
we do not make conditional independence assumptions be-
tween the latent variables and the observations. Instead, we

IThe source code will be available at https://github.com/
ninghang/activity_recognition.git
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add one extra edge between them to make the local graph
fully connected. Thirdly, although our graph also presents a
lot of loops as in [3]. we are able to transform the cyclic
graph into a linear-chain structure where the exact inference
is tractable. The exact inference in our graph only needs
two passes of messages across the linear chain structure
which is much more efficient than [3]. Finally, we model
the interaction between the human and the objects at the
feature level, instead of modeling the object affordance as
target states. In such a way, the parameters are learned to be
directly optimized for activity recognition rather than making
the joint estimation of both object affordance and the human
activity. As we apply a data-driven approach to initialize the
latent variables, hand labeling of the object affordance is not
necessary in our model. Our results show that the model
outperforms the state-of-the-art approaches on the CAD120
dataset [3].

III. MoODEL

The graphical model of our proposed system is illustrated
in Fig. I. Let ¢ = {x;,Ta....,Tx} be the sequence
of observations, where K is the total number of temporal
segments in the video. Our goal is to predict the most likely
underlying activity sequence ¥ = {y1.%2,.... ¥k + based
on the observations. We define z = {z1,20,.... 25} to be
the latent variables in the model. We assume there are N,
activities to be recognized and N; latent states.

Each observation xy itself is a feature vector within the
segment k. The form of xp is quite flexible. It can be
collections of data from different sources, e.g. simple sensor
readings, human locations, human pose, object locations.
Some of these observations may be highly correlated with
each other, e.g. the wearable accelerate meters and the
motion sensors. Thanks to the discriminative nature of our
model, we do not need to model such correlation among the
observations.

A. Objective Function

Our model contains three types of potentials that in
together form the objective function.

The first potential measures the score of seeing an obser-
vation @y with a joint-state assignment (zy, y). We define
@(z;) to be the function that maps the input data into the
feature space. w is the vector of parameters in our model.

U (g, 20 T wn ) = wilyk, 2x) - Pa) (n

This potential models the full connectivity among .
zj, and x, avoiding making any conditional independence
assumptions. It is more accurate to have such a structure
since zp and x; may not be conditionally independent over
a given i in many cases. To make it more intuitive, one
could imagine that ;. refers to the activity drinking coffee
and z; defines the progress level of drinking. The activity
drinking coffee starts with human grasping the coffee cup
(zr = 1), then drinking (zx = 2). and then putting the
cup back (z = 3). Knowing it is a drinking activity, the
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observation x, varies largely over different progress level
2.

The second potential measures the score of coupling ye
with z. It can be considered as either the bias entry of (1)
or the prior of seeing the joint state (yg, zi).

Uy, 2kt wa) = wa(ye. 2i) 2)

The third potential characterizes the transition score from
the joint state (yr—1, 2k—1) to Yk, 2 ). Comparing with the
normal transition potentials [8], our model leverages the
latent variable z; for modeling richer contextual information
over consecutive temporal segments. Not only does our
model contain the transition between states yg. but it also
captures the sub-level context using the latent variables.
Intuitively, our model is able to capture the fact that the
start of reading a newspaper is more likely to be preceded
by the end of the drinking activity rather than the middle
part of the drinking activity.

Ua(Uk—10 Zk—1, Uk» 2k Wa) = Wa(Yk—1, Zk—1. ¥k 2)  (3)

Summing all potentials over the whole sequence, we can
write the objective function of our model as follows

K
Fly,z,zw) =Y _ {wilyx, z) - B(@x) + walye, 2)}
k=
x
+ 3 walyh-1, 2e-1, Yk 2t) @
=

The objective function evaluates the matching score be-
tween the joint states (y, z) and the input x. The score equals
to the un-normalized joint probability in the log space. The
objective function can be rewritten into a more general linear
form F(y,z,z;w) = w- ¥y, =, x). Therefore the model
is in the class of the log-linear model.

Mote that it is not necessary to model the latent variables
explicitly. but rather the latent variables can be learned
automatically from the training data. Theoretically, the latent
variables can represent any form of data, e.g. time duration,
action primitives, as long as it can help with solving the task.
Optimization of the latent model, however, may converge to
a local minimum. The initialisation of the random wvariables
is therefore of great importance. We compare three initial-
ization strategies in this paper. Details of the latent variable
initialization will be discussed in Section VI-D.

One may notice that our graphical model has many loops,
which in general makes the exact inference intractable. Since
our graph complies with the semi-Markov property, next,
we will show that how we benefit from such a structure for
efficient inference and leaming.

IV. INFERENCE

Given the graph and the parameters, the inference is to
find the most likely joint states i and z that maximizes the
objective function.

(y*.z") = argmax Fly, z zw) (5
(p.z)E¥=Z
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Generally, solving (35) is an NP-hard problem that requires
evaluating the objective function over an exponential number
of state sequences. Exact inference is usually preferable as it
is guaranteed to find the global optimum. However, the exact
inference usually can only be applied efficiently when the
graph is acyclic. In contrast, approximate inference is more
suitable for loopy graphs, but may take longer to converge
and is likely to find a local optimum. Although our graph
contains loops, we show that we can transform the graph
into a linear-chain structure, in which the exact inference
becomes tractable. If we collapse the latent variable z with
the activity state i into a single node, the edges between z;
and y;. become the internal factor of the new node and the
transition edges collapse into a single transition edge. This
results in a typical linear-chain CRF, where the cardinality
of the new nodes is N, = N.. In the linear-chain CRF, the
exact inference can be performed efficiently using dynamic
programming [15].

Using the chain property, we can write the following
recursion for computing the maximal score over all possible
assignments of y and =z.

Vielye, zi) =wi (yr. zi) - &z ) + walye, 2)

max Wi\ We—1+ Zk—1+ 52
[yk—l.zk—llé}'xz{ S{JJ: 1; 2k—1: Uk k}

+ Vi—alp—1,2x-1)} (6)

Knowing the optimal assignment at K, we can track back
the best assignment in the previous time step K — 1. The
process keeps going until all y* and z* have been assigned,
Le the inference problem in (5) is solved.

Computing (6) once involves O(N, N.) computations. In
total, (6) needs to be evaluated for all possible assignments
of (y.zx), so that it is computed N, N_ times. The total
computational cost is, therefore, O(N; N2 K). Such com-
putation is manageable when N,V is not very large, which
is usually the case for the tasks of activity recognition.

Next, we show how we can learn the parameters using the
max-margin approach.

V. LEARNING

We use the max-margin approach for leamming the pa-
rameters in our graphical model. The observation sequences
and ground-truth activity labels are given during training
(1,9, ) (T2, W,). . ... (x., Wy ). The latent variables z are
unknown from the training data. The goal of leaming is to
find the parameters w that minimize the loss between the
predicted activities and the ground-truth labels. A regular-
ization term is used to avoid over-fitting.

N
min {%nwuf +0y A(yf,g}} ™
i=1
where (' is a normalization constant and A(y;. y) measures
the loss between the ground-truth and the prediction. The loss
function returns zero when the prediction is the same as the
ground-truth, and counts the number of disagreed elements
otherwise. § is the most likely activity sequence computed
from (5) based on x;.
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Optimizing (7) directly is not possible as the loss function
involves computing the argmax in (5). Following [16] and
[17]. we substitute the loss function in (7) by the margin
rescaling surrogate which serves as an upper-bound of the
loss function.

Lo o
min{=[Jw|?* + ma Aly,. F(z;.y.z:w
nin{ S [lwll !_E:lh"ﬁje;xz[ (Y- y) + Flzey, 2 w))]

— CTZrana%cF[::f.y,--z'-w)} (®)
i=1

The second term in (8) can be solved using the augmented
inference, i.e. by plugging in the loss function as an extra
factor in the graph, the term can be solved in the same way
as the inference problem using (5). Similarly, the third term
of (8) can be solved by adding y; as the evidence into the
graph and then applying inference using (5). As the exact
inference is tractable in our graphical model, both of the
terms can be computed very efficiently.

Mote that (8) is the summation of a convex and a concave
function. This can be solved with the Concave-Convex
Procedure (CCCP) [18]. By substituting the concave function
with its tangent hyperplane function, which serves as an
upper-bound of the concave function, the concave term is
changed into a linear function. Thereby (8) becomes convex
again.

We can rewrite (8) in the form of minimizing a function
subject to a set of constraints by adding slack variables

min {%||w||2 +(:§5.—} ©)
st.¥ie{l2.. . . npVyel:
Flz;, ygw) — Flziyw) = Aly.y) — &

Mote that there are exponential number of constraints in
(9). This can be solved by the cutting-plane method [19].

Another intuitive way to understand the CCCP algorithm
is to consider it as solving the leaming problem with in-
complete data using Expectation-Maximization (EM) [20].
In our training data, the latent variables are not given. We
can start by initializing the latent variables. Once we have the
latent variables, the data become complete. Then we can use
the standard Structured-5VM to learn the model parameters
(M-step). After that, we can update the latent states again
using the parameters that are learned (E-step). The iteration
continues until convergence.

The CCCP algorithm decreases the objective function in
every iteration. However, it cannot guarantee of finding the
global optimum. To avoid of being trapped in the local min-
imum, the latent variables need to be carefully initialized. In
this paper, we present three different initialization strategies.
and details will be presented in Section VI-D.

Mote that the inference algorithm is extensively used in
leamning. As we are able to compute the exact inference by
transforming the loopy graph into a linear-chain graph, our
leamning algorithm is much faster and more accurate com=
pared with the other approaches with approximate inference.
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V1. EXPERIMENTS

Our system is built upon three parts, the graphical model,
the inference part and the learning part. We construct the
graphical model and build the CCCP algorithm in Matlab.
For exact inference, we adopt the inference engine from
libDAIL [21]. For learning, we take the Structured SVM
framework provided by [16]. We compare the results with
the state-of-the-art approach in [3].

A. Dara

We evaluate our model on the CAD=120 dataset [3]. The
dataset has 120 RGB-D videos with 4 subjects performing
daily life activities. Each video is annotated with one high-
level activity label and a sequence of sub-activity labels. The
ground-truth of the segments and object affordance labels
are also provided. In this paper, we use the sub-activity
labels for evaluation. But our model can be easily extended
into a hierarchical approach that can recognize higher-level
activities, which will be reported in our next paper. As in
[3]. we use the ground-truth segments that are provided by
the dataset.

For comparison, the same input features are used as in [3].
The features are human skeleton features ¢,(x,) € R530
object features o,(xs) € B object-object interaction
features ¢,o(xy) £ B object-subject relation features
GoalTr) € R and the temporal objection and subject
features ¢ () ) € B2, These features are concatenated into
a single feature vector, which is considered as the observation
of one sub-activity segment, i.e. $(xy).

B. Evaluation Criteria

Our model is evaluated with 4-fold cross-validation. The
folds are split based on the 4 subjects, i.e. the model is trained
on videos of 3 persons and test on a new person. Each cross-
validation is run for 3 times. To check the generalization
of our model across different data, the results are averaged
across the folds. In this paper, accuracy (classification rate),
precision and recall are reported for comparing the results.
In the CAD-120 dataset, more than half the instances are
“reaching” and “moving”. Therefore we consider precision
and recall to be relatively better evaluation criteria than
accuracy, as they remain meaningful despite class imbalance.

C. Baseline

Our baseline approach uses only one latent state in our
model (N, = 1), which is equivalent to a linear-chain
CRF. The parameters of the baseline model are learned with
the standard Structured-SVM. We use the margin rescaling
surrogate as the loss and Ll-norm for the slacks. For op-
timization we use the l-slack algorithm (primal) as being
described in [22].

We apply a grid search for the best SVM parameters of '
and e. (' is the normalization constant that is the trade-off
between model complexity and classification loss. ¢ defines
the stop threshold of optimization. When e is small, the

2I|:||>‘ut features can be downloaded from hitp://pr.cs.cornell.
edufhumanactivities/data/features.tar
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Fig. 3. Another view of the grid scarch for the best (' and «. {a) shows the
change of classification rate over € when " is fixed to 0.3. When ¢ is small,
a large number of support vectors is added and the model overfits. When ¢
15 too large, the model is underfitting and the iterations stop too carly, with
too few support vectors. (b) shows the change of classification rate over '
when ¢ is fixed w0 0.25. When ' is small, the leaning algorithm tries 1o
find a model as simple as possible, so that the performance is very low.
When ' is very large, the model overfits and the performance drops.

leamning process takes longer time to converge and the trained
maodel contains more support vectors. We show results of the
grid search in Fig. 2. In Fig. 3 we show the curve of accuracy
when keeping one of the parameters fixed.

Based on these results, we choose C' = 0.3 and ¢ = (.25
for our experiments.

D. Initialize Larent Variables

In the our latent model, we choose the same (7 and €
as in the linear-chain CRF. Parameters of the model are
initialized as zeros. To initialize the latent states, we adopt
three different initialization strategies. a) Random initializa-
tion. b) A data-driven approach. We apply clustering on
the input data x. The number of clusters is set to be the
same as the number of latent states. We run K-means for
10 times. Then we choose the best clustering results that
with the minimal within-cluster distances. The labels of the
clusters are assigned as the initial latent states. ¢) Object
affordance. The object affordance labels are provided by the
CADI120 dataset, which are used for training in [3]. We apply
the K-means clustering upon the affordance labels. As the
affordance labels are categorical, we use l-of-N encoding
to transform the affordance labels into binary values for
clustering.

E. Results

Table I compares the activity recognition performance
between our model and the state-of-the-art approach in [3].
We evaluate the model with different number of latent
states, ie. latent-2, latent-3 and latent-4, as well as the
different initialization strategies, .e. random, data-driven and
affordance.
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TABLE 1
RESULTS OF ACTIVITY RECOGNITION

Accuracy  Precision Recall F-score

Koppula, et al. [3] B60+0.9 22213 T6OX 2.6 804X 15

latent-1 linear CRF B5.7 £29 B64X6.1 824 x40 82662

latent-2 random BA0DX28 BEG6EX 46 TOSEH4 BO1xES
latent-2 data-driven 870 £ 1.9 89.2 X 46 831 = 14 843 = 4.7
latent-2 affordance 87,0 &+ 11 883 X 4.3 B840 x 32 843 £ 5.1

latent-3 random 23.1+£22 3145 T3 48 TElXEl
latent-3 data-driven 860+ 1.9 E7.2x 2.0 823x 24 82942
latent-3 affordance 860+ 20 H80x 4.6 81.5+34 8Z1+48

latent-4 random B2R+32 BEOX50 TEIXGH6 TTHX69
latent-4 data-driven B5.9 £ 1.7 BEEX 2.7 B24x 2.0 B28x 37
latent-4 affordance B5.7 £ 1.6 864X 28 BlLT7Tx290 820X 36

We show that with the optimal SVM parameters, the
baseline performs better on the precision and recall compared
with [3]. but worse on the accuracy. This is because the
baseline does not model the object affordance as target
variables, and the parameters are optimized directly for
minimizing the loss in activity recognition. The other reason
is that the baseline model follows a linear-chain structure,
and it is guaranteed to find the global optimal solution.

By adding the latent variables, our model can achieve
better results than the baseline, but only when the latent
variables are properly initialized. When the latent variables
are randomly initialized, the average performance is much
worse in most of the cases and shows a large variance as it
most likely to have converged to a local minimum. We note
that the data-driven initialization (clustering on x) performs
as good as the initialization with the hand-labeled object
affordances.

We also compare the model when different numbers of
latent states are used. We obtain better performance when
we use only 2 latent states instead 3 or 4. This is partly
because there are more parameters to be tuned when the
model contains more latent states. The other reason is that the
model may be too complex and overfits the data. Therefore
choosing the number of latent states is also data related. If
we use a more complex dataset, more latent states need to
be used.

Fig. 4 shows the confusion matrix of activity classification.
We can see that higher values presemt on the diagonal
of the confusion matrix, and they represent the activities
that are comrectly classified. The most difficult classes are
eating and scrubbing. Eating is sometimes confused with
the drinking, and scrubbing is likely to be confused with
reaching, drinking and placing.

Our best performance is obtained when we use 2 latent
states and the model is initialized by clustering on the input
data. We get 89.2% on the average precision and 53.1%
on the average recall, which outperforms the state-of-the-
art by over 5% on both precision and recall. We believe the
performance can be further improved if we apply grid search
for the optimal learning parameters of the latent-state model.
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Fig. 2. Performance of the bascline approach (N. = 1). We apply a grid scarch o choose the best € and €. The results are averaged on multiple runs of
4fold cross-validation. The nan entry in (b) means that at least one of the classes gets no positive detection. Based on the grid search, we choose O = 0.3

and £ = 0.25.
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Fig. 4. Confusion matrix over different activity classes. Rows are ground-
truth labels and columns are the detections. Each row is normalized to sum
up to one, as one data object can only be associated with a single class
label.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a novel Hidden-state CRF model
for human activity recognition. We use the latent variables
to exploit the underlying structures of the target states. By
making the observation and state nodes fully connected.
the model do not require any conditional independence
assumption between latent variables and the observations.
The model is very efficient in that the inference algorithm is
applied to a linear=chain structure. The results show that the
proposed model outperforms the state-of-the-art approach.
The model is very general that it can be easily extended for
other prediction tasks on sequential data.
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A Two-layered Approach to Recognize High-level Human Activities

Ninghang Hu!, Gwenn Englebienne! and Ben Krise!?

Abstract— Automated human activity recognition is an es-
sential task for Human Robot Interaction (HRI). A successful
activity recognition system enables an assistant robot to pro-
vide precise services. In this paper, we present a two-layered
approach that can recognize sub-level activities and high-level
activities successively. In the first layer, the low-level activities
are recognized based on the RGB-D video. In the second layer.
we use the recognized low-level activities as input features
for estimating high-level activities. Our model is embedded
with a latent node, so that it can capture a richer class of
sub-level semantics compared with the traditional approach.
Our maodel is evaluated on a challenging benchmark dataset.
We show that the proposed approach outperforms the single-
layered approach, suggesting that the hierarchical nature of
the model is able to better explain the observed data. The
results also show that our model outperforms the state-of-the-
art approach in accuracy, precision and recall

I. INTRODUCTION

Recently, there has been a considerable amount of work
focusing on graphical models for human activity recognition
[11. 121, [3], [4]. [5]. [6], [7]. Notably, Hu et al [7]
use latent variables to exploit sub-level semantics over the
activities, and their approach shows state-of-the-art results
on a benchmark dataset. However. their work only allows
activities to have very short duration. For real tasks in HRI,
it is desirable to recognize high-level activities that have a
longer duration.

We distinguish between sub-level activities and high-level
activities as follows. The sub-level activities are defined
as the atomic actions that relate to a single object in the
environment, e.g reaching. placing, opening, closing, elc.
Most of these sub-level activities are completed in a relatively
short time. In contrast, high-level activities usually refer to
a whole sequence that is composed of different sub-level
activities. For example, “microwaving food” is a high-level
activity and it can be decomposed into a number of sub-level
activities such as opeming the microwave, reaching for the
food, moving food. placing food, and closing the microwave.

The task of recognizing sub-level activities is usually for-
mulated as a sequential prediction problem, see Fig. 1. The
RGB-D video is firstly divided into smaller video segments,
so that each segment contains more or less one low-level
activity. This can be done either by manual annotation or
by automated temporal segmentation based on appearance

The msearch has received funding from the European Union's Sev-
enth Framework Programme (FP/2007-2013} under gramt agreement
MNo. 287624, and also parly from the EU-FPT project MONARCH.

1 N. Hu, G. Englebienne. and B. Krose are with Inelligent Sysem Lab
Amsterdam, University of Amserdam, 1098XH Amsterdam, The Mether-
lands {n.hu, g.englebienne,b. j.a.krose} @ uva.nl

2 B. Krisc is also with the Amsterdam University of Applicd Scicnce.
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Fig. 1. An illustration of our approach. The input video is represented as a
spatial-emporal volume. The video is diseretized into multiple temporal
segmenis for modeling, and spatial-temporal features are exiracted at
each temporal segment In the first layer, sub-level activities are directly
mcognized from the input features with one atomic activity per segment. In
the second layer, the high-level activities is described in terms of the sub-
level activity sequence (dotted lines). Note that the video segments may not
have the same length, thus a segmentation method needs to be applied.

features. Spatial-temporal features are extracted for each
temporal segment. Based on the input features, we need
to predict the most likely underlying sequence of low-level
activities. The predicted sub-level activities can be viewed
as the input for inferring high-level activities.

In this paper, we propose an approach for leaming high-
level human activities. Our approach can be decomposed
into two layers, i.e. recognition of sub-level activities and
inferring high-level activities based on the sub-level activi-
ties. For the first layer, we model the correlation of sub-level
activities between two consecutive video segments. Similar
to [7], we use lalent variables to exploit the underlying
semantics among sub-level activities. For example, the sub-
level activity closing may refer to closing a bottle or closing
the microwave. Although the two activities share the same
label closing, they belong to different sub-types of closing.
The latent variables are able to capture such a difference
and are able to model the rich variations of the sub-level
activities. For recognizing high-level activities, we treat the
owput sub-level activities from the first layer as the input in
the second layer, and the high-level activities are predicted
based on the sequence of sub-level activities. We use a max-
margin approach for leaming the parameters of the model!.
Benefiting from the discriminative framework, our method
does not need to model the correlation between the input
data, thus providing us with a natural way for data fusion.

The rest of the paper is organized as follows. After
reviewing the related work in Section II, we introduce the
two layered approach in Section III. We present details of
the experiments and we compare our model with the single
layered approach in Section IV.

I0ur source code will be updated at https://github. com/
ninghang/activity_recognition
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II. RELATED WORK

Depending on the complexity and duration of activities,
approaches of activity recognition can be separated into two
categories [8], single-layered approaches and hierarchical
approaches. The single-layer approaches [9], [10], [11], [12],
[13], [14], [15], [16]. [17] refer to the methods that are able
to recognize human activities directly from the data, without
defining any activity hierarchy. Usually these activities are
both simple and short, so no higher-level layers are required.
Typical activities of this category include walking, waiting,
falling. jumping and waving. Nevertheless, in the real world,
activities are not always as simple as these basic actions.
For example, the activity of preparing some breakfast may
consists of multiple sub-activities, such as opening a fridge.
getting salad and making coffee. Before correctly estimating
the high-level activity, the hierarchical models [4], [7]. [18].
[19], [5] need to recognize the sub-activities. Next, we review
the relevant work that uses hierarchical models.

Sung et al. [1] proposed a hierarchical maximum entropy
Markov model that detect high-level activities from RGB-
I videos. They consider the sub-activities as hidden nodes
which are leammed implicitly. Recently, Koppula et al. [4]
present an interesting approach that models both activities
and objects affordance as random variables. These nodes
are inter-connected to model object-object and object-human
interactions. Nodes are connected across the segments to
enable temporal interaction. Given a test video, the model
jointly estimates both human activities and object affor-
dance labels using a graph-cut algorithm. After the low-
level activities are recognized. the high-level activities are
estimated using a multi-class SVM. Hu et al. [7] encode
the interactions between objects and humans at the feature
level for recognizing low-level activities. They propose to
add a latent layer to exploit underlying semantics between
temporal segments. The inference algorithm of their model
is very efficient as the graph can be viewed as a linear-chain
structure. They were able to recognize low-level activities
but did not consider the high-level activities. Our work is
an extension of [7] for the task of recognizing high-level
activities. Different from the multi-class SVM that is used
in [4], we add a latent node to enrich the expressiveness of
our model. Further, we evaluate the sub-level and high-level
activities in a row and we experiment the effect of using
different segmentation methods and feature representation in
the context of recognizing high-level activities.

III. APPROACH

Our main goal is to predict the high-level activities based
on RGB-D videos. The proposed two-layered approach is
an extension of our previous work [7]. In the first layer, we
divide the video into temporal segments and we adopt the
approach in [7] to predict one sub-level activity per segment.
In the second layer, we use the predicted sub-level activity
labels as the input for estimating high-level activities.
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Fig. 2 The graphical models that are used in owr two layered approach.
(a} showws the graphical moded for recognizing low-level activities iy, based
on the observed video @, (b) shows the graphical medel for recognizing
high-kevel activities ypy based on the recognized sub-level activity sequence
yr, and occlusion fatures @,

A. Recognizing Low-level Acrivities

In the first layer of our approach, we predict the low-level
activity sequence based on the observed RGB-D video. For
that we adopt a similar approach as in [7]. The video is
firstly discretized into small segments based on the work of
[4]. We use a sequence of random variables to model the
sub-level activities in the video, with one sub-level activity
node per segment. Adjacent sub-activity nodes are inter-
connected to model the tlemporal interaction. Latent variables
are appended for each temporal segment. The model is very
flexible in encoding the full connectivity among observations,
latent states, and activity states, therefore it is able to capture
a richer class of contextual information in both state-state and
observation-state interactions.

As loops are present in the model, parameter learning
becomes difficult as exact inference is not tractable. We apply
the same tricks as in [7] that we consider the activity node
and latent node from the same segment as a single node,
thereby the model is transformed into a linear-chain structure
where many efficient inference solves can be applied. The
graphical model is illustrated in Fig. 2(a). For more details,
readers can refer to [7].

B. Recognize High-level Activities

The graphical model that recognizes high-level activities
is illustrated in Fig. 2(b). Let y; be a vector of low-level
activities that are estimated from the first layer. Let = denote
the global features extracted from the RGB-D videos. In this
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paper, we consider it as the occlusion features that are used
in [4]. Similar to [7], we append a latent node = to enrich
the expressiveness of the model. Intuitively, we can think of
that = models the sub-type of the high-level activity. Based
on the observed low-level activities and the global features,
our goal is to predict the most likely underlying high-level
activity label yy. Note that = and y; are both observations
in the second layer, and they are observed both in training
and testing. In contrast, the high-level activity label gy is
observed only in training, and it is the target to be predicted
during testing.

1) Feature Representarion: We extract the n-gram fea-
tures [20], ie @(yg). from the low-level activity vector
Y. Specifically, unigram (l-gram) is identical to the bag-
of-words representation where values in the feature vector
represent the occurrence of different words (sub-level activity
labels in our case). As for bigram (2-gram) features, we com-
pule the occurrence of pairwise activities that are contiguous
in the sequence. Likewise, n-gram computes the frequencies
of N contiguous activities. The advantage of using n-gram
(= 1) feature representation is that it encodes the temporal
relation between two contiguous sub-level activities.

To further encoding the temporal semantics, we extract
a set of occlusion features in a similar way as in [4]. We
divide each video into 10 segments with equal length, and
the features are computed as the fraction of objects that are
occluded. These occlusion features are very helpful for dis-
ambiguating mirrored activities. For example, the “stacking™
and “unstacking™ are two mirrored high-level activities, and
they contain exactly the same unigram features. In contrast,
the occlusion features can capture the global changes of
the sequence, therefore they are more capable of distinguish
mirrored activities.

2) Poteniial Function: Our model consists of three poten-
tials. The potentials are introduced separately, and after that
we give the potential function of our model.

The first polential measures the score of seeing a sub-level
activity sequence y, with a joint-stale assignment (yg, 2).
w is the vector of parameters in our model. Note that we
denote a sub-set of the parameter vector as w(yy, z) where
the parameters comresponds with gy and =.

Yilyp. yu, mwn) = wi(yw, z) - dlyg) (n

This polential models the interaction among vy, = and y;..
Since these nedes are fully connected, we can avoid making
conditional independence assumptions among them. Tradi-
tional models assume that the latent component = and low-
level activities y;, are conditionally independent once yy is
given. This is not true when yg has a large variation, eg
when performing the high-level activities “making cereal”,
people can either be sitting or standing. Although both of the
two sub-type activities belong to the same activity “making
cereal”, they may differ significantly in the observed video.
Using the latent variable, our model is able to capture such
a difference. thus such a structure is more expressive and
flexible for modeling human activities.

The second potential measures the score of coupling yy
with z. It can be considered as either the bias entry of (1)
or the prior of seeing the joint state (yy, ). Intuitively, this
polential favors particular sub-types of the high-level activity
rather than the other sub-types.

Wa(afr, 2 wa) = walyn, 2) 2

The third potential is similar to the first potential, and the
main difference is that the observed variables in this potential
are occlusion features = rather that sub-level activities y; .
The third potential favors a particular assignment of the joint
state (yy, z) based on occlusion features.

Yalyy, v, ziws) = walyy, 2) - x (3)

Based on the three potentials that we have defined. we can
write the potential function of our model as

Fiz,yp, . zw) =wi(yn, z) - #(yp) + walyn,z)
+walyn, z) - x (4)

The above potential function measures the compatibility
of certain joint states with all observations. The function
retums a high value when the observations match with
a particular high-level activity y, and sub-type label =,
and vice versa. The return value of the function can be
considered as the un-normalized joint probability in log
space. It is not hard to see that the potential function is a
linear production of parameters and features. The objective
function can be rewritten into a more general linear form
Flz,y,,yn,2;w) = w - V(x, ¥, ,yu,2). Therefore the
model is in the class of the log-linear model.

3) Inference Algorithm: The inference problem is to find
the most likely high-level activities based on the obser-
vations, ie finding the joint state assignment y, and =z
that maximizes the potential function. During inference, we
assume all model parameters are known. The method of
learning those parameters will be presented later in Sec-
tion IM-B.4.

Formally, our goal is 1o solve the following equation:

argmax  Fla,yp,yu,5w)  (5)
(i z)EVuxZ

Since there are only a limited number of high-level activ-
ities and latent states, we can enumerate all possible joint
state assignments and find the activity and latent state pair
that holds the highest potential value. Such process can be
paralleled and evaluating (5) only involves linear production,
therefore the inference algorithm is very efficient and it can
be solved in real time.

Now that we show the high-level activity can be efficiently
predicted in our model, next, we present the method for
learning the model parameters using a max-margin approach.

4) Learning Model Parameiers: We use the max-
margin approach for leaming the parameters in our
eraphical model. The ocbservations and ground-truth
high-level activity labels are given during (training
O N i S MR C A R

(yt,2*) =
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TABLE I
PERFORMANCE OF HIGH-LEVEL ACTIVITY RECOGNITION

ACCOMPANY

Dissemination Level: PU

GROUNDTRUTH SEGMENTATION

APPEARANCE-BASED SEGMENTATION

METHOD ACCURACY  PRECISION RECALL ACCURACY  PRECISION RECALL

SINGLE LAYER 7424102 7T85+94 T33+£105 T50+£10.7 THOL£9E T42%11.0
KOPPULA, ET AL. [4] B4.7 124 853+ 2.0 842425 TThE41 BOI1x3.9 76742
OUR MODEL {UNIGRAM) 90.0+29 928+23 BO.TE3.0 7062 BE449 TEELLHH
Our MODEL (UNIGRAM+BIGRAM)  8T.4 £ 5.1 924131 869152 T5.0£4.1 83.21+54 T46L 4.2

The superscript represents the index of different training
examples. The latent variable = is unknown from the training
data. The goal of learning is to find the optimal parameter set
w that minimize the loss between the predicted high-level
activities and the ground-truth labels. A regularization term
is used to avoid over-fitting.

.
)1 i) -
min {Enwuﬂ +czmy§£,y)} ©)

where C' is a normalization constant and &[y;;] , i) measures
the zero-one loss between the ground-truth label and the
prediction. ¢ is the most likely activity sequence computed
from (5). The loss function returns zero when the prediction
is the same as the ground-truth, and counts the number of
disagreed elements otherwise.

()
. 1if
A 5) = { Y7 U @

0  otherwise

Optimizing (6) directly is not possible as the loss function
involves computing the argmax in (5). Following [21] and
[22], we substitute the loss function in (6) b%o margin
rescaling surrogate which serves as an upper-bound of t
loss function.

.
min{zlwl® + C )" maxiA. o) + Fa.y,v. 5 w)

t=]
= C) max F(«l, up e} (®)
1=1

The second term in (%) can be solved using the augmented
inference. Le by plugging in the loss function as an extra factor
in the graph, the erm can be solved in the same way as the
inference problem using (5). Similarly. the third term of (8) can
be solved by adding wy;' as the evidence into the graph and then
applying inference using (5). As the exact inference is tractable
in our graphical model, both of the terms can be computed very
efficiently.

Note that (8) is the summation of a convex and a concave
function. This can be solved with the Concave-Comvex Procedure
{CCCP) [23]. By substituting the concave function with its tangent
hyperplane function, which serves as an upper-bound of the concave
function, the concave term is changed into a linear function.
Thereby (%) becomes convex again.

We can rewrite (8) in the form of minimizing a function subject
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to a set of constraints by adding slack variables

I T =
T':?{EN’" +U§£-} (@)

st ¥ie{l,2,..., n}, Yy € Vi :
Faet g0y ziw) — F(e™ yl y zw) 2 Al v) — &

Note that there are exponential number of constraints in (9). This
can be solved by the cutting-plane method [24].

Another intuitive way to understand the CCCP algorithm is to
consider it as solving the kamning problem with incomplete data
using Expectation-Maximization (EM). In our training data, the
latent variables are not given. We can start by initializing the
latent variables. Once we have the laent variables, the data become
complete. Then we can use the standard Structured-SVM to leamn
the model parameters (M-step). After that, we can update the latent
states again using the parameters that are learned (E-step). The
iteration continues until convergence.

IV. EXPERIMENT AND RESULTS

A. Daraset

The models are evaluated on the benchmark dataset CAD-120
[4]. The dataset consists of 120 RGE-D videos, which are collected
by the Microsoft Kinect sensor. Each video contains one high-level
activity and a sequence of sub-level activities. There are in total 10
high-level activities in the dataset, including making cereal, raking
medicine, stacking objecis, unstacking objects, microwaving food,
picking up objects, cleaning objects, raking food, arranging objects,
having a meal. The dataset also consists of 10 sub-level activities,
ie reaching, moving, pouring. eaung, drinking, opening, placing
closing. scrubbing, and nwll. Both high-level and sub-level activities
are manually annotated in the dataset. Using the skeleton tracker
from OpenNI”, body part locations are obtained for each frame.
The objects are detected in an automatic way and locations of the
objects are also provided by the dataset

The dataset is very challenging in the following aspects. a) The
activities in the dataset are performed with four different actors.
They behave quite differently, e.g. left or right handed, front view
or side view. b) There is also a large variation even for the same
activity. e.g. the sub-level activity opening can refer to opening a
bottle or opening the microwave. Although both of them have the
same label, they appear significantly different from each other in the
video. ¢) Partial or full occlusion is also a very challenging aspect
for this dataset. e.g in some of the videos, legs are completely
occluded by the table, and objects are frequently occluded by
the other objects. This makes it difficult to obtain accuraie object
locations as well as body skeleton, therefore the generated data is
noisy.

We choose to evaluate on this benchmark dataset because there
are existing approaches [4], [7] that we can directly compared with.

Ihttp:/ /www.openni.org/
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B. Evaluarion Criteria

All models are evaluated in terms of accuracy, precision and
recall with 4-fold cross-validation. The folds are separated based
on different human actors, i.e. the model is trained using videos
performed by 3 persons and it is then ested on a new person.

C. Experiment Semp

We compare two different segmentation methods to the videos.
In the first method, we use the ground truth segmentation which
is manually annotated. For the second segmentation, we apply
an appearance-based approach, ie we extract the spatial-temporal
features for all the frames, and similar frames are grouped together
to form segments using a graph-based approach. For the reason of
comparison, we use the same video segmentation parameters as in
[4].

In our model, parameters of the two layers are trained in parallel
sessions. In the first session, we kearn a latent discriminative model
for recognizing sub-level activities based on the RGB-D videos.
Following [4]. we extract three set of features from the video,
which encode human-object interaction, object-object interaction
and temporal interaction respectively. In the second session, we
learn a model that infers the high-level activity from the sequence
of sub-level activities. We extract unigram and bigram features
based on the sub-level activity sequence as well as the occlusion
features as described in Section 111-B.1. Our model consists of latent
variables. The cardinality of the latent variables is a hyper parameter
that is estimated based on cross-validation. During testing, the low-
level activities and high-level activities are recognized in succession.
We first infer the sub-level activities in the first layer. After that, we
use the learned parameters to map the obtained sub-level activities
to high-level activities.

Our mode] is compared with two baseline approaches. In the first
baseline approach, we use a singke layer model for recognizing
high-level activities, fe. we learn a direct mapping from video
features to the high-level activity. As the second baseline, we adopt
the recent work [4] in activity recognition for comparison.

D. Results

Tabke I compares the performance of different methods on the
recognition task of high-level activities. “Single Layer” refers to the
first baseling approach where we learn a direct mapping from video
level features to high-level activities. The single layer approach
reaches an average performance of over 70% in both segmentation
methods but with a large standard derivation of around 10%. In
contrast, the two-layered approaches outperform the single-layer
approach by over 10 percentage points. Notably, when using the
model with unigram features, we meach the best performance on
both segmentation methods. For the ground truth segmentation,
our model with unigram segmentation gets 90% in accuracy and
92.8% in precision and 89.7% in recall, and the standard deviation
is less than 3 percentage points. When using appearance-based
segmentation, both accuracy and recall drop to below 80% whilke
the average precision is 86.4%. Afler adding bigram features, the
performance drops slightly. We believe that this is because of the
sparsity of sub-level activities and that the performance will be
better than the unigram once we have more training data for high-
level activities.

Fig. 3 illustrates the confusion matrix of both single-lavered
approach and the proposed methods. We can see that the activ-
ities including cleaning objects, microwaving food and sacking
objects are heavily confused with other activities in single-layered
approach. In contrast, there is a strong diagonal for the hierarchical
approach with small errors, eg. using the unigram+bigram, the
microwaving food is confused with taking food and unstacking
objects is confused with picking objects, making cereal, arranging
objects and taking food. Our model performs better using only the
unigram features and only a few errors occur for unstacking objects
and stacking objects.

P & & g*’@
P e P
PSS LIS

=& 0000.0830.0000.0000.0000.02:30.0000.0000.002

B.0000.0820.0000.0000.0000.0000.0000.0000.167 18

(a) Single-layer Approach
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& ?f@*“if FFEE
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Fig. 3. Confusion matrix of high-level activity recogmition
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V. CONCLUSION AND FUTURE WORK

In this paper, we present a two-layered approach that can recog-
nize low-kvel and high-level human activities simultaneously. We
investigate the effect of using latent variables, segmentation meth-
ods. as well as different feature representations. Our results show
that the two-lavered approach performs better than the approach
with only a single layer. Our model is also shown to outperform
the state-of-the-art on the same dataset.

Currently, our approach only uses the RGE-D videos for activity
recognition. In our future work, we would like to fuse different
cues, £ g human locations [25], human identities [14] and ambient
sensors [26], for robust estimation of human activities.
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