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Executive Summary

This document reports key techniques developed for solving tasks in “T3.3 Advanced
Eco-Routing Methods” of Project REDUCTION WP3 during the period of 01/09/2012
– 31/08/2013. The primary objectives of T3.3 are summarised as follows.

• To develop runtime efficient, high-performance data structures and data mining
algorithms for computing eco-routes.

• To develop scalable eco-routes computation methods.

• To conduct extensive experimental studies to verify the eco-routing algorithms.

To support advanced eco-routing techniques, a major challenge lies in how to assign
weights that accurately capture the environmental impact to road segments, so-called
eco-weights. Once the eco-weights have been obtained, existing routing algorithms,
such as Dijkstra’s algorithm, can be applied to compute eco-routes in road networks.
In T3.3, we mainly focus on the tasks of assigning eco-weights to road network, and
rely on GPS records to conduct the tasks.

As summarised in the task objectives, GPS records can arrive at the central system
in a high velocity stream, yielding a large volume of data. It is possible that some
road segments are covered with sufficient amounts of GPS records, whereas other road
segments have no or few GPS records. Meanwhile, eco-weights on road segments can
also be diverse. For example, weights on road segments can be constant values, can
change over time, or can be uncertain. To cover these possibilities of eco-weights on
road segments, while still considering the scalability and efficiency, we propose the
following techniques for T3.3.

1. Given a huge amount of historical GPS records, a method is proposed to assign
time-dependent and uncertain eco-weights to road segments that are covered by
sufficient GPS records. This kind of eco-weights captures the basic traffic be-
haviour, e.g., periodic traffic variations, on the road segments [1], as reported in
Chapter 2.

2. As the real time GPS data streams in, a method for predicting near future eco-
weights of road segments is proposed. This kind of eco-weights considers the
most recent data and thus reflects the real time traffic of road networks. This
method helps to improve the accuracy of eco-routing [2] and is presented in
Chapter 3.

3. For road segments that are not covered by sufficient numbers of GPS records to
derive eco-weights using the above two methods, a method is proposed to infer
eco-weights on such kinds of road segments [3], as presented in Chapter 4.
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The proposed methods are evaluated using a massive GPS data set collected from
Denmark. The experimental results indicate that these methods are effective, efficient,
and scalable up to country-level road networks.

The proposed methods have also been partially integrated into a prototype system1

developed by AAU and AU. The prototype uses both GPS data and CANBus data.
In addition, the proposed methods have been partially assessed in the first BEK

field trial in WP5. Further performance and scalability evaluation of our techniques is
planned in the second BEK field trial in the third year, 01/09/2013 – 31/08/2014.

1http://daisy.aau.dk/its
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Chapter 1

Introduction

1.1 Project Description
The reduction of CO2 emissions is a great challenge for the transport sector nowadays.
Despite recent progress in vehicle manufacturing and fuel technology, still a significant
fraction of CO2 emissions in EU cities is resulting from road transport. Therefore, ad-
ditional innovative technologies are needed to address the challenge of reducing emis-
sions. The REDUCTION project focuses on advanced ICT solutions for managing
multi-modal fleets and reducing their environmental footprint. REDUCTION collects
historic and real-time data about driving behaviour, routing information, and emissions
measurements, that are processed by advanced predictive analytics to enable fleets en-
hance their current services as follows:

1. Optimising driving behaviour: supporting effective decision making for the en-
hancement of drivers education and the formation of effective policies about op-
timal traffic operations (speeding, braking, etc.), based on the analytical results
of the data that associate driving-behaviour patterns with CO2 emissions;

2. Eco-routing: suggesting environmental-friendly routes and allowing multi-modal
fleets to reduce their overall mileage automatically; and

3. Support for multi-modality: offering a transparent way to support multiple trans-
port modes and enabling co-modality.

REDUCTION follows an interdisciplinary approach and brings together expertise
from several communities. Its innovative, decentralised architecture allows scalability
to large fleets by combining both V2V and V2I approaches. Its planned commercial
exploitation, based on its proposed cutting edge technology, aims at providing a ma-
jor breakthrough in the fast growing market of services for ”green” fleets in EU and
worldwide, and present substantial impact to the challenging environmental goals of
EU.

1.2 Objectives of Work Package 3 (WP3)
REDUCTION’s division of technical work is composed of V2I/V2V communication
(Work Package 1), ecological routing (Work Package 3), ecological driving (Work
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Package 2) and distributed data mining (Work Package 2). In addition, REDUCTION
includes four field-studies (Work Package 5), where the state-of-art advances are ap-
plied to real-world scenarios.

The objective of WP3 is to design and develop a software prototype that can convert
vehicle-related data, primarily GPS data, to metrics that capture environmental impact.
The prototype must handle very large volumes of data from different types of vehicles1

and must efficiently compute the multi-modal eco-routes in both real-time and off-line
modes. In addition, the prototype must be able to report on the temporal evolution of
eco-routes, e.g., due to a variety of changes in the transportation infrastructure and its
use. The work package will

• define the interfaces for how vehicles communicate with the server side and with
each other.

• develop and prototype techniques for computing eco-routes,

• develop and prototype techniques for the validation of eco-routes.

• design and prototype high-performance data structures and algorithms for the
handling of very large volumes of streaming data from the vehicles.

• develop and prototype efficient, off-line data mining algorithms capable of mon-
itoring and reporting on the temporal evolution of eco-routes.

WP3 is organised in four tasks, namely:

• Task 3.1 – Requirement specification and Software architecture (AAU, BEK).

• Task 3.2 – Basic eco-routing methods (AAU, AU).

• Task 3.3 – Advanced eco-routing methods (AU).

• Task 3.4 – Prototype Consolidation (AAU, AU).

Deliverable D3.2 described techniques developed in Task 3.2, including

• a method for lifting a 2D (i.e., latitude-longitude) road network to achieve a 3D
(i.e., latitude-longitude-altitude) road network and hence providing grade infor-
mation for all road segments, which can increase the accuracy of eco-weights
assigned to the road segments;

• an evaluation of the utility of vehicular environmental impact models to assign-
ing eco-weights to road segments; and

• a basic routing algorithm that recommends eco-friendly routes to users on a road
network where eco-weights are annotated using the grade information, vehicular
environmental impact models, and GPS trajectories.

Thus, the objectives of deliverable D3.2 have been achieved.

1The vehicle fleets considered in this report refer to passenger vehicle fleets rather than freight vehicles.
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1.3 Objectives of Deliverable 3.4
This deliverable D3.4 describes advanced eco-routing techniques developed and im-
plemented to solve task “T3.3 Advanced Eco-Routing Methods of WP3”. We mainly
put our effort into developing techniques for assigning various types of eco-weights
that accurately capture environmental impact to road segments. Once the eco-weights,
which may be time-dependent, are obtained on segments of a road network, traditional
routing algorithms, e.g., Dijkstra’s algorithm and A∗ algorithm, can be used. When
routing based on time-dependent eco-weights, algorithms that support both FIFO and
non-FIFO graphs [4] can be applied, meaning that we do not make the assumption that
the travel costs on road networks must satisfy the FIFO property2.

In task T3.3, we cope with high velocity and large volume historical and real time
GPS data. We do not make the assumption that the whole road network is covered
with GPS data. Instead, we not only consider segments that are covered with sufficient
GPS records, referred to as “hot” edges, but also address issues caused by segments
with little or no GPS data, called “cold” edges. Further, we take various types of eco-
weights into account. For example, eco-weights on a road segment can be constant or
time-dependent, i.e., changing over time, or can be uncertain while following certain
distributions under different traffic.

To address the aforementioned issues, we have conducted research on assigning
eco-weights in task T3.3. The developed techniques are described as follows.

I. Assigning time-dependent uncertain eco-weights to hot edges. In Chapter 2,
we present histogram-based techniques for assigning time-dependent uncertain eco-
weights to hot edges in a road network using a collection of historical GPS data. Specif-
ically, the major contributions are summarised as follows.

• A road network is proposed to capture environmental impact on road segments.

• A sequence of histograms is employed to represent the time-dependent uncertain
eco-weight on each road segment3. Various compression techniques, including
histogram merging and buckets reduction, are proposed to maintain compact
histograms while achieving good modeling accuracy.

• A comprehensive empirical study is conducted using two years of GPS vehicle
tracking data in order to gain insight into the effectiveness and efficiency of the
proposed approach.

II. Predicting the near future eco-weights on hot edges using real time GPS
data. In Chapter 3, we present a method for predicting eco-weights of hot edges in the
near future. Using the proposed method, near future travel costs, e.g., travel time or
greenhouse gas emissions, in a road network can be inferred using real time GPS data,
enabling a variety of online routing services, e.g., eco-routing. The contributions are
presented as follows.

• A general framework is proposed that is capable of modeling the traffic be-
haviour of a road network and thereby enables routing services that optimise
different travel-related costs.

2Travel times on road networks are generally assumed to satisfy the FIFO property, but fuel consumption
or GHG emissions on road networks may not satisfy the FIFO property

3Note that our aim is to estimate the travel cost distributions for routes, and a route can only consists of
consecutive edges. Thus, we only take into account the dependencies between adjacent edges, but not the
dependencies between other sets of edges. It is of interest to identify the dependencies between other sets of
edges when modeling traffic in a large region, which is out of the scope of the deliverable.
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• A spatio-temporal hidden Markov model is formalised to model the traffic be-
haviour of a road network.

• Learning algorithms are proposed to obtain individual state sets for all road seg-
ments and to determine the parameters needed to configure an STHMM.

• Comprehensive experiments are conducted to elicit the design properties of the
proposed framework and algorithms.

III. Annotating cold edges with time-dependent eco-weights. In Chapter 4, tech-
niques that take into account the structural similarities between cold and hot edges are
proposed to annotate cold edges with time-dependent eco-weights. Techniques pro-
posed in Chapter 2 are applied here to generate eco-weights that represent the CO2
emissions of traversing a road segment. The contributions are presented as follows.

• We formalise a novel problem, road network weight annotation, which aims to
assign time-dependent eco-weights to both cold and hot edges.

• A general framework for assigning time varying trip cost based weights to the
edges of the road network is presented, along with supportive models, including a
directed, weighted graph model capable of capturing time-varying edge weights
and a trip cost model based on time varying edge weights.

• Two novel and judiciously designed objective functions are proposed to contend
with the data sparsity. A weighted PageRank-based objective function aims to
measure the variance of weights on road segments with similar traffic flows,
and a second objective function aims to measure the weight difference on road
segments that are directionally adjacent.

• Comprehensive empirical evaluations with real data sets are conducted to elicit
pertinent design properties of the proposed framework.

The proposed techniques do not make any assumption on the supported types of
vehicle fleets. In other words, the proposed techniques can be applied for both pas-
senger vehicle fleets or freight vehicle fleets. The proposed techniques rely on the
available data. When the data is collected from passenger vehicle fleets (or freight
vehicle fleets), the obtained eco-weights can be used to provide eco-routes for passen-
ger vehicle fleets (or freight vehicle fleets). In this sense, the proposed techniques are
highly-flexible. Since only GPS data from passenger vehicles is available to us, the
proposed techniques are only tested on the passenger vehicles in D3.4.

We use a large GPS data set collected at 1 Hz (i.e., one GPS record per second) in
North Jutland, Denmark during week days from April 2007 to March 2008 to verify
the proposed algorithms. The data is from an experiment where young drivers start
out with a rebate on their car insurance and then are warned if they speed and are
penalised financially if they continue to speed. The GPS data is map matched [5] to
OpenStreetMap’s road network for Denmark4, where 34%, 29%, 15%, 9%, and 13% of
the data occurs on tertiary, secondary, residential, motorway, and other roads according
to OpenStreetMap road categories5, respectively. Most of the data is from urban and
suburban regions.

The objectives of this deliverable (D3.4) and the summary of the progress achieved
along each objective are summarised in Table 1.1.

4http://www.openstreetmap.org
5http://wiki.openstreetmap.org/wiki/Highway_tag_usage.
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Table 1.1: Summary of the Objectives of Deliverable 3.4

Objective Description Progress Summary
To develop runtime efficient, high-
performance eco-routes computing
algorithms

Developed three efficient algorithms that
are able to assign different types of eco-
weights to a road network.

To develop scalable eco-routes
computation methods

The developed three algorithms are scal-
able.

To conduct extensive empirical
evaluation of algorithms

Conducted experiments on a 2-year GPS
data collected in Denmark to verify that
the proposed algorithms are efficient, ef-
fective, and scalable up to contra-level road
network.
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Chapter 2

Representing Time-Dependent
Uncertain Eco-Weights For
Road Networks Using
Histograms

Global warming is mainly due to “greenhouse effect” [6] – the concentration of green-
house gases (GHG) in the Earth’s atmosphere prevents heat from escaping into the
space. The GHG emissions are mainly generated by the burning of fossil fuels, and
transportation is an important and increasing fossil fuels burning sector. Thus, reduc-
ing the GHG emissions from transportation is crucial in combating global warming.

Eco-routing is an easy-to-employ and effective approach to reduce GHG emissions
from transportation. Given a source-destination pair, the eco-route is the most environ-
mentally friendly route, i.e., the route that consumes the least fuel or produces the least
GHG emissions is able to achieve approximately 8–20% reductions in GHG emissions
or fuel consumption from road transportation [7].

Neither the shortest nor the fastest routes generally have the least environmental
impact. Figure 2.1 shows an example of the shortest route, the fastest route, and the
eco-route between source A and destination D.

Vehicle routing services rely on a weighted graph representation of the road net-
work in which vehicles travel. The vertices and edges represent road intersections and
road segments, respectively. The key to enabling effective eco-routing services is to as-
sign eco-weights to edges, where the eco-weights accurately capture the environmental
costs (i.e., GHG emissions or fuel consumption) of traversing the edges. Based on the
obtained weighted graph, various existing routing algorithms [8][9] can be applied di-
rectly to enable eco-routing.

A single value as an edge weight typically can not fully capture the environmental
cost of traversing the edge. For instance, while traversing an edge, aggressive drivers
may generate more GHG emissions than average drivers. Thus, an uncertain eco-
weight recording the distribution of all possible environmental costs of traversing the
edge better captures the reality.

Further, the eco-weights should be time dependent, due to the temporal variations
of traffic conditions. For instance, during peak hours, traversing an edge normally
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Figure 2.1: Eco-Route, Fastest Route, and Shortest Route

produces more GHG emissions than that of during off-peak hours. The distributions
of GHG emissions on an edge in North Jutland, Denmark during peak hours and off-
peak hours are shown in Figure 2.2. Since the edge is more likely to be congested
during peak hours, some traversals produce between 20 mL and 50 mL GHG emissions.
During off-peak hours, all the traversals produce less than 30 mL GHG emissions.
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Figure 2.2: Distributions of GHG Emissions On An Edge

Vehicle tracking data, such as global positioning system (GPS) data, can be used
for computing time-dependent, uncertain eco-weights of edges. Further, according
to a recent benchmark on vehicular environmental impact models [7], environmental
costs of traversing edges can be derived based on high-frequency GPS data (i.e., one
GPS record per second) using pertinent vehicular environmental impact models. Thus,
based on a collection of GPS tracking data, it is possible to assign time-dependent,
uncertain eco-weights to edges in a road network.

We study how to obtain time-dependent, uncertain eco-weights for edges from a
massive GPS tracking data set. In particular, advanced histogram based techniques are
proposed to approximate GHG emissions distributions during different intervals. As
we need to maintain histograms for a large number of edges in a road network, we
propose approximation techniques to compress the histograms, thus obtaining space
efficient and statistically accurate synopses for the distribution of GHG emissions for
all the edges.
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2.1 Related Work

2.1.1 Histograms
Histograms are used widely to capture the statistical distribution of data. In general,
histograms partition the range of the original data into buckets and maintain statistics
for each bucket. The criteria for choosing buckets vary across different types of his-
tograms.

The most widely used histogram is the equi-width histogram [10], which groups
contiguous ranges of values into buckets with uniform width. In the last few decades,
many advanced histograms have been proposed. Such histograms let the underly-
ing data distribution define the bucket boundaries. For instance, the V-optimal his-
togram [10] determines the buckets so that the variance of the overall frequency among
buckets is minimised, while the MaxDiff histogram [10] aims to place values that dif-
fer substantially in the same bucket, which yields the overall best accuracy-time trade-
off [10]. Due to the simplicity of equi-width histgram, we use these as the outset for
the edge weights at the initial stage.

Histograms are used widely in database management systems. For instance, his-
tograms [11, 12] are employed to efficiently estimate the sizes of query results and for
extracting information from streaming and probabilistic data [13]. Similarly, we also
use histograms to estimate the data distribution of our GPS streaming data.

A key objective of histograms is to capture the distribution of the underlying data
in a space-efficient manner. To save space and obtain an improved trade-off between
accuracy and space, several histogram compression techniques have been proposed.
Wavelet histograms [14] transform an original histogram into a set of wavelet coef-
ficients that yields customizable compression ratios. Regression is another popular
technique that can be used to compress histograms [15]. Give a histogram H with n
buckets, regression can produce an approximation H ′ with m buckets, m < n. Regres-
sion tends to minimise a certain error metric in comparison to the original values, such
as sum of squared errors (SSE). For the purpose of saving storage space, we propose
different histogram compression techniques to reduce the buckets in the histograms.
Our experiments show that our histogram techniques can achieve considerable data
approximation accuracy with limited storage usage.

2.1.2 Time-Dependent Routing
Much work has been conducted to enable time-dependent routing services. Different
approaches based on Dijkstra’s algorithm [8, 16, 9] solve the problem in different sce-
narios. However, we note that they all lack a detailed description of how to obtain the
time-dependent weights, and some works randomly generate synthetic weights.

T-drive [17] is a recent effort to identify the fastest routes given departure times by
learning from a set of taxi GPS records. T-drive assigns time-dependent, travel-time
based weights to edges. T-drive clusters travel-time observations of an edge and uses
the clusters as histogram buckets. The same buckets are used for the histograms on
an edge during different intervals. In contrast, our proposal is more flexible and is
able to assign different buckets (based on distinct distributions) to the histograms on
an edge during different intervals. For instance, more buckets are used for represent-
ing more complicated distributions, e.g., the GHG emissions distributions during peak
hours. Since T-drive is considered as the most relevant work and as the state-of-the-art
technique for estimating travel times, we experimentally compare our proposal with an
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approach based on T-drive and find that we can obtain a better trade-off between storage
space and accuracy. In particular, we can obtain more accurate weights at lower storage
cost. In addition, our approach covers both travel-time weights and eco-weights, and
T-drive is only evaluated based on travel-time weights [17].

2.2 Problem setting and definition

2.2.1 Time Dependent Histograms
Given a multiset of cost values C, the range of the cost values Range(C) is the set of
non-duplicated values that occur in C. The data distribution of the cost values in C,
denoted as DD(C), is a set of (value,probability) pairs, where value indicates a value
in Range(C), and probability is the number of occurrences of the value in C divided
by the total number of values in C. An example is shown as follows, where multiset C
contains GHG emission values observed from a road segment.

C ={5,8,10,20,15,10,20,20,34,28};
Range(C) ={5,8,10,15,20,28,34};

DD(C) ={(5,0.1),(8,0.1),(10,0.2),
(15,0.1),(20,0.3),(28,0.1),(34,0.1)}.

Given a multiset of cost values C, a histogram is an approximation of C’s data distribu-
tion DD(C) [18]. In particular, a histogram H = 〈(b1, p1), . . . ,(bn, pn)〉 is a vector of
(bucket,probability) pairs, where a bucket bi = [ fi, li) indicates a sub-range of the cost
values, where fi, li ∈ Range(C) indicate the starting and ending values of the sub-range.
The buckets are disjoint, i.e., bi∩b j = /0 if i 6= j; and all elements in Range(C) belong
to the union of the all buckets, i.e., b1 ∪ . . .∪ bn. The width of a bucket is defined as
|bi|= li− fi. If every bucket in a histogram has the same width, i.e., |b1|= . . .= |bn|,
the histogram is called equi-width histogram. A probability pi records the percentage
of the cost values that are in the sub-range indicated by bi. The sum of all probabilities
is 1, i.e., ∑

n
i=1 pi = 1.

As a running example, assuming that an equi-width histogram h with width 10 is
built on the multiset C, we have:

H = 〈([5,15),0.4),([15,25),0.4),([25,35),0.2)〉.

Given a time interval of interest TI, a Time Dependent Histogram is a vector of
(period,histogram) pairs, where the time interval TI is partitioned into several periods.
Specifically, in a time dependent histogram tdh = 〈(T1,H1), . . . ,(Tm,Hm)〉, period Ti
indicates a particular period in TI, and histogram Hi is the histogram of the cost values
observed in period Ti. The periods covers the time interval of interest, i.e., T1 ∪ . . .∪
Tm = TI.

Two equal-width histograms H1 and H2, are isomorphic if they have the same num-
ber of buckets and they represent the same data range.

The corresponding probabilities of the buckets may still be different. Figure 2.3
shows two isomorphic histograms that describe the GHG emissions of an edge during
periods [8 a.m.,9 a.m.) and [9 a.m.,10 a.m.), respectively.
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Figure 2.3: Isomorphic Histograms

2.2.2 Road Networks and Trajectories
An Eco Road Network (ERN) is a weighted, directed graph G = (V,E,F), where V and
E are vertex and edge sets. An vertex vi ∈ V represents a road intersection or the end
of a road, and an edge ek = (vi,v j) ∈ E models a directed road segment that enables
travel from vertex vi to vertex v j. Function F :E → TDH assigns a time dependent
uncertain eco-weight which is represented as a time dependent histogram to each edge
in E. Specifically, the time dependent histogram on edge ei, i.e., F(ei), models the
dynamic GHG emissions based travel costs on edge ei.

A Trajectory tr = 〈p1, p2, . . . , px〉 is a sequence of GPS records. Each GPS record
pi specifies the location (typically with latitude and longitude coordinates) and velocity
of a vehicle at a particular time stamp pi.t. Further, the GPS records in a trajectory are
ordered based on the time stamps of the GPS records, i.e., pi.t < pi+1.t for i ∈ [1,x).
Given the road network where the trajectories occurred, a GPS record in a trajectory
can be mapped to a specific location on an edge in the road network using a some map
matching algorithm [19].

2.2.3 Problem Definition and Framework Overview
Given a set of map matched trajectories TR in a road network G′ = (V,E,null), the pa-
per studies how to obtain the corresponding Eco Road Network G = (V,E,F). Specifi-
cally, the key task is to determine function G.F that assigns time dependent histograms
to edges based on trajectory set TR.

An overview of the framework that determines the function G.F is shown in Fig-
ure 2.4. The pre-processing module transforms the map matched trajectories into a
set of traversal records of the form r = (e, ts, tt,ge, tr j). Such a traversal record r indi-
cates that edge e is traversed by trajectory tr j starting at time ts. The travel time and
the GHG emissions of the traversal are tt and ge, respectively. Note that the travel
times can be derived directly from the GPS records by simply getting the difference
between the times of the fist and last GPS records. Various vehicular environmen-
tal impact models [7] can be applied to compute the GHG emissions from the GPS
records. After pre-processing, each edge ei is associated with a set of traversal records
Ri = {r|r.e = ei}.

In the ERN building module, initial time dependent histograms are built for edges
based on the traversal records associated with them. Maintaining the time dependent
histograms of all edges in a large road network may require very large storage space.
To reduce the storage overhead, approximation and compression techniques are em-
ployed to reduce both the number of (period,histogram) pairs in the time dependent
histograms and the number of the buckets in individual histograms. Specifically, his-
togram merging and bucket reduction are conducted in order to obtain a compact repre-
sentation of an ERN. Finally, the Eco Road Network G is returned, where the function
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Figure 2.4: Framework Overview

G.F assigns compact, time-dependent, uncertain eco-weights to edges.

2.3 ERN Building
In this section, we propose methods to generate an Eco Road Network from our raw
GPS observations.

2.3.1 Initial Time Dependent Histograms
An initial time dependent histogram is built for every edge ei ∈ E based on the traversal
records associated with ei. Given a time interval of interest T I, e.g., a day or a week,
and the finest temporal granularity α , e.g., 15 minutes or one hour, T I is split into dT I

α
e

periods, where the j-th period Tj = [( j− 1) ·α, j ·α). For each period Tj, an equi-
width histogram H j is built based on the traversal records that occurred in the period,
i.e., R( j)

i = {r|r.e = ei∧ r.ts ∈ Tj}.
The histograms for all periods share the same range [l,u], where l and u are the

lowest and highest GHG emissions (or travel times) observed in Ri. Further, the same
number of buckets is chosen for all histograms, where the number of buckets Nbucket
is an adjustable parameter. Thus, dT I

α
e isomorphic histograms are obtained for each

edge. Assuming α is set to one hour, Figure 2.3 shows two isomorphic histograms
during periods [8 a.m., 9 a.m.) and [9 a.m., 10a.m.) for an edge in North Jutland,
Denmark. The similarity of the two histograms motivates us to compress them into
one histogram without losing too much information. We proceed to show how to com-
press the histograms with acceptable accuracy using histogram merging and bucket
reduction.
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2.3.2 Histogram Merging
If two temporally adjacent histograms Hi and Hi+1 represent similar data distributions,
it is potentially attractive to merge the two histograms into one histogram H that repre-
sents the data distribution for a longer period T = Ti∪Ti+1.

Given two distributions, several techniques exist to measure their similarity, such as
cosine similarity, the K-S test and the chi-square test. The simplicity and efficiency of
computing cosine similarity makes it appropriate for use when evaluating the similarity
between two histograms.

To facilitate the usage of cosine similarity, we treat a histogram as a vector. Given
a histogram H = 〈(b1, p1), . . . ,(bn, pn)〉, its vector is V (H) = 〈p1, . . . , pn〉. Since all
the initial histograms are isomorphic and equi-width, they have the same number of
buckets, and each bucket corresponds to the same sub-range. Thus, all the vectors
are isomorphic, meaning that they have the same number of dimensions, and each
dimension represents the same entity, i.e., the probability in a particular sub-range.
The histogram similarity between two histograms is defined as the cosine similarity
between their vectors, as shown in Equation 2.1.

sim(Hi,H j) =
V (Hi)�V (Hi)

‖V (Hi) ‖ · ‖V (H j) ‖
, (2.1)

where� indicates dot product between two vectors, and · indicates the product between
two reals.

To merge two adjacent isomorphic histograms Hi and Hi+1,into a new histogram
H, the probability value for the k-th bucket in H is computed based on Equation 2.2.

H.pk =
Hi.pk ·Hi.c+Hi+1.pk ·Hi+1.c

Hi.c+Hi+1.c
, ∀ k ∈ [1,n], (2.2)

where Hi.c is the total number of cost values that are used to derive Hi, which is equiva-
lent to the number of traversal records in the i-th period. When merging two isomorphic
histogram, the obtained H is isomorphic with Hi and Hi+1.

The data probability of the k-th bucket in H is not just the average of Hi.pk and
Hi+1.pk. As the number of traversal records in the k-th buckets of histograms Hi and
Hi+1 may be different, we use the weighted average to construct the data probability of
the k-th bucket in H, as shown in Equation 2.2. We also maintain H.c = Hi.c+Hi+1.c.
so that we can use the count of traversal records in H for further merging step.

Given an initial time-dependent histogram tdh for an edge, Algorithm 1 returns a
corresponding merged time-dependent histogram tdh. Histogram merging is conducted
iteratively (lines 2–10). In each iteration, an adjacent pair of histograms with the high-
est histogram similarity is identified (line 3). If the similarity exceeds a merging thresh-
old Tmerge, the two histograms are merged into a new one according to Equation 2.2,
and the new period of the merged histogram is the union of the two corresponding pe-
riods (lines 4–6). The iteration continues until the highest histogram similarity is lower
than the merging threshold Tmerge (lines 7–9). The merging threshold is user-specified
and adaptive. We study the effect of different merging thresholds in Section 2.5.

An example of histogram merging is shown in Figure 2.5. Two histograms repre-
senting the GHG emissions during two adjacent periods are shown in Figure 2.5(a).
They are merged into a single histogram as shown in Figure 2.5(b).
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Algorithm 1: HistogramMerge
Input:

Time-dependent histogram of an edge e: tdh =
〈(T1,H1), . . . ,(Tn,Hn)〉;
Merge threshold: Tmerge;

Output:
Merged time-dependent histogram of edge e: tdh =
〈(T 1,H1), . . . ,(T m,Hm)〉;

1: tdh← tdh;
2: while TRUE do
3: Find the adjacent histogram pair (Hi,Hi+1) with the highest histogram

similarity according to Equation 2.1;
4: if sim(Hi,Hi+1) ≤ Tmerge then
5: Generate a new histogram H according to Equation 2.2, and a new period

T = Ti∪Ti+1;
6: Replace (Ti,Hi) and (Ti+1,Hi+1) in tdh by (T ,H) ;
7: else
8: BREAK;
9: end if

10: end while
11: return tdh;
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Figure 2.5: Histogram Merging
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2.3.3 Bucket Reduction
Histogram merging reduces the numbers of histograms. Bucket reduction is able to fur-
ther reduce the size of individual histograms, which is orthogonal to histogram merg-
ing. Three options are explored for bucket reduction, namely regression, advanced
regression, and wavelets.

2.3.3.1 Regression

Given an original histogram H, regression transforms it into a new histogram Ĥ that
approximates the data distribution represented by H using fewer buckets. The new
histogram Ĥ is not necessarily equi-width, meaning that different buckets may have
different widths. Histogram regression is conducted by merging two adjacent buckets.
The range of the new bucket is the union of the original two buckets, and the probability
of the buckets is the sum of the probabilities of the two original buckets. For example,
given a histogram H = 〈(b1, p1), . . . ,(bi, pi),(bi+1, pi+1), . . . ,(bn, pn)〉, after merging
buckets bi and bi+1, the new histogram is Ĥ = 〈(b1, p1), . . . ,(bi−1, pi−1),(bx, px),(bi+2,
pi+2), . . . ,(bn, pn)〉 , where bx = bi∪bi+1 and px = pi + pi+1.

The sum of squared error (SSE) is employed to measure the discrepancy between
the original histogram H and the histogram after bucket reduction Ĥ. Since the error
is only introduced by the buckets we merge and we merge only one pair of adjacent
buckets, for example, merging buckets bi and bi+1 into a single bucket bx, thus we
only need to calculate the error introduced by this merge operation, which is defined in
Equation 2.3.

SSE(H, Ĥ) = (
|H.bi|

|H.bi|+ |H.b j|
Ĥ.px−H.pi)

2

+(
|H.b j|

|H.bi|+ |H.b j|
Ĥ.px−H.p j)

2
(2.3)

where |H.bi| is the range of ith bucket in histogram H, and H.pi is the probability of
the ith bucket in histogram H. A smaller SSE indicates Ĥ achieves a smaller accuracy
loss compared to the original histogram H.

Given a merged time-dependent histogram tdh, Algorithm 2 reduces the buckets in
each histogram in tdh according to a user specified SSE value as the reduction threshold
Tred.

2.3.3.2 Advanced Regression

We consider a scenario where a storage budget (i.e., number of buckets for an edge) is
given, and where we need to decide how to use the buckets in different histograms in
representing the GHG emissions for different periods so that we maximise the overall
accuracy. For example, we may use more (or fewer) buckets for the histogram repre-
senting the peak hours (or off-peak hours), instead of distributing the buckets evenly.

Given a merged time-dependent histogram tdh of an edge, and a reduction thresh-
old Tred indicating the total number of buckets available for the edge, Algorithm 3
describes how to obtain the final time-dependent histogram within the storage budget,
while maintaining good accuracy. Note that for different edges, the reduction threshold
Tred, i.e., the bucket budget, may be different. A simple heuristic is to assign higher
bucket quotas to the edges that have more merged histograms in the time dependent
histogram tdh after histogram merging phase. As an edge with more histograms of one
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Algorithm 2: RegressionBasedBucketReduction
Input:

Merged time-dependent histogram of edge e: tdh =
〈(T 1,H1), . . . ,(T m,Hm)〉;
Bucket Reduction Threshold: Tred;

Output:
Final time-dependent histogram of edge e: t̂dh =
〈(T 1, Ĥ1), . . . ,(T m, Ĥm)〉;

1: t̂dh← tdh;
2: for each histogram H i in tdh do
3: while TRUE do
4: Find an adjacent bucket pair (H i.b j,H i.b j+1) that leads to the lowest SSE

loss according to Equation 2.3;
5: Generate candidate histogram H ′i by merging b j and b j+1 in H i;
6: if SSE(H i,H ′i )< Tred then
7: Replace the corresponding two buckets in H i by the merged bucket;
8: else
9: BREAK;

10: end if
11: end while
12: end for
13: return t̂dh;

edge requires more buckets to retain its distribution information, more buckets should
be assigned to the edge.

So given a bucket budget for each edge, Algorithm 3 determines how to distribute
the buckets among all the histograms of a single edge.

Advanced regression also works iteratively. For each iteration, it scans all the adja-
cent buckets paris and finds then pair of adjacent buckets that achieve the least SSE. We
then merge these buckets (lines 2–11). Note that to identify two buckets that need to be
merged, every histogram in the given tdh has to be checked. This process terminates
when the total number of buckets for the edge is below the given reduction threshold
Tred.

2.3.3.3 Wavelets

Wavelet are able to transform a histogram into a sequence of coefficients (i.e., real val-
ues) that represent the original histogram. After applying wavelet decomposition on
an equi-with histogram, a compact data synopsis that comprises a small set of wavelet
coefficients is obtained. A histogram can be resumed based on the wavelet coefficients.
The more coefficients we keep (equivalently, the more space we use), the closer the re-
constructed histogram to the original histogram. The details of wavelet decomposition
are omitted due to the space limitation, but can be found elsewhere [20].

Here, a reduction threshold Tred is used that specifies the maximal number of coeffi-
cients. Given a merged time-dependent histogram, wavelet decomposition is applied to
each histogram, and each histogram is transformed into a sequence of Tred coefficients.
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Algorithm 3: AdvancedRegressionBasedBucketReduction
Input:

Merged time-dependent histogram of edge e: tdh =
〈(T 1,H1), . . . ,(T m,Hm)〉;
Bucket Reduction Threshold: Tred;

Output:
Final time-dependent histogram of edge e: t̂dh =
〈(T 1, Ĥ1), . . . ,(T m, Ĥm)〉;

1: t̂dh← tdh
2: while Total buckets in t̂dh exceeds Tred do
3: minSSE← ∞;
4: for each histogram H i do
5: for each adjacent buckets H i.b j and H i.b j+1 in H i do
6: Generate candidate histogram H ′i by merging b j and b j+1 in H i;
7: if SSE(H i,H ′i )< minSSE then
8: Record the pair buckets into MinPairBuckets;
9: minSSE← SSE(H i,H ′i );

10: end if
11: end for
12: end for
13: Merge the pair of buckets with minimum SSE (recorded in MinPairBuckets) in

all histograms in the edge, and update t̂dh;
14: end while
15: return t̂dh;
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2.3.4 Dynamic Maintenance
After building an ERN based on historical GPS trajectories, it is of interest to maintain
the ERN as real time GPS records arrive in order to capture the real-time traffic status
and to improve estimation accuracy. Updating the time-dependent histograms obtained
from historical trajectories each time a GPS record arrives incurs high cost and is also
not necessary. Previous work [21] applies, an error tree to keep track of the K most
important coefficients for a wavelet histogram, and the coefficients are updated peri-
odically after receiving enough incoming updates. This method can be applied in our
setting if wavelet histograms are used for bucket reduction.

For non-wavelet histograms, we apply a sliding window (e.g., the most recent 15
minutes) based approach. Given an edge, we keep updating a real-time histogram H̃
using the GPS data that occurs on the edge in the sliding window and keep track of
the dissimilarity between H̃ and the historical H for the edge. As the cardinality of H̃
and H may be different, we first transform H̃ and H to a pair of isomorphic histograms
H̃ ′ and H ′ to compute their similarity. If H̃ ′ and H ′ are similar, H can be used for
estimating GHG emissions directly. A dissimilarity may indicate an event such as an
accident or road construction has occured on the edge, which make the traffic condition
deviate from the normal case. Then, real-time histogram H̃ is applied for estimating
GHG emissions. As a histogram normally requires about 0.1KB in our system, real-
time histograms for all the edges fit in memory.

We rebuild the time-dependent histograms periodically using a log-based method.
We first save all incoming GPS records into a log for each edge. If the log size (i.e., the
number of GPS records) exceeds a threshold MaxLogSize, the edge’s time-dependent
histogram is rebuilt. Note that the frequency of rebuilding the time-dependent his-
tograms varies across edges. In conclusion, we avoid rebuilding the ERN each time we
receive GPS data, and also capture the recent traffic in the ERN.

2.4 GHG Emissions Estimation
After histogram merging and bucket reduction, we obtain an ERM where each edge is
associated with a compact time-dependent histogram. In this section, we study how to
use the obtained ERN to estimate the GHG emissions of trajectories.

Rather than estimating a single value for a trajectory, e.g., the expected GHG emis-
sions, we estimate the distributions of GHG emissions using histograms. This yields
much more detailed information than a single value, which are quite useful for many
applications, e.g., stochastic route planing [22, 23] and probabilistic threshold-based
routing [24, 25]. For instance, when a logistics company plans trips, it is useful analy-
sis is to check whether using a certain route (based on historical trajectories) generates
more than 500 ml GHG emissions with probability at least 80%. This kind of analy-
sis can only be supported if the distributions of GHG emissions are known, and it is
impossible if only expected GHG emissions are known.

The distribution of the GHG emissions of a trajectory is estimated based on the
ERN. In particular, the distribution of the GHG emissions of a trajectory, also rep-
resented by a histogram, is achieved by aggregating pertinent (w.r.t. the traversal
time) histograms of the edges in the trajectory. In particular, according to the starting
traversal time t of an edge e in the trajectory, where e has time dependent histogram
tdh = 〈(T1,H1), . . ., (Tm,Hm)〉, histogram Hi is selected for the histogram aggregation
if t ∈ Ti.
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2.4.1 Dependence Between Adjacent Edges
When aggregating the histograms of the edges in a trajectory, we need to consider
the dependencies of the GHG emission distributions of adjacent edges. Most existing
work [24, 22, 23, 26] assumes that the travel costs (e.g., travel times) on adjacent edges
are independent. To evaluate this assumption, we conduct an empirical study on a
collection of frequently traversed adjacent edge pairs. Specifically, we identify 82 edge
pairs that each is traversed by at least 1,000 trajectories.

The GHG emissions distributions of two adjacent edges are modeled as two ran-
dom variables X and Y , and normalised mutual information NMI(X ,Y ) is applied to
quantify the dependency between X and Y , as shown in Equation 2.4.

I(X ,Y ) = ∑
y∈Y

∑
x∈X

p(x,y)log(
p(x,y)

p(x)p(y)
)

NMI(X ,Y ) = 2 · I(X ,Y )
H(X)+H(Y )

,

(2.4)

where H(·) denotes entropy.
Figure 2.6(a) shows the percentage of edge pairs w.r.t. different ranges of NMI

values. It suggests that the majority of adjacent edges tend to be independent; however,
some adjacent edges do have non-negligible dependencies, as indicated by the last two
bars in Figure 2.6(a).

 0

 20

 40

 60

 80

 100

[0,0.1) [0.1,0.2)[0.2,0.3]

Pe
rc

en
ta

ge
 %

NMI

 0

 20

 40

 60

 80

 100

[0,0.1) [0.1,0.2)[0.2,0.3]

Pe
rc

en
ta

ge
 %

NMI

(a) NMI (b) NMI Considering Time Periods
Figure 2.6: GHG Emissions Dependency

Next, we investigate whether the dependence varies if travesals occur at different
times. Assume that clear peak and off-peak hours exist for adjacent edges e1 and e2. To
further investigate the dependency among two edges, for each edge pair, we partition
the time domain according to the intervals obtained from the edges’ corresponding time
dependent histograms. For each partition, we compute NMI only using the trajectories
that occurred in the partition. The results, shown in Figure 2.6(b), suggest that the
GHG emissions dependencies between adjacent edges are reduced when we take into
account the traversal times. However, some adjacent edges still have relatively high
dependencies.

Based on the above findings, the independency assumption, which is used exten-
sively in the literature, does not always hold. To better model the dependencies, we
introduce a virtual edge for each pair of dependent consecutive edge (i.e., whose NMI
exceeds a threshold). As for a normal edge, a time dependent histogram can be obtained
that represents the distribution of GHG emissions for a virtual edge. Given a route R,
Algorithm 4 describes how to utilise virtual edges when estimating GHG emissions for
the route.
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Algorithm 4: SelectEdgesForEstimation
Input:

A route R that contains a sequence of N consecutive edges e1, . . ., eN ;
Output:

A set of edges selected for GHG emissions estimation, S;
1: i← 1;
2: while i ≤ N do
3: e j is next edge of ei in R;
4: if ei is not dependent on the next edge en or i = N then
5: insert ei into S;
6: i← i+1;
7: else
8: if j = N then
9: insert the virtual edge of ei and e j: ev.i j into S;

10: i← i+2;
11: else
12: ek is next edge of e j in R;
13: if NMI(ei, e j) > NMI(e j, ek) then
14: insert the virtual edge of ei and e j: ev.i j and ek into S;
15: else
16: insert ei and the virtual edge of e j and ek: ev. jk into S;
17: end if;
18: i← i+3;
19: end if;
20: end if;
21: end while;
22: Return S;
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Consider the adjacent edges e1, e2, and e3 in the road network show in Figure 2.7.
Here, e1 and e2 are dependent, and e2 and e3 are also dependent. When we estimate
GHG emissions for a route that contains e1, e2, and e3, we compare the NMI of e1
and e2 and the NMI of e2 and e3. The pair with the higher NMI is used as a virtual
edge, and the remaining edge is used as a single edge. So if the NMI of e1 and e2 is
the highest, we use the virtual edge e′ generated from e1 and e2. By modeling adjacent
edges with high dependency as virtual edges, we expect to get better accuracy when
we estimate GHG emissions for routes.

e2e1 e3 e4

Figure 2.7: Road Network Example

We do not consider dependence between edges that are not adjacent because (1)
it is not easy to identify such dependence using GPS data; (2) if really needed, such
dependence can be computed based on the current dependence modeling of adjacent
edges.

2.4.2 Histogram Aggregation
We estimate the distribution of GHG emissions along a route by aggregating the his-
tograms of the edges (or virtual edges) covered by the route. If two adjacent edges in
the route are dependent, i.e., there exists a virtual edge that is composed of the two
adjacent edges, we use the virtual edge instead of the original two edges when aggre-
gating histograms. Thus, all the histograms to be aggregated are independent. While
aggregating the histograms, we start from the edge (or virtual edge) on one end of
the route and proceed with the aggregate computation until we reach the other end of
the route. The resulting histogram is the estimated histogram of GHG emissions for
the whole route. Suppose we have two histograms H1 and H2 that represent the GHG
emission distribution on two consecutive edges e1 and e2. We then apply Histogram
Aggregate that yields a histogram H ′ that represents the aggregated GHG emissions for
traversing both e1 and e2.

We use discrete convolution techniques to aggregate H1 and H2. We first transform
each histogram into a list L (value,prob) pairs in which the values are integers. We
can get several value points from each bucket that reflect the data distribution derived
from the original histogram H. The values here are in the range between the mini-
mum and maximum data values of H. And the resolution of the resulting values can be
customised by changing the histogram aggregate parameter, Tagg, that defines the gran-
ularity with which we extract data points from buckets. For example, given a bucket
with data range [10, 16), if Tagg = 1, the result value list is 〈10, 11, 12, 13, 14, 15〉, and
if Tagg is 2, the result value list is 〈10, 12, 14〉. After we get the value-prob pair lists L1
and L2, the aggregated value-prob list L′ is shown in Equation 2.5.

{〈pi.v+ p j.v, pi.p · p j.p〉|pi ∈ L1∧ p j ∈ L2} (2.5)

Algorithm 5 shows how to aggregate two histograms into a single histogram, and
Tagg is the customizable parameter that defines the resolution that we extract data points
from the data range. We refer to this method as point-wise aggregation.
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Algorithm 5: HistogramAggregate
Input:

Time-dependent histograms H1 and H2 of two consecutive edges e1 and e2;
Aggregate resolution: Tagg;

Output:
Aggregated time-dependent histogram H ′ of e1 and e2;

1: Based on Tagg, transform H1 and H2 to lists of 〈value,prob〉 pairs with required
resolution, namely L1 and L2;

2: for all pi in L1 do
3: for all p j in L2 do
4: p′← (pi.val + p j.val, pi.prob · p j.prob);
5: add p′ to candidate list L′;
6: end for;
7: end for;
8: Rearrange the value list L′;
9: Generate the result histogram H ′ that approximates the data distribution derived

from L′;
10: Return H ′;

The performance of Algorithm 5 deteriorates drastically as the number of edges
in a trajectory grows, which makes it unattractive to use for longer trajectories. By
making minor changes to Algorithm 5, we obtain an alternative methods to aggre-
gate histograms with better performance and desirable accuracy. Instead of extract-
ing multiple points from a buckets, median aggregation uses the median point of
each bucket in the histogram when we transform a histogram into a 〈value,prob〉
pair list. Thus the following steps to generate aggregated histogram are identical with
point-wise aggregation.

Histograms can be considered as the estimated disitributions of random variables.
And The data in each buckets is considered as uniformly distributed. Given two his-
tograms H1 and H2, we can use bucket-wise convolution to aggregate them. We first
transform H1 and H2 to two histograms with equal bucket size, denoted as H ′1 and
H ′2. The convolution of H ′1 and H ′2 is also a histogram, denoted as Hcon, as shown in
Equation 2.6.

Hcon[i].p = ∑H ′1[ j].p ·H ′2[k].p, (2.6)

where H[i] is the ith bucket in histogram H and Range(Hcon[i]) = Range(H1[ j]) +
Range(H2[k]). Again, as there might be overlap between buckets in Hcon, we rearrange
the buckets in Hcon and generate an equi-width histogram as the final result. Algo-
rithm 6 shows how to perform bucket-wise aggregation. After all the iterations, we
rearrange buckets in Hcon in (Line 7). We combine two buckets with the same data
range and split a data range if it contains the range of another bucket; thus, we obtain
buckets without overlap and duplicates. We compare these three aggregate methods
empirically in Section 2.5.

To illustrate, consider histograms H1 and H2 in Figure 2.8(a). The size of buck-
ets in H1 and H2 is 1. H1 and H2 can reprensented as 〈([1,2),0.2),([2,3),0.8)〉 and
〈([1,2),0.3),([2,3),0.7)〉. Then according to Equation 2.6, the result histogram H ′ can
be represented as 〈([2,4),0.06),([3,5),0.14),([3,5),0.24),([4,6),0.56)〉. The buckets
in H ′ overlap, so we rearrange them and generate the equi-width historgam shown in
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Algorithm 6: HistogramAggregateII
Input:

Time-dependent histograms H1 and H2 of two consecutive edges e1 and e2;
Output:

Aggregated time-dependent histogram Hcon of e1 and e2;
1: for all buckets bi in H1 do
2: for all buckets b j in H2 do
3: b′← [[bi.l + b j.l, bi.l + b j.u), bi.p · b j.p]
4: add b′ to Hcon
5: end for;
6: end for;
7: Rearrange the generated buckets;
8: Return Hcon;

Figure 2.8(b) as the final result. The final result can be reprensented as 〈([2,3),0.03),
([3,4),0.22),([4,5),0.47),([5,6),0.28)〉.
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Figure 2.8: Histogram Convolution

2.5 Emprical Study
We conduct a range of experiments to gain insight into the accuracy, efficiency, and
storage properties of the proposed approaches.

2.5.1 Experimental Settings
We use a large GPS tracking data set containing more than 200 million GPS records.
The data is collected from 150 vehicles traveling in Denmark, during January 2007
to December 2008. The sampling frequency is 1 HZ. We use the road network of
Denmark from OpenStreetMap1. The road network contains around 414K vertices and
818K edges. We apply an existing map matching tool [19] to match the GPS records
to the road network, from which we get a set of trajectories T R. VT-micro [27, 28],
a robust model that can evaluate vehicular environmental impact according to a recent
benchmark [7], is applied to compute the GHG emissions of the trajectories. The time

1http://www.openstreetmap.org/
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interval of interest T I is set to a day [0:00, 24:00), and the finest temporal granularity
α is set to 1 hour. The bucket widths are set to 10 ml for GHG emissions.

We vary temporal granularity α , merge threshold Tmerge, reduction threshold Tred ,
and aggregation threshold Tagg. The unit of α is hour. Our experiments mainly focus
on the values that are shown in bold.

Table 2.1: Parameter Settings

Parameters Values

Tmerge
0.9, 0.91, 0.92, 0.93, 0.94,
0.95, 0.96, 0.97, 0.98, 0.99

Tred for regression
0.1, 0.11, 0.12, 0.13, 0.14,
0.15, 0.16, 0.17, 0.18, 0.19

Tred for Wavelet 16, 20, 24, 28, 32, 36
Tred for Advanced Regression 35, 40, 45, 50, 55, 60

Tagg 1, 2, 3, 4, 5
α 0.5, 1, 2

An edge with few records during a year is either unlikely to have much traffic and
traffic variation, or it is not covered by the vehicles in the GPS data set. To avoid ab-
normalities caused by such edges, we only consider the subset of the road network that
is composed of edges that have at least 500 cost records, denoted as E. The resulting,
smaller road network contains |E|= 1,916 edges.

For the edges with infrequent or no GPS records, we apply existing techniques [3]
to obtain baseline GHG emissions estimates for predefined peak and offpeak periods,
respectively.

In the experiments, we consider four kinds of histograms: (1) Initial time-dependent
equi-width histograms; (2) merged time-dependent histograms obtained after histogram
merging phase; (3) compact time-dependent histograms obtained after bucket reduction
phase; and (4) T-drive based histograms. We include T-Drive in the experiments be-
cause it also uses histogram-based techniques and is considered as the state-of-the-art
technique for estimating travel costs.

2.5.2 Efficiency
We report the run-times for histogram merging, bucket reduction, and histogram ag-
gregation.

Figure 2.9(a) shows the run-time to build equi-width histograms and to merge the
histograms for one edge. The run-time increases as the the number of GPS records
increases. Thus, if an edge is associated with more records, it takes longer time to be
build initial histograms. Figures 2.9(b)–2.9(d) show the time cost of different bucket
reduction methods for varying reduction when the number of associtated GPS records
is 6,000. The wavelet method takes less time to achieve the desired reduction than the
other two regression-based methods.

We further study the time cost to aggregate histograms with different methods while
the number of edges in a trajectory varies. Given value lists with M and N elements, the
time cost to aggregate them is O(M·N). Figure 2.10(a) shows the overall performance
of our histogram aggregation methods. We set the aggregation threshold to 1, 2, and
4 for the first histogram aggregation family. Figure 2.10(b) shows the effect of using
virtual edgea. If NMI of two adjacent edges exceeds 0.2, we build histograms for
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corresponding virtual edges in advance,ẇe only generate virtual edges for adjacent
edge pairs. We can see that when Tagg = 4 for the point-wise aggregation, using virtual
edges is able to yield up to a 20% speedup for a trajectory with 10 edges.
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Figure 2.9: Run-Time Efficiency

2.5.3 Accuracy
Since a histogram approximates original data distribution, we need to study the ap-
proximation accuracy. Specifically, we measure the distance between the original data
distribution and different histogram representations, including initial equi-width his-
tograms, histograms after merging, and histograms after bucket reduction.

Suppose the original data distribution in a period is dd = (v1, p1),
. . . ,(vn, pn), where vi and pi indicate a value and its probability. The accuracy of a
histogram in the period is defined by Equation 2.7.

Acc(H,dd) =
1
n

n

∑
i=1

|pi−H.pk|
max(pi,c)

, (2.7)

where H.pk is the probability of value vi in the histogram, i.e., vi ∈ H.bk. A constant
c is used to avoid fluctuations introduced by small probabilities. This accuracy metric
indicates the relative accumulative deviation from the original distribution.

Figure 2.11(a) shows average Acc values of the initial equi-width histograms, and
the histograms after merging with varying merge thresholds. The initial equi-width his-
tograms achieve quite good accuracy and achieve better accuracy as the merge thresh-
old increases.

We also evaluate the accuracy of our three bucket reduction techniques. We choose
two sets of merged histograms with merge thresholds 0.95 and 0.98, respectively; and
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we further conduct bucket reduction on them. Figures 2.11(b)– 2.11(d) show the accu-
racy using different bucket reduction methods with varying reduction thresholds. All
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Figure 2.10: Histogram Aggregate Study
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Figure 2.11: Accuracy Study
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three bucket reduction methods suggest the same trend: with higher reduction thresh-
olds, the corresponding histograms achieve better accuracy.

Next, we consider the accuracy of our histogram aggregation techniques. We
choose a set of 1,012 routes that are traversed frequently to evaluate the accuracy of
the GHG emissions estimates. On average, these routes cover 16 edges. We first use
18 months of data to build an ERN and generate the GHG emissions estimation his-
tograms for all the routes. In our setting, there are at most 24 histograms for a route.
Then we use 6 months of GPS data to generate GHG emissions histograms for each
route in every time interval with no data compression. We then evaluate the similarity
of the histograms derived in the two steps. In Figure 2.10(c), we show the accuracy of
three aggregation algorithms when varying β . The figure also shows that with the same
setting, we can achieve better accuracy with less computation time when we aggregate
histograms for a sequence of edges.

As we set 1 hour as the default time interval when we start building the time depen-
dent histograms, we also study how Acc changes while choosing temporal granularity
α . Figure 2.12 shows the accuracy we can achieve when we use different tempo-
ral granularity. We set merge threshold Tmerge to 0.95 for all the histogram reduction
experiments. The results show that we can get better accuracy if we choose a finer
temporal granularity if we have enough GPS records for the time intervals.
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Figure 2.12: Accuracy Study II

2.5.4 Storage
We evaluate how much storage we can save by using histogram merging and bucket
reduction. In particular, a bucket in a histogram requires three float values to indicate
the lower and upper bound of the bucket and the bucket probability. For a wavelet
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histogram, a coefficient takes a float value (i.e., 16 bytes).
We introduce the memory compression ratio MCR to measure the storage reduc-

tion. In particular, the MCR for histogram merging is computed as Minit−Mmerge
Minit

, where
Minit and Mmerge represents the required storage to represent the initial time dependent
histograms and the merged histograms. The MCR for bucket reduction is computed as
Mmerge−Mredu

Mmerge
, where Mredu represents the required storage to represent the histograms

after bucket reduction based on merged histograms.
Figure 2.13 shows the MCR for both histogram merging and bucket reduction. Fig-

ure 2.13(a) shows that, when merge threshold is set to 0.9, the storage required by the
initial histograms can be reduced by 85%. When the merge threshold is 0.98, the re-
duction is 50%. Recall that the accuracy of using the same merge threshold is quite
close to the initial histograms (see Figure 2.11(a)).

We fix two sets of merged histograms (with merging threshold 0.95 and 0.98) and
test the MCR using different bucket reduction methods with varying reduction thresh-
olds. Figures 2.13 (b)–(d) show that bucket reduction can further reduce the required
storage based on merged histograms: smaller thresholds achieve better MCR.
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Figure 2.13: MCR Study

Figure 2.14 reports the required storage in order to achieve different accuracies for
various approaches. To achieve a higher accuracy (i.e., a smaller Acc value), more stor-
age is required. When the accuracy is fixed, Wavelet based histograms consume the
least storage; both Wavelet and advanced regression outperforms T-drive, and regres-
sion uses slightly more storage than T-drive. Figure 2.13(a) indicates that using 240
MB, we gain the highest accuarcy in our experiment, making it possible to fit our ERN
on mobile devices with limited storage space.
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Figure 2.15: Dynamic Maintenance

2.5.5 Dynamic Maintenance
To test the accuracy of dynamic maintenance, we use the first 18 months of trajectories
to build an ERN. We then simulate a GPS records stream based on the trajectories in
the remaining 6 months. We evaluate the accuracy of the update-to-date histograms
using dynamic maintenance with varying MaxLogSize. Figure 2.15 shows how dy-
namic maintenance affects Acc values. When the log size is smaller, the histograms are
updated more frequently, and thus it results in better estimation accuracy.

2.5.6 Summary
The results covered in this section show that our histogram compression and aggrega-
tion techiniques can approximate GHG emissions for edges and routes with acceptable
accuracy and limited storage usage. Our dynamic maintenance techinque ensures that
we can capture the real-time traffic status on a road network, which makes real-time
routing and re-routing possible.
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Chapter 3

Travel Cost Inference from
Sparse, Spatio-Temporally
Correlated Time Series Using
Markov Models

This work has been accepted by the 39th International Conference on Very Large Data
Bases [2] – one of the best conferences in the data management field.

When monitoring a complex system, the resulting measurements can often be mod-
eled as a collection of time series. These reflect the internal dynamics of the systems
and hold the potential for understanding and predicting aspects of the system’s be-
haviour.

While this general scenario applies to a wide variety of settings, we consider the
setting of a road network. Figure 3.1 shows two travel time series obtained from GPS
records collected from two adjacent road segments in a road network. Each time series
records the average cost associated with traversing its segment during different time
intervals. The two time series are correlated: (i) the peak on road 2 in the 28-th interval
may result in the peak on road 1 in the 29-th interval; (ii) the peak on road 1 in the
35-th interval may cause the peak on road 2’s time series in the 36-th interval.

With a travel-cost time series available (e.g., derived from GPS data) for each road
in a road network, a mathematical model of the network can be instantiated and then
used for predicting the future travel cost behaviour associated with the road network.
Thus, it becomes possible to obtain effective routing services in the underlying road
network that minimise travel time (e.g., [4]) or GHG emissions, termed eco-routing [7].
However, achieving this is non-trivial, as it is necessary to contend with three challeng-
ing characteristics of the time series.

Sparse: Travel-cost time series are built from GPS data obtained from probe ve-
hicles that cannot cover every time interval. As a result, the time series are sparse,
meaning that during some intervals, no cost measurements are available for some road
segments. For example, both time series in Figure 3.1 lack travel times in the 23-rd
and 24-th intervals, and road 2 also lacks travel times in intervals 31–33. Thus, the
time series we consider are fundamentally sparse, which is different from regular time
series [29, 30], where each interval has a value.
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Figure 3.1: Spatio-Temporally Correlated Sparse Time Series

Dependent: The travel costs associated with a road segment are temporally de-
pendent. For example, congestion on a road segment disappears only gradually (see
intervals 28–30 of road 2 in Figure 3.1). Likewise, time series are spatially correlated.
For example, congestion on one road segment may correlate with congestion on spa-
tially adjacent road segments. This is illustrated by the 28-th interval on road 2 and
the 29-th interval on road 1. When modeling the overall travel cost behaviour of a
road network, it is important to capture the dependencies within time series and the
correlations among different time series.

Heterogenous: Different road segments may exhibit very different behaviours. For
example, some segments may have clear morning and afternoon peak hours, while
others may not. We model an individual time series as the output generated by a state
transition machine (e.g., a Hidden Markov Model, HMM [29, 30]) that operates on
a set of states. For instance, the traffic on a road segment may change between two
states, e.g., clear and congested, and each state may output different travel costs. A
prerequisite of using HMMs is that the cardinality of the state set that the underlying
process operates on is given a priori. Due to the heterogeneity across time series, it is
not feasible to use the same number of states for every time series. Rather, each time
series must have its own state set.

We model multiple travel-cost time series using a Spatio-Temporal Hidden Markov
Model (STHMM) while taking into account the above three challenging characteristics.
We compress a sparse time series into a compact time series and identify a state set for
each compact time series. The dependencies within a time series and the correlations
among different time series are modeled by connecting pertinent states of the road
segments while considering the topology of the road network. Smoothing techniques
are applied to reduce the effects of data sparsity. Finally, future travel costs are inferred
based on the learned STHMM.

We believe that this is the first study to provide general techniques, including
state formulation and parameter learning, that contend with sparse, heterogenous, and
spatio-temporally correlated time series in a combined manner. This paper is accepted
as full research paper at VLDB, 2013. The paper makes four contributions. First, it
proposes a general framework that is capable of modeling the traffic behaviour of a
road network and thereby enables routing services that optimise different travel-related
costs. Second, a spatio-temporal hidden Markov model is formalised to model the
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traffic behaviour of a road network. Third, learning algorithms are proposed to obtain
individual state sets for all road segments and to determine the parameters needed to
configure an STHMM. Fourth, comprehensive experiments are conducted to elicit the
design properties of the proposed framework and algorithms.

The remainder of this paper is organised as follows. Section 4.2 covers preliminar-
ies. Section 3.2 defines an STHMM, and Section 3.3 describes the learning algorithms
needed for determining an STHMM. Section 4.4 reports on the empirical evaluation.
Finally, related work is covered in Section 4.1, and conclusions and research directions
are offered in Section 3.6.

3.1 Preliminaries

3.1.1 Road Network Model
A road network is modeled as a directed, labeled graph G = (V,E,W ), where V and
E ⊆V ×V is a vertex set and an edge set, respectively, and W : E×T→ R+ captures
time dependent edge weights. A vertex vi ∈V models a road intersection or an end of
a road. An edge ek = (vi,v j) ∈ E models a directed road segment, indicating that travel
is possible from its source vi to its destination v j. We use the notation ek.s and ek.t to
denote the source and destination of edge ek. Figure 3.2 shows a road network with 5
vertices and 6 edges.

v1

v2 v3

v4

v5

e1 e2 e3

e5

e4e6

Figure 3.2: A Simple Road Network

3.1.2 Travel-Cost Time Series
We construct time series from GPS data obtained from probe vehicles. We use GPS
data instead of road side sensor data because GPS data is becoming available in increas-
ing volumes, is less costly to obtain, and provides good coverage of a road network.
However, the proposed techniques also apply to time series constructed from road-side
sensor data, as they share the same characteristics.

A trajectory T = 〈p1, p2, . . . , pX 〉 is a sequence of GPS records pertaining to a
particular trip, where each record pi specifies a (location, time) pair of the vehicle.
With the help of map matching [5], a GPS record can typically be mapped to a specific
location in the underlying road network.

Map matching transforms a trajectory T into a sequence of cost records 〈l1, l2, . . . , lm〉,
where each cost record l j is of the form (e, ts,cost), where e is an edge traversed by tra-
jectory T , ts is the time at which traversing edge e starts, and cost is the travel cost
of traversing edge e. Some travel costs, notably travel times, can be obtained directly
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from the GPS records, while other travel costs, e.g., GHG emissions, can be derived
from the GPS records [7].

Next, we introduce a parameter α that specifies the finest interval to be used in
defining time series. Given a GPS data set collected during Z days, we then have
T = dZ·24·60

α
e intervals. For example, we may use α = 15 minutes because this is

typically the finest time granularity used in the transportation area [31]. When Z = 30
days, we then have T = 2,880 intervals.

We define the travel-cost time series on edge ei as

T S i = 〈C(1)
i ,C(2)

i , . . . ,C(T )
i 〉,

which is a sequence of T travel cost sets. Travel cost set C(t)
i = {l j.cost|l j.e= ei ∧ l j.ts ∈

[(t−1) ·α, t ·α)}, contains the travel costs observed in the t-th interval [(t−1) ·α, t ·α).
If no GPS records are collected on ei during the t-th interval, C(t)

i is empty.
Figure 3.3 shows travel-time based and GHG-emissions based time series for the

same edge, where α is set to 15 minutes. Both time series are sparse: for example,
the 46-th interval contains no data. Figure 3.3 also illustrates that an average value
for an interval [29] cannot capture the traffic behaviour during the interval, which may
vary considerably throughout the interval. In the example, the travel time in the 49-th
interval varies considerably. In the proposed STHMM, the travel cost distribution in
the t-th interval is modeled based on C(t)

i .
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Figure 3.3: Examples of Travel-Cost Time Series

The distributions of travel time and GHG emissions may be quite different (e.g.,
see the 49-th intervals in Figures 3.3(a) and (b)). A general technique that is able to
support different travel costs must handle such variation. Section 4.4 shows that the
proposed STHMM is able to predict both travel time and GHG emissions.

3.1.3 Framework Overview
In short, we aim to update time-dependent edge weights in G based on real-time travel
cost information. Figure 4.4 gives an overview of the system, which has three major
components: offline learning, online inference, and routing services.

In offline learning, a state formulation and parameter learning module takes as input
a collection of time series that are obtained from historical GPS trajectories. It outputs
an STHMM. As real-time GPS records stream in, the online inference component in-
fers near-future travel costs by using the learned STHMM. The time-dependent edge
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Figure 3.4: Framework Overview

weights in road network G can be updated based on the inferred travel costs. In the
routing services, any routing algorithms that support time-dependent edge weights [4,
32, 33] can be applied to road network G to enable various kinds of routing such as
eco-routing or time-based routing.

3.2 Travel Cost Modeling
We employ HMMs to capture the temporal dynamics of the travel costs on individual
edges; then we define a Spatio-Temporal Hidden Markov Model (STHMM) to model
the spatio-temporal correlation of travel costs among all edges in a road network.

3.2.1 Modeling Temporal Dependence
Without loss of generality, we assume that the travel costs of an edge are affected by
the underlying traffic on the edge and vary as the traffic changes over time.

Consider a particular edge ei. A state set Si = {s(x)i } models all possible traffic
conditions on edge ei. For example, states s(1)i and s(2)i may model congestion and
clear, respectively. We use a state sequence Qi = 〈q(1)i ,q(2)i , . . . ,q(T )i 〉 to model the
transition of the traffic condition on ei from one state to another over the T intervals.
State q(t)i ∈ Si (16 t 6 T ) models the traffic condition in the t-th interval, and it depends
only on its previous state q(t−1)

i , i.e., the traffic condition in the (t− 1)-st interval. In
Figure 3.5, q(t)i = s(1)i indicates that edge ei is in state congestion in the t-th interval,
and it is dependent on the state in the (t− 1)-st interval q(t−1)

i = s(1)i , which is also in
congestion.

We use a travel-cost time series T S i = 〈C(1)
i ,C(2)

i , . . . ,C(T )
i 〉 to model the variation

of the travel costs on edge ei during the T intervals. Here, C(t)
i contains the travel costs

observed in the t-th interval and is dependent on the corresponding traffic conditions,
i.e., state q(t)i . Figure 3.5 shows that the travel costs in C(t)

i generally exceed those in
C(t+1)

i . This corresponds to the traffic in the t-th interval being congested, while the
traffic is clear in the (t +1)-st interval.

Based on the above, we use a Hidden Markov Model (HMM) [34] to model the
relationship between traffic conditions and travel costs. An HMM is a statistical model
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Figure 3.5: Traffic Conditions and Travel Costs on Edge ei

for modeling a time series, e.g., the travel-cost time series T S i on edge ei, which is
generated by a Markov process.

A Markov process operates on a set of hidden states (e.g., a traffic state set Si) to
generate a state sequence (e.g., Qi). A state in the state sequence depends only on
its previous state, and a state generates an output, thus resulting in the time series. In
our setting, the traffic condition in the t-th interval only depends on the traffic condi-
tions in the (t−1)-st interval, and travel costs in the t-th interval depend on the traffic
conditions in the t-th interval.

An HMM is defined in terms of three parameters PI, A, and B:

1. Initial probabilities PI = {π(x)}, 1 6 x 6 |Si|, where π(x) = P(q(1)i = s(x)i ) is the
probability that state sequence Qi starts with state s(x)i .

2. Transition probabilities A = {a(x,y)}, 1 6 x,y 6 |Si|, where a(x,y) = P(q(t)i =

s(y)i |q
(t−1)
i = s(x)i ) is the probability that state s(x)i transits to state s(y)i in the next

step.

3. Output probabilities B= {b(x)(c)}, 16 x6 |Si|, where b(x)(c)=P(c∈C(t)
i |q

(t)
i =

s(x)i ) is the probability that cost value c is observed given the state is s(x)i .

Note that only the time series T S i is observable from the available GPS records,
while the states are hidden and cannot be observed directly. The formulation of state
set Si is detailed in Section 3.3.1. The state sequence Qi and the time series T S i

are interrelated. Given the travel costs C(t)
i in the t-th interval, the corresponding state

q(t)i can be inferred using output probabilities. The state in the next interval q(t+1)
i

can then be predicted from q(t)i and the transition probabilities. The travel costs at the
next interval, C(t+1)

i , can in turn be inferred from q(t+1)
i and output probabilities. The

derivation of these probabilities is detailed in Section 3.3.2.

3.2.2 Modeling Spatio-Temporal Dependence
The state of an edge influences not only its own next state, but also the next states of
nearby edges. For example, an edge is more likely to be congested if its neighboring
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edges are congested. To model the spatio-temporal dependencies of travel costs over
an entire road network, we define an STHMM.

3.2.2.1 N-th Order Neighbors

To define an STHMM, we need the concept of the n-th order neighbors of an edge
ei, denoted as L(n)

i . Given an edge ei, its 1-st order neighbors L(1)
i is defined in Equa-

tion 3.1.

L(1)
i = {ei}

⋃
{e j|(e j.t = ei.s∨ e j.s = ei.t)∧
¬(e j.t = ei.s∧ e j.s = ei.t)}

(3.1)

Here, L(1)
i includes edge ei itself and the edges that share a source or target vertex with

ei, but excludes the oppositely directed edge that corresponds to the same physical road
segment as ei. Considering Figure 3.2, L(1)

2 = {e1,e2,e3}, since edges e2 and e1 share
v2, and edges e2 and e3 share v3. Edge e4 is not in L(1)

2 as it is the oppositely directed
edge.

The n-th order (n > 1) neighbors of edge ei are defined recursively as L(n)
i =⋃

e j∈L(n−1)
i

L(1)
j . For example, since L(1)

1 ={e1, e2, e5}, L(2)
1 =L(1)

1 ∪ L(1)
2 ∪ L(1)

5 = {e1,

e2, e5} ∪ {e1, e2, e3} ∪ {e1, e4, e5} = {e1, e2, e3, e4, e5}.

3.2.2.2 Spatio-Temporal Hidden Markov Model

To model the traffic evolution in an entire road network, we need to consider the inter-
actions among the traffic on all edges. A naive model is to treat different edges’ traffic
evolutions as independent: the traffic on an edge evolves by itself and does not interact
with the traffic on other edges. This yields |E| individual HMMs, each of which models
the traffic on a single edge. This naive model fails to capture any interactions among
the traffic on different edges and is unable to properly model global traffic changes.

We proceed to define an STHMM that couples the traffic of n-th order neighbors to
model the interactions among these edges. An n-th order STHMM couples the HMM
of an edge with the HMMs of its n-th order neighbors. In an n-th order STHMM,
edge ei’s current state q(t)i is not only dependent on its previous state q(t−1)

i , but also
on the previous state of each of its n-th order neighbors, i.e., all the states q(t−1)

j where

e j ∈ L(n)
i .

The 1-st order STHMM of the road network in Figure 3.2 is shown in Figure 3.6,
where only states are shown and the time series are omitted. Taking edge e1 as an
example, since L(1)

1 ={e1, e2, e5}, state q(t)1 is dependent on states q(t−1)
1 , q(t−1)

2 , and
q(t−1)

5 . Thus, states q(t−1)
1 , q(t−1)

2 , and q(t−1)
5 are connected to q(t)1 in Figure 3.6.

3.2.2.3 Parameter Space

In an STHMM, edge ei’s transition probability is a conditional probability conditioned
on the previous states of its n-th order neighbors ei j ∈ L(n)

i . Thus, we have P(q(t)i |q
(t−1)
i1

,

. . . ,q(t−1)
ik

), where q(t−1)
i j

(1 6 j 6 k and k = |L(n)
i |) is the previous states of edge ei j .

Considering the STHMM in Figure 3.6, the transition probability factors of edges e1

and e6 are P(q(t)1 |q
(t−1)
1 , q(t−1)

2 , q(t−1)
5 ) and P(q(t)6 |q

(t−1)
4 , q(t−1)

6 ), respectively.
An STHMM is governed by parameters TAU, H, and D:
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Figure 3.6: 1-st Order Spatio-Temporal Hidden Markov Model

1. Initial probabilities: TAU = {τ(x)i }, 16 i 6 |E|, 16 x 6 |Si|, where τ
(x)
i =P(q(1)i =

s(x)i ) is the probability that edge ei starts with state s(x)i .

2. Transition probabilities: H = {h
xi,xi1 ,...,xik
i,i1,...,ik

}, 1 6 i 6 |E|, 1 6 xi 6 |Si|, ei j ∈
L(n)

i ,16 xi j 6 |Si j |, 16 j 6 k= |L(n)
i |. Further, h

xi,xi1 ,...,xik
i,i1,...,ik

=P(q(t)i = s(xi)
i |q

(t−1)
i1

=

s
(xi1 )

i1
, . . . ,q(t−1)

ik
= s

(xik )

ik
) is the probability that the current state of edge ei is s(xi)

i

given the previous states of its n-th order neighbors ei1 , . . . ,eik being s
(xi1 )

i1
, . . . ,s

(xik )

ik
.

3. Output probabilities: D = {d(x)
i (c)}, 1 6 i 6 |E|, 1 6 x 6 |Si|, where d(x)

i (c) =
P(c ∈C(t)

i |q
(t)
i = s(x)i ) is the probability of observing output c from edge ei given

that its state is s(x)i .

3.3 Learning an STHMM
To obtain an STHMM instance that appropriately models the dynamics of traffic in a
road network, we must formulate hidden states for all edges, and we must instantiate
the parameters that govern the STHMM. Figure 3.7 gives an overview of the whole
process.

The process of learning an STHMM starts with the state formulation phase (Sec-
tion 3.3.1). For each edge ei ∈ E, its sparse time series T S i is compressed into a
compact time series T S i. The state formulation module clusters the travel cost sets
in compact time series T S i into a set of clusters, where each cluster indicates a state.
Thus, state set Si for edge ei is obtained. In addition, the output probabilities are deter-
mined.

The next phase is parameter learning (Section 3.3.2). For each edge ei, based on
the obtained state set Si, a state estimation module estimates possible states for each
interval in the sparse time series T S i, thus obtaining an uncertain state sequence Qi.
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Figure 3.7: Overview of the STHMM Learning Process

Coupling the uncertain state sequences according to their n-th order neighbors, the
transition and initial probabilities of the STHMM are determined. Finally, we describe
how to use a learned STHMM to infer travel costs (Section 3.3.3).

3.3.1 State Formulation
3.3.1.1 Compact Time Series

The time series T S i = 〈C(1)
i , . . . ,C(T )

i 〉 on edge ei may be sparse because many or
some of the C(t)

i may contain no or few travel costs due to the lack of GPS records in
the corresponding intervals. To contend with this sparsity, we compress T S i into a
compact time series T S i in which each interval contains relatively more travel costs,
which renders subsequent analysis (detailed in Sections 3.3.1.2 and 3.3.1.3) easier and
more effective.

Recall that T S i records travel costs on ei during Z days or T = dZ·24·60
α
e intervals.

Its compressed version T S i consolidates these costs into a period of interest P that
contains M = d P

α
e intervals. In the example in Section 3.1.2, Z = 30 days, α = 15

minutes, and T = 2,880 intervals. With P being a 24-hour period, T S i contains
M = 96 intervals.

Next, we define a compact time series T S i as follows.

T S i = 〈C
(1)
i ,C(2)

i , . . . ,C(M)
i 〉, where C(x)

i =
⋃

k mod M=x

C(k)
i

Intuitively, set C(1)
i in T S i contains all travel costs observed on edge ei in the interval

[0:00,0:15) during each of the Z days. Thus, set C(1)
i is the union of C(1)

i ,C(97)
i ,C(193)

i , . . . ,

C(2785)
i in T S i.
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Figure 3.8 shows four compact travel time series obtained from four different edges.
The travel times in Figure 3.8(a) exhibit clear morning and afternoon peaks, while the
times shown in Figure 3.8(b) have only a clear morning peak. The travel times in
Figure 3.8(c) do not display a clear trend of variation, but vary significantly, from 16
seconds to 137 seconds. The travel times in Figure 3.8(d) remain almost constant at
around 8 seconds.
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Figure 3.8: Compact Travel Time Series

Figure 3.8 suggests that the traffic on different edges evolves quite differently. In
order to use an STHMM to model the traffic dynamics, it is thus important that each
edge ei can be given its own state set Si. To achieve this, we propose a Time Sensitive
Gaussian Mixture (TSGM) method to formulate each Si, where the obtained states
satisfy two properties: (i) in a state, the traffic on an edge behaves similarly, thus
making the travel cost follow a distribution; (ii) a state is dependent on its previous
state. As shown in Algorithm 7, the TSMG method consists of two steps, cost clustering
and time-cost clustering, detailed below.

Algorithm 7: TSMG
Input : double: λ ; CompTimeSeries: T S 1 . . .T S |E|;
Output: State sets for all edges: S1,S2, . . . ,S|E|;

1 for each edge ei in the road network do
2 GMMi← CostClustering(T S i);
3 Si← TimeCostClustering(T S i,GMMi,λ );
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3.3.1.2 Cost Clustering

For each edge ei, the cost clustering step identifies a probability density function (pdf)
that describes the distribution of all travel costs in T S i, regardless of the interval in
which they are observed. As a Gaussian Mixture Model (GMM) is able to approximate
any complex pdf [30], the cost clustering step identifies a GMM, denote as GMMi, to
describe the distribution of all travel costs observed on ei (line 2 in Algorithm 7).

Specifically, GMMi is determined by grouping all the cost values in T S i into Ki
clusters. Each cluster indicates a representative group of travel costs, whose distri-
bution is described by a single Gaussian distribution, termed a Gaussian component.
Equation 3.2 gives the formal definition.

GMMi(c) =
Ki

∑
k=1

mi,k ·N (c|µi,k,δ
2
i,k) (3.2)

Here, mi,k is the k-th mixing coefficients of the k-th Gaussian components, and these
satisfy ∑

Ki
k=1 mi,k = 1; and the k-th Gaussian component N (c|µi,k, δ 2

i,k) has mean µi,k

and variance δ 2
i,k.

If Ki is given in advance, basic clustering algorithms, e.g., K-Means, can be applied
directly. However, deciding an appropriate Ki before the step starts is difficult, and the
obtained clusters may not be optimal. An overly small Ki may not fully capture all the
representative travel costs on the edge, thus resulting in under-fitting; and an overly
large Ki may capture the travel costs over-specifically, yielding over-fitting [30].

We apply the procedure given in Algorithm 8 to select an appropriate Ki. It starts
with Ki = 1 and then increments Ki by 1 until the benefit (e.g., likelihood) of using Ki
is smaller than that of using Ki−1.

Algorithm 8: CostClustering

Input : CompTimeSeries: T S i = 〈C
(1)
i , . . . ,C(M)

i 〉;
Output: GaussianMixtureModel: GMMi;

1 GMM preGMM← null, newGMM← null;
2 double preLH←−∞, newLH←−∞; int k← 0;

3 CC←
⋃M

x=1 C(x)
i ;

4 Split CC into f equal subsets cc[1], . . . ,cc[ f ];
5 repeat
6 preGMM← newGMM;
7 preLH← newLH; newLH← 0;
8 k← k+1;

/* f-fold likelihood evaluation */
9 for j = 1 . . . f do

10 train← CC \ cc[ j]; test← cc[ j];
11 newGMM← EstimateGMM(train,k);
12 newLH← newLH+EvaLH(test,newGMM);

13 until newLH 6 preLH;;
14 GMMi← preGMM;
15 return GMMi;

All the cost values in T S i are recorded in CC, and CC is split into f equal subsets
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(lines 3–4). In the k-th iteration (lines 5–13), a GMM newGMM with Ki = k Gaussian
components and the likelihood newLH of using newGMM are obtained.

The likelihood of using k Gaussian components is evaluated using f -fold cross
validation (lines 9–12). Each of f subsets is used as a testing set test once, and each of
the remaining f −1 subsets is used as a training set train (line 10). The parameters of
a Gaussian mixture model newGMM with k Gaussian components are estimated based
on the training set train using a classical Expectation-Maximisation algorithm [30]
(EstimateGMM(train,k), line 11). The likelihood that the test data test is generated by
the GMM newGMM is evaluated (EvaLH(test,newGMM) in line 12).

Consider the edge shown in Figure 3.8(c), where travel costs range from 0 to 140.
Figure 3.9(a) shows the percentage of traversals (on the y-axis) of the edge with each
cost value (on the x-axis). For instance, the highest bar indicates that 6.7% of the traver-
sals took 22 seconds. By applying cost clustering, it is found that a GMM with Ki = 3
Gaussian components best describes the travel-time distribution—see Figure 3.9(b).

By using 10-fold cross validation, the likelihoods of choosing different numbers of
Ki are reported in Figure 3.9(c), which indicates that Ki = 3 is the optimal choice. This
example also suggests that although it is infeasible to model travel-cost distributions
by a single pdf (e.g., Gaussian, uniform or exponential distribution), properly chosen
GMMs can describe such distributions very well.
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Figure 3.9: State Formulation
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3.3.1.3 Time-Cost Clustering

For each edge ei, given the GMM GMMi with Ki Gaussian components, time-cost
clustering (line 3 in Algorithm 7) identifies the state set Si on ei. First, each C(x)

i in
the compact time series T S i is transformed into a Ki + 1 dimensional point. Such a
point captures both travel-cost distribution in an interval and the temporal dependency
with its previous interval. Thus, T S i = 〈C

(1)
i , . . . ,C(M)

i 〉 is transformed into M Ki +1
dimensional points f(1)i , . . . , f(M)

i . Second, these points are clustered, such that each
cluster refers to a state on edge ei.

Transforming Compact Time Series to Points: In cost clustering, we identified
Ki Gaussian components describing Ki representative travel-cost groups on edge ei.
The travel costs in a particular interval on the edge should also follow the Ki represen-
tative travel cost groups. Thus, the distribution of the travel costs in the x-th interval
C(x)

i is estimated with a new GMM GMM(x)
i with the Ki Gaussian components deter-

mined in the cost clustering phase, as defined by Equation 3.3.

GMM(x)
i (c) =

Ki

∑
k=1

m̂(x)
i,k ·N (c|µi,k,δ

2
i,k) (3.3)

Here, N (c|µi,k,δ
2
i,k) is the k-th Gaussian component, as in Equation 3.2. However, the

m̂(x)
i,k are new mixing coefficients that satisfy ∑

Ki
k=1 m̂(x)

i,k = 1.

Although GMM(x)
i and GMMi share the same Ki Gaussian components, the mix-

ing coefficients in the two GMMs are typically different because the travel costs ob-
served in each interval typically differ. For example, consider the edge in Figure 3.9(b).
GMM(x)

i may have a larger coefficient for Gaussian component N (21.5,7.0) for an
offpeak interval, but a smaller coefficient for a peak interval.

Next, each C(x)
i is transformed into a Ki +1 dimensional point:

f(x)i = (m̂(x)
i,1 , . . . , m̂

(x)
i,Ki

,KL(x)
i )

The first Ki coordinates are the new mixing coefficients, and the last coordinate KL(x)
i

measures the differences between the distribution of the costs in the x-th interval C(x)
i

and the distribution of the costs in its previous interval C(x−1)
i , which reflects the tem-

poral dependency of the distributions of costs in two adjacent intervals. In particu-
lar, KL(x)

i is evaluated based on Kullback-Leibler divergence [30], as defined in Equa-
tion 3.4.

KL(x)
i =

∫ +∞

−∞

GMM(x−1)
i (c) · ln

GMM(x−1)
i (c)

GMM(x)
i (c)

dc (3.4)

Algorithm 9 transforms a compact time series to a set of points by identifying a
point for each C(x)

i in T S i. First, new mixing coefficients in GMM(x)
i are initialised

as the coefficients in GMMi that is obtained from cost clustering (lines 2–3).
If the x-th interval is sparse, i.e., C(x)

i contains fewer than a threshold of mCounts
cost values, the procedure skips re-estimating the new mixing coefficients. Rather than
using a new GMM re-estimated based on the few cost values in a sparse interval, it is
better to use the original GMMi, which captures the common behaviour over the whole
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Algorithm 9: CompactTimeSeriesToPoints

Input : CompTimeSeries: T S i = 〈C
(1)
i , . . . ,C(M)

i 〉;
GMM: GMMi;

Output: Point Set: Fi;
1 for x = 1 . . .M do
2 for k = 1 . . .GMMi.Ki do
3 GMM(x)

i .m̂(x)
i,k ← GMMi.mi,k;

4 if |C(x)
i |> mCounts then

5 repeat
6 Initialise an array sum[GMMi.Ki];

7 for each cost value c ∈C(x)
i do

8 Initialise an array lh[GMMi.Ki];
9 for k = 1 . . .GMMi.Ki do

10 lh[k]← GMM(x)
i .m̂(x)

i,k ·N (c|µi,k,δ
2
i,k);

11 for k = 1 . . .GMMi.Ki do
12 lh[k]← lh[k]

∑
Ki
k=1 lh[k]

;

13 sum[k]← sum[k]+ lh[k];

14 for k = 1 . . .GMMi.Ki do
15 GMM(x)

i .m̂(x)
i,k ←

sum[k]

|C(x)
i |

;

16 until converged

17 for x = 2 . . .M do
18 KL(x)

i ← EvaKL(GMM(x−1)
i ,GMM(x)

i );

19 f(x)i ← (m̂(x)
i,1 , . . . , m̂

(x)
i,Ki

,KL(x)
i );

20 Fi← f(1)i ∪ . . .∪ f(M)
i ;

21 return Fi;

period of interest P, to describe the distribution of costs in the sparse interval. This
avoids over-fitting to the cost values in sparse intervals.

For example, the 3-rd interval of the edge shown in Figure 3.8(c) contains only one
cost value. Mixing coefficients estimated based on this single value may be over-fitted
to this value, which is not optimal. Sparse intervals typically occur during periods
with low traffic, for which the value very much depends on the particular driver and
therefore can vary considerably.

New mixing coefficients are estimated for the remaining non-sparse intervals (lines 4–
16). In each iteration, the mixing coefficients are updated based on normalised likeli-
hood values of the mixing coefficients obtained from the previous iteration.

Finally, Kullback-Leibler divergence is evaluated for each interval, and the point for
each interval is formulated (lines 17–20). Function EvaKL(·, ·) returns a KL divergence
value that is normalised to the unit range [0,1], e.g., by dividing by the largest KL
divergence value on edge ei.

Clustering Points: In Section 3.2.1, we assumed that (i) the traffic in the same
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hidden state behaves similarly, and (ii) the current state depends on its previous state.
Thus, we consider both travel cost distance and temporal dependency distance when
clustering points f(1)i , . . . , f(M)

i .
DisC and DisT measure the travel-cost distance and the temporal dependency dis-

tance between a point f(x)i and the center of a cluster Un, respectively. Recall that the
first Ki coordinates of a point f(x)i refers to the travel-cost distribution in the x-th interval
and that the KL value (i.e., the last coordinate) captures the temporal dependency of
the travel cost distributions in the (x− 1)-st and x-th intervals. Thus, DisC computes
a distance using the first Ki coordinates of f(x)i and of the center of Un, and it relates
to assumption (i); and DisT computes a distance using the KL value of f(x)i and of the
center of Un, and it relates to assumption (ii). Specifically, we have:

DisC(f
(x)
i ,Un) = ∑

Ki
k=1 mi,k · (m̂

(x)
i,k − ¯̂m(n)

i,k )
2

DisT (f
(x)
i ,Un) = (KL(x)

i − K̄L(n)
i )2

Here, ¯̂m(n)
i,k and K̄L(n)

i are the coordinates of the center of cluster Un, which is equal to
the average value of the k-th coordinates, and the KL value of the points in cluster Un,
respectively.

Based on the above, the distance between a point f(x)i and the center of a cluster
Un is defined in Equation 3.5 as a weighted (using parameter λ ), linear combination of
DisC and DisT .

Dis(f(x)i ,Un) = λ ·DisC(f
(x)
i ,Un)+(1−λ ) ·DisT (f

(x)
i ,Un) (3.5)

The time-cost clustering procedure is described in Algorithm 10. K-Means clus-
tering [30] that uses the distance function defined in Equation 3.5 is applied. The
algorithm calls K-Means with k = 1 and increments k until a termination criterion is
satisfied.

Algorithm 10: TimeCostClustering
Input : CompTimeSeries: T S i; GMM: GMMi; double λ ;
Output: A state set: Si;

1 Fi←CompactTimeSeriesToPoints(T S i,GMMi);
2 int k← 0;
3 repeat
4 k← k+1;
5 ClusterSet U ← K−Means(Fi,k,λ );
6 PreviousDis← PreviousDis∪Dis(U);
7 until TermHeur(PreviousDis);
8 StateSet Si←U ;
9 return Si;

The algorithm chooses an appropriate number of clusters, each corresponding to
a hidden state. In one extreme, if a state is created for each point, the states have
the best quality because each state has a unique travel cost distribution and time de-
pendency. However, the parameter space (notably the transition probabilities) of an
STHMM increases exponentially with the number of states, thus rendering parameter
learning expensive or infeasible. Towards the other extreme, if choosing only one or
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a small number of clusters, the STHMM is unlikely to capture adequately the traffic
dynamics, thus decreasing the travel cost inference accuracy.

To choose the number k of clusters, a termination heuristic (line 7) is applied. We
track the overall distance value when having k clusters U = U1, . . . ,Uk, as defined in
Equation 3.6.

Dis(U) =
k

∑
n=1

∑
f(x)i ∈Un

Dis(f(x)i ,Un) (3.6)

For most edges, as k increases, the overall distances initially drop quickly, but then
subsequently drop only slowly. If the distance decrease is low for several consecutive
steps, the process terminates, and the k obtained prior to the onset of the low distance
decrease is chosen.

Finally, each cluster is regarded as a state, and a state is represented by the coor-
dinates of its center. For example, eight clusters are identified for the edge shown in
Figure 3.8(c). The coordinates of the cluster centers are shown in Figure 3.9(d).

Discussion: In time-cost clustering, instead of estimating distinct GMMs with dif-
ferent Gaussian components for the travel costs in different intervals, we use the Ki
Gaussian components identified during cost clustering. This has two benefits. First, it
provides reliable travel cost distributions for sparse intervals, which reduces the effects
of the data sparsity. Second, it allows transformation of the travel cost distribution
in each interval into a Ki + 1 dimensional point. Clustering of points using weighted
Euclidean distance (based on Equation 3.5) is much more efficient than clustering dis-
tributions. Measuring the similarity between two distributions accurately and reliably
typically requires expensive sampling and the use of many sampling points.

3.3.2 Parameter Learning
Having obtained sets of states for all edges, the parameters that specify an STHMM as
defined in Section 3.2.2.3 need to be identified. We determine output, transition, and
initial probabilities.

3.3.2.1 Output Probabilities

Since a state s(x)i ∈ Si of edge ei is a cluster of points containing mixing coefficients
of GMMs, the output probability of the state is also defined as a GMM. The output
probability d(x)

i (c) of state s(x)i on edge ei is defined as follows.

d(x)
i (c) =

Ki

∑
k=1

m̄(x)
i,k ·N (c|µi,k,δ

2
i,k)

The Gaussian component N (c|µi,k,δ
2
i,k) is as defined in Equation 3.2. The k-th mixing

coefficient is the average of all the k-th coordinates of the points in state s(x)i : m̄(x)
i,k =

∑f(y)i ∈s(x)i
m̂(y)

i,k /|s
(x)
i |.

3.3.2.2 Transition Probabilities

The original, sparse time series are used for learning transition probabilities, as they
provide more observations of state transitions than do the compact time series and thus
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yield more accurate learning. Given a sparse time series, the possible states of each
interval are estimated based on the cost values in the interval. Thus, sparse time series
are transformed into uncertain state sequences, based on which transition probabilities
are determined using maximum likelihood estimation.

State Estimation: Given a set of travel costs C(t)
i during the t-th interval on edge

ei, the probability that the corresponding state is s(x)i ∈ Si, denoted as P(q(t)i = s(x)i |C
(t)
i ),

is estimated using Equation 3.7 according to the Bayes’ theorem.

P(q(t)i = s(x)i |C
(t)
i ) =

P(C(t)
i |q

(t)
i = s(x)i ) ·P(q(t)i = s(x)i )

∑
|Si|
x=1 P(C(t)

i |q
(t)
i = s(x)i ) ·P(q(t)i = s(x)i )

(3.7)

Here P(C(t)
i |q

(t)
i = s(x)i ) is the probability that costs in C(t)

i are observed in state s(x)i
(i.e., output probabilities), and thus we have:

P(C(t)
i |q

(t)
i = s(x)i ) = ∏

c∈C(t)
i

P(c|q(t)i = s(x)i ) = ∏
c∈C(t)

i

d(x)
i (c)

If C(t)
i is empty due to data sparsity, P(C(t)

i |q
(t)
i = s(x)i ) is omitted from Equation 3.7,

i.e., we set P(C(t)
i |q

(t)
i = s(x)i ) to 1.

Further, the prior P(q(t)i = s(x)i ) is decided based on the temporal context, i.e., the
t-th interval. Assume that the t-th interval of edge ei’s sparse time series corresponds
to the t ′-th interval of its compact time series. If the corresponding point in the t ′-th
interval f(t

′)
i is assigned to a state s(γ)i (i.e., f(t

′)
i ∈ s(γ)i ) in the state formulation phase

then s(γ)i is used as the default state.
Although the default state s(γ)i is treated as the most probable state of ei during the

t-th interval, this does not mean that the remaining states s(γ
′)

i (γ ′ 6= γ and s(γ
′)

i ∈ Si)
are not possible at all. Motivated by the notion of additive smoothing [35], we smooth
the probabilities among every possible state by assigning a small probability ε to each
non-default state and assigning a big probability 1− ε · (|Si| − 1) to the default state.
Formally, we have:

P(q(t)i = s(x)i ) =

{
1− ε · (|Si|−1) s(x)i = s(γ)i

ε s(x)i 6= s(γ)i

(3.8)

Having estimated the possible states for each interval in a sparse time series T S i,
an uncertain state sequence is formulated. The t-th element in the uncertain state se-
quence contains the probabilities for each state in Si, namely P(q(t)i = s(x)i |C

(t)
i ) for

1 6 x 6 |Si|.
Figure 3.10 shows uncertain state sequences for edges e1, e2, and e5. The costs

during the 1-st, 2-nd, and 3-rd intervals are only observed on edges e1 and e5, edges e1

and e2, and edge e1, respectively. Thus, possible states on q(1)1 , q(1)5 , q(2)1 , q(2)2 , and q(3)1
can be obtained based on the corresponding cost values using Equation 3.7, while all
the remaining states are obtained using Equation 3.8 (where ε = 0.01 as an example).

Learning Transition Probabilities: Transition probabilities are learned from the
obtained uncertain state sequences using maximum likelihood estimation. The state
transition probability of edge ei, h

xi,xi1 ,...,xik
i,i1,...,ik

, is defined as the probability of ei being in
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Figure 3.10: Learning Transition Probabilities

state s(xi)
i given that the previous states of ei’s n-th order neighbors being s

xi1
i1

. . .s
xik
ik

,
respectively. It is estimated using Equation 3.9.

h
xi,xi1 ,...,xik
i,i1,...,ik

= (3.9)

∑
T
t=2 P(q(t)i = s(xi)

i ) ·∏k
j=1 P(q(t−1)

i j
= s

(xi j )

i j
)

∑
T−1
t=1 ∏

k
j=1 P(q(t)i j

= s
(xi j )

i j
)

An example of determining transition probabilities for edge e1 is shown in Fig-
ure 3.10. Using Equation 3.9, h(1,1,2,3)1,1,2,5 , i.e., the probability of e1 being s(1)1 given that

the previous states of its neighbors e1, e2, and e5 are s(1)1 , s(2)2 , and s(3)5 , is estimated as

h(1,1,2,3)1,1,2,5 = 0.8·0.01·0.1·0.9+0.9·0.5·0.01·0.7
0.8·0.01·0.1+0.9·0.5·0.01 = 0.730

3.3.2.3 Initial Probabilities

The initial probability describes the first state of each edge’s traffic evolution. As only
one uncertain state sequence is identified for each edge, only one training instance is
available, which is insufficient to accurately estimate an edge’s initial probability.

To derive a meaningful initial probability for each edge, its uncertain state sequence
is split based on the period of interest P that was used to obtain the compact time series.
Thus, a group of uncertain state sequences is obtained for each edge, which provides
more training instances for the estimation. Figure 3.11 shows an example, where P is a
day. The full uncertain state sequence is split into short uncertain state sequences, each
corresponding to a day.

q1
(1)

s1
(1): 0.8

s1
(2): 0.2

s1
(1): 0.99

s1
(2): 0.01

s1
(1): 0.9

s1
(2): 0.1

... ... ...q1
(96) q1

(1) q1
(96) q1

(1)

Split Split

q1
(96)

Figure 3.11: Learning Initial Probabilities

Since initial probabilities are independent among different edges, an edge’s ini-
tial probability can be learnt by only considering the first states in the short uncer-
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tain state sequences of the edge. Given edge ei, assume that the first states in all the
short uncertain state sequences are in set SSi. Then the initial probability of edge ei is
defined by Equation 3.10. For example, using the short uncertain states sequences
of edge e1 shown in Figure 3.11, the probability of the initial state being s(1)1 is:
τ
(1)
1 = (0.8+0.99+0.9)/3 = 0.897.

τ
(x)
i =

∑q(1)i ∈SSi
P(q(1)i = s(x)i )

|SSi|
(3.10)

3.3.3 Travel Cost Inference
An STHMM with learned parameters enables travel cost inference. Since the inference
is similar to the inference on classical HMMs [34], we omit the details and only briefly
discuss two cases.

The first concerns the beginning of travel cost inference, where no real-time GPS
data is available. In this case, initial probabilities are applied to infer the next states.

The second case occcurs when GPS data streams into the system. Here, the current
state is estimated using Equation 3.7 based on the travel costs from the latest interval.
Based on the learned transition probabilities, the next states are inferred. Using the in-
ferred next states and the learned output probabilities, the distributions of travel costs in
the next intervals are also available. For example, the expected values of the estimated
distribution can be used to assign near-future edge weights to road network G.

3.4 Empirical Study
We report on a study that aims to elicit design properties of the proposed framework
and algorithms.

3.4.1 Experimental Setup
Data Set: We use 181 million GPS records collected at 1 Hz (i.e., one GPS record per
second) in North Jutland, Denmark during week days from April 2007 to March 2008.
The data is from an experiment where young drivers start out with a rebate on their
car insurance and then are warned if they speed and are penalised financially if they
continue to speed.

The GPS data is map matched [5] to OpenStreetMap’s road network for Denmark1,
where 34%, 29%, 15%, 9%, and 13% of the data occurs on tertiary, secondary, resi-
dential, motorway, and other roads2, respectively. Most of the data is from urban and
suburban regions. The data set is divided into a training set (for learning an STHMM),
and a testing set (for testing the accuracy of inferred travel costs). By default, we use
the first half year (April to September) of data for training, and the remaining half year
for testing.

Since the data only covers part of Denmark and some covered edges have little
data, we consider the subset of the road network that is composed of edges that have at
least 500 cost records, denoted as E. If an edge has less than 500 records in a year (i.e.,

1http://www.openstreetmap.org
2According to OpenStreetMap road categories: http://wiki.openstreetmap.org/wiki/

Highway_tag_usage.
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less than 2 records per day), the edge is either unlikely to have much traffic and traffic
variation, or the vehicles in the GPS data set do not cover the edge. Such edges are not
of interest to us. The resulting, smaller road network contains |E|= 1,916 edges. Thus,
the proposed STHMM learns 1,916 correlated time series. We also note that our study
with 1,916 correlated time series exceeds the sizes of existing studies by two orders of
magnitude [36, 37, 38, 39]. In fact, existing studies consider at most 10 correlated time
series.

Period of Interest P: It is common to focus on “hot” periods when studying
traffic behaviour [37] because such periods are most interesting. In contrast, travel-
time estimation during midnight is of relatively little interest. Here, we consider P =
[6:00,20:00), since the GPS data is collected primarily in P. Although we consider a
“hot” period and “hot” edges, the obtained time series remain quite sparse. Table 3.1
reports the percentage of intervals that do not have any costs in the time series obtained
using different α .

α (minutes) 15 30 60
Sparsity 89.2% 79.1% 60.2%

Table 3.1: Sparsity of Traffic Time Series

Travel Costs: We consider travel time (TT) and GHG emissions (GE). Travel times
are obtained as the difference between the corresponding time points of the last and first
GPS records on an edge. We use the VT-micro model [40] to estimate the GHG emis-
sions based on instantaneous velocities and accelerations, which are derived from the
available GPS records. A recent benchmark [7] indicates that VT-micro is appropriate
for this purpose.

Parameters: We vary the parameters α , λ , and n, which are used in the state
formulation and parameter learning steps, according to Table 5.1, where default values
are shown in bold. Default values are used unless stated otherwise. Parameter f used
in cost clustering (in Algorithm 8) is set to 10, i.e., using 10-fold cross validation.
Threshold mCounts, used in Algorithm 9, is set to 5. Smoothing parameter ε , used in
Section 3.3.2.2, is set to 0.02.

Parameters Values
α 15, 30, 60 (minutes)
λ 0, 0.1, 0.2 , 0.3 (for TT), 0.4,

0.5 (for GE), 0.6, 0.7, 0.8, 0.9, 1
n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 3.2: Parameter Settings

Accuracy Measurements: When we infer travel costs for an edge, the intervals
that have been traversed at least once are of interest to us because they have ground-
truth travel costs, which enables us to measure inference accuracy. We call these test
intervals, and we consider only these in the experiments.

We quantify the effectiveness of the estimated travel costs using average sum of
squared loss (ASSL). The ASSL value of edge ei is defined as ASSL(ei)=

1
Mi
·∑Mi

j=1(EST j−
GT j)

2, where Mi is the total number of test intervals of edge ei and EST j and GT j are
the estimated and the ground truth costs for the j-th test interval, respectively. In the
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j-th test interval, the STHMM estimates a state that describes the cost distribution dur-
ing the interval, so we use the expected cost as EST j. We compare the STHMM with a
baseline method, where the EST j is the average of the cost values observed during the
same interval from the training set. The average of all cost values observed in the j-th
test interval is used as the ground truth GT j. The overall accuracy is the average ASSL
value of every edge, where ASSL = 1

|E| ·∑ei∈E ASSL(ei).
Implementation Detail: All algorithms are implemented in Java using JDK 1.7.

To ease the management of Gaussian mixture models, the jEMF package3 is applied.
Some clustering algorithms are implemented based on Weka4. A computer with Win-
dows 7 Enterprise, a 3.40GHz Intel Core i7-2600 CPU, and 16 GB main memory is
used for all experiments.

3.4.2 Effects of α and λ

To observe the effects of parameters α and λ , we plot the ASSL loss ratio (i.e., ASSLSTHMM
ASSLBaseline

)
while varying α and λ in Figure 3.12. Recall that λ controls the relative importance of
travel cost distance and temporal dependency distance in time-cost clustering.

Given a fixed λ , the STHMM is always superior to the baseline method for both TT
and GE. For example, for TT and α = 15, the best ratio is around 45%, meaning that
the ASSL of the STHMM is 45% of the baseline’s ASSL. This clearly demonstrates the
effectiveness of our STHMM approach.

The STHMMs with finer-grained intervals (i.e., smaller α) produce better ASSL
loss ratios. It is expected that the traffic between two consecutive 15-minute intervals
is more inter-dependent than between two consecutive 60-minute intervals. Longer
intervals lower the traffic dependencies between consecutive intervals, yielding a worse
ASSL loss ratio.

We fix α and study the effect of varying λ . If we only consider cost similarity
(λ = 1) or only consider temporal similarity (λ = 0), the ASSL loss ratios on both TT
and GE are higher than when both similarities are considered, as seen in Figure 3.12.
We also see that the loss ratio is not very sensitive to λ , which makes it easy to choose
an appropriate λ value. We use λ = 0.3 and λ = 0.5 as defaults for subsequent exper-
iments on TT and GE, respectively, as these values produce the best results.
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Figure 3.12: Effects of α and λ

3http://www.lix.polytechnique.fr/˜nielsen/MEF/
4http://www.cs.waikato.ac.nz/ml/weka/
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Next, to observe the effectiveness of the STHMM across time, we plot the ASSL
values for the baseline and the STHMM with α=15 at an hourly granularity in Fig-
ure 3.13. For both TT and GE, the STHMM always has a lower ASSL for each hour.
The results suggest that the STHMM models traffic evolution during finer-grained in-
tervals much more effectively than the baseline method and is able to provide much
more accurate dynamic edge weights.
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Figure 3.13: Hourly Inference, α = 15

The total run time of learning an STHMM and the average run time of performing
TT inference per test interval on the learned STHMM are shown in Figure 3.14 (results
on GE are similar and are thus omitted). Recall that both state formulation and parame-
ter learning are conducted off-line and are not time critical. The figure shows that as α

increases, the total run time of both phases decreases. Given a training period, a smaller
α yields more intervals, thus creating more data to be considered in both phases. For
α = 15, more intervals with varying travel-cost distributions need to be handled during
time-cost clustering, yielding state sets with higher cardinalities. Higher cardinalities
increase the parameter spaces of the transition probabilities, which makes parameter
learning take longer than when α = 30 or 60. However, the longest total run time of
both phases is below 92 minutes, which is acceptable for an off-line computation.
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Figure 3.14: Efficiency, TT
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Figure 3.15: Training Size

It is also important to note that both state formulation and parameter learning are
parallelizable. State formulation for an edge only uses the compact time series from
the edge, and parameter learning for an edge only employs a group of uncertain state
sequences from the edge’s n-th order neighbors. By distributing the compact time
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series and pertinent groups of uncertain state sequences to different computer nodes,
both state formulation and parameter learning for different edges can be conducted in
parallel. Frameworks such as MapReduce are capable of distributing pertinent data to
different nodes and thus enable parallel state formulation and parameter learning. This
way, the total run time can be further reduced using known techniques.

Travel cost inference is conducted on-line, meaning that as real-time GPS data
streams in, near-future travel costs are to be inferred with little delay. Thus, travel cost
inference is time critical. The “Inference (per test interval)” columns in Figure 3.14
suggest that travel cost inference is quite efficient and is capable of supporting real-
time inference.

3.4.3 Effects of Training Data
To observe the effect of the sizes of training sets, we use data from the first i months
for training, and the remaining data for testing, where 1 6 i 6 11. For example, when
i = 3, data from April–June 2007 is used for training. The ASSL values using different
training sets are reported in Figure 3.15. As more data is used for training, the inference
accuracy for both TT and GE also increases (i.e., lower ASSL values).

Note that the STHMM always outperforms the baseline, especially when the train-
ing set is small. In particular, when i = 1, the ASSL values of the STHMM is only
19% and 27% of those of the baseline for TT and GE, respectively, indicating that the
STHMM works well when the training set is small and sparse.

It is of interest to incorporate recent data and learn an up-to-date STHMM period-
ically. Assume that we learn a new STHMM every month. We consider two strategies.
When predicting travel costs for a new month (e.g., September), Strategy 1 consid-
ers the data collected from all previous months (e.g., April–August) to learn a new
STHMM, while Strategy 2 only considers the data collected from the two most recent
months (e.g., July–August). We compare these with a static approach (that always uses
an STHMM learned from data collected from April–May).

The results on TT are shown in Figure 3.16. The periodically learned STHMMs
outperform the static one, especially when the test months are further away from the
training months (e.g., from October 2007 to March 2008). The two strategies are almost
equally effective (i.e., similar ASSL values), but have quite different efficiencies. As
time passes, Strategy 1 uses more and more training data and thus takes longer and
longer time (up to around 2 hours). Strategy 2 always uses only two months of data for
training and takes from 25–35 minutes, depending on the numbers of GPS records in
the different months. Thus, Strategy 2 is preferable.

As summer and winter may have different traffic conditions, it is of interest to study
the effect of the seasonality. We learn a summer STHMM with data from June and
July and a winter STHMM with data from December and January. The results on TT
shown in Figure 3.17 indicate that the summer STHMM achieves better accuracy for
summer months (e.g., May and August), while the winter STHMM is best for winter
months (e.g., November, February, and March). For the spring and fall months (e.g.,
April, September, October), both STHMMs perform similarly. The findings are con-
sistent with domain knowledge of summer/winter traffic in Denmark. We also include
Strategy 2 in Figure 3.17: it offers a reasonable all-year accuracy.

We suggest that (i) if a region has different summer and winter traffic, using sepa-
rate summer and winter STHMMs yield the best results; otherwise, (ii) using Strategy
2 is also effective. The effects of incorporating recent data and the seasonality on GE
are similar, and thus are omitted.
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3.4.4 Effects of n-th Order Coupling
We proceed to consider the effects of different coupling levels, i.e., using different n-
th order STHMMs. When n = 0, the STHMM degrades to the naive model that is
composed of |E| independent HMMs (refer to Section 3.2.2.2). The naive model can
be regarded as an improved version of the state-of-the-art approach [41] that applies
a Markov model to predict future travel times. It formulates states using travel time
clusters. In contrast, in our naive model, a state is a cluster represented by a Gaus-
sian mixture model describing a travel cost distribution, and a KL divergence value
representing its temporal dependency w.r.t. its previous state. Also, the state-of-the-art
approach is only tested on travel time, not on GHG emissions.

We choose a subset of edges E ′ ⊂ E with state set cardinalities that exceed 1 to
observe the effect of varying n. The reason for using E ′ is twofold: if an edge’s state
set cardinality is 1, (i) the edge stays in its single state, regardless of the states of its n-th
neighbors, and (ii) the edge also cannot effect its neighbor edges’ traffic because it is
always in the single state. Thus, if the cardinality is 1, the n-th (n > 1) order STHMM
should yield the same results as the naive model.

The chosen E ′ contains 653 edges for TT and 723 edges for GE. As the distributions
of TT and GE can be quite different (cf. the 49-th interval in Figure 3.3) even when both
are derived from the same GPS data, the state set cardinalities on the same edge are also
quite different for TT and GE. Thus, the E ′ contains different edges for TT and GE.

We plot the average and maximal cardinalities of n-th order neighbors derived from
E ′ in Figure 3.18. When n is large (> 4), some edges have many neighbor edges,
causing an exponential increase in the parameter spaces of transition probabilities in
the STHMM. For instance, when n = 5, an edge may have 28 neighbor edges. If each
edge has 4 states, the transition probability of the edge needs to maintain 4 ·428 entries,
which causes prohibitively high computation and storage overheads. Fortunately, an
approximation algorithm (AA) [38, 36] is able to reduce the parameter space from
exponential to linear. We use AA to learn the transition probabilities in the STHMM
for n up to 10. The details of AA are omitted for brevity.

When n 6 4, we use the proposed learning algorithms to study the effectiveness of
the n-th order STHMM based on 50 randomly chosen edges from E ′. We do not include
all edges in E ′ because parameter learning on some edges is quite time consuming when
n = 3 or 4. The couple ratio = ASSLn-th order STHMM

ASSLNaive
is shown in Figure 3.19.

The n-th (n > 1) order STHMM outperforms the naive model. In particular, the
benefit of using the 1-st order STHMM is most significant for inferring both TT and
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GE (see the two steep slopes from n = 0 to n = 1). The 2-nd and 3-rd order STHMMs
yield the best results for TT and GE, respectively. When n > 1, the benefit of using a
higher-order STHMM is not prominent, and for n = 4 the couple ratios even increase.
The results suggest that the traffic interactions among different edges are relatively
localised and that a fully coupled model [38, 39, 36, 37] is not well suited for road
network traffic modeling.

The average run time of parameter learning per edge and the average run time of
inference per test interval are shown in Figure 3.20. Figure 3.14 gives the run time of
state formulation, which does not change when varying n. As n increases, the parameter
space of the STHMM also increases, thus increasing the average run time of parameter
learning. The 1-st order STHMM and the naive model have similar run times, and the
n-th order STHMM is expensive to learn when n > 1. Considering the effectiveness
shown in Figure 3.19, the 1-st order STHMM stands out as offering a high effectiveness
gain while limiting the additional run time cost.
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Next, we apply AA to all edges in E ′ to study the effectiveness and efficiency of
n-th order STHMMs for 1 6 n 6 10. The Appr Ratio= ASSLn-th order STHMM AA

ASSL1-st order STHMM AA
is shown in

Figure 3.21, and the average run time of AA is also shown in Figure 3.20. AA is much
more efficient, but also less effective. Higher order (n > 5) STHMMs almost keep
the same effectiveness, suggesting that traffic on further-away edges seldom affect the
traffic of the edge of interest.

We recommend the use of a lower order (n < 3, especially n = 1) STHMMs for
travel cost inference in road networks. These provide significant benefits at low training
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times.

3.5 Related Work
Time Series Analysis: Hidden Markov Models (HMMs) [30, 34] and coupled HMMs [38,
39, 36, 37] are proposed to model individual time series and to model the interactions
among multiple time series, respectively. The proposed STHMM has several unique
characteristics. First, while the existing approaches consider regular, non-sparse time
series (i.e., one value per interval), the heterogenous, sparse time series that we con-
sider may have multiple or no value(s) in an interval.

Second, HMMs and coupled HMMs assume the state set of an individual time se-
ries is given a priori, e.g., using domain knowledge. This assumption does not hold in
our setting where identifying a distinct state set for each traffic time series is an impor-
tant challenge. A recent approach, pHMM [29], segments a regular time series into line
segments and clusters these line segments to obtain states. Although pHMM is capable
of computing state sets for regular time series without relying on prior knowledge, it
is inapplicable in our setting because linear transformation of regular time series does
not apply to our sparse and heterogenous time series. Rather, the STHMM identifies
a distinguishable state set as a set of Gaussian mixture models for each sparse time
series.

Third, parameter learning for the STHMM differs from classical HMM parameter
learning, e.g., using the Baum-Welch algorithm [34], which needs to estimate out-
put probabilities while estimating initial and transition probabilities. In contrast, the
STHMM identifies the output probabilities in the state formulation phase, which sim-
plifies the estimation for initial and transition probabilities in the parameter learning
phase. Further, coupled HMMs couple each time series with all the other time series
and thus have huge parameter spaces. Existing studies [38, 36] focus on proposing
approximate models along with randomised learning algorithms to avoid inaccurate or
inefficient inferencing as much as possible. Our STHMM considers the structure of
the underlying road network to couple only those time series that need coupling, thus
reducing the parameter space substantially.

Travel Cost Inference: Most existing work on travel cost estimation focuses on
travel time estimation, and only few studies consider GHG emissions. Further, most
estimation approaches are quite static in nature. Although a recent approach [?] learns
time-dependent travel times and GHG emissions based weights for roads (even for the
roads without any GPS data), the weights remain static and do not consider real-time
traffic data. The current state-of-the-art proposal for travel time inference, which is also
the most related to ours, uses a Markov model to update the travel time on a road based
on real-time traffic data from the road. However, the real-time support considers each
road segment in isolation, does not exploit the correlation of travel times among road
segments, and does not contend with sparsity and heterogeneity. Section 3.4.4 includes
an empirical comparison with an improved version of this approach. One study [37]
uses coupled HMMs to model dynamic travel times using loop detector data, which
assumes that the state set of each time series is given in advance. Further, since loop
detectors can constantly report travel time, sparsity is not considered.
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3.6 Conclusion and Outlook
We study real-time travel cost inferencing from multiple correlated, sparse time series
based on GPS records from probe vehicles. A spatio-temporal hidden Markov model is
formalised to model multiple correlated traffic time series, while considering sparsity,
dependency, and heterogeneity in an integrated manner. An empirical study consider-
ing travel time and GHG emissions demonstrates that the framework and algorithms
are effective and efficient.

As the volumes of GPS data increase, it becomes possible to study even larger num-
bers of correlated traffic time series. The resulting STHMM parameter space increase
renders the learning more difficult. First, exact learning may not be feasible, calling
instead for approximate sampling based learning. Second, scalable learning algorithms
are of particular interest when we face large numbers of correlated time series.
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Chapter 4

Using Incomplete Information
for Complete Weight
Annotation of Road Networks

This work has been accepted by IEEE Transaction of Knowledge and Data Engineer-
ing [3] – one of the best journals in the field of data and knowledge management.

Reduction in greenhouse gas (GHG) emissions is crucial in combating global cli-
mate change. For example, the EU has committed to reduce GHG emissions to 20%
below 1990 levels by 2020 [42]. To achieve these reductions, the transportation sector
needs to achieve reductions. For example, in the EU, emissions from transportation
account for nearly a quarter of the total GHG emissions [43], making transportation
the second largest GHG emitting sector, trailing only the energy sector.

While improved vehicle and engine design are likely to yield GHG emission re-
ductions, eco-routing is readily deployable and is a simple yet effective approach to
reducing GHG emissions from road transportation [44]. Specifically, eco-routing can
effectively reduce fuel usage and CO2 emissions. Studies suggest that by providing
eco-routes to drivers, approximately 8–20% in fuel savings and lower CO2 emissions
are possible in different settings, e.g., during peak versus off-peak hours, on highways
versus areal roads, for light versus heavy duty vehicles [45, 46]. For example, an in-
teresting municipal solid waste collection scenario, where a truck collects solid waste
from several locations on Santiago Island, demonstrates a 12% fuel reduction due to
eco-routes [47].

Vehicle routing relies on a weighted-graph representation of the underlying road
network. To achieve effective eco-routing, it is essential that accurate edge weights that
capture environmental costs, e.g., fuel consumption or GHG emissions, associated with
traversing the edges are available. Given a graph with appropriate weights, eco-routes
can be efficiently computed by existing routing algorithms, e.g., based on Dijkstra’s
algorithm or the A∗ algorithm. However, accurate weights that capture environmental
impact are not always readily available for a road network. This paper addresses the
task of obtaining such weights for a road network from a collection of measured (trip,
cost) pairs, where the cost can be any cost associated with a trip, e.g., GHG emissions,
fuel consumption, or travel time.

Because the trips given in the input collection of pairs generally do not cover all
edges of the road network and also do not cover all times of the day, data sparsity is
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a key problem. The cost of a trip, e.g., GHG emissions, differs during peak versus
off-peak hours. Thus, it is inappropriate to use costs associated with peak-hour trips
for obtaining edge weights to be used for eco-routing during off-peak hours.

Considering the road network and trips shown in Fig. 4.1, assume that the GHG
emissions of trip 1 (traversed from 7:30 to 7:33) and trip 2 (traversed from 23:15 to
23:17) are also given, and assume that we are interested in assigning GHG emission
weights to all edges in the network. The assignment of these weights to a large number

A
B

C

D

F GH

I E

J

Trip 1

(7:30 to 7:33)

Trip 2 

(23:15 to 23:17)

Road

Peak:       [6:00, 8:00]

Off-Peak: [0:00, 6:00),

                (8:00, 24:00)

Figure 4.1: Trips on A Road Network
of edges, e.g., BC, BD, EG, and FG, cannot be done directly since they are not covered
by any trip. However, for example, BD can be annotated by considering its neighbor
road segment AB which is covered by trip 2.

Assuming that the period from 6:00 to 8:00 is the sole peak-hour period (the re-
maining times being off-peak), trip 1 is not useful for assigning an off-peak weight to
the edge AE because trip 1 traversed AE during peak hours. By taking into account the
off-peak weights of IA and AB (covered by trip 2), it is, however, possible to obtain an
off-peak weight for AE.

This paper proposes general techniques that take as input (i) a collection of (trip,
cost) pairs, where trip captures the edges used and the times when the edges are tra-
versed and the cost represents the cost of the entire trip; and (ii) an unweighted graph
model of the road network in which the trips occurred. The techniques then assign
travel cost based weights to all edges in the graph.

To the best of our knowledge, this paper is the first to study complete weight an-
notation of road networks using incomplete information. And this work is accepted
as a journal paper on IEEE Transactions on Knowledge and Data Engineering, 2013.
In particular, the paper makes four contributions. First, a novel problem, road net-
work weight annotation, is proposed and formalised. Second, a general framework
for assigning time-varying trip cost based weights to the edges of the road network is
presented, along with supportive models, including a directed, weighted graph model
capable of capturing time-varying edge weights and a trip cost model based on time
varying edge weights. Third, two novel and judiciously designed objective functions
are proposed to contend with the data sparsity. A weighted PageRank-based objective
function aims to measure the variance of weights on road segments with similar traffic
flows, and a second objective function aims to measure the weight difference on road
segments that are directionally adjacent. Fourth, comprehensive empirical evaluations
with real data sets are conducted to elicit pertinent design properties of the proposed
framework.

The remainder of this paper is organised as follows. Following a survey of related
work in Section 4.1, Section 4.2 covers problem definition and a general framework
for solving the problem. Section 4.3 details the objective functions. Section 4.4 reports
the empirical evaluation, and Section 4.5 concludes and discusses research directions.
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4.1 Related Work
Little work has been done on weight annotation of road neworks. Trip cost estimation
is a core component of our weight annotation solution. Given a set of (trip,cost) pairs
as input, trip cost estimation aims to estimate the costs for trips that do not exist in the
given input set. Weight annotation can be regarded as a generalised version of trip cost
estimation, since if pertinent weights can be assigned to a road network, the cost of
any trip on the road network can be estimated. For example, if a GHG emissions based
weighted graph is available, the GHG emissions of a certain trip can be estimated as
the sum of the weights of the road segments that the trip traverses.

Most existing work on trip cost estimation [48, 49, 50, 51] focuses on travel-time
estimation. In other words, their work focuses on travel time as the trip cost. In general,
the methods for estimating the travel times of trips can be classified into two categories:
(i) segment models and (ii) trip models.

Segment models [50, 51, 52, 53] concern travel time estimation for individual road
segments. For example, observers (e.g., Bluetooth sensors or loop detectors deployed
along road segments) monitor the traffic on road segments, recording the flows of vehi-
cles along the road segments. Thus, travel-time estimation tends to concern particular
road segments. For example, some studies model travel time on a particular road seg-
ment as a time series and apply autoregressive models [50] to estimate the travel time
on the road segment. T-Drive [51] models time-dependent travel time distributions on
road segments using sets of histograms and enables the inference of future travel times
using Markov chains [41]. One study incorporates Lagrangian measurements [53] into
existing traffic flow models for motorways to estimate travel time distributions on spe-
cific motorways.

Segment models assume “hot” road segments where, preferably, substantial data
is available. However, far from every road segment may have enough historical data
in practical settings, e.g., due to the limited deployment of costly sensors. Segment
models are not well suited for the weight annotation problem because the given (trip,
cost) pairs typically fail to cover the whole network, meaning that many road segments
lack the data needed to apply such models.

The trip models focus on estimating the costs of individual trips. Specifically, the
costs of trips are considered more interesting than the costs of individual road segments.
Given a collection of trips and their corresponding travel times, one study [49] proposes
a Gaussian process regression based method to predict the travel times for unseen trips.
However, the study has the limitation that all the trips are required to share the same
source and target. This limitation renders the study of limited interest to us, since we
aim at annotating every edge with a pertinent weight. Trajectory regression [48] was
proposed recently to infer the travel times of arbitrary trips. The method is able to
estimate the travel times of trips consisting of road segments with no or little traversal
history by considering the travel time correlation of spatially adjacent road segments.

Trajectory regression is the most related method to our weight annotation problem.
However, our study distinguishes itself with several unique characteristics. First, we
propose a general framework for annotating edges in a road network with a range of
trip cost based weights and are not constrained to travel time. Second, we identify the
cost correlation of road segments sharing similar traffic flows, and we quantify this by
using weighted PageRank values. Third, we consider the temporal cost correlation of
adjacent road segments. For example, although two road segments AB and BC are adja-
cent, the cost of traversing AB during peak hours is not necessarily correlated to the cost
of traversing BC during off-peak hours. Fourth, we take into account the directionality
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of road segments and consider only directional adjacency when determining the cost
correlation of spatially adjacent road segments. Last but not least, we conduct compre-
hensive experiments on real data sets (real trips and real road networks) to demonstrate
the effectiveness of annotating road networks with both travel time based weights and
GHG emissions based weights. The earlier study on trajectory regression [48] consid-
ers only synthetic data and estimates only travel times of trips.

In the intelligent transportation system research field [44, 54, 40], other travel costs
(besides travel time) of trips are studied. For example, fuel consumption and GHG
emissions of a trip can be computed based on instantaneous vehicle velocities and ac-
celerations, the slopes of the road segments traversed, and the engine type. However,
these methods are designed to estimate the costs of individual trips and are not read-
ily applicable to the problem of annotating graph edges with trip cost based weights,
notably edges that do not have any traversed trips.

4.2 Preliminaries
We cover the modeling that underlies the proposed framework, and we provide an
overview of the framework and its setting.

We use blackboard bold upper case letter for sets, e.g., E, bold lower case letters
for vectors, e.g., d, and bold upper case letters for matrices, e.g., M. Unless stated
otherwise, the vectors used are column vectors. The i-th element of vector d is denoted
as d[i], and the element in the i-th row and j-th column of matrix M is denoted as
M[i, j]. Matrix MT is M transposed. An overview of key notation used in the paper is
provided in Table 4.1.

Notation Description

G, G′ The primal graph and the dual graph.
G′k The dual graph in traffic category tag tagk.
V, E The vertex set and the edge set.
V′, E′ The dual vertex set and the dual edge set.
d The cost variable vector for all edges.
PRk(v′i) The weighted PageRank value of dual

vertex v′i in traffic category tag tagk.

Table 4.1: Key Notation

4.2.1 Modeling a Temporal Road Network
A road network is modeled as a directed, weighted graph G= (V, E, L, F , H), where V
and E are the vertex and edge sets, respectively; L is a function that records the lengths
of edges; F is a function that maps times to traffic categories; and H is a function that
assigns time-varying weights to edges. We proceed to cover each component in more
detail.

A vertex vi ∈ V represents a road intersection or an end of a road. An edge ek ∈
E ⊆ V×V is defined by a pair of vertices and represents a directed road segment
that connects the (intersections represented by) two vertices. For example, edge (vi,
v j) represents a road segments that enables travel from vertex vi to vertex v j. For
convenience, we call this graph representation of a road network the primal graph.
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Fig. 4.2 captures the upper right part of the road network shown in Fig. 4.1 in more
detail. Here, Avenue 1 and Avenue 2 are bidirectional roads, and Street 3 is a one-way
road that only allows travel from vertex B to vertex D.

The corresponding primal graph is shown in Fig. 4.3. In order to capture the bidi-
rectional Avenue 1, two edges (A,B) and (B,A) are generated. Since Street 3 is a
one-way road, only one edge, (B,D), is created.

Avenue 1

Avenue 2

BA

C

D

S
tr

e
e

t 
3

Figure 4.2: Road Network

A

B

C

D

Figure 4.3: Primal Graph

It is essential to model a road network as a directed graph because the cost as-
sociated with traveling in two different directions may differ very substantially. For
example, traveling uphill is likely to have a higher fuel cost than traveling downhill.
As another example, the congestion may also vary greatly for the two directions of a
road.

Function L : E → R takes as input an edge and outputs the length of the road
segment that the edge represents. If road segment AB is 135 meters long, we have
G.L((A,B)) = G.L((B,A)) = 135.

Next, the cost of traversing the same edge may differ across time. This is typically
due to varying degrees of congestions. Thus, GHG emissions or fuel consumption are
likely to differ during peak versus off-peak times. To this end, function F : TD→ TAGS
models the varying traffic intensity during different periods. Specifically, F partitions
time TD and assigns a traffic category tag in TAGS to each partition. The granularity
of the tags are chosen so that the traffic intensity can be assumed to be constant during
the time associated with the same tag. For example, F([0:00, 7:00)) = OFFPEAK,
F([7:00, 9:00)) = PEAK, F([9:00, 17:00)) = OFFPEAK, etc.

Finally, function H : E×TAGS→ R assigns time dependent weights to all edges.
In particular, H takes as input an edge and a traffic tag, and outputs the weight for the
edge during the traffic tag.

Specifically, G.H(ei, tag j) = d(ei, tag j)· G.L(ei), where d(ei, tag j) indicates the cost
per unit length of traversing edge ei during tag tag j and G.L(ei) is the length of edge ei.
To maintain the different costs on different edges during different traffic tags, function
H maintains |E|·|TAGS| cost variables, denoted as d(ei, tag j) (where 1 6 i 6 |E| and 1
6 j 6 |TAGS|).

We organise all the cost variables into a cost vector d∈R(|E|·|TAGS|) and d= [d(e1, tag1),
. . ., d(e|E|, tag1), d(e1, tag2), . . ., d(e|E|, tag2), . . ., d(e1, tag|TAGS|), . . ., d(e|E|, tag|TAGS|)]

T. The x-
th element of the vector, i.e., d[x], equals d(ei, tag j) and x= pos(i, j)= ( j−1) ·|TAGS|+
i. Note that if the cost vector d becomes available, the function G.H also becomes
available.
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The proposed model is attractive in our setting. It is simpler than existing models
capable of capturing time-varying weights (e.g., time-expanded graphs [55] and time-
aggregated graphs [56]), and yet it is sufficiently expressive for the problem we solve.

4.2.2 Trips and Trip Costs
Since vehicle tracking using GPS is widespread and growing, we take into account trips
derived from GPS observations. A GPS trajectory gpsTr = (gps1,gps2, . . . ,gpsn) is a
sequence of GPS observations, where a GPS observation gpsi specifies the location of
a vehicle at a particular time point. After map matching and some pre-processing, a
GPS trajectory is transformed into a trip t = (l1, l2, . . . , lm) that consists of a sequence
of link records li of the form:

link record li : (e, ts, te),

where e ∈ E indicates an edge in G and ts and te indicate the time points of the first and
last GPS observations on edge ei.

If a graph G is available that contains relevant edge costs, the cost of a trip t =
(l1, l2, . . . , lm) can be estimated by Equation 4.1.

cost(t) = ∑
li∈t

∑
tag j∈TAGS

weight(li, tag j) ·G.H(li.e, tag j), (4.1)

where

weight(li, tag j) =
∑I∈G.F−1(tag j)

|I∩ [li.ts, li.te]|
|[li.ts, li.te]|

.

Here, G.F−1 indicates the inverse function of F defined in G, which takes as input
a traffic tag and outputs the set of its corresponding time intervals. Next, | · | de-
notes the length of an interval. For example, given a trip that contains link record
li = (e j,6 : 51,7 : 05) and the traffic tags given in Section 4.2.1, the cost of the trip is
10
15 · G.H(e j,OFFPEAK) + 5

15 · G.H(e j,PEAK) = 10
15 · d(e j ,OFFPEAK) · G.L(e j)+ 5

15 ·
d(e j ,PEAK) · G.L(e j).

4.2.3 Framework Overview
Fig. 4.4 gives an overview of the framework for assigning trip cost based weights to
a road network. Various types of raw data collected from a road network, such as
GPS observations with corresponding CAN bus data and sensor data, are fed into a
pre-processing module. While the GPS observations are obligatory, the CAN bus and
sensor data are optional.

Pre-processing module: The GPS observations are map matched and transformed
into trips as defined in Section 4.2.2. Next, a cost is associated with each trip. If
only GPS observations are available, some costs, e.g., travel time, can be associated
with trips directly. Other costs, e.g., GHG emissions, can be derived. For example,
models are available in the literature that are able to provide an estimate of a trip’s
GHG emissions and fuel consumption based on the GPS observations of the trip [44].
If CAN bus data and sensor data are also available along with the GPS data, actual and
more accurate fuel consumption and GHG emissions can be obtained directly, and thus
can be associated with trips.
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Figure 4.4: Framework Overview

The pre-processing module outputs a set of (trip, cost) pairs {(t(i),c(i))}, which
then serve as input to the edge annotation module. For example, if the goal is to assign
GHG emissions based weights, cost value c(i) indicates the GHG emissions of trip t(i).
Note that the cost c(i) is the total cost associated with the i-th trip, meaning that the cost
for each individual link record in the i-th trip is not required to be known. This makes
it easier to collect (trip, cost) pairs. Because pairs may be obtained in wide variety of
ways, the proposed framework has the potential for wide applicability.

Weight annotation module: The (trip, cost) pairs along with a corresponding un-
weighted graph G′′ = (V,E,L,F,null) are fed into the weight annotation module. This
module assigns pertinent weights to the edges of the graph, and it outputs an weighted
graph G = (V,E,L,F,H).

Recall that function G.H from Section 4.2.1 is defined by the cost vector d. Given
a set of (trip, cost) pairs TC= {(t(i),c(i))}, the core task of this module is to estimate
appropriate cost variables in vector d. We formulate the weight annotation problem as
a supervised learning problem, namely a regression problem [30] that employs TC as
the training data set to estimate cost variables in vector d.

The regression problem is solved by minimizing a judiciously designed objective
function composed of three sub-objective items. The first item measures the misfit
between the given actual cost and the estimated cost (i.e., the cost obtained from the
cost model described in Equation 4.1) for every trip in TC. The second item measures
the differences between the cost variables of two edges whose expected traffic flows
(based on topological structures) are similar. The third item measures the differences
between the cost variables of two edges which are directionally adjacent. Further,
other appropriate metrics that can quantify the difference between the cost variables of
two edges can also be incorporated into the module. Finally, minimizing the objective
function is handled by solving a system of linear equations.

4.3 Objective Functions
Since we regard the problem as a regression problem, we elaborate on the design of the
proposed objective function and the solution to minimizing the objective function.
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4.3.1 Residual Sum of Squares
In order to obtain an appropriate estimation of the cost vector d, we need to make sure
that for every (trip, cost) pair (t(i), c(i)) ∈ TC, the misfit between the actual cost (e.g.,
c(i)) and the estimated cost (e.g., cost(t(i)) evaluated by Equation 4.1, which employs
d), is as small as possible. To quantify the misfit, the residual sum of squares (RSS)
function is applied, where

RSS(d) = ∑
(t(i),c(i))∈TC

(c(i)− cost(t(i)))2.

To facilitate the following discussion, we derive a matrix representation of the RSS
function, as shown in Equation 4.2.

RSS(d) = ||c−QTd||22 (4.2)

Let the cardinality of the set TC be N (i.e., |TC| = N). We define a vector c ∈
RN = [c(1), c(2), . . ., c(N)]T, where c(i) is the given actual cost of the trip t(i), and
(t(i),c(i)) ∈ TC. A matrix Q ∈R|d|×N = [q(1), q(2), . . ., q(N)] is introduced to enable us
to rephrase Equation 4.1 into a matrix representation. Specifically, q(k) is the k-th col-
umn vector in Q which corresponds to trip t(k). If trip t(k) contains a link record l whose
corresponding edge is ei (i.e., l.e = ei), then q(k)[pos(i, j)] = G.L(ei) · weight(l, tag j)
where 1 6 j 6 |TAGS|; otherwise, it is set to 0.

Different from ordinary regression problems, minimizing Equation 4.2 is insuffi-
cient for determining every cost variable in d because the trips in TC may not cover all
the edges in the road network, e.g., all the edges in E. For the edges that are never tra-
versed by any trip in TC, their corresponding cost variables in d cannot be determined
by only minimizing the RSS function.

In this case, annotating the edges that do not appear in TC with weights seems to
be difficult and even unsolvable. In the following, we try to use the topology of the
road network to further propagate and constrain the cost variables in order to assign an
appropriate weight to every edge.

4.3.2 Topological Constraint
The topology of a road network is highly correlated with human movement flow [57,
58], including the movement of both pedestrians and vehicles. Edges with similar
movement flows can be expected to have similar cost variables. Thus, if an edge is
covered in TC, its cost variable information can be propagated to the edges that have
similar movement flows. To this end, we study how to quantify movement flow based
similarity between edges using topological information of road networks.

4.3.2.1 Modeling Traffic Flows with PageRank

We transfer the idea of using PageRank for the modeling of web surfers to the modeling
of vehicle movement in road networks. The original PageRank employs the hyperlink
structure of the web to build a first-order Markov chain, where each web page corre-
sponds to a state [59]. The Markov chain is governed by a transition probability matrix
M. If web page i has a hyperlink pointing to web page j then M[i, j] is set to 1

outDegree(i) ;
otherwise, it is set to 0. M[i, j] indicates the probability of transition from state i to state
j. PageRank models a user browsing the web as a Markov process based on matrix M,
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and the final PageRank vector is the stationary distribution vector x of matrix M. The
PageRank of web page i, i.e., x[i], indicates the probability that the user visits page i
or, equivalently, the fraction of time the user spends on page i in the long run [59].

The modeling movements of vehicles on a road network as stochastic processes
is well studied in the transportation field [60]. In particular, the modeling of vehicle
movements as Markov processes is an easy-to-use and effective approach [58]. Thus,
we build a first-order Markov chain with a transition probability matrix derived from
both the topology of the road network and the trips that occur in the road network. A
state corresponds to an edge in the primal graph (i.e., a directed road segment), not a
vertex (i.e., a road intersection).

The PageRank value of a state indicates the probability that a vehicle travels on the
edge or, equivalently, the fraction of time a vehicle spends on the edge in the long run.
Thus, the PageRank value is expected to reflect the traffic flow on the edge. Further,
a series of topological metrics [57], including centrality-based metrics, small-world
metrics, space-syntax metrics, and PageRank metrics, have been applied to capture
human movement flows in urban environments. When using a graph representation of
an urban environment, it is found that the classical and weighted PageRank metrics are
highly correlated with human movements [57, 61]. Thus, if two edges have similar
PageRank values, the traffic flow on the two segments should be similar.

When modeling web surfers, PageRank assumes that the Markov chain is time-
homogeneous, meaning that the probability of transferring from page i to page j has the
same fixed value at all times. In other words, matrix M is static across time. In contrast,
the time-homogenous assumption does not hold for vehicles traveling in road networks.
For example, during peak hours, the transition probability from edge i to edge j may be
substantially different from the probability during off-peak hours. Thus, we maintain
a distinct transition probability matrix Mk for each traffic category tag tagk. During a
particular traffic tag, we assume the Markov chain to be time-homogeneous.

4.3.2.2 PageRank on Dual Graphs

PageRank was originally proposed to assign prestige to web pages in a web graph,
where web pages are modeled as vertices and the hyper-links between web pages are
modeled as edges. Unlike the web graph, we are not interested in the prestige of ver-
tices (i.e., road intersections) in the primal graph representation of a road network;
rather, we are interested in the prestige of edges (i.e., directed road segments).

In order to assign PageRank values to edges, the primal graph G = (V, E, L, F , H)
is transformed into a dual graph G′ = (V′, E′), where each vertex in V′ corresponds to
an edge in the primal graph, and where each edge in E′, denoted by a pair of vertices
in V′, corresponds to a vertex in the primal graph. Since functions L, F , and H are not
of interest in this section, we do not keep them in the dual graph.

To avoid ambiguity, we use the terms edge and vertex when referring to primal
graphs and use dual edge and dual vertex when referring to dual graphs. Further, we
use the term weight when referring to the weight of an edge in a primal graph, and we
use dual weight in the context of dual edges in a dual graph.

We define a mapping D2P : V′∪E′→V∪E to record the correspondence between
the elements in the dual and primal graphs. Fig. 4.5 show the dual graph that corre-
sponds to the primal graph shown in Fig. 4.3. Since the dual vertex AB corresponds to
the edge (A,B) in Fig. 4.3, D2P(AB) = (A,B). Similarly, since the dual edge (CB,BA)
corresponds to the vertex B in Fig. 4.3, D2P((CB,BA)) = B.
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Figure 4.5: Dual Graph

The dual graph is able to model an important characteristic of a road network: at a
particular intersection, the probability of which segment a vehicle follows depends on
the segment via which the vehicle entered the intersection. Considering the road net-
work shown in Fig 4.2, at intersection (i.e., vertex) B, a vehicle can proceed to follow
segments (i.e., edges) (B,A), (B,C), or (B,D). If a vehicle entered the intersection us-
ing segment (C,B), it may be unlikely that the vehicle takes a u-turn to follow segment
(B,C), while is more likely that it will use the other segments. Similar cases exist if a
vehicle arrived at the intersection using segment (A,B).

Modeling this characteristic in a primal graph is not easy. For example, we need
to maintain two sets of probabilities on edge (B,C), for the vehicles came from edge
(C,B) versus edge (A,B). In contrast, modeling this in a dual graph is straightforward,
as how a vehicle entered a particular intersection is clearly represented as a dual ver-
tex. For example, the probabilities on dual edges (CB,BC) and (AB,BC) record the
probabilities that a vehicle entered intersection B from edge (C,B) and edge (A,B),
respectively, and continues along edge (B,C).

Given the dual graph G′ = (V′, E′), original PageRank values are defined formally
as follows.

PR(v′i) =
1−d f
|V′|

+d f · ∑
v′j∈IN(v′i)

PR(v′j)

|OUT(v′j)|
, v′i ∈ V′, (4.3)

where PR(v′i) indicates the PageRank value of dual vertex v′i; IN(v′i) indicates the set
of in-link neighbors of v′i, i.e., IN(v′i) = {v′x|(v′x, v′i) ∈ E′}; and OUT(v′j) indicates the
set of out-link neighbors of v′j, i.e., OUT(v′j) = {v′x|(v′j, v′x) ∈ E′}. Further, d f ∈ [0,1]
is a damping factor, which is normally set to 0.85 for ranking a web graph.

The intuition behind Equation 4.3 is that the PageRank values are composed of
two parts: jumping to another random vertex and continuing the random walk. This
assumption works fine on the web graph, but we need to adapt this to the different
characteristics of the graph representing a road network. In a road network, it is impos-
sible for a vehicle to choose a random edge to traverse when at an intersection. Rather,
it can only choose to continue along one of the out-link (dual) edges. Based on this
observation, we set the damping factor d f to 1. Some existing empirical studies [57]
also suggest that with the damping factor set to 1, the resulting PageRank values have
the best correlation with the human movement flows.
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4.3.2.3 Weighted PageRank Computation

Definition of Dual Weights: In the original PageRank algorithm, a vertex propagates
its PageRank value evenly to all its out-link neighbors. In other words, the dual weight
for each dual edge from dual vertex v′j is set uniformly to 1

|OUT(v′j)|
. The uniform

weights on the web graph indicate that a web surfer chooses its next target web page
without any preferences to continue its random surfing. However, in a road network,
such non-preference surfing usually does not occur. For example, the next step where
a vehicle continues often depends on where the vehicle came from, as discussed in
Section 4.3.2.2. Also, if Avenue 1 and Avenue 2 are the main roads in the road network
shown in Fig. 4.2, more vehicles travel from AB to BC than from AB to BD. Further,
during different traffic category tags, the transitions between dual vertices may also be
quite different.

With the availability of very large collections of GPS data, we are able to capture the
probability that a vehicle transits from one road segment to another at an intersection
during different traffic category tags. Assume we only distinguish between peak and
off-peak hours, i.e., there are only two corresponding tags in TAGS. Suppose we obtain
the number of trips occurred on dual edges, as shown in Table 4.2.

Tags (AB,BC) (AB,BD) (AB,BA)

PEAK 30 10 0
OFFPEAK 5 5 0

Table 4.2: Numbers of Trips Occurred on Dual Edges
For example, among all the trips that occurred on dual vertex AB during the peak

hours, 30 trips proceeded to follow BC, and 10 trips followed BD; during off-peak
hours, 5 trips followed BC, and 5 trips followed BD. These observations suggest that
the dual weight on dual edge (AB, BC) should be greater than the dual weight on dual
edge (AB, BD) during peak hours; while they should be the same during off-peak hours.

As the dual graph has different dual weights for different traffic tags, we need to
maintain a dual graph for each traffic tag. Specifically, the training data set TC is
partitioned into TC1, TC2, . . ., TC|TAGS| according to the traversal times. Partition
TCk consists only of the trips that are occurred during the time period indicated by the
traffic tag tagk, i.e., G.F−1(tagk).

The dual weight of a dual edge (v′i,v
′
j) during tag tagk is related to the ratio of the

number of trips that traversed the dual vertices v′i and v′j to the number of trips that
traversed the dual vertex v′i, during tag tagk. Further, to contend with data sparsity,
Laplace smoothing is applied to smooth the dual weight values for the dual edges that
are not covered by any trip in TC. The dual weight of dual edge (v′i, v′j) for the dual
graph within tagk (denoted as G′k) is computed based on Equation 4.4.

Wk(v′i,v
′
j) =

|Tripk(v′i,v
′
j)|+1

∑v′x∈OUT(v′i)
|Tripk(v′i,v′x)|+ |OUT(v′i)|

, (4.4)

where Tripk(v′i,v
′
j) returns the set of trips in partition TCk that traversed the dual ver-

tices v′i and v′j.
Continuing the example shown in Table 4.2, although no trip goes from the dual

vertex AB directly back to BA in TC, this does not mean that such a trip will not occur
in the future. Thus, we need to give a small, non-zero value to the dual weight of dual
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edge (AB, BA). Using the dual weights provided by Equation 4.4, the dual weights of
the out-linking dual edges of dual vertex AB are: WPEAK(AB, BC) = 31

43 , WPEAK(AB,
BD) = 11

43 , and WPEAK(AB, BA) = 1
43 ; and WOFFPEAK(AB, BC) = 6

13 , WOFFPEAK(AB,
BD) = 6

13 , and WOFFPEAK(AB, BA) = 1
13 .

Note that for a given dual vertex v′i, if no trips in TC are available to assign the
dual weights during a traffic tag tagk, i.e., |Tripk(v

′
i,v
′
x)| = 0 for every v′x ∈ OUT(v′i),

Equation 4.4 assigns weights with 1
|OUT(v′i)|

to each dual edge, which is exactly what
the original PageRank algorithm does. For instance, if no trips are available for dual
vertex AB (i.e., if the numbers in Table 4.2 are all zeros), the dual weights for Wk(AB,
BC), Wk(AB, BD), and Wk(AB, BA) are all 1

3 .
Computing Weighted PageRank Values: Based on the dual weights obtained from
Equation 4.4, we construct the transition probability matrices Mk∈R|V

′|×|V′|. Specifi-
cally, the ith row and jth column element in Mk, i.e., Mk[i, j], equals Wk(v′i,v

′
j) if the

dual edge (v′i,v
′
j) exists in the dual graph; otherwise, it equals 0. Note that the sum of

all elements in a row equals 1, i.e., ∑
|V′|
j=1Mk[i, j] = 1 for every 1 6 i 6 |V′|.

Let vector vk∈R|V
′| record the PageRank values for every dual vertex in G′k. Specif-

ically, vk[i] = PRk(v′i), which is the PageRank value of v′i during traffic category tag
tagk. This way, the PageRank values can be computed iteratively as follows until con-
verged.

vk
(n+1) = Mk

T ·vk
(n),

where vk
(n) is the PageRank vector in the n-th iteration.

4.3.2.4 PageRank-Based Topological Constraint Objective Function

After obtaining the weighted PageRank values for every dual edge, the topological
similarity between two edges in the primal graph is quantified in Equation 4.5.

SPR
k (ei,e j) =

min(PRk(v′ei
),PRk(v′e j

))

max(PRk(v′ei
),PRk(v′e j

))
(4.5)

The topological similarity between edges ei and e j, denoted as SPR
k (ei,e j), is de-

fined based on the weighted PageRank values of the two dual vertices representing the
edges. To be specific, v′ei

and v′e j
indicate the corresponding dual vertices of edges ei

and e j, i.e., D2P(v′ei
) = ei and D2P(v′e j

) = e j. Note that Equation 4.5 returns a high
similarity if two edges have similar weighted PageRank scores and that it returns a low
similarity, otherwise.

Based on the topological similarity, a PageRank-based Topological Constraint (PRTC)
function is incorporated into the overall objective function. The intuition behind the
PRTC function is that for the same traffic category tag, if two edges have similar traffic
flows (as measured by Equation 4.5), their cost variables tend to be similar as well. The
PRTC function is defined in Equation 4.6.

PRTC(d) =
|TAGS|

∑
k=1

PRTC(d,k), (4.6)

where

PRTC(d,k) =
|G.E|

∑
i, j=1

SPR
k (ei,e j) · (d(ei,tagk)−d(e j ,tagk))

2.
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The value of the PRTC function over the cost vector d is the sum of PRTC(d,k)
for every 1 6 k 6 |TAGS|. The function PRTC(d,k) computes the weighted (decided
by SPR

k ) sum of the squared differences of between each pair of road segments’ cost
variables during traffic tag tagk.

The PRTC function has two important features: (i) if the PageRank values of two
edges are similar, the similarity value SPR

k is large, thus making the difference be-
tween their cost variables obvious; (ii) if two edges’ PageRank values are dissimilar,
the similarity value SPR

k with a small value smoothes down the difference between their
cost variables. This way, minimizing the PRTC function corresponds to minimizing
the overall difference between two cost variables whose corresponding road segments
have similar traffic flows.

To obtain the matrix representation of the PRTC function, we introduce a matrix
A ∈ R|d|×|d|, which is a block diagonal matrix.

A =

A1
A2

. . .
A|TAGS|

 (4.7)

where Ak ∈R|E|×|E| and Ak[i, j] = SPR
k (ei, e j), which obviously is a symmetric matrix.

Let matrix LA be the graph Laplacian induced by the similarity matrix A. Specifically,
LA[i, j] = δi, j·∑xA[i,x]−A[i, j], where δi, j returns 1 if i equals j, and 0 otherwise. The
matrix representation of PRTC function is shown in Equation 4.8.

PRTC(d) = dTLAd (4.8)

4.3.2.5 Properties of PageRank on Road Networks

Web graphs and road network graphs are quite different, rendering it of interest to study
the distributions of PageRank values on the two kinds of graphs. Fig. 4.6 shows the
normalised (to (1, 100]) PageRank values with respect to the percentage of vertices
having the PageRank values, on a graph (WEB) representing a part of the Web1 and a
dual graph (NJ) representing the road network of North Jutland, Denmark.
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Figure 4.6: PageRank on the Web and a Road Network

Fig. 4.6 suggests that PageRank values on NJ are distributed more uniformly than
for WEB. With this type of distribution, many vertices have the same or very simi-

1http://snap.stanford.edu/data/web-Google.html
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lar high PageRank values, which renders the distribution ineffective for ranking when
compared to WEB. However, the distribution is effective for our objective of identifying
road segments with similar traffic flows based on PageRank values.

4.3.3 Adjacency Constraint
The PRTC function is derived from the overall structure of the road network. In this
section, we consider a finer-grained topological aspect of the road network, namely,
directional adjacency.

An important feature of a road network is that an event at one road segment may
propagate to influence adjacent road segments. Consider a typical event in a road net-
work, e.g., traffic congestion. If congestion occurs on road segment (A,B) in Fig. 4.2,
road segment (B,C) may also experience congestion, or at least the traffic on (B,C)
is affected by the congestion that occurs on (A,B). Thus, the cost variables of two
directionally adjacent road segments should be similar.

The directional adjacency we discus here is represented clearly in the dual graph.
If and only if two dual vertices are connected by an dual edge in the dual graph, the
two corresponding road segments are directionally adjacent. For example, although
edges (B, D) and (B, C) (in Fig. 4.3) intersect, their cost variables may not necessar-
ily tend to be similar because no vehicle can travel between these two edges. Direc-
tional adjacency is distinct from the “non-directional” adjacency considered in previous
work [48].

Another point worth noting is that if two road segments represent opposite direc-
tions of the same physical road segment, they are not directionally adjacent. It is natural
that an event on a physical road only yields congestion in one direction, but not both
directions. Considering the edges (A,B) and (B,A) (in Fig. 4.3), their corresponding
vertices in the dual graph (AB and BA in Fig. 4.5) are connected by two edges, however,
their cost variables are not necessarily similar.

Directional adjacency is also temporally sensitive. For example, although edges
(A,B) and (B,C) are directionally adjacent, the general traffic situation (indicated by
the cost variable) on edge (A,B) during peak hours is not necessarily correlated with
the traffic on edge (B,C) during non-peak hours.

To incorporate directional adjacency, we incorporate a Directionally Adjacent Tem-
poral Constraint (DATC) function into the overall objective function.

DATC(d) =
k=|TAGS|

∑
k=1

DATC(d,k), (4.9)

where

DATC(d,k) =
|G.E|

∑
i, j=1

W ′k(v
′
ei
,v′e j

) · (d(ei,tagk)−d(e j ,tagk))
2,

and where v′ei
and v′e j

have the same meaning as in Equation 4.5. W ′k(v
′
ei
,v′e j

) is as
defined in Equation 4.4 if v′ei

and v′e j
do not indicate the same physical road segment;

and W ′k(v
′
ei
,v′e j

) equals 0 otherwise. For instance, although WPEAK(AB,BA) = 1
43 as

discussed in Section 4.3.2.3, W ′PEAK(AB,BA) = 0 since AB and BA indicate the same
physical road segment, Avenue 1.
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The DATC function aims to make the cost variables satisfy the following property:
given road segments ei and e j, if a many of the trips that follow ei also follow e j, as
indicated by W ′k(v

′
ei
,v′e j

), the cost variables on the two edges tend to be more correlated.
Similar to the discussion in Section 4.3.2.4, we introduce a block diagonal matrix

B ∈ R|d|×|d| with the same format as matrix A (defined in Equation 4.7). In particular,
in each block matrix, Bk[i, j] = max(W ′k(v

′
ei
,v′e j

), W ′k(v
′
ei
,v′e j

)), which guarantees that
matrix Bk, and hence matrix B, are symmetric. Note that it is not possible that both
W ′k(v

′
ei
,v′e j

) and W ′k(v
′
e j
,v′ei

) are non-zero because if edge D2P(v′ei
) is directionally ad-

jacent to edge D2P(v′e j
) then edge D2P(v′e j

) cannot be directionally adjacent to edge
D2P(v′ei

). Let LB to be the graph Laplacian derived by matrix B. The DATC function
is represented by Equation 4.10.

DATC(d) = dTLBd (4.10)

4.3.4 Solving The Problem
Combining the three individual objective functions and a classical L2 regulariser, we
obtain the overall objective function O(d):

O(d) = RSS(d)+α ·PRTC(d)+β ·DATC(d)+ γ · ||d||22,

where α , β , and γ are hyper-parameters that control the tradeoff among the losses on
RSS, PRTC, DATC, and the L2 regulariser. The matrix representation of the objective
function is shown in Equation 4.11.

O(d) = ||c−QTd||22 +α ·dTLAd+β ·dTLBd+ γ · ||d||22 (4.11)

By differentiating Equation 4.11 w.r.t. vector d and setting it to 0, we get

[QQT +α ·LA +β ·LB + γ · I]d = Qc. (4.12)

The solution to Equation 4.12 is the optimal solution to the cost vector, denoted as
d̂, that minimises the overall objective function in Equation 4.11. The linear system
in Equation 4.12 can be solved efficiently by several iterative algorithms such as the
conjugate gradient algorithm [62].

Finally, feeding the optimised cost variable vector d̂ to function G.H, the time
varying weights of the graph become available.

4.3.5 Discussion
In addition to the topology of a road network, other aspects of edges may be useful
for identifying similarities among edges, e.g., the shapes and capacities of edges and
the points of interest along edges [63]. Such information is not always available in
digital maps and can be difficult to obtain. However, it is of interest to extend the
proposed methods to take additional information, when available, into account. To
achieve general applicability of the paper’s methods, we minimise the requirements
of the input graph G′′: both PRTC and DATC rely solely on the topology of a road
network, which can be obtained easily from any digital map.

The weight annotation problem is finally handled by solving a system of linear
equations, i.e., Equation 4.12. Alternative edge similarity metrics (e.g., considering
the shapes and capacities of edges) can be easily incorporated into the linear system by
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adding new terms of the form ϕ ·LM, where ϕ is the hyper-parameter and LM is the
Laplacian matrix derived by an alternative similarity metric. An alternative similarity
metric sim should satisfy symmetry: sim(ei,e j) = sim(e j,ei). Both PRTC and DATC
satisfy symmetry.

The core operations in solving a system of linear equations using a conjugate gra-
dient algorithm are matrix multiplication and transposition. This means that existing
scalable matrix computation algorithms [64, 65] can be applied directly to make the
proposed framework scalable and applicable to large road networks.

4.4 Experimental Study
We study the effectiveness of the proposed method for weight annotation of road net-
works with both travel time (TTWA) and GHG emissions (GEWA).

4.4.1 Experimental Setup
Road Networks: We use two road networks. The SK network is from Skagen, Den-
mark and has a primal graph with 543 vertices and 1,244 edges. The NJ network
contains almost all of North Jutland, Denmark and has a primal graph with 17,956
vertices and 39,372 edges.

Trips: We use GPS observations collected from 28 vehicles in the period 2007-10-
01 to 2007-10-15. When the vehicles were moving, positions were sampled at 1 Hz.
The data is collected as part of an experiment where young drivers start out with a
substantial rebate on their car insurance and then are warned if they exceed the speed
limit and are penalised financially if they continue to speed.

We apply an existing tool for map matching GPS observations onto road segments,
thus obtaining 431 trips in the SK network and 11,516 trips in the NJ network.

For TTWA, we use the total travel time for each trip, which can be obtained directly
from the GPS observations of the trip, as the cost.

For GEWA, we use the GHG emissions of each trip as trip cost. Ideally, the exact
fuel consumption should be obtained from CAN bus sensor data. Since such data is
hard to obtain in a scalable fashion, we use instead the VT-micro model [40] that is
able to compute the GHG emissions of trips based on the instantaneous velocities and
accelerations derived from the GPS records of the trips in a robust fashion [44]. The
1 Hz GPS sampling frequency makes the VT-Micro model easy to use.

Traffic Category Tags: In transporation research, PEAK and OFFPEAK periods
are used widely to distinguish different traffic flows over the course of a day [66]. Thus,
we use PEAK and OFFPEAK as traffic category tags. Further, we distinguish between
weekdays from weekend days, as traffic differs between weekdays and weekend days.
To appropriately assign PEAK and OFFPEAK tags to the data set, we plot the num-
bers of GPS records according to their corresponding observed time at an one-hour
granularity for weekdays and weekend days, respectively. Based on the generated his-
tograms, we identify PEAK and OFFPEAK periods for weekdays. We find no clear
peak periods during weekends and thus use WEEKENDS as the single tag for week-
ends. Table 4.3 provides the mapping (i.e., the function G.F) from time periods to
tags.

T-Drive [51] is able to assign distinct and fine-grained traffic tags to individual
edges. The precondition of the method is that sufficient GPS data is associated with
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Periods Tags

Weekdays [0:00, 7:00) OFFPEAK
Weekdays [7:00, 8:00) PEAK
Weekdays [8:00, 15:00) OFFPEAK
Weekdays [15:00, 17:00) PEAK
Weekdays [17:00, 24:00) OFFPEAK
Weekends [0:00, 24:00) WEEKENDS

Table 4.3: Traffic Category Tag Function G.F

edges. However, a substantial fraction of all edges have no GPS data in our setting.
Thus, we use traffic tags at the coarse granularity shown in Table 4.3.

Implementation Details: The PageRank computation is implemented in C using
the iGraph library version 0.5.4 [67]. All remaining experiments are implemented in
Java, where the conjugate gradient algorithm for solving a linear system is implemented
using the MTJ (matrix-toolkits-java) package [68].

We use the threshold 0.95 to filter the entries in the PageRank-based similarity
matrix A (Equation 4.7): if the value of an entry in A is smaller than 0.95, the entry is
set to 0. We use the speed limits associated with roads to classify the edges into two
categories, highways (with speed limits above 90 km/h) and urban roads (with speed
limits below 90 km/h). We only apply adjacency constraint on pairs of edges in the
same category.

Due to the space limitation, the experiments only report the results using the best set
of hyper-parameters, which are is obtained by manual tuning on a separate data set us-
ing cross validation. This is a well known method [30] for choosing hyper-parameters.

4.4.2 Experimental Results
4.4.2.1 Effectiveness Measurements

To gain insight into the accuracy of the obtained trip cost based weights, we split the
set of (trip, cost) pairs into a training set TCtrain and a testing set TCtest. We use the
the training set to annotate the spatial network with weights, and we use the the testing
set to evaluate the accuracy of the weights. In the following experiments, we randomly
choose 50% of the pairs for training and the remaining 50% for testing, unless explicitly
stated otherwise.

Since no ground-truth time-dependent weights exist for the two road networks, the
accuracy of the obtained weights can only be evaluated using the trips in testing set
TCtest . If the obtained weights (using TCtrain) actually reflect the travel costs, the
difference between the actual cost and the estimated cost using the obtained weights
(i.e., by using Equation 4.1 defined in Section 4.2.2) for each trip in the testing set
TCtest should be small.

We use the sum of squared loss (SSL) value (defined in Equation 4.13) between the
actual cost c(i) and the estimated cost cost(t(i)) over every trip in the testing set TCtest
to measure the accuracy of the obtained weights.

SSL(TCtest) = ∑
(t(i),c(i))∈TCtest

(c(i)− cost(t(i)))2 (4.13)

For example, if the GHG emissions based weights really reflect the actual GHG emis-
sions, the sum of squared loss between the actual GHG emissions and the estimated
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GHG emissions over every testing trip should tend to be small. The smaller the sum of
squared loss, the more accurate the weights.

To gain insight into the effectiveness of the proposed objective functions, we com-
pare four combinations of the functions:

1. F1=RSS(d) + γ · ||d||22.

2. F2=RSS(d)+α ·PRTC(d) + γ · ||d||22.

3. F3=RSS(d)+β ·DATC(d) + γ · ||d||22.

4. F4=RSS(d)+α ·PRTC(d)+β ·DATC(d)+ γ · ||d||22.

Function F1 only considers the residual sum of squares. Functions F2 and F3 take
into account the PageRank-based topological constraint and the directional adjacency
constraint, respectively. Function F4 takes into account both constraints.

As the objective function used in trajectory regression [48] also considers adja-
cency, we can view the method using function F3 as an improved version of trajectory
regression because (i) function F3 works not only for travel times, but also other travel
costs, e.g., GHG emissions; (ii) function F3 considers the temporal variations of travel
costs, while trajectory regression does not; and (iii) function F3 considers directional
adjacency, while trajectory regression models a road network as a undirected graph and
only considers undirected adjacency.

The sum of squared loss value for using objective function Fi is denoted as SSLFi(TCtest).
In order to show the relative effectiveness of the proposed objective functions, we re-

port the ratios RatioF2=
SSLF2 (TCtest)

SSLF1 (TCtest)
, RatioF3=

SSLF3 (TCtest)

SSLF1 (TCtest)
, and RatioF4 =

SSLF4 (TCtest)

SSLF1 (TCtest)
.

Coverage, defined in Equation 4.14, is introduced as another measurement.

CoveFi(TCtrain) =
|{e|e ∈ G.E∧annotated(e)}|

|G.E|
, (4.14)

where annotated(e) holds if edge e is annotated with weights using TCtrain. Function
CoveFi indicates the ratio of the number of edges whose weights have been annotated
by using objective function Fi to the total number of edges in the road network. The
higher the coverage is, the more edges in the road network are annotated with weights,
and thus the better performance.

4.4.2.2 Travel Time Based Weight Annotation

Effectiveness of objective functions: Table 4.4 reports the results on travel time based
weight annotation. Column SSLF1 reports the absolute SSL values over all test trips
when using objective function F1 for both data sets. NJ has much larger SSL values
than SK because it has much more testing trips. For both road networks, the weights
annotated using objective function F4 have the least SSL values.

SSLF1 RatioF2 RatioF3 RatioF4

SK 88,656 99.2% 44.0% 43.8%
NJ 14,823,752 92.2% 49.2% 43.1%

Table 4.4: Effectiveness on TTWA
We also observe that the PageRank based topological constraint works more effec-

tively on NJ than on SK. The reason is that Skagen is a small town in which few road
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segments have similar topology (e.g., similar weighted PageRank values). In the NJ
network, the PageRank based topological constraint gives a better accuracy improve-
ment since more road segments have similarly weighted PageRank values.

The coverage reported in Table 4.5 also justifies the observation. When using ob-
jective function F1, only the edges in the set of training trips can be annotated, which
can be expected to be a small portion of the road network. When using objective func-

CoveF1 CoveF2 CoveF3 CoveF4

SK 22.8% 28.8% 100% 100%
NJ 34.8% 86.7% 99.6% 100%

Table 4.5: Coverage of Weight Annotation
tion F2, the coverage of the SK network increases much less than for the NJ network.
This suggests that in a large road network, the PageRank based topological constraint
substantially increases the coverage of the annotation, thus improving the overall an-
notation accuracy.

The directed adjacency topological constraint yields similar accuracy improve-
ments on both road networks, and the accuracy improvement is more substantial than
the improvement given by the PageRank based topological constraint. This is as ex-
pected because a road network is fully connected, and DATC is able to finally affect
almost every edge, which gives more information for the edges that are not traversed
by trips in the training set. This can be observed from the third column of Table 4.5.

For both road networks, PRTC and DATC together give the best accuracy, as shown
in column RatioF4 in Table 4.4. This finding offers evidence of the overall effectiveness
of the proposed objective functions.

Accuracy comparison with a baseline: The test tips contain edges that are not
covered by any training trips. Therefore, existing methods [51] that can estimate travel
time based on historical data are inapplicable as baseline.

If the speed limit of every edge in a road network is available, we can use speed
limit derived weights as a baseline for travel time based weight annotation. While it is
difficult to obtain a speed limit for every road segment in a road network, we can use
default values were values are missing. In the NJ network, 62 edges lack a speed limit
and are assigned a default value (50 km/h).

Given an edge e and its speed limit sl(e) and length G.L(e), the corresponding
travel time based weight for e is λ · G.L(e)

sl(e) if e is an urban road (where λ ≥ 1) and G.L(e)
sl(e)

if e is a highway.
The factor λ is used because vehicles tend to travel at speeds below the speed

limit on urban roads and at the speed limit on highways. Previous work [48] uses
λ = 2, meaning that vehicles normally travel at half the speed limit in urban regions.
However, we find that λ = 1 works the best for our data. The reason may be two-fold:
(i) the data we use is collected from young drivers who tend to drive more aggressively
than average drivers. (ii) the SK and NJ networks are relatively congestion-free when
compared to Kyoto, Japan, which is simulated in previous work [48].

The above allows us to treat the speed limit derived weights as a baseline method for
travel time based weight annotation. To observe the accuracy of the baseline method, its
accuracy is also evaluated using SSL over every testing trip. Specifically, the baseline
with λ = 2 is denoted as SSLBL,λ=2(TCtest), and the baseline with λ = 1 is denoted
as SSLBL,λ=1(TCtest). The two resulting baselines are compared with the proposed

method, and the results are reported in Table 4.6, where Ratioλ=2=
SSLF4 (TCtest)

SSLBL,λ=2(TCtest)
and
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Ratioλ=1=
SSLF4 (TCtest)

SSLBL,λ=1(TCtest)
. The ratios Ratioλ=1 on the two road networks show that

the weights obtained by our method are substantially better than the best cases of the
weight obtained from the speed limits.

Ratioλ=2 Ratioλ=1
SK 36.0% 78.8%
NJ 24.2% 90.8%

Table 4.6: Comparison With Baselines on TTWA

The same deviation has quite a different meaning for long versus short trips. For
example, a 50-second deviation can be considered as a very good estimation error for
a 30-minute trip, while it is a poor estimation error for a 2-minute trip. Thus, to better
understand how the overall SSL values are distributed, we plot the number of test trips
whose absolute loss ratio (ALR) values are within x percentage in Fig. 4.7. Given a
test pair (t(i), c(i)) ∈ TCtest, its ALR value equals the absolute difference between the
estimated and actual costs divided by the actual cost, as defined in Equation 4.15.

ALR((t(i),c(i))) =
absolute(cost(t(i))− c(i))

c(i)
(4.15)

Our method shows the best result as the majority of the test trips have smaller ALR
values. Assume that we consider and ALR below 30% as a good estimation. Fig. 4.7
shows that 84.3% of test trips have good estimations using the proposed method. In
contrast, only 67.4% and 22.1% of test trips have good estimations using baseline
methods with λ = 1 and λ = 2, respectively.

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60 70 80 90more

P
e

rc
e

n
ta

g
e

 o
f 

T
ri
p

s
 (

%
)

ALR is less than x%

Baseline
Objective Function F4

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60 70 80 90more

P
e

rc
e

n
ta

g
e

 o
f 

T
ri
p

s
 (

%
)

ALR is less than x%

Baseline
Objective Function F4

(a) Baseline with λ = 2 (b) Baseline with λ = 1

Figure 4.7: ALR Comparison on TTWA of NJ

We do not integrate speed limits into our method because (i) for edges without
available speed limits, the obtained weights are quite sensitive to the assigned default
speed limits: inaccurate defaults deteriorate the performance severely; and (ii) speed
limits do not give obvious benefits when annotating edges with GHG emissions based
weights, as we will see shortly in Section 4.4.2.3 (in particular, in Fig. 4.8).

4.4.2.3 GHG Emissions Based Weight Annotation

Effectiveness of objective functions: Table 4.7 reports the results on GHG emissions
based weight annotation. In general, the results are consistent with the results from
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SSLF1 RatioF2 RatioF3 RatioF4

SK 175.931 99.9% 40.3% 30.0%
NJ 87,362,465 94.5% 66.2% 44.3%

Table 4.7: Effectiveness on GEWA

the travel time based weight annotation (as shown in Table 4.4): (i) The PageRank-
based topological constraint works more effectively on the NJ network than on the
SK network; (ii) the directed adjacency constraint works more effectively than the
PageRank-based topological constraint; (iii) the weights obtained by using both PRTC
and DATC give the best accuracy. The coverage when using the different objective
functions is exactly the same as what was reported in Table 4.5.

Comparison with a baseline: As we did for travel times, we use speed limits to
devise a baseline for GHG emissions based weight annotation. Assuming a vehicle
travels on an edge at constant speed (e.g., the speed limit of the edge), we can simulate
a sequence of instantaneous velocities. For example, let an edge be 100 meters long and
the speed limit be 60 km/h. The simulated trip on the road segment is represented by a
sequence of 6 records, each with 60 km/h as the instantaneous velocity. This allows us
to apply the VT-micro model to estimate GHG emissions based edge weights. Since in
the previous set of experiments, we have already found that the speed limit (i.e., λ = 1)
is the best fit for our data we simply use the speed limit here.

We obtain Ratioλ=1 = 24.7% for SK and Ratioλ=1 = 29.8% on NJ. Fig. 4.8 shows
the percentage of test trips whose ALR values are less than x% using the baseline with
λ = 1 and the proposed method, respectively. These results clearly show the better
performance of the proposed method, as the majority of test trips have smaller ALR
values.
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Figure 4.8: ALR Comparison on GEWA of NJ

4.4.2.4 Effectiveness of the Size of Training Trips

In this section, we study the accuracy when varying the training set size. Specifically,
on the NJ network, we reserve 20% of the (trip, cost) pairs as the testing set, denoted
as TCtest, and the remaining 80% as the training set, denoted as TCtrain. In order to
observe the accuracy of weight annotation on different sizes of TCtrain, we use 100%,
80%, 60%, 40% and 20% of TCtrain to annotate the weights, respectively. The results
are shown in Fig. 4.9.

For travel time, when only 20% of TCtrain is used, the accuracy of our method is
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Figure 4.9: Results on Different Size of TCtrain

worse than the baseline method with λ = 1 because the baseline has a rough estimation
for the costs of all edges, while the 20% of TCtrain covers only 16.3% of the edges in the
road network. Although our method propagates weights to edges that are not covered
by the training trips, the accuracy suffers when the initial coverage of the training trips
is low. When 40% of TCtrain is used, the accuracy of our method is much better than
that of the baseline. In this case, the training trips cover 23.3% of all edges. As the
training set size increases, the accuracy of the travel time weights also increases. When
we use all trips in TCtrain, the accuracy of our method is almost twice that of the
baseline.

For GHG emissions, we observe a similar trend: with more training trips, the accu-
racy of the corresponding weights improves, and our method always outperforms the
baseline when annotating edges with GHG emissions based weights.

This experiment justifies that (i) our method works effectively even when the cov-
erage of the trips in the training set is low; (ii) if the coverage of the trips in the training
set increases, e.g., by providing more (trip, cost) pairs as training set, the accuracy of
the obtained weights also increases.

4.5 Conclusion and Outlook
Reduction in GHG emissions from transportation calls for effective eco-routing, and
road network graphs where all edges are annotated with accurate weights that capture
environmental costs, e.g., fuel usage or GHG emissions, are needed for eco-routing.
However, such weights are not always readily available for a road network. This paper
proposes a general framework that takes as input a collection of (trip, cost) pairs and
assigns trip cost based weights to a graph representing a road network, where trip cost
based weights may reflect GHG emissions, fuel consumption, or travel time. By using
the framework, edge weights capturing environmental impact can be computed for the
whole road network, thus enabling eco-routing. To the best of our knowledge, this
is the first work that provides a general framework for assigning trip cost based edge
weights based on a set of (trip, cost) pairs.

Two directions for future work are of particular interest. It is of interest to explore
whether accuracy improvement is possible by using distinct PEAK and OFFPEAK tags
for different road segments. Likewise, it is of interest to explore means of updating
weights in real time. A module that takes as input real time streaming data, e.g., real
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time GPS observations along with costs, can be incorporated into the framework.
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Chapter 5

Risk Assessment and
Conclusions

5.1 Risk Assessment
The main risk in the work package lies in the difficulty of obtaining real fuel con-
sumption data on the majority of road segments in Denmark, in order to evaluate the
accuracy of the proposed techniques. To compensate for this deficiency, we have ob-
tained a small amount of CANBus data to record the real fuel consumption on some
road segments. We have also conducted additional experiments to compare the fuel
consumption estimated by existing models to the fuel recorded by the small amount of
CANBus data. The conclusion is that it is possible to use GPS data on fuel estimation
models to estimate fuel consumption.

Since the proposed algorithms and methods are designed purely based on raw GPS
trajectories, they can be employed independently of CANBus data. Thus, the problem
of lacking real fuel consumption data in conducting the research is reduced to a low
level.

5.2 Conclusions
Reduction in GHG emissions from road transportation calls for effective eco-routing,
and road network graphs where all edges are annotated with accurate weights that
capture environmental costs, e.g., fuel usage or GHG emissions, are needed for eco-
routing. However, such weights are not always readily available for a road network.

This deliverable D3.4 describes advanced eco-routing techniques developed and
implemented to solve task “T3.3 Advanced Eco-Routing Methods of WP3”. In this
deliverable, we study and propose techniques to derive eco-weights for a road net-
work. With the eco-weights, existing route algorithms can be employed to compute
eco-routes for any given source-destination pairs. In particular, we study (1) how to
assign time-dependent, uncertain eco-weights to road segments that are covered by
sufficient GPS records; (2) how to update uncertain eco-weights as real-time GPS data
streams in; (3) how to assign time-dependent eco-weights to road segments that are
uncovered or insufficiently covered by GPS records.

The proposed methods are evaluated using a large GPS data set collected in Den-
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mark. The experimental results indicate that these new methods are effective, efficient,
and scalable up to country-level road networks. This suggests that the objectives of
D3.4, which includes (1) to develop efficient eco-routing algorithms, (2) to develop
scalable eco-routing algorithms, and (3) to conduct extensive experimental evaluations,
have been fully achieved. Further, the proposed methods have been partially used as
part of a prototype system1 developed by AAU and AU.

Deliverable D3.4 has significantly improved state-of-the-art approaches, and all
objectives of the deliverable were fully met.

1http://daisy.aau.dk/its
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Glossary

Term Description
GHG Green House Gas.
GPS Global Positioning System.
CANBus Detailed information about a single vehicle, e.g., actual fuel consump-

tion, engine RPM, and throttle position.
Trajectory A sequence of GPS observations.
STHMM Spatio-temporal Hidden Markov Model.
GEWA GHG emissions weight annotation.
TTWA Travel times weight annotation.
MCR Memory compression ratio.
ALR Absolute loss ratio.
TT Travel times.
GE GHG emissions.
ERN Eco Road Network.
NMI Normalised mutual information.

Table 5.1: Glossary
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