Event Detection, version 1
Deliverable D4.2.1
Version FINAL

Authors: Rodrigo Agerri¹, Itziar Aldabe¹, Zuhaitz Beloki¹, Egoitz Laparra¹, Madalen Lopez de Lacalle¹, German Rigau¹, Aitor Soroa¹, Marieke van Erp², Piek Vossen², Christian Girardi³ and Sara Tonelli³
Affiliation: (1) EHU, (2) VUA, (3) FBK

Building structured event indexes of large volumes of financial and economic data for decision making
ICT 316404
<table>
<thead>
<tr>
<th>Grant Agreement No.</th>
<th>316404</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Acronym</td>
<td>NEWSREADER</td>
</tr>
<tr>
<td>Project Full Title</td>
<td>Building structured event indexes of large volumes of financial and economic data for decision making.</td>
</tr>
<tr>
<td>Funding Scheme</td>
<td>FP7-ICT-2011-8</td>
</tr>
<tr>
<td>Project Website</td>
<td>http://www.newsreader-project.eu/</td>
</tr>
</tbody>
</table>
| **Project Coordinator** | Prof. dr. Piek T.J.M. Vossen
VU University Amsterdam
Tel. +31 (0) 20 5986466
Fax. +31 (0) 20 5986500
Email: piek.vossen@vu.nl |
| **Document Number** | Deliverable D4.2.1 |
| **Status & Version** | FINAL |
| **Contractual Date of Delivery** | September 2013 |
| **Actual Date of Delivery** | November 10, 2013 |
| **Type** | Report |
| **Security (distribution level)** | Public |
| **Number of Pages** | 77 |
| **WP Contributing to the Deliverable** | WP4 |
| **WP Responsible** | EHU |
| **EC Project Officer** | Susan Fraser |
| **Authors:** | Rodrigo Agerri¹, Itziar Aldabe¹, Zuhaitz Beloki¹, Egoitz Laparra¹, Mad-
dalen Lopez de Lacalle¹, German Rigau¹, Aitor Soroa¹, Marieke van Erp², Piek
Vossen², Christian Girardi³ and Sara Tonelli³ |
| **Keywords:** | Event detection, EN pipelines, NL pipeline, ES pipeline, IT pipeline,
Scaling of text processing |

Abstract: This deliverable describes the first prototype for event detection. It is focused on English language and it uses an open architecture. It works with generic NLP modules that perform different tasks for event detection. Each task is executed by one module, which allows custom pipelines for text processing. The design of the Dutch, Italian and Spanish pipelines are also presented. The design framework for testing the scaling capabilities of our NLP processing pipelines are also described in this document.
Table of Revisions

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description and reason</th>
<th>By</th>
<th>Affected sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>19 July 2013</td>
<td>Structure of the deliverable set</td>
<td>Rodrigo Agerri, Itziar Aldabe, Egoitz Laparra, Maddalen Lopez de Lacalle, German Rigau, Aitor Soroa</td>
<td>All</td>
</tr>
<tr>
<td>0.2</td>
<td>16 September 2013</td>
<td>Added information of introduction, event detection and English NLP processing</td>
<td>Itziar Aldabe</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>0.3</td>
<td>20 September 2013</td>
<td>Added information of event classification and Dutch pipeline. Revision of event detection</td>
<td>Piek Vossen</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>0.4</td>
<td>20 September 2013</td>
<td>Revision of introduction</td>
<td>German Rigau</td>
<td>2</td>
</tr>
<tr>
<td>0.5</td>
<td>23 September 2013</td>
<td>TextPro based pipeline added</td>
<td>Christian Girardi</td>
<td>3</td>
</tr>
<tr>
<td>0.6</td>
<td>24 September 2013</td>
<td>Added scalability issues</td>
<td>Zuhaitz Beloki, Aitor Soroa</td>
<td>7</td>
</tr>
<tr>
<td>0.7</td>
<td>24 September 2013</td>
<td>Added descriptions of factuality and discourse. Revision of NLP modules</td>
<td>Marieke van Erp</td>
<td>3</td>
</tr>
<tr>
<td>0.8</td>
<td>25 September 2013</td>
<td>Added IXA pipeline; Revision of NLP modules; Spanish pipeline added</td>
<td>Itziar Aldabe</td>
<td>3</td>
</tr>
<tr>
<td>0.9</td>
<td>30 September 2013</td>
<td>Revision of NLP modules; Italian pipeline added</td>
<td>Christian Girardi, Sara Tonelli</td>
<td>3, 5</td>
</tr>
<tr>
<td>1.0</td>
<td>30 September 2013</td>
<td>Revision of introduction, event detection and conclusions</td>
<td>German Rigau</td>
<td>1, 2, 8</td>
</tr>
<tr>
<td>1.1</td>
<td>10 November 2013</td>
<td>Full revision and update</td>
<td>Marieke van Erp, Itziar Aldabe, German Rigau</td>
<td>All</td>
</tr>
</tbody>
</table>
Executive Summary

This deliverable describes the first cycle of event detection, developed within the European FP7-ICT-316404 “Building structured event indexes of large volumes of financial and economic data for decision making (NewsReader)” project. The prototype and results presented are part of the activities performed in tasks T4.1 Language Resources and Processors, T4.2 Event Detection, T4.3 Authority and factuality computation and T4.5 Scaling of text processing of Work Package WP4 (Event Detection).

The first prototype on the event detection mainly focuses on English language. It works with generic NLP modules that perform tokenization, POS-tagging, parsing, time recognition, named entity recognition, word sense disambiguation, named entity disambiguation, coreference resolution, semantic role labeling, event classification, factuality, discourse and opinion. Each task is executed by one module, which allows to custom different pipeline topologies for text processing. The design of the Dutch, Italian and Spanish pipelines are also presented.

The design framework with the aim of analyzing the scaling capabilities of our NLP processing pipeline and the first experiments performed are also described in this document.
Contents

Table of Revisions 3

1 Introduction 11

2 Event Detection 13
 2.1 Multilingual and Interoperable Predicate Models 15
 2.1.1 Sources of Predicate Information 16
 2.1.2 Extending the Predicate Matrix 17
 2.1.3 Using WordNet to cross-check predicate information 18
 2.1.4 Towards the Predicate Matrix 19

3 English NLP Processing 20
 3.1 Tokenizer 20
 3.1.1 Ixa-pipe Tokenizer 20
 3.1.2 Stanford-based Tokenizer 22
 3.1.3 TokenPro-based Tokenizer 22
 3.2 POS-tagger 23
 3.2.1 Ixa-pipe POS tagger 23
 3.2.2 Stanford-based POS tagger 24
 3.2.3 TextPro-based POS tagger 24
 3.3 Parser 25
 3.3.1 Ixa-pipe Parser 25
 3.3.2 Mate-tools based Parser 25
 3.3.3 Stanford-based Parser 26
 3.3.4 ChunkPro-based Parser 26
 3.4 Time Expressions 27
 3.5 Named Entity Recognizer 27
 3.5.1 Ixa-pipe Named Entity Recognizer 27
 3.5.2 EntityPro-based Named Entity Recognizer 28
 3.6 Word Sense Disambiguation 28
 3.6.1 UKB based WSD 28
 3.6.2 SVM based WSD 29
 3.7 Named Entity Disambiguation 29
 3.7.1 Spotlight based NED 29
 3.8 Coreference Resolution 30
 3.8.1 Graph-based Coreference 30
 3.8.2 Toponym resolution system 31
 3.9 Semantic Role Labeling 31
 3.9.1 Mate-tools based SRL 31
 3.10 Event Classification 32
 3.11 Factuality 33

3.12 Discourse .. 33
3.13 Opinions ... 34
3.14 Pipelines for English 35
 3.14.1 IXA-pipe based Pipeline 35
 3.14.2 Stanford based Pipeline 37
 3.14.3 TextPro based Pipeline 39

4 Dutch NLP Processing .. 39

5 Italian NLP Processing 40

6 Spanish NLP Processing 41

7 Scaling of Text Processing 42
 7.1 Storm ... 42
 7.2 Experiment setting ... 43
 7.3 Results ... 44

8 Conclusions ... 45

A English pipeline - Output example 48
List of Tables

1. New WordNet senses aligned to VerbNet ... 18
2. Partial view of the current content of the Predicate Matrix 21
3. Performance of the NLP pipeline in different settings. pipeline is the basic pipeline used as baseline. Storm is the same pipeline but run as a Storm topology. Storm₃ is the Storm pipeline with 3 instances of the WSD module (Storm₄ has 4 instances and Storm₅ 5 instances, respectively). 44
1 Introduction

This deliverable describes the first version of the Event Detection framework developed in NewsReader to process large and continuous streams of English, Dutch, Spanish and Italian news articles.

The research activities conducted within the NewsReader project strongly rely on the automatic detection of events, which are considered as the core information unit underlying news and therefore any decision making process that depends on news articles. The research focuses on four challenging aspects: event detection (addressed in WP04 -Event Detection-), event processing (addressed in WP05 -Event Modelling-), storage and reasoning over events (addressed in WP06 -Knowledge Store-), and scaling to large textual streams (addressed in WP2 -System Design-). Given that one of the main project goals is the extraction of event structures from large streams of documents and their management, a thorough analysis of what is an event, how its participants are characterized and how events are related to each other is of paramount importance.

WP04 (Event Detection) addresses the development of text processing modules that detect mentions of events, participants, their roles and the time and place expressions at a document level in the four project languages. An additional objective is to classify textual information on the factuality of the events and to derive the authority and trust of the source.

NewsReader uses an open and modular architecture for Natural Language Processing (NLP) as a starting point. The system uses the NLP Annotation Framework\(^1\) (NAF) as a layered annotation format for text that can be shared across languages. NAF is an evolved version of KAF [Bosma et al., 2009]. It includes more layers to represent additional linguistic phenomena and new ways to represent that information for the semantic web. Separate modules have been developed to add new interpretation layers using the output of previous layers. We developed new modules to perform event detection and to combine separate event representations. When necessary, new modules have been developed using the gold standards and training data (developed in WP03 -Benchmarking-). Specific input and output wrappers have been also developed or adapted to work with the new formats and APIs (also defined in WP02 -System Design-). For that, NewsReader exploited a variety of knowledge-rich and machine-learning approaches. During the first cycle of the project, we centered on English to provide the most advanced linguistic processing modules. But advanced NLP modules are being developed to cover similarly the other three languages of NewsReader. We are also completing advanced linguistic modules for the Spanish, Italian and Dutch as well as alternative English pipelines in order to tests the performance of different scaling infrastructures for advanced NLP processing. Thus, NewsReader also provides an abstraction layer for large-scale distributed computations, separating the “what” from the “how” of computation and isolating NLP developers from the details of concurrent programming.

Text-processing requires basic and generic NLP steps, such as tokenization, lemma-

\(^1\)https://github.com/ixa-ehu/NAF
tization, part-of-speech tagging, parsing, word sense disambiguation, named entity and semantic role recognition for all the languages in NewsReader. Named entities are linked as much as possible to external sources such as Wikipedia and DBpedia. We use existing state-of-the-art technology and resources for this. Technology and resources have been selected for quality, efficiency, availability and extendability to other languages\(^2\). New techniques and resources are being developed for achieving interoperable semantic interpretation of English, Dutch, Spanish and Italian. Moreover, in subsequent cycles of the project, NewsReader will provide wide-coverage linguistic processors adapted to the financial domain.

The semantic interpretation of the text is directed towards the detection of event mentions and those named entities that play a role in these events, including time and location expressions. This implies covering all expressions (verbal, nominal and lexical) and meanings that can refer to events, their participating named entities, time and place expressions but also resolving any co-reference relations for these named entities and explicit (causal) relations between different event mentions. The analysis results in an augmentation of the text with semantic concepts and identifiers. This allows us to access lexical resources and ontologies that provide for each word and expression 1) the possible semantic type (e.g. to what type of event or participant it can refer), 2) the probability that it refers to that type (as scored by the word sense disambiguation and named entity recognition), 3) what types of participants are expected for each event (using background knowledge resources) and 4) what semantic roles are expected for each event (also using background knowledge resources. Such constraints are used by different rule-based, knowledge-rich and hybrid machine-learning systems to determine the actual event structures in texts.

We are also developing new classifiers that provide a factuality score which indicates the likelihood that an event took place (e.g. by exploiting textual and structural markers such as not, failed, succeeded, might, should, will, probably, etc.). Authority and trust will be derived from the metadata available on each source, the number of times the same information is expressed by different sources (combined with the type of source), but also on stylistic properties of the text (formal or informal, use of references, use of direct and indirect speech) and richness and coherence of the information that is given. For each unique event, we will also derive a trust and authority score based on the source data and a factuality score based on the textual properties. This information will be easily added to NAF in separate layers connected to each event.

The textual sources defined in WP01 (User Requirements) by the industrial partners come in various formats. In WP02 (System Design), we defined the RDF formats to represent the information of these sources. In WP04, we are processing the textual information to compatible RDF formats to make them available for subsequent NewsReader modules.

The remainder of the document consists of the following sections. Section 2 presents the event detection task designed for the first cycle of the NewsReader project. Section 3 presents the main NLP processing modules for English and the final three different

\(^2\)See NewsReader deliverable D4.1 “Resources and linguistic processors”
English pipelines; IXA-pipeline3, TextPro pipeline based on FBK TextPro4 and CoreNLP pipeline based on Stanford CoreNLP5. Sections 4, 5 and 6 describe the Dutch, Italian and Spanish processing pipelines, respectively. Section 7 describe our initial plan for testing the performance of different scaling infrastructures for advanced NLP processing. Finally, Section 8 presents the main conclusions of this deliverable.

2 Event Detection

This section introduces the main NLP tasks addressed by the NewsReader project in order to process events across documents in four different languages: English, Dutch, Spanish and Italian. NewsReader Deliverable D4.16 provides a detailed survey about the current availability of resources and tools to perform event detection for the four languages involved in the project.

Event Detection (WP04) addresses the development of text processing modules that detect mentions of events, participants, their roles and the time and place expressions. Thus, text-processing requires basic and generic NLP steps, such as tokenization, lemmatization, part-of-speech tagging, parsing, word sense disambiguation, named entity and semantic role recognition for all the languages in NewsReader. Named entities are as much as possible linked to external sources (Wikipedia, DBpedia, JRC-Names, BabelNet, Freebase, etc.) and entity identifiers. Furthermore, event detection involves the identification of event mentions, event participants, the temporal constraints and, if relevant, the location. It also implies the detection of expressions of factuality of event mentions and the authority of the source of each event mention.

Moreover, NewsReader is developing:

- new techniques for achieving interoperable Semantic Interpretation of English, Dutch, Spanish and Italian
- wide-coverage linguistic processors adapted to the financial domain
- new scaling infrastructures for advanced NLP processing of large and continuous streams of English, Dutch, Spanish and Italian news articles.

During the first cycle of the NewsReader project (Event Detection, version 1) we focused on processing general English news. We considered three different advanced English pipelines:

- IXA-pipeline
- TextPro-based pipeline

3https://github.com/ixa-ehu
4http://textpro.fbk.eu/
5http://nlp.stanford.edu/software/corenlp.shtml
6http://www.newsreader-project.eu/files/2012/12/NewsReader-316404-D4.1.pdf
• Stanford-based CoreNLP pipeline

Finally, we decided to use the IXA-pipeline as a basic system for developing the English pipeline because it offers an open source, data-centric, modular, robust and efficient set of NLP tools for Spanish and English. It can be used “as is” or exploit its modularity to pick and change different components. Given its open-source nature, it can also be modified and extended for it to work with other languages.

IXA pipeline\(^7\) provides \textit{ready to use modules} to perform efficient and accurate linguistic annotation for English and Spanish\(^8\). More specifically, the objectives of IXA pipeline is to offer basic NLP technology that is:

1. \textbf{Simple and ready to use}: Every Java module of the IXA pipeline can be up an running after two simple steps.

2. \textbf{Portable}: The Java binaries are generated with “all batteries included” which means that no Java classpath configurations or installing of any third-party dependencies is required. The modules will run on any platform as long as a JVM 1.7+ is available.

3. \textbf{Modular}: Unlike other NLP toolkits, which often are built in a monolotic architecture, IXA pipeline is built in a data centric architecture so that modules can be picked and changed (even from other NLP toolkits). The modules behave like Unix pipes, they all take standard input, do some annotation, and produce standard output which in turn is the input for the next module.

4. \textbf{Efficient}: Piping the tokenizer, POS tagger and lemmatizer all in one process annotates over 5,500 words/second. The named-entity recognition module annotates over 5K words/second. In a multi-core machine, these times are dramatically reduced due to multi-threading (even 4 times faster). Furthermore, the most memory intensive process, the parser, requires less than 1GB of RAM.

5. \textbf{Multilingual}: Currently we offer NLP annotations for both English and Spanish, but other languages are being included in the pipeline.

6. \textbf{Accurate}: Previous points do not mean that IXA pipeline does not strive to offer accurate linguistic annotators. For example, POS tagging and NERC for English and Spanish are comparable with other state-of-the-art systems, as it is the coreference resolution module for English.

7. \textbf{Apache License 2.0}: IXA Pipeline is licensed under the Apache License 2.0, an open-source license that facilitates source code use, distribution and integration, also for commercial purposes.\(^9\)

\(^7\)\url{https://github.com/ixa-ehu}

\(^8\)Modules for Italian, French, German and Dutch are also being developed as we speak.

\(^9\)\url{http://www.apache.org/licenses/LICENSE-2.0.html}
IXA pipeline currently provides the following linguistic annotations: Sentence segmentation, tokenization, Part of Speech (POS) tagging, Lemmatization, Named Entity Recognition and Classification (NER), Syntactic Parsing and Coreference Resolution. To this basic pipeline we also have added new modules for Semantic Role Labelling, Named Entity Linking, TimeML annotations, event classification, factuality, discourse and opinion mining.

We will use the other pipelines to test the performance of different infrastructures, topologies and configurations for processing large and continuous streams of English news. During the second and third cycles of the project, we plan to extend the capabilities, coverage and precision of the English pipeline as well as the rest of languages covered in the project. For instance, in the second cycle of the NewsReader project, we also plan to adapt the English linguistic processors to the financial domain. In the third cycle of the project we also plan to adapt the rest of languages to the financial domain.

Although we will use NAF to harmonize the different outcomes, we also need to establish a common semantic framework for representing the event mentions. For instance, SEMAFOR\(^{10}\) uses FrameNet [Baker et al., 1997] for semantic role labelling (SRL), while Mate-tools\(^{11}\) uses PropBank [Palmer et al., 2005] for the same task. Additionally, as a backup solution, we are also processing the text with Word Sense Disambiguation modules to match WordNet [Fellbaum, 1998] identifiers across predicate models and languages.

To allow interoperable semantic interpretation of texts in multiple languages and predicate models, we started the development of the Predicate Matrix, a new lexical resource resulting from the integration of multiple sources of predicate information including FrameNet [Baker et al., 1997], VerbNet [Kipper, 2005], PropBank [Palmer et al., 2005] and WordNet [Fellbaum, 1998]. By using the Predicate Matrix, we expect to provide a more robust interoperable lexicon by discovering and solving inherent inconsistencies among the resources. We plan to extend the coverage of current predicate resources (by including from WordNet morphologically related nominal and verbal concepts), to enrich WordNet with predicate information, and possibly to extend predicate information to languages other than English (by exploiting the local wordnets aligned to the English WordNet).

2.1 Multilingual and Interoperable Predicate Models

Predicate models such as FrameNet [Baker et al., 1997], VerbNet [Kipper, 2005] or PropBank [Palmer et al., 2005] are core resources in most advanced NLP tasks such as Question Answering, Textual Entailment or Information Extraction. Most of the systems with Natural Language Understanding capabilities require a large and precise amount of semantic knowledge at the predicate-argument level. This type of knowledge allows to identify the underlying typical participants of a particular event independently of its realization in the text. Thus, using these models, different linguistic phenomena expressing the same event, such as active/passive transformations, verb alternations, nominalizations, implicit real-

\(^{10}\)http://code.google.com/p/semafor-semantic-parser/wiki/FrameNet

\(^{11}\)http://code.google.com/p/mate-tools/
izations can be harmonized into a common semantic representation. In fact, lately, several systems have been developed for shallow semantic parsing an explicit and implicit semantic role labeling using these resources [Erk and Pado, 2004], [Shi and Mihalcea, 2005], [Giuglea and Moschitti, 2006], [Laparra and Rigau, 2013].

However, building large and rich enough predicate models for broad-coverage semantic processing takes a great deal of expensive manual effort involving large research groups during long periods of development. In fact, the coverage of currently available predicate-argument resources is still far from complete. For example, [Burchardt et al., 2005] or [Shen and Lapata, 2007] indicate the limited coverage of FrameNet as one of the main problems of this resource. In fact, FrameNet1.5 covers around 10,000 lexical-units while for instance, WordNet3.0 contains more than 150,000 words. Furthermore, the same effort should be invested for each different language [Subirats and Petruck, 2003].

Most previous research focuses on the integration of resources targeted at knowledge about nouns and named entities rather than predicate knowledge. Well known examples are YAGO [Suchanek et al., 2007], Freebase [Bollacker et al., 2008], DBPedia [Bizer et al., 2009], BabelNet [Navigli and Ponzetto, 2010] or UBY [Gurevych et al., 2012].

Following the line of previous works [Shi and Mihalcea, 2005], [Burchardt et al., 2005], [Johansson and Nugues, 2007], [Pennacchiotti et al., 2008], [Cao et al., 2008], [Tonelli and Pianta, 2009], [Laparra et al., 2010], we will also focus on the integration of predicate information. We start from the basis of SemLink [Palmer, 2009]. SemLink aimed to connect together different predicate resources such as FrameNet [Baker et al., 1997], VerbNet [Kipper, 2005], PropBank [Palmer et al., 2005] and WordNet [Fellbaum, 1998]. Although the mapping between the different sources of predicate information is far from complete, these resources can be combined in order to extend its coverage (by including from WordNet closely related nominal and verbal concepts), to discover inherent inconsistencies among the resources, to enrich WordNet with predicate information, and possibly to extend predicate information to languages other than English (by exploiting the local wordnets aligned to the English WordNet).

2.1.1 Sources of Predicate Information

Currently, we are considering the following sources of predicate information:

SemLink\(^{12}\) [Palmer, 2009] is a project whose aim is to link together different predicate resources via set of mappings. These mappings makes it possible to combine the different information provided by these different lexical resources for tasks such as inferencing, consistency checking, interoperable semantic role labelling, etc. We can also use this mappings to aid semi-automatic or fully automatic extensions of the current coverage of each of the resources, in order to increase the overall overlapping coverage. SemLink currently provides partial mappings between FrameNet [Baker et al., 1997], VerbNet [Kipper, 2005], PropBank [Palmer et al., 2005] and WordNet [Fellbaum, 1998].

\(^{12}\)urlhttp://verbs.colorado.edu/semlink/?
FrameNet\[Baker et al., 1997\] is a rich semantic resource that contains descriptions and corpus annotations of English words following the paradigm of Frame Semantics [Fillmore, 1976]. In frame semantics, a Frame corresponds to a scenario that involves the interaction of a set of typical participants, playing a particular role in the scenario. FrameNet groups words or lexical units (LUs hereinafter) into coherent semantic classes or frames, and each frame is further characterized by a list of participants or lexical elements (LEs hereinafter). Different senses for a word are represented in FrameNet by assigning different frames.

PropBank\[Palmer et al., 2005\] aims to provide a wide corpus annotated with information about semantic propositions, including relations between the predicates and their arguments. PropBank also contains a description of the frame structures, called framesets, of each sense of every verb that belong to its lexicon. Unlike other similar resources, as FrameNet, PropBank defines the arguments, or roles, of each verb individually. In consequence, it becomes a hard task obtaining a generalization of the frame structures over the verbs.

VerbNet\[Kipper, 2005\] hierarchical domain-independent broad-coverage verb lexicon for English. VerbNet is organized into verb classes extending [Levin, 1993] classes through refinement and addition of subclasses to achieve syntactic and semantic coherence among members of a class. Each verb class in VN is completely described by thematic roles, selectional restrictions on the arguments, and frames consisting of a syntactic description and semantic predicates.

WordNet\[Fellbaum, 1998\] is by far the most widely-used knowledge base. In fact, WordNet is being used world-wide for anchoring different types of semantic knowledge including wordnets for languages other than English [Gonzalez-Agirre et al., 2012a]. It contains manually coded information about English nouns, verbs, adjectives and adverbs and is organized around the notion of a synset. A synset is a set of words with the same part-of-speech that can be interchanged in a certain context. For example, \(<\text{learn}, \text{study}, \text{read}, \text{take}>\) form a synset because they can be used to refer to the same concept. A synset is often further described by a gloss, in this case: "be a student of a certain subject" and by explicit semantic relations to other synsets. Each synset represents a concept that are related with an large number of semantic relations, including hypernymy/hyponymy, meronymy/holonymy, antonymy, entailment, etc.

2.1.2 Extending the Predicate Matrix

Interestingly, the existing alignments also offer a very interesting source of information to be exploited. In fact, we are devising a number of simple automatic methods to extend SemLink by exploiting simple properties from WordNet. As a proof of concept, we present in this section two very simple approaches to extend the coverage of the mapping between

\footnotesize{\[http://framenet.icsi.berkeley.edu/\]
\[http://verbs.colorado.edu/~mpalmer/projects/ace.html\]
\[http://verbs.colorado.edu/~mpalmer/projects/verbnet.html\]
\[http://wordnet.princeton.edu/\]
VerbNet predicates and WordNet senses. Moreover, we also plan to use additional semantic resources that use WordNet as a backbone. For instance, exploiting those knowledge resources integrated into the Multilingual Central Repository\(^{17}\) (MCR) [Atserias et al., 2004; Gonzalez-Agirre et al., 2012a] to extend automatically the alignment of the different sources of predicate information (VerbNet, PropBank, FrameNet and WordNet). Following the line of previous works, in order to assign more WordNet verb senses to VerbNet predicates, we also plan to apply more sophisticated word-sense disambiguation algorithms to semantically coherent groups of predicates [Laparra et al., 2010].

VerbNet Monosemous predicates Monosemous verbs from WordNet can be directly assigned to VerbNet predicates still without a WordNet alignment. This very simple strategy solves 240 alignments. In this way, VerbNet predicates such as `divulge_v`, `exhume_v`, `mutate_v`, or `upload_v` obtain a corresponding WordNet word sense\(^{18}\). Note that only 576 lemmas from VerbNet are not aligned to WordNet.

WordNet synonyms A very straightforward method to extend the mapping between WordNet and VerbNet consists on including synonyms of already aligned WordNet senses as new members of the corresponding VerbNet class. Obviously, this method expects that WordNet synonyms share the same predicate information. For instance, the predicate `desert_v` member of the VerbNet class `leave-51.2-1` appears to be assigned to `desert%2:31:00` WordNet verbal sense. In WordNet, this word sense also has three synonyms, `abandon_v`, `forsake_v`, and `desolate_v`. Obviously, the three verbal senses can also be assigned to the same VerbNet class. This simple approach can create up to 5,075 new members of VerbNet classes (corresponding to 4,616 different senses). For instance, Table 1 presents two productive examples. Moreover, 103 VerbNet predicates without mapping to WordNet in SemLink will be aligned to its corresponding WordNet sense.

<table>
<thead>
<tr>
<th>VerbNet</th>
<th>WordNet</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>leave-51.2.1</td>
<td>desert%2:31:00</td>
<td>abandon%2:31:00:: forsake%2:31:00:: desolate%2:31:00::</td>
</tr>
<tr>
<td>remove-10.1</td>
<td>retract%2:32:00</td>
<td>abjure%2:32:00:: recant%2:32:00:: forswear%2:32:00:: resil%2:32:00::</td>
</tr>
</tbody>
</table>

Table 1: New WordNet senses aligned to VerbNet

2.1.3 Using WordNet to cross-check predicate information

As described in the previous section, it seems possible to apply simple but productive methods to extend the existing predicate alignments. In this section, we will also show as a

\(^{17}\)http://adimen.si.ehu.es/MCR

\(^{18}\)Obviously, these alignments can be considered just as suggestions to be revised later on manually.
proof-of-concept a simple way to exploit WordNet for validating the predicate information appearing in the lexicons. Again, we will apply a simple method to check the consistency of the VerbNet. Consider the following WordNet synset <understand, read, interpret, translate> with the gloss “make sense of a language” and the example sentences “She understands French; Can you read Greek?”. As synonyms, these verbs denote the same concept and are interchangeable in many contexts. In our initial versions of the Predicate Matrix read%2:31:04 appears aligned with the VerbNet class learn-14-1\footnote{http://verbs.colorado.edu/verb-index/vn/learn-14.php#learn-14-1} while one of its synonyms understand%2:31:03 appears aligned to the VerbNet class comprehend-87.2\footnote{http://verbs.colorado.edu/verb-index/vn/comprehend-87.2.php#comprehend-87.2-1}. Moreover, the thematic roles of both classes are different. Learn-14-1 has the following roles Agent [+animate], Topic and Source while comprehend-87.2 has Experiencer [+animate or +organization], Attribute and Stimulus. Are both sets of roles compatible? Complementary? Is one of them incorrect? Should we joint them? Maybe is the alignment incorrect? Is perhaps the synset definition?\footnote{https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Grasp.xml}

Following with this example, the VerbNet predicate understand\textsubscript{v} has no connection to FrameNet, but its VerbNet class comprehend-87.2-1 has some other verbal predicates aligned to FrameNet. For instance, apprehend\textsubscript{v}, comprehend\textsubscript{v}, and grasp\textsubscript{v} are linked to the Grasp frame. Among the lexical units corresponding to the Grasp frame it appears also the verbal predicate understand\textsubscript{v}. This means that possibly, this Verbal predicate should also be aligned to the FrameNet frame Grasp. The core lexical elements (roles) of this frame are Cognizer with semantic type Sentient, Faculty and Phenomenon.

We are now producing and studying the initial versions of the Predicate Matrix by exploiting SemLink and applying very simple methods to extend and validate its content. Table 2 presents a full example of the information that is currently available in the Predicate Matrix. Each row of this table represents the mapping of a role over the different resources and includes all the aligned knowledge about its corresponding verb. The table presents the cases obtained originally from SemLink, denoted as OLD, and the cases inferred following the methods explained previously, identified as NEW. The table also includes the following fields: the lemma in VerbNet, the sense of the verb in WordNet, the thematic role in VerbNet, the Frame of FrameNet, the corresponding FrameElement of FrameNet, the predicate in PropBank and its argument, the offset of the sense in WordNet and the knowledge associated with that sense in the MCR, such as its Base Concept [Izquierdo et al., 2007], new WordNet domain aligned to WordNet 3.0 [González-Agirre et al., 2012b], Adimen-SUMO [Álvez et al., 2012] and EuroWordNet Top Ontology [Álvez et al., 2008] features. Finaly, its line also includes the frequency and the number of relations of the WordNet sense.

2.1.4 Towards the Predicate Matrix

By using the Predicate Matrix, we expect to provide a more robust interoperable lexicon. We plan to discover and solve inherent inconsistencies among the integrated resources.
We plan to extend the coverage of current predicate resources (by including from WordNet morphologically related nominal and verbal concepts, by exploiting also FrameNet information, etc.), to enrich WordNet with predicate information, and possibly to extend predicate information to languages other than English (by exploiting the local wordnets aligned to the English WordNet) and predicate information from other languages. With this purpose we plan to use resources such as Ancora [Taulé et al., 2008].

3 English NLP Processing

As previously Section 1, during the first cycle of the project, we center mainly on English when implementing the linguistic processing modules. This section describes the developed text processing modules for event detection that detect mentions of events, participants, their roles and the time and place expressions in English. The modules dealing with more basic NLP steps such as tokenization, lemmatization etc. are also presented. Finally, modules to perform event detection, factuality, discourse and opinion are described.

Sections 3.1-3.13 presents the developed modules. The descriptions of the modules are provided along with some technical information: input layer(s); output layer(s); required modules; level of operation and language dependent. Section 3.14 presents a graphical representation of the various pipelines.

3.1 Tokenizer

The tokenization can be performed by means of three different modules: Ixa-pipe tokenizer, Stanford-based tokenizer and TokenPro-based tokenizer. The Ixa-pipe tokenizer is the one integrated in the prototype.

3.1.1 Ixa-pipe Tokenizer

- Module: M1.1

- Description of the module: This module provides Sentence Segmentation and Tokenization for English and Spanish via two methods: a) Rule-based approach originally inspired by the Moses22 tokenizer but with several additions and modifications. These include treatment for URLs, multi punctuation marks for start and end of sentences, and more comprehensive gazetteers of expressions that need not be tokenized or splitted. This is the default; and b) Probabilistic models trained using the Apache OpenNLP API23 based on the CoNLL 2003 and 2002 datasets. For English we also offer Penn Treebank style of tokenization [Marcus et al., 1993], which is for example useful for syntactic parsing. Similarly, the Spanish tokenizer is implemented to be compatible with the Ancora corpus [Taulé et al., 2008]. The module is part

\begin{footnote}
22\url{https://github.com/moses-smt/mosesdecoder}
23\url{http://opennlp.apache.org/}
\end{footnote}
Table 2: Partial view of the current content of the Predicate Matrix
of IXA-Pipeline ("is a pipeline"), a multilingual NLP pipeline developed by the IXA NLP Group. The module accepts raw text as standard input and outputs tokenized text in NAF format.

- Input layer(s): raw text
- Output layer(s): Tokens, sentences
- Required modules: –
- Level of operation: document level
- Language dependent: yes

3.1.2 Stanford-based Tokenizer

- Module: M1.2

- Description of the module: This module provides Sentence Segmentation and Tokenization for English as provided in the Stanford CoreNLP suite. The module performs the processes based on PTBTokenizer, a deterministic tokenizer implemented as a finite automaton. The output of the process is represented in NAF format.

- Input layer(s): raw text
- Output layer(s): Tokens, sentences
- Required modules: –
- Level of operation: document level
- Language dependent: yes

3.1.3 TokenPro-based Tokenizer

- Module: M1.3

- Description of the module: This module corresponds to TokenPro tokenizer. TokenPro is part of TextPro. TextPro is a flexible, customizable, integratable and easy-to-use NLP tool, which has a set of modules to process raw or customized text and perform NLP tasks such as: web page cleaning, tokenization, sentence detection, morphological analysis, pos-tagging, lemmatization, chunking and named-entity recognition. The current version, TextPro 2.0, supports English and Italian languages.

TokenPro is a rule-based splitter to tokenize raw text, using some predefined rules specific for each language and producing one token per line. Tokenization can be quickly customized by editing specific splitting word rules or handling UTF-8 common/uncommon symbols, such as apostrophe, quote, dash, ecc. according with their usage in the domain. TokenPro provides also: a) UTF8 normalization of the token; b) the char position of the token inside the input text; c) sentence splitting. It obtains 98% accuracy.

- Input layer(s): raw text
- Output layer(s): Tokens, normalized tokens, char position of the tokens, sentences
- Required modules: –
- Level of operation: document level
- Language dependent: yes

3.2 POS-tagger

The part of speech tagging can be performed by means of three different modules: Ixa-pipe POS tagger, Stanford-based POS tagger and TextPro-based POS tagger. The Ixa-pipe POS tagger is the integrated one in the prototype.

3.2.1 Ixa-pipe POS tagger

- Module: M2.1

 - Description of the module: This module provides POS tagging and lemmatization for English and Spanish. This module is part of IXA-Pipeline (“is a pipeline”), a multilingual NLP pipeline developed by the IXA NLP Group POS tagging models have been trained using the Apache OpenNLP API.\(^{26}\) English perceptron models have been trained and evaluated using the WSJ treebank as explained in [Toutanova et al., 2003]. Currently we obtain a performance of 96.48% vs 97.24% obtained by [Toutanova et al., 2003]. Lemmatization is dictionary based and for English WordNet-3.0 is used. It is possible to use two dictionaries: a) plain text dictionary: en-lemmas.dict is a “Word POS tag lemma” dictionary in plain text to perform lemmatization; b) Morfoligik-stemming: english.dict is the same as en-lemmas.dict but binarized as a finite state automata using the morfoligik-stemming project. This method uses 10% of RAM with respect to the plain text dictionary and works noticeably faster. By default lemmatization is performed using the Morfoligik-stemming\(^{27}\) binary dictionaries. The module accepts tokenized text in NAF format as standard input and outputs NAF.

\(^{26}\)http://opennlp.apache.org/
\(^{27}\)http://sourceforge.net/projects/morfologik/
• Input layer(s): Tokens
• Output layer(s): Lemmas, POS-tags
• Required modules: Tokenizer module
• Level of operation: Sentence level
• Language dependent: yes

3.2.2 Stanford-based POS tagger

• Module: M2.2

• Description of the module: This module is based on the java implementation of the Stanford Part-Of-Speech Tagger. It is an implementation of the log-linear POS tagger described in [Toutanova et al., 2003]. This English tagger uses the Penn Treebank tag set and it has been trained on the WSJ treebank using the left3words architecture. The input and output of the process is represented in NAF format.

• Input layer(s): Tokens
• Output layer(s): Lemmas, POS-tags
• Required modules: Tokenizer module
• Level of operation: Sentence level
• Language dependent: yes

3.2.3 TextPro-based POS tagger

• Module: M2.3

• Description of the module: This module performs three processes: morphological analysis, PoS-Tagging and lemmatization. MorphoPro, the morphological analyzer, produces all possible morphological analyses for each token. The English model is trained using the BNC tagset. TagPro processes the tokens to assign them their part of speech. Given the morphological analyses and the PoS tag, the lemmatizer (LemmaPro) selects the compatible morphological analysis and the lemma of a token. TextPro is part of TextPro.

• Input layer(s): Tokens
• Output layer(s): POS-tags, lemmas
• Required modules: Tokenizer
• Level of operation: Sentence level
• Language dependent: yes

3.3 Parser

The event classifier includes a constituency parser and a dependency parser. The constituents can be obtained by means of the Ixa-pipe parser and the ChunkPro-based parser. The integrated one in the prototype is the Ixa-pipe parser. The dependencies are provided by the Mate-tools based parser and the Stanford-based parser. The integrated one is the Mate-tools based parser.

3.3.1 Ixa-pipe Parser

• Module: M3.1

• Description of the module: This module uses Apache OpenNLP programatically to provide Constituent Parsing for English and Spanish. English models have been trained using Penn treebank. This module is part of IXA-Pipeline (“is a pipeline”), a multilingual NLP pipeline developed by the IXA NLP Group. The module accepts lemmatized and POS tagged text in NAF format as standard input and outputs NAF.

• Input layer(s): lemma, POS
• Output layer(s): constituents
• Required modules: tokenizer, POS-tagger modules
• Level of operation: Sentence level
• Language dependent: yes

3.3.2 Mate-tools based Parser

• Module: M3.2

• Description of the module: This module is based on the MATE-tools [Björkelund et al., 2010], a pipeline of linguistic processors that performs lemmatization, part-of-speech tagging, dependency parsing, and semantic role labeling of a sentence. As the input of the module is a NAF file that includes lemmatization and pos-tagging, the module only implements the dependency parser [Bohnet, 2010]. The module is ready to work with Spanish and English. For the latter one, the dependency parser had the top score in the CoNLL shared task 2009, obtaining 90.24% Labeled attachment score (LAS).
- Input layer(s): lemma, POS
- Output layer(s): dependencies
- Required modules: tokenizer, POS-tagger modules
- Level of operation: Sentence level
- Language dependent: yes

3.3.3 Stanford-based Parser

- Module: M3.3
- Description of the module: This module is based on the java implementation of the Stanford statistical parser. It is an implementation of the probabilistic lexicalized dependency parser [Klein and Manning, 2003]. The parser implements a factored product model using an A* algorithm. The input and output of the process is represented in NAF format.
- Input layer(s): lemma, POS
- Output layer(s): Stanford dependencies, phrase structure trees
- Required modules: tokenizer, POS-tagger modules
- Level of operation: Sentence level
- Language dependent: yes

3.3.4 ChunkPro-based Parser

- Module: M3.4
- Description of the module: ChunkPro is a chunker that groups words into flat constituents. This module uses a machine learning approach trained on CoNLL-2000 for English (95.28% accuracy). It uses the following chunk categories: ADJP (adjectival phrase), ADVP (adverbal phrase), CONJP (conjunction phrase), INTJ (interjection), LST (list marker, includes surrounding punctuation), NP (noun phrase), PP (prepositional phrase), PRT (particle), B-SBAR (clause introduced by a, possibly empty, subordinating conjunction), UCP (unlike coordinated phrase), VP (verb phrase). Output chunks are represented in the IOB2 format. ChunkPro is part of TextPro.
- Input layer(s): Tokens, POS-tags
- Output layer(s): Chunks
- Required modules: Tokenizer, POS-tagger
3.4 Time Expressions

- Module: M4.1
- Description of the module: temporal expressions recognizer, TimePro: it identifies the tokens corresponding to temporal expressions in English and assigns them to one of the 4 Timex classes defined in ISO-TimeML. It is based on machine learning and it is trained on TempEval3 data. The average result for English is: 83.81% precision, 75.94% recall and 79.61% F1-measure values. This module has been integrated into TextPro pipeline but it also accepts a NAF input file with tokenization, POS-tagging and chunking information and provides a NAF file as output.

- Input layer(s): Tokens, POS tags, Chunks
- Output layer(s): Timex3
- Required modules: tokenizer, POS-tagger, Chunker
- Level of operation: sentence level, document level
- Language dependent: yes

3.5 Named Entity Recognizer

The named entities are provided by two different modules: the Ixa-pipe Named Entity Recognizer and the EntityPro-based Named Entity Recognizer. The Ixa-pipe Named Entity Recognizer is the integrated one in the prototype.

3.5.1 Ixa-pipe Named Entity Recognizer

- Module: M5.1
- Description of the module: This module uses Apache OpenNLP programatically to perform Named Entity Recognition for English and Spanish. English models have been trained using CoNLL 2003 dataset (84.80 F1). For Spanish, we obtain best results training Maximum Entropy models on the CoNLL 2002 dataset (79.92 F1). This module is part of IXA-Pipeline (“is a pipeline”), a multilingual NLP pipeline developed by the IXA NLP Group. The module accepts lemmatized and POS tagged text in NAF format as standard input and outputs a modified NAF (with named entities).

- Input layer(s): lemma, POS
• Output layer(s): named entities
• Required modules: POS-tagger module
• Level of operation: sentence level
• Language dependent: yes

3.5.2 EntityPro-based Named Entity Recognizer

• Module: M5.5
• Description of the module: Named entity recognizer, EntityPro: it discovers the named entities in a text and classifies them. The available categories are person (PER), organization (ORG), geopolitical entity (GPE) and location (LOC). This module uses a machine learning approach but its output can be corrected using white/black lists. English models have been trained using CoNLL 2003 dataset (84.49 F1). Output annotation is represented in the IOB2 format. EntityPro is part of TextPro.

• Input layer(s): Tokens, POS-tags, lemma
• Output layer(s): named entities
• Required modules: Tokenizer, POS-tagger, Lemmatizer
• Level of operation: sentence level
• Language dependent: yes

3.6 Word Sense Disambiguation

The word sense disambiguation task can be performed by means of two different modules: The UKB based WSD and the SVM based WSD. The UKB based WSD is the integrated one in the prototype.

3.6.1 UKB based WSD

• Module: M6.1
• Description of the module: UKB is a collection of programs for performing graph-based Word Sense Disambiguation. UKB applies the so-called Personalized PageRank on a Lexical Knowledge Base (LKB) to rank the vertices of the LKB and thus perform disambiguation. UKB has been developed by the IXA group. The module accepts lemmatized and POS tagged text in NAF format as standard input and outputs NAF.
• Input layer(s): lemma, POS
• Output layer(s): synsets
• Required modules: POS-tagger module
• Level of operation: sentence
• Language dependent: yes

3.6.2 SVM based WSD

• Module: M6.2

• Description of the module: WSD-VUA is a machine learning system that performs Word Sense Disambiguation. It is based on a supervised machine learning approach: Support Vector Machines. The library selected for the low level machine learning engine is SVM-light\(^\text{28}\). A bag-of-words feature model is used for representing the training instances, where tokens and lemmas are considered to build the context for each target word. One classifier is build for each target lemma, following the one-vs-all approach to deal with the multilabel classification of the WSD task, as SVM is in principle a binary classifier. The relative frequency of a feature with respect to a certain classifier is considered to filter out to general features, and also for weighting each feature in the training phase.

• Input layer(s): token and term (lemmas and POS)
• Output layer(s): token and term (extended with word senses information)
• Required modules: tokenizer, pos-tagger, lemmatizar
• Level of operation: sentence and document
• Language dependent: no

3.7 Named Entity Disambiguation

3.7.1 Spotlight based NED

• Module: M7.1

• Description of the module: This module performs the Named Entity Disambiguation task based on DBpedia Spotlight. Assuming that a DBpedia Spotlight Rest server for a given language is locally running, the module will take NAF as input (containing elements) and perform Named Entity Disambiguation for your language of choice.

\(^{28}\text{http://svmlight.joachims.org/}\)
Developed by IXA NLP Group. For English the Wikipedia dump from March 7, 2012\(^\text{29}\) is used. The module accepts text with named entities in NAF format as standard input, it disambiguates them and outputs them in NAF.

- Input layer(s): named entities
- Output layer(s): disambiguated named entities
- Required modules: NERC module
- Level of operation: sentence level
- Language dependent: yes

3.8 Coreference Resolution

3.8.1 Graph-based Coreference

- Module: M8.1

- Description of the module: The CorefGraph-en module provides an implementation of the Multi-Sieve Pass system for for Coreference Resolution system originally proposed by the Stanford NLP Group [Raghunathan et al., 2010; Lee et al., 2011] and [Lee et al., 2013]. This system proposes a number of deterministic passes, ranging from high precision to higher recall, each dealing with a different manner in which coreference manifests itself in running text. The evaluation of the Multi Sieve Pass on CoNLL 2011 obtains: 50.1 (MUC), 66.5 (B\(^2\)), 50.6 (CEAF\(_m\)), 68.4 (BLANC) and 52.3 (CoNLL F1) values. The implementation is a result of a collaboration between the IXA NLP and LinguaMedia Groups.\(^\text{30}\). The module provides coreference resolution for various languages such as English and Spanish. The module accepts parsed text in NAF format as standard input and outputs the enriched text in NAF.

- Input layer(s): lemma, POS, named-entities, constituents
- Output layer(s): coreferences
- Required modules: tokenizer, POS-tagger and NERC modules
- Level of operation: document level
- Language dependent: yes

\(^{29}\)http://dumps.wikimedia.org/enwiki/20120307/

\(^{30}\)http://linguamedia.deusto.es
3.8.2 Toponym resolution system

- Module: M8.2

- Description of the module: This system implements a mapping between the geographical location identified by EntityPro and an unambiguous spatial footprint of the same place, e.g. its geographic latitude/longitude coordinates [Buscaldi and Magnini, 2010]. It uses a Word Sense Disambiguation approach based on Geonames\(^{31}\) and GoogleMaps\(^{32}\) information. The underlying algorithm is language independent. The coverage of the module on the news is 87%. The evaluation of the system accuracy gets 79.6% on 39 English Wikipedia pages (3363 toponyms).

- Input layer(s): Tokens, Named Entities
- Output layer(s): Toponym coordinates
- Required modules: Tokenizer, named entity recognizer
- Level of operation: geo-referenced locations
- Language dependent: no

3.9 Semantic Role Labeling

3.9.1 Mate-tools based SRL

- Module: M9.1

- Description of the module: This module is based on the MATE-tools [Björkelund et al., 2010], a pipeline of linguistic processors that performs lemmatization, part-of-speech tagging, dependency parsing, and semantic role labeling of a sentence. They report on the CoNLL 2009 Shared Task a labelled semantic F1 of 85.63 for English and 79.91 for Spanish. Due to the input of the module is a NAF file that includes lemmatization, pos-tagging and dependency parsing, the module only implements the semantic role labeler [Björkelund et al., 2009]. The module is ready to work with Spanish and English. The module accepts parsed text in NAF format as standard input and outputs the enriched text in NAF.

- Input layer(s): lemma, POS, dependencies
- Output layer(s): semantic roles
- Required modules: tokenizer, POS-tagger, dependency parsing modules
- Level of operation: sentence level
- Language dependent: yes

\(^{31}\)http://www.geonames.org/
\(^{32}\)https://maps.google.it/
3.10 Event Classification

- Module: M10.1

- Description of the module: This module use the OntoTagger and NAFKybot software specifically developed within the project. Both programs are re-implementations of software that was initially developed in the European KYOTO project (ICT-211423) in Java1.6, including various new features. The OntoTagger program is used to insert a semantic typing of nouns, verbs and adjectives into the NAF-term layer. The semantic classification comes from the KYOTO-DOLCE ontology and from the predicate-matrix resource. Both resources have mappings to wordnets through which the appropriate semantic classifications are assigned to synsets in the NAF term layer. The NAFKybot program is used to run patterns over the NAF structure and to extract 3 types of predicates with their roles. The predicates belong to the classes Communication, Cognition and Other. The latter class represents the domain specific actions mentioned in the documents. Predicates are selected on the basis of the semantic types from the predicate-matrix and the syntactic dependencies. The roles are based on the subject-object relations to these predicates. Time and location entities are also added as roles. The roles are labeled using PropBank labels: a1 and a2, and additional as l1 for Places, l2 for Countries and t1 for time indicators. The approach is unsupervised and requires a term layer with synsets and a dependency layer in NAF. To run the event-classification the following resources are needed:

 - Ontotag tables that match values from the predicate-matrix to synset identifiers.
 - A set of profiles that combine predicate-matrix values with syntactic dependencies for subject and object relations

These resources are available for English and can easily be derived for other languages. The software modules and the English resources are available on github:

- OntoTagger: https://github.com/cltl/OntoTagger.git
- NAFKybot: https://github.com/cltl/KafKybot.git

A VirtualMachine with the combined module is being released soon.

- Input layer(s): Terms, Dependencies, Time and Location entities
- Output layer(s): Predicates and Roles
- Required modules: Dependency parser that usually also includes the creation of a term layer, Word-sense-disambiguation on a term layer, Named-entity-recognition for Time and Locations.

http://www.kyoto-project.eu
• Level of operation: sentence level

• Language dependence: yes

3.11 Factuality

• Module: M11.1

• Description of the module: The factuality module classifies for each event whether it is factual or not. The module uses the MAchine Learning for LanguagE Toolkit Mallet [McCallum, 2002] (version 2.0.7) trained on FactBank v1.034 to determine the factuality of an event in text.

• Input layer(s): tokenized and POS-tagged text

• Output layer(s): factuality layer with token spans

• Required modules: Tokenization and POS tagging

• Level of operation: sentence level

• Language dependent: yes

3.12 Discourse

• Module: M12.1

• Description of the module: The discourse module separates text about the main issue in the news article from side issues or background information.

• Input layer(s): News Industry Text Format (NITF)35

• Output layer(s): Discourse layer with token spans

• Required modules: -

• Level of operation: document and paragraph level

• Language dependent: no

34http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2009T23

35http://www.iptc.org/site/News_Exchange_Formats/NITF/
3.13 Opinions

- Module: M13.1

- Description of the module: This module implements the Deluxe version of the opinion mining using Machine Learning and the crfsuite toolkit (http://www.chokkan.org/software/crfsuite/). The module aims to detect opinions and extract three elements for each opinion: a) Opinion expression; b) Opinion holder; c) Opinion target. This module works for English and Dutch, and it has been trained using a small corpus annotated manually by 2 annotators at the VUA. The input of this module has to be a NAF file, preferably with text, term (with pos and polarity), entity and property layers, as they will be used to extract the features for the system. In case there are some layers missing in the input NAF, the module will still work, but some features will not be available and the performance can be punished. The output is the NAF file extended with the opinion layer.

The system works in 2 different steps, it first detects the opinion entities (expression, target and holder), and then detects the relations that link these entities:

- Expression - Target: what the expression is about
- Expression - Holder: who is stating the expression

For the first task, we followed a sequence labelling task, as the three elements are made up be a span of tokens, and use Conditional Random Fields for inferring the model. At the same time we split this task into 2 different task: we first detect opinion expressions (using base features as tokens, words, part-of-speech and polarity values), and then we reuse these opinion expressions as features for extending a traditional set of features (tokens, words, entities, aspects) and train the model for detecting holders and targets. Second for the relation learning, we use Support Vector Machines for inferring binary classifiers that given an expression and a holder (or target) are able to say if there is actually a link between them or not. Once obtained the opinion entities and their relations, the opinion triples can be made up.

- Input layer(s): token, term (terms, part-of-speech, polarity information at term level, entity, constituent and dependency
- Output layer(s): opinion layer
- Required modules: tokenizer, pos-tagger, lemmatizer, polarity tagger, parser
- Level of operation: sentence and document
- Language dependent: no
3.14 Pipelines for English

This section presents various English pipelines used to test the performance of different infrastructures for text processing. Section 3.14.1 presents the main pipeline which will be used in the prototype for event detection. Sections 3.14.2 and 3.14.3 show alternative pipelines developed and tested at VUA and FBK respectively. The pipelines are described in two different ways. First, the dependencies among each task (module) are presented. Then, the order of the linguistic processors is displayed.

3.14.1 IXA-pipe based Pipeline

![Diagram of IXA-pipe based pipeline]

Figure 1: IXA-pipe based pipeline. Dependencies among modules
Figure 2: IXA-pipe based pipeline. Linguistic processors’ order
3.14.2 Stanford based Pipeline

Figure 3: Stanford-based pipeline. Dependencies among modules
Figure 4: Stanford-based pipeline. Linguistic processors’ order
3.14.3 TextPro based Pipeline

![Diagram of TextPro-based pipeline]

Figure 5: TextPro-based pipeline. Dependencies among modules

![Diagram of TextPro-based pipeline with linguistic processors’ order]

Figure 6: TextPro-based pipeline. Linguistic processors’ order

4 Dutch NLP Processing

The NLP processing for Dutch is similar to the Stanford based Pipeline for English. Instead of the Stanford parser for English, we use the Alpino parser.\(^{36}\)

\(^{36}\)http://www.let.rug.nl/vannoord/alp/Alpino/
1. Syntactic-dependency parser: UTF-8 text is processed by the Alpino-parser. The output is converted to NAF layers for tokens, terms, chunks, constituents and dependencies.

2. Word-sense-disambiguation: we use the UKB with the Dutch Wordnet to assign synsets to the term layer.

3. Time and location detection: we use the KYOTO-named-entity library to detect time and locations.

4. Event-classification: the predicate-matrix for English is converted to a predicate-matrix for Dutch using the wordnet-equivalence relations. The English profiles for the NAFKybot have been converted to profiles that use the dependency labels from the Alpino output.

5. Factuality classification: whilst the module is set up in a generic manner, training data in languages other than English is still needed. In M9-12 the NWR benchmark datasets will also be marked up with factuality information, which will be used as input for the Dutch, Spanish and Italian versions of the factuality module.

5 Italian NLP Processing

The NLP processing suite for Italian is similar to the TextPro based pipeline for English. In the following lines, we briefly describe each module of the Italian pipeline:

1. Italian TokenPro: the module provides sentence segmentation and tokenization for Italian as explained in section 3.1.3.

2. Italian MorphoPro and TagPro: the morphological analyzer and POS tagger, described in the section 3.2.3, comes with two language models, Italian and English. MorphoPro has an Italian dictionary with 1,878,285 analyses for 149,372 lemmas. The Italian PoS-Tagger model is trained on a corpus using a subset of the ELRA tagset. It was the best system at EVALITA 2007 (98.04% F1).

3. Italian ChunkPro: this module performs chunking as explained in section 3.3.4. It assigns the Italian tokens to one of these 2 categories: NP (noun phrase) or VX (verb phrase).

4. Italian Named Entity recognizer: EntityPro performs name entity recognition as described in section 3.5.2. The Italian model is trained on ICAB [Magnini et al., 2006] and it was the best performing at EVALITA 2008 (82.1% F1). The module for system training is included in the distribution, and also the customization through white/black lists is possible.
5. Italian TimePro: the Italian version of this module is under development. It will be built like the module described in section 3.4.

6. Italian SyntaxPro: this module implements an Italian Dependency Parser. It is based on Malt Parser\(^{37}\), a language-independent system for data-driven dependency parsing written in Java (open source). It was evaluated at Evalita 2011, using the Turin University Treebank for training (88.62% LAS, 92.85% UAS).

6 Spanish NLP Processing

The NLP processing for Spanish will be similar to the IXA-pipe based pipeline for English. In the following lines, we briefly describe each module of the pipeline for Spanish:

1. Ixa-pipe tokenizer: the module provides sentence segmentation and tokenization for Spanish as explained in section 3.1.1.

2. IXA-pipe POS tagger: the module provides lemmatization and POS tagging for Spanish as explained in section 3.2.1. Spanish POS tagging models are Maximum Entropy models. The models have been trained and evaluated using the Ancora corpus; it was randomly divided in 90% for training (440K words) and 10% testing (70K words), obtaining a performance of 98.88%. The Spanish dictionary options for lemmatization are: a) Plain text dictionary: es-lemmas.dict; b) Morfologik stemming: spanish.dict.

3. IXA-pipe parser: the module provides constituent parsing for Spanish as explained in section 3.3.1. Spanish models have been trained using the Ancora corpus (http://clic.ub.edu/corpus/en/ancora).

4. Mate-tools based parser: the module provides dependency parsing for Spanish as explained in section 3.3.2.

5. Ixa-pipe NERC: the module provides named entities for Spanish as explained in section 3.5.1. Spanish models have been trained using CoNLL 2002 dataset (79.92 F1).

6. UKB based WSD: the module performs word sense disambiguation as explained in section 3.6.1. For Spanish we use the Spanish WordNed to perform the disambiguation.

7. Spotlight based NED: the module performs named entity disambiguation as explained in section 3.7.1. For Spanish the latest Spanish Wikipedia dump is used.

8. Graph based Coreference: the module performs coreference resolution as explained in section 3.8.1.

\(^{37}\)http://maltparser.org/
9. TimePro based time parsing: the module presented in section 3.4 needs to be trained to obtain a Spanish time parsing module.

10. Mate-tools based SRL: the module provides semantic roles for Spanish as explained in section 3.9.1. The modules have been trained using the Ancora corpus.

11. Factuality classification: whilst the module is set up in a generic manner, training data in languages other than English is still needed. In M9-12 the NWR benchmark datasets will also be marked up with factuality information, which will be used as input for the Dutch, Spanish and Italian versions of the factuality module.

7 Scaling of Text Processing

There is a continuous increase of computational power that produces an overwhelming flow of data which calls for a paradigm shift in computing architecture and large scale data processing. Within the NewsReader project we foresee an estimating flow of 2 million News article per day, and the linguistic analysis of those documents needs to be done in a reasonable time frame (one or few hours). The project faces thus an important challenge regarding the scalability of the linguistic processing of texts.

In this section, we describe the initial experiments performed with the goal of analyzing the scaling capabilities of our NLP processing pipeline. We first describe the adoption of a framework for streaming computing, analyzing the requirements of most of our modules. We also report some initial results of the expected performance gain when running the LP processing using a stream computing framework.

7.1 Storm

Storm is a framework for streaming computing whose aim is to implement highly scalable and parallel processing of data streams. According to its homepage:\(^{38}\):

Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm is simple, can be used with any programming language, and is a lot of fun to use!

Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.

\(^{38}\)http://storm-project.net/
Storm processing is based on topologies: a graph of computation which processes messages forever (unlike Hadoop jobs, which follow a batch processing paradigm and finish when the job is done). Storm topologies are thus top level abstractions which describe the processing that each message undergoes. Topology nodes fall into two categories: the so called spout and bolt nodes. Spout nodes are the entry points of topology and the source of the initial messages to be processed. Bolt nodes are the actual processing units, which receive messages, process them, and pass the processed messages to the next stage in the topology.

The data model of Storm is the tuple, i.e., each node in the topology consumes\(^{39}\) and produces tuples. The tuple is an abstraction of the data model, and is general enough to allow any data to be passed around the topology.

In Storm, each node of the topology may reside on a different physical machine; the Storm controller (called Nimbus) is the responsible to send the tuples among the different machines, and guarantees that each message undergoes all the nodes in the topology.

It is important to note that Storm allows several instances of each topology node, thus allowing the actual parallel processing. Following the so called parallelism hint, it is possible to specify how many instances of each topology node will be actually running.

In our experiments, we use the following setting:

- The spout node is a process which reads a text document and sends it to the first bolt of the topology.

- the bolt nodes are wrapper programs which receive input tuples, call the actual NLP modules for processing, and send the output tuples to the next stage in the topology.

- The tuples in our Storm topology comprise two elements, a document identifier and the document itself, encoded as a string with the XML serialization of the NAF document.

7.2 Experiment setting

We created a small NLP pipeline comprising four modules: a tokenizer (tok, see Section 3.1.1, Ixa-pipe Tokenizer), a part of speech tagger (pos, see section 3.2.1, Ixa-pipe POS tagger), a Named Entity recognition module (ned, see Section 3.5.1, Ixa-pipe Named Entity Recognizer) and a word sense disambiguation module (wsd, see Section 3.6.1, UKB based WSD).

Initially the four modules are executed following a pipeline architecture, i.e., each module running sequentially one after the other. This setting is the baseline system and the starting point for our analysis.

On a second experiment, we implement a Storm topology following again a pipeline approach. This setting is similar to the baseline system but has a main advantage. When a module finishes the processing, it passes the annotated document to the next step, and

\(^{39}\)Unlike spout nodes, which are the initial nodes and therefore do not consume tuples.
Table 3: Performance of the NLP pipeline in different settings. pipeline is the basic pipeline used as baseline. Storm is the same pipeline but run as a Storm topology. Storm3 is the Storm pipeline with 3 instances of the WSD module (Storm4 has 4 instances and Storm5 5 instances, respectively).

<table>
<thead>
<tr>
<th></th>
<th>Total time</th>
<th>words per sec</th>
<th>sent. per sec</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pipeline</td>
<td>1m11.385s</td>
<td>94.9 w/s</td>
<td>3.8 sent/s</td>
<td>–</td>
</tr>
<tr>
<td>Storm</td>
<td>1m11.372s</td>
<td>94.9 w/s</td>
<td>3.8 sent/s</td>
<td>0.0%</td>
</tr>
<tr>
<td>Storm3</td>
<td>0m38.274s</td>
<td>177.0 w/s</td>
<td>7.1 sent/s</td>
<td>46.4%</td>
</tr>
<tr>
<td>Storm4</td>
<td>0m33.540s</td>
<td>201.9 w/s</td>
<td>8.1 sent/s</td>
<td>53.0%</td>
</tr>
<tr>
<td>Storm5</td>
<td>0m34.472s</td>
<td>196.5 w/s</td>
<td>7.9 sent/s</td>
<td>51.7%</td>
</tr>
<tr>
<td>Eight documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pipeline</td>
<td>2m8.625s</td>
<td>93.9 w/s</td>
<td>3.6 sent/s</td>
<td>–</td>
</tr>
<tr>
<td>Storm</td>
<td>1m57.277s</td>
<td>103.0 w/s</td>
<td>3.9 sent/s</td>
<td>8.8%</td>
</tr>
<tr>
<td>Storm3</td>
<td>0m58.492s</td>
<td>206.5w/s</td>
<td>7.9s/s</td>
<td>54.5%</td>
</tr>
<tr>
<td>Storm4</td>
<td>0m50.415s</td>
<td>239.6w/s</td>
<td>9.2s/s</td>
<td>60.8%</td>
</tr>
<tr>
<td>Storm5</td>
<td>0m54.544s</td>
<td>221.4w/s</td>
<td>8.5s/s</td>
<td>57.6%</td>
</tr>
</tbody>
</table>

start processing the next document. Therefore, in this setting there are as many documents processed in parallel as stages in the pipeline. Because we have a pipeline comprising 4 modules, the pipeline is able to process 4 documents at the same time. On a final setting, we experiment creating many instances of some selected bolt nodes, therefore allowing the parallel execution of them.

All the experiments were performed on a PC machine with a Intel Core i5-3570 3.4GHz processor with 4 cores and 4GB RAM, running linux.

7.3 Results

We tested the NLP pipeline with 8 documents, each one comprising about 1500 words and 60 sentences. We performed experiments for 4 documents (6,773 words and 271 sentences) and the complete set of 8 documents (12,077 words and 462 sentences).

Table 3 shows the time elapsed by processing the documents. The first five rows correspond to the processing of 4 documents and the last five rows to the processing of 8 documents.

As the Table shows, the baseline system runs at a performance of about 95 words per second. The simple Storm topology yields little gain in performance (no gain at all with 4 documents, and a modest 8.8% with 8 documents). This little gain can be explained by the following reasons:

- Storm spends a considerable amount of time loading the topology and initializing the modules. As the results show, this initial overhead is big when processing a small number of documents, but it gets proportionally smaller as the number of document increases.
• There is an unbalance regarding the time spent of each module. For the 70 seconds needed to process the documents, almost 60 seconds were spent in the WSD module, which is by far the module needing more time to complete its task. Although the Storm topology can in principle multiply the performance by a factor of four (the number of modules ran in parallel), in practice all the computing is concentrated in one single node, which severely compromises the overall performance gain.

With these points in mind, we experimented three alternatives (dubbed Storm$_3$, Storm$_4$ and Storm$_5$), with 3 instances (respectively, 4 and 5 instances) of the WSD module running in parallel. The results in Table 3 show that running multiple instances of WSD does increase the overall performance significatively. The major gain is obtained with four copies of WSD, with an increase of 60% in the overall performance. This result is expected, giving the fact that the machine where the experiments were ran has 4 CPU cores.

All in all, this initial experiments have shown that there is a big room for improvement regarding NLP processing performance when adopting parallel architectures such as Storm. With the use of large clusters with many nodes, we expect a significant boost in the performance of overall NLP processing.

In future experiments we want to try the following settings:

• Non linear topologies. The experiments described here follow the pipeline approach, but in principle we could also consider executing non linear topologies, where two modules are processing the same document at the same time. Non linear topologies require considering the following aspects:

 − We need to clearly identify the pre- and post-requisites of each module, thus deducting the indications as to which modules must precede which and which modules can be ran in parallel on the same document.

 − We need a special bolt which receives input from many NLP modules bolts (each one conveying different annotations on the same document) and merges all this information producing a single, unified document.

• Granularity. NLP modules work at different type of granularity. For instance, a POS tagger works at a sentence level, the WSD module works at paragraph level, whereas a coreference module works at a document level. We want to experiment splitting the input document into pieces of the required granularity, so that the NLP modules can quickly analyze those pieces, thus increasing the overall processing speed.

8 Conclusions

This deliverable describes the first version of the Event Detection framework developed in NewsReader to process large and continuous streams of English, Dutch, Spanish and Italian news articles.

First, we focused on our current findings to allow the interoperability of predicate models. During the first cycle of the NewsReader project (Event Detection, version 1) we
focused on processing general English news. The process of detecting events is divided into various tasks. Each task is executed by one module and various modules are available to perform each task:

- Tokenization: Ixa-pipe tokenizer, Stanford-based tokenizer, TokenPro-based tokenizer
- POS-tagging: Ixa-pipe POS tagger, Stanford-based POS tagger, TextPro-based POS tagger
- Parsing: Ixa-pipe parser, Mate-tools based parser, Stanford-based parser, ChunkPro-based parser
- Time expressions: TimePro-based module
- Named Entity Recognition: Ixa-pipe Named Entity Recognizer, EntityPro-based Named Entity Recognizer
- Word Sense Disambiguation: UKB based WSD, SVM based WSD
- Named Entity Disambiguation: Spotlight based NED
- Coreference Resolution: Graph-based Coreference, Toponym resolution system
- Semantic Role Labeling: Mate-tools based SRL
- Event classification: event classification module
- Factuality: factuality module
- Discourse: discourse module
- Opinions: opinion module

We considered three different advanced English pipelines: IXA-pipeline, TextPro pipeline based on FBK TextPro and CoreNLP pipeline based on Stanford CoreNLP.

Among the three available pipelines, we decided to start extending the IXA-pipeline for developing the English pipeline because it offers an open source, data-centric, modular, robust and efficient set of NLP tools for Spanish and English. It can be used “as is” or exploit its modularity to pick and change different components or add new ones. IXA pipeline currently provides the following linguistic annotations: Sentence segmentation, tokenization (Ixa-pipe tokenizer), Part of Speech (POS) tagging (Ixa-pipe POS tagger), Lemmatization, Named Entity Recognition and Classification (Ixa-pipe NER), Syntactic Parsing (Ixa-pipe parser) and Coreference Resolution (Graph-based coreference). To this

40https://github.com/ixa-ehu
41http://textpro.fbk.eu/
42http://nlp.stanford.edu/software/corenlp.shtml
basic pipeline we also have added new modules for Semantic Role Labelling (Mate-tools based SRL), Named Entity Disambiguation (Spotlight based NED), TimeML annotations (TimePro-based module), factuality (factuality module), event classificatio, discourse and opinion mining. This is the first prototype to process events in English. We are going to perform an exhaustive evaluation of each module in order to set the best option for English in terms of performance and accuracy. Thus, it is possible that some of the modules that includes the current pipeline will be replaced based on the evaluation results.

We also described the initial Spanish, Italian and Dutch processing pipelines.

Finally, we also presented our initial plan for testing the performance of different scaling infrastructures for advanced NLP processing. We already integrated the whole English pipeline into a KVM virtual machine in order to facilitate its deployment in clusters or the cloud. Given its open-source nature, it can also be modified and extended for it to work with other languages.
A English pipeline - Output example

Given the input text:

Autos sales within the eurozone have, on average, declined by 1.2% within the same period, according to the Warsaw Business Journal – demonstrating weaknesses in the export model followed by Poland in times when their customer base is suffering serious economic decline and uncertainty.

The pipelines for English produce various layers in which different linguistic information is represented in NAF format. Following, the output of the IXA-pipe based pipeline (section 3.14.1) is presented.

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<NAF xml:lang="en" version="v1.opener">
  <nafHeader>
    <linguisticProcessors layer="text">
      <lp name="ixa-pipe-tok-en" timestamp="2013-10-28 16:38:06" version="1.0"/>
    </linguisticProcessors>
    <linguisticProcessors layer="terms">
      <lp name="ixa-pipe-pos-en" timestamp="2013-10-28 16:38:21" version="1.0"/>
    </linguisticProcessors>
    <linguisticProcessors layer="terms">
      <lp name="ukb" version="2.0.22.g0edc5ba" timestamp="2013-10-28 T16:43:35Z"/>
    </linguisticProcessors>
    <linguisticProcessors layer="entities">
      <lp name="ixa-pipe-nerc-en" timestamp="2013-10-28 16:42:45" version="1.0"/>
    </linguisticProcessors>
    <linguisticProcessors layer="constituency">
      <lp name="ixa-pipe-parse-en" timestamp="2013-10-28 16:40:00" version="1.0"/>
    </linguisticProcessors>
    <linguisticProcessors layer="deps">
      <lp name="ixa-pipe-srl-en" timestamp="2013-10-28 16:49:51" version="1.0"/>
    </linguisticProcessors>
    <linguisticProcessors layer="sr1">
      <lp name="ixa-pipe-srl-en" timestamp="2013-10-28 16:49:51" version="1.0"/>
    </linguisticProcessors>
    <linguisticProcessors layer="ned">
      <lp name="ixa-pipe-spotlight" timestamp="2013-10-28 16:42:57" version="1.0"/>
    </linguisticProcessors>
    <linguisticProcessors layer="timex3">
      <lp name="TimePro" timestamp="2013-10-28 16:44:25.97" version="2.0"/>
    </linguisticProcessors>
  </nafHeader>
  <text>
    <wf id="w1" sent="1" offset="0" length="5">Autos</wf>
    <wf id="w2" sent="1" offset="6" length="5">sales</wf>
    <wf id="w3" sent="1" offset="12" length="6">within</wf>
    <wf id="w4" sent="1" offset="18" length="3">the</wf>
    <wf id="w5" sent="1" offset="23" length="8">eurozone</wf>
    <wf id="w6" sent="1" offset="32" length="4">have</wf>
    <wf id="w7" sent="1" offset="36" length="1"></wf>
    <wf id="w8" sent="1" offset="38" length="2">on</wf>
    <wf id="w9" sent="1" offset="41" length="7">average</wf>
    <wf id="w10" sent="1" offset="48" length="1"></wf>
    <wf id="w11" sent="1" offset="50" length="8">declined</wf>
    <wf id="w12" sent="1" offset="59" length="2">by</wf>
    <wf id="w13" sent="1" offset="62" length="3">1.2</wf>
  </text>
</NAF>
```

NewsReader: ICT-316404

November 10, 2013
<term id="t3" type="close" lemma="within" pos="P" morphofeat="IN">

 <target id="w3" />

</term>

<term id="t4" type="close" lemma="the" pos="DT" morphofeat="DT">

 <target id="w4" />

</term>

<term id="t5" lemma="eurozone" pos="NN" morphofeat="NN">

 <target id="w5" />

</term>

<term id="t6" lemma="have" pos="V" morphofeat="VBP">

 <target id="w6" />

</term>

<externalReferences>
 <externalRef resource="wn30g.bin64" reference="eng-v30-00056930-v" confidence="0.105518" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02203362-v" confidence="0.0907798" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02204692-v" confidence="0.0816509" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00770437-v" confidence="0.0778677" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02236124-v" confidence="0.0665086" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-01733477-v" confidence="0.0626347" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02630189-v" confidence="0.0614596" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-01156834-v" confidence="0.0592568" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00065639-v" confidence="0.0499097" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02355596-v" confidence="0.0482167" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02210119-v" confidence="0.0472105" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02108026-v" confidence="0.0439075" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00121046-v" confidence="0.0378816" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02378453-v" confidence="0.0358956" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00065370-v" confidence="0.0291182" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-02205098-v" confidence="0.0280949" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.02740745" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00065370-v" confidence="0.02378453" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00065370-v" confidence="0.02108026" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00121046-v" confidence="0.0202205098" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00065370-v" confidence="0.01918082" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.018274307" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.01733477" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.01630189" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.015358956" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.01439075" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.013452167" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.012472105" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.01156834" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.010614596" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.009665086" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.00877816" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.0078816" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.00699097" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.00614596" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.0052568" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.00439075" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.00358956" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.00280949" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.00202205098" />
 <externalRef resource="wn30g.bin64" reference="eng-v30-00120796-v" confidence="0.00120796" />
</externalReferences>
<target id="w7"/>
</term>

</term>
<!−on−>
<term id="t8" type="close" lemma="on" pos="P" morphofeat="IN">

</term>
<!−average−>
<term id="t9" type="open" lemma="average" pos="N" morphofeat="NN">
<target id="w9"/>

</term>
<!−−,−−decided−−>
<term id="t11" type="close" lemma=".", pos="O" morphofeat=".”>

</term>
<!−−1.2−−%−−>
<term id="t13" type="close" lemma="1.2" pos="O" morphofeat="CD">

</term>
<!−−%−−>
<term id="t14" type="open" lemma="%" pos="N" morphofeat="NN">

to the Warsaw Business Journal—demonstrating weaknesses
Event Detection, version 1

\(<\text{term}\>)

\(<\text{term id="t29" type="close" lemma="in" pos="P" morphofeat="IN"}>\)<\text{target id="w29"}>

\(<\text{term id="t30" type="close" lemma="the" pos="D" morphofeat="DT"}>\)<\text{target id="w30"}>

\(<\text{term id="t31" type="open" lemma="export" pos="N" morphofeat="NN"}>\)<\text{target id="w31"}>

\(<\text{term id="t32" type="open" lemma="model" pos="N" morphofeat="NN"}>\)<\text{target id="w32"}>

\(<\text{term id="t33" type="open" lemma="follow" pos="V" morphofeat="VBN"}>\)<\text{target id="w33"}>

\(<\text{externalReferences}>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-03306207-n" confidence="1"}/>\)

\(<\text{externalReferences}>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-05925366-n" confidence="0.131938"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-03777283-n" confidence="0.128121"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-10324851-n" confidence="0.124701"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-05937112-n" confidence="0.116263"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-10324560-n" confidence="0.11153"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-05890249-n" confidence="0.109472"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-10291240-n" confidence="0.100462"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-00898804-n" confidence="0.0932642"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-05845652-n" confidence="0.0842488"}/>\)

\(<\text{externalReferences}>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-02445925-v" confidence="0.0659959"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-02455407-v" confidence="0.0654141"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-02544280-v" confidence="0.0608754"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-02000868-v" confidence="0.0581441"}/>\)

\(<\text{externalRef resource="wn30g.bin64" reference="eng-v30-02720354-v" confidence="0.0553292"}/>\)
<externalReferences>
</externalReferences>

<!— serious —>
<term id="t44" type="open" lemma="serious" pos="G" morphofeat="JJ">

 <target id="w44" />

</term>

<!— economic —>
<term id="t45" type="open" lemma="economic" pos="G" morphofeat="JJ">

 <target id="w45" />

</term>

<!— decline —>
<term id="t46" type="open" lemma="decline" pos="N" morphofeat="NN"/>

 <target id="w46"/>

<externalReferences>
 <externalRef resource="wn30g.bin64" reference="eng-v30-14422488-n" confidence="0.277992"/>
 <externalRef resource="wn30g.bin64" reference="eng-v30-13457378-n" confidence="0.270528"/>
 <externalRef resource="wn30g.bin64" reference="eng-v30-09265620-n" confidence="0.242071"/>
 <externalRef resource="wn30g.bin64" reference="eng-v30-13456567-n" confidence="0.20941"/>
</externalReferences>

<term id="t47" type="close" lemma="and" pos="C" morphofeat="CC">

 <target id="w47"/>

</term>

<term id="t48" type="open" lemma="uncertainty" pos="N" morphofeat="NN">

 <target id="w48"/>

</term>

<externalReferences>
 <externalRef resource="wn30g.bin64" reference="eng-v30-05698247-n" confidence="0.547585"/>
 <externalRef resource="wn30g.bin64" reference="eng-v30-04756887-n" confidence="0.452415"/>
</externalReferences>

<term id="t49" type="close" lemma="." pos="O" morphofeat=".">

 <target id="w49"/>

</term>

<entities>
 <entity id="e1" type="organization">
 <references>
 <!--Warsaw Business Journal-->

 <target id="t23"/>
 <target id="t24"/>
 <target id="t25"/>

 </references>
 </entity>
 <entity id="e2" type="location">
 <references>
 <!--Poland-->

 <target id="t35"/>

 </references>
 </entity>
</entities>
Terminals — Autos — sales — within the eurozone have,

Terminals — Autos — sales — within the eurozone have,
<t id="ter18">

 !— period —>

</t>

<t id="ter19">

 !— according —>

</t>

<t id="ter20">

 !— to —>

</t>

<t id="ter21">

 !— the —>

</t>

<t id="ter22">

 !— Warsaw —>

</t>

<t id="ter23">

 !— Business —>

</t>

<t id="ter24">

 !— Journal —>

</t>

<t id="ter25">

 ! — — — —>

</t>

<t id="ter26">

 !— demonstrating —>

</t>

<t id="ter27">

 !— weaknesses —>

</t>
Event Detection, version 1

<!——in——>
<t id="ter29">
 <target id="t29" />

</t>
<!——the——>
<t id="ter30">
 <target id="t30" />

</t>
<!——export——>
<t id="ter31">
 <target id="t31" />

</t>
<!——model——>
<t id="ter32">
 <target id="t32" />

</t>
<!——followed——>
<t id="ter33">
 <target id="t33" />

</t>
<!——by——>
<t id="ter34">
 <target id="t34" />

</t>
<!——Poland——>
<t id="ter35">
 <target id="t35" />

</t>
<!——in——>
<t id="ter36">
 <target id="t36" />

</t>
<!——times——>
<t id="ter37">
 <target id="t37" />

</t>
<!——when——>
<t id="ter38">
 <target id="t38" />

</t>
<!——their——>
<t id="ter39">
 <target id="t39" />

</t>

</t>
<!—customer—>
<t id="ter40">

</t>
<!—base—>
<t id="ter41">

</t>
<!—is—>
<t id="ter42">

</t>
<!—suffering—>
<t id="ter43">

</t>
<!—serious—>
<t id="ter44">

</t>
<!—economic—>
<t id="ter45">

</t>
<!—decline—>
<t id="ter46">

</t>
<!—and—>
<t id="ter47">

</t>
<!—uncertainty—>
<t id="ter48">

</t>
<!——
<!—Tree edges—>
<edge from="nter2" to="nter1" />
<edge from="nter3" to="nter2" />
<edge from="ter48" to="nter86" />
<edge from="nter87" to="nter2" />
<edge from="ter49" to="nter87" />
</tree>
</constituency>
<sr>
<!—t2 sales : A1[t1 Autos] AM-LOC[t3 within]—>
<predicate id="pr1">
<!—sales—>

<target id="t2" />

</predicate>
<externalReferences>
<externalRef resource="NomBank" reference="sale.01" />
</externalReferences>
</sr>
<!—t9 average : A1[t1 Autos] A2[t9 average]—>
<predicate id="pr2">
<!—average—>

<target id="t9" />

</predicate>
<externalReferences>
<externalRef resource="NomBank" reference="average.01" />
</externalReferences>
</sr>
<predicate id="pr3">
<!—declined—>

<target id="t11" />

</predicate>
<externalReferences>

NewsReader: ICT-316404
November 10, 2013
Autos sales within the eurozone have on average by 1.2% within the same period according to the Warsaw Business Journal -- demonstrating weaknesses in the export model followed by Poland in times when their customer base is suffering serious economic decline and uncertainty--
<target id="t43" /> <target id="t44" /> <target id="t45" /> <target id="t46" /> <target id="t47" /> <target id="t48" />

</role>
</predicate>
<predicate id="pr4">
<!— weaknesses —>

<target id="t28" />

<externalReferences>
<externalReference resource="NomBank" reference="weakness.01" />
</externalReferences>
<role id="pr4r1" semRole="A1">
<!— the Warsaw Business Journal —>

<target id="t22" />

</role>
<role id="pr4r2" semRole="A2">
<!— demonstrating —>

<target id="t27" head="yes" />

</role>
</predicate>
<predicate id="pr4r3" semRole="A2">
<!— the Warsaw Business Journal — demonstrating weaknesses in the export model followed by Poland in times when their customer base is suffering serious economic decline and uncertainty —>

<target id="t22" />

<target id="t23" />
<target id="t24" />
<target id="t25" />
<target id="t26" />
<target id="t27" />
<target id="t28" head="yes" />
<target id="t29" />
<target id="t30" />
<target id="t31" />
<target id="t32" />
<target id="t33" />
<target id="t34" />
<target id="t35" />
<target id="t36" />
<target id="t37" />
<target id="t38" />
<target id="t39" />
<target id="t40" />
<target id="t41" />
<target id="t42" />
<target id="t43" />
<target id="t44" />
<target id="t45" />
<target id="t46" />
<target id="t47" />
<target id="t48" />

</role>
in the export model followed by Poland in times when their customer base is suffering serious economic decline and uncertainty.
<target id="t37" />
<target id="t38" />
<target id="t39" />
<target id="t40" />
<target id="t41" />
<target id="t42" />
<target id="t43" />
<target id="t44" />
<target id="t45" />
<target id="t46" />
<target id="t47" />
<target id="t48" />

</role>
<role id="pr6r2" semRole="A0">

 <target id="t34" head="yes" />
 <target id="t35" />

</role>
<role id="pr6r3" semRole="AM-TMP">

 !— in times when their customer base is suffering serious economic decline and uncertainty—>
 <target id="t36" head="yes" />
 <target id="t37" />
 <target id="t38" />
 <target id="t39" />
 <target id="t40" />
 <target id="t41" />
 <target id="t42" />
 <target id="t43" />
 <target id="t44" />
 <target id="t45" />
 <target id="t46" />
 <target id="t47" />
 <target id="t48" />

</role>
</predicate>
<!— t41 base : A1[t39 their] A0[t40 customer]—>
<predicate id="pr7">

 !— base—>
 <target id="t41" />

 <externalReferences>
 <externalRef resource="NomBank" reference="base.06" />
 </externalReferences>
</predicate>
<!— pr7r1 semRole="A1”—>
<predicate id="pr7r1">

 !— their—>
 <target id="t39" head="yes" />

</predicate>
<!— pr7r2 semRole="A0”—>
<predicate id="pr7r2">

 !— customer—>
 <target id="t40" head="yes" />

</predicate>
<!—— suffering ——>

<!—— their customer base ——>

<!—— serious economic decline and uncertainty ——>

<!—— decline ——>

<!—— serious ——>

<!—— economic ——>

</timeExpressions>
</NAF>
References

