

Page 1 of 28

Collaborative project-

Project acronym: SNM

Project full title: "Single Nanometer Manufacturing for beyond CMOS devices"

Grant agreement no: 318804

Deliverable: D4.3 ("Prototype beam splitting optics/blanker plate chip stack in SEM.")

List of participants:						
Participant		Part. short	Activity Type	Country		
no.	Participant organisation name	name				
1 (Co)	Technische Universität Ilmenau	TUIL	HER	Germany		
2	EV Group E. Thallner GmbH	EVG	IND; End-user	Austria		
3	IMEC	IMEC	RES	Belgium		
4	Mikrosistemi Ltd	μS	SME; End-User	Bulgaria		
5	Universität Bayreuth	UBT	HER	Germany		
6	Technische Universiteit Delft	TUD	HER	Netherlands		
7	Spanish National Research Council	CSIC	RES	Spain		
8	IBM Research GmbH	IBM	IND; End-user	Switzerland		
9	École polytechnique fédérale de Lausanne	EPFL	HER	Switzerland		
10	SwissLitho AG	SL	SME; End-User	Switzerland		
11	Oxford Instruments Nanotechnology Tools Ltd	OINT	IND; End-user	UK		
12	Imperial College London	IMPERIAL	HER	UK		
13	The Open University	OU	HER	UK		
14	Oxford Scientific Consultants Ltd	OSC	SME	UK		
15	VSL Dutch Metrology Institute	VSL	IND	Netherlands		
16	University of Liverpool	ULIV	HER	UK		

Name of the coordinating person: Prof. Dr. Ivo W. Rangelow, Email: ivo.rangelow@tu-ilmenau.de

SNM Work Package 4													
Deliverable: D4.3 ("Prototype beam splitting optics/blanker plate chip stack in													
Lead	6	Natur	e		SEM	<u>.")</u> P		Diss	eminatio	on		PU	
beneficiary number			_					leve	I			-	
Estimated Person- months	32				1			1					
Person- months by	TUD												
partner for the	32												
Deliverable													
Estimated Delivery Date	31/12/20	16		Deliv	ery Da	ate			10/02,	/2017			
Author	M. Scotuzzi and C.W. Hagen												
Reviewed by:	by: • WP4 Leader: C.W. Hagen												
	WPG1 Leader: A. Knoll												
	Coordinator: Ivo W. Rangelow												
Criteria and	Criter	ia					A	chieve	d result				
Results	Have a Pro	ototype l inker plat	beam s te chin	plittir stack	ng (mou	nted	A prototype beam splitting optics chip stack						
in the SEM.		(mou		has been mounted in the SEM, and it has									
						fabricated, and is about to be stacked to the				the			
							beam splitting optics. Tests are planned for						
							the coming 4 weeks. (See also executive						
							summ	nary at	the end c	of the i	repo	rt.)	

* * * * * * *	Funded by	Page 3 of 28
* * *		r age 5 01 20
Description	Executive summary	
of the	We developed a multi beam unit (MBU) as an add-on for an SEM th	at splits the single
Deliverable	electron beam into a square array of 25 beams. Additional micro-fa	bricated optical
	components were added to focus these beams in a deflector array	plane, such that each
	beam can be blanked individually. A special support assembly was o	designed and built to
	allow for stable insertion of the MBU into the SEM and to allow for	mechanical alignment to
	the optical axis of the SEM. The assembly contains electrical feedth	roughs for all electrode
	voltages. The beam splitting optics and the focusing optics was test	ed successfully, making
	use of optical imaging of the array of beams failing on a fluorescend	e screen. The blanker
	be done shortly, and if successful, the results will be added as an ac	Idendum to this report.
	Introduction	
	la Dalftuur have developed a Multi Deem Coopeiga Electron Misson	
	figure 1, that can enhance the imaging throughput by a factor of 19	COPE (IVIB SEIVI), SNOWN IN
	into 196 beams in the source module and further accelerated into 1	the Coulomb Tube. In this
	design, the original source module is replaced with a homemade so	ource module, which
	consists of a filament, an extractor, a suppressor, a set of three-ele	ctrodes, a multi beam
	aperture array and an accelerator lens. In this multi beam source m	odule, individual beam
	blanking is not implemented. Though attempts were made in the p	ast to introduce a
	deflector array in the source module, the difficult boundary conditi	ons of ultra-high vacuum,
	high tension and the large number of feedthroughs (196 driving sig	nals plus the common
	ground), made it a really challenging task. After careful consideration	ons, we decided to design

a new concept of a multi beam SEM.

Page 4 of 28

Fig. 1 The Multi Beam Scanning Electron Microscope (MBSEM) with 196 beams.

Figure 2 shows the schematics of the optics of a scanning electron microscope in single beam mode. The beam is generated in the source module and the source is imaged by a set of lenses on the sample surface. Roughly in the middle of the optics, a variable aperture is positioned, to limit the current of the beam. In such configuration, an easier way to split the beam would be to place a multi beam unit (MBU) in the variable aperture position. The multi beam unit can be easily inserted in the variable aperture port of a scanning electron microscope, providing *flexibility* and *versatility*, namely the changes to be made to a standard microscope do not have to be permanent and will fit easily in a variety of SEM's. The beam splitting optics consists of a combination of a deceleration lens, a macro lens and a micro-lens aperture array. To enable individual blanking of each beam for e-beam lithography or Electron Beam Induced Deposition, a deflector array is also installed, below the beam splitting optics. The schematics in Figure 3 show the optical design of an SEM with a multi beam unit (MBU). In this system, the source is imaged by the C1 and C2 lenses in a plane above the Multi Beam Unit, which is represented by the red dashed line. The primary beam is split into beamlets by means of the Micro Lens Array (MLA) and focused in the blanker plane (or deflector array plane). All beamlets have a common crossover in the comafree plane of the objective lens (UHR) and are focused in the sample plane.

Page 6 of 28

Diameter of MLA aperture	5 μm	
Distance between MLA and blanker plate	4 mm	
Working distance (distance between the objective lens and the sample)	3 mm	
Acceleration voltage	5 kV	

Table 1 Optimal parameters of the Multi Beam Blanker Unit geometry.

Figure 4 shows a cross-section of the Multi Beam Blanker Unit. Three macro electrodes (D, E1 and E2) are positioned above the beam splitting plate. D decelerates the beam to an energy of 3.5 kV, E1 forms a zero strength lens which can correct for the field curvature and E2 provides the electric field on the MLA, to form the lens effect on the apertures. The MLA is positioned below E2 and 4 mm above the blanker plate. Insulating spacers will be positioned in between electrodes, while a rigid support holds the blanker plate and the stack of electrodes consisting of D, E1, E2 and the MLA.

Funded by the European Union Page 7 of 28 1. Source image $d_{geo} = d_{source} \cdot M$, where d_{source} is the virtual source size, and M the magnification 2. Diffraction $d_{diff} = 0.54 \cdot \frac{\lambda}{\alpha} = 0.54 \cdot \frac{1.266 \cdot 10^{-9}}{\sqrt{V} \cdot \alpha}$ [m], Where λ is the wavelength, V is the acceleration voltage (in V) and α the half opening angle 3. Spherical aberration $d_{\rm sph} = 0.18 \cdot C_{\rm s} \cdot \alpha^3$, where C_s (the spherical aberration coefficient) is calculated according to the type of lens: • Magnetic Lens: $C_s = \frac{0.24 \cdot f^3}{S^2 + 0.45 \cdot d^2}$ • Electrostatic Lens: $C_s = \frac{f^3}{d^2}$ • Single electrode lens: $C_s = \frac{f^2}{d}$ where f is the focal distance, d the lens diameter and S the lens gap. 4. Chromatic aberration $d_{ch} = 0.6 \cdot C_c \cdot \frac{\delta U}{V} \cdot \alpha$ where C_c (the chromatic aberration coefficient) is taken equal to f and δU is the energy spread in the beam. The final probe size is calculated according to the following equation: $d_{\text{probe}} = \left(\left(\left(d_{\text{geo}}^{1.3} + \left(\left(d_{\text{diff}}^4 + d_{\text{sph}}^4 \right)^{\frac{1}{4}} \right)^{1.3} \right)^{\frac{1}{1.3}} \right)^2 + d_{\text{ch}}^2 \right)^{\frac{1}{2}}$ Figure 5 shows the variation of the total probe size and the on-axis contributions at the sample as a function of the half opening angle of the beam at the sample. The smallest

axis, the off-axis contribution of these lenses can be neglected.

Funded by the European Union

Page 9 of 28

Also Coulomb Interactions are evaluated, for trajectory displacement and energy spread. The system is split into segments and for each of these segments the Coulomb interactions are calculated, as shown in figure 9. Segments S1, S2 and S3 can be calculated using the usual rules of thumb ([4], see also MS7 report). However, this is not the case for segments S4 and S5 because the beam is split into beamlets below the MLA, which overlap for most of the path. Therefore, a pessimistic approximation is introduced: we consider only the central beam with a current equal to 25 times its own current (50 pA), as if all the beams would perfectly overlap from the MLA down to the sample.

Fig. 9 The optical column is divided into five segments for which the statistical Coulomb interactions are calculated.

Page 10 of 28

Though this is a very pessimistic approximation, the trajectory displacement, as depicted in figure 10, remains below 1 nm, and the Boersch effect (the energy spread), as shown in figure 11, stays within 10 meV (the curves for the S2 and S3 sections saturate because of an angle-limiting aperture in the C2 lens). So, the statistical Coulomb interactions do not pose a problem.

a large area, i.e. patterning in multiple steps, it is more convenient to split the beam into a square array of beamlets. In this case the total number of beamlets is 25. Because of the inclination of the beamlets, the pitch at the blanker plate is bigger than that at the MLA and is approximately 8.56 μ m. The pitch between beams is chosen such that there is enough space for the wiring of the blanking electrodes. Figure 12 shows the design of the blanker

plate and the deflector electrodes. The diameter of the 25 holes on the blanker plate is approximately 2.5 μ m, which is also the distance between the deflector electrodes. The length of the electrodes is 4 μ m, their width is 2.5 μ m and their height 2 μ m. In such a configuration there is limited space for in-plane wiring, and multiple layer designs are required. However, this complicates the fabrication process considerably and requires also more time. Therefore we decided to fabricate only 3 deflectors, positioned on the diagonal of the array, starting from the central one, as depicted in Figure 13. In addition, a macro deflector is positioned outside of the blanker array area. The idea is to deflect all beams together with the macro deflector and bring back one of the beams by activating its micro deflector electrodes.

Fig. 12 Design of the deflector electrodes on the blanker plate

Fig. 13 Design of the deflector electrodes on the blanker plate, in the prototype configuration with 3 micro electrodes only.

Optics simulation

Figure 14 shows the optical design geometry with the grounded shielding on both ends of the stack, a decelerating lens electrode, two lens electrodes E1 and E2, and the MLA. The voltages on the electrodes are: shielding and MLA at GND potential, decelerating lens electrode at -1.5 kV, E1 at +1 kV, and E2 at +4.8 kV.

Fig. 14 The electrode geometry of the beam splitting optics stack.

In figure 15 the electrostatic fields are shown as calculated from a finite element package (EOD by SPOC, Brno), and ray traces are shown for the central beam. It is seen that the rays focus at 4 mm distance from the MLA. This is the position where the deflector plate (blanker plane) will be placed.

Fig. 15 The equipotential lines of the calculated fields are shown in red between the electrodes, and the ray traces are shown in blue (not at the same scale as the geometry).

Fabrication process

The MLA and the macro electrodes were fabricated using microfabrication techniques in the Kavli-nanofacility in Delft. A set of Masks was designed for the lithography process for the fabrication of the macro electrodes and the MLA plate. Markers were included in the masks to facilitate alignment in the stacking process of the electrodes. The process steps of the MLA fabrication are sketched in Figure 16.

We used a SOI wafer, i.e. Silicon on Insulator with an oxide layer buried below the upper Silicon layer, and deposited oxide on both sides using PECVD. First, the aperture array geometry is patterned in the photoresist, spun on the top side, using optical lithography. Subsequently, etching steps open up the upper oxide layer and the Si device layer, stopping on the buried oxide layer. Then, on the other side of the wafer, called the handle, the back hole is patterned in the photoresist with a second optical lithography step. The backside hole is etched into the oxide layer, and then after resist stripping into the Si handle. Finally the buried oxide layer is removed, leaving a thin Si membrane, with a thickness equal to that of the device layer.

Page 15 of 28

The device layer of the SOI wafer, used for the fabrication of the MLA, has a resistivity of ~50 $\mu\Omega$.cm, so no full metallization was needed. The macro-electrodes were made out of a 300 μ m thick Si wafer, with a device layer of 10 μ m. Only one end of the MLA electrode and the macro-electrodes was metallized with Al to enable wire bonding to nearby contact pads. An example of the MLA is shown in Figure 17.

Fig 17 An SEM image of the MLA. It consists of 25 aperture lenses of 5 μ m radius at a 7.5 μ m pitch etched out of a 10 μ m thick Si membrane.

To stack and align the macro-electrodes and the MLA we used a specially developed alignment tool based on a 6-degrees of freedom PI-hexapod system. This system has a proven alignment accuracy of 500 nm [5]. The alignment tool is shown in figure 18.

Fig. 18 The 6D-alignment tool. a) the 6D-stage (PI F206 hexapod), b) 6D-stage mounting fork, c) lower element chuck, d) upper element chuck, e) z-stage mounting fork, f) z-stage (PI M605-1D), g) microscope objective, h) granite stage mounting blocks.

Page 16 of 28

The macro-electrodes are electrically separated from each other by double layers of glass spacers, to reduce the risk of voltage breakdown and flashover. All electrodes were fixed by gluing them together using UV-hardening glue. Figure 19 shows an SEM image of the beam splitting optics stack. For the first test of the beam splitting optics we decided not to include the deflector plate yet.

Fig. 19 An SEM image of the beam splitting optics stack, consisting of 3 macro-electrodes (on top) and the MLA (bottom).

Electrical contacts were brought close to the electrode stack using specially designed flexible prints. This is seen in figure 20 (left). In figure 20 (right) an SEM image is shown of the wire bonds connecting the electrodes to the flex print.

Fig. 20 Left: part of the flex print is seen next to the rear of the electrode stack. Right: SEM image of the wire bonds between the electrode stack and the contact pads of the flex print.

Mechanical design of the support apparatus

The stack has to be inserted in the electron optical column of the SEM, and it needs electrical feedthroughs. Therefore it cannot be mounted on the standard variable aperture holder and a new holder was designed and built. There are a number of requirements to fulfil. First, the size of the chip stack support that sticks into the column has to fit into a 10 mm diameter circular hole in the column wall. Within this size also all wiring needs to fit. For the prototype we chose to simplify the design such that all relevant tests can be done. This means that we chose not to control the blanking of each of the 25 beams, but of three beams only: the central beam, and the next two beams along a diagonal of the square array. This will give us sufficient information on the proper working of the device. This reduces the number of feedthroughs considerably, such that we can wire all electrodes directly, without having to consider multiplexing electrode voltages. All materials used for the mechanical support have to be non-magnetic and parts visible to the electron beams need to be electrically conducting. In addition all materials need to be vacuum compatible down to a vacuum of 10⁻⁶ mbar. Titanium and phosphor bronze were used for the fabrication of the support. The chip stack will contain the multibeam splitting array as well as a conventional single aperture, to allow for single beam operation. This requires movement of the chip support to position the single aperture under the electron beam. To align the aperture, as well as the multibeam splitting array, to the optical axis of the SEM, displacement in the lateral XY plane (see figure 21) is required. The stroke in Y is 2.5 mm (the distance between the single beam aperture position and the multi beam aperture array position) the range in Y is ± 0.5 mm. The displacement accuracy in X and Y is 5μ m. Furthermore rotation around the support axis is required, as well as tilt, to position the chip stack perpendicular to the optical axis, with an accuracy of 3 mrad. The tilt has its pivot point (P in figure 21) not on the optical axis but near the column wall. Therefore tilts have to be slightly compensated by a translation.

support assembly.

Page 18 of 28

with the chip stack mounted on top.

Fig. 22c Schematical drawing of the assembly mounted to the SEM column.

Fig. 22d The assembly mounted to a test part resembling the SEM column.

Figure 23 shows the assembly attached to the FEI NovaNanoLab SEM.

Fig. 23 The chip stack support assembly mounted to the FEI NovaNanoLab SEM.

Experimental results

The first tests were done with just the beam splitting optics stack mounted. Figure 24 shows a shadow image of the MLA, obtained by grounding all the macro electrodes and the MLA plate. The shadow image is obtained by effectively defocusing the beam at the sample.

Page 19 of 28

	Lens settings				
_	Dec	0V			
BBL	E1	0V			
Σ	E2	0V			
	C1	1306V			
ope	C2				
osc	INT	0			
Micr	HR	1.775			
	UHR	1			

Fig. 24 Shadow image of the MLA for the lens settings shown on the left.

We then imaged the MLA in the so-called cross-over mode of the microscope This is done by focusing the C2 cross-over on the MLA plane and reducing the scan field by decreasing the deflection range of the gun shift coils. There is some contamination seen in the central aperture (see figure 25).

Fig. 25 Cross-over mode image of the MLA, detected using the Everhart Thornly Detector, the standard SE-detector.

To test the focusing optics of the stack we need an image of the focused beam spots in the sample plane. For that we mounted a SECOM platform (6) in the SEM (see figure 26), which provides us with an optical microscope that views samples from underneath. As a sample we mounted a YAG screen (a fluorescence screen) such that we can record a light optical image of the 25 beams simultaneously.

Page 20 of 28

Page 21 of 28

Fig. 26 Left: schematic of the SECOM platform mounted in an SEM. Right: View at the SECOM platform mounted in the SEM. Also seen is the chip stack assembly mounted in the variable aperture port on the lower right side of the column.

To image the YAG screen onto a camera, we used a 10x objective with a 200mm tube lens. A Guppy camera with 7.4 μ m pixel size was used, so effectively we obtain an image with a 740 nm pixel size. This is not sufficient, of course to judge the spot size, but it is sufficient to judge the focusing capability of the chip stack.

In the table below the settings of the lenses are listed for the image shown in figure 27. It clearly shows 25 focused beams, having the smallest possible size that could be obtained by going through focus.

Lens settings					
	Dec	180V			
BBU	E1	-400V			
Σ	E2	-1840V			
	C1	1467V			
ope	C2	0.516			
osc	INT	3.798			
Micr	HR	0.17			
	UHR	1.5839			

Fig. 27 Optical image of the 25 beams focused on a YAG screen. The scale bar is 10 μ m.

Further experiments are underway to optimize the lens settings for the smallest probes. In fact, judging the probe size is a lot easier with the blanker plate installed, because then we can blank all beams but one, and make an image with that beam. From the details in the image a good estimate of the spotsize is obtained. Below we describe the fabrication process of the blanker plate, and simulations of the deflection angles. We start with the simulations.

Deflection angle simulations of the blanker plate

The geometry of the prototype blanker plate was already shown in figure 13. And from figure 15 it is clear that the beam splitting optics focuses the beams at 4 mm distance from the MLA. This is where the blanker plate is to be installed. Figure 28 shows a top view of the prototype design of the blanker plate.

Fig. 28 Top view of the three micro deflectors. The distance between the electrodes is 2.5μ m, and the width of the connecting leads is 2μ m.

For reasons described on page 12, two macro electrodes were designed outside of the array of micro deflectors. The effect of the micro and macro deflectors was simulated using COMSOL. The geometry is shown in figure 29.

The electric fields are calculated in COMSOL In figure 30 the equi-field strength lines are plotted. It is then possible to calculate the particle trajectories of all beams in different situations (micro-deflectors ON/OFF and macro-deflectors ON/OFF). A simulation of trajectories due to the macro deflector only is shown in figure 31. The macro deflector will deflect all the beams such that they can be stopped at an aperture in the plane of the UHR lens.

the MLA. Electrical contacts will be made using wire bonding. Special tools are fabricated to hold the support structure fixed and stable during wire bonding. Both sides of the support need bonding, the bottom part for the deflectors, and the top part for the beam splitting optics.

Figure 38 shows an SEM image of the micro deflectors as fabricated already, before the final step of etching the Si handle. Next week (wk 7) we will start stacking and bonding. When the stack passes the electrode voltage tests we will start doing demonstration experiments. When these are successful before the submission deadline of the deliverable report, we will add an addendum that contains the results.

	Deposit FS layers
	Deposit isolation
	Deposit metal
-	Deposit metal protection
	Litho FS film stack
-	Apply resist
	Expose pattern
	Develop
and the second se	Inspection
	Pattern FS stack
	Etch protection
	Inspection
	Etch metal
	Inspection
the second s	Etch isolation
	Inspection
	Strip resist
	Litho device Si
	Apply resist
	Expose pattern
	Develop
	Inspection
	Etch device Si
	Etch Si
	Inspection
	Deposit BS layers
	Deposit hard mask
	Litho handle Si
	Apply resist
	Expose pattern
	Develop
•	Inspection
	Etch handle Si
	Etch Si
the second se	Inspection
1	Strip teflon
T I	Remove structural layers
	Strip hardmasks and BOX
	Rinse
	Dry
	Separation and cleaning
i=	Separate elements
•	

Fig. 37 Process steps to fabricate the blanker array. The colours denote the following: grey: Si, yellow: oxide, blue: metal, red: resist.

252 (2013) 58-70.

Integration of a high-NA light microscope in a scanning electron microscope, Journal of Microscopy

* * * * * * * * *	Funded by the European Union Page 28 of 28
Explanation of Differences between Estimation and Realization	We had some delay in completing the MBU, mainly because of difficulties with the welding of a thin flexible bellows, through which the MBU is to be inserted into the microscope. Extensive vacuum tests had to be done, and a few iterations were needed to get it right. In addition we encountered some delay in the fabrication of the deflector array, as one of the process steps failed, and a different solution had to be found. This caused us to deviate from the tight schedule, explaining why the final tests are not quite done. But we are close and hopefully we can add the results of the final tests before the final submission deadline of the report.
Metrology comments	-