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Optical detection of radio waves through a
nanomechanical transducer
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Low-loss transmission and sensitive recovery of weak radio-
frequency and microwave signals is a ubiquitous challenge, crucial
in radio astronomy, medical imaging, navigation, and classical and
quantum communication. Efficient up-conversion of radio-frequency
signals to an optical carrier would enable their transmission through
optical fibres instead of through copper wires, drastically reducing
losses, and would give access to the set of established quantum opti-
cal techniques that are routinely used in quantum-limited signal
detection. Research in cavity optomechanics1,2 has shown that nano-
mechanical oscillators can couple strongly to either microwave3–5 or
optical fields6,7. Here we demonstrate a room-temperature optoelec-
tromechanical transducer with both these functionalities, following
a recent proposal8 using a high-quality nanomembrane. A voltage
bias of less than 10 V is sufficient to induce strong coupling4,6,7 be-
tween the voltage fluctuations in a radio-frequency resonance circuit
and the membrane’s displacement, which is simultaneously coupled
to light reflected off its surface. The radio-frequency signals are
detected as an optical phase shift with quantum-limited sensitivity.
The corresponding half-wave voltage is in the microvolt range,
orders of magnitude less than that of standard optical modulators.
The noise of the transducer—beyond the measured 800 pV Hz{1=2

Johnson noise of the resonant circuit—consists of the quantum noise
of light and thermal fluctuations of the membrane, dominating the
noise floor in potential applications in radio astronomy and nu-
clear magnetic imaging. Each of these contributions is inferred to
be 60 pV Hz{1=2 when balanced by choosing an electromechanical
cooperativity of *150 with an optical power of 1 mW. The noise
temperature of the membrane is 300 K divided by the cooperativity.
For the highest observed cooperativity of 6,800, this leads to a projected
noise temperature of 40 mK and a sensitivity limit of 5 pV Hz{1=2.
Our approach to all-optical, ultralow-noise detection of classical
electronic signals sets the stage for coherent up-conversion of low-
frequency quantum signals to the optical domain8–11.

Optomechanical and electromechanical systems1,2 have gained con-
siderable attention recently for their potential as hybrid transducers
between otherwise incompatible (quantum) systems, such as photonic,
electronic and spin degrees of freedom2,10,12. The mechanical coupling
of radio-frequency or microwave signals to optical fields is particularly
attractive for present-day and future quantum technologies. Photon–
phonon transfer protocols viable all the way to the quantum regime
have already been implemented separately in the radio- and optical-
frequency domains7,13,14.

Among the optomechanical systems that have been considered for
radio-to-optical transduction8–10,15, we choose an approach8 based on a
nanomembrane16,17 with a high quality factor, Qm < 3 3 105, which is
coupled capacitively18 to a radio-frequency resonance circuit (Fig. 1).
Together with a four-segment gold electrode, the membrane forms
a capacitor, whose capacitance, Cm(x), depends on the membrane–
electrode distance, d 1 x. With a tuning capacitor C0, the total capa-
citance, C(x) 5 C0 1 Cm(x), forms a resonance circuit with a typical

quality factor QLC~
ffiffiffiffiffiffiffiffiffi
L=C

p �
R~130 using a custom-made coil wired

on a low-loss ferrite rod. This yields an inductance L 5 0.64 mH and a
loss R < 20V. The circuit’s resonance frequency VLC~1

� ffiffiffiffiffiffi
LC
p

is
tuned to the frequency, Vm/2p5 0.72 MHz, of the fundamental drum
mode of the membrane. The membrane–circuit system is coupled to a
propagating optical mode reflected from the membrane.

The electromechanical dynamics is described most generically by
the Hamiltonian8
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Figure 1 | Optoelectromechanical system. a, A 500-mm-square membrane of
Al-coated30 SiN in vacuum (,1025 mbar) forms a position-dependent
capacitor, Cm(x 5 0) < 0.5 pF, with a planar, four-segment gold electrode in the
immediate vicinity (0.9mm=d=6mm). The membrane electrode’s potential
is electrically floating. The membrane’s displacement is converted into a
phase shift of the laser beam reflected from the membrane. b, The membrane
capacitor is part of an LC circuit, tuned to the mechanical resonance
frequency by means of a tuning capacitor C0 < 80 pF (Supplementary
Information). A bias voltage, Vdc, couples the excitations of the LC circuit to
the membrane’s motion. The circuit is driven by a voltage Vs , which can be
injected through the coupling port 2 or picked up by the inductor from the
ambient radio-frequency (RF) radiation. c, For d 5 1mm, the optically observed
response of the membrane to a weak excitation of the system shows a split
peak due to strong electromechanical coupling. a.u., arbitrary units.
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where w and q, respectively the flux in the inductor and the charge on
the capacitors, are conjugate variables for the LC circuit, and x and
p respectively denote the position and momentum of the membrane
with an effective mass m. The last two terms represent the charging
energy, UC(x), of the capacitors, which can be offset using an externally
applied bias voltage, Vdc (Fig. 1). This energy, corresponding to the
charge �q~VdcC �xð Þ, leads to a new equilibrium position, �x, for the
membrane. Furthermore, the position-dependent capacitive force
FC xð Þ~{dUC=dx causes spring softening, reducing the membrane’s
motional eigenfrequency by DVm<{C’’ �xð ÞV2

dc

�
2mVm (ref. 19).

Much richer dynamics than this shift may be expected from the
mutually coupled system described by equation (1). For small excur-
sions, (dq, dx), around the equilibrium, (�q,�x), it can be described by the
linearized interaction term8 (Supplementary Information)

HI~Gdqdx~Bgem
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B=2LVLC

p dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2mVm

p ð2Þ

parameterized by either the coupling parameter G~{VdcC’ �xð Þ=C �xð Þ
or the electromechanical coupling energy, Bgem, where B is Planck’s
constant (h) divided by 2p. This coupling leads to an exchange of energy
between the electronic and mechanical subsystems at the rate gem; if this
rate exceeds their dissipation rates, respectively CLC 5 VLC/QLC and
Cm 5 Vm/Qm, they hybridize into a strongly coupled electromech-
anical system4,6,7. Our system is deeply in the strong coupling regime
(2gem~2p|27 kHz . CLC~2p|5:5 kHz?Cm~2p|20 Hz) for a
distance d 5 1mm and a bias voltage Vdc 5 21 V (Fig. 1c). Here we detect
the strong coupling using an independent optical probe on the mechanical
system.

We have performed a series of experiments in which the bias voltage
is systematically increased with a different sample, a larger distance,
d 5 5.5mm, and a lower mechanical dissipation, Cm/2p5 2.3 Hz. The
system is excited inductively through port 2 (Fig. 1b), inducing a weak
radio-frequency signal of root mean squared amplitude Vs 5 670 nV,
at a frequency V < VLC. The response of the coupled system can be
measured both electrically, as the voltage across the capacitors (port 1
in Fig. 1b), and optically, by analysing the phase shift of a light beam
(wavelength l 5 633 nm) reflected from the membrane. Both signals
are recorded with a lock-in amplifier, which also provides the excita-
tion signal.

The electrically measured response (Fig. 2a) shows the signature of a
mechanically induced transparency20, indicated by the dip in the LC
resonance curve. Independently, we observe the radio-frequency sig-
nal in the LC circuit optically via the membrane mechanical dynamics
(Fig. 2b). In particular, the electromechanical coupling leads to a
broadening of the mechanical resonance to a new effective linewidth,
Cef f ~ 1zCemð ÞCm, where Cem is the electromechanical cooperativity:

Cem~
4g2

em

CmCLC
ð3Þ

The width of the induced transparency dip and the mechanical line-
width grow in unison, and in agreement with our expectations, as
Cef f!V2

dc (Fig. 2b, inset). Both of these features also shift to lower
frequencies as the bias voltage is increased, following the expected
DVm!{V2

dc dependence19. We note that in each experiment we have
tuned the LC resonance frequency to Vm.

Using the model based on the full Langevin equations (Supplemen-
tary Information), derived from the Hamiltonian in equation (1), we
fit the electronically and optically measured curves, and for the two
curves obtain fit parameters Vm, VLC, CLC and G that agree typically to
within 1%. Together with the intrinsic damping determined indepen-
dently from thermally driven spectra, the system’s dynamics can be
quantitatively predicted. Our data analysis allows us to quantify the
coupling strength in three independent ways: analysis of the mech-
anical responses’ spectral shape; comparison of the voltage and dis-
placement modulation amplitudes; and in terms of the frequency

shift19 of the mechanical mode. Finally, we compare these experi-
mental values with a theoretical estimate accounting for the geometry
of the electromechanical transducer. For Vdc 5 125 V, we find that
G 5 10.3 kV m21 following the first method, and similar values using
the three others(Supplementary Information), demonstrating our thorough
understanding of the system.

In another experimental run (d 5 4.5mm; Fig. 3), we characterized
the strong electromechanical coupling3,4,14 using the normal-mode
splitting that gives rise to an avoided crossing of the resonances of
the electronic circuit and the mechanical mode, as the latter is tuned
through the former using the capacitive spring effect19. In contrast to
earlier observations4,6,7, we simultaneously witness the strong coupling
through the optical readout, in which the recorded light phase repro-
duces the membrane motion (Fig. 3c, e). Again, the predictions derived
from the Langevin equations are in excellent agreement with our obser-
vations, yielding a cooperativity of Cem~3,800 for these data with
m 5 24 ng and Cm/2p5 3.1 Hz.

We now turn to the performance of this interface as a radio-
frequency/optical transducer. A relevant figure of merit for the pur-
pose of bringing small signals onto an optical carrier is the voltage, Vp,
required at the input of the series circuit to induce an optical phase shift
of p. Achieving minimal Vp requires a balance between strong coup-
ling and induced mechanical damping. For the optimal cooperativity,
Cem~1, we find that

Vp~
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mLCmCLC

p
lVr<140 mV ð4Þ

at resonance (Vr:Vm~VLC~V), which is orders of magnitude
below the corresponding figure of merit for not only commercial
modulators optimized for decades by the telecom industry, but also
explorative microwave photonic devices21,22 based on electronic non-
linearities. It is interesting to relate this performance to more funda-
mental entities, namely the electromagnetic field quanta that constitute
the signal. Indeed it is possible to show that the quantum conversion
efficiency, defined here as the ratio of optical sideband photons to the
radio-frequency quanta extracted from the source, VsI/BVLC, for Cem?1,
is given by (Supplementary Information)

geo~4(kxzpf )
2 Wcar

Cm
ð5Þ
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Figure 2 | Mechanically induced transparency. Response of the coupled
system to a weak excitation at frequency V (through port 2 in Fig. 1b)
probed through the voltage modulation in the LC circuit (at port 1) (a) and
through the optical phase shift (b). The data (coloured dots) measured for
five different bias voltages agree excellently with model fits (curves) respectively
corresponding to gem/2p5 280, 470, 810, 1,030 and 1,290 Hz (from bottom
to top). Each curve is offset so that its baseline corresponds to the Vdc

indicated between the panels. Grey points indicate Vm values extracted for
each set of data. A shift of DVm!{V2

dc is fitted with the dashed line.
Inset, effective linewidth of the mechanical resonance extracted from full
model fits to the electrically (circles) and optically (boxes) measured response
and simple Lorentzian fits to the optical data (diamonds). The solid line
shows the expected Cef f!V2

dc scaling.
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This corresponds to the squared effective Lamb–Dicke parameter,
(kxzpf)

2 5 (2p/l)2B/2mVm, enhanced by the number of photons sam-
pling the membrane during the membrane excitations’ lifetime (Wcar is
the photon flux and k is the wavenumber). For the experiments shown in
Fig. 2, we deduce a conversion efficiency of 0.8% from the independently
measured radio-frequency voltage and optical phase modulation.
Although this result is limited by the optical power in this interfero-
meter, we performed tests to confirm that the membranes can support
optical readout powers of more than Wcarhc/l 5 20 mW without degra-
dation of their (intrinsic) linewidth. We thus project that conversion
efficiencies of the order of 50% are available. Note that this transducer
constitutes a phase-insensitive amplifier, and can thus reach conversion
efficiencies greater than one—at the expense of added quantum noise.

For the recovery of weak signals, the sensitivity and bandwidth of
the interface is of greatest interest. The signal at the optical output of
the device is the interferometrically measured spectral density of the
optical phase, Q, of the light reflected from the membrane:

Stot
QQ~ 2kð Þ2 xef f

m

�� ��2 GxLCj j2SVVzSth
FF

� �
zSim

QQ ð6Þ
The voltage Vs at the input of the resonance circuit (denoted here as its
spectral density SVV) is transduced to a phase shift via the circuit’s sus-
ceptibility, xLC, the coupling, G, the effective membrane susceptibility,

xef f
m , and the optical wavenumber, k (Supplementary Information). The

sensitivity is determined by the noise added within the interface. This
includes, in particular, the imprecision in the phase measurement (Sim

QQ)
and the random thermal motion of the membrane induced by the
Langevin force (Sth

FF). The former depends on the performance of the
interferometric detector used and can be quantum limited (Sim

QQ!W{1
car ).

We demonstrate the sensitivity and the noise performance of the
transduction scheme by measuring the noise as a function of the input
circuit resistor and its temperature (Fig. 4). Because the home-made,
high-Q inductor is too sensitive to the ambient radio-frequency radi-
ation (Supplementary Information), we use a shielded commercial
inductor (Picoelectronics) resulting in a lower value, QLC 5 47, for
these measurements. Red traces in Fig. 4a and Fig. 4b respectively
present the optically measured noise spectrum and the corresponding
voltage noise. On resonance, the dominant contribution is the Johnson
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Figure 4 | Voltage sensitivity and noise. Noise characterization of the
transducer with contributions from Johnson noise (violet), optical quantum
phase noise (yellow) and membrane thermal noise (green). a, Optically
measured noise (red) is well reproduced by a model

ffiffiffiffiffiffiffi
Stot

QQ

q
(blue). b, Data and

models as in a, but divided by the interface’s response function, | xtot | , and
thus referenced to the voltage, Vs, induced in the circuit. c, Noise temperature
of the amplifier (errors, s.d.). It is determined using the Y-factor method, at
the resonance frequency (dark red points), and in a 10-kHz-wide band
around the resonance (light red points), as a function of external loading. Lines
are the model of equation (7), broken down into contributions as in a and
b. Inset, example of a noise temperature measurement at Rs 5 1,250V.
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Figure 3 | Strong-coupling regime. a, Measured coherent coupling rate,
2gem/2p, as a function of bias voltage (points), and linear fit (line). The shaded
area indicates the dissipation rate, CLC/2p< 5.9 kHz of the LC circuit.
b–e, Normalized response of the coupled system as measured on port 1
(Fig. 1c) (b, d) and via the optical phase shift induced by membrane
displacements (c, e). The colour scales encode normalized voltage (b) and
displacement modulation (c). On tuning of the bias voltage, the mechanical
resonance frequency is tuned through the LC resonance, but owing to the
strong coupling an avoided crossing is very clearly observed. Panels d and
e show the spectra corresponding to the orange lines in b and c, at Vdc 5 242 V,
where the electronic and mechanical resonance frequencies coincide. Points are
data; orange line is the model fit.
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noise (SJ
VV< 800 pVð Þ2 Hz{1) of the circuit (violet). Off resonance,

optical quantum (shot) noise (yellow) limits the phase sensitivity to
Sim

QQ~ 18 nradð Þ2 Hz{1, corresponding to membrane displacements of
(1.5 fm)2 Hz21. In this experiment, we used a home-built interfero-
meter operating at l 5 1,064 nm and with a light power of ,1 mW
returned from a membrane with m 5 64 ng and Cm/2p5 20 Hz. The

square root of the phase sensitivity,
ffiffiffiffiffiffiffi
Sim

QQ

q
, can be translated into a

voltage sensitivity limit by division by the transfer function xtotj j:
2kxef f

m GxLC

�� �� of the transducer. With the cooperativity chosen here,
Cem~150, this corresponds to a voltage noise level of 60 pV Hz{1=2

within the resonant bandwidth of this proof-of-principle transducer,
but higher powers, and more sensitive optomechanical transduction16,23

could readily improve this number. From our model, we furthermore
deduce that the contribution of the thermal motion of the membrane
adds an equal amount of voltage noise (Fig. 4b, green), such that, at this
cooperativity, these noise contributions are balanced and their sum
minimized to 84 pV Hz{1=2.

Further analysis of the transducer noise has been performed by
measurements with an additional, ‘source’, resistor, Rs, in series with
the inductor of the circuit (Fig. 4c). The input to the circuit thus con-
sists of the Johnson noise of both resistors, (SJ

VV)’~2kB RTRzRsTsð Þ.
We cool the source resistor using liquid nitrogen, and optically mea-
sure the displacement of the membrane both at room (Ts 5 300 K) and
at liquid nitrogen temperature (Ts 5 77 K). We can thus determine the
amount of noise added by the transducer using the Y-factor method24.
From equation (6), we expect to find a noise temperature of (Sup-
plementary Information)

Tn~
1
ge

{1

� �
TRz

1
ge

1
Cem

Tmz
1zCemð Þ2

Cem
TL

� �
ð7Þ

at resonance, where the three summands are due to the Johnson noise
of the circuit’s loss, R 5 60V, at TR 5 300 K, the membrane’s thermal
fluctuations (Tm 5 300 K) and the noise in the optical readout
(TL < 50 mK), respectively. We note that both the circuit’s loading,
ge~Rs=(RszR), and the cooperativity, Cem~RCem(Rs~0 V)=(RszR)
are now functions of the source resistance. In this experiment, we vary
the cooperativity by varying the source resistor from Cem Rs~0 Vð Þ~
550 to Cem Rs~2 kVð Þ~18, and find a noise temperature consistent
overall with equation (7), with the lowest measured value reaching down
to 24 K (Fig. 4c).

The challenge of engineering a low-loss, overcoupled electronic
resonance circuit (ge R 1) aside, the transducer itself adds only very
little noise (green and yellow lines in Fig. 4c, representing the second
and third terms in equation (7), respectively). For example, at a coop-
erativity ofCem~70 achieved with Rs 5 400V, subtracting the Johnson
noise from the total noise yields optical quantum phase noise and
membrane thermal noise temperatures of 4 K. Remarkably, the mem-
brane contribution, which can usually only be suppressed by cryogenic
cooling, is strongly reduced by the cooperativity parameter (!Tm=Cem).
The highest cooperativity we have obtained is Cem~6,800, by applying
equation (3) to the data of Fig. 1c. This implies that membrane noise
temperatures down to 40 mK can be expected, corresponding here to a
voltage noise level of 5 pV Hz{1=2.

For comparison, we performed measurements with an arrangement
of ultralow-noise operational amplifiers connected directly to port 1.
The amplifier is based on junction field-effect transistors (JFETs) and
combines low input voltage noise (nominally 4 nV Hz{1=2) with extre-
mely low current noise (nominally 2:5 fA Hz{1=2), as required24 for
measurements on a relatively high source impedance, which here
amounts to RQ2

LC<140 kV at port 1. In practice, with a gain of 1,000,
the best voltage sensitivity we have obtained is only Soa,tot

VV VLCð Þ~
130 pVð Þ2 Hz{1 over the bandwidth of the LC resonance. Similar per-

formance levels—on a par with the transducer discussed here—are
expected even for ideal operation of other amplifiers described in the
scientific and technical literature (Supplementary Information). Apart

from being competitive with standard electronics in its noise figures, our
transducer provides a new functionality owing to its direct compatibility
with fibre optical communication lines. The presented optoelectrome-
chanical transducer also compares very favourably with previous proof-
of-principle mechanical amplifiers for radio-frequency25 and micro-
wave26 radiation (Supplementary Information).

Because our transducer noise floor is well below the room-
temperature Johnson noise from the circuit’s loss, R 5 60V, this app-
roach can be of particular relevance in applications where electronic
Johnson noise is suppressed. For example, for direct electronic
(quantum) signal transduction, the resonance circuit is overloaded
(ge R 1) with a cold transmission line that carries the signal of interest,
but no Johnson noise. In radio astronomy27, highly efficient antennas
looking at the cold sky can have noise temperatures far below room
temperature. The usually required cryogenically cooled pre-amplifiers
might be replaced by our transducer—a critical advantage for satellite
missions—and extension to gigahertz frequencies should be straight-
forward using a.c. driving4. Direct and efficient conversion of radio-
frequency signals into optics could save substantial resources in large
phased-array antennas. Finally, in NMR experiments including imaging,
cooled pickup circuits can deliver a significant sensitivity improvement,
but this approach challenges present amplifier technology28,29.

METHODS SUMMARY
The capacitor is fabricated by standard clean-room microfabrication techniques.
Electrodes made of gold (200 nm thick) are deposited on a glass substrate and
structured by ion-beam etching. Each segment is 400mm long, with 60-mm gaps
between the segments. Pillars ranging in height from 600 nm 1mm are placed to
define the membrane–electrode distance. The inductor is wound with Litz wires to
ensure a high Q-factor. A variable trimming capacitor is used to tune the resonance
frequency of the LC circuit.

The mechanical resonator consists of a 50-nm-thick aluminium layer on top of
a high-stress stoichiometric SiN layer with a thickness of 100 or 180 nm depending
on the sample. The aluminium layer is deposited on top of the whole wafer after
the membranes have been released. Photolithography and chemical etching are
subsequently used to remove the metal from the anchoring regions and from a
circle in the middle of the membrane. The metal layer on SiN typically causes a
10% decrease in the eigenfrequency of the fundamental mode.

Optical interferometry is carried out using a commercial Doppler vibrometer
(MSA-500 Polytec) and a home-made Michelson interferometer (for the data set
in Fig. 4). The home-made Michelson interferometer uses shot-noise-limited,
balanced-homodyne detection with a high-bandwidth (0–75 MHz) InGaAs receiver.
The two d.c. outputs from the detector are used to generate the differential error
signal, which is then fed to the piezoelectric actuator in the reference arm for locking
the interferometer. The radio-frequency output of the detector is high-pass-filtered
and fed to a spectrum analyser to record the vibrations of the membrane. Absolute
calibration of the mechanical amplitude is carried out through a known modulation
of the piezoelectric actuator at a frequency close to the mechanical peak.

Received 12 July 2013; accepted 13 January 2014.

1. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the
mesoscale. Science 321, 1172–1176 (2008).

2. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Preprint
at http://arxiv.org/abs/1303.0733 (2013).

3. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a
mechanical resonator. Nature 464, 697–703 (2010).

4. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime.
Nature 471, 204–208 (2011).

5. Faust, T., Krenn, P., Manus, S., Kotthaus, J. & Weig, E. Microwave cavity-enhanced
transduction for plug and play nanomechanics at room temperature. Nature
Commun. 3, 728 (2012).
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