

Deliverable 5.1

Trial scenario Definitions and Evaluation Methodology Specification

Editor:	Ricard Munné (Atos)
Deliverable nature:	Report (R)
Dissemination level: (Confidentiality)	Public (PU)
Contractual delivery date:	28 February 2015
Actual delivery date:	14 September 2015
Suggested readers:	Smart city service developers, application developers, public administrations, service providers, researchers
Version:	1.1
Total number of pages:	157
Keywords:	RERUM, Internet of Things, smart cities, applications, use-cases, smart transportation, home energy management, environmental monitoring, comfort quality, trial scenario definitions, evaluation methodology

Abstract

This report provides the plan for testing the RERUM architectural framework and its components with regard to the technical objectives and innovations of the project, which is planned at two levels — through in-lab experiments and field trials. It provides the evaluation methodology, the evaluation criteria, the evaluation process, requirements, metrics and target. The aim of the in-lab experiments is to assess both qualitatively and quantitatively the performance gains of the protocols and algorithms, as well as the individual system modules developed in work packages WP2-WP4 to identify potential issues for the real-world trial phase in the pilot cities. The field trials to be performed in the two pilot cities are based on the four Use Cases as defined in D2.1. The trials will be performed in two phases. During the first phase Heraklion will test UC-O1 and UC-I1, and Tarragona UC-O2 and UC-I2. In the second phase the cities will test the UCs not tested in the first phase. In between the two testing phases a trial cross reporting activity will be performed to exchange the results of the trials to improve the trials in the second phase based on the experience gained through the first phase and the issues detected.

Disclaimer

This document contains material, which is the copyright of certain RERUM consortium parties, and may not be reproduced or copied without permission.

All RERUM consortium parties have agreed to full publication of this document.

The commercial use of any information contained in this document may require a license from the proprietor of that information.

Neither the RERUM consortium as a whole, nor a certain part of the RERUM consortium, warrant that the information contained in this document is capable of use, nor that use of the information is free from risk, accepting no liability for loss or damage suffered by any person using this information.

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 609094

Impressum

Full project title	Reliable, resilient and secure IoT for smart city applications
Short project title	RERUM
Number and title of work-package	WP5 – Application Development, Experiments and Trials
Number and title of task	T5.1 – Trial Scenarios and validation
Document title	Trial scenario Definitions and Evaluation Methodology Specification
Editor: Name, company	Ricard Munné, ATOS
Work-package leader: Name, company	Ricard Munné, ATOS
Estimation of person months (PMs) spent on the Deliverable	

History

Version 1.1	Supersedes version 1.0 of 15th May 2015.
	In version 1.1 substantial improvements were made throughout the document particularly with respect to the evaluation criteria (section 2) and the trial scenarios in both cities (sections 4, 5). The goal was to better reflect the advances of the project in the trial scenarios, which were not very clearly defined in the original version.

Copyright notice

© 2015 Participants in project RERUM

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0

Executive summary

This report provides the plan for validating the RERUM architectural framework and its components with regard to the technical objectives and innovations of the project, which is planned at two levels – through in-lab experiments and field trials. Section 2 describes the evaluation methodology, which is based on the ISO standards for software product quality (ISO/IEC14598) [1] and for specifying metrics for product quality in software engineering (ISO/IEC9126) [2]. Evaluation criteria are also described, together with the evaluation process, requirements, metrics and target. Four groups of evaluation criteria have been defined: authorization, efficiency, performance and security.

Section 3 provides the description of the in-lab experiments to assess both qualitatively and quantitatively the performance gains of the protocols and algorithms, as well as the individual system modules developed in work packages WP2-WP4 to identify potential issues for the real-world trial phase in the pilot cities. The description of the experiments includes the specific purpose, the KPIs to measure (defined in the evaluation criteria in section 2), the scenarios description for the experiments, the functional components involved, risks and time plan. The experiments are focused on measuring the impact of the implementation of ECC signatures in the RERUM devices, the efficiency and performance of the adaptive Compressive Sensing keys, the performance of self-monitoring mechanism of RERUM devices, to evaluate the efficiency of the lightweight spectrum sensing and spectrum assignment frameworks, the efficiency of Cognitive Radio based gateway, the performance and efficiency of Android-based RERUM devices, the network performance of 6LoWPAN Multicast networks and the performance of DTLS protocol.

Sections 4 and 5 describe the field trials to be performed in the two pilot cities based on the four Use Cases defined in D2.1 [3]. The trials will be performed in two phases. During the first phase Heraklion will test UC-O1 and UC-I1, and Tarragona UC-O2 and UC-I2. In the second phase the cities will test the UCs not tested in the first phase. In between the two testing phases a cross-evaluation of the results of the trials will be performed to improve the trials in the second phase based on the experience gained through the first phase and issues detected. The description of the trials includes the purpose, the deployment of RERUM components, the requirements and cross-dependencies and the scheduling of the testing activities, the risks and the specific KPIs and performance metrics of the UCs.

Section 6 presents a discussion about ethical issues in the deployment and the execution of the use cases in both cities.

Finally, Section 7 provides a checklist of RERUM technical contributions that will be tested in the lab experiments and trials and section 8 concludes the document.

List of authors

Company	Author	Contribution
ATOS	Rodrigo Diaz	Initial ToC
	Ricard Munné	Reviewed ToC according meeting in Passau GA
		Evaluation methodology and Criteria definition template
	Dario Ruiz	Authorization criteria
	Cristo Reyes	Authorization criteria
UNIVBRIS	George Oikonomou	Performance Criteria Laboratory experiments
	Marcin Wójcik	Laboratory experiments
LiU	Vangelis Angelakis Tobias Edström	Evaluation Criteria Proof-of-Concept Laboratory experiments Contribution to Trials
	David Gundlegård Johan Erikson	Performance Criteria Proof-of-Concept Laboratory experiments
	Niklas Danielsson	Efficiency Criteria Proof-of-Concept Laboratory experiments
	Scott Fowler	Performance Criteria
UNI PASSAU	Henrich C. Pöhls	Laboratory experiments descriptions for On-Device Signatures (Section 3.1-3.4) and related KPI (AL.EF.3-5, AL.PE.3); Trials end users survey collaboration (Section 6.5)
ZOLERTIA	Antonio Liñán Marc Fàbregas	Tarragona Trials location and requirements Performance Criteria
FORTH	Alexandros Fragkiadakis Antonis Makrogiannakis Elias Tragos	Contribution to the Lab experiments, the evaluation criteria and the Heraklion trials. Reviewing the document.
СҮТА	Athanasios Lioumpas	Heraklion Trials
AJTGNA	Xavier Reina	Tarragona Trials Contribution to the usability criteria.

HER	Manolis Fotakis	Contribution	to	the	Heraklion	trials
	Costis Mochianakis	definition.				

Table of Contents

E	<ecutiv< th=""><th>e sum</th><th>ımary</th><th> 4</th></ecutiv<>	e sum	ımary	4
Li	st of a	uthors	;	5
Tā	able of	Conte	ents	7
Li	st of fi	gures		12
Li	st of ta	ables .		14
Α	bbrevi	ations		17
1	Intr	roduct	ion	19
	1.1	Obje	ectives of this Document	19
	1.2	Inte	nded Audience	19
	1.3	Stru	cture	19
	1.4	Rela	tion to other activities and tasks	19
	1.5	Lab	experiments and trial activities planning	20
2	Eva	aluatio	n Methodology and Criteria	23
	2.1	Defi	nition of RERUM evaluation methodology	23
	2.1	1	Evaluation model	23
	2.1	.2	Evaluation process	24
	2.2	Crite	eria definition template	26
	2.2	.1	ID	27
	2.2	.2	Category	27
	2.3	Eval	uation Criteria	28
	2.3	.1	Usability criteria for user-based evaluation	28
	2.3	.2	Authorization criteria	31
	2.3	.3	Efficiency criteria	35
	2.3	.4	Performance criteria	39
	2.3	.5	Security, Privacy and Trust criteria	45
3	Pro	of-of-	Concept Laboratory experiments	50
	3.1 with E		time-, Memory-, Communication-Overhead of Signing and Verifying Messa andard Signatures in RDs	•
	3.1	.1	Purpose of the experiment	50
	3.1	.2	KPIs	50
	3.1	3	Experimental scenarios	50
	3.1	.4	RERUM architecture functional components involved/tested	52
	3.1	5	Foreseen experiment risks	52
	3.1	.6	Timeplan	52

	Runtime-, Memory-, Communication-Overhead of Signing, Verifying and I le Signatures in RDs	_
3.2.1	Purpose of the experiment	52
3.2.2	KPIs	53
3.2.3	Experimental scenarios	53
3.2.4	RERUM architecture functional components involved/tested	53
3.2.5	Foreseen experiment risks	54
3.2.6	Timeplan	54
3.3 E	Energy Efficiency of Malleable Signatures on RDs	54
3.3.1	Purpose of the experiment	54
3.3.2	KPIs	54
3.3.3	Experimental scenarios	54
3.3.4	RERUM architecture functional components involved/tested	56
3.3.5	Foreseen experiment risks	56
3.3.6	Timeplan	56
3.4 E	Energy Efficiency of ECC based payload Signatures on RDs	56
3.4.1	Purpose of the experiment	56
3.4.2	KPIs	56
3.4.3	Experimental scenarios	57
3.4.4	RERUM architecture functional components involved/tested	57
3.4.5	Foreseen experiment risks	57
3.4.6	Timeplan	57
3.5 F	RSSI-based CS encryption keys	58
3.5.1	Purpose of the experiment	58
3.5.2	KPIs	58
3.5.3	Experimental scenarios	58
3.5.4	RERUM architecture functional components involved/tested	59
3.5.5	Foreseen experiment risks	59
3.5.6	Timeplan	59
3.6 A	Adaptive CS-based data gathering	60
3.6.1	Purpose of the experiment	60
3.6.2	KPIs	60
3.6.3	Experimental scenarios	60
3.6.4	RERUM architecture functional components involved/tested	62
3.6.5	Foreseen experiment risks	62
3.6.6	Timeplan	62

3.	7 Ser	nsor self-monitoring	62
	3.7.1	Purpose of the experiment	62
	3.7.2	KPIs	63
	3.7.3	Experimental scenarios	63
	3.7.4	RERUM architecture functional components involved/tested	64
	3.7.5	Foreseen experiment risks	64
	3.7.6	Timeplan	64
3.	8 Lig	htweight spectrum sensing framework	64
	3.8.1	Purpose of the experiment	64
	3.8.2	KPIs	65
	3.8.3	Experimental scenarios	65
	3.8.4	RERUM architecture functional components involved/tested	65
	3.8.5	Foreseen experiment risks	65
	3.8.6	Timeplan	66
3.	9 CR	-based gateway	66
	3.9.1	Purpose of the experiment	66
	3.9.2	KPIs	66
	3.9.3	Experimental scenarios	66
	3.9.4	RERUM architecture functional components involved/tested	67
	3.9.5	Foreseen experiment risks	68
	3.9.6	Timeplan	68
3.	10 An	droid-based RDs applications & services stability and accuracy	68
	3.10.1	Purpose of the experiment	68
	3.10.2	KPIs	68
	3.10.3	Experimental scenarios	68
	3.10.4	RERUM architecture functional components involved/tested	69
	3.10.5	Foreseen experiment risks	69
	3.10.6	Timeplan	69
3.	11 En	ergy Efficiency of Android-based RDs	69
	3.11.1	Purpose of the experiment	69
	3.11.2	KPIs	69
	3.11.3	Experimental scenarios	69
	3.11.4	RERUM architecture functional components involved/tested	70
	3.11.5	Foreseen experiment risks	70
	3.11.6	Timeplan	70
3.	12 An	droid pilot devices measurements precision	70

	3.12.1	Purpose of the experiment	70
	3.12.2	KPIs	70
	3.12.3	Experimental scenario	70
	3.12.4	RERUM architecture functional components involved/tested	70
	3.12.5	Foreseen experiment risks	70
	3.12.6	Timeplan	71
3	3.13 And	droid-based RDs applications & services stability and accuracy	71
	3.13.1	Purpose of the experiment	71
	3.13.2	KPIs	71
	3.13.3	Experimental scenarios	71
	3.13.4	RERUM architecture functional components involved/tested	72
	3.13.5	Foreseen experiment risks	72
	3.13.6	Timeplan	72
3	3.14 6Lo	WPAN Multicast	72
	3.14.1	Purpose of the experiment	72
	3.14.2	KPIs	72
	3.14.3	Experimental scenarios	72
	3.14.4	RERUM architecture functional components involved/tested	75
	3.14.5	Foreseen experiment risks	75
	3.14.6	Timeplan	75
3	3.15 Ligh	ntweight Datagram Transport Layer Security (DTLS) Protocol	75
	3.15.1	Purpose of the experiment	75
	3.15.2	KPIs	76
	3.15.3	Experimental scenarios	76
	3.15.4	RERUM architecture functional components involved/tested	77
	3.15.5	Foreseen experiment risks	77
	3.15.6	Timeplan	77
4	Heraklio	n Trials	78
4	4.1 Pha	se-1 Trials	78
	4.1.1	UC-O1: Outdoor - Smart Transportation	78
	4.1.2	UC-I1: Indoor - Home energy management	86
4	4.2 Pha	se-2 Trials	99
	4.2.1	UC-O2: Outdoor - Environmental monitoring	99
	4.2.2	UC-I2: Indoor - Comfort quality monitoring	109
5	Tarragor	na Trials	117
!	5.1 Pha	se-1 Trials	117

	5.1.2	UC-O2: Outdoor - Environmental monitoring	117		
	5.1.2	UC-I2: Indoor - Comfort quality monitoring	126		
	5.2	Phase-2 Trials	133		
	5.2.2	UC-O1: Outdoor - Smart Transportation	133		
	5.2.2	2 UC-I1: Indoor - Home energy management	141		
6	Trial	s ethic assessment	147		
	6.1	UC-O1: Outdoor - Smart Transportation	147		
	6.2	UC-O2: Outdoor - Environmental monitoring	149		
	6.3	UC-I1: Indoor - Home energy management	150		
	6.4	UC-I2: Indoor - Comfort quality monitoring	151		
	6.5	Trials end users survey collaboration	152		
7	Proc	of of concept testing scope	154		
8	Con	clusions	156		
Re	References 1				
Αı	nnex A	Form to collect trials' issues	158		

List of figures

Figure 1 Overview of tasks in WP5 related to D5.1 and the most important links	20
Figure 2 Time plan of lab experiments, use case implementation and trials	21
Figure 3 Evaluation process view according to ISO/IEC 14598-1 [4]	23
Figure 4 High Level Overview of a potential Experimental Setup: Zolertia's Re-Mote under tes RAM/ROM consumption when testing the application of ECC Signatures (algorithms under test and Sign)	Vrfy
Figure 5 High Level Overview of a potential Experimental Setup: Raspberry PI as Gateway under for runtime when testing the application of ECC Signatures (algorithms under test Vrfy and Sign).	
Figure 6 High Level Overview of a potential Experimental Setup: Zolertia's RE-Mote under tes power consumption when testing the application of malleable Signatures (algorithms under test and Sign and Sanitize/Redact)	Vrfy
Figure 7 High Level Overview of a potential Experimental Setup: Zolertia's RE-Mote under tes power consumption when generating cryptographic key material (algorithms under test KeyGen)	
Figure 8 High Level Overview of a potential Experimental Setup: Zolertia's RE-Mote under tes power consumption when testing the application of ECC Signatures (algorithms under test Vrfy Sign)	and a
Figure 9 Topology of the RSSI-based CS key extraction experiment	59
Figure 10 Topology of adaptive CS data gathering experiment	61
Figure 11 Topology of the SDR-based gateway experiment	67
Figure 12 Code size and RAM footprint for a single code module	73
Figure 13 Code size and RAM footprint for an entire firmware image	73
Figure 14 Indicative experiment topology	74
Figure 15 Network topology for testing DTLS	76
Figure 16 Heraklion UC-O1 Smart transportation high-level overview	80
Figure 17 Bus route from Port to FORTH (line 8)	81
Figure 18 Bus route from Airport to Ammoudara beach (line 6)	81
Figure 19 Home energy management high-level overview (Heraklion)	88
Figure 20 Cacti network deployment view (example)	89
Figure 21 Real-time monitoring using RRDtool and Cacti (example)	89
Figure 22 The building at Androgeo	91
Figure 23 The building of DEPTAH	92
Figure 24: UC-I1 overview	93
Figure 25 Scenario UC-I2 _A (No group policy applied)	95
Figure 26 Scenario UC-I2 _A (Group policy applied)	95
Figure 27 Scenario UC-I2 _B (No attribute policy applied)	97
Figure 28 Scenario UC-I2 _B (Attribute policy applied)	97
Figure 29 Environmental monitoring high-level overview (Heraklion)	. 102

Figure 30 Placement of sensors for UC-O2 trials (Heraklion)	104
Figure 31 Scenario UC-O2 _A (6LoWPAN Multicast)	105
Figure 32 Scenario UC-O2 _A (OAP updates)	106
Figure 33 Comfort quality monitoring high-level overview (Heraklion)	110
Figure 34 Scenario UC-I2 _A (No group policy applied)	113
Figure 35 Scenario UC-I2 _A (Group policy applied)	113
Figure 36 Placement of sensors for UC-O2 trials (Tarragona)	121
Figure 37 Tarragona's Pretorium tower [6]	122
Figure 38 Tarragona's Roman Amphitheatre	122
Figure 39 Castellarnau's Estate (Tarragona)	130
Figure 40 Tarragona UC-O1 Smart transportation high-level overview	136
Figure 41 Tarragona's Council offices in Rambla Nova 59	144

List of tables

Table 1 Criterion definition template	27
Table 2 Heraklion UC-O1 main components	78
Table 3 Sensor types for Heraklion UC-O1	79
Table 4 Interfaces between Trial components (Heraklion)	80
Table 5 Scenario UC-O1 _A	83
Table 6 Scenario UC-O1 _B	83
Table 7 Scenario UC-O1 _C	84
Table 8 Scenario UC-O1 _D	84
Table 9 Validation of smart-phones	85
Table 10 Heraklion's scheduling activities for UC-O1	85
Table 11 Heraklion's UC-I1 main components	86
Table 12 Interfaces between Trial components (Heraklion)	89
Table 13 Summary of the devices measurements for UC-I1 (Energy monitoring)	90
Table 14 Scenario UC-I1 _A	94
Table 15 Scenario UC-I1 _B	96
Table 16 Scenario UC-I1 _C	97
Table 17 Scenario UC-I1 _D	98
Table 18 Scenario UC-I1 _E	98
Table 19 Scenario UC-I1 _F	98
Table 20 Heraklion's scheduling activities for UC-I2	99
Table 21 Possible risks for UC-I1 (Heraklion)	99
Table 22 UC-I1 main components (Heraklion)	100
Table 23 Sensor types for UC-O2 (Heraklion)	101
Table 24 Interfaces between Trial components (Heraklion)	102
Table 25 Sensor types for UC-O2 (Environmental outdoor)	104
Table 26 Scenario UC-O2 _A	105
Table 27 Scenario UC-O2 _B	106
Table 28 Scenario UC-O2 _C	106
Table 29 Scenario UC-O2 _D	107
Table 30 Scenario UC-O2 _E	107
Table 31 Scenario UC-O2 _F	107
Table 32 Scenario UC-O2 _G	107
Table 33 Heraklion's scheduling activities for UC-O2	108
Table 34 Possible risks for UC-O1 (Heraklion)	108
Table 35 UC-12 main components (Heraklion)	109

Table 36 Interfaces between Trial components UC-I2 (Heraklion)	111
Table 37 summary of the devices measurements for UC-I2 (Comfort quality monitoring)	112
Table 38 Scenario UC-I2 _A	112
Table 39 Scenario UC-I2 _B	114
Table 40 Scenario UC-I2 _C	114
Table 41 Scenario UC-I2D	115
Table 42 Scenario UC-I2 _E	115
Table 43 Heraklion's scheduling activities for UC-I2	115
Table 44 UC-O2: main components (Tarragona)	118
Table 45 UC-O2: sensor types (Tarragona)	119
Table 46 UC-O2: Interfaces between Trial components (Tarragona)	120
Table 47 UC-O2: summary of the devices measurements (Tarragona)	120
Table 48 Measurements made at the comfort monitoring use case for selected buildings (T	
Table 49 Scenario T-UC-O2 _A	123
Table 50 Scenario T-UC-O2 _B	124
Table 51 Scenario T-UC-O2 _C	124
Table 52 Scenario T-UC-O2 _D	124
Table 53 UC-O2: scheduling activities (Tarragona)	125
Table 54 UC-O2: risks (Tarragona)	126
Table 55 UC-I2: main components (Tarragona)	127
Table 56 UC-I2: sensor types (Tarragona)	127
Table 57 UC-I2: summary of the devices measurements (Tarragona)	128
Table 58 UC-I2: Interfaces between Trial components (Tarragona)	129
Table 59 Scenario T-UC-I2 _A	130
Table 60 Scenario T-UC-I2 _B	131
Table 61 Scenario T-UC-I2 _C	131
Table 62 Scenario T-UC-I2 _D	131
Table 63 Scenario T-UC-I2 _E	132
Table 64 Scenario T-UC-I2 _F	132
Table 65 Scenario T-UC-I2 _G	132
Table 66 UC-12: risks (Tarragona)	133
Table 67 UC-O1: main components (Tarragona)	134
Table 68 Sensor types for Tarragona UC-O1	135
Table 69 UC-O1 Interfaces between Trial components (Tarragona)	136
Table 70 Tarragona bus routes	137

Table 71 Scenario T-UC-O1 _A	138
Table 72 Scenario T-UC-O1 _B	139
Table 73 Scenario T-UC-O1 _C	139
Table 74 Scenario T-UC-O1 _D	139
Table 75 Scenario T-UC-O1 _E	139
Table 76 UC-O1: scheduling activities (Tarragona)	140
Table 77 UC-O1: risks (Tarragona)	141
Table 78 UC-I1: main components (Tarragona)	142
Table 79 UC-I1 summary of the devices measurements (Tarragona)	142
Table 80 UC-I1: Interfaces between Trial components (Tarragona)	143
Table 81 Scenario T-UC-I1 _A	144
Table 82 Scenario T-UC-I1 _B	144
Table 83 Scenario T-UC-I1 _c	145
Table 84 UC-I1 scheduling activities (Tarragona)	145
Table 85 UC-I1: risks (Tarragona)	146
Table 86 Ethics assesment for UC-O1 Smart transportation	147
Table 87 Ethics assesment for UC-O2 Environmental monitoring	149
Table 88 Ethics assesment for UC-I1 Home energy management	150
Table 89 Ethics assesment for UC-I2 Comfort quality management	151
Table 90 Testing scope of technical contributions	154

Abbreviations

Third generation of mobile telecommunications technology
 Fourth generation of mobile telecommunications technology

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

ABAC Attribute-Based Access Control

AC Alternating Current A/C Air Conditioner

ATC Automatic Traffic Counter

API Application Programming Interface

BMFA Bi-Directional Multicast Forwarding Algorithm

CO Carbon monoxide
CO2 Carbon dioxide

CoAP Constrained Application Protocol

CPU Central Processing Unit

CR Cognitive Radio
CS Compressed Sensing

DTLS Datagram Transport Layer Security

DoS Denial-of-Service

EC European Commission

ECC Elliptic curve cryptography

EMF Electro Magnetic
EMF Electro Magnetic Field

GPRS General Packet Radio Service
GVO Generic Virtual RERUM Object

GW Gateway

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IOT Internet of Things
IP Internet Protocol

ISO International Organization for Standardization

JSON JavaScript Object Notation
JSS JSON sensor signatures
KPI Key Performance Indicator

LAN Local Area Network
MAC Medium Access Control

MIME Multi-Purpose Internet Mail Extensions

MPL Multicast Protocol for Low power and Lossy Networks

MSE Mean square error

MW Middle Ware mWh micro Watt hour NO2 Nitrogen dioxide

NOx Mono-nitrogen oxides (nitric oxide and nitrogen dioxide)

O3 Ozone

OAP Over the Air Programming

PC Personal Computer

PCI Peripheral Component Interconnect

PHP PHP: Hypertext Preprocessor
PKI Public Key Infrastructure

PM10 Particulate Matter 10 micrometer PM2.5 Particulate Matter 2.5 micrometer

POST HTTP POST request method

PRRS Platform for Real time Reconfiguration of Security

QoS Quality of Service

RAM Random Access Memory

RD RERUM Device

REST Representational Transfer State

RH Relative Humidity
ROM Read Only Memory

RPL IPv6 Routing Protocol for Low Power and Lossy Networks

RRD Round-robin Database
RSS Rich Site Summary

RSSI Received Signal Strength Indicator

RTT Round-Trip-Time
SA Security Association

SDK Software Development Kit SDR Software Defined Radio

SHA 256 Secure Hash Algorithm with 32-bit words
SIEM Security Information and Event Management

SNMP Simple Network Management Protocol

SO2 Sulfur dioxide UC Use-case

UDP User Datagram Protocol
VOC Volatile Organic Compounds
VPN Virtual Private Network
VRD Virtual Rerum Device
WAN Wide Area Network

WiFi Wireless local area network

XACML eXtensible Access Control Markup Language

xDSL Digital Subscriber Line

XML Extensible Markup Language

1 Introduction

1.1 Objectives of this Document

The main objective of this document is to provide the framework for assessing the RERUM innovations, the definition of the evaluation methodology and the evaluation criteria, the description of the lab experiments and the use case based trials in the two pilot cities. Therefore, it will demonstrate the feasibility and reliability of the RERUM architectural framework. It is out of scope to provide good quality final user services from the data collected by RERUM in the applications that the users will interface. The goal is to show that RERUM effectively supports security and privacy by design and that it is scalable as is has incorporated efficiency gains for energy, communications and computation power.

1.2 Intended Audience

The document is intended primarily for the project consortium, namely the researchers, developers that are involved in the technical work packages that will perform the lab experiments, and the pilot cities that will execute the use case trials. However, we believe that the framework can be of interest for researchers and smart city services developers, and the outcomes from the lab experiments and the trials will certainly be of interest for a wider audience, as they will demonstrate the feasibility of the RERUM architecture applied to a live smart city environment.

1.3 Structure

The document is structured as follows:

- Section 2 provides the evaluation methodology that links the development of the architectural
 framework and the lab experiments and use case based trials to ensure that the architecture
 provides the expected performance and functionalities. It also provides the evaluation criteria
 that will be checked in the lab experiments and pilot trials.
- Section 3 sets the proof of concept experiments that will be conducted in simulations and/or controlled laboratory environments in order to qualitatively and quantitatively assess the performance gains of the protocols and algorithms developed within WP2-WP4.
- Sections 4 and 5 define the field trials for the two pilot cities based on the previously defined use cases. The trials will be performed in two phases. In the first phase one city will test two of the use cases and the other city will test the other two. Before the start of the second trial phase, both cities will exchange the experiences and perform a cross evaluation of the trials from the first phase. In the second phase of the trials the cities will perform the trials of the other two use cases.
- Section 6 presents a discussion about ethical issues in the deployment and the execution of the use cases in both cities.
- Section 7 provides a checklist of the tests for the RERUM technical contribution.
- Section 8 concludes the document, discussing the main conclusions from the specifications of the trials and the evaluation methodology.

1.4 Relation to other activities and tasks

Deliverable D5.1 is the basis for the work to be performed in WP5 as it defines the tests to perform in the lab experiments and in the trials, as well as the methodology for the evaluation and validation of the results. Task 5.3 will perform the lab experiments defined in section 3, based in the definition of the system architecture from deliverable D2.3. Sections 4 and 5 details the trials in the two pilot smart

cities for the use cases defined in D2.1. Section 4 describes the trials that will be performed in Heraklion as part of task 5.4, while section 5 describes the trials that will be performed in Tarragona as part of task 5.5. See Figure 1 shows the relationships.

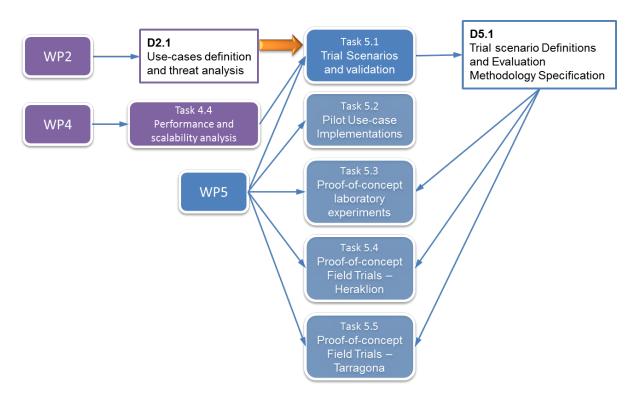


Figure 1 Overview of tasks in WP5 related to D5.1 and the most important links

1.5 Lab experiments and trial activities planning

The planning for the lab experiments and trial activities includes a set of inter-related tasks where some of them provide feedback to other tasks.

Lab experiments, will conduct proof of concept controlled experiments to assess the performance of the components developed within WP2-WP4. The results of these lab tests will be used to improve the components tested, and the conclusions will be applied in the first phase of the live trials in the pilot cities starting in M25. In parallel to the first phase, the lab experiments will continue to improve those components with some performance issues, and the final conclusions and improvements will be provided in M30 just before the start of the second phase of the live trials. The conclusions will be provided in the report *D5.3 Laboratory evaluation*.

Pilot use case implementation task starts at M16 and will run until M30, performing the implementation in terms of development of specific use case components and integration of the trials for the four use cases. Between M16 and M24 the effective implementation will take place, while between M25 and M30 feedback will be collected from initial results of the experiments and trials to implement necessary revisions in the developments. Report *D5.2 Smart object and application implementation* provides the specifications of the hardware and software developed for the experiments and trials.

Trials Phase 1 run from M16, performing the preparation activities until M24. These preparatory activities include looking for the optimal location for sensors and devices, distribution of middleware components for each UC in both pilot cities and the planning of the trials activities, and the briefing activities before the live trials start. From M25 until M29 the phase 1 of the live trials is performed,

collecting the information to evaluate the performance of the RERUM architectural framework for each UC running in the pilot cities during this phase (UC-O1 & UC-I1 in Heraklion and UC-O2 & UC-I2 in Tarragona).

Trials cross reporting, between M29 and M31, include the debriefing activities from the phase 1 trials, compiling the issues found during the trials (see 2.1.2 Evaluation process, Step 2), the evaluation of the measurements collected during the trials and the users' evaluation results from the surveys. The information collected and the conclusions will be transferred to the other pilot city for the phase 2 trials. As a final step briefing meetings will be hold in each pilot city to the impact from phase 1 results and conclusions to adjust the phase 2 trials accordingly.

Trials Phase 2 run from M25, performing the preparation activities until M30. These preparation activities are equivalent to those described for trials in phase 1. From M31 until M35 the phase 2 of the live trials is performed, collecting the information to evaluate the performance of the RERUM architectural framework for each UC running in the pilot cities during this phase (UC-O2 & UC-I2 in Heraklion and UC-O1 & UC-I1 in Tarragona).

The final step is the **Cross Evaluation** that will collect the results of the two trial phases, analysing the results of the trials in both cities to assess the portability of the RERUM architectural framework. The conclusions will be reported in *D5.4 Field Trials Results & cross evaluation*.

Figure 2 shows a Gantt planning of the activities described above.

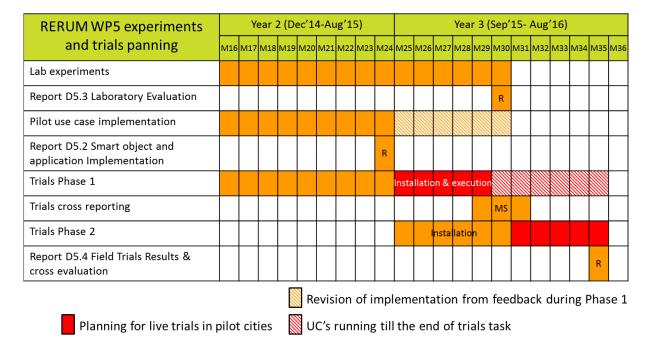


Figure 2 Time plan of lab experiments, use case implementation and trials

The approximate planning for trials phase 1 including milestones for meetings and main activities is presented below:

- Pre-Trial briefing meetings, for preparation of first phase of live trials by the end of July:
 - During CW 29 to 31 2015 (13th to 31st July 2015)
- Start-trial briefing meetings, to check any issues found after the effective start of live trial, by beginning September when the live trials should start:
 - During CW 37 to 38 2015 (7th to 18th September) Some follow-up meeting could be necessary.

- Start of the first phase trials: M25- M26 September to October 2015
 - Installation. A few RDs will be deployed in strategic points to early detect problems in their performance (data collection, networking, communication with the gateways and the middleware server). The middleware server will be deployed.
- Progressive RDs deployment: M27 M29 November to January 2016.
 - o End-user application deployment. End of the RDs deployment. Execution of trials.
- End of trials briefing meeting. To collect information about issues found during trials and evaluation results, by end of January, last month of phase 1 trials:
 - O During CW 3 and 4 2016 (18th to 29th January)

2 Evaluation Methodology and Criteria

This section describes the evaluation methodology and the criteria to evaluate the RERUM architectural framework. This evaluation and criteria measures the technical effectiveness, through two different types of tests, *lab experiments* that will test some components and subsystems in a controlled environment, and *trials* that will test the architectural framework in the context of four different use cases in two pilot smart cities. Besides the technical criteria the use cases have specific KPI's to measure the specific performance of the application of the RERUM architecture in real world scenarios, complementary to the evaluation criteria defined later in this section.

2.1 Definition of RERUM evaluation methodology

In the scope of the RERUM project, the evaluation methodology provides the connection between the development of the architectural framework and the lab experiments and use case based trials to ensure that the architecture provides the expected performance and functionalities.

To perform the evaluation the **designers** have provided the evaluation criteria based on the critical innovations of the system, that is, the **target** for the evaluations. These evaluations will be performed by the **evaluators**, partially through in-lab experiments performed by a group of partners which have participated in the design and development of the solution, and through the test trials in both Smart Cities environments considered in the project.

2.1.1 Evaluation model

The ISO has defined a set of series of Standards dedicated to software product quality and evaluation. ISO/IEC14598 [1] series of standards specify the evaluation methodology for general software product in information technology. ISO/IEC9126 [2] series of standards specify metrics for product quality in software engineering and a simplified process for evaluation. These two series of standards are complementary as shown in Figure 3 below.

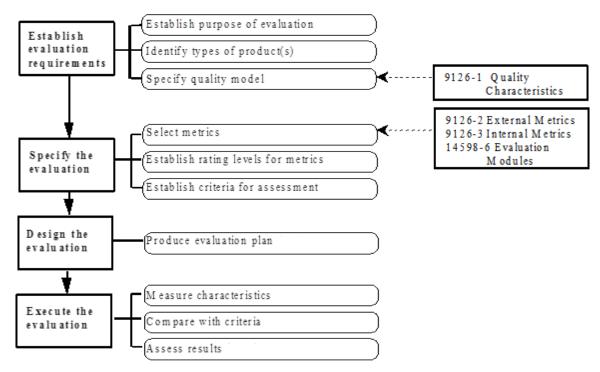


Figure 3 Evaluation process view according to ISO/IEC 14598-1 [4]

Step 1: Establish evaluation requirements

This step establishes the purpose and the products to evaluate, that in the case of RERUM is to test the architectural framework through lab experiments and live trial tests based on previously identified use cases. The quality model in this case is based on fulfilling the innovation requirements which is the key differentiator of the RERUM platform from other IoT existing architectures.

Step 2: Specify the evaluation

This step comprises the activities for the selection of metrics, establishing the rating levels and the criteria for assessment.

The quantitative specification and measurement of the software quality requirements can only be made by using metrics which are associated to desired quality characteristics.

For each selected metric evaluation rating values are defined for the related scale, where the required level of the attribute to be measured can be expressed. Besides the evaluation criteria, each use case has its own KPI's and performance metrics that will provide an evaluation of the impact of each UC in the specific Smart City scenario, besides the RERUM architectural framework.

For the use case KPI's and performance metrics, when applicable, reference measurements should be considered when these measures compare to situations previous to the deployment of the trials, well based on existing statistics, or performing specific measurements previously to the deployment of the trial use case.

Step 3: Design the evaluation

This step defines the evaluation activities and methods. In RERUM it comprises the in-lab experiments, and the use case trials, where the specific data will be collected to check that the different evaluation criteria meet the evaluation metrics.

Step 4: Execute the evaluation

The selected metrics are applied to the components or solutions, resulting in values on the scales of the metrics. The measured values are then compared to the criteria established in the specification. In the assessment activity a set of rated values are summarised and a statement of the extent to which the software product meets quality requirements is made.

2.1.2 Evaluation process

The approach of evaluation process is composed of three steps, one for the evaluation of the in-lab experiments that will assess the performance of architectural components, a second one to evaluate the overall system on a proof of concept field trials approach, and a third one to perform final cross-evaluation of each UC to assess the portability of the system.

Step 1: In-lab experiments evaluation process. In this process it will be performed the experiments defined in section 3 Proof-of-Concept Laboratory experiments, in a controlled environment, assessing the performance of the specified functionalities. This step will be performed in task T5.3:

- 1. The results will be measured against the evaluation criteria KPIs defined for each experiment and detailed in section 2.3 Evaluation Criteria.
- 2. Any deviation from the expected results will be assessed to improve the related system modules or to know their limitations.
- 3. Any improvement will be incorporated in the modules to be integrated in the trials use cases.

Step 2: Field trials evaluation process. In this process the RERUM architecture will be evaluated with its deployment in different scenarios based on use case descriptions in tasks T5.4 and T5.5:

- 1. In those use cases with participation of end users, perform the enrolment activities, including necessary open calls for volunteers to be incorporated in the trials.
- 2. Deployment of the UCs. Including the following activities
 - a. Deployment of the integrated components for the use case with the corresponding hardware and software modules.
 - b. Training of end users involved in the measures and / or specific users that will monitor the system through the server application or the effective operation of alarms and actuators.
 - c. Collect any deployment issues to provide early input to the other city for the second trial phase using the form provided in Annex A.
- 3. Running the trials to gather information (measurements) defined for each use case, either based on generic or use case specific criteria). Collect any issues during the execution of the trial to provide early input to the other city for the second trial phase using the form provided in Annex A.
- 4. Evaluation of measurements through the metrics specified for each criterion and against the specified targets.
- 5. Perform the users evaluation through the specific user satisfaction and acceptance criteria defined for each use case. These evaluations will be performed based on a single specific survey/questionnaire covering all the different user based evaluation criteria for each different type of user.
- 6. Exchange of evaluation results and the report of trial deployment and execution issues collected during phase 1 trials, with the support of the technical partners to optimise the deployment of the second phase trials.
- 7. Perform the second phase of the trials for each use case making the improvements recommended by the issues report of the first phase. Execute previous points 1 to 5.

The deployment and execution issues should be collected also during phase 2 of the trials as will be used also for the final cross-evaluation.

Step 3: Cross-evaluation process. This process will receive the results of the two phases of the trials performed in tasks T5.4 and T5.5 and will analyse the results of each city deployment to perform a framework cross-evaluation to assess the portability of the RERUM architectural framework.

- 1. Collect the evaluation reports and the reports of trial deployment and execution issues from each use case from the two trial phases.
- 2. Analyse found issues from the collected reports and evaluate if they correspond to:
 - a. Specific deployment or execution conditions in one of the trial cities for one of the given use cases. If the issue was only found during the phase-1 trials inquire if this was not found during phase-2 trials because it was avoided after following the recommendations from the reported issue in phase-1 or because the conditions of the trial in phase-2 are different than those in phase-1
 - b. Specific deployment or execution conditions in the trial for both cities for one of the given use cases. If the issue was found in both cities, determine, if this was because specific conditions found in both trials or if this issue is independent from those specific conditions, and therefore it will replicate if this scenario is deployed in another Smart City.
- 3. Analyse evaluation results from measurements and look for deviations from expected targets:
 - a. For generic evaluation criteria, analyse if these deviations are found in one of the following cases to determine if it is dependent from one specific condition in the UC or city or if it is inherent to the architectural framework:
 - i. One or more use cases in one city dependent from a specific city condition

ii. One or more use cases in both cities – could be inherent to RERUM's architectural framework

- b. For use case specific evaluation criteria analyse if these deviations are found only in one city trial or in both to determine if it is dependent from one specific condition in the city or if it is inherent to the architectural framework.
- c. Analyse results from users' evaluation, specific for each use case, and look for deviations from expected targets. Analyse if these deviations are found only in one city trial or in both to determine if it is dependent from one specific condition in the city or if it is inherent to the architectural framework.
- 4. Compile the conclusions from the cross-evaluation process to bring out RERUM's portability to other Smart City use cases or the same tested use cases to other cities.

2.2 Criteria definition template

In this section, we describe fields which will be used to define an evaluation criterion and give a template for criterion definition.

We focus on evaluation criteria from the technical and user perspective or point of view such as performance, security, efficiency, etc.

We identified the following fields to describe an evaluation criterion:

- Identifier: A unique ID number for the criterion (will be assigned later)
- Name: Short name for the criterion
- Category: of the criterion (authorization, efficiency, performance, security)
- Description: Description of the criterion.
- Rationale: brief description explaining why this criterion is important in the evaluation.
- Evaluation responsible: Responsible for performing the evaluation and assuring that the mechanisms to collect the information are in place
- Evaluator two types of evaluators are defined:
 - o Expert: Evaluation performed by a non-final user.
 - User: User based evaluation (can be in addition to the expert based) referring to the usability criteria that will be used for the evaluation.
- Evaluation process: How this criterion must be evaluated:
 - Expert: Description of the expert evaluation process
 - User: Description of the user evaluation process (based on questionnaire or any other form)
- Requirements: Requirements to proceed with the evaluation (availability of hardware, other components, testing conditions)
- Evaluation metrics (KPIs): this field enumerates the evaluation metrics used for the evaluation. The nature depends on the defined criterion. The result of an evaluation criterion can be Boolean (yes/no) or numerical (can be also a percentage). In this case a reference or target value is needed.
- Rank: importance of the criteria; this field is used to specify the importance or ranking of each criterion. For example, each criterion may be assigned a rank of:
 - M: for Mandatory,
 - o D: for Desirable, or
 - O: for Optional.
- Type of test: Lab, Trial (or both)

Table 1 below shows the template to complete the criterion definition.

Table 1 Criterion definition template

ID	<unique id<="" th=""><th>></th><th>Name</th><th><short name=""></short></th><th></th><th>Category</th><th><category></category></th></unique>	>	Name	<short name=""></short>		Category	<category></category>
Description							
Ration	ale	<bri></bri>	ef description	for criterion pre	sence>		
	luation <name of="" partner="" responsible=""></name>						
Evaluat	Evaluator		ert; User: { U.C	r.1, U.Cr.7, U.Cr.	13, }		
Evaluat		-		criterion must be	•	·	
Require	ements	<reo< td=""><th>quirements to p</th><td>oroceed with the</td><th>e evaluation></th><td></td><td></td></reo<>	quirements to p	oroceed with the	e evaluation>		
Metric	s and	<kpi and="" target=""></kpi>					
Rank		<rar< td=""><th>nk></th><td></td><th>Туре</th><td><lab, (d<="" td="" trial=""><td>or both)></td></lab,></td></rar<>	nk>		Туре	<lab, (d<="" td="" trial=""><td>or both)></td></lab,>	or both)>

2.2.1 ID

Every criterion needs to be uniquely identified. The criterion ID is a unique label given to the criterion.

The following naming convention must be followed for all evaluation criteria:

<UC>.<CAT>.<number1>.<number2>.<number3>

Where:

- <UC> indicates the use case concerned by the criterion and can be one of the following:
 - AL = concerns all use cases.
 - ST = Smart transportation (UC-O1)
 - EM = Environmental monitoring (UC-O2)
 - HE = Home energy management (UC-I1)
 - CQ = Comfort quality analysis (UC-I2)
- <CAT> indicates to which category the criterion belongs to. See section 2.2.2 for details.
- <number1>: a unique number of the criterion inside its category. It is a static field.

2.2.2 Category

This field determines the category of the criterion among:

- AU = Authorization;
- EF = Efficiency;
- PE = Performance;
- SE = Security;

This field may be redundant with -ID field since the category information is available in criterion ID.

2.3 Evaluation Criteria

To evaluate the architectural framework the following evaluation criteria are used. Evaluation will be undertaken by:

- Users: It will be based on usability criteria specified in section 2.3.1.
- Experts: The evaluation will be performed by the expert evaluator assigned, either in the lab experiments or in use case trials. Expert-based evaluation will use techniques specific to the criterion being evaluated. The main purpose of these criteria is to evaluate the individual system modules.

Sections 2.3.2 - 2.3.5 specify the details of the criteria being evaluated. For each criterion, the tables list whether it will be evaluated by users and/or experts. They also specify which Use-Cases will be used for the evaluation.

2.3.1 Usability criteria for user-based evaluation

User-based evaluation will be based on questionnaires to be filled in by end-users. The project will leverage the experience with the cooperation with FORSEC (please see section 6.5). Specifically we will turn to experts to design questionnaires in a format typical for systems' end-users (i.e. rating the level of agreement to statements in a numerical scale). The aim is to get quantitative outputs to criteria as in the following list (not a comprehensive one):

- Common for all Use-Cases
 - [UE.CO.1]: The application's performance and responsiveness is acceptable and consistent
 - [UE.CO.2]: The application behaves consistently
 - [UE.CO.3]: The application's security features were transparent and did not have a negative impact on its ease of use.
 - [UE.CO.4]: The feature being evaluated, which is experimental and whose utility was being checked in the trial, has proven to be worthy for the user and fulfilled or at least contributed to the objective it was included for.
 - [UE.CO.5]: The users got access to the system according to the security criteria defined by the system administrator
- UC-O1: Smart Transportation
 - o [UE.ST.1]: The application had an acceptable impact on my phone's battery life
 - [UE.ST.2]: The application had a positive impact on my transportation planning.
 - [UE.ST.3]: The application resulted in a change of my transportation habits.
- UC-O2: Environmental Monitoring
 - o [UE.EM.1]: The application provided accurate and timely measurements.
 - [UE.EM.2]: The application did not require high operational and maintenance costs, especially for changing batteries.
 - o [UE.EM.3]: The application was well-received by the citizens.
 - o [UE.EM.4]: The application was helpful for the municipality to raise warnings for specific citizen categories (i.e. the elderly to avoid specific areas).
- UC-I1: Home Energy Management
 - [UE.HEM.1]: The application helped the municipality save energy and costs.
 - [UE.HEM.2]: The application was exploited to create a new plan for minimizing the energy consumption of municipal buildings.
 - o [UE.HEM.3]: The application did not leak private data for the employees.
- UC-I2: Comfort Quality Monitoring
 - [UE.CQM.1]: The application provided accurate and reliable results for the air quality of the municipal offices.

 [UE.CQM.2]: The application helped improve the air quality informing the workers when the air quality levels were low (e.g. to open the windows if the outside air quality was better).

 [UE.CQM.3]: The application was successfully integrated with the Environmental Monitoring application.

The questionnaires will be designed taking into account the previous criteria and the following research questions for user acceptance, according to the characteristics of each use case.

<u>UC-O1: Outdoor – Smart transportation</u>

- Will the users want to use such an application?
- How useful would they find it?
- Do they care about their location privacy?
- Are they afraid that the city/police will be able to track them down?
- Do they understand how RERUM will ensure that they can't be tracked down by the authorities if they use the app?
- When the real users utilize the application, we would like to understand if they identified any
 problems with the application, if it depleted their battery quickly, if they noticed that the
 application was using a lot of data when sending measurements, how much they used it, if
 they noticed the app permissions, etc.

UC-O2: Outdoor - Environmental monitoring

- Do people feel there is any positive use in the environmental data collected? Is it going to benefit them and the community?
- Would people agree that from the analysis of the environmental monitoring and to prevent episodes of air pollution in order to increase quality of life, some alarms / notices / recommendations could be raised over the population?
- Are you afraid that potential alarms for low air quality would affect the people living in those areas or would decrease the number of tourists/visitors?
- Do you want the authorities to restrict the access to sensitive data like pollution or low air quality to avoid the issue mentioned in the previous bullet?

UC-I1: Indoor - Home energy management

At first it should be categorised the type of respondent because it may have a direct impact on the type of answer:

- a) Municipal worker, city official (all those that may work in municipal facilities)
- b) Citizen (not working in the municipality facilities)

Questions:

- Do the people think that by monitoring the energy consumption at public buildings the state/municipality will exploit those data to reduce unneeded public spending?
- Do the people find useful an application that monitors the energy consumption of devices at their home and potentially providing them with alarms for reducing energy spending?
- Are the people afraid that by using an energy monitoring system their neighbours or other third parties may be able to track their presence at home and their everyday activities?

• Are the employees afraid that with the usage of such an energy monitoring application they could be tracked within the building?

- How people would feel safer regarding their privacy in public buildings
 - Knowing that the information is collected, transmitted and stored with the safest processes to keep the privacy of information?
 - Or that the information is collected with a level of granularity in which it is not possible to track a specific person?
- Do the people feel comfortable to use an energy monitoring system, if they are assured by the developer that it will protect their privacy?
- Are the people worried for their privacy if the data from the energy monitoring application are stored in a server away from their household or on the cloud?

UC-I2: Indoor - Comfort quality monitoring

At first it should be categorised the type of respondent because it may have a direct impact on the type of answer:

- a) Municipal worker, city official (all those that may work in municipal facilities)
- b) Citizen (not working in the municipality facilities)

Questions:

- Would people agree that it is relevant to invest in indoor monitoring of the quality of the air to improve the conditions on the workplace or also on their home?
- Would people feel comfortable and safe with a system like this to monitor comfort quality?
- Would the people trust the indications or the alarms of a comfort quality monitoring system?
- Are the people afraid that such comfort quality monitoring systems could collect some private information at their homes like presence and noise level or air quality?
- Are the employees afraid that such a system would be used to track their activities all the time by their employees?
- In a home comfort quality monitoring system at your home, would you agree to share environmental information collected from an outdoor sensor connected to your home system to a city-wide environmental monitoring system thus contributing to an improved environmental monitoring system in your city?
- Would the people trust information from external systems to be used for making suggestions to the comfort quality system, e.g. using the outside temperature as measured by another system in order to automate actions like opening a window?
- Are the people afraid that they might get hurt considering the fact that such comfort quality systems may automate actions like closing doors?

2.3.2 Authorization criteria

ID	AL.AU.1		Name	Enrich a process with evaluation	authorization reputation	Category	Authorization, Reputation
Descrip	Enrich authorization process with reputation evaluation. It will check whether it is post for some users, especially guest ones, to get altered their access according to the crespecified by the RERUM administrator and their reputation in the system						according to the criteria
Iooki This t (3 me the s			king for cases w trial will have neans normal). system to chai	vhere it changes a predefined set The administrat	the result of the of users with or will be able r with these us	he access decision a reputation set to see how the sees by either see	s a useful difference by n. to a value different to 3 reputation values make ing how these users try
Evaluat respons	-	ATO	OS				
Evaluat	cor	Ехре	ert; User: { UE.	CO.1, UE.CO.2,	JE.CO.3, UE.Co	O.4, UE.CO.5}	
Evaluat		 Upload a global policy in the system that rejects any user to access any service reputation level is 'very poor', that is, a value lower than 3 Check that one specific user with reputation higher than 2 is able to access an the services that he would normally be granted to access Modify the system configuration for that user to ensure that his reputation is 2. Try again to access the same service that the chosen user succeeded to access step 3 and check that now he is rejected access User: System administrator User (administrator): Decide on whether to keep the policy that takes into access the evaluation of the reputation or not User (non-municipality users known to have a reputation evaluation subject to 					able to access any of his reputation is set to ceeded to access in nat takes into account
Require	ements	The application must be accessed by more than one RERUM registered user that is different by guest, too. Note that this excludes those UCs where the application uses single generic user assigned to the application, such as the mobility UC					the application uses a
Metrics target	s and	The key target here is that there is at least one real user that gets its access altered by to metric Target 1: The reputation engine properly evaluates the reputation for all the RERU registered users, except generic user GUEST. Target 2: Number of policies taking into account the evaluation of the reputation reskept by the administrator user at the end of the trial > 0					tion for all the RERUM
Rank		D			Туре	Trial (UC: I2	_A , UC-O2 _G ,)

ID AL.AU	2	Name	Integration of A with business da		Category	Authorization	
Description	Integration of ABAC in IoT with specific business data contained in the attributes user that is issuing the request						
Rationale The user attributes are provided by the identity provider and are normally particle the access decision, because of being guaranteed by the Identity provider has test checks the ability of the system to make decisions based on those attributes.						y provider himself. This	
Evaluation responsible							
Evaluator	Exp	pert; User: { UE.	CO.1, UE.CO.2, U	E.CO.3, UE.C	0.5}		
Evaluation process	1. 2. 3. Usicon appliance	access decision. For instance, use a role attribute to check that the user is assigned that role 3. Check the policy with different users that have different values for that attribute by inspecting the logs of the authorization engine User (administrator): Using a set of previously known users with known values for the attribute being taken in consideration for the evaluation of the policy, check they get granted access to the application accordingly to their attributes. Take note on the total number of accesses and any wrong access to it. Reset the number of wrong accesses and wrong accesses to zero if a fix regarding this is					
Requirements	No	ne					
Metrics and target Number of wrong accesses to the system according to this policy = 0 Number of non-test policies referring to user attributes > threshold Target threshold to be defined by the municipality. Value recommended = 0						ld	
Rank	М			Туре	Trial (UC:I1	_{A,} I1 _B , T-I2 _B , T-I1 _B)	

ID	AL.AU.3		Name	Integration of ABAC in IoT with system attributes	Category	Authorization
Descri	ption	Integration of ABAC in IoT with system attributes: Check that the system is able to m access decisions based on the day or hour of the request.				
Ration	System attributes such as date and time of the request are special because t necessarily included in the request and not all authorization engines are able t them.				•	
Evalua respor		ATOS				
Evalua	ntor	Expe	ert; User: { UE.	CO.1, UE.CO.2, UE.CO.3, UE.CO	O.4, UE.CO.5}	

Evaluation	Expert:					
process	Prepare 2 XACML policies that take into account the date and time of the request, respectively, and check they work properly by executing operations through the applications at distinct hours and days to cover the four possible combinations of date / time with available and non-available slots. Specifically, create policies that take into account time ranges where special environmental conditions are expected, such as Tarragona's annual Firework contest					
	User (System administrator):					
	Check that the final users get properly authorized depending on the date / times they access to the system					
Requirements	These tests require to be executed at certain hours of the day to make sure they a evaluated properly					
Metrics and	Percentage of correct evaluations	= 100				
target	Number of non-test policies contain	ining time or date	criteria > threshold			
	Target threshold to be defined by the municipality. Value recommended = 0					
Rank	D	Туре	Trial (UC: I1 _B , O2 _G I1 _{C,,} T-I2 _D)			

ID	AL.AU.4		Name	Integration of ABAC in IoT with specific business data in the request	Category	Authorization
Description Integration of ABAC in IoT with specific business data contained in any text information contained in the request, even if its structure is specific from the resource or service to accessed. More specifically, this evaluation checks that the requests contain a field indicates the requester has accepted the privacy conditions needed to access the service.						esource or service to be ests contain a field that
Rationale			ck the ability operted MIME-1	of the system to evaluate any t TYPE formats	ext content of th	ne request in any of the
Evalua respor		ATOS				
Evalua	tor	Ехр	ert; User: { UE.	CO.1, UE.CO.2, UE.CO.3, UE.CO	O.5}	
Evalua proces	Expert in collaboration with service developer: 1. Prepare a requests that contain a check on the field that checks the acceptance the requester of the privacy conditions needed to access the service 2. Upload proper XACML policies that evaluate that concrete field independently 3. Check that they are evaluated correctly. User (System administrator): Check that the user get properly authorized depending on whether they have accept the privacy conditions or not					service eld independently
Requirements In this concrete case, the evaluation is specific to the structure of the reque known by its developer or the system administrator. For this reason, it is need this test is checked not only by the security expert but also by the developer of to be protected. It will also be necessary to have complete documentation of the each service is exposing.			son, it is necessary that developer of the service			

Metrics and target	Percentage of correct evaluations of Number of non-test policies contain Target threshold to be defined by the second of the sec	ning any supporte	
Rank D		Туре	Trial (UC: I1 _A , I1 _B , T-I2 _B , T-I1 _B)

ID	AL.AU.5	Na	ime	Integration of ABA specific busines predefined attrib	s data in	Category	Authorization
Descri	Description This evaluation criteria checks that the system is effectively able to enforce privacy cribased on purpose parameter						
Ration	Purpose is a paramount attribute when it comes to enforce privacy criteria because is based on the purpose that the data are going to be used for. For this reason, all requare required to include a purpose field stating it. The tests in this table check that System is able to take into account the purpose stated in the request and in the propose stated in the request and in the req						this reason, all requests is table check that the
Evalua respon		Atos					
Evalua	tor	Expert;	User: { U	JE.CO.1, UE.CO.2, U	JE.CO.3, UE.CO	D.4, UE.CO.5}	
Evalua	•.•.	 Expert: For UCI2: Upload a privacy policy that checks that the field purpose has a value of 'Statistics'. Issue requests that would be accepted if this criteria would not be taken into account and vary the field purpose. Those requests that have the value 'Statistics' for must be accepted and the rest must be rejected 					
		User (System administrator): Check that the data to be protected by those policies can be accessed only through the actions in the applications that corresponds with the ones defined in the privacy policies and count any possible access not complaining with that purpose.					
Requir	rements	The application developers will have to provide examples of valid requests to their services so It is possible for the expert to tweak the field 'purpose' manually					
Metric	s and	Percentage of correct evaluations = 100 Target: Number of accesses to these data that get granted but do not comply with t consent expressed in the policy policies = 0				lo not comply with the	
Rank		D			Туре	Trial (UC: T-	12 _c)

2.3.3 Efficiency criteria

ID	ST.EF.1		Name	Power Consum (Android)	ption	rates	Category	Efficiency, Energy
Descri	ption			s to measure the niddleware is use		-	umption of the d	eveloped android apps
Rationale The android application must be lightweight in battery consumption very limited to no observable battery drain when installing and run								
Evaluation LiU responsible								
Evalua	User at Trial							
	To evaluate the power consumption standard programming tools within the andro exist. In lab there will be a set of experiments where the developed apps will be to (see: https://source.android.com/devices/tech/power.html) Private user should answer question on observing significant battery depletion time installing the UC-O1 trial app.						d apps will be tested.	
Requir	rements	Android devices that include a battery fuel gauge such as a Summit SMB347 or Maxim MAX17050.					mit SMB347 or Maxim	
Metric								
Rank		М			Туре		Lab & Trial (O1 _A ,, T-O1 _A)

ID	ST.EF.2	Name	СР	U Load of mobile o	evice	Category	Efficiency, Resources	
Description		The criterion aim is to measure the CPU load of the developed android apps once the RERUM middleware is used with them.						
Evaluation responsible		LiU						
Rationale		The android application must be lightweight in CPU usage so that citizens have very limited to no observable processing burden when installing and running the apps						
Evaluator		Expert at Lab User at Trial						
Evaluation process		To evaluate the CPU load programming tools within the android API are available: for example the Android System Monitor is a system-level monitor tool for Android system. It can real-time display and record system information (ex: CPU, memory usage, network etc.). It also provides APIs for more accurate measurement.						

	Private user should answer question on observing significant glitches in the Quality of Experience when the app is not in the foreground after installing the UC-O1 trial app.					
Requirements	-					
Metrics and target	Keep the CPU % of the app as low as possible while collecting and transmitting					
Rank	М	Туре	Lab & Trial (O1 _B , T-O1 _B)			

ID	AL.EF.3	Name	Crypto-Memor Consumption-C		Category	Efficiency, Resources, Security, Privacy		
Description		 ECC Signature on device to have a secure integrity SA from the RERUM device Lightweight Datagram Transport Layer Security (DTLS) Protocol Malleable Signatures on device to allow and control authorised modifications 						
Rationale		This criterion evaluates the increase in memory consumption (RAM, ROM, external storage) when the RERUM devices or other platforms are executing a specific cryptographic algorithm or protocol by which RERUM wants to enhance the security. This allows assessing if the specific cryptographic algorithm or protocol is suitable for running on a constrained device, with limited storage in RAM and ROM. Using additional space on external memory will negatively affect the energy efficiency and the speed.						
Evalua respon		 UNIVBRIS for: Lightweight Datagram Transport Layer Security (DTLS) Protocol UNI PASSAU for: ECC Signature on device to have a secure integrity SA from the RERUM device Malleable Signatures on device to allow and control authorised modifications 						
Evalua	ator	Expert at lab						
Evalua		 Expert: Rough estimation based on compiled code size and/or the required memory for storing cryptographic keys Prototypical implementations on platforms (e.g. Z1, RE-Mote, OpenMote, RaspberryPI, etc.) can be measured using compiler options and runtime monitors. 						
Requirements Cryptographic algorithms parameters regarding type of keys a Hardware and prototypical implementation						and key size		
Metric target		Average memory Consumption (RAM_ROM and external storage) of a specific						
Rank		М		Туре	Lab			

ID AL.EF.4	Name	Crypto-Communication- Overhead	Category	Efficiency, Communication, Security, Privacy		
Description	Lightweight Da	on device to have a secure int stagram Transport Layer Secur atures on device to allow and	rity (DTLS) Protoc	ol		
Rationale	This criterion evaluates the increase in message sizes or communication activity (message, number of messages) when the RERUM devices or other platforms are executing specific cryptographic algorithm or protocol by which RERUM wants to enhance security. This allows assessing if the specific cryptographic algorithm or protocol is suitated for running on a constrained device, with limited energy for sending messages wireless An increased length of communication messages or the need for additional messages negatively affect the energy efficiency.					
Evaluation responsible	UNI PASSAU for: • ECC Signature	Lightweight Datagram Transport Layer Security (DTLS) Protocol				
Evaluator	Expert at lab					
Evaluation process	of messages ex • System simula • Prototypical in	tions can be used for evaluatir nplementations on platforms (tc.) can be measured using de	ng the number of e.g. Z1, RE-Mote	messages , OpenMote,		
Requirements	Cryptographic used primitive	algorithms parameters regard s and their security parameter prototypical implementation		_		
Metrics an target	 Average increase in message size of a specific crypto algorithm (in bytes) Average number of messages of a specific crypto algorithm (natural number) Overhead (additional number of messages or additional message size) of an interaction involving the cryptographic algorithm (e.g. encrypting a message and sending the encrypted message) compared to the same interaction not involving the cryptographic algorithm (e.g. sending the plain text message). 					
Rank	М	Туре	Lab			

ID	AL.EF.5	Name	Crypto-Energy- Consumption	Category	Efficiency, Energy, Security, Privacy	
Descri	ption	 ECC Signature on device to have a secure integrity SA from the RERUM device Lightweight Datagram Transport Layer Security (DTLS) Protocol Malleable Signatures on device to allow and control authorised modifications 				
Ration	ale	This criterion evaluates the increase in message sizes or communication activity (message, number of messages) when the RERUM devices or other platforms are executin specific cryptographic algorithm or protocol by which RERUM wants to enhance security.				

Evaluation responsible	 UNIVBRIS for: Lightweight Datagram Transport Layer Security (DTLS) Protocol UNI PASSAU for: ECC Signature on device to have a secure integrity SA from the RERUM device Malleable Signatures on device to allow and control authorised modification 			
Evaluator	Expert at lab			
Evaluation process	length are known and the protocPrototypical implementations on	col can be simula n platforms (e.g.	ages and transmission of a certain ated inside a simulation framework Z1, RE-Mote, OpenMote, the powertrace module of Contiki	
Requirements	 Cryptographic algorithms parameters used primitives and their security Hardware and prototypical imple 	y parameters (si	-	
Metrics and target	 Average increase in energy consumption of a specific crypto algorithm (in mWh) Overhead (additional mWh) of an interaction involving the cryptographic algorithm (e.g. encrypting a message and sending the encrypted message) compared to the same interaction not involving the cryptographic algorithm (e.g. sending the plain text message). 			
Rank	М	Гуре	Lab	

ID	AL.EF.6	Name	Adaptive sensing encryption/co	compressive mpression	Category	Efficiency, Security	Energy,
Descri	ption		• .	ata encryption/c on the required	•		
Ration							n aims to nts from
Evalua respon	•.•.	FORTH					
Evalua	tor	Expert					
Evalua proces		 Expert: Three RERUM devices will be used (transmitter, receiver, gateway) Data encryption/compression at the transmitter Data decryption/decompression at the receiver Reconstruction error estimation at the receiver, and new compression rate computation, if needed, for meeting the desired QoS					
Requir	 Software implementation of the adaptive CS in the RERUM devices Data storage in the RERUM devices 						
Metrics target • Reconstruction error at the receiver • Percentage of time the reconstruction error stays above the threshold defined QoS of the provided service class				ed by the			

	 transmitted uncompressed me Time required to detect char compression rate False alarms/misdetections in s 	easurements in the signa sparsity changes	d with the energy consumed when I sparsity and adapting to a new or adapting to the sparsity changes
Rank	0	Туре	Lab, Trials ($I1_c$, $I1_D$, $O2_c$, $O2_F$, $I2_D$, T- $O2_c$, T- $I2_E$, T- $I1_c$)

2.3.4 Performance criteria

ID	ST.PE.1		Name	App. & Serve Crash Frequen	•	Category	Performance, Scalability
Description The criterion measures uptime of the developed android apps once th middleware is used with them.					pps once the RERUM		
Ration	ale	The aim to catch at the lab any potential bugs that may hinder the application implementation in the trial					hinder the application
Evalua respor		LiU					
Evalua	tor		ert at Lab r in UC-O1 Pha	se 2			
Evalua		ехр		very major revi			his will be a repeated within the application
				e by answering an to re-start the		rding how often t	hey got error messages
Requir	ements	N/A					
Metric	s and	The target is to investigate whether the app uptime that is independent of network ar load				endent of network and	
Rank		D			Туре	Expert in La Users in tria	b I (UC: O1 _c , T-O1 _c)

ID	AL.PE.2		Name	Measurement precision	Category	Performance, Trust
Descri	ption	This criterion measures the variance around the mean of a collected value in a given static scenario				
Ration	ale			entify the precision (confident then there can be no ground true	•	a limited number of

Evaluation responsible	LiU, FORTH (for UC-O2)			
Evaluator	Expert at Lab			
Evaluation process	Long-term (order of hour) measurements will be taken at static locations. Statistics will be taken and the precision (variance) and confidence interval of the measured quantity will be drawn. For UC-O2 measurements of different devices at the same area will be evaluated to identify potential issues with the devices and their installation position.			
Requirements	N/A			
Metrics and target	The metric is measurement variance around the mean over a window of time. The target is to have it as close to the mean.			
Rank	D	Туре	Lab, Trials (UC-O2 _E , UC-O2 _G , UC-I2 _E , T-I2 _F)	

ID	AL.PE.3		Name	Crypto-Runtime-Overhead	Category	Performance, Security, Privacy	
Descri	 ECC Signature on device to have a secure integrity SA from the RERUM device Lightweight Datagram Transport Layer Security (DTLS) Protocol Malleable Signatures on device to allow and control authorised modifications 					col	
Rationale This criterion evaluates the performance in terms of speed when the RERUM devother platforms are executing a specific cryptographic algorithm or protocol by RERUM wants to enhance the security.							
		run	ning on a cons	sing if the specific cryptograph straint device, with limited sto ch types of scenarios this algo	orage in RAM ar	•	
	UNIVBRIS for: Lightweight Datagram Transport Layer Security (DTLS) Protocol UNI PASSAU for: ECC Signature on device to have a secure integrity SA from the RERUM device Malleable Signatures on device to allow and control authorised modifications					ne RERUM device	
Evalua	itor	Ехр	ert at Lab				
Evalua		 Expert: Algorithm and System simulations can be used for the evaluation of the require clock-cycles and clock speeds of platforms Prototypical implementations on platforms (e.g. Z1, RE-Mote, OpenMote, RaspberryPI, etc.) can be measured using time stamping of several runs of the algorithms and taking the mean. 					
Requir	rements	System parameters and availability of a Simulation framework					
Metric target	Hardware and prototypical implementation Runtime of average execution time of a specific crypto algorithm (in millisecon Overhead (additional execution time) of an interaction involving the cryptogram				ving the cryptographic		

	compared to the same interaction not involving the cryptographic algorithm (e.g. sending the plain text message).				
Rank	М	Туре	Lab, Trials (UC-I1 _d , O2 _F , I2 _d , T-I2 _E , T-I1 _C)		

ID	AL.PE.4	Name	Lightweight Datagram Transport Layer Security (DTLS) Protocol	Category	Performance, Security	
Descrip	ption	Investigation of D	TLS protocol in a real deployme	ent setup.		
Ration	There are many undefined factors of a lightweight DTLS implementation espect considering real deployment behaviour. It is important to select cryptographic schet that will yield to the best performance at chosen security level. As the best performation (i.e. trade-off between factors) one can think of algorithm speed, code footprint or possible consumption and all these metrics will be investigated in the experiment. There is a need to investigate the impact of cryptographic primitives onto the overall protein performance.			cryptographic schemes s the best performance code footprint or power eriment. There is also a		
Evalua respon		UNIVBRIS				
Evalua	tor	Expert at Lab				
Evalua proces		 Code footprint will be measured at compile-time during lab experiments. Performance of particular cryptographic primitives, as well as overall DTLS performance will be measured using on-device timer with specially adjusted DTLS code during a run-time. Power consumption will be measured by external special purpose hardware; DTLS code will be adjusted to provide said measurement possibility. 				
Requir	ements	 Four Re-Mote platforms and one Gateway, connected to each other in specific network topology. Implementation of DTLSv1.2 protocol. Implementation of selected cryptographic primitives, adjusted to Re-Mote and Gateway platforms. Equipment to measure power consumption on Re-Motes during a run-time. 				
Metric target		 Code footprint of cryptographic primitives. Performance of cryptographic primitives running on both Re-Mote platform and Gateway. Power consumption of cryptographic primitives, as well as overall power consumption of DTLS protocol. Overall latency of DTLS handshake in different scenarios, i.e., using symmetric and asymmetric schemes in end-to-end scenario. 				
Rank		М	Туре	Lab, Trials (I	JC: I1 _{d,} O2 _F , I2 _d , T-I2 _E , T-	

ID	AL.PE.5	Name	6LoWPAN Multicast	Category	Performance, Efficiency	
Descript	tion		ow M/W functions can leverage nance and decrease energy ne.	-	· · · · · · · · · · · · · · · · · · ·	
Rational	In scenarios involving point-to-multipoint traffic, transmitting to each destine individually with unicast leads to poor utilization of network bandwidth, excessive enconsumption caused by the high number of packets and suffers from low scalability anumber of destinations increases.					
		-	icular, it is expected that netwo Os and therefore scalability is a		ed by a potentially very	
		replace batteries	RDs are powered by batteries, very frequently due to high n locations. Thus, long battery life	nanagement cos	_	
		•	red from mains, low energy co cost, but also in order to co applicable.	•	•	
Evaluati respons	-	UNIVBRIS				
Evaluato	or	Expert at Lab				
		User in UC-O2 and	UC-I1, based on UE.CO.1, UE.C	CO.2, UE.CO.3		
Evaluati process	-	Expert : Code foot lab experiments.	print and RAM requirements w	vill be measured	at compile-time during	
		For the remaining	metrics:			
		A RERUM gate	vill subscribe to a multicast groue eway will be selected as the soue this multicast group.	-	traffic, with	
		-	ents will use different characte packet size, bit-rate (Const			
		 Network Delay will be evaluated by measuring Round-Trip-Time (RTT) Reliability will be evaluated by measuring Packet Delivery Ratio on each multicast group subscriber. User: User evaluation will be undertaken as per section 2.3.1 				
Require	ments		s discussed in D2.1, evaluation ast traffic be executed on the	•	•	
Metrics target	and	 Reliability by measuring packet loss / packet delivery ratio. Target: This metric is highly-sensitive to traffic rate, network topology, node configuration etc. Therefore, it will be evaluated through comparisons with current state-of-the-art. Network Delay (<1 sec per network hop) 				
		-	embedded devices by measuri e RE-Mote platform: <3 KB and	_	•	
Rank		D	Туре	Lab, Trial (U	IC: O2 _A , T-O2 _A , T-I1 _A)	

ID	AL.PE.6		Name	Compressive encryption/com	sensing pression	Category	Performance, Security
Descri	ption			he efficiency for sive Sensing in a r	_		pression keys that are
Rationale Secret key establishment is a fundamental resource and private information over una resource constrained devices, energy efficiently formation algorithms have distribution mechanism, need to pre-store. In the foreseen experiments, the RERUM do no channel measurements, and more specification (RSSI).				ver unattende gy efficient cry s have sever e-store the key ERUM devices	d environments. ptographic algori al inefficiencies s on the devices will create their	As sensors are severe ithms are a necessity. like requiring a key , etc. encryption keys based	
Evalua respor		FOF	RTH				
Evalua	itor	Ехр	ert				
Evalua		• •	Two of them Initially, the le keys	s device will over	te devices and will exchange p	ackets in order to	us one o create the encryption recuting the same key
Requir	rements	•			the secret key	generation alg	orithm in the RERUM
		•	Data collected	d on the devices a	nd post-proces	ssed in Matlab	
Metric target		 Bit mismatch rate between the encryption keys of the legitimate and the malicious devices Reconstruction error at the two receivers Time required to agree upon a common secret key 					ate and the malicious
Rank		0			Туре	Lab	

ID	D AL.PE.7		Name	Lightweight sensing	spectrum	Category	Performance
Descri	ption	ion To demonstrate the efficiency of the lightweight spectrum sensing framework.					g framework.
Ration	ale	The purpose of the spectrum sensing module is to allow the Cognitive Radio-based RDs to be able to gather spectrum occupancy statistics in an energy efficient way and then extract models of the spectrum occupancy of specific bands. This will minimize the energy consumed by the RDs for sensing the available spectrum bands, by extracting an optimum period for sensing each band and avoid sensing the bands very frequently (process that consumes a lot of energy).					

Evaluation responsible					
Evaluator	Expert				
Evaluation process	Expert: Two SDR devices will be used. A spectrum band will be selected and monitored with the spectrum assignment mechanisms installed. The goal is to learn the transmission pattern of the licensed users (the licensed user will be emulated with a second SDR).				
Requirements	 An SDR will be used for spectrum sensing/assignment A second SDR will be used for primary used emulation (in TV bands) 				
 Metrics and target Speed of convergence to the optimum period for Energy consumed for sensing until the convergence to the optimum period for Energy consumed for sensing using the optimum 			nce is reached.		
Rank	О Т	Гуре	Lab		

ID	EM.PE.8		Name	Device availability	Category	Performance
Descri	iption	Provide availability information of deployed devices to allow users and maintainers to assert the deployment status, schedule preventive maintenance if one or more devices shows behaviours prone to failure, and to provide users and services exploiting the data reliability criteria.				
Rationale The users and maintainers of deployments and runic criteria, to assert the smart devices operation, to transparency of provided services.						
Evaluation Zolertia responsible						
Evalua	ator	Exp	ert			
Evalua proces		rece add Log	as there are at least 5 ket at this time, is to be basis.			
Requi	as metadata periodically. Information about the RD balike network) sent as metadapossible causes of availability. The RD should periodically s			the RD battery life, link qualit as metadata periodically. Thi availability loss. riodically send keep-alive mess ation, if no periodical informa	ey, RSSI and next- is information sho sages with the ab	hop parent (in a meshall be used to diagnose

The server-side application should keep a counter of received and expected messages from every RD. The server-side application should store the historical values of the uptime value of each RD, and be able to distinguish when receiving a counter value of 1 (starting value) due to a counter wrap-around (32-bit variable width suggested), or because of i.e. a RD reboot. The server-side application should display the uptime and packet reception rate information graphically or in tables, with a timestamp reference appended at packet reception at the server-side. The server-side application should support resetting the stored values (uptime, counters, etc.), to allow the maintainer and installer to restart the application, for example upon deployment of the system. The expected uptime per RD should start ticking with a 1 second period when received a first packet from a RD, or upon an application restart as described above. The server-side application should display an alarm about a RD being unavailable, if the RD's PRR drops below a given percentage (to be configured by the maintainer at the deployment phase), providing also a timestamp of the time of the occurrence. Metrics The target are users affected by the system being unavailable, also requiring metrics and and target statistics to validate the system availability and performance, to schedule maintenance tasks, deployment of services using the information provided by the RDs, etc. The following KPI are to be used: PRR (packet reception rate) per RD. Uptime ratio = RD uptime (sum of seconds elapsed) / RD expected uptime. Restart Ratio = number of boot or reboots/day D Rank Trials (UC: T-O2_B, UC-I1_F) Type

2.3.5 Security, Privacy and Trust criteria

ID	AL.SE.1		Name	SIEM	Category	Security, Monitoring	
Descri	ption	SIE	M in a generic I	oT platform			
Rationale		ano	Monitoring and analysing the logs and events in the system is the main way to detect anomalies and therefore know what needs to be improved to ensure the system, one of the priorities of the RERUM project.				
Evalua respor		ATC	ATOS				
Evalua	ator	Ехр	ert				
process		• •	source previous Simulate (gene complains wit	the SIEM web interface, the list usly collected by the SIEM Age erate entries in the data source ha predefined correlation rule the SIEM web interface, in the s.	nts. e -log file-) a sequ that generates a	uence of events that an alarm.	

	• Check that a simple action like send an e-mail or execute a simple command is done and caused by the alarm.					
Requirements	 SIEM server installed SIEM agent installed Plugin configured in the agent for capture the logs from a specific data source. Define a correlation rule in the server that triggers an alarm when a concrete sequence of RERUM events is detected. Define an action in SIEM server Create a policy that associates the alarm and the action. 					
Metrics and target	The target is the storage of RERUM events and alarms and detection of a concrete behaviour based on events and reacts on run-time. Those events and alarms helps to know to administrators what is happened in the RERUM network and gives information for decision taking.					
Rank	М	Туре	Trial (UC: T-I2 _A)			

ID	AL.SE.2		Name	React to alert		Category	Security, Automation
Descri	ption	Inco	orporating adap	otability to an Io	T platform usir	ng PRRS and OAP	/ react to SIEM event
Ration	nale	The OAP resolves the problem of the dynamic actualization of the whole system by automation of software updates and patching. Fixing problems on the fly depends on finding the concrete solution for the raised problem; the context information coming from the events monitoring is key importance for taking the appropriate action.					
Evalua respor		ATC	OS				
Evalua	itor	Ехр	ert				
Evalua		• •	Send an alarm with the alarm services/resou Check with a C	n in JSON format urces/alarms' GET to the same GET to the endpo	t to the PRRS e endpoint if the oint '/PRRS-ser	ndpoint: '/PRRS- e Alert is listed as vice/resource/ac	
Requir	rements	PRRS tool installed and accessible in nort bttn 8080					•
Metrics and target Demonstrate that the system is able to use context information coming from alarm and take it into account for taking actions to mitigate the problem that calarm. The results of the actions taken are accessible from the PRRS interface to check					roblem that caused the		
Rank		D			Туре	Trial (UC: T-	O2 _C)

Description	Incorporating adaptability to an IoT platform using PRRS and OAP / react to security criteria $$				
Rationale	The OAP resolves the problem of the dynamic actualization of the whole system by automation of software updates and patching. Fixing problems on the fly depends on finding the concrete solution for the raised problem; the context information coming from system's monitors or the expertise of system administrators is a valuable asset for taking the appropriate action.				
Evaluation responsible	ATOS				
Evaluator	Expert				
Evaluation process	 Expert: Change the value of a predefined context variable (manually or provided by a connected monitor, e.g. changed location of a Device in the GVO Registry) Check with a GET to the endpoint '/PRRS-service/resource/actionstaken' the 				
Requirements	 context change indeed has produced a reaction. PRRS tool installed and accessible in port http 8080. Define the set of context variables that we can use in the PRRS rule designer. Define a rule, using the PRRS rule designer in the endpoint '/PRRS-webgui', that complies when the context variable used in this evaluation is changed. 				
Metrics and target	Demonstrate that the system is adaptable and can react to context changes on runtime. The results of the actions taken are accessible from the PRRS interface to check them.				
Rank	D Type Trial (UC: O2, I1, I2)				

ID	AL.SE.4		Name	RE-Mote system update	Category	Security, Automation		
Descri	ption		Incorporating adaptability to an IoT platform using PRRS and OAP / direct install from console					
Rationale The OAP resolves the problem of the dynamic actualization of automation of software updates and patching. The possibility of u without physical intervention is a basic feature to implement this				pdating remote devices				
Evaluation ATOS responsible								
Evalua	ator	Ехр	ert					
webgui'. Select the concrete firmwar Select the concrete VRD or V GVO Manager. Confirm and launch the upd				crete VRD or VRD Federation t	o update, previo			
Requirements PRRS tool installed and accessible in port http 8080. Define the set of tags for identifying the software art Integration with the GVO Registry and the RD Deploy				p 8080. ware artefacts.				

Metrics and target	Demonstrate that the system is flexible and scalable because the software of the devices can be updated and modified remotely.						
	The results of the actions taken are	The results of the actions taken are accessible from the PRRS interface to check them.					
	A response from the device after the update (firmware installation) ensures the success.						
Rank	М	Туре	Trial (UC: T-O2 _B)				

ID	ST.SE.5		Name	User Tracking		Category	Privacy
Descri	ption	The ability of the system to not allow for the location of users to be exposed to applications					
Ration	nale	The provision of user transportation primitives such as location, speed, and direction by the middleware to external application may enable user tracking. The aim of this criterion is to evaluate the mechanisms with which the middleware actually does not allow such tracking to take place.					
Evaluation S responsible			SAG / PASSAU / LiU				
Evalua	ator	Exp	ert				
Evaluation process To be evaluated in three ways at the PRIPARE meeting of by analysing the data that by analysing the data that visualization at the webs				E meeting discustine data that the needata that the	mobile phones application get	are transmitting	g to the middleware
Requirements -							
Metrics and Demonstrate that the data provided by the middles cannot allow personally identifiable information to					ernal application server		
Rank		М			Туре	Trial (UC: O:	1 _D , T-O1 _D)

ID	AL.SE.6		Name	Privacy mechanisms	Category	Privacy	
Description		The ability of the RERUM system to protect the privacy of the sensitive user data.					
Rationale		The RERUM architecture is built upon the concept of "privacy by design". The goal is to analyse the architecture and the designed privacy enhancing mechanisms to the PRIPARE experts and discuss the advantages of the proposed solutions or their deficiencies.					
Evalua respon		SAG / PASSAU					
Evalua	tor	Expert					
Evaluation process		To be evaluated at the PRIPARE meeting discussing the mechanisms with the PRIPARE experts.					

Requirements					
Metrics and target	Demonstrate that the data provided by the RERUM system to the external application server cannot allow personally identifiable information to be exposed.				
Rank	М	Туре	Evaluation by external experts for all use cases.		

3 Proof-of-Concept Laboratory experiments

Proof of concept experiments will be conducted in simulations and/or controlled laboratory environments in order to qualitatively and quantitatively assess the performance gains of the protocols and algorithms developed within WP2-WP4, evaluating the performance of the individual system modules in order to identify any issues and to prepare them for the real-world trials in tasks T5.4 and T5.5. These experiments will measure the evaluation criteria of type Lab as indicated in their description in section 2.

3.1 Runtime-, Memory-, Communication-Overhead of Signing and Verifying Message Payload with ECC Standard Signatures in RDs

3.1.1 Purpose of the experiment

The experiment investigates the overheads occurring in devices when the implementation of the ECC based JSON sensor signatures (JSS) is carried out and implemented on RERUM Devices, like Z1 or Re-Mote. These can be applied in almost all UCs. The aim is to validate what the application of ECC signatures on messages has in terms of speed, memory and communication overhead. The whole process can be separated into steps we aim to evaluate them separately, when possible:

- Signing: The generation of the signature could itself potentially be split into steps:
 - (Sign Step1) POTENTIALLY transform (JSON MINIFY) and encode (BASE64URL) input
 - o (Sign_Step2) calculation of a cryptographic hash over encoded input, e.g. SHA 256
 - o (Sign_Step3) the actual calculation of the signature value on the digest, and finally
 - o (Sign_Step4) the addition of the signature into the structure of the message
- Verification: The verification of a signed message could itself potentially be split into
 - o (Vrfy_Step1) parsing the signature from the structure of the message
 - (Vrfy_Step2) POTENTIALLY transform (JSON MINIFY) and de- and en-code (BASE64URL) input
 - o (Vrfy_Step3) the actual signature verification value on the digest
- Key-Generation: The generation generates new key material. It is foreseen that this step is not
 run on the devices itself, or only once at the initial setup. Never the less for completeness,
 RERUM wants to measure the impact of this step if time permits.
 - (KeyGen_Step1) Generate Key(s)

3.1.2 KPIs

- Crypto-Memory-Consumption-Overhead for ECC Signature on device
- Crypto-Communication-Overhead for ECC Signature on device
- Crypto-Runtime-Overhead for ECC Signature on device

3.1.3 Experimental scenarios

RERUM will choose from available ECC curves and configurations at least ECC based on curve secp256r1, that is the P-256 curve equivalently used in XML Signatures described as http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256 and SHA 256 is planned to be implemented as prototypes in Hardware. Potentially, more secure cryptographic algorithm configurations could be chosen, i.e. SHA 512 or an elliptic curve with points in the size of 512 bit length. The Hardware under test for the resource constrained devices is planned to be either Zolertia Re-MOTE and Zolertia Z1 (if implementation is possible) to run the cryptographic.

To measure the increase, we need a base measurement for reference. This will be the implementation without code for the crypto operations, e.g. the implementation will contain no-operation or libraries are not included. Hence this laboratory experiment will feature two devices: RE-Mote#1 in Figure 4 below is the 'vanilla' device. Vanilla means here that the device contains and especially uses none of the cryptographic features under test. Then device RE-Mote#2 is the device that runs crypto, e.g. signs sensor readings.

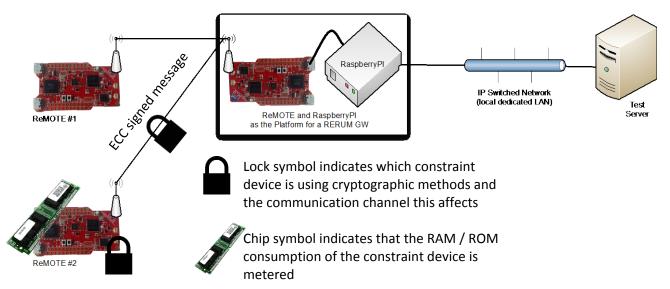


Figure 4 High Level Overview of a potential Experimental Setup: Zolertia's Re-Mote under test for RAM/ROM consumption when testing the application of ECC Signatures (algorithms under test Vrfy and Sign)

The devices under test that this test plans to examine, as referenced in Figure 5, are:

- Zolertia Z1
- Zolertia Re-Mote
- Raspberry Pi (Model B)

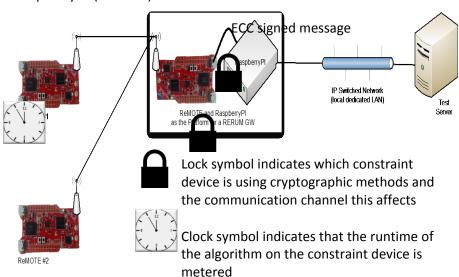


Figure 5 High Level Overview of a potential Experimental Setup: Raspberry PI as Gateway under test for runtime when testing the application of ECC Signatures (algorithms under test Vrfy and Sign)

The following different scenarios will be metered:

3.1.3.1 Experimental scenarios: Runtime-, Memory-, Communication-Overhead of <u>Sign</u> (with sending messages) on Device

In each cycle a counter value is incremented on the device under test and this data is signed and encapsulated into a **signed** message that is sent over the communication channel. The power consumption of this is then compared with the power consumption endured when in each cycle a counter value is incremented on the device under test and encapsulated into a message that **is sent over the communication channel**.

3.1.3.2 Experimental scenarios: Runtime-, Memory-, Communication-Overhead of <u>Verify</u> (with receiving messages) on Device

In each cycle a counter value is incremented on the test server and a signed message is generated, with a key for which the device under test has been deployed with the corresponding verification key. The device under test is **verifying** the message that is **received from the communication channel**. The power consumption of this is compared with the power consumption endured when in each cycle an unsigned counter value is received on the device under test.

3.1.3.3 Experimental scenarios: Runtime-, Memory-, Communication-Overhead of <u>Key</u> <u>Generation</u> (with no communication) on Device

In each cycle a new random key material is generated and stored on the device under test, such that it could be used for further cryptographic operations, e.g. this includes the encoding into some data structure and storage of that in RAM or external Storage.

3.1.4 RERUM architecture functional components involved/tested

Integrity Generator / Verifier

3.1.5 Foreseen experiment risks

None

3.1.6 Timeplan

To be detailed in task 5.3.

3.2 Runtime-, Memory-, Communication-Overhead of Signing, Verifying and Messages with Malleable Signatures in RDs

3.2.1 Purpose of the experiment

The experiment investigates the overheads occurring in devices when the implementation of the Malleable Signature is executed as an implementation on RERUM Devices, like Z1 or RE-Mote. These can be applied in almost all UCs. The aim is to validate what the application of malleable signatures on messages has in terms of speed, memory and communication overhead. The whole process can be separated into steps we aim to evaluate them separately, when possible:

- Signing: The generation of the signature could itself potentially be split into steps:
 - o (Sign_Step1) POTENTIALLY transform (JSON MINIFY) and encode (BASE64URL) input
 - (Sign_Step2) calculation of a cryptographic hash over encoded input, e.g. SHA 256
 - o (Sign_Step3) the actual calculation of the signature value on the digest, and finally

- o (Sign Step4) the encoding / addition of the signature into the structure of the message
- Verification: The verification of a signed message could itself potentially be split into steps:
 - (Vrfy_Step1) parsing the signature from the structure of the message
 - (Vrfy_Step2) POTENTIALLY transform (JSON MINIFY) and de- and en-code (BASE64URL) input
 - (Vrfy_Step3) the actual signature verification value on the digest
- Sanitize/Redact: The modification of a message in an authorised way and the re-computation
 of the signature, such that it still verifies under the signer's verification key could itself
 potentially be split into steps:
 - (Sanitize/Redact_Step1) parsing the signature and the message from the structure of the message
 - o (Sanitize/Redact Step2) modify the message in an authorised way
 - o (Sanitize/Redact_Step2) re-compute the signature on the modified message
 - (Sanitize/Redact_Step2) the encoding / addition of the adapted signature and modified back into the structure of a message
- Key-Generation: The generation generates new key material. It is foreseen that this step is not run on the devices itself, or only once at the initial setup. Never the less for completeness, RERUM wants to measure the impact of this step if time permits.
 - (KeyGen_Step1) Generate Key(s)

3.2.2 KPIs

- Crypto-Memory-Consumption-Overhead for Malleable Signature on device
- Crypto-Communication-Overhead for Malleable Signature on device
- Crypto-Runtime-Overhead for Malleable Signature on device

3.2.3 Experimental scenarios

Same scenarios as with ECC signatures: e.g., 3.1.3.1 for Signing, 3.1.3.2 for Verifying and 3.1.3.3 for Key Generation. Additionally we need to measure the Speed and Storage for the additional algorithms of Sanitize/Redact, which is described as follows in 3.2.3.1.

3.2.3.1 Experimental scenarios: Runtime-, Memory-, Communication-Overhead of Sanitize/Redact (with two way communication) on Device

In each cycle a counter value is incremented on the test server and a malleably signed message is generated, with a sanitizer key (if applicable) for which the device under test has been deployed with the corresponding sanitization key. In each cycle that message is sent over the communication channel to the device under test, which **performs a single sanitization/redaction** and adapts the signature accordingly to the malleable signature scheme under test. This authorised change is then encapsulated into a message with the re-computed signature message that is **sent over the communication channel**. The power consumption of this is then compared with the power consumption endured when in each cycle a message without a signature is just received from the communication channel and the value in it is incremented by one on the device under test and then encapsulated into a message that is sent back over the communication channel.

3.2.4 RERUM architecture functional components involved/tested

Integrity Generator / Verifier

3.2.5 Foreseen experiment risks

None.

3.2.6 Timeplan

To be detailed in task 5.3.

3.3 Energy Efficiency of Malleable Signatures on RDs

3.3.1 Purpose of the experiment

The experiment investigates the power consumption of the implementation of malleable signature schemes. These can be applied in almost all UCs. The aim is to validate what the application of such a malleable signature scheme for messages has in terms of power cost. This experiment will evaluate four different processes as a whole: signing only, sanitization/redaction only, verification only and key generation. Each process includes all its steps and then the communication.

- Signing: The device under test will continuously generate data, sign data, and communicate the signed data.
- Verification: The device under test will continuously receive signed data, and will verify the signature.
- Sanitization/Redaction: The device under test will continuously receive malleable signed data, and will execute a valid sanitization or redaction and update the signature such that it can be sent over the communication channel to still be verified.

As Malleable Signatures might need special keys or cryptographic material, the experiments will try to determine the energy costs of generating new key material:

• Key-Generation: The device under test will continuously generate new key material and store it, such that it could be used for generating signatures.

3.3.2 KPIs

Crypto-Energy-Consumption of Malleable Signatures on device

3.3.3 Experimental scenarios

For each algorithm that is about to be tested the device under test is given a different task to run continuously. We plan using the powertrace module of Contiki. As a fall back alternative we plan to use measurements of the real batteries power level over time.

The following different scenarios will be metered:

3.3.3.1 Experimental scenarios: Energy Overhead of Sign (with sending messages) on Device

In each cycle a counter value is incremented on the device under test and this data is signed and encapsulated into a malleably **signed** message that is sent over the communication channel. The power consumption of this is compared with the power consumption endured when in each cycle a counter value is incremented on the device under test and encapsulated into a message that **is sent over the communication channel**.

3.3.3.2 Experimental scenarios: Energy Overhead of <u>Verify</u> (with receiving messages) on Device

In each cycle a counter value is incremented on the test server and a malleably signed message is generated, with a key for which the device under test has been deployed with the corresponding verification key. The device under test is **verifying** the message that is **received from the communication channel**. The power consumption of this is compared with the power consumption endured when in each cycle an unsigned counter value is received on the device under test.

3.3.3.3 Experimental scenarios: Energy Overhead of Sanitize/Redact (with two way communication) on Device

In each cycle a counter value is incremented on the test server and a malleably signed message is generated, with a sanitizer key (if applicable) for which the device under test has been deployed with the corresponding sanitization key. In each cycle that message is sent over the communication channel to the device under test, which **performs a single sanitization/redaction** and adapts the signature accordingly to the malleable signature scheme under test. This authorised change is then encapsulated into a message with the re-computed signature message that is **sent over the communication channel**. The power consumption of this is then compared with the power consumption endured when in each cycle a message without a signature is just received from the communication channel and the value in it is incremented by one on the device under test and then encapsulated into a message that is sent back over the communication channel.

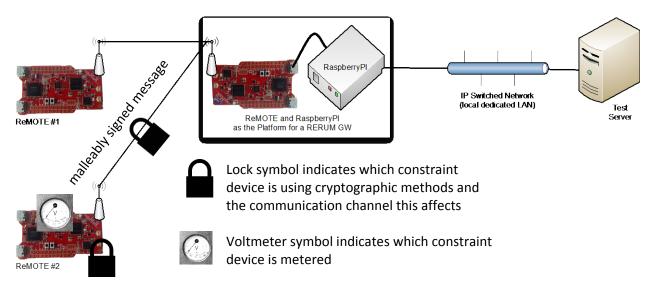


Figure 6 High Level Overview of a potential Experimental Setup: Zolertia's RE-Mote under test for power consumption when testing the application of malleable Signatures (algorithms under test Vrfy and Sign and Sanitize/Redact)

Figure 7 High Level Overview of a potential Experimental Setup: Zolertia's RE-Mote under test for power consumption when generating cryptographic key material (algorithms under test KeyGen)

3.3.3.4 Experimental scenarios: Energy Overhead of <u>Key Generation</u> (with no communication) on Device

In each cycle a new random key material is generated and stored on the device under test, such that it could be used for further cryptographic operations, e.g. this includes the encoding into some data structure and storage of that in RAM or external Storage. Figure 6 and Figure 7 show the experimental scenarios for the energy overhead consumption for key generation.

The devices under test that this test plans to examine are:

- Zolertia Re-Mote
- Raspberry Pi (Model B)

3.3.4 RERUM architecture functional components involved/tested

Integrity Generator / Verifier

3.3.5 Foreseen experiment risks

None

3.3.6 Timeplan

To be detailed in task 5.3.

3.4 Energy Efficiency of ECC based payload Signatures on RDs

3.4.1 Purpose of the experiment

The experiment investigates the power consumption of the implementation of the ECC based JSON web signatures. These can be applied in almost all UCs. The aim is to validate what the application of ECC signatures on messages has in terms of power cost. This experiment will evaluate two different processes as a whole: signing only and verification only. Each process includes all its steps and then the communication.

- Signing: The device under test will continuously generate data, sign data, and communicate the signed data.
- Verification: The device under test will continuously receive signed data, and will verify the signature.

For completeness we will also try to determine the energy costs of generating new ECC keys:

• Key-Generation: The device under test will continuously generate new key material and store it, such that it could be used for generating signatures.

3.4.2 KPIs

Crypto-Energy-Consumption of ECC Signature on device

3.4.3 Experimental scenarios

RERUM will choose from available ECC curves and configurations at least ECC based on curve secp256r1, that is the P-256 curve equivalently used in XML Signatures described as http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256 and SHA 256 is planned to be implemented as prototypes in Hardware. The Hardware under test for the resource constrained devices is planned to be either Zolertia RE-Motes or Zolertia Z1 (if implementation is possible) to run the cryptographic.

To measure the increase, we need a base measurement for reference. This will be the implementation without code for the crypto operations, e.g. the implementation will contain no-operation or libraries are not included. Hence this laboratory experiment will feature two devices: RE-Mote#1 in the picture below is the 'vanilla' device. Vanilla means here that the device contains and especially uses none of the cryptographic features under test. Then device RE-Mote#2 is the device that runs crypto, e.g. signs sensor readings.

The detailed scenarios are the same as in the case of malleable signatures, just not the Sanitize/Redact algorithms, i.e. 3.3.3.1 for Sign, and 3.3.3.2 for Verify and 3.3.3.4 for Key Generation. Figure 8 below shows the experimental setup scenario for this test.

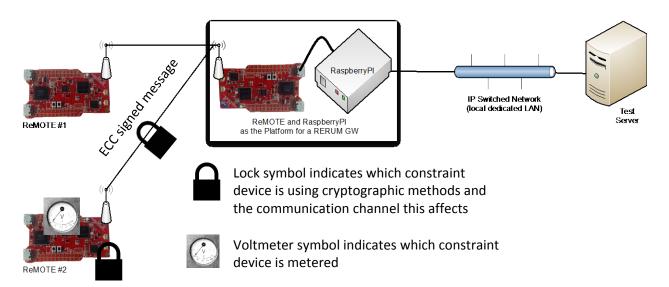


Figure 8 High Level Overview of a potential Experimental Setup: Zolertia's RE-Mote under test for power consumption when testing the application of ECC Signatures (algorithms under test Vrfy and Sign)

3.4.4 RERUM architecture functional components involved/tested

Integrity Generator / Verifier

3.4.5 Foreseen experiment risks

None.

3.4.6 Timeplan

To be detailed in task 5.3.

3.5 RSSI-based CS encryption keys

3.5.1 Purpose of the experiment

The experiment investigates the efficiency of the proposed method for extracting encryption and compression keys that are used for Compressive Sensing in a real-world experiment. This method is described in detail in the deliverable D3.1, where theoretical evaluation is being performed in terms of simulations. The idea here is that this method will be implemented on real hardware and tested in a controlled indoor environment to evaluate its performance. The implementation and testing will be done in laptops because of the current complexity of the method that does not allow us to test it in existing sensor platforms like the Zolertia Z1. However, due to the recent availability of the new sensor platform from Zolertia that is designed according to the RERUM requirements, the implementation of the RSSI key extraction mechanism on the RE-Mote will be studied in the next months.

The experiment requires the implementation of three nodes, two of them are legitimate and one is the malicious node. The legitimate nodes are trying to agree on a common key to use it for CS encryption and encrypt the measurements that they exchange. The malicious node also runs the same algorithm with the legitimate nodes and tries to identify the key of the legitimate nodes. The goal of the experiment is to show that if the malicious node is further than a specific distance from the legitimate nodes, it has a very high reconstruction error, which means that its encryption key differs significantly compared with the key of the legitimate nodes.

So, in this experiment we will test the efficiency of the method both in terms of reconstruction error for the legitimate nodes and for the malicious node.

3.5.2 KPIs

The KPIs that will be measured within this experiment are the following:

- Time required to agree on a common CS key (actual time in seconds and relative time in terms of number of exchanged packets required)
- Legitimate nodes' reconstruction error
- Malicious node reconstruction error
- Bit mismatch rate between the keys derived by the legitimate nodes
- Bit mismatch rate between the keys derived by the malicious node and the legitimate nodes

3.5.3 Experimental scenarios

This experiment will be run on a specific topology that is shown in Figure 9. In this topology we have three devices that could be either laptops or RE-Motes. No other devices are required for this experiment. All devices are wirelessly interconnected (the wireless technology is not important, either IEEE 802.11 or IEEE 802.15.4 can be used). All devices are running the exact same program for extracting CS keys using RSSI measurements and then use this key for decrypting/decompressing the measurements that they gather.

One of the legitimate devices plays the role of the sensor that gathers measurements, while the other legitimate device receives the measurements and decrypts them. The malicious node plays the role of a passive listener that receives the measurements and tries to decrypt them using the key that he has derived.

So, the devices in this experiment are the following:

- D1: legitimate device gathers measurements and wants to transmit them to D2.
- D2: legitimate device receives the measurements from D1
- D3: malicious device receives the measurements from D1 and wants to decrypt them.

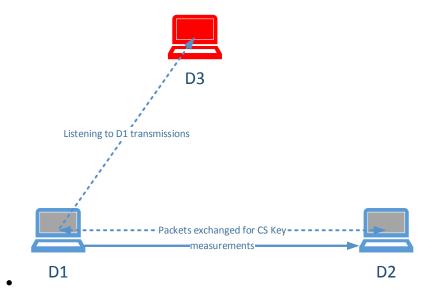


Figure 9 Topology of the RSSI-based CS key extraction experiment

And the process followed in the experiment scenario is:

- D1 exchanges packets with D2.
- D3 receives the packets sent by D1.
- D1 and D2 derive their CS keys using the method and identify the common key.
- D3 derives its CS key.
- These keys are compared with each other in order to calculate the bit mismatch error between:
 - D1 key and D2 key
 - D3_key and D1_key
- D1 encrypts the measurements and sends them to D2. The measurements are also stored in order to be used for comparing them with those of D2 and D3 to calculate the reconstruction errors.
- D2 and D3 receive and decrypt the measurements.
- The reconstruction error of the measurements received by D2 and D3 are calculated (comparing the decrypted measurements with the originals) and the reconstruction errors are compared with each other.

This scenario will be repeated for different distances between the devices in order to calculate how the distance affects the difference in the reconstruction errors.

3.5.4 RERUM architecture functional components involved/tested

- Data encrypter/decrypter

3.5.5 Foreseen experiment risks

There is a risk inherent in this experiment and is related with the effect of the multipath phenomena on the RSSI, so indoor experiments may not have good results. In this case the experiments will be repeated in more indoor areas.

3.5.6 Timeplan

Indicative timeplan for this experiment:

- Implementation of the programs for deriving CS keys: until August 2015

- First set of experiments run indoor: until November 2015.
- Evaluation of the results: December 2015

3.6 Adaptive CS-based data gathering

3.6.1 Purpose of the experiment

The goal of this experiment is to evaluate the performance and the efficiency of the adaptive CS-based data gathering mechanism that has been developed within RERUM. This mechanism aims to provide a secure and energy-efficient way of gathering sensing measurements from constrained IoT devices that can provide services with different Quality of Service (QoS) requirements. This mechanism will be described in detail in deliverable D4.2 (due end of August 2015), but is also published in [1]. The basic idea is that we utilize the Compressive Sensing technique in order to compress blocks of measurements and transmit much less packets than if we did not compress/encrypt the measurements. Thus, we save a significant amount of transmission energy with only a very small fraction of additional energy spent in CPU. Furthermore, due to the inherent security features of the CS technique, the transmitted measurements will also be encrypted.

This experiment will use real devices and will run on both Zolertia Z1s and RE-Motes. A comparison of the performance of the mechanism when it is run on RE-Motes compared with Z1s will also be done.

The experiment may include several devices, however a minimum of one IoT device is required for the experiment and then a target device that does the decryption of the measurements and could be (i) the gateway, (ii) the RERUM Middleware or (iii) an application server. The target device needs to know the QoS requirements of the service to be provided by the device in order to identify the target compression rate.

3.6.2 KPIs

The KPIs that will be measured within this experiment are the following:

- Reconstruction error at the receiver
- Percentage of time the reconstruction error stays above the threshold defined by the QoS of the provided service class
- Energy consumption of this technique compared with the energy consumed when transmitted uncompressed measurements
- Time required to detect changes in the signal sparsity and adapting to a new compression rate
- False alarms/misdetections in sparsity changes
- Communication overhead (increased signalling) for adapting to the sparsity changes

3.6.3 Experimental scenarios

This experiment will be run on a specific topology that is shown in Figure 10. In this topology we have three devices, one playing the role of the client that gathers, compresses and transmits the measurements, an intermediate device playing the role of a router and another device playing the role of the receiver that receives the measurements and decompresses them. The client (Z1 or RE-Mote) will utilize a standard IEEE 802.15.4 wireless interface. The intermediate router can also be discarded if the receiver device has an IEEE 802.15.4 interface. However, in the experiments the receiver will be a standard laptop or a PC, so there is the need for the intermediate router to route the packets from the IEEE 802.15.4 interface to the standard IEEE 802.11 interface to transmit the packets to the laptop/PC. This is a bare minimum of devices that are required to execute this experiment. However, other clients may also be included if needed, but each one will be separately handled by the receiver. We assume that the receiver is powerful enough to handle multiple different clients simultaneously, so no scalability evaluation is required at this experiment.

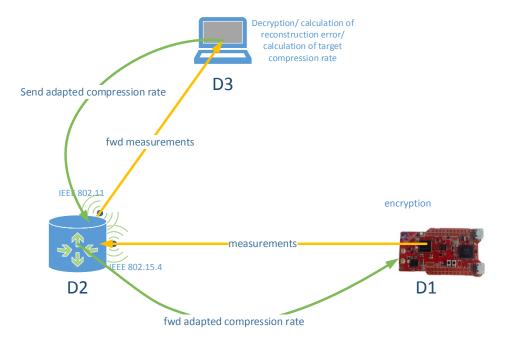


Figure 10 Topology of adaptive CS data gathering experiment

So, the devices in this experiment are the following:

- D1: client device gathers measurements, encrypts them and transmits them to D3 (through D2).
- D2: router device receives the measurements from D1 through the IEEE 802.15.4 interface and routes them to D3 through the IEEE 802.11 interface.
- D3: server device receives the measurements from D1, and decrypts them.

For the sake of simplicity of the experiment, the RERUM Middleware is avoided.

For the experiments we envisage the scenarios described below.

Scenario1

This is a simplistic scenario that aims to evaluate the reconstruction error at the receiver and the energy consumption of the client device and has the following process:

- D1 gathers the measurements, encrypts them and sends them to D3.
- D1 also measures the energy consumed for transmitting a specific number of measurements.
- D3 receives the measurements, decrypts them and evaluates the reconstruction error.
- D1 repeats the same process for measurements that are not compressed in order to measure the energy consumption for a full set of measurements.

This scenario will be repeated for different compression rates, ranging from 20% to 80% in order to see the performance of the mechanism and the energy saved by using the proposed CS method.

Scenario2

This is a more advanced scenario that aims to evaluate the efficiency of the adaptive CS technique. In this scenario, the receiver will evaluate the reconstruction error and compare it against a threshold set by the QoS of the service class that is provided by the client. Then, if the error is higher, the receiver will calculate the new compression rate that is required to have an error within the QoS limits and will send the new compression rate back to the client device in order to adjust the compression rate. This process will be run on the RE-Mote as a client device which is quite powerful in terms of memory to

handle this process. A simplistic implementation on the Z1 will also be tested, but due to the very strict hardware limitations in terms of memory it is not ensured that the process will run efficiently.

The process of the experiment is the following (the comparison of the energy consumption is not performed in this scenario because the results will not differ compared with those of the previous scenario):

- D1 gathers the measurements, encrypts them and sends them to D3.
- D3 receives the measurements, decrypts them and evaluates the reconstruction error.
- D3 compares the error against the threshold set by the QoS of the service class provided by D1.
- If the error is higher than the threshold, D3 calculates the target compression rate for adjusting the reconstruction error.
- On the contrary, if the error is very much lower than the threshold (which means that D1 does not do the maximum compression allowed consuming more energy) then D3 also calculates the optimum compression rate in this case.
- If D3 cannot calculate directly the optimum compression rate, it may ask D1 for additional measurements.
- D3 sends the target optimum compression rate back to D1.
- D1 receives the optimum compression rate and adjusts the compression matrix accordingly for the next set of measurements.
- The number of additional packets with measurements required by D3 to calculate the new compression rate will be measured by D3 to assess the communication cost incurred by the mechanism.

This scenario will be repeated for different service classes with different reconstruction error thresholds to see the performance of the mechanism and the speed to calculate and adapt to the new compression rate.

3.6.4 RERUM architecture functional components involved/tested

- Data encrypter/decrypter
- RD adapter
- Module for data gathering (Resource manager in the RD adapter)
- Energy efficiency non functional requirement

3.6.5 Foreseen experiment risks

Complexity of the mechanism and high memory requirement may disallow the implementation on the Z1.

3.6.6 Timeplan

Indicative timeplan for this experiment:

- Implementation of the resource manager for the device: until September 2015
- First set of experiments run indoor: until November 2015.
- Evaluation of the results: December 2015

3.7 Sensor self-monitoring

3.7.1 Purpose of the experiment

The goal of the experiment is to evaluate the performance of the self-monitoring mechanism developed within RERUM. This mechanism is presented in detail in RERUM Deliverable D3.1. Its objective is to gather both network and device statistics from the RERUM Devices (RDs) in an energy

efficient and effective way. These statistics will be sent to the centralized RERUM MW in order to be utilized by the Resource Monitor and the Alert Processor to identify possible problems with the network mechanisms (i.e. channel assignment, routing) or with the devices themselves (i.e. device is shut down) and try to resolve the issue. In this respect, the devices gather both types of statistics and periodically sends them to the MW.

This experiment aims to implement this mechanism in real devices, using both RE-Mote and Z1s. The mechanisms to gather the statistics will be implemented on Contiki and installed on the devices. The experiment focuses only on gathering and transmitting these measurements/statistics and not on the server-side exploitation of these statistics. Thus the implementations of the Resource Monitor and the Alert Processor are out of the scope of this experiment.

The module that gets the statistics and transmits them to the MW (or to the server) is implemented as an IoT Resource on the RDs and a Service is exposing this Resource. On the MW side, we have a specific application that accesses this Service and presents the results on a graph.

3.7.2 KPIs

The KPIs that will be measured within this experiment are the following:

- Both network statistics and device statistics will be measured.
- The period of transmitting the statistics and its effect on the energy consumption of the devices will be evaluated.
- The communication overhead (increased signalling) for transmitting the statistics will be calculated.
- The period of transmitting the statistics and its effect on identifying network/device errors will be calculated.

3.7.3 Experimental scenarios

This experiment will be run on a topology like the one shown in the previous Figure 10, with the client (D1) being a Z1 or a RE-Mote, D2 being still the router and D3 playing the role of both the RERUM MW and the application server. This is a bare minimum of devices that are required to execute this experiment. However, other clients may also be included if needed, but each one will be separately handled by the MW (D3). We assume that both the MW and the router are powerful enough to handle multiple different clients simultaneously, so no scalability evaluation is required at this experiment.

So, the devices in this experiment are the following:

- D1: RERUM device that needs to be self-monitored. It has a Resource for "self-monitoring" which is exposed by a Service. Listens for service requests that are sent by the MW. It gathers both network and device statistics, encrypts them and transmits them to D3 (through D2).
- D2: router device receives the statistics from D1 through the IEEE 802.15.4 interface and routes them to D3 through the IEEE 802.11 interface.
- D3: MW and application server listens for application requests, sends service requests to D1, receives the statistics from D1, and displays them.

For the experiments we envisage the scenario described below (we assume that the registration of RD D1 on the MW has already been done before starting this process):

- An administrator creates an application in D3 to request the monitoring statistics of D1.
- D3 translates the application to a service requests and invokes the "self-monitoring" Service of D1, by sending an http/coap request to the device.

- D1 gets the service request and accesses the "self-monitoring" Resource that gathers (periodically) both the network and device statistics. The period is set by the service request according to a parameter set by the administrator when he requests the application.

- D1 sends periodically the statistics to D3.
- D3 gathers the statistics and displays them.
- D1 measures the energy consumed by both the CPU that gathers the statistics and the Radio interface that transmits the measurements.
- D3 measures the network load due to the network statistics that are exchanged.

This scenario will be repeated for different periods of monitoring and with more than one RDs. The scenario will be run for both the Z1 and the RE-Mote. The energy consumed for self-monitoring by both Z1 and RE-Mote will be calculated and compared with each other.

3.7.4 RERUM architecture functional components involved/tested

- RD adapter
 - Resource Manager
 - o RERUM Services wrapper
- Network monitoring

3.7.5 Foreseen experiment risks

No risks are foreseen in this experiment. The mechanisms are very lightweight and will run flawlessly in both Z1 and RE-Mote.

3.7.6 Timeplan

Indicative timeplan for this experiment:

- Implementation of the Network Monitoring module for the Z1: until June 2015
- First set of experiments run for the Z1s: until August 2015.
- Implementation of the Network Monitoring module for the RE-Mote: until August 2015
- First set of experiments run for the RE-Mote: until October 2015.
- Evaluation of the results: November 2015

3.8 Lightweight spectrum sensing framework

3.8.1 Purpose of the experiment

The goal of this experiment is to evaluate in a controlled laboratory environment the efficiency of the lightweight spectrum sensing framework. The target evaluated modules are those for gathering spectrum occupancy measurements and modelling the spectrum occupancy. These mechanisms are explained in detail in deliverable D4.1.

The purpose of the spectrum sensing module is to allow the Cognitive Radio-based RDs to be able to gather spectrum occupancy statistics in an energy efficient way and then extract models of the spectrum occupancy of specific bands. This will minimize the energy consumed by the RDs for sensing the available spectrum bands, by extracting an optimum period for sensing each band and avoid sensing the bands very frequently (process that consumes a lot of energy).

For the experiment scenario due to hardware requirements and the fact that Cognitive Radio mechanisms require running on top of Software-Defined-Radio (SDR) devices, this mechanism can't be implemented on existing IoT platforms like Z1 or RE-Mote. In this respect, standard SDR devices will be utilized in this experiment in order to evaluate the performance of the proposed mechanism.

3.8.2 KPIs

The KPIs that will be measured within this set of experiments are the following:

- Speed of convergence to the optimum period for spectrum sensing.
- Energy consumed for sensing until the convergence is reached.
- Energy consumed for sensing using the optimum period.
- False positives and false negatives when sensing the spectrum after converging to the optimum period.
- Comparison of the energy consumed in the overall process compared with a standard spectrum sensing mechanism.

3.8.3 Experimental scenarios

This experiment requires only one device that plays the role of the RD, having installed the mechanism for lightweight spectrum sensing. Then, this RD will sense the spectrum at specific spectrum bands, in order to identify the optimum period for sensing. However, since this experiment will be executed at indoor environments and the RD will select to sense spectrum fragments at the TV-bands (below 900MHz) it will be difficult to sense accurately real transmissions and to know their transmission model in order to evaluate if the spectrum occupancy model extracted by the RD is accurate. Thus, for the sake of the experiment and to be able to make a proper evaluation of the results, another SDR device will be used to play the role of a licensed user that transmits according to pre-defined models at a specific spectrum band.

The scenario run in the experiment is described below.

Scenario 1 (spectrum occupancy measurements)

- The RD is an SDR-based device (laptop with an SDR PCI express card) capable of sensing a wide spectrum band.
- The licensed user is another SDR device that will have installed a specific transmission model.
- The RD will start sensing the spectrum band that is only used by the licensed user according to the spectrum sensing mechanism.
- After an amount of time the RD will have converged to the optimum sensing period and will have extracted a model of the transmission of the licensed user (depending on the characteristics of the model)
- The speed of convergence to the optimum period in terms of time (number of timeslots) will be assessed.
- The energy consumed until the convergence will be measured together with the energy consumed for each period of sensing.

This experiment will be run for different timeslots and for different transmission models of the licensed user. The goal is to evaluate the speed of convergence and the energy consumption for each set of experiments.

3.8.4 RERUM architecture functional components involved/tested

CR-agent (spectrum sensing module)

3.8.5 Foreseen experiment risks

For the spectrum occupancy measurements framework there is an inherent risk in this experiment that the proposed model takes a lot of time to converge to the optimum sensing period and this depends on the timeslot that is selected, because the convergence time is directly proportional to the

timeslot. Thus, at the beginning a short timeslot will be selected to avoid unneeded delays in the running of the experiment.

3.8.6 Timeplan

Indicative timeplan for this experiment:

- Implementation of the licensed user that will emulate different transmissions: starting on May until June 2015
- Implementation of the CR-agent on the SDR device: until November 2015
- First set of experiments: until December 2015
- Evaluation of the results and re-run: until February 2015

3.9 CR-based gateway

3.9.1 Purpose of the experiment

The goal of this experiment is to evaluate the efficiency of the implementation of the CR-based gateway. This implementation of the CR gateway is described briefly in D4.1. It has only one SDR card on board and by using SDR technology it is able to emulate transmissions of two different networking technologies, namely IEEE 802.15.4 and IEEE 802.11 and integrate them at the same time serving multiple users of both technologies. The gateway is very important in IoT scenarios due to the fact that it is controlled completely by software and can be utilized to serve even more technologies by installing the required software. The antennas used span from few MHz up to 6GHz so they can be used for many other transmission technologies. Thus, in future IoT scenarios with RDs that apply Dynamic Spectrum Access mechanisms, this type of a gateway will be mandatory to ensure an efficient interconnection of RDs with diverse and heterogeneous types of traffic and different technologies.

3.9.2 KPIs

The KPIs that will be measured within this experiment are the following:

- CPU and RAM utilization for each of the networking technologies
- Power consumption
- Spectrum utilization
- Scalability of the gateway cannot be evaluated in experiments due to the limited number of SDR devices that we have.

3.9.3 Experimental scenarios

This experiment will be run on a topology like the one shown in Figure 11 below. There are two RDs, one being connected with a IEEE 802.15.4 interface (Z1 or RE-Mote) and another one connected with a standard IEEE 802.11 interface (laptop or smartphone). These devices are connected with the SDR-based gateway that also has an Ethernet connection with a server that runs the RERUM MW. The goal of the experiment scenario is to show that both devices can send their measurements to the MW through the SDR-based gateway in an efficient and timely way.

So, the devices in this experiment are the following:

- D1: RERUM device connected through IEEE 802.15.4 that gets sensor reading and transmits them to the MW.
- D2: RERUM device connected through IEEE 802.11 that gets sensor readings and transmits them to the MW through the GW.

• GW: this is the SDR-based gateway, implemented on a standard mini-PC with an SDR card connected to a PCI express slot that emulates both network interfaces for IEEE 802.11 and IEEE 802.15.4. The GW is connected to the MW through an Ethernet interface.

• MW: this is a device that plays the role of both the MW and the application server. It sends service requests to the device and receives their measurements, displaying the results.

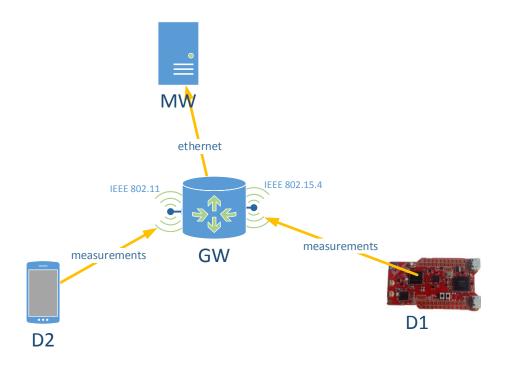


Figure 11 Topology of the SDR-based gateway experiment

For the experiments we envisage the scenario described below (we assume that the registration of D1 and D2 on the MW have already been done before starting this process):

- An administrator creates an application in the MW to request measurements from the two devices (D1 and D2).
- The MW translates the application to service requests and invokes the Services on the devices.
- The GW receives the packets from the Ethernet interface and routes them accordingly to the packets, by appropriately scheduling them and sending them to the correct (virtual) network interfaces for each device.
- The devices get the service requests and accesses the respective Resources, gathering the sensor measurements and sending them back to the MW through the GW.

The experiment will be repeated for different amounts of traffic from the devices in order to assess the performance of the gateway in terms of CPU utilization, memory usage, power consumption and spectrum utilization.

3.9.4 RERUM architecture functional components involved/tested

- Communication manager/routing
- Communication manager/protocol translation
- Communication manager/interface selection
- Communication manager/scheduling

3.9.5 Foreseen experiment risks

The foreseen experiment risks depend on the use of the SDR devices and their efficiency, because existing SDR cards are not working perfectly.

3.9.6 Timeplan

Indicative timeplan for this experiment:

- Implementation of the various modules of the gateway for emulating IEEE 802.11 and IEEE 802.15.4: end of March
- First set of experiments: until June 2015
- Evaluation of results: until July 2015

3.10 Android-based RDs applications & services stability and accuracy

3.10.1 Purpose of the experiment

These experiment target to verify that the android application & servers developed for the participatory sensing in the UC-O1 perform well with respect to unexpected system crashes and the human user. The experiments described herein will be conducted interleaved with the development process to evaluate a set of KPIs.

3.10.2 KPIs

- CPU Load of mobile device
- App. & Server Uptime & Crash Frequency

3.10.3 Experimental scenarios

We have designed four scenarios for experiments to assess the performance and test the developed components. For the first two android app tests we will follow the guidelines and test sheets of the AQuA (App Quality Alliance) Testing Criteria for Android Applications¹. For the latter two we will conduct experiments with fabricated data first on simulation and then on the actually deployed server. Note that since the traffic estimation application itself falls outside of the RERUM scope, there is no associated RERUM KPI for the accuracy of estimator. The aim is to compare whether the RERUM functionalities hinder the performance of an off-the shelf estimator.

3.10.3.1 Android app CPU load measurements

Using standard Android SDK functionalities (Dev Tools App) over the android emulator Android Studio we will initially test the CPU load of the application before passing it on the device. Still, this will be tested even on the real hardware, to validate the there are no significantly long CPU usage times on the finalized implementation.

3.10.3.2 Android app stability tests

A brief lab campaign will be conducted where the application will be stressed by (i) being overloaded with high frequencies of sensory data transmission and (ii) large numbers of multiple requests.

¹ http://www.appqualityalliance.org/files/AQuA_testing_criteria_for_Android_for_v1.4%20final%207_feb_2013.pdf

3.10.3.3 Traffic estimator server stability tests

These experiment scenarios target to verify the application server for the traffic estimation in the UC-O1 performs well. Doing so will require to (i) examine the stability in time under normal operating conditions, (ii) stress the estimator with high loads of input from participatory devices.

3.10.3.4 Traffic estimator accuracy

Note that since the traffic estimation application itself falls outside of the RERUM scope, there is no associated RERUM KPI for the accuracy of estimator. The aim is to compare whether the RERUM functionalities hinder the performance of an off-the shelf estimator.

3.10.4 RERUM architecture functional components involved/tested

Communication and Network Manager, Configuration & Monitoring Manager

3.10.5 Foreseen experiment risks

N/A.

3.10.6 Timeplan

Indicative timeplan for this experiment:

To be detailed in task 5.3.

3.11 Energy Efficiency of Android-based RDs

3.11.1 Purpose of the experiment

The experiment investigates the power consumption of the implementation of the android application for participatory sensing in the UC-O1. The aim is to validate that the application performs effective sensing of the required traffic primitives, at no substantial power cost.

3.11.2 KPIs

Power Consumption rates (Android)

3.11.3 Experimental scenarios

3.11.3.1 Long term power consumption versus the load of requested data

This scenario aims at investigating the power cost of the privacy enhancing mechanisms implemented on the app. Specifically we will investigate how the frequency with which the app collects and transmits data affects the power consumption. The aim is to identify potential components that are performing poorly and enhance the implementation. In this scenario, also different techniques for mobility detection and alternative positioning, e.g. WiFi or cellular positioning, will be evaluated.

3.11.3.2 Power consumption of CS processes

This scenario aims at investigating the power cost of the CS implementation on the app. To this end we will compare the power cost of collecting and transmitting traffic primitives with and without the CS mechanism enabled. Trade-offs arising on the compression level / compression matrix size will be investigated against their power costs.

3.11.4 RERUM architecture functional components involved/tested

Data Manager

3.11.5 Foreseen experiment risks

N/A.

3.11.6 Timeplan

Indicative timeplan for this experiment:

To be detailed in task 5.3.

3.12 Android pilot devices measurements precision

3.12.1 Purpose of the experiment

The purpose of the experiment is to evaluate different devices and their capabilities for possibility of using Android-based participatory sensing. Specifically the inputs regarding key sensors for location positioning will be performed. Furthermore, it can act as a reference for the applications server: which given a device model it can infer trust metrics on the collected values.

3.12.2 KPIs

- Measurement precision.

3.12.3 Experimental scenario

3.12.3.1 Location Precision

In this set of scenarios the measurements collection application will be run to test the device GPS in terms of (1) time-to-first-fix and (2) variability/precision. The experiments carried out will be done with at least 3 different candidate devices for the pilot trial and performed in different location settings: in city wide road (squares), in city narrows (single lane – tall buildings), suburban environment and both within a vehicle and out of. Each set of measurements will be performed with a set of fixed device orientations.

3.12.3.2 Signal Strength Precision

In this set of scenarios the measurements collection application will be run to test the device signal strength measurement precision at different locations as with the location precision. In both experiments the output will be a dataset that will be used to identify the most appropriate device for the pilot trials as well as evaluate the effect of errors on different types of sensors for the traffic estimation application.

3.12.4 RERUM architecture functional components involved/tested

Data Manager

3.12.5 Foreseen experiment risks

Stability of the SNR API for different android versions and phones may limit the available number of android devices which can be utilized in the participatory sensing for the trials.

3.12.6 Timeplan

Indicative timeplan for this experiment:

To be detailed in task 5.3.

3.13 Android-based RDs applications & services stability and accuracy

3.13.1 Purpose of the experiment

These experiment target to verify that the android application & servers developed for the participatory sensing in the UC-O1 perform well with respect to unexpected system crashes and the human user. The experiments described herein will be conducted interleaved with the development process to evaluate a set of KPIs.

3.13.2 KPIs

- CPU Load of mobile device
- App. & Server Uptime & Crash Frequency

3.13.3 Experimental scenarios

We have designed four scenarios for experiments to assess the performance and test the developed components. For the first two android app tests we will follow the guidelines and test sheets of the AQuA (App Quality Alliance) Testing Criteria for Android Applications². For the latter two we will conduct experiments with fabricated data first on simulation and then on the actually deployed server. Note that since the traffic estimation application itself falls outside of the RERUM scope, there is no associated RERUM KPI for the accuracy of estimator. The aim is to compare whether the RERUM functionalities hinder the performance of an off-the shelf estimator.

3.13.3.1 Android app CPU load measurements

Using standard Android SDK functionalities (Dev Tools App) over the android emulator Android Studio we will initially test the CPU load of the application before passing it on the device. Still, this will be tested even on the real hardware, to validate the there are no significantly long CPU usage times on the finalized implementation.

3.13.3.2 Android app stability tests

A brief lab campaign will be conducted where the application will be stressed by (i) being overloaded with high frequencies of sensory data transmission and (ii) large numbers of multiple requests.

3.13.3.3 Traffic estimator server stability tests

These experiment scenarios target to verify the application server for the traffic estimation in the UC-O1 performs well. Doing so will require to (i) examine the stability in time under normal operating conditions, (ii) stress the estimator with high loads of input from participatory devices.

3.13.3.4 Traffic estimator accuracy

Note that since the traffic estimation application itself falls outside of the RERUM scope, there is no associated RERUM KPI for the accuracy of estimator. The aim is to compare whether the RERUM functionalities hinder the performance of an off-the shelf estimator.

_

² http://www.appqualityalliance.org/files/AQuA_testing_criteria_for_Android_for_v1.4%20final%207_feb_2013.pdf

3.13.4 RERUM architecture functional components involved/tested

Communication and Network Manager, Configuration & Monitoring Manager

3.13.5 Foreseen experiment risks

N/A.

3.13.6 Timeplan

Indicative timeplan for this experiment:

To be detailed in task 5.3.

3.14 6LoWPAN Multicast

3.14.1 Purpose of the experiment

The purpose of these experiments will be to demonstrate how M/W functions can leverage IPv6 multicast in order to improve network performance and decrease energy consumption, ultimately increasing the lifetime of a smart object deployment.

In scenarios involving point-to-multipoint traffic, transmitting to each destination individually with unicast leads to poor utilization of network bandwidth, excessive energy consumption caused by the high number of packets and suffers from low scalability as the number of destinations increases.

For UC-O2 in particular, it is expected that networks will be formed by a potentially very high number of RDs and therefore scalability is a requirement.

In cases when the RDs are powered by batteries, it is impractical or outright untenable to replace batteries very frequently due to high management cost and possibly hard-to-reach installation locations. Thus, long battery life is important.

For devices powered from mains, low energy consumption is also important in order to reduce financial cost, but also in order to comply with national and international regulations where applicable.

3.14.2 KPIs

The KPIs that will be measured within this experiment are the following:

- Suitability for embedded devices: by measuring code size and RAM footprint. Targets for the RE-Mote platform: <3 KB and <3 KB increase respectively for modules required for Multicast functionality, compared to builds without multicast support.
- **Reliability**: by measuring packet loss / packet delivery ratio. Target: This metric is highly-sensitive to traffic rate, network topology, node configuration etc. Therefore, it will be evaluated through comparisons with current state-of-the-art.
- Network Delay: Target <1 sec per network hop

3.14.3 Experimental scenarios

6LoWPAN multicast functionality will be tested for two algorithms:

- The BMFA algorithm developed by RERUM and
- The MPL algorithm, which is the current recommendation of the IETF

• No multicast support, whereby each transmission of a datagram to multiple nodes is achieved by the transmission of multiple unicast datagrams.

The aim will be to compare the performance of the two algorithms under different traffic scenarios and network conditions and to evaluate the usefulness of multicast support in comparison to deployments with lack thereof.

3.14.3.1 Suitability for embedded devices - Code size and RAM footprint

Code footprint and RAM requirements will be measured at compile-time. This is achieved by building a firmware image and by subsequently running the toolchain's -size command on object files. For example:

\$ arm-none-	-eabi-size obj	j remote/rpl	.0		
text	data	bss	dec	hex	filename
516	0	1	517	205	obj_remote/rpl.o

Figure 12 Code size and RAM footprint for a single code module

The module rpl.o is Contiki's core of the implementation of the RPL protocol. This output (Figure 12) provides the following information about this code module:

- Code footprint, including program memory and constant (const) expressions (text): 516 bytes
- Variables initialized at compile time (data): 0 bytes
- Space reserved for variables which are not initialized at compile time (bss): 1 byte

The same command can be executed on the entire binary image, for example:

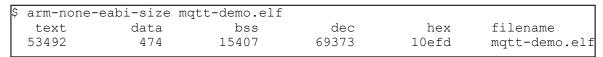


Figure 13 Code size and RAM footprint for an entire firmware image

The output of Figure 13 provides the following information about the entire firmware:

- Code footprint, including program memory and constant (const) expressions (text): 53492 bytes
- Variables initialized at compile time (data): 474 bytes
- Space reserved for variables which are not initialized at compile time (bss): 15407 bytes

This information will vary for different configurations of a build. We shall calculate this metric for both multicast algorithms as well as for images without multicast support.

3.14.3.2 Lab Experiments – Reliability Measurements and Network Delay.

In order to evaluate the remaining KPIs mentioned above, we will perform the following steps:

- Write a simple application, to be executed on the gateway, which will be able to send multicast traffic to the 6LoWPAN. This application will be able to send datagrams of different (constant or variable) sizes at varying data rates and inter-datagram intervals. It will also be able to collect results at the end of each experiment and to save them in log files suitable for subsequent processing.
- Build firmware images (subscriber firmware) for an RD that needs to receive UDP application layer traffic. We will build three such images:
 - One with BMFA support
 - o One with MPL support
 - One without multicast support

For the former two images, the RD will subscribe to a multicast group.

• Build a second batch of firmware images (router firmware) for an RD that does not need to subscribe to a multicast group. Again, we shall build three such images.

- One with BMFA support
- One with MPL support
- One without multicast support

We will then program a number of nodes (Zolertia Re-Mote devices) with a subscriber firmware and a number of nodes with router firmware. Subsequently, we will deploy those nodes in an indoor lab environment. Figure 14 presents an indicative resulting topology. We will then execute the aforementioned application on the gateway to generate multicast traffic. We will perform experiments under multiple permutations, by modifying the following parameters for each run:

- **Datagram size**: We will test performance under different application layer payloads to determine how the mechanism performs under datagrams of different sizes.
- Inter-datagram interval (constant of variable): In some experiments the time between two consecutive datagram transmissions will be fixed (e.g. 5 seconds). We will test the performance of the algorithms using a variety of intervals, ranging from very short (e.g. 250ms) to some considerably longer value (e.g. 30 secs). We will also test performance a under varying interval (e.g. random interval in [250ms , 30sec]).

Each run will be repeated multiple times to increase the reliability of measurements and to factor out measurement deviations caused by transient phenomena.

We will then modify one of the aforementioned two parameters and repeat the measurements. By changing one of the aforementioned parameters, we will achieve two traffic types: Some runs will use Constant Bit Rate (CBR) traffic and some will use Variable Bit Rate (VBR).

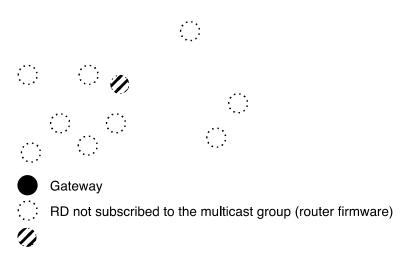


Figure 14 Indicative experiment topology

At the end of each run, the gateway application will request the number of multicast datagrams received by each of the RDs subscribed to the multicast group and will subsequently calculate Packet Delivery Ratio averages for different hop counts.

Network delay measurements are more complicated: Since RDs and the gateway will not have synchronised clocks, network delay can only be evaluated by measuring Round-Trip-Time (RTT). To measure network delay, we shall setup a deployment of a single multicast traffic subscriber and we

will position it far from the traffic source, in order to achieve multi-hop communication. The RD will be programmed to reply to the sender of multicast datagrams using unicast. We will then send a single datagram from the gateway, await the reply from an RD and measure RTT before transmitting the next datagram. This will be done in order to avoid situations whereby the measurement method has an impact on the metric being evaluated (unicast replies causing delays to multicast delivery). The replies will be unicast, therefore even though RTT provides an indication of network delay per hop, it is incorrect to assume that each direction occupied 50% of the RTT. In the general case, downstream traffic (multicast from the gateway to the RD) will take longer to reach its destination than unicast upstream replies (from the RD to the gateway).

The entire set of permutations will be tested for both algorithms mentioned above.

3.14.4 RERUM architecture functional components involved/tested

On the Gateway:

Communications and Network Manager: Routing

On RDs:

- Communication Management
 - Routing
 - IF selection

3.14.5 Foreseen experiment risks

Due to restrictions discussed in D2.1, evaluation will require that the software process generating multicast traffic be executed on the RERUM gateway (see D2.1, Sec 4.2, Contribution 22).

3.14.6 Timeplan

Indicative timeplan for this experiment:

- Implementation of IPv6 multicast forwarding and group management in the Contiki OS:
- Implementation of experiments, including implementation of the gateway application: Until June 2015
- First set of lab tests: until August 2015.
- Evaluation of the results: September 2015

3.15 Lightweight Datagram Transport Layer Security (DTLS) Protocol

3.15.1 Purpose of the experiment

The goal of this experiment is to check behaviour of DTLS protocol in the environment, which is closer to real deployment scenarios. The experiments should investigate two major issues: performance of implemented (in lightweight fashion) cryptographic schemes and performance of DTLS protocol itself. There are many undefined factors of a lightweight DTLS implementation especially considering real deployment behaviour. It is important to select cryptographic schemes that will yield in the best performance at chosen security level. As the best performance (i.e. trade-off between factors) one can think of algorithm speed, code footprint or power consumption and all these metrics will be investigated in the experiment. Although cryptographic schemes plays almost the most important role in said protocol, their impact on overall protocol performance will be also under investigation, i.e., latency of overall handshake protocol in end-to-end setup, as well as packet retransmission impact on said latency in real wireless communication channel.

The DTLS protocol details and a set of possible cryptographic primitive choices are described in D3.1. Implementation will be carried on the real hardware platforms, i.e., RERUM-designed Re-Mote and more computationally powerful Gateway platform such as well-known Rasberry Pi or BeagleBone Black.

The experiment requires at least four Re-Mote nodes and one Gateway. All devices have to provide specified in D3.1 and in supported documents DTLS version 1.2 functionality. Since Bootstrapping mechanism will not be available in experiments we assume that all necessary key material is loaded into devices in advance.

3.15.2 KPIs

The KPIs that will be measured within this experiment are the following:

- Code footprint of cryptographic primitives,
- Performance of cryptographic primitives running on both Re-Mote platform and Gateway,
- Power consumption of cryptographic primitives, as well as overall power consumption of DTLS protocol.
- Overall latency of DTLS handshake in different scenarios, i.e., using symmetric and asymmetric schemes in end-to-end scenario.

3.15.3 Experimental scenarios

The experimental topology is depicted on Figure 15. It consists of one Gateway (Rasberry Pi or BeagleBone Black) and at least 4 Re-Mote nodes, configured in such a way that addresses the experiential scenarios. In particular:

- RD1 should be able to establish a direct communication link with RD4,
- RD1 should be able to establish indirect communication links with RD3 and with the Gateway,
- RD2 should be able to establish direct communication links with RD1, RD3 and the Gateway,
- RD3 should be able to establish direct communication links with RD2 the Gateway.

All communication links are based on IEEE 802.15.4.

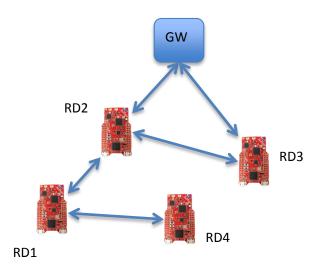


Figure 15 Network topology for testing DTLS

3.15.3.1 RD1-to-RD4 (single hop)

In this setup RD1 acts as a client and wants to communicate with the RD4, which acts as a server. DTLS performs mutual authentication with use of both symmetric and asymmetric schemes. There is a direct connection between RD1 and RD4, i.e., packets are not routed through any other device.

3.15.3.2 RD1-to-RD3 (end-to-end)

In this setup RD1 acts as a client and wants to communicate with the RD3, which acts as a server. DTLS performs mutual authentication with use of both symmetric and asymmetric schemes. There is no direct connection between RD1 and RD3, i.e., packets are routed through the other device (RD2).

3.15.3.3 RD3-to-GW (single hop)

In this setup RD1 acts as a client and wants to communicate with the GW, which acts as a server. DTLS performs mutual authentication with use of both symmetric and asymmetric schemes. There is a direct connection between RD1 and GW, i.e., packets are not routed through the other device.

3.15.3.4 RD1-to-GW (end-to-end)

In this setup RD1 acts as a client and wants to communicate with the GW, which acts as a server. DTLS performs mutual authentication with use of both symmetric and asymmetric schemes. There is no direct connection between RD1 and GW, i.e., packets are routed through the other device (RD2).

3.15.4 RERUM architecture functional components involved/tested

On RDs and the Gateway:

DTLS modules (client and server)

Network monitor

3.15.5 Foreseen experiment risks

The significant risk comes from uncertainty of efficient cryptographic primitives implementations on said test platform. In the worst-case scenario, we could observe practically unacceptable results.

3.15.6 Timeplan

Indicative timeplan for this experiment:

- Implementation of DTLSv1.2 in the Contiki OS: done
- Implementation of experiments, including implementation of different cryptographic primitives: Until June 2015
- First set of lab trials: until August 2015.
- Evaluation of the results: September 2015

4 Heraklion Trials

One of the most important activities of the project is the execution of trials in two large-scale real-world environments in the two participating Cities, i.e., Tarragona and Heraklion. The trials will be split into two phases. During each of the two phases, the cities will execute selected use-cases (one indoor and one outdoor). During phase 1 Heraklion will execute UC-O1 and UC-I1 while Tarragona will execute UC-O2 and UC-I2 and the reverse in phase 2. In this chapter we provide the details for the Heraklion trials.

4.1 Phase-1 Trials

4.1.1 UC-O1: Outdoor - Smart Transportation

4.1.1.1 Definition

The goal of UC-O1 trials will be to collect data from moving vehicles around the city and exploit them in order to help the citizens and the city to improve their planning and transportation activities. More specifically, the trials will focus primarily on data collection from public transportation vehicles (e.g., buses) or volunteers (in the second phase) and will collect the following data:

- Vehicle Type
- Location
- Speed, Accuracy, and Heading
- Travel Time

The use-case is focused on methods for collecting traffic data, over heterogeneous networks of various sensors and RERUM Devices, which can then be utilized to perform real time traffic estimation for intelligent transportation systems in Smart Cities. The main objectives of this trial are the following:

- Perform measurements throughout the cities
- Visualize traffic measurements
- Ensure the trustworthy exchange of information between the RERUM Devices and the application
- Preserve the privacy of user data and ensure the trustworthy and secure transmission of user data to the applications. Always encrypt user data before transmission (at smart object level)

4.1.1.2 Mapping of UC ecosystem components to trial functionality and technical components

Table 2 Heraklion UC-O1 main components, describes the main components deployed for the UC-O1.

Component Description		Physical installation
Vehicles	Public transportation vehicles. Specific routes will be selected.	N/A
Sensors	Sensing elements of the type described in Table 3.	
RERUM Devices	Smartphones will be utilized as RDs. The requirements that have to be satisfied are the sensing elements of Table 3 and the network connectivity which shall include 3G connectivity.	Installed on buses

Table 2 Heraklion UC-O1 main components

Component	Description	Physical installation
Network gateway and intermediate data aggregation points (i.e. cluster heads)	As discussed in D2.5, the smartphones being unconstrained RDs aggregation will be connected to the RERUM MW directly, via cellular broadband, without requiring a gateway.	
Middleware server	Middleware server The MW server shall be responsible for the communication of the RDs with the application servers. It will be installed in Heraklion premises.	
Application server The application server shall be responsible for the transport services (e.g., traffic estimation, visualization of real-time traffic state). Visualization outcomes of traffic estimation shall be available on a web page and it will be available for all citizens also through their RERUM application on their phones.		Heraklion premises

Table 3 Sensor types for Heraklion UC-O1, describes the sensors used in the UC-O1.

Table 3 Sensor types for Heraklion UC-O1

Sensor	Description	
ACCELEROMETER	Measures the acceleration force in m/s^2 that is applied to a device on all three physical axes (x, y, and z), including the force of gravity.	
GPS_RECEIVER	Measures the location in the WGS84 reference system as well as point speed, orientation and time.	
WIFI_MODULE	Captures the MAC address and RSS of current and nearby WiFi access points.	
CELLULAR_MODULE	Measures the Cell Id and RSS of current and nearby cellular base stations.	

4.1.1.3 Deployment of components

Figure 16 below shows the overview of the architectural deployment for UC-O1.

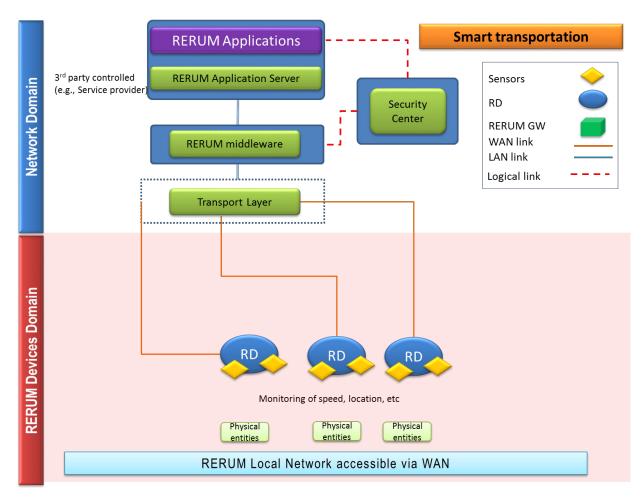


Figure 16 Heraklion UC-O1 Smart transportation high-level overview

Table 4 illustrates the interfaces between the components for UC-O1

Table 4 Interfaces between Trial components (Heraklion)

Components	Smartphone	Gateway (optional)	Middleware	Application Server
Smartphone	n/a	Connectivity: 802.11b/g Scope: Traffic aggregation, Packet forwarding, Energy savings for smartphones	Connectivity: Transport technology: 3G/4G Application layer protocol: REST based on http.	Connectivity: Transport technology: 3G/4G Application layer protocol: REST based on http.
Gateway (optional)	Connectivity: 802.11b/g Scope: Traffic aggregation, Packet forwarding, Energy savings for smartphones	n/a	Connectivity: Technology: 3G/4G Application layer protocol: REST based on http	Connectivity: Transport technology: 3G/4G Application layer protocol: REST based on http.

Components	Smartphone	Gateway (optional)	Middleware	Application Server
Application server	Connectivity: Transport technology: 3G/4G	Connectivity: Transport technology: 3G/4G	Connectivity: Transport technology: 3G/4G	n/a
	Application layer protocol: REST based on http.	Application layer protocol: REST based on http.	Application layer protocol: REST based on http.	

Bus routes:

The public transportation company in Heraklion serves 31 routes. The trial will focus on specific routes, taking into account the limitation on the number of smart-devices that are available for the trials. After discussions with the city of Heraklion, we have identified that the initial interest of the trials will be on the bus lines 2, 6, 8, 10, 11, 12, 21 and 31, because they pass quite frequently from the basic arteries of interest. One smartphone running the Traffic Estimation Application will be installed on each bus that takes this route (the buses are not dedicated only to a specific route, they change even randomly according to the need of the schedule). Our estimate is that this will require 40 smartphones.

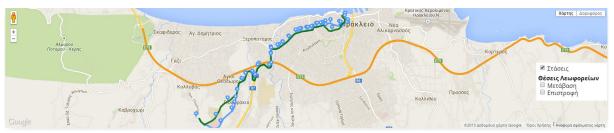


Figure 17 Bus route from Port to FORTH (line 8)

Figure 18 Bus route from Airport to Ammoudara beach (line 6)

4.1.1.4 Scenarios description

Trial scenarios for overall system evaluation

Overview

The Smart Transportation UC takes place in 2 phases, in two locations. In the first phase it is implemented only in the city of Heraklion, while in the second it will be implemented in Tarragona and the Heraklion installation will continue to run with additions made as described below.

The trial will be based on Android-based RDs used for traffic sensing. In the first phase, citizens will be able to obtain feedback from the UC rollout on the Heraklion busses through a webpage, while in the

second phase the ones who will contribute in the participatory sensing will also have direct visualization of the traffic estimation outcomes in their apps.

In the Heraklion trials RDs will be installed on city busses, during the first phase, while in the second phase the traffic sensing role of the RDs will be expanded to include participatory sensing by citizens. In Tarragona they will be distributed to volunteers selected by the city council, provisions will be made by the city council to obtain and fuse traffic data coming from 3rd parties.

Benefits and improvements

Both phases have key characteristics that RERUM plans to leverage, especially for the participatory users:

- Focusing on privacy RERUM promotes the role of purpose in data acquisition, namely the sensing app is designed to provide traffic measurements only when needed. Specifically, the app obtains Geo-fencing³ to enable this.
- Trips / patterns are not exposed. Only measurements of obfuscated location are provided to the traffic management server (and the applications in general).
- The app utilizes opportunistic networking to reduce the loss of measurements.

Specifically, there are candidate characteristics to be demonstrated through scenarios:

- Low power consumption thanks to the use of lightweight security software, while the sensors and wireless nodes availability is kept while providing the RERUM security mechanisms.
- Security and integrity of collected data, as it can't be falsified by any third party through the interception of the communications channel between the smart objects and the middleware.

A. First phase at Heraklion:

City Busses will be equipped with android phones and will be the first trial of the entire system outdoors. Since Heraklion does not have dedicated bus lanes, the idea behind this is that they work as active probes in the city street network, without posing significant privacy constraints. The scale of the implementation is of reasonable size (a few dozen) thus is not expected to pose a problem, in terms of availability. Furthermore the busses follow specific routes which lie on main traffic arteries of the town.

The core issues for this deployment come from the technical realities that this implementation will bring; specifically this scenario will provide us with

- real network issues, (lack of 3G connectivity due to urban path loss & fading, delays due to reliance opportunistic transmissions and backlogs, etc.),
- battery constraints are not an immediate concern for the first phase of the trial as the devices will be powered directly by the bus thus need to remain "alive" only during the overnight period of the bus (this may give rise to physical attacks, i.e. malicious users attempting to bring down the battery through invalid requests, which can be dealt with in context—i.e. no requests for data will be valid when the bus is at the depot),
- access control issues are also not of major importance in the first phase in Heraklion, since the devices will only be installed on buses and they authorization

³ https://en.wikipedia.org/wiki/Geo-fence

control will be done with their security token. So, only the RERUM verified application will be allowed to send data to the middleware.

In the latter part of the first phase of the trials the application will be released to a number of 'test' users, in the order of the ones on the busses, who will be personnel of the municipality, FORTH, and CYTA located in Heraklion, in order to gather (1) experience from the data obtained by generally moving users, (2) feedback from the users on their experience from the app.

B. Second phase at Heraklion:

The application will be released to general users over Google Play. Mobile phone compatibility lists & requirements will be given to the users via Google Play, to avoid unexpected crashes and errors.

The core issues for this deployment come from the technical realities that this implementation will bring, specifically, this scenario will provide us with

- More realistic network issues, (lack of 3G connectivity due to urban path loss & fading, delays due to reliance opportunistic transmissions and backlogs, etc.),
- Scalability will be of issue since the server may end up with too many inputs in cases of events (concerts / matches / during peak work hours)
- battery constraints: the users demand high battery efficiency.
- access control issues will be related with the checking of the security token that
 the application on the devices will have. For privacy issues, we don't do any type
 of registration/checking of user credentials. Sending data from tampered
 applications (which may be done through reverse engineering the application to
 get the security token) will be investigated to evaluate whether it can be
 mitigated using the Trust Engine that will be developed within the third year of
 the project.

Trial scenarios based on evaluation criteria

The tables below include the scenarios that will be implemented in the UC-O1 trials in Heraklion

Table 5 Scenario UC-O1A

Purpose of the	The purpose of the scenario is to evaluate the RERUM energy efficiency mechanisms for
scenario	traffic estimation applications.
Eval. criterion	ST.EF.1
ID	
KPIs	Loss of battery % per operational hour, per operation session
Scenario	The end-users will be requested to answer specific questionnaires related to the energy
Description	efficiency of the Traffic Estimation application and how it affects the battery lifetime of
	smartphones.
Topology	Same as the generic UC-O1 topology (Figure 16)

Table 6 Scenario UC-O1_R

Purpose of the	The purpose of the scenario is to evaluate the RERUM processing efficiency mechanis	
scenario	for traffic estimation applications.	
Eval. criterion	ST.EF.2	
ID		
KPIs	Keep the CPU % of the app as low as possible while collecting and transmitting	

Scenario	The end-users will answer question on observing significant glitches in the Quality of
Description	Experience when the app is not in the foreground after installing the Traffic estimation app
Topology	Same as the generic UC-O1 topology (Figure 16)

Table 7 Scenario UC-O1c

Purpose of the	The purpose of the scenario is to evaluate the uptime of the Smart Transportation
scenario	application once the RERUM middleware is used with them.
Eval. criterion	ST.PE.1
ID	
KPIs	The target is to investigate whether the app uptime is independent of network and load
Scenario	The end-users will answer questions regarding how often they got error messages that
Description	required them to re-start the application.
Topology	Same as the generic UC-O1 topology (Figure 16)

Table 8 Scenario UC-O1_D

Purpose of the	The purpose of the scenario is to evaluate the possibility to track down individual users that
scenario	are using this application.
Eval. criterion	ST.SE.5
ID	
KPIs	The target is to investigate whether the app allows the tracking of individuals.
Scenario	The visualization results for the traffic will be evaluated to see if it is possible to track how
Description	many people are using the app, how many are right now moving around the city and if it is
	possible to understand who is moving where. An evaluation of the data sent from the MW
	to the application will also be performed.
Topology	Same as the generic UC-O1 topology (Figure 16)

4.1.1.5 Requirements and dependencies

The RDs in this UC trial are android based smartphones that run a RERUM application. Due to the vast amount of combinations of hardware and software versions available on the market for Android smartphones, using arbitrary devices it can be a difficult task within the project to assure good quality of tests in the trials. To address this issue we will provide a list of validated smartphones and their expected performance in the trials. The current list can be seen in Table 9 and it will be continuously updated. LiU will, furthermore, provide timely validation of any device proposed by the city.

In the trials the demo application is intended to demonstrate the RERUM platform/architecture in a traffic management use case. The use case is limited to traffic estimation proof-of-concept, over the RERUM-collected data.

Collection of data is carried out with the help of vehicle-mounted devices and devices carried by citizens. There are 2 categories of users:

- Public transportation dedicated to specific routes (as per 4.1.1.1.3)
 - The quality of traffic estimation is directly affected by the amount of data collected.
 - Consider deploying smart-phones on a minimum 5 routes.
- Participatory group of users that use smartphones
 - Users are requested to use smart-phones from the set of devices validated by LiU,
 Table 9, prior to trial and deployment.
 - The users are instructed to use only when driving their car with the help of Start-Stop button in the application, although due to Geo-fencing the app does not transmit data if they are outside the roads that have been considered of interest.

Table 9 Validation of smart-phones

Device	Manufacturer	Android Version	Test result
Nexus -5	LG	5.0.1	ОК
Nexus-4	LG	5.0.1	ОК
Moto-E	Motorola	4.4.2	ОК
Moto-G	Motorola	4.4.2	ОК
Samsung Galaxy Young 2	Samsung	4.4.2	ОК
Samsung Galaxy S5	Samsung	4.4.2	ОК
Samsung Galaxy S3	Samsung	4.3	Slow GPS location fix.
Sony Xperia Z2	Sony	4.4.2	ОК
Samsung Xcover 2	Samsung	4.1.1	Currently not fully supported
Samsung Galaxy Y	Samsung	2.3	Currently not fully supported
HTC One	нтс	4.1.1	ОК

4.1.1.6 Scheduling of the activities

Table 10 Heraklion's scheduling activities for UC-O1

Date	Actions
End of May 2015	A first version of the mobile app from LiU (without SAGs algorithm) will be ready.
End of May 2015	The server side application will be ready
End of August 2015	There will be an internal test (in our – FORTH's/Cyta's devices) until end of August to test the application and fix things
September 2015 and onwards	When everything is ready, we'll install the devices on the buses in September (to use this for summer promotion)

4.1.1.7 Risks and related solutions

- Deployment delays:
- Low participation: Quality is directly proportional to data collected. Increase the participation of users to collect more data.
- Physical safety of the device: protection using hard case to prevent damage due to accidental impacts of falling on hard surfaces.

- Safety of devices on public transport: Ensure proper safety to prevent theft or accidental misplacement of the device.

- Power connectivity: Ensure the device is connected to power supply on the busses.
- Proper operation of the application: Proper training for the user to understand when the application starts and stops.
- Collection of unnecessary data: Stop application from collecting and sending data when the user is not in the areas of interest.

4.1.2 UC-I1: Indoor - Home energy management

4.1.2.1 Definition

The goal of UC-I1 trials will be to monitor the energy consumption of high-consuming devices (or group of devices) within municipal buildings in the municipality of Heraklion. More specifically, the trials will focus on two specific buildings, i.e., **a municipality building** at the center of the city at Androgeo street (a very old building with three floors of offices) and a building of **DEPTAH** next to the seaside (new offices). The goal would be also to make a comparison for the energy consumption of the two buildings. The monitoring will focus on the following:

- Energy consumption of Air Conditioners (A/C)s
- Energy consumption of Personal Computers (PC)s
- Energy consumption of lighting

Furthermore, it will be investigated whether federations can be demonstrated, such as the cooperation between energy monitoring devices and actuators (for example monitor the status of windows and make recommendations for actions, e.g., turn-off ACs when windows are open).

The collected data will be forwarded to an application server, where they will be processed in order to be usable by an end-user (e.g., building administrator) in terms of:

- Real-time energy monitoring of requested device(s)
- Extraction of statistical results for the energy consumption of the devices.

For the second phase of the trial the possibility to extend the deployment to houses of volunteers will also be investigated, depending on the available budget and the results (mainly related to privacy) of the first phase trials.

4.1.2.2 Mapping of UC ecosystem components to trial functionality and technical components

The components that will be used in UC-I1 trials as well as their roles are given in Table 11.

Table 11 Heraklion's UC-I1 main components

Component	Description	
Sensors	The sensors will measure:	
	 the operating electrical current/voltage of devices 	
	the ambient light in a room	
	 motion of objects (e.g., windows and doors). 	
RERUM Devices	They have the capability to send the sensed information (via wires or wirelessly) other network nodes (e.g., RDs or gateways) for further processing. In UC-I1, R	

Component	Description		
	include smart home electrical appliances, RERUM Devices related to energy consumption (e.g., windows, doors, water),		
Actuators	They are able to perform specific actions (e.g., turn-on/off or dim lights, close windows, trigger alarms, turn on heating devices, etc.) based on the sensed data and policies defined by the end-user.		
Gateway	It will serve as an access or aggregation point in order to send the measured/sensed data to an external network (e.g., the internet, the utility company network etc.). The gateway may be also used for transferring the complexity from the sensing and measuring devices to it (e.g., data encryption).		
Application server	It is responsible for the end-user services (e.g., automation services, energy management, etc.). Depending on the implementation options, it may be accessed through an external network (e.g., xDSL network).		

4.1.2.3 Deployment of components

The RDs will be equipped with the corresponding sensors in order to monitor

- The energy consumption of **individual** devices and appliances (personal computers, air conditioners and heating electrical units)
- The energy consumption of groups of devices/appliances through the monitoring of the consumption of entire electrical panels, e.g., the electrical panel that controls the power supply of a building's floor.
- the ambient **light** in rooms
- **motion** of objects (e.g., windows and doors).

The RDs will transmit the sensed data to a RERUM GW, which will be deployed within the buildings. The number of RERUM GWs will depend on the indoor propagation conditions which affect the quality of the connection (e.g., bit rate, connection reliability). The transmission protocol will be 802.11a/b/g/n. The RERUM GW will aggregate the transmitted data and forward them to the application server, after the secure connection with the RERUM MW and the application server has been successfully established.

The RERUM Gateway will be connected via Ethernet or 802.11a/b/g/n to an Internet access point, which will use xDSL or/and cellular (GPRS) as the transmission protocols.

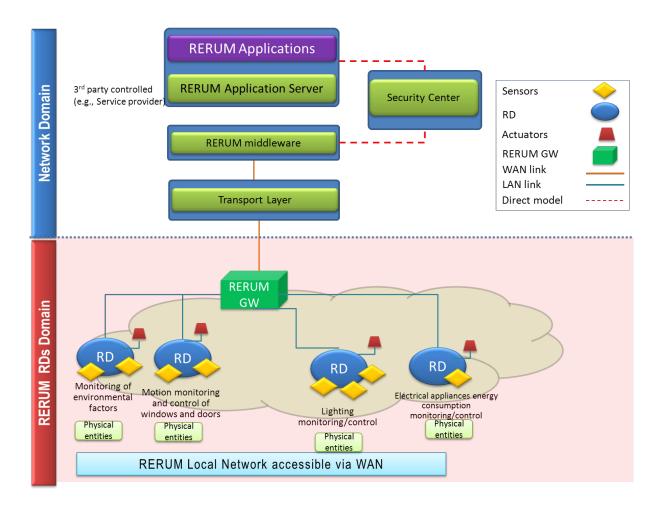


Figure 19 Home energy management high-level overview (Heraklion)

The application server will be an Apache Web server with PHP and Round-robin Database (RRD) implemented on it. RDs are particularly designed for handling time-series data like network bandwidth, temperatures, etc. The acquired data are stored in a circular buffer based database. The RRDtool which will be installed in the server assumes time-variable data in intervals of a certain length. This interval is specified upon creation of an RRD file and cannot be changed afterwards. Given the fact that the sensed data will be energy consumption data, this interval will be in the order of minutes (e.g., 5-10 minutes).

The application server will read the data from the RDs and store them on the RRD. Besides the RRDtool, Cacti will also run on the application server, which will be used as a graphing tool. Cacti will allow a user to poll the monitored data at predetermined intervals and graph the resulting data. It will be used both for graphing real time-series data and data statistics.

In Figure 20 and Figure 21 two examples of what will be displayed in the web interface of the application server are given. The RRDtool and the Cacti give the ability for the user to view the network deployment (e.g., RERUM GWs, devices, etc.) and the real-time data monitoring.

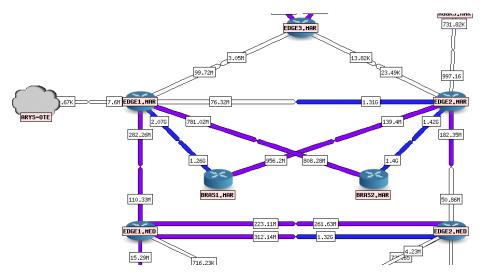


Figure 20 Cacti network deployment view (example)

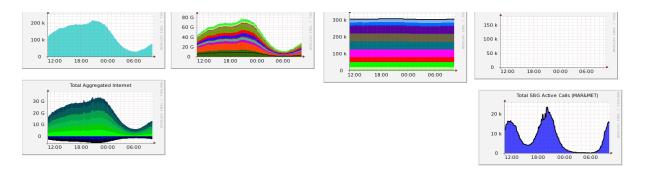


Figure 21 Real-time monitoring using RRDtool and Cacti (example)

Components	RERUM Device	Gateway	Middleware	Application Server
RERUM device	n/a	Connectivity: IEEE 802.15.4 Scope: Traffic aggregation, Packet forwarding,	n/a	n/a
		Energy savings for devices		
Gateway	Connectivity: IEEE 802.11a/b/g/n IEEE 802.15.4 Scope: Traffic aggregation, Packet forwarding, Energy savings for devices	n/a	Connectivity: Transport technology: xDSL Application layer protocol: REST based on http.	n/a

Components	RERUM Device	Gateway	Middleware	Application Server
Middleware	n/a	Connectivity: Transport technology: xDSL Application layer protocol: REST based on http	n/a	Connectivity: Transport technology: irrelevant Application layer protocol: REST based on http
Application Server	n/a	n/a	Connectivity: Transport technology: xDSL Application layer protocol: REST based on http	n/a

Table 13 Summary of the devices measurements for UC-I1 (Energy monitoring), shows the sensors and devices deployed at each location:

Table 13 Summary of the devices measurements for UC-I1 (Energy monitoring)

Location	Measurements			Number of components	
Location	Energy consumption	Presence	Light Sensor	RD	GW
Building at Androgeo	Yes	Yes	Yes	9	1
DEPTAH building	Yes	No	Yes	5	1

Figure 22 The building at Androgeo

Figure 23 The building of DEPTAH

4.1.2.4 Scenarios description

Trial scenarios for overall system evaluation

Expected contribution to IoT area

The RERUM project is expected to enhance current IoT-based energy monitoring applications by the following means:

- Incorporation of novel authorization techniques. The IoT applications will benefit by the integration of the Attribute-Based Access Control (ABAC) supporting security criteria based on
 - o attributes of the user that is issuing the request;
 - o system attributes such as the date and / or time of the request;
 - any content of the URL of the request;
 - o any header included in the request and
 - text fields included in the body of the header.

Note that supporting access criteria based on the request and especially in the body is a completely new feature for generic authorization engines. In concrete, this ability allows RERUM for checking business specific logic, because it is normally based in the information contained in the request. Hence it is necessary to be able to refer to this information to define security criteria based on it;

- The concept of trust engine is introduced, allowing to take into account the evaluation of the reputation of the requester when granting access to the services of the system;
- Energy efficiency enhancements for IoT devices using techniques described in RERUM Deliverable D4.2, such as (i) compressive sensing, (ii) multicast, (iii) sleep-and-wakeup, etc.
- On-device security in the transmission of the measurements using (i) compressive sensing and (ii) DTLS.
- Integrity verification will also be considered to be used in such a scenario if the final topology will include multihop links.
- Incorporation of security monitoring mechanisms. Monitoring and analysing the logs and events in the system is the main way to detect anomalies and therefore know what needs to be improved to ensure the system.

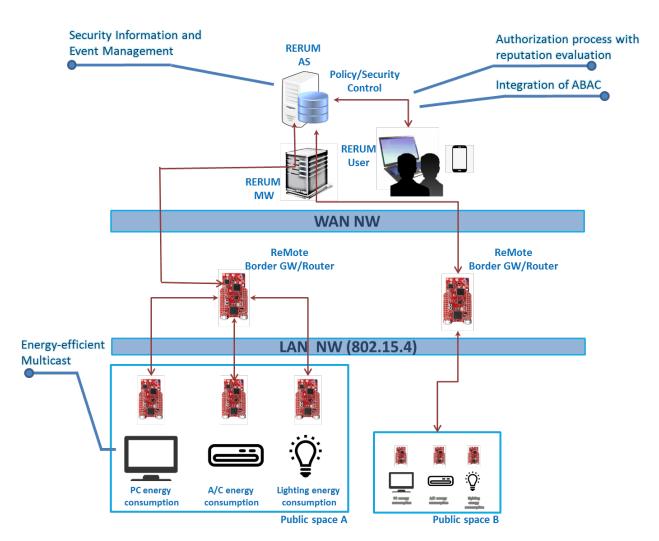


Figure 24: UC-I1 overview

Use-case scenarios

The RERUM platform is used by a public building administration in order to monitor the energy consumption of A/C and lighting in public spaces. The RERUM application performs the following operations:

- xAuthentication of users and association with roles
- Monitoring of the energy consumption of the devices
- Event monitoring/logging

Notifications based on system alarms. In this scenario we will consider the following cases:

- a. An authorized user (i.e., user has been created) tries to perform operations beyond those predefined by her/his role according to the policy rules.
 - In the first place, the RERUM system (<u>Integration of ABAC</u>) will not allow this user to perform operations that are not allowed. The un-allowed operations will be recorded in the log files of the system. This will demonstrate both the ability of RERUM of making decisions based on the identity of the user and the use of security criteria based on the specific logic of the service being demanded, including checking roles, access times, combination of local and global policies, etc.
- b. The user, which is permitted to access the energy consumption services but is not permitted to access the monitoring features, gets access to the former ones but is rejected for the latter ones. This concrete check depends on the specific logic of the invoked service, and more specifically for the MW resolution service, which works in different way depending on the parameter 'type' to retrieve the services associated to this type. In concrete, this scenario demonstrates the ability of RERUM to properly evaluate the ability to define access criteria based on such service specific logic.

Trial scenarios based on evaluation criteria

The tables below include the scenarios that will be implemented in the UC-11 trials in Heraklion

Table 14 Scenario UC-I1A

Purpose of the	The purpose of the scenario is to evaluate the RERUM authorization process based on user
scenario	roles. Additionally, this scenario demonstrate the use of several local policies apply to the
	same scenario
Eval. criterion	AL.AU.2 and AL.AU.4
ID	
KPIs	Success of policy control
Scenario Description	Define a user attribute role in the Identity platform or make sure that you use an already existing one in the following step.
	For each device subject to be accessed by a different user, upload in the system the following security policies:
	 A security policy that checks the value of the request parameter foiName for the service /scheduler.core/rest/services/discoverExchangeNamesByFOI (which is the second service that is invoked to reach the final service) and the role of the user. This policy will allow ensuring that the role filter is used for the proper service to be invoked and will also demonstrate AL.AU.4 because this policy will be dependant of the business logic of the mentioned service A security policy that checks the proper role for the service /scheduler.core/rest/services/discoverExchangeNamesByFOI This policy will be the final check to the system and check AL.AU.2
	Check the policy with different users that have different values for that attribute by inspecting the logs of the authorization engine.
Topology	Figure 25, Figure 26

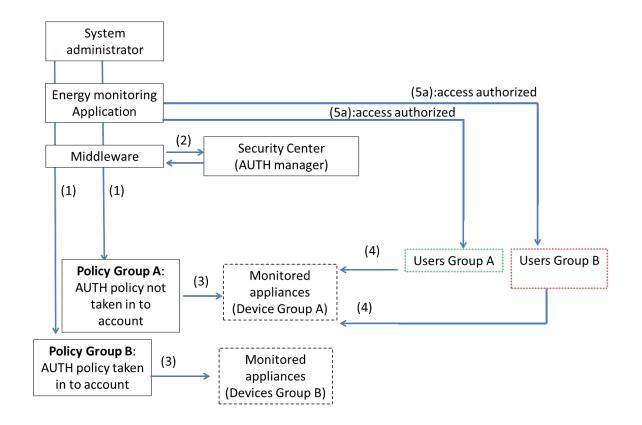


Figure 25 Scenario UC-I2_A (No group policy applied)

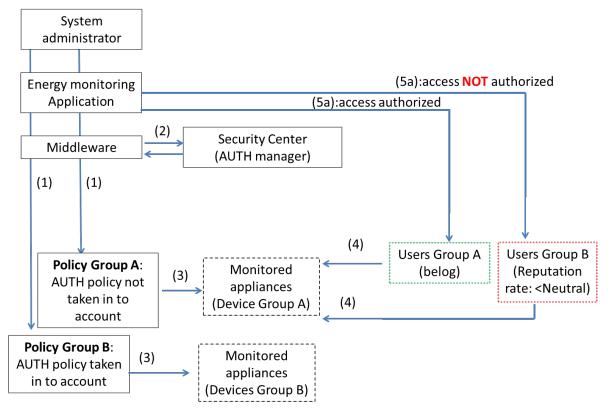
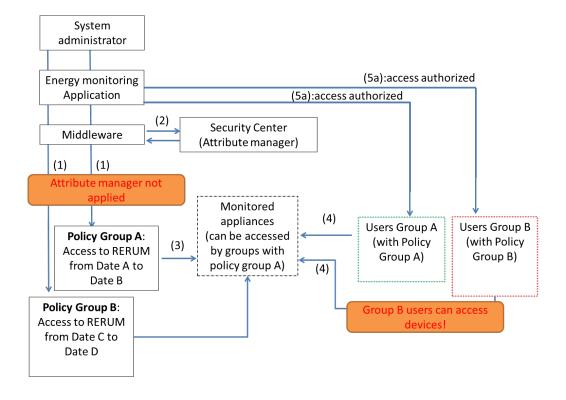



Figure 26 Scenario UC-I2_A (Group policy applied)

This scenario will try to check the access of distinct users with different roles to the distinct zones of the public buildings. For each zone supposed to be accessed by different people it will be necessary to create proper policy files that allow accessing them only to those users that have the proper role associated. If no authentication policy is applied any user group can access the device group (e.g., any employee would access data in office #1). The authentication manager if applied will prohibit this by letting only specific user groups access a specific device group (e.g., only employees of office #1 can access devices in office #1).

Table 15 Scenario UC-I1_B

Purpose of the	The purpose of the scenario is to evaluate both the ability of the system to make decisions		
scenario	based on system attributes, such as the date, and the ability to combine system level		
	policies with local ones. This scenario will allow municipality administrators to define on		
	advance the activation period of users. For example, a user may prohibit the system to		
	gather data during a specific period (e.g., during vacation period) in order to eliminate the		
	possibility that behaviour patterns can be gathered.		
Eval. criterion	AL.AU.3		
ID			
KPIs	Success of policy control		
Scenario	Define two user attributes 'active_from' and 'active_till' in the Identity platform.		
Description	Define a policy that is global to the system that checks that the user is currently active, that		
Description	is, that the system time is greater or equal than the value of the user attribute 'active from'		
	and lesser or equal than the value of the user attribute 'active till'		
	1. Repeat all checks of scenario $UC-I1_A$ that previously granted access with an active user and check that he is still granted access to the platform		
	2. Repeat all checks of scenario UC-I1 _A that previously granted access with a non-		
	active user and check that he is no longer granted access to the platform		
	3. Repeat all checks of scenario UC-I1 _A that previously denied access check that the		
	user is still denied access to the platform		
Topology	Figure 27, Figure 28		

System administrator (5a):access authorized Energy monitoring **Application** (5a):access authorized **Security Center** Middleware (Attribute manager) (1) (1)Attribute manager applied Monitored (4)appliances Users Group B Users Group A **Policy Group A:** (can be accessed (with Policy (with Policy (3) by groups with Access to RERUM Group A) Group B) policy group A) from Date A to (4)Date B **Policy Group B:** Group B users can NOT Access to RERUM access devices from Date C to Date D

Figure 27 Scenario UC-I2_B (No attribute policy applied)

Figure 28 Scenario UC-I2_B (Attribute policy applied)

In Figure 27, the case where no attribute-based policy is applied is depicted. In that case the system does not check whether the users' access permission has expired or not. On the contrary, when the attribute –based policy is applied the system can check whether a subscription has expired and prohibit access to those users (Figure 28).

Purpose of the	The purpose of the scenario is to evaluate the energy efficiency of the RERUM system
scenario	utilizing power-cycling on the devices and compression on the measurements.
Eval. criterion	AL.EF.6
ID	
KPIs	Amount of energy saved with the RERUM mechanisms
Scenario	The scenario will be quite simple, with some of the devices running the power-cycling
Description	and/or the compressive sensing mechanisms for a period of time and then for another
	period of time (with the same duration) running without these mechanisms. The battery
	consumption of the devices in those two periods will be compared to calculate the amount
	of energy saved with the RERUM mechanisms.

Table 16 Scenario UC-I1c

Table 17 Scenario UC-I1_D

Purpose of the	The purpose of the scenario is to evaluate the secure transmissions of the RERUM Devices.
scenario	
Eval. criterion	AL.EF.6, AL.PE.3, AL.PE.4
ID	
KPIs	Possibility to identify the content of the transmitted measurements.
Scenario	The scenario will be quite simple, with some of the devices running the compressive sensing
Description	mechanism, the DTLS protocol and/or the integrity protection framework. The trial
	evaluators will utilize a laptop/pc with a wireless sniffer software (i.e. Wireshark) and will
	intercept the transmissions of the RDs to identify if they can read the content of the
	messages or the id of the devices.

Table 18 Scenario UC-I1_E

Purpose of the	The purpose of the scenario is to evaluate the RERUM contributions to the energy
scenario	monitoring application from the users' point of view.
Eval. criterion	User-based evaluation with questionnaires.
ID	
KPIs	User acceptance level of the RERUM contributions to the application.
Scenario	The scenario will include the participation of the users (i.e. system administrators, office
Description	employees, or even home owners if they are involved in the second phase) in two ways: (i)
	by accessing the applications and testing the various features themselves, and identifying
	potential bugs or difficulties or useless features and (ii) by filling up questionnaires
	answering to questions described in Section 2.3.1 stating their experiences with the RERUM
	application and their acceptance level of the tested mechanisms.

Table 19 Scenario UC-I1_F

Purpose of the	Provide availability information of deployed devices to allow users and maintainers to
scenario	assert the deployment status, schedule preventive maintenance if one or more devices show behaviours prone to failure, and to provide users and services exploiting the data reliability criteria.
Evaluation criterion ID	EM.PE.8
KPIs	All defined in the criterion
Scenario Description	As defined in the criterion.

4.1.2.5 Requirements and dependencies

N/A for this UC.

4.1.2.6 Scheduling of the activities

Table 20 Heraklion's scheduling activities for UC-I2

Date	Actions		
End of Aug 2015	The application server will be ready. The connection between the necessary RERUM architectural components and the respective protocols' functionalities will be tested.		
September 2015 - February 2016	Installation of devices is done and trials begin to run live. The support will be continuous in order to • gather the necessary information for the evaluation of the trial • face any problems that may occur • improve any functionalities and mechanisms		
March 2016	End of 1 st phase trials. A report will be created with the results of the trials, the difficulties that have been encountered, suggested improvements, etc. This report will feed Tarragona's UC-I1 trials.		

4.1.2.7 Risks and related solutions

The possible risks for this use case are given in Table 21.

Table 21 Possible risks for UC-I1 (Heraklion)

Possible Risk	Probability to occur	Suggested solution
Granularity level for RDs installation (e.g., installation on personal appliances) not accepted by building administration	Low, since an oral agreement is already in place.	Granularity level for RDs installation will gradually change, e.g., from individual devices to rooms, or floors, etc. in order to reach an agreement with the building administration.
Granularity level for RDs installation (e.g., installation on personal appliances) not accepted by building employees,	Low, since an oral agreement is already in place.	Educational seminars will take place in order to inform the employees about how RERUM preserves their privacy. In case the employees still do not accept the granularity level, then it will change e.g., from individual devices to rooms, or floors, etc. in order to reach an agreement with the employees.

4.2 Phase-2 Trials

4.2.1 UC-O2: Outdoor - Environmental monitoring

4.2.1.1 Definition

The goal of UC-O2 trials will be to gather environmental information from various areas around a city and provide them to the interested parties. Deploying a city-wide infrastructure only for environmental monitoring is not cost-efficient, so the deployed nodes may be also utilized simultaneously by other smart city applications. The trials will focus on the measurements of:

- The air quality and pollution (CO, CO2, NO2, Temperature, RH, PM10, etc.)
- · The noise level
- The weather conditions (wind/rain).

The collected data will be forwarded to an application server, where they will be processed in order to be usable by an end-user (e.g., building administrator) in terms of:

- Real-time monitoring of requested environmental factors
- Extraction of statistical results for the energy consumption of the devices

The extension of the outdoor Environmental Monitoring deployment with devices installed in balconies of the houses of volunteers will also be investigated depending on the available budget of the devices and the identification of volunteers for installing devices on their balconies. In this scenario, the privacy of the owner of the devices will be protected by e.g. using a relative location of the sensor in a wider geographical area, as well as hiding the identity of the owner, ensuring the unlinkability of his data.

4.2.1.2 Mapping of UC ecosystem components to trial functionality and technical components

Table 22 UC-I1 main components (Heraklion)

Component	Description
Sensors	Convert physical parameters into electric ones in order to be able to measure those using electronic based systems. The measurements will be digitalized and transmitted through digital communications systems. See Table 23 for further details on sensors used in UC-O2.
RERUM Devices	The RDs are different nodes of a network connected through a star, tree, or mesh topology. They are installed on the streets or on city square gathering information from sensors. Mounting supports for the RDs are used to attach the devices on different placements on the city's streets. The support is also used as a base for the power supply of these devices. For example, partial power supply (e.g., the streetlights one, only available during the night) could be applied for charging the batteries of those devices, in order to ensure their operation during the day. Solar cells could also be used to power nodes with low power requirements. On the other hand, in the case of more energy-greedy devices, such as gateways, a 24/7 power supply might be required. RDs communicate wirelessly, using 6LoWPAN over IEEE 802.15.4 (on the specified frequency bands). RDs are composed of: A RF IEEE 802.15.4 interface. A CPU (a micro-controller) managing the 6LoWPAN communication stack and getting measures from the sensors. One or more sensors connected to the CPU, through analog or digital interface, depending on the sensors. A power supply, optionally with batteries when power is not always constantly available. The use of more than one sensor per RD is useful for correlated types of measurements, for example when different type of gases are measured in one spot, or when it is required to relate different measurements with each other, e.g., the concentration of specific materials in the air with the amount of rain or the relative humidity. In this way, the next measurements are available on a single node: Measure of all gases suggested in the same node, since they are related to

Component	Description		
	 fuel combustion and its chemical combinations with the air and the sunlight. PM₁₀ and RH, because in high humidity situations (e.g., due to fog), a possibly wrong figure will be shown because it will act as an interference to the optical sensors usually used for such kind of measurements. Spectrometric measure could avoid that situation but its cost keeps it out of the scope of many such installations. Noise and rain: according also to the EC directives [5], the noise could not be measured while it is raining due the impact of the drops on the structure or the microphone and due the amplification of the vehicular noise when the asphalt is wet. 		
Actuators	No direct actuators are used in this UC		
Network Gateway or cluster heads (intermediate nodes)	Due to the limited communication range and bandwidth restrictions of the RDs' wireless communication technology, it is necessary to add gateways or cluster heads close to RDs to communicate/fuse the gathered data to the application server over the internet. Thus, a gateway will be equipped with an IEEE 802.15.4 interface for communication with the RDs and appropriate interfaces to connect to the Internet over a wired or wireless link, e.g. a wifi interface could be used in case a suitable 802.11 based mesh infrastructure already exists in the city. All intermediate nodes should ensure security, privacy and reliability when forwarding the information to the application server.		
Application server	The application server, equipped with an appropriate software application, will provide end-users with a graphical interface giving access to raw data, graphs, queries, threshold configuration, alarm setting and transmission, etc. The server will be owned by the city authorities and can be either outsourced or kept private. In certain cases city authorities could even exploit the data for their own profit. In any case, it must have at least an IoT based interface, i.e. support web-services over REST interface to gather the data from the sensor devices.		

Table 23 Sensor types for UC-O2 (Heraklion)

Sensor	Sensing elements	Description	Common Uses
Air Quality	SO_2 NO_X O_3 VOC PM_{10}	Measures the key air compounds (mainly those related to traffic and fuel combustion)	Determine an air quality index, control the PM to keep it into the normative and detect the traffic congestion effects
Noise	Microphone	Measures the noise level with A-weighting, peak, average and daily distribution	Control the noise levels in order to keep under the maximums regulated by the European normative

4.2.1.3 Deployment of components

The RDs that will be installed in the city locations will transmit the sensed data to a RERUM GW, which will be installed in the proximity of the RDs. The number of RERUM GWs will depend on the propagation conditions which affect the quality of the connection (e.g., bit rate, connection reliability).

The transmission protocol will be 802.11a/b/g/n. The RERUM GW will aggregate the transmitted data and forward them to the application server, after the secure connection with the RERUM MW and the application server has been successfully established.

The RERUM Gateway will be connected via Ethernet or 802.11a/b/g/n to an Internet access point, which will use cellular (GPRS) as the transmission protocols.

The application server will be an Apache Web server with PHP and Round-robin Database (RRD) implemented on it. RDs are particularly designed for handling time-series data like network bandwidth, temperatures, etc. The acquired data are stored in a circular buffer based database. The RRDtool which will be installed in the server assumes time-variable data in intervals of a certain length. This interval is specified upon creation of an RRD file and cannot be changed afterwards. Given the fact that the sensed data will be related to environmental factors that may be critical for citizens' health the measuring period may be of the order for seconds.

The application server will read the data from the RDs and store them on the RRD. Besides the RRDtool, Cacti will also run on the application server, which will be used as a graphing tool. Cacti will allow a user to poll the monitored data at predetermined intervals and graph the resulting data. It will be used both for graphing real time-series data and data statistics.

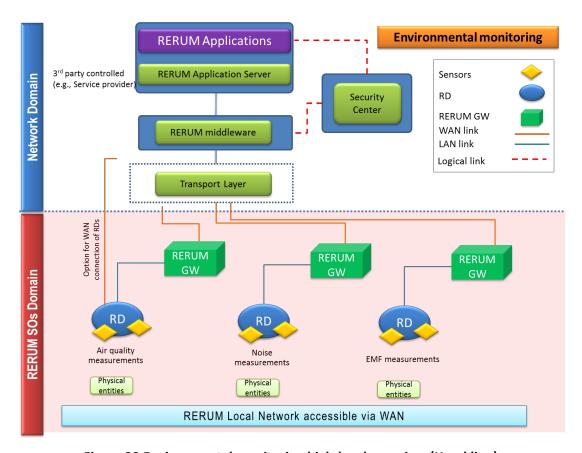


Figure 29 Environmental monitoring high-level overview (Heraklion)

Table 24 Interfaces between Trial components (Heraklion)

I	Components	RERUM Device	Gateway	Middleware	Application Server
	RERUM device	n/a	Connectivity: IEEE 802.11a/b/g/n	n/a	n/a

Components	RERUM Device	Gateway	Middleware	Application Server
		IEEE 802.15.4 Scope: Traffic aggregation, Packet forwarding, Energy savings for devices		
Gateway	Connectivity: IEEE 802.11a/b/g/n IEEE 802.15.4 Scope: Traffic aggregation, Packet forwarding, Energy savings for devices	n/a	Connectivity: Technology: GPRS ApplicationREST based on HTTP.	n/a
Middleware	n/a	Connectivity: Technology: GPRS ApplicationREST based on HTTP.	n/a	Connectivity: Technology: irrelevant ApplicationREST based on http.
Application Server	n/a	n/a	Connectivity: Technology: GPRS ApplicationREST based on HTTP.	n/a

The devices will be installed either on buses or at fixed places:

- On buses (if possible in the second phase of the trials). The application on the devices will be programed to take measurements only when the bus stops at the bus-stops (to ensure that the data will not be affected by the movement of the bus).
- Fixed places:
 - At the top of the building at Androgeo street and the Lions square(a very crowded area)
 - At the Eleftherias square.
 - o Outside the DEPTAH building (next to the sea).
 - Along the Dikaiosinis str. starting from Eleftherias sq. and going until the square next to the building at Androgeo.
 - o At the Pancretan stadium.
 - o At the Kazantzakis park.

At each one of these places, several sensors will be installed at various points. The devices will be connected to the open WiFi of the municipality through gateways. To minimize the number of gateways that will be installed, the use of the sub-GHz band will be investigated at the beginning of the first phase of the trials.

Table 25 Sensor types for UC-O2 (Environmental outdoor), shows the sensors and devices deployed at each location:

Table 25 Sensor types for UC-O2 (Environmental outdoor)

	Measurements – sensors			Number of devices	
Location	Air quality	Noise	Weather	RD	GW
At the top of the building at Androgeo and the Lions square	Yes	Yes	No	3	1
Eleftherias square	Yes	Yes	No	2	1
Outside the DEPTAH building	Yes	Yes	Yes	2	0* the gateway at the indoor installation for UC-I1 will be used
Along the Dikaiosinis str.	Yes	Yes	No	4	0* the gateway for Eleftherias sq. will be used
Pancretan stadium	Yes	Yes	No	3	1
Kazantzakis park	Yes	Yes	No	3	1

Figure 30 Placement of sensors for UC-O2 trials (Heraklion)

4.2.1.4 Scenarios description

The tables below include the scenarios that will be implemented in the UC-O2 trials in Heraklion

Table 26 Scenario UC-O2_A

Purpose of the	The purpose of the scenario is to demonstrate how the RERUM infrastructure can leverage			
scenario	layer 3 multicast in order to improve network performance and decrease energy			
	consumption, ultimately increasing deployment lifetime			
Eval. criterion	AL.PE.5			
ID				
KPIs	Reliability by measuring packet loss / packet delivery ratio.			
	Network Delay (<1 sec per network hop)			
	• Suitability for embedded devices by measuring code size and RAM requirements.			
	Targets for the RE-Mote platform: <3 KB and <3 KB respectively)			
Scenario	A set of RDs will subscribe to a multicast group.			
Description	A RERUM gateway will be selected as the source of multicast traffic, with destination			
	to this multicast group.			
Topology	Figure 31			

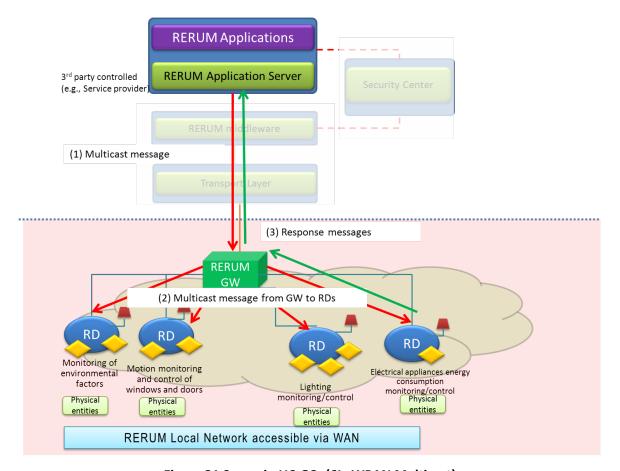


Figure 31 Scenario UC-O2_A (6LoWPAN Multicast)

In this scenario the end-user will send a message to a group of RDs (for example request measurement values from all noise sensors in a specific area). Those RDs will have previously subscribed to a multicast group. The request will arrive at the serving GW, which then will send a multicast message to the RDs that should get the request.

Table 27 Scenario UC-O2_B

Purpose of the scenario	The purpose of the scenario is to demonstrate how RE-Mote system update will happen through OAP and PRRS.	
Eval. criterion	AL.SE.4	
KPIs	Success of system update.	
Scenario Description	Search the firmware using the tags predefined in the form at the endpoint '/PRRS-webgui'.	
	Select the concrete firmware to use.	
	Select the concrete VRD or VRD Federation to update, previously defined in the GVO Manager.	
	Confirm the update.	
	Wait for the success response from the target device.	
Topology	See the figure below	

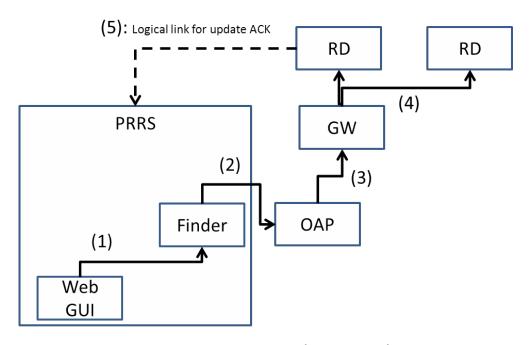


Figure 32 Scenario UC-O2_A (OAP updates)

Table 28 Scenario UC-O2c

Purpose of the scenario	The purpose of the scenario is (similarly to the same scenario in UC-I1) to evaluate the energy efficiency of the RERUM system utilizing power-cycling on the devices and compression on the measurements.
Eval. criterion	AL.EF.6
KPIs	Amount of energy saved with the RERUM mechanisms

Scenario	The scenario will be quite simple, with some of the devices running the power-cycling
Description	and/or the compressive sensing mechanisms for a period of time and then for another
	period of time (with the same duration) running without these mechanisms. The battery
	consumption of the devices in those two periods will be compared to calculate the amount
	of energy saved with the RERUM mechanisms.

Table 29 Scenario UC-O2_D

Purpose of the	The purpose of the scenario is to evaluate the availability of the RERUM Devices.
scenario	
Eval. criterion	AL.PE.8
ID	
KPIs	Metrics for uptime percentage, restart ratio and packets received.
Scenario	The scenario will be quite simple, with the RDs operating for a period of time and having a
Description	software that monitors their performance to gather statistics for those metrics.

Table 30 Scenario UC-O2_E

Purpose of the	The purpose of the scenario is to evaluate the precision of the measurements of the RERUM
scenario	Devices.
Eval. criterion	AL.PE.2
ID	
KPIs	Measurement variance of each device around the mean of the measurements of the
	devices at the same area over a time window.
Scenario	The scenario will be quite simple, with the RDs operating for a period of time and having a
Description	software at the server monitoring both the statistics of all the devices in order to use the
	statistics for offline processing.

Table 31 Scenario UC-O2_F

Purpose of the	The purpose of the scenario is (similarly with the same scenario at UC-I1) to evaluate the		
scenario	secure transmissions of the RERUM Devices.		
Eval. criterion	AL.EF.6, AL.PE.3, AL.PE.4		
ID			
KPIs	Possibility to identify the content of the transmitted measurements.		
Scenario Description	The scenario will be quite simple, with some of the devices running the compressive sensing mechanism, the DTLS protocol and/or the integrity protection framework. The trial evaluators will utilize a laptop/pc with a wireless sniffer software (i.e. Wireshark) and will intercept the transmissions of the RDs to identify if they can read the content of the messages or the id of the devices.		

Table 32 Scenario UC-O2_G

Purpose of the	The purpose of the scenario is to evaluate the RERUM hybrid scenario as described in
scenario	deliverables D2.3 and D2.5.
Eval. criterion	AL.AU.1, AL.AU.3, AL.PE.2
ID	
KPIs	Adaptability of the indoor measurements to the outdoor application. Evaluation of the
	authorization engine regarding the access to the indoor services. Evaluation at the PRIPARE
	meeting regarding the privacy implications of this scenario.
Scenario	The scenario will include the provision of an external service from the use case UC-l1 related
Description	with the temperature and air quality of an RD that will be installed on the balcony of the

building at Androgeo. Those measurements will be used by the external application of UC-O2. The authorization engine of the indoor UC-I1 will evaluate this request and will check if it can accept it. Similarly, other requests for other services will have to be (probably) rejected, together with requests for identifying the VRDs of the indoor deployment.

4.2.1.5 Requirements and dependencies

There is a requirement for guaranteed QoS, so we'll discuss with the technician responsible for maintaining the APs to see if hidden SSIDs can be used at the APs to connect the sensors. VPNs will be used with the extra SSIDs.

4.2.1.6 Scheduling of the activities

Table 33 Heraklion's scheduling activities for UC-O2

Date	Actions			
End of August 2015	The application server will be ready. The connection between the necessary REF architectural components and the respective protocols' functionalities will tested.			
September 2015 – February 2016	The RDs will be deployed in the specified places and the connectivity with the application server and the RERUM architectural components will be tested.			
March 2016	 Trials begin to run live. The support will be continuous in order to Assess the feedback that will be provided by Tarragona, regarding the UC-O2 trials in 1st phase. gather the necessary information for the evaluation of the trial face any problems that may occur improve any functionalities and mechanisms 			
July 2016 End of 2 nd phase trials. Final evaluation. Cross evaluation.				

4.2.1.7 Risks and related solutions

The possible risks for this use case are given in Table 34.

Table 34 Possible risks for UC-O1 (Heraklion)

Possible Risk	Probability to occur	Suggested solution
Networking problems.	Low	Two radio access network interfaces will be used for increasing the network reliability.
RDs are destroyed because of vandalism.	Low	Wifi access points are already installed across the municipality and no actions of vandalism have been reported.

4.2.2 UC-I2: Indoor - Comfort quality monitoring

4.2.2.1 Definition

The goal of UC-I1 trials will be to provide measures for the quality of life in indoor environments (the home comfort). This UC aims to provide tools to improve the quality of life of the citizens, getting real-time data about these parameters, programming alarms when these are out of certain bounds and creating graphs for historic data and trends. The Comfort Quality Monitoring indoor UC could be deployed in houses, offices, gyms, supermarkets, restaurants, etc., and in general in any place people spend their time.

4.2.2.2 Mapping of UC ecosystem components to trial functionality and technical components

Table 35 UC-I2 main components (Heraklion)

Component	Description	
Sensors	The sensors will measure: Temperature, RH CO2, CO PM10, PM2.5	
RERUM Devices	Different nodes communicating in a star, tree, or mesh networks will be installed buildings to gather information from the sensing elements they have on board. communicate mostly wirelessly, using 6LoWPAN over IEEE 802.15.4 or wires three Ethernet connectivity. Most of the RDs are powered directly by plugging them on power supply net wall sockets and, in those cases where this is not feasible, they powered by batteries, ideally rechargeable ones, requiring a regular maintenarely replacing or recharging once they start to be empty. The same plugs used to post the RDs are also used as supports for the devices. RERUM Devices are composed of: An RF IEEE 802.15.4 interface. A CPU (a micro-controller) managing the 6LoWPAN communications and getting measurement data from the sensors. One or more sensors/actuators connected to the CPU, though analogistal interface, depending on the sensors. A power supply, sometimes directly from the 220V _{AC} plug, somet with removable or rechargeable batteries. The use of more than one sensor or actuator per node could only be justified reduce the number of devices connected in the user's home.	
Gateway	It will serve as an access or aggregation point in order to send the measured/sensed data to an external network (e.g., the internet, the utility company network etc.). The gateway may be also used for transferring the complexity from the sensing and measuring devices to it (e.g., data encryption.	
Application server	It is responsible for the end-user services. Depending on the implementation options, it may be accessed through an external network (e.g., cellular network).	

4.2.2.3 Deployment of components

The devices will be installed at the following places.

 The KEP (office for serving the citizens) at the ground floor of the municipality building (a place to serve the citizens applications/questions/etc.) always crowded and next to restaurants/café.

- The building at Androgeo street (same as in UC-I1)
- The DEPTAH building (same as in UC-I1).

Several sensors will be installed at each place – there is a requirement to not take average measurements from these sensors, but to transmit the exact values to the server.

The RDs will transmit the sensed data to a RERUM GW, which will be installed in the proximity of the RDs. The number of RERUM GWs will depend on the propagation conditions which affect the quality of the connection (e.g., bit rate, connection reliability). The transmission protocol will be 802.11a/b/g/n. The RERUM GW will aggregate the transmitted data and forward them to the application server, after the secure connection with the RERUM MW and the application server has been successfully established.

The RERUM Gateway will be connected via Ethernet or 802.11a/b/g/n to an Internet access point, which will use cellular (GPRS) as the transmission protocols.

The application server will collect data from devices and made it available through a web interface.

The application server will read the data from the RERUM MW and store them on the RRD. Besides the RRDtool, Cacti will also run on the application server, which will be used as a graphing tool. Cacti will allow a user to poll the monitored data at predetermined intervals and graph the resulting data. It will be used both for graphing real time-series data and data statistics.

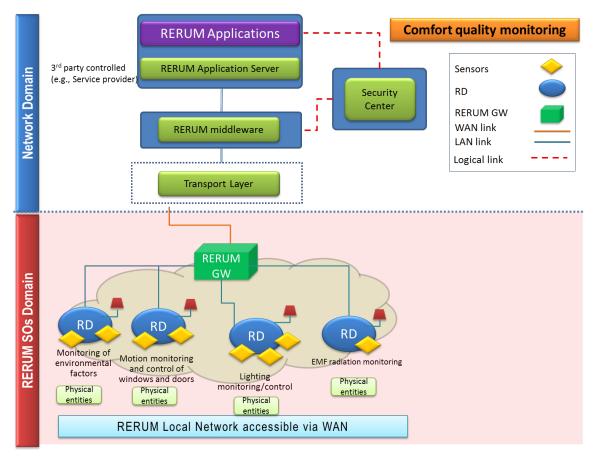


Figure 33 Comfort quality monitoring high-level overview (Heraklion)

Table 36 Interfaces between Trial components UC-I2 (Heraklion)

Components	RERUM device	Gateway	Middleware	Application Server
RERUM device	n/a	Connectivity: IEEE 802.11a/b/g/n IEEE 802.15.4 Scope: Traffic aggregation, Packet forwarding, Energy savings for devices	n/a	n/a
Gateway	Connectivity: IEEE 802.11a/b/g/n IEEE 802.15.4 Scope: Traffic aggregation, Packet forwarding, Energy savings for devices	n/a	Connectivity: Transport technology: xDSL Application layer protocol: REST based on http.	n/a
Middleware	n/a	Connectivity: Transport technology: xDSL Application layer protocol: REST based on http.	n/a	Connectivity: technology: irrelevant Application layer protocol: REST based on http.
Application Server	n/a	n/aa	Connectivity: technology: irrelevant Application layer protocol: REST based on http.	n/a

Table 37 summary of the devices measurements for UC-I2 (Comfort quality monitoring), shows the sensors and devices deployed at each location:

Table 37 summary of the devices measurements for UC-I2 (Comfort quality monitoring)

Location	Measurements			Number of components		
	Temperature	RH	Presence	RD	GW	
КЕР	Yes	Yes	No	2	0 *the GW of the building at Androgeo will be used	
The building at Androgeo str.	Yes	Yes	No	9	1^	
DEPTAH building	Yes	Yes	No	5	1^	

[^]For the building at Androgeo and the DEPTAH building, the re-use of the RDs of UC-I1 will be examined to lower the costs of deployment.

4.2.2.4 Scenarios description

The tables below include the scenarios that will be implemented in the UC-I1 trials in Heraklion

Table 38 Scenario UC-I2_A

Purpose of the scenario	The purpose of the scenario is to evaluate the RERUM authorization process with reputation evaluation. This scenario will make use of the final reputation engine enriched with the feedback provided in scenario UC-I1A.	
Eval. criterion	AL.AU.1	
KPIs	Defined in the criteria	
Scenario	Create users with different reputation ratings.	
Description	Look for those cases where a given user / entity should have a reputation different to neutral.	
	Prepare a policy that does not take that reputation in consideration	
	Try to access the system with these users and note the response.	
	Change the policy to take into account the evaluation for users with reputations higher and	
	lower than average so users with high reputation rank get access to the device.	
	Try to access the system with these users and note.	
	Check whether the access decision changes.	
Topology	Figure 34, Figure 35	

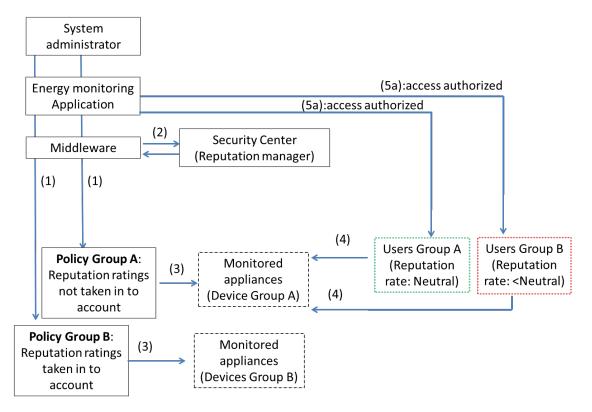


Figure 34 Scenario UC-I2_A (No group policy applied)

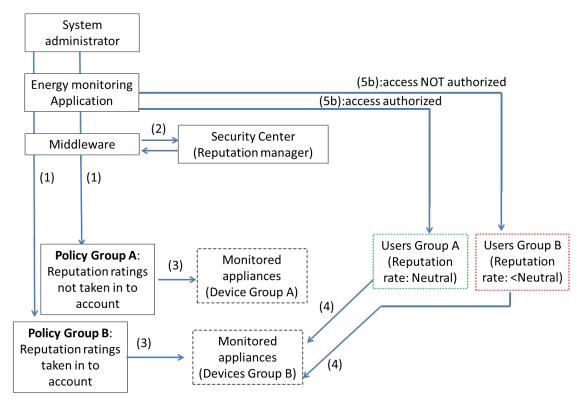


Figure 35 Scenario UC-I2_A (Group policy applied)

As shown in Figure 34, the administrator can apply different policies to different group of devices in order to control the reaction of those groups to the reputation level of the end-user that also are

grouped into different groups with different reputation levels. In this scenario, the reputation levels are not taken into account by the monitored devices (through the middleware and the reputation manager) and as a result end-users that belong to different groups with different reputation levels can both access the devices.

On the contrary, as shown in Figure 35, when the reputation level is set to be taken into account through the policy that applies the administrator, the end-users that belong to a group with lower reputation level that "normal" then they are expected to not be able to access the devices that belong to a group with a policy that required the reputation level to be at least "normal".

Tab	ما	20	Sco	nari	^ I I	C_1	2_
ıab	иe	39	Sce	narı	o u	C-I	ZR.

- 6.1		
Purpose of the	The purpose of the scenario is to evaluate the RERUM authorization process based on user	
scenario	roles	
Eval. criterion	AL.AU.2 and AL.AU.4	
ID		
KPIs	Success of policy control	
Scenario	For each device subject to be accessed by a different user, upload in the system the	
Description	following security policies:	
	 A security policy that checks the value of the request parameter foiName for the service /scheduler.core/rest/services/discoverExchangeNamesByFOI (which is the second service that is invoked to reach the final service) and the role of the user. This policy will allow ensuring that the role filter is used for the proper service to be invoked and will also demonstrate AL.AU.4 because this policy will be dependant of the business logic of the mentioned service A security policy that checks the proper role for the service /scheduler.core/rest/corpices/discoverExchangeNamesByFOI. This policy will be 	
	/scheduler.core/rest/services/discoverExchangeNamesByFOI. This policy will be the final check to the system and check AL.AU.2	
	Check the policy with different users that have different values for that attribute by	
	inspecting the logs of the authorization engine.	
Topology	Figure 34, Figure 35	

This scenario will try to check the access of distinct users with different roles to the distinct zones of the public buildings. For each zone supposed to be accessed by different people it will be necessary to create proper policy files that allow accessing them only to those users that have the proper role associated.

Table 40 Scenario UC-I2c

Purpose of the scenario	The purpose of the scenario is to evaluate both the ability of the system to make decisions based on system attributes, such as the date, and the ability to combine system level policies with local ones. This scenario will allow municipality administrators to define on advance the activation period of users		
Eval. criterion	AL.AU.3		
ID			
KPIs	Success of policy control		
Scenario	Define two user attributes 'active_from' and 'active_till' in the Identity platform.		
Description	Define a policy that is global to the system that checks that the user is currently active, that		
	is, that the system time is greater or equal than the value of the user attribute 'active from'		
	and lesser or equal than the value of the user attribute 'active till'		
	1. Repeat all checks of scenario UC-I1 _B that previously granted access with an active		
	user and check that he is still granted access to the platform		
	2. Repeat all checks of scenario UC-I1 _B that previously granted access with a non-		
	active user and check that he is no longer granted access to the platform		

	3. Repeat all checks of scenario UC-I1 _B that previously denied access check that the user is still denied access to the platform
Topology	Figure 27, Figure 28.

Table 41 Scenario UC-I2_D

Purpose of the	The purpose of the scenario is to evaluate the privacy enhancing techniques with the use
scenario	of secure transmissions and integrity protection
Eval. criterion	AL.EF.6, AL.PE.3, AL.PE.4
ID	
KPIs	Possibility to extract user data from the transmissions.
Scenario	A nearby laptop/pc with a sniffer will capture the data transmitted from the RDs and will
Scenario	A flearby laptop/pc with a shifter will capture the data transmitted from the KDs and will
Description	try to extract personal user information of the captured packets.

Table 42 Scenario UC-I2_E

Purpose of the	The purpose of the scenario is to evaluate the use of external measurements in the indoor	
scenario	scenario.	
Eval. criterion	AL.PE.2	
ID		
KPIs	Metrics related with comparing the external temperature and air quality against those of	
	the indoor environment.	
Scenario	The scenario will include an indoor application receiving measurements from the external	
Description	environment and raising alarms or notifications to the indoor users for various cases, i.e. (i)	
	when the difference between the internal and the external temperature is too high, (ii)	
	when the outdoor quality is better than the inside, (iii) when the inside humidity is higher	
	than the outside, etc.	

4.2.2.5 Requirements and dependencies

No requirements or dependencies have been identified.

4.2.2.6 Scheduling of the activities

Table 43 Heraklion's scheduling activities for UC-I2

Date	Actions			
End of August 2015	The application server will be ready. The connection between the necessary RERUM architectural components and the respective protocols' functionalities will be tested.			
September 2015 - February 2016	The RDs will be deployed in the specified places and the connectivity with the application server and the RERUM architectural components will be tested.			
March 2016	 Trials begin to run live. The support will be continuous in order to Assess the feedback that will be provided by Tarragona, regarding the UC-I2 trials in 1st phase. gather the necessary information for the evaluation of the trial face any problems that may occur improve any functionalities and mechanisms 			

Date	Actions	
July 2016	ly 2016 End of 2 nd phase trials.	
Final evaluation. Cross evaluation.		

4.2.2.7 Risks and related solutions

The possible risks for UC-I2 are the same as UC-I1.

5 Tarragona Trials

This chapter describes the RERUM trials at the city of Tarragona.

5.1 Phase-1 Trials

5.1.1 UC-O2: Outdoor - Environmental monitoring

5.1.1.1 Definition

Tarragona's goal is to gather environmental information to study its impact on their cultural assets. Most of them are World Heritage⁴ monuments from the Roman period of the city. In particular the aim is to study how the environmental pollution affects to the municipality monuments, such as the contaminants which influence the water acidity (Like the sulphur dioxide, the nitrates or the carbon oxides)

Furthermore, meteorological stations will be deployed along with some of the installed devices to estimate the environmental conditions that have a direct impact to the municipality monuments. This information could be used, as well, for other purposes like internal planning or to provide information to the citizens.

Finally, to maximise the results in the devices deployment, several noise sensors will be installed as a trial pilot to advance in the city efforts on this topic.

In conclusion, the trials in the city will measure the following elements:

- Weather conditions (Temperature, RH, ...)
- Air quality (SO2, NOx, O3, CO_x, VOC, PM10)
- Noise

The collected data will be forwarded to an application server, where it will be processed in order to be usable by an end-user in terms of:

- Real-time and geolocalized monitoring of environmental factors.
- Comparison of environmental information from different spots.
- Historical evolution of environmental parameters.
- Study the pollution and meteorological impact to the city monuments.
- Allow to label special environmental conditions in the city (i.e. the pollution generated by Tarragona's annual Fireworks Contest).
- Raise alerts if the environmental pollution is over a threshold.
- Allow other applications, not linked with the project, to access the collected data.

The main goals of the environmental monitoring system are the following:

- Get indicative measurements of the air quality of the city at different spots.
- Monitor both the pollution and the meteorological impact on heritage assets.
- Study the effects on the air quality when different decisions are taken from the city council in terms of mobility in the streets.
- Correlate all measures made with the existing weather on each part of the city the system is deployed.

⁴ http://whc.unesco.org/en/list/875

5.1.1.2 Mapping of UC ecosystem components to trial functionality and technical components

Table 44 UC-O2: main components (Tarragona)

Component	Description
Sensors	Convert physical parameters into electric ones in order to be able to measure those using electronic based systems. The measurements will be digitalized and transmitted through digital communications systems. See Table 23 for further details on sensors used in UC-O2.
RERUM Devices	The RDs are different nodes of a network connected through a star, tree, or mesh topology. They are installed on the streets or on city square gathering information from sensors. Mounting supports for the RDs are used to attach the devices on different placements on the city's streets. The support is also used as a base for the power supply of these devices. For example, partial power supply (e.g., the streetlights one, only available during the night) could be applied for charging the batteries of those devices, in order to ensure their operation during the day. Solar cells could also be used to power nodes with low power requirements. On the other hand, in the case of more energy-greedy devices, such as gateways, a 24/7 power supply might be required. RDs communicate wirelessly, using 6LoWPAN over IEEE 802.15.4 (on the specified frequency bands). RDs are composed of: • A RF IEEE 802.15.4 interface. • A CPU (a micro-controller) managing the 6LoWPAN communication stack and getting measures from the sensors. • One or more sensors connected to the CPU, through analog or digital interface, depending on the sensors. • A power supply, optionally with batteries when power is not always constantly available. The use of more than one sensor per RD is useful for correlated types of measurements, for example when different type of gases are measured in one spot, or when it is required to relate different measurements with each other, e.g., the concentration of specific materials in the air with the amount of rain or the relative humidity. In this way, the next measurements are available on a single node: • Measure of all gases suggested in the same node, since they are related to fuel combustion and its chemical combinations with the air and the sunlight. • PM ₁₀ and RH, because in high humidity situations (e.g., due to fog), a possibly wrong figure will be shown because it will act as an interference to the optical sensors usually used for such kind of measurements. Spectrometric measure could avoid that situa
Actuators	No direct actuators are used in this UC
Network Gateway or cluster heads (intermediate nodes)	Due to the limited communication range and bandwidth restrictions of the RDs' wireless communication technology, it is necessary to add gateways or cluster heads close to RDs to communicate/fuse the gathered data to the application server over the internet. Thus, a gateway will be equipped with an IEEE 802.15.4 interface for communication

Component	Description
	with the RDs and appropriate interfaces to connect to the Internet over a wired or wireless link, e.g. a wifi interface could be used in case a suitable 802.11 based mesh infrastructure already exists in the city. All intermediate nodes should ensure security, privacy and reliability when forwarding the information to the application server.
Application server	The application server, equipped with an appropriate software application, will provide end-users with a graphical interface giving access to raw data, graphs, queries, threshold configuration, alarm setting and transmission, etc. The server will be owned by the city authorities and can be either outsourced or kept private. In certain cases city authorities could even exploit the data for their own profit. In any case, it must have at least an IoT based interface, i.e. support web-services over REST interface to gather the data from the sensor devices.

Table 45 UC-O2: sensor types (Tarragona)

Sensor	Sensing elements	Description	Common Uses
Weather	Temperature Relative Humidity (RH) (Others: Atmospheric pressure, rain, lux meter)	Measures the current weather conditions	Helps to interpret the air quality information
Air Quality	SO ₂ NO _X O ₃ VOC PM ₁₀	Measures the key air compounds (mainly those related to traffic and fuel combustion)	Determine an air quality index, control the PM and relate it to the possible effects on the city assets.
Noise	Microphone	Measures the noise level with A- weighting, peak, average and daily distribution	Determine the noise in the deployment areas.

5.1.1.3 Deployment of components

The RDs to be installed in the city locations will transmit the sensed data to a RERUM GW that will be installed in the proximity of the RDs. The number of RERUM GWs will depend on the propagation conditions which affect the quality of the connection (e.g., bit rate, connection reliability). The transmission protocol will be 6LowPan over IEEE 802.15.4, although some devices could use 802.11a/b/g/n or Ethernet as well. The RERUM GW will aggregate the transmitted data and forward them to the application server or to another external middleware, after the secure connection with the RERUM MW and the application server has been successfully established.

In regard of the current use case high-level overview, it is not reproduced again here due its similarities to the one described before in the Heraklion's UC (please see "Figure 29 Environmental monitoring high-level overview (Heraklion)").

Table 46 UC-O2: Interfaces between Trial components (Tarragona)

Components	RD	Gateway	Middleware	Application Server
RERUM device		Connectivity: IEEE 802.15.4, IEEE 802.11a/b/g/n, Ethernet. Scope: Traffic aggregation, Packet forwarding, Energy savings for devices.		
Gateway	Connectivity: IEEE 802.15.4, IEEE 802.11a/b/g/n, Ethernet. Scope: Traffic aggregation, Packet forwarding, Energy savings for devices		Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet Scope: Security: device authentication	Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet
Middleware		Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet Scope: Security: device authentication		Connectivity: TCP/IP (Ethernet, VNPs, xDSL) Scope: Gather, process and display sensor data.

Finally, with respect to the devices deployment, the RDs will be installed in several heritage assets:

- Around Tarragona's Roman Wall:
 - o The Pretorium Tower (physical device from UC-I2 trial).
 - Wicket gate at Sant Antoni Street.
 - o Canals' Estate roof (physical device from UC-I2 trial).
 - o North area of the Roman Wall.
- Roman Amphitheatre.

Table 47 UC-O2: summary of the devices measurements (Tarragona)

Мар		Measurements – sensors			Number of devices		
ld.	Location	Air quality	Noise	Weather	RDs	RD Power	GW
1* **	Pretorium Tower	Device from UC-I2.					
5 **	Pretorium Tower	Yes (1)	Yes (1)	No	1	AC / battery	1

Man		Me	asurements – se	nsors	Nui	mber of devi	ces
Map Id.	Location	Air quality	Noise	Weather	RDs	RD Power	GW
2 **	Wicket gate	Yes (1)	Yes (1)	No	1	AC / battery	1
3*	Canals Estate	Device from U	Device from UC-I2.				
4	Roman Wall north area	Yes (2)	No	Yes (1)	2	AC / battery	1
6	Roman Amphitheatre	Yes (2)	No	Yes (1)	2	AC / battery	1

^{*} The I2 devices are displayed in orange on the following map.

The RERUM devices will be connected using the council's internal network. In some points, if the city network is not available, other kind of connections like GPRS would be considered.

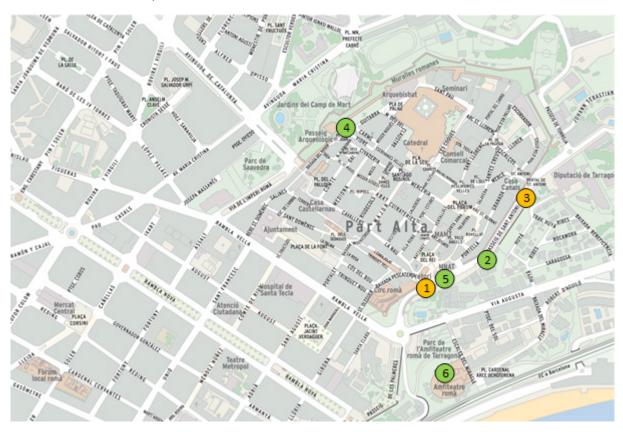


Figure 36 Placement of sensors for UC-O2 trials (Tarragona)

^{**} In locations #1, #2 and #5 the nodes may share the same gateway. (note that the devices are from different use cases)

Figure 37 Tarragona's Pretorium tower [6]

Figure 38 Tarragona's Roman Amphitheatre

5.1.1.4 Scenarios description

Hybrid scenario description

The environmental monitoring use case has some sensors spread though the city to collect air quality, noise and weather parameters, but with a limited number of sensors deployed. The comfort quality monitoring use case collects information about the comfort parameters in some buildings (which could be either public or private). These parameters can be indoor which affect directly the comfort of the people inside (temperature, RH) as well as outdoor (air quality, noise and weather - temperature and RH), that can be used to take decisions that may affect the indoor comfort (opening or closing windows, controlling the air conditioning, etc.).

We will demonstrate the capabilities of RERUM for managing hybrid scenarios where data collected from private deployments (no smart city) can be used from city wide applications to increase the number of locations providing data. To do so, the comfort quality monitoring use case will make available their outdoor sensors to provide additional data to the city environmental monitoring, so demonstrating how private deployments can contribute to make wider the city sensor network. Specifically, this means that information collected by sensors placed outside some of the buildings of the comfort quality management use case (Pretorium Tower & Canals Estate for the trials) will be made available also for the environmental monitoring use case, defining them as services that will feed both use cases.

Table 48 Measurements made at the comfort monitoring use case for selected buildings (Tarragona)

	Indoor mea	Indoor measurements		Outdoor measurem	
Location	Temperature	RH	Air quality	Noise	Outdoor Temperature & RH
Canals' Estate	Yes	Yes	Yes	Yes	No
Pretorium Tower	Yes	Yes	Yes	Yes	Yes

The comfort quality monitoring use case will expose the outdoor sensors as services, providing these parameters as one VRD for each building, and registering these services in the middleware of the environmental monitoring use case deployment. This way, the environmental monitoring use case will collect information provided by sensors belonging to the private comfort quality monitoring use case. The privacy and security preferences will be set in a way that environmental monitoring use case will have access only to the selected sensors. The other comfort sensors (indoor temperature and RH) will remain hidden to the environmental monitoring use case deployment, applications and users, securing and protecting the privacy of the indoor comfort data. The scenario will test specifically that it is not possible to access the VRD that expose indoor sensors in UC-I1 from the UC-O2, that is, that the VRD exposed to the indoor trial are not reachable from the outdoor trial.

Trial scenarios based on evaluation criteria

The tables below describe the scenarios that will be implemented in the UC-O2 trials in Tarragona

Table 49 Scenario T-UC-O2_A

Purpose of the	Demonstrate how M/W functions can leverage layer 3 multicast in order to improve
scenario	network performance and decrease energy consumption, ultimately increasing
	deployment lifetime.
Evaluation	AL DE E
criterion ID	AL.PE.5
KPIs	All defined in the criterion

Scenario	To implement the evaluation defined in section 2.3.4, a message will be send from the end-
Description	user application to a selected group of RDs. The message will ask the RDs to perform a
	predetermined action (i.e. do a measurement, check version of currently installed
	firmware, or provide information about the devices like their status) and return an answer
	to the server.
Topology	See Figure 31

Table 50 Scenario T-UC-O2B

Purpose of the	Provide availability information of deployed devices to allow users and maintainers to
scenario	assert the deployment status, schedule preventive maintenance if one or more devices
	show behaviours prone to failure, and to provide users and services exploiting the data
	reliability criteria.
Evaluation	EM.PE.8
criterion ID	LIVI.FL.0
KPIs	All defined in the criterion
Scenario	As defined in the criterion.
Description	As defined in the criterion.
Topology	The standard topology defined for this UC in Figure 29.

Table 51 Scenario T-UC-O2c

Purpose of the scenario	Test the OAP in the outdoor installed RDs, which may be deployed in hard to access areas.
Evaluation criterion ID	AL.SE.2
KPIs	All defined in the criterion.
Scenario Description	The RDs will be deployed in hard to access areas. The OAP will minimise the need to send a technician to each device to reprogram them, so the system's maintenance cost should decrease.
Topology	The standard topology defined for this UC in Figure 32.

Table 52 Scenario T-UC-O2_D

Purpose of the scenario	Test the CS-based data gathering for both security and energy efficiency. (similar test as in Heraklion UC-O2, see Table 16)
Evaluation criterion ID	AL.EF.6
KPIs	Amount of energy saved.
Scenario Description	See the scenario in Table 16.

5.1.1.5 Requirements and dependencies

Some of the RDs will be installed in heritage assets. Therefore these RDs must meet the following criteria:

- The RDs visual impact on the monument must be low or non-existent.
- The RDs must be fixed in the monuments by non-abrasive and non-permanent techniques (i.e. silicone cement or plastic clamps).

The RDs must not interfere with other wireless devices already deployed in the city.

The RDs physical deployment must be coordinated with the Council's maintenance companies. Consequently, to ease the device's installation and maintenance a procedure must be written down to determine how the different involved parties (Council employees, maintenance companies and RERUM partners) interact.

5.1.1.6 Scheduling of the activities

The schedule for the activities to be carried out in the first phase in Tarragona, for both use cases UC-O2 and UC-I2, is detailed in the following table:

Table 53 UC-C)2: scheduling	activities	(Tarragona)
	JE. JUILUUIIIE	activities	i i ai i agoila <i>i</i>

Мо	nth	Dates	Actions
Start	End	Dates	Actions
M16	M24	December to August 2015	Trials planning.
M25	M26	September to October 2015	Start of the first phase. A few RDs will be deployed in strategic points to early detect problems in their performance (data collection, networking, communication with the gateways and the middleware server). The middleware server will be deployed.
M27	M29	November to January 2016	Progressive RDs deployment. End-user application deployment. End of the RDs deployment.
M30	M30	February 2016	First phase evaluation: a report will be produced with the trials' results, the difficulties that have been encountered, suggested improvements, etc. This report will feed Heraklion's UC-O2 trials.
M35	M35	July 2016	Final evaluation. Cross evaluation. End of the second phase.

5.1.1.7 Risks and related solutions

Table 54 UC-O2: risks (Tarragona)

Risk description	Probability to occur	Suggested solution
As some of the RDs will be deployed within heritage assets, a written authorization from the Catalonian Government might be required. The Government may not authorise the deployment.	Low	The sensors will be reallocated outside the heritage assets.
Networking problems.	Medium	Additional gateways could be deployed. The equipment could have installed special antennas or to use GPRS for communication.
RDs are destroyed because of vandalism or stolen.	Low	RDs will be installed in points where it will be difficult the physical access.
Unforeseen difficulties in the physical deployment.	Low	Alternative locations for the sensors would be considered.

5.1.2 UC-I2: Indoor - Comfort quality monitoring

5.1.2.1 Definition

Tarragona will perform environmental monitoring inside several municipal buildings, some of them museums, in order to monitor their air quality. In particular the following parameters will be measured:

- Temperature
- Relative Humidity

For some of the buildings it will be done also outdoor measurements of the air quality for the following parameters:

- Air quality
- Noise
- Outdoor temperature and relative humidity.

The collection of environmental indicators will allow the Council to known the building's real status and, maybe, to help to prioritize the maintenance activities in the facilities. In a key location, RERUM may allow to bring smartness to a domestic-designed air conditioning system --which at the moment is manually operated-- activating and deactivating the appliances according to the real-time data provided by the sensors.

The collected data will be forwarded to an application server, where it will be processed in order to be usable by an end-user in terms of:

- Control in real-time the environmental conditions.
- Raise alerts if the indoor quality is over a threshold.
- Historical evolution of indoor quality parameters.
- Historical evolution of indoor quality parameters by season (summer, winter ...).

- Correlate the number of visitors --information manually introduced in the application-- with the indoor quality parameters.
- Obtain reference indicators.

Other objectives of this trial are the following:

- Get indicative measurements of indoor air quality.
- Get indicative measurements of the building status.
- Help to improve the staff working conditions.
- The deployed RERUM devices must not interfere with other deployed systems.
- Look after the preventive maintenance of the facilities and the historical assets.
- (Optionally) Manage the indoor comfort actuators, such as air conditioning systems, in a smarter way after assessing the exact comfort situation on different parts of the house through monitoring.
- Monitor the comfort (the air quality and the temperature/humidity) in museums, art galleries and other areas with specific requirements for environmental conditions.
- Use the air quality monitoring at indoor places for adjusting existing policies of the municipality

5.1.2.2 Mapping of UC ecosystem components to trial functionality and technical components

The main components for Tarragona's implementation of user case I1 are the same already listed in "Table 11 Heraklion's UC-I1 main components" with the following exceptions:

Table 55 UC-I2: main components (Tarr	ragona)
---------------------------------------	---------

Component	Description
Actuators	Optionally in one of the locations, the Castellarnau's Estate, one to five actuators could be installed to bring smartness in a domestic-designed air conditioning system. The actuators could cut the power of the appliances when the measures from the sensors are above a threshold (and vice versa).
	The appliances will be dehumidifiers used to control de relative humidity (from two to four) and fans used to remove hot air pockets (from one to three).

Table 56 UC-I2: sensor types (Tarragona)

Sensor	Sensing elements	Description	Common Uses
Indoor Comfort Quality	Temperature Relative Hummidity	Measures the temperature and humidity.	Determine an air quality inside the buildings.
Outdoor Air Quality	SO_2 NO_X O_3 VOC PM_{10}	Measures the key air compounds (mainly those related to traffic and fuel combustion)	Determine an air quality index, control the PM and relate it to the possible effects on the city assets.
Outdoor Noise	Microphone	Measures the noise level with A-weighting, peak, average and daily distribution	Determine the noise in the deployment areas.

Sensor	Sensing elements	Description		Common Uses
Weather	Temperature Relative Humidity (RH)	Measures the weather conditions	current	Helps to interpret the air quality information

5.1.2.3 Deployment of components

The devices will be installed at the following places.

- Castellarnau's Estate (Museum).
- Canals' Estate (Museum) inside and on the roof.
- Pretorium Tower (Roman heritage) inside and on the roof.

Table 57 UC-12: summary of the devices measurements (Tarragona)

Indoor Measurements		Outo	door Mea	asurements	Number of components				
Location	Temperature	RH	Air quality	Noise	Weather	Indoor RD	Outdoor RD	RD power	GW
Castellarnau's Estate	Yes (7)	Yes (7)	No	No	No	7 –10*	No	AC / battery**	2
Canals' Estate	Yes (3)	Yes (3)	Yes (1)	Yes (1)	Yes (1)***	2-3	1	AC / battery**	1*
Pretorium Tower	Yes (3)	Yes (3)	Yes (1)	Yes (1)	Yes (1)	3	1	AC / battery**	1*

^{*} The number of RDs includes the actuators which may be installed.

**** For these locations the gateway may be shared between nodes from different use cases. The RDs to be installed in the city locations will transmit the sensed data to a RERUM GW that will be installed in the proximity of the RDs. The number of RERUM GWs will depend on the propagation conditions which affect the quality of the connection (e.g., bit rate, connection reliability). The transmission protocol will be 6LowPan over IEEE 802.15.4, although some devices could use 802.11a/b/g/n or Ethernet as well. The RERUM GW will aggregate the transmitted data and forward them to the application server or to another external middleware, after the secure connection with the RERUM MW and the application server has been successfully established.

The RERUM Gateway will be connected via Ethernet, GPRS, IEEE 802.11a/b/g/n to an Internet access point.

In regard of the current use case high-level overview, it is not reproduced again here due its similarities to the one described before in the Heraklion's UC (please see "Figure 33 Comfort quality monitoring high-level overview (Heraklion)").

^{**} Although it is expected to have the RDs directly plugged to an AC power source, in some locations a battery will be need to assure the devices remain operational during the night, after the AC power has been cut off.

^{***} Only temperature and RH will be measured.

Table 58 UC-I2: Interfaces between Trial components (Tarragona)

Components	RD	Gateway	Middleware	Application Server	
RERUM device		Connectivity: IEEE 802.15.4, IEEE 802.11a/b/g/n, Ethernet. Scope: Traffic aggregation, Packet forwarding, Energy savings for devices.			
Gateway	Connectivity: IEEE 802.15.4, IEEE 802.11a/b/g/n, Ethernet. Scope: Traffic aggregation, Packet forwarding, Energy savings for devices, actuate over the physical world.		Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet Scope: Security: device authentication	Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet	
Middleware		Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet Scope: Security: device authentication		Connectivity: TCP/IP (Ethernet, VNPs, xDSL) Scope: Gather, process and display sensor data.	

Figure 39 Castellarnau's Estate (Tarragona)

5.1.2.4 Scenarios description

The tables below include the scenarios that will be implemented in the UC-I2 trials in Tarragona

Table 59 Scenario T-UC-I2A

Purpose of the scenario	Evaluate the SIEM server by monitoring the RDs, both sensors and actuators, deployed in the use case.
Evaluation criterion ID	AL.SE.1
KPIs	All defined in the criterion.
Scenario Description	In one of the use case locations several actuators will be installed to turn off and on domestic-designed appliances according to the environmental data provided by the RDs sensors. The SIEM interface will monitor and analyse the events, checking if them comply with the predefined policies of risks detection, thus ensuring the system reliability. Furthermore, if the values are over a threshold the system could raise an additional alarm.
Topology	The standard topology defined in Figure 29.

Table 60 Scenario T-UC-I2_B

Purpose of the scenario	Check the ability of RERUM to combine several local policies based on user attributes and specific business logic. The specific business logic will be demonstrated by checking the value of a parameter that depends on the service. The combination of policies will be checked by providing an additional policy set that will let pass if any of the provided criteria pass.
Evaluation criterion ID	AL.AU.2 and AL.AU.4
KPIs	All in the criterion.
Scenario Description	Make sure that there is a multi-valued user attribute named 'role' for each RERUM registered user that will access any of these buildings. This attribute will have to contain a list of possible roles assigned to that user separated by commas. Among them, this list will have to include the values corresponding for accessing each floor of each building in the system For instance, if the user had a role janitor used for other purposes and is able to access the floors 1 and 2 of the Pretorium tower, then the role value should equals to 'Janitor', Pretorium_Tower_Floor1_cqm, Pretorium_towe_flloor2_cqm. The cqm suffix is optional and indicates that this role was created for the Comfort Quality Monitoring Use Case
Topology	The standard topology defined for the UC in Figure 33.

Table 61 Scenario T-UC-I2c

Purpose of the scenario	Test if the ABAC security is effectively able to enforce privacy criteria based on purpose parameter.
Evaluation criterion ID	AL.AU.5
KPIs	All in the criterion.
Scenario Description	A privacy policy will be defined to ensure that the incoming requests for data contain the mandatory purpose field and its value is equal to the one granted by the municipality. It will also check that the user-id attribute of the RERUM registered user accessing the data equals to the user-id assigned to the RERUM applications assigned to the Tarragona municipality. The trials will evaluate if the data is accessed according to the established privacy policy.
Topology	The standard topology defined for the UC.

Table 62 Scenario T-UC-I2_D

Purpose of the	The purpose of the scenario is to evaluate both the ability of the system to make decisions
scenario	based on system attributes, such as the date, and the ability to combine system level
	policies with local ones. This scenario will allow municipality administrators to define on
	advance the activation period of users
Eval. criterion	AL.AU.3
ID	
KPIs	Success of policy control
Scenario	Define two user attributes 'active_from' and 'active_till' in the Identity platform for an
Description	existing user
	Define a policy that is global to the system that checks that the user is currently active, that
	is, that the system time is greater or equal than the value of the user attribute 'active from'
	and lesser or equal than the value of the user attribute 'active till'
	1. Repeat all checks of scenario UC-I2 _B that previously granted access with an active
	user and check that he is still granted access to the platform

	2. Repeat all checks of scenario UC-I2 _B that previously granted access with a non-	
	active user and check that he is no longer granted access to the platform	
	3. Repeat all checks of scenario UC-I2 _B that previously denied access check that the	
	user is still denied access to the platform	
Topology	Figure 25, Figure 26	

Table 63 Scenario T-UC-I2E

Purpose of the	The purpose of the scenario is to evaluate the privacy enhancing techniques with the use
scenario	of secure transmissions and integrity protection (as in the Heraklion trials)
Eval. criterion	AL.EF.6, AL.PE.3, AL.PE.4
ID	
KPIs	Possibility to extract user data from the transmissions.
Scenario	A nearby laptop/pc with a sniffer will capture the data transmitted from the RDs and will
Description	try to extract personal user information of the captured packets.

Table 64 Scenario T-UC-I2_F

Purpose of the scenario	The purpose of the scenario is to evaluate the use of external measurements in the indoor scenario (as in the Heraklion trials).
Eval. criterion	AL.PE.2
ID	
KPIs	Metrics related with comparing the external temperature and air quality against those of
	the indoor environment.
Scenario	The scenario will include an indoor application receiving measurements from the external
Description	environment and raising alarms or notifications to the indoor users for various cases, i.e. (i)
	when the difference between the internal and the external temperature is too high, (ii)
	when the outdoor quality is better than the inside, (iii) when the inside humidity is higher
	than the outside, etc.

Table 65 Scenario T-UC-I2_G

Purpose of the	The purpose of the scenario is to evaluate the RERUM contributions to the comfort quality
scenario	monitoring application from the users' point of view.
Eval. criterion	User-based evaluation with questionnaires.
ID	
KPIs	User acceptance level of the RERUM contributions to the application.
Scenario	The scenario will include the participation of the users (i.e. system administrators, office
Description	employees) in two ways: (i) by accessing the applications and testing the various features
	themselves, and identifying potential bugs or difficulties or useless features and (ii) by filling
	up questionnaires answering to questions described in Section 2.3.1 stating their
	experiences with the RERUM application and their acceptance level of the tested
	mechanisms

5.1.2.5 Requirements and dependencies

Some of the RDs will be installed in heritage assets. Therefore these RDs must meet the following criteria:

- The RDs visual impact on the monument must be low.
- The RDs must be fixed in the monuments by non-abrasive and non-permanent techniques (i.e. silicone cement or plastic clamps).

The RDs must not interfere with other wireless devices already deployed in the locations.

To ease the device's installation and maintenance a procedure must be written down to determine how the different involved parties (Council employees, maintenance companies and RERUM partners) interact.

5.1.2.6 Scheduling of the activities

As the schedule for the activities to be carried out in the first phase in Tarragona is the same, please examine "Table 53 UC-O2: scheduling activities (Tarragona)".

5.1.2.7 Risks and related solutions

Table 66 UC-I2: risks (Tarragona)

Risk description	Probability to occur	Suggested solution
As some of the RDs will be deployed within heritage assets, a previous written authorization from the Catalonian Government might be required. The Government may not authorise the deployment.	Low	The sensors will be reallocated outside the heritage assets.
Networking problems.	Low	Additional gateways could be deployed. The equipment could have installed special antennas or to use GPRS for communication.
Unforeseen difficulties in the physical deployment.	Low	Alternative locations for the sensors would be considered.

5.2 Phase-2 Trials

5.2.1 UC-O1: Outdoor - Smart Transportation

5.2.1.1 Definition

The aim of UC-O1 trials is to provide proof of concept of how RERUM technologies could be used to improve and complement the available resources for the urban mobility control and monitoring.

Tarragona already has several information sources for the urban mobility control as, for instance, the geolocalization systems installed in the city buses, mobile sensors to count the vehicles or an ATC system installed in key traffic lights, which it is expected to be operational soon.

With the field trials Tarragona wishes, firstly, to increase the available information on urban mobility and, secondly, to have a system for data visualization and interpretation. Being the data collected from both RERUM devices and, as far as practicable, the sensors already deployed within the city.

For the trials an Android crowdsourcing application will be provided to a group of volunteers --who closely cooperate with the Tarragona city Council-- and the public in general to gather the following data:

- Vehicle Type
- Location
- Speed
- Direction of travel

The collected information, from both RD and external sources, could be used for:

- Perform measurements throughout the city
- Visualize traffic measurements, in a privacy conserving manner.
- Ensure the trustworthy exchange of information between the smart objects and the applications
- Preserve the privacy of user data and ensure the trustworthy and secure transmission of user data to the applications. Always anonymise user data before transmission (at smart object level)

Furthermore, the Android applications used in the trials must fulfil the following requirements:

- Preserve the user privacy (e.g.: personal data, IP address, device unique ids, potential access to the data stored in the volunteer's device).
- Avoid harmful side effects in the volunteers' smartphones (i.e.: consumption of processing resources, energy or mobile data consumption).
- Take the necessary actions to assure that young individuals do not participate in the trials.
- Gather the informed consent from the users.
- If personal data is collected, provide a procedure to allow the users to enforce their rights to access, rectification, cancellation and objection with the gathered information.
- Meet the criteria and enforce the rights and duties defined in the Spanish Data Protection Act 15/1999 and their regulations.

5.2.1.2 Mapping of UC ecosystem components to trial functionality and technical components

The following table describes the main components deployed for the UC-O1.

Table 67 UC-O1: main components (Tarragona)

Component	Description	Physical installation
Vehicles	Citizen car or public transport (bus, taxi) used by volunteers. The objective will be to utilize the available participatory deployed RDs in an optimum way regarding the efficiency of the traffic	Smartphones carried by volunteers
	estimation.	Devices with sensors already
Sensors	Sensing elements of the type described in Table 68.	installed on buses
RERUM Devices	For the groups of volunteers, smartphones will be utilized as RDs. The requirements that have to be satisfied are the sensing elements of Table 68 and the network connectivity which shall include WiFi and GPRS connectivity. The connectivity of the smartphones with respect to the time they	Carried by volunteers
	keep attached to the cellular network (PDP context) will be taken	

Component	Description	Physical installation
	into account in order not to unnecessarily waste network resources.	
Middleware server	The MW server shall be responsible for the communication of the RDs with the application servers.	Tarragona premises
Application server	Application server shall be responsible for the transport services (e.g., traffic estimation, visualization of real-time traffic state, traffic management). They can be owned by the city or outsourced.	Tarragona premises

Table 68 Sensor types for Tarragona UC-O1, describes the sensors used in the UC-O1.

Table 68 Sensor types for Tarragona UC-O1

Sensor	Description
ACCELEROMETER	Measures the acceleration force in m/s^2 that is applied to a device on all three physical axes (x, y, and z), including the force of gravity.
GPS_RECEIVER	Measures the location in the WGS84 reference system as well as point speed, orientation and time.
WIFI_MODULE	Captures the MAC address and RSS of current and nearby WiFi access points.
CELLULAR_MODULE	Measures the Cell Id and RSS of current and nearby cellular base stations.

5.2.1.3 Deployment of components

Figure 41 below shows the overview of the architectural deployment for UC-O1.

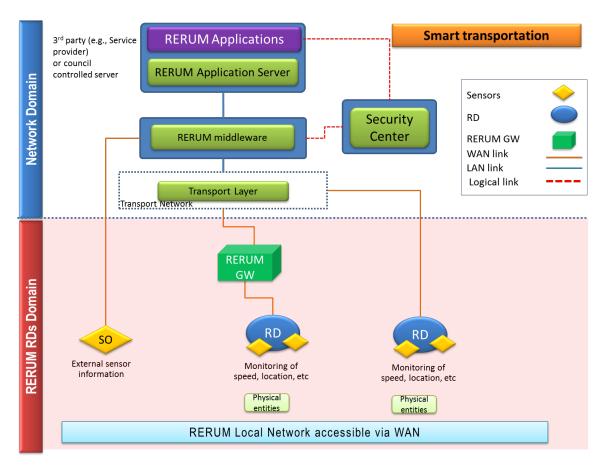


Figure 40 Tarragona UC-O1 Smart transportation high-level overview

Table 69 illustrates the interfaces between the components for UC-O1

Table 69 UC-O1 Interfaces between Trial components (Tarragona)

Components	Smartphone	Gateway	Middleware	Application Server
Smartphone			Connectivity: Technology: GPRS, 3G, IEEE 802.11a/b/g/n. Scope: Security: device authentication, traffic aggregation.	
Middleware		Connectivity: Technology: GPRS, 3G, IEEE 802.11a/b/g/n. Scope: Security: device authentication, traffic aggregation,		Connectivity: TCP/IP (Ethernet, VNPs, xDSL) Scope: To gather, process and display sensor data.

Components	Smartphone	Gateway	Middleware	Application Server
External (non- RERUM) sensor data				Connectivity: TCP/IP (Ethernet, VNPs, xDSL)
				Scope: Gather and integrate external data.

As the Android application requires a minimum number of active users, the application will be distributed to a volunteer group who collaborate with the Council. If more users are required then the application will be released to other groups (i.e. students) or to the public in general.

The volunteers will be engaged in three ways:

- Specific sessions to introduce the project and the application.
- Specific actions to obtain feedback from the users (surveys or other mechanisms).
- Open a helpdesk channel to provide user support.

If the application is released to other groups a communication plan will be drawn to address them in the most effective way.

On the other hand, in spite of the external sensor data, information from Tarragona's bus company and from ATCs could be incorporated into the system. Tarragona's public transportation company currently serves 20 routes, where three of them are night routes:

Table 70 Tarragona bus routes

Route	Description
3	La Canonja – Torreforta – Tarragona
5	Prat de la Riba – St. Salvador
6	Campclar – Centre – St Pere i St Pau
8	Hosp. Joan XXIII - Camí de la Cuixa - Vall de l'Arrabassada
11	Boscos - Pl.Imp.Tàrraco
12	La Mora - Pl.Imp.Tàrraco
13	Entrepins - Sta. Tecla Llevant
21	Estació - Pg.Torroja - Catalunya - Pl.Imp.Tàrraco - Estació
22	Hospital Joan XXIII - El Serrallo
23	Estació - Hosp. Joan XXIII
30	La Canonja
34	Colom- La Floresta - Les Gavarres

Route	Description
41	Zona Educacional
42	Complex Educatiu
52	Bonavista – Pere Martell – Cooperativa Tàrraco
55	Rodolat del Moro - St. Pere i St. Pau
85	Hospital Joan XXIII – St. Salvador
71	[night route] Pl.Imp.Tàrraco - St. Pere i St. Pau - St. Salvador
72	[night route] Pl.Imp.Tàrraco - La Canonja
73	[night route] Pl.Imp.Tàrraco - Boscos

For the trials the routes which operate in the city critical areas will be chosen. This will be decided taking into consideration the feedback from the 1st phase provided by Heraklion.

5.2.1.4 Scenarios description

Trial scenarios for overall system evaluation

The overview description and the benefits and improvements for this scenario are the same provided for the trial at Heraklion (see section 4.1.1.4 Scenarios description)

C. Second phase at Tarragona:

The application will be released to general users similarly to Heraklion. The core difference is that in this case we will examine compare and contrast the effect of different connectivity constraints and take into account the lack of prior experience with deployment from busses.

Trial scenarios based on evaluation criteria

The tables below include the scenarios that will be implemented in the UC-O1 trials in Tarragona

Table 71 Scenario T-UC-O1_A

Purpose of the scenario	The purpose of the scenario is to evaluate the RERUM energy efficiency mechanisms for traffic estimation applications.
Evaluation criterion ID	ST.EF.1
KPIs	Loss of battery % per operational hour, per operation session
Scenario	The end-users will be requested to answer specific questionnaires related to the energy
Description	efficiency of the Traffic Estimation application and how it affects the battery lifetime of smartphones.
Topology	The standard topology for the use case defined in Figure 40

Table 72 Scenario T-UC-O1_B

Purpose of the scenario	The purpose of the scenario is to evaluate the RERUM processing efficiency mechanisms for traffic estimation applications.
Evaluation	ST.EF.2
criterion ID	
KPIs	Keep the CPU % of the app as low as possible while collecting and transmitting
Scenario	The end-users will answer question on observing significant glitches in the Quality of
Description	Experience when the app is not in the foreground after installing the Traffic estimation app
Topology	The standard topology for the use case defined in Figure 40

Table 73 Scenario T-UC-O1c

Purpose of the scenario	The purpose of the scenario is to evaluate the uptime of the Smart Transportation application once the RERUM middleware is used with them.
Evaluation	ST.PE.1
criterion ID	
KPIs	The target is to investigate whether the app uptime is independent of network and load
Scenario	The end-users will answer questions regarding how often they got error messages that
Description	required them to re-start the application.
Topology	The standard topology for the use case defined in Figure 40

Table 74 Scenario T-UC-O1_D

Purpose of the	The purpose of the scenario is to evaluate the possibility to track down individual users that
scenario	are using this application.
Eval. criterion	ST.SE.5
ID	
KPIs	The target is to investigate whether the app allows the tracking of individuals.
Scenario	The visualization results for the traffic will be evaluated to see if it is possible to track how
Description	many people are using the app, how many are right now moving around the city and if it is
	possible to understand who is moving where. An evaluation of the data sent from the MW
	to the application will also be performed.
Topology	Same as the generic UC-O1 topology (Figure 40)

Table 75 Scenario T-UC-O1_E

Purpose of the	The purpose of the scenario is to evaluate the RERUM contributions to the smart
scenario	transportation application from the users' point of view.
Eval. criterion	User-based evaluation with questionnaires.
ID	
KPIs	User acceptance level of the RERUM contributions to the application.
Scenario	The scenario will include the participation of the users in two ways: (i) by utilizing the
Description	application and accessing the traffic monitoring web server and (ii) by filling up
	questionnaires answering to questions described in Section 2.3.1 stating their experiences
	with the RERUM application and their acceptance level for the provided features.

5.2.1.5 Requirements and dependencies

The RDs in this UC trial are android based smartphones that run RERUM application. Due to the vast amount of combinations of hardware and software versions available on the market for Android smartphones, using arbitrary devices can make it difficult to assure good quality of tests in the trials. To address this issue we will provide a list of validated smartphones and their expected performance in the trials. The current list can be seen in Table 9 (Heraklion UC) and it will be continuously updated. LiU will, furthermore, provide timely validation of any device proposed by the city.

In the trials the demo application is intended to demonstrate the RERUM platform/architecture in a traffic management use case. The use case is limited to traffic estimation proof-of-concept, over the RERUM-collected data.

Collection of data is carried out with the help of vehicle-mounted devices and devices carried by citizens. There are 2 categories of users:

- Public transportation dedicated to specific routes
 - The quality of traffic estimation is directly affected by the amount of data collected.
- Participatory group of users that use smartphones
 - Users are requested to use smart-phones from the set of devices validated by LiU prior to trial and deployment.
 - The users are instructed to use only when driving their car with the help of Start-Stop button in the application.

Additionally, the Android application must be available at least in Catalan and Spanish.

5.2.1.6 Scheduling of the activities

The schedule for the UC-O1 in Tarragona is as it follows below.

Table 76 UC-O1: scheduling activities (Tarragona)

Mo	nth	5.			
Start	End	Dates	Actions		
M28	M30	December to February 2016	Plan and schedule the tasks. At least the following tasks should be scheduled for the second phase: - Engage the volunteers Risk assessment for the volunteers (number of users,) - Address the ethical aspects of the trials Deploy the Android application Deploy the end-user application. Adapt the RERUM middleware for the second phase.		
M30	M30	February 2016	Use Heraklion's early results to improve the planning and schedule.		
M31	M35	March to July 2016	Second phase start. Volunteer engagement and RDs deployment. End-user application deployment.		
M35	M35	July 2016	Final evaluation. Cross evaluation. End of the second phase.		

5.2.1.7 Risks and related solutions

The foreseen risks in UC-O1 in Tarragona are described in Table 77:

Table 77 UC-O1: risks (Tarragona)

Risk description	Probability to occur	Suggested solution	
Low participation: Quality is directly proportional to data collected. The number of active users is too low for the trials' requirements.	Medium	Communication and training actions will take place to increase the number of active users. As an alternative, the application will be distributed among other groups or volunteers or to the public in general though an open call.	
Proper operation of the application: Proper training for the user to understand when the application starts and stops. Medium		Communication and training actions will take place to increase the number of active users.	
Collection of unnecessary data: Stop application when the user is out of the vehicle.	Medium	to increase the number of active users.	
Participant tries to use an unsupported Android smartphone. The application malfunctions (poor GUI, non-responsive, crash)	Medium	The list of tested phones on Table 9 is constantly expanded, covering a significant portion of commonly available devices. However some the user may not be able to participate in the trial. In case this number is excessive among the volunteers and there is a limited number of devices we will attempt to update the app	

5.2.2 UC-I1: Indoor - Home energy management

5.2.2.1 Definition

The goal of UC-I1 trials is to monitor the energy consumption in some of the Council's office buildings. The monitoring goals will be the following to detect abnormal readings (e.g. appliances or lights turned on in a weekend) and to study the patterns of energy consumption according to the season (e.g. use of air conditioning). The monitor will focus on the following:

- Energy consumption of air conditioners (A/C)s
- Energy consumption of personal computers (PCs) and other appliances.
- Energy consumption of lighting

The collected data will be forwarded to an application server, where they will be processed in order to be usable by an end-user (e.g., building administrator) in terms of:

- Real-time energy monitoring of requested device(s).
- Extraction of statistical results for the energy consumption of the devices.

Other objectives of this trial are the following:

• Identify relationships between environmental factors and energy consumption

• Raise alarms when the measurements show abnormal consumption behaviour or excessive use above pre-defined thresholds.

- Ensure the reliable operation of the system
- Ensure the trustworthy exchange of information between the smart objects and the foreseen smart city applications
- Preserve the privacy and non-disclosure of the home-user data and patterns (i.e. a pattern in lights could show the hours that a user is absent, which may be used by burglars)
- Support the "always connected" nature of the indoor smart objects
- Secure the network and avoid attacks, such as jamming, passive listening, data falsification, etc
- Automatic secure configuration of smart objects
- Avoid network failures

5.2.2.2 Mapping of UC ecosystem components to trial functionality and technical components

Table 78 UC-I1: main components (Tarragona)

Component	Description
RERUM Devices	They have the capability to send the sensed information (via wires or wirelessly) to other network nodes (e.g., SOs or gateways) for further processing.
Actuators	The application should raise alerts when a value is over a pre-defined threshold (i.e. lightening electrical power consumption in a weekend.)
Gateway	It will serve as an access or aggregation point in order to send the measured/sensed data to an external network (e.g., the internet, the utility company network etc.). The gateway may be also used for transferring the complexity from the sensing and measuring devices to it (e.g., data encryption).
Application server	It is responsible for the end-user services. It will provide a GUI to allow the user to monitor and analyse the data collected by the sensors.

5.2.2.3 Deployment of components

The devices will be installed in one of the Council's office building located in Rambla Nova 59.

The RDs will be equipped with the corresponding sensors in order to monitor:

Table 79 UC-I1 summary of the devices measurements (Tarragona)

Location	Measurements				Number of components		
Location	Consumption	Temperature	RH	Presence	RD	RD power	GW
Rambla Nova 59	Yes	Maybe*	Maybe*	Maybe*	5 –10*	AC	1-3*

^{*}The types of sensors and the final number of devices will be determined according the available resources after the first phase.

The RDs will transmit the sensed data to a RERUM GW, which will be deployed within the buildings. The number of RERUM GWs will depend on the indoor propagation conditions which affect the quality of the connection (e.g., bit rate, connection reliability). The transmission protocol will be 6LowPan over IEEE 802.15.4 or 802.11a/b/g/n. The RERUM GW will aggregate the transmitted data and forward them to the application server, after the secure connection with the RERUM MW and the application server has been successfully established.

The RERUM Gateway will be connected via Ethernet or 802.11a/b/g/n to an Internet access point.

As for the application server, it will be an Apache Web server with PHP or a Java application over a JBoss/Tomcat. The final technology will be agreed between the involved partners in tasks 5.4 and 5.5.

In regard of the current use case high-level overview, it is not reproduced again here due its similarities to the one described before in the Heraklion's UC (please see "Table 11 Heraklion's UC-I1 main components").

Table 80 UC-I1: Interfaces between Trial components (Tarragona)

Components	RD	Gateway	Middleware	Application Server
RERUM device		Connectivity: IEEE 802.15.4, IEEE 802.11a/b/g/n, Ethernet. Scope: Traffic aggregation, Packet forwarding, Energy savings for devices.		
Gateway	Connectivity: IEEE 802.15.4, IEEE 802.11a/b/g/n, Ethernet. Scope: Traffic aggregation, Packet forwarding, Energy savings for devices		Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet Scope: Security: device authentication	Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet
Middleware		Connectivity: Technology: GPRS, IEEE 802.11a/b/g/n, Ethernet Scope: Security: device authentication		Connectivity: TCP/IP (Ethernet, VNPs, xDSL) Scope: Gather, process and display sensor data.

Figure 41 Tarragona's Council offices in Rambla Nova 59

5.2.2.4 Scenarios description

The tables below include the scenarios that will be implemented in the UC-I1 trials in Tarragona

Table 81 Scenario T-UC-I1_A

Purpose of the scenario	Demonstrate how the RERUM infrastructure can leverage layer 3 multicast in order to improve network performance and decrease energy consumption, ultimately increasing deployment lifetime.
Evaluation criterion ID	AL.PE.5
KPIs	All defined in the criterion
Scenario Description	To implement the evaluation defined in section 2.3.4, a message will be send from the enduser application to a selected group of RDs. The message will ask the RDs to perform a predetermined action (i.e. take a measurement) and return an answer to the server.
Topology	See Figure 31

Table 82 Scenario T-UC-I1_B

Purpose of the scenario	Test the integration of ABAC authorization in IoT with specific business data contained in the attributes of the user that is issuing the request
Evaluation criterion ID	AL.AU.2 and AL.AU.4

KPIs	All defined in the criterion.
Scenario Description	Use a set of previously known users to check if the predefined security policies allow or deny the access to specific data. For each device subject to be accessed by a different user, upload in the system the following security policies: • A security policy that checks the value of the request parameter foiName for the service /scheduler.core/rest/services/discoverExchangeNamesByFOI (which is the second service that is invoked to reach the final service) and the role of the user. This policy will allow ensuring that the role filter is used for the proper service to be invoked and will also demonstrate AL.AU.4 because this policy will be dependant of the business logic of the mentioned service • A security policy that checks the proper role for the service /scheduler.core/rest/services/discoverExchangeNamesByFOI. This policy will be the final check to the system and check AL.AU.2 Check the policy with different users that have different values for that attribute by inspecting the logs of the authorization engine.
Topology	The standard topology defined for this UC in Figure 19

Table 83 Scenario T-UC-I1c

Purpose of the	The purpose of the scenario is to evaluate the privacy preservation of the data that are
scenario	exchanged by the RDs.
Eval. criterion	AL.EF.6, AL.PE.3, AL.PE.4
ID	
KPIs	Possibility to extract user data from the transmissions.
Scenario	A nearby laptop/pc with a sniffer will capture the data transmitted from the RDs and will
Description	try to extract personal user information of the captured packets.

5.2.2.5 Requirements and dependencies

As some of the sensors may be installed inside electrical panels, the power must be cut in order to physically install them. Therefore the installation should be carefully planned to avoid service interruptions to the council stall.

Like the previous use cases in Tarragona, to ease the device's installation and maintenance a procedure must be written down to determine how the different involved parties (Council employees, maintenance companies and RERUM partners) interact.

5.2.2.6 Scheduling of the activities

Table 84 UC-I1 scheduling activities (Tarragona)

Mo	nth	Dates	Dates	
Start	End	Dates	Actions	
M28	M30	December to February 2016	Plan and schedule the tasks. Adapt the RERUM middleware for the second phase.	
M30	M30	February 2016	Use Heraklion's early results to improve the planning and schedule.	

Mo	Month Dates		Actions	
Start	End	Dates	Actions	
M31	M35	March to July 2016	Second phase start. RD deployment. End-user application deployment.	
M35	M35	July 2016	Final evaluation. Cross evaluation. End of the second phase.	

5.2.2.7 Risks and related solutions

The foreseen risks for this use case are given in Table 85.

Table 85 UC-I1: risks (Tarragona)

Possible risk	Probability to occur	Suggested solution
Granularity level for RDs installation (e.g., installation on personal appliances) not accepted by building administration	Low	Granularity level for RDs installation will gradually change, e.g., from individual devices to rooms, or floors, etc. in order to reach an agreement with the building administration.
Unforeseen difficulties in the physical deployment.	Low	Alternative locations for the sensors would be considered. In the worst scenario, the user case could be implemented in another office building.

6 Trials ethic assessment

This section provides the replies to the ethical questions raised in section *B4.2 Requirements and Implementation of Ethics Review Report* of the REUM Description of Work, an also from the IERC's IoT Governance, Privacy and Security Issues paper [2] for the prevention of potential cyber-physical threats. There is a table for each of the use case trials.

6.1 UC-O1: Outdoor - Smart Transportation

The actions described for the Tarragona trial mitigate the ethics issues through the application of the legal measures foreseen in the Spanish regulations or through technical solutions to mitigate those risks. For the Heraklion trials, as there are no final users involved because the devices that will collect information will be installed on public buses, there are no ethical issues to consider.

Table 86 Ethics assesment for UC-O1 Smart transportation

Ethics issue	Actions taken in Heraklion trials	
Ethics issue Identification of any personal data acquired, processed and stored of personal data (privacy and data protection management).	Actions taken in Tarragona trials In the UC an Android Application will be distributed among volunteers. The application might collect personal data. Although the aim is to avoid collecting personal data, if personal information is gathered the following actions will be executed before the Android application distribution: - The collected personal data will be identified and classified according the Spanish Data Protection Act 15/1999. - Proper technical measures to protect the personal data will be implemented. - The personsnatural or legalin charge of the data will be	Actions taken in Heraklion trials The smartphones will be installed on public buses and no personal data will be used or stored during Phase-I. Only the location of buses will be tracked. During Phase-II, the app will be installed on citizens' (volunteers) smartphones. The municipality of Heraklion, which will host the application server complies with the those requirements as mandated by the Hellenic Authority for Communication Security and Privacy (ADAE) for the protection of personal data and more specifically with the following articles of the decisions no. 165/2011, which was published in the government gazette of the Hellenic Republic,
	 The personsnatural or legal in charge of the data will be identified. The collected data will be explicitly described in the user consent. The purpose of the data 	l ·
	collection will be explicitly	Article 4
	described in the user consent. - The parties with access to	Acceptable Use Policy
	personal data will be explicitly	Article 5
	described in the user consent. - No personal data will be	Physical Security Policy
	transmitted to third parties.	A <u>rticle 6</u>
	 The user will have the access, rectification, cancellation and 	Logical Access Policy
	objection rights for their	Article 7
	personal data, and can revoke its consent and request the	Remote Logical Access Policy Article 8
	deletion of data regarding him/her.	Article o

Ethics issue	Actions taken in Tarragona trials	Actions taken in Heraklion trials
	 The staff in charge of the data collection, storage, analysis and curation will be trained in privacy and data protection 	ICS Management and Installation Policy
		Article 9
	management.	Security Incident Management Policy
		Article 10
		Network Security Policy
		Article 11
		Audit Policy for the Implementation of the Security Policy for the Assurance of Communications Confidentiality
Not allow tracing of individuals in real time. Copies of approval form national data protection authorities submitted to the EC if collected data will be marked as identified or identifiable.	In the UC an Android Application will be distributed among volunteers. The application might allow to trace an individual in real-time. Obfuscation techniques will be implemented to remove the possibility of tracing users in real time.	Due to the nature of the application, tracing of individuals will be possible by the owner of the application server. Nevertheless, the data (real-time and historical) will be protected according to the decisions no. 165/2011 of ADAE. Additionally, obfuscation techniques will be implemented in order to turn the data sent by the citizens into ambiguous messages.
Detailed information must be provided on the procedures that will be used for the recruitment of participants. Inform the participants on the procedures and personal or sensitive information gathered.	To use the application the volunteers will have to read and accept the informed consent. The volunteers will be over 18 years old. If the application is released to the public, proper measures will be implemented to assure that young people do not use the application (i.e. rate the application for 18+, explicit warning in the application).	The user of the application will have to agree to specific terms and conditions, which will detail the procedures that will be followed and the information that will be gathered.
Informed consent from participating volunteers.	See above.	See above.
Confirm that children will not be included as participants in the study	See above.	See above.

Ethics issue	Actions taken in Tarragona trials	Actions taken in Heraklion trials
Provide a detailed description of security measures that will be implemented to prevent improper use, improper data disclosure scenarios and 'mission creep'	Obfuscation techniques will be implemented to: a) Remove the possibility of tracing users in real time and, b) Avoid as far as practicable the collection of personal data. In case of collecting personal information, it will be analysed according the Spanish Data Protection Act 15/1999 and their regulations to implement the necessary technical measures to prevent their disclosure or misuse and enforce the user's rights.	The data (real-time and historical) will be protected according to the decisions no. 165/2011 of ADAE. The same decision foresees all the necessary measures that have to be applied so that improper use of collected data is avoided.
Prevention of potential cyber-physical threats. Actuators may interact with the physical world and, therefore, they may be a threat to physical assets or human beings.	N/A	

6.2 UC-O2: Outdoor - Environmental monitoring

As in this use case there is no possibility to collect any kind of personal information there are no specific measures to be applied as described.

Table 87 Ethics assesment for UC-O2 Environmental monitoring

Ethics issue	Actions taken in Tarragona trials	Actions taken in Heraklion trials
Identification of any personal data acquired, processed and stored of personal data (privacy and data protection management).	In the UC environmental and noise information will be measured. As the environmental information is not linked to a natural person, personal information is not going to be collected. In regard to the noise data, the deployed RDs measures noise levels, but no sound is recorded. Therefore no personal data is going to be gathered.	
Not allow tracing of individuals in real time. Copies of approval form national data protection authorities submitted to the EC if collected data will be marked as identified or identifiable.	N/A	
Detailed information must be provided on the procedures that will be used for the recruitment of participants. Inform the participants on the	N/A	

Ethics issue	Actions taken in Tarragona trials	Actions taken in Heraklion trials
procedures and personal or sensitive information gathered.		
Informed consent from participating volunteers.	N/A	
Confirm that children will not be included as participants in the study	N/A	
Provide a detailed description of security measures that will be implemented to prevent improper use, improper data disclosure scenarios and 'mission creep'	N/A	
Prevention of potential cyber- physical threats.	N/A	
Actuators may interact with the physical world and, therefore, they may be a threat to physical assets or human beings.		

6.3 UC-I1: Indoor - Home energy management

In both cities the UC will be deployed in public buildings monitoring the overall energy consumption of some specific components as lighting or air conditioning, so it is not possible to monitor the behaviour of any individual based on the monitoring of energy consumption.

Table 88 Ethics assesment for UC-I1 Home energy management

Ethics issue	Actions taken in Tarragona trials	Actions taken in Heraklion trials
Identification of any personal data acquired, processed and stored of personal data (privacy and data protection management).	public building will be collected. As the information could not be linked to an individual, no personal data is	
Not allow tracing of individuals in real time. Copies of approval form national data protection authorities submitted to the EC if collected data will be marked as identified or identifiable.	N/A	
Detailed information must be provided on the procedures that will be used for the recruitment of participants. Inform the participants on the	N/A	

Ethics issue	Actions taken in Tarragona trials	Actions taken in Heraklion trials
procedures and personal or sensitive information gathered.		
Informed consent from participating volunteers.	N/A	
Confirm that children will not be included as participants in the study	N/A	
Provide a detailed description of security measures that will be implemented to prevent improper use, improper data disclosure scenarios and 'mission creep'	N/A	
Prevention of potential cyber-physical threats. Actuators may interact with the physical world and, therefore, they may be a threat to physical assets or human beings.	N/A	

6.4 UC-I2: Indoor - Comfort quality monitoring

In both cities the UC will be deployed in public buildings monitoring the indoor environmental parameters, so it is not possible to monitor the behaviour of any individual based on the monitoring of energy consumption.

Table 89 Ethics assesment for UC-I2 Comfort quality management

Ethics issue	Actions taken in Tarragona trials	Actions taken in Heraklion trials	
Identification of any personal data acquired, processed and stored of personal data (privacy and data protection management).	In the UC information about environmental conditions in public buildings will be collected. As the information could not be linked to an individual, personal data is not going to be collected.		
Not allow tracing of individuals in real time. Copies of approval form national data protection authorities submitted to the EC if collected data will be marked as identified or identifiable.	N/A		
Detailed information must be provided on the procedures that will be used for the recruitment of participants. Inform the participants on the procedures and personal or	N/A		

Ethics issue	Actions taken in Tarragona trials	Actions taken in Heraklion trials
sensitive information gathered.		
Informed consent from participating volunteers.	N/A	
Confirm that children will not be included as participants in the study	N/A	
Provide a detailed description of security measures that will be implemented to prevent improper use, improper data disclosure scenarios and 'mission creep'	N/A	
Prevention of potential cyber-physical threats. Actuators may interact with the physical world and, therefore, they may be a threat to physical assets or human beings.	In Tarragona several actuators might be deployed in one of the locations. However, as described in Table 55, those actuators only will be used to cut or enable the electrical power of domestic-designed non-critical appliances. Consequently, the malfunction of these actuators will not be a threat to physical assets or to human beings.	N/A

6.5 Trials end users survey collaboration

In order to gauge the opinions of citizens and end-users RERUM currently co-operates with the Bavarian research cluster FORSEC⁵ in the areas of IoT Security (MSc. Tobias Marktscheffel, UNI PASSAU) and Security Awareness (Dr. rer. nat. Zinaida Benenson, FAU Erlangen, Germany). Mr. Marktscheffel works in the IT Security group of Prof. Posegga of the University of Passau (UNI PASSAU in RERUM) on secure service execution platforms for the Internet-of-Things. Dr. Benenson leads the Human Factors in Security and Privacy Group at the Chair of IT-Security Infrastructures (Prof. Felix Freiling). Among other things, her group successfully evaluated usability and user acceptance of anonymous credentials in two rounds of a user trial in the ABC4Trust project (https://abc4trust.eu) [7].

⁵ FORSEC is a Bavarian research association that spans eight professors from five different Bavarian research institutions. Involved in FORSEC are: four universities with faculties and departments of different scope (Faculty of Economics and Business Administration at University Regensburg, Faculty of Computer Science and Mathematics at University Passau, Faculty of Computer Science at TU Munich, Technical Faculty at FAU University Erlangen-Nürnberg), and - indirectly - the Institute of Applied and Integrated Security (AISEC) at the Fraunhofer Institute in Garching.

More information about FORSEC and the two projects can be found here: https://www.bayforsec.de/en/subprojects/cluster-ii/.

© RERUM consortium members 2015

The currently planned co-operation is to investigate user acceptance of the IoT-enabled SmartCity use cases involving participatory sensing in public transportation (UC-O1), restrictive measures to preserve the environmental quality (UC-O2), privacy issues in indoor sensing for energy consumption (UC-I1) and comfort quality (UCI2). The planned evaluation consists of two parts:

- 1. Pre-questionnaire: The prospective users will be asked about their perceptions of the usefulness of the Use Case application, their understanding of the corresponding technology and their possible security and privacy concerns.
- 2. Post-questionnaire: The users will be asked about their perceptions of the usefulness and usability of the experienced application, understanding of the corresponding technology, their perceptions of security and privacy protection during the usage, and their intention to use this application in the future.

The results of this research would provide the FORSEC IoT team with the user requirements information for development of the IoT execution environment, whereas the FORSEC Security Awareness team would gain valuable insights into the factors of user acceptance in a real-world Smart City scenario and provide design and policy guidelines for the future Smart City development. As a result of this exercise the RERUM participants would gain insight into the user acceptance of the proposed technology and solution through the UC-O1 trials. Evaluation results of the first round would facilitate improvements for the second round.

7 Proof of concept testing scope

Checklist of testing scope of RERUM technical contributions, from D2.1 [3] that will be tested in the lab experiments and in field trials.

Table 90 Testing scope of technical contributions

Requirement to test	Lab experiment and/or trial	Type of test	
Contribution 8: Energy efficiency for RDs with multiple air-interfaces	Lab experiment: 3.11, Energy Efficiency of Android-based RDs	Efficiency	
Contribution 9: Enrich authorization process with reputation evaluation	Trials	Authorization	
Contribution 10: Integration of ABAC in IoT with specific business data contained in the request	Trials	Authorization	
Contribution 11: SIEM in a generic IoT platform	Trials	Security	
Contribution 12: Incorporating adaptability to an IoT platform using PRRS and OAP	Trials	Security	
Contribution 13: Malleable Signatures for controllably reduced Integrity protection	Lab experiments: 3.1, Runtime-, Memory-, Communication-Overhead of Signing and Verifying Message Payload with ECC Standard Signatures in RDs 3.2, Runtime-, Memory-, Communication-Overhead of Signing, Verifying and Messages with Malleable Signatures in RDs 3.3, Energy Efficiency of Malleable Signatures on RDs 3.4, Energy Efficiency of ECC based payload Signatures on RDs	Performance, Efficiency	
Contribution 14: RSSI-based CS encryption keys	Lab experiment: 3.5, RSSI-based CS encryption keys	Performance	
Contribution 15: Adaptive CS-based data gathering	Lab experiment: 3.6, Adaptive CS-based data gathering	Efficiency	
Contribution 17: Android-based multi sensing application	Lab experiments: 3.10, Android-based RDs applications & services stability and accuracy 3.12, Android pilot devices measurements precision	Performance, Efficiency	

Requirement to test	Lab experiment and/or trial	Type of test
Contribution 18: Framework for spectrum occupancy measurements	Trial UC-O1 Smart Transportation Lab experiment: 3.10, Android-based RDs applications & services stability and accuracy	Performance
Contribution 19: Lightweight spectrum assignment framework	Lab experiment: 3.8, Lightweight spectrum sensing and spectrum assignment framework	Performance
Contribution 21: Lightweight Datagram Transport Layer Security (DTLS) Protocol	Lab experiments: 3.14, Lightweight Datagram Transport Layer Security (DTLS) Protocol	Performance, Efficiency
Contribution 22: 6LoWPAN Multicast	Trials & Lab experiment: 3.13, 6LoWPAN Multicast	Performance
Contribution 23: Low participatory RD energy and computational consumption	Lab experiment: 3.11, Energy Efficiency of Android-based RDs	Efficiency

8 Conclusions

This deliverable describes the tests to perform on the RERUM architectural framework, through in-lab experiments that will test individual system modules, identifying potential issues for the tests to be performed during live trials through the different Use Cases application in two smart city pilots. These tests will quantifiably assess the evaluation criteria defined. A total of 24 evaluation criteria have been defined for the authorization, efficiency, performance and security criteria, most of them tested by the in-lab experiments and some others in the trials.

The in-lab tests described in section 3 will be performed in task 5.3 to assess the components developed within WP2-WP4. A total of 14 in-lab experiments have been defined, that will address and evaluate the criteria assigned to be tested in controlled lab experiments. The results from those lab experiments will enhance the components that will be integrated in task 5.2 for the trials performed in two cities, in task 5.4 for Heraklion and in in task 5.5 for Tarragona. The trials will evaluate the criteria defined to be tested in the live environments of the cities under some specific use case scenarios.

Through the use cases deployment and trials, the cities will explore the potential of the RERUM architectural framework in terms of future scenarios were the privacy characteristics an low power consumption may allow innovative projects that will take advantage of those characteristics of the RERUM architectural framework.

Some examples of future innovative deployments may be based on mixed scenarios where an application may access data from some sensors located at citizen's homes, or were an application deployed at the citizens' homes will be able to get information for external sensors to regulate through actuators internal parameters of the houses. These scenarios will keep the privacy of the users taking advantage of the characteristics of the framework that allow the non-disclosure of personal data to third parties, and therefore ensuring the privacy of the users.

The potential also extend to those scenarios where sensors and devices are located in some remote spots were the availability of continuous power is difficult to be guaranteed. Thanks to the low power consumption those devices can be powered through some alternative systems like solar panels with a battery attached, guaranteeing the operation through the whole day.

References

- [1] A. Fragkiadakis, P. Charalampidis and E. Tragos, "Adaptive compressive sensing for energy efficient smart objects in IoT applications," *Proc. of VITAE 2014*, pp. 1-5, 2014.
- [2] Baldini, G. et al, "Internet of Things. IoT Governance, Privacy and Security Issues," European Communities, 2014.
- [3] T. Mouroutis and A. Lioumpas, "RERUM Deliverable D2.1, Use-cases definition and threat analysis," December 2014.
- [4] ISO, ISO/IEC 25000:2005. "Software Engineering -- Software product Quality Requirements and Evaluation (SQuaRE)", 2005.
- [5] ISO, ISO 9126-1. "Software engineering Product quality Part 1: Quality model", June 2001.
- [6] ISO, ISO 14598-1. "Information technology Software product evaluation Part 1: General overview", April 1999.
- [7] P. prlpz., *Pretorium tower*, Tarragona: Wikimedia Commons. This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Spain license.
- [8] Y. Stamatiou, Z. Benenson, A. Girard, I. Krontiris, V. Liagkou, A. Pyrgelis and W. Tesfay, in *Course evaluation in higher education: the Patras pilot of ABC4Trust. In Attribute-based Credentials for Trust*, Springer, 2015, pp. 197-239.
- [9] European Parliament and Council, "The Environmental Noise Directive (2002/49/EC)," [Online]. Available: http://ec.europa.eu/environment/noise/directive.htm.

Annex A Form to collect trials' issues

Form to collect trials' deployment and execution issues during first phase to be early exchanged with the other city for phase 2 trials.

City	<heraklion or="" tarragona=""></heraklion>		Use case	<use case="" name=""></use>
Date	<date issue="" occurred="" when=""></date>		Trial phase	<1 or 2>
Reported by <name of="" person="" rep<="" td=""><td colspan="3">orting and affiliation></td></name>		orting and affiliation>		
Name <short description="" of<="" td=""><td colspan="3">the issue></td></short>		the issue>		
Type of issue < Deployment / Trial ex		execution>		
Classification		lleware / hardware devices / communication /		
Issue descript	ue description			
Actions taken	Actions taken			
Final result	inal result			
Recommenda	tion	<recommendation in="" issue="" next="" overcome="" solve="" this="" to="" trials=""></recommendation>		