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Abstract 

This document presents a detailed description of the RERUM Security architecture and its respective 
components that were described in RERUM Deliverable D2.3. The Security architecture can be split in 
three main parts, namely the Security, the Privacy and the Trust components. Privacy will be discussed 
in Deliverable D3.2 (due end of August 2015) and Trust will be discussed in D3.3 (due end of February 
2016). Thus, the main objective of this document is to present a holistic platform to ensure the end‐
to‐end and cross layer security within the RERUM system. For this respect, many security mechanisms 
are analysed, starting from the security of the devices and going all the way up to the applications. In 
this  respect,  the  main  techniques  that  are  discussed  in  this  document  are:  (i)  symmetric  and 
asymmetric cryptography, (ii) key management, (iii) transport layer security, (iv) on device signatures 
for integrity checking, (v) encryption key generation using RSSI measurements, (vi) authorization, (vii) 
secure network bootstrapping, (viii) secure auto configuration and (ix) self‐monitoring of devices. The 
interactions between these components and the rest of the RERUM architecture are also presented 
here as extracted from D2.3 and revised as necessary. D3.1 goes beyond simple provisioning of a design 
of the security components providing a holistic view of the organization of the security mechanisms in 
RERUM and the technologies it is based on. For this purpose, D3.1 offers first an introduction with the 
whole picture of RERUM security and after this, it explains the technologies that are involved in the 
process, from the basement (cryptography background), over secure communication mechanisms, and 
to the upper level functions (authorization).   
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Disclaimer 

This document contains material, which  is the copyright of certain RERUM consortium parties, and 
may not be reproduced or copied without permission.  

All RERUM consortium parties have agreed to full publication of this document.  

The commercial use of any  information contained  in this document may require a  license from the 
proprietor of that information. 

Neither the RERUM consortium as a whole, nor a certain part of the RERUM consortium, warrant that 
the information contained in this document is capable of use, nor that use of the information is free 
from risk, accepting no liability for loss or damage suffered by any person using this information. 
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Executive	Summary		
Security  is a major concern  in any  IoT deployment  in smart cities, because the  IoT applications are 
dealing with  citizens’ data, which have  to be exchanged  in a  secure way  to  avoid malicious users 
intercepting them. Furthermore, no malicious users should be able to take control of the IoT system 
for their benefit.  Insecure  IoT deployments can decrease the trustworthiness of  IoT  infrastructures, 
hindering the adoption of this technology from both the citizens’ and the service providers’ point of 
view. Until recently the focus of IoT community was only on enabling the virtualization of the devices 
and the provision of services, not paying attention to the security of the IoT platforms. Due to this fact, 
various reports in the last few years discuss the need for excessive research in the security of IoT for 
addressing many device‐related issues, i.e. lack of transport encryption, insufficient authentication, no 
possibility  for  remote  updates  of  the  software,  etc.  [HP14].  RERUM  acknowledges  this  need  and 
provides  a  holistic  view  of  a  security  architecture  that  is  tailored  to  the  requirements  of  IoT 
deployments. This architecture is described in high level in RERUM Deliverable D2.3 and this document 
gives  the design of  the  separate  security components, with  the exception of  the privacy and  trust 
components, whose design is described in a separate Deliverables (D3.2 and D3.3 respectively). 

D3.1 is supposed to be both a report and a software prototype. The report (this document) provides 
the design of all the security components, plus a necessary theory background, while the software 
prototype provides an implementation of some of those security components that are considered to 
be essential for a proof of concept of the system.  

D3.1 goes beyond simply providing the design of the security components, but  it provides a holistic 
view of the organization of security in RERUM and the technologies it is based upon. For this purpose, 
D3.1 offers first an introduction with the whole picture of security in RERUM and after this, it explains 
the technologies that are  involved in the process, from the lower (cryptography background) to the 
upper level functions (authorization). 

The main outcomes of the document are: 

 Algorithms for lightweight cryptography, generating encryption keys for Compressive Sensing 
using the Received Signal Strength Indicator (RSSI); 

 Digital  Signatures  on Devices  for  data  integrity  and  data  origin  authentication  (which  can 
support non‐reputation): Protocol and first prototypical  implementation of NIST curve P160 
ECDSA signature of JSON encoded data on the device. This allows protecting the integrity of 
data flowing from, to or between RERUM devices. It furthermore allows identifying the origin 
of data by means of public keys. This works on any application  level data (h‐data), allowing 
broad  use.  The  protocol  and  concept  of  on‐device‐signatures  designed  by  RERUM  and 
described  in this deliverable  is flexible and will allow RERUM to use different cryptographic 
signature mechanisms; 

 Support of dynamic access control through a policy authorization engine: after a comparison 
of  the main  technologies  that  are  applicable  for  access  control,  RERUM  has  adopted  the 
approach of intercepting all requests incoming to the system and authorizing them individually 
following a design similar to the one proposed by the OASIS1 [OASIS] standardization body, 
with a  slight  refinement when accessing user attributes. As a  consequence, access  control 
decisions in RERUM are carried out by evaluating XACML2 [XACML13] policies; 

                                                            

1 Standardization body that drives the development, convergence and adoption of open standards for the global 
information society 

2 XACML stands for eXtended Access Control Markup Language and is a standard language for defining access 
control criteria from the OASIS standardization body. 
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 Design of a fast and secure bootstrapping system to initialize the security credentials of all new 
nodes that are connected to the RERUM system; 

 Integration of resource and network monitoring tools with a SIEM3 to provide self‐monitoring 
support: Both resource and network data are sent (via CoAP on UDP for a matter of efficiency) 
to a SIEM listener, which normalize them to a common message format understood by a SIEM 
tool. The SIEM tool executes some  logic rules previously defined  in  its configuration. These 
logic rules take in consideration the normalized information and decide whether to trigger a 
security alert or not.  In case a security alert  if triggered, a reactor to this alert will take the 
corresponding actions based on the configuration of the SYSTEM for those specific actions and 

 Automatic  reconfiguration of  security  through  the  integration with a PRRS4: A PRRS allows 
defining a set of logical rules to decide whether it is necessary to upgrade the system, how and 
in which circumstances. By correlating system events, including those received from the SIEM 
and  configuration  rules,  the  PRRS  is  able  to  look  for  a  suitable  component  in  a  trusted 
repository, build  it  if necessary and deploy the resulting object  in the nodes of the system, 
communicating with the rest of RERUM components to upgrade the registry of the system 
with the changes performed. 

 Datagram  Transport  Layer  Security  (DTLS)  was  brought  onto  the  Zolertia  Re‐Mote:  We 
developed a research prototype for Contiki and the Re‐Mote platform. RERUM Devices are 
enabled  to establish  integrity and  confidentiality  (either end‐to‐end or hop‐by‐hop) at  the 
transport  layer  level,  including  origin  authentication.  Additionally,  we  present  the  IEEE 
802.15.4  security  mechanisms  that  RERUM  can  use  when  securing  low‐level  device 
communication. 

                                                            
3 Security Information and Event Management 

4 Platform for Run‐time Reconfiguration of Security 
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1 Introduction	
Deliverable D3.1 consolidates the output of two tasks in the work package on System & Information 
Security and Trust. The output of these tasks consists of conceptual work on security components and 
initial prototypes of some of those components. D3.1 presents the design of the security components 
defined previously  in the D2.3, excluding the ones focussing on privacy, which will be presented  in 
D3.2. See Figure 1 for some interconnections. 

 

Figure 1: Overview of tasks and deliverables in WP3 and the most important links of D3.1 

 

The prototype  itself  is an  implementation of a subset of  these designs provided  in  this document. 
However,  the prototype does not  implement all  the designs, but only  those  that were considered 
essential to provide a proof of concept of RERUM. The conclusion of this deliverable offers an overview 
of which components have been implemented, and what security requirements have been addressed 
to ease checking requirement fulfilment. 

Because  the document  covers  (among other  things)  the work done on  some novel procedures on 
cryptography and compression, it is necessary to have a deep technical understanding of those very 
mathematical parts. However,  the documents  tries  to provide  tutorial  summaries  and  reduce  the 
required  expertise  of  readers  as  much  as  possible  while  also  providing  all  necessary  technical 
background needed to understand it to the consortium partners familiar with that level of technicality.  

 

1.1 Objective	of	this	Document	
The main objective of  this document  is  to explain and document  the overall design of  the security 
elements facilitated in RERUM. These are complex topics and this deliverable presents them such that 
it provides a holistic view of RERUM’s security. Explaining the technical details of the work carried out 
in RERUM in the security. The result is RERUM’s solutions for mechanisms and protocols for: 

 Authentication 

 Authorization 

 Data integrity 
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 Confidentiality 

 Non Repudiation 

 Self configuration 

 Self management 

 Bootstrapping of the network 

 Integration with a PRRS5 

The document is not going to present these features individually, but providing the holistic and easy 
to  understand  view  of  the  security  components  in  RERUM.  Hence,  it  is  not  an  objective  of  the 
document to necessarily explain these functionalities  in this order, but  in whatever way that better 
contributes to understand the whole picture of security in RERUM. 

Finally, D3.1 is meant to focus on security components, and privacy components are left outside of it. 
The reason is not that privacy is not a security part, but It is a so complex topic that it is dealt with in a 
separate deliverable  (D3.2). As a  result, some of  the components described  in  the  future D3.2 will 
extend ones already presented in this document, whose design does not cover the details of privacy 
preserving features, yet. 

1.2 Security	by	Design	in	RERUM	
Security by design  (SbD)  is not a formal specification that can be objectively checked but a general 
philosophy instead. In general terms, SbD can be described as the property of a system to have taken 
into  account  any  possible  security  issues  from  its  conception  and  has  been  designed  to make  a 
reasonable effort to deal with them.  

In RERUM, security has been considered from the very conception of the project, which was reflected 
in the inclusion on a whole work package (WP3) in the DOW document devoted to security, privacy 
and trust. 

In practice, security in RERUM has been taken into account by: 

 Providing a threat analysis  in the D2.1 document to study the assets of the system and the 
possible attacks to them; 

 Including a set of security components  in the architecture document D2.3 to deal with the 
threats identified in D2.1; 

 Designing and  implementing a prototype for the main security components defined  in D2.3 
through the tasks of Work package 3 and 

 Evaluating the security components in Work package 5. 

In fact, this document describes the prototype of the security components of the system, covering the 
authentication and authorization part. Privacy techniques will be described  in D3.2 and a model for 
trustworthiness in IoT will be presented in D3.3. 

1.3 Structure	of	the	Document	
As seen in the introduction, this document covers 10 different topics. But these topics are related with 
each other and often rely one on another. And each of them can have very complex issues, too many 
of these features are built on top of several of the others and it is necessary to explain the technologies 
of the basement before explaining the ones in the top. 

                                                            
5 Platform for Run‐time Reconfiguration of Security 
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To provide a consistent  structure  that  is also easy  to  read  this document  follows  the order of  the 
technologies that are used in it. In short (this will be extended later), mechanisms and tools that the 
security components use are built this way: 

 Cryptography building blocks 

 Securing communications at network and data‐transport  level, built on top of cryptography 
technologies 

 Authorizing requests, built on top of secure communications 

 Configuration components for the previous components 

 

After providing this overall picture, the document proceeds to explain the technologies mentioned. 

In short, this is how the document is organized: 

 Chapter 1: Introduction explains what is necessary to fully understand the document, including 
an overview of security associations and an overview of the RERUM security mechanisms. The 
overview of security associations explains the different  levels of security  in  the system and 
their  associations  with  the  rest  of  the  document.  The  overview  of  the  RERUM  security 
mechanisms provides a short resume of the mechanisms finally adopted in RERUM; 

 Chapter  2:  Use  of  cryptography  in  RERUM  provides  the  background  on  cryptography 
technologies that are used by the rest of security components; 

 Chapter  3:  Secure  Communication  explains  how  the  cryptography  is  used  to  secure  the 
communications at network level; 

 Chapter 4: Authorization  in RERUM explain how the requests are authorized, relying  in the 
security of the communications already presented in Section 3; 

 Chapter 5: Secure RERUM device configuration explain how the components that govern the 
configuration of the previous ones are built in the system; 

 Chapter 6: Summary / Conclusions offer a resume of which security requirements are covered 
and in which section of this document they are described. 

Finally, readiness is not the only main objective of the document. The document presents all the work 
carried out in task 3.1 and task 3.2 in RERUM. This includes novel algorithms and protocols. As these 
are heavily technical, they need to be explained with a technical  language too and also refer to the 
basis of cryptography to understand them. For this reason Chapter 2 Use of Cryptography in RERUM 
provides all necessary background for a technician to understand these cryptographic mechanisms. 
The mechanisms described  in Chapter 3 Secure Communication are built using primitives described 
and defined  in Chapter 4 Authorization  in RERUM  is based on Chapter 3 Authorization  in RERUM; 
Chapter 5 Secure RERUM Device Configuration is built on all of them. Summarizing, the document tries 
to be as readable as possible but explaining the novel algorithms and protocols require a technical 
background. D3.1 provides exactly  that  technical background aiming  for a  technician  to be able  to 
understand RERUM’s developments, but it has not been possible to ease readability beyond this point. 
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1.4 Overview	of	Security	Associations	(SA)	in	RERUM		
Following RFC 24096 a  security association  (SA)  is a  set of policy and  cryptographic key(s) used  to 
protect information. In Figure 2 we have depicted the entities for which D3.1 will describe mechanisms 
to secure information exchanges.  

They are as follows:  

 Human user with an Application 

 Application  Server, when  the  Application  has  an  additional  backend  that  does  processing 
(storage, computing) of the information 

 RERUM Gateway 

 RERUM Device(s) 

 

Please refer to previous deliverables (e.g. D2.3 for details) or definitions for more information on each 
entity. 

A SA can be usable for the establishment of secure communication in order to reach one or several 
specific  security  goals  (integrity,  origin  authentication,  confidentiality).  This means  that  a  security 
association  enables,  once  established  with  suitable  key  material,  to  cryptographically  protect 
communication between those entities, such that security goals are reached. 

SA’s can be hop‐to‐hop or end‐to‐end. In the case of hop‐to‐hop associations, the involved entities are 
those that can directly communicate with each other on the lower network layers, allowing using lower 
level security mechanisms. 

Further, SA can be mutual or unilateral. A mutual SA allows offering the protection for both entities in 
a  mutual  fashion,  e.g.  a  mutual  SA  for  origin‐authentication  and  integrity  would  allow  both 
communicating entities of the SA to establish that a received message has not been changed  in an 
unauthorised way and has been generated by the other entity. If the SA is unilateral, then only one 
entity  in the communication can use the unilateral mechanism to protect the  information based on 
that SA.  

Let us give an example: For an unilateral SA between a SERVER and a RERUM GW, allowing the RERUM 
GW to identify messages as authentic if they are sent from the SERVER, we could build a SA based on 
the SERVER’s public key certificate being trusted and residing on the RERUM GW, while the SERVER 
would be able  to sign messages using  the SERVER’s private key. Thus,  this set of keys would allow 
authenticating the origin of messages to be the SERVER. The same type of keys at the same entities 
could  also  be  used  to  build  a  unilateral  confidentiality  SA,  allowing  establishing  confidentiality 
protected  communication  in which  the RERUM GW  could use  the  SERVER’s public  key  to encrypt 
messages towards the SERVER. Note, it is cryptographically not advisable to use the same key pair for 
encryption and signing.  

The  example  for  a  hop‐to‐hop  SA  is  “SA:RD1‐to‐RD3”  from  Figure  2 which  is  equal  to  the  direct 
communication link (h a hop) on network between the two RERUM Devices #1 and #3. So if this SA is 
used to prove confidentiality, then the SA on RD#1 would for example be comprised of two keys, and 
the policy, such that RD#1 has one encryption key that RD#1 uses to encrypt communication before 
sending it to RD#3, and a decryption key that RD#1 is using to decrypt communication received from 
RD#3. The same SA on RD#3 also needs corresponding keys.  

                                                            
6 RFC 2409 defines Security Associations in the context of internet key exchange protocols, e.g. ISAKMP, Oakley, 
SKME. 
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To  provide  another  example,  let  us  assume we want  “SA:RD3‐to‐RGW”  from  Figure  2  to  provide 
confidentiality,  integrity  and  authentication  of  origin  for  a  communication  between  the  RERUM 
Gateway and the RERUM Device #3. You clearly see that a possible security channel between those 
entities spans across several hops,  i.e. direct communication  links. Communication paths are either 
Hop#1+Hop#2 or Hop#1+Hop#3+Hop#4. For this reason the SA:RD3‐to‐RGW  for confidentiality and 
integrity and origin authentication must be end‐to‐end and not hop‐to‐hop. Again this SA will need 
cryptographic key(s) on which the security mechanisms will be able to build secure communication 
channels.  

More details on the different security profiles and the underlying mechanism to build all these SA are 
found  in this deliverable of RERUM,  in Chapter 3 Secure Communication. More  information on the 

cryptographic mechanisms and the keys can be found in Chapter 2 Use of Cryptography in RERUM. 

After having distinguished SA  into end‐to‐end and hop‐to‐hop, we will briefly describe how RERUM 
further differentiates between  two  layers on which SA are being  formed  to secure communication 
within RERUM.  

1.4.1 Device	Communication	Layer	

Device communication is logically concerned with addressing and connecting to devices, or between 
devices. Here RERUM foresees to extend, integrate and facilitate device centric security mechanisms, 
e.g.  end‐to‐end  encryption  and  signature mechanisms,  but  also  transport  layer  security  such  as 
802.15.4 security [IEEE802.15.4]. 

Figure 2 shows a typical scenario with a user running a standalone application that is trying to access 
a RERUM device. As  the  figure  shows, here we have  security associations  from  inside RERUM and 
outside RERUM. The security associations from outside RERUM are carried out from the Internet, and 
hence use standard Internet mechanisms, such as TLS7. 

                                                            
7 Transport Layer Security (TLS): Is a cryptographic protocol designed to provide communications security over a 
computer network widely used in the internet and replacer of previous cryptographic protocol SSL 
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Figure 2: Overview of two different layers and different Security Associations (SA) 

Security associations inside RERUM are carried out at device layer using, the mechanisms defined in 
this document. 

But applications are not necessarily standalone applications. They can also be divided in two parts, a 
front end, which often runs in a browser and a backend running on an application server that is being 
run on a different system. Though this case is equivalent for RERUM because the difference only occurs 
outside RERUM. Figure 3 which is a slightly different from the former, illustrates that case. 
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Figure 3: Overview of two different layers and different Security Associations (SA) v2 
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1.4.2 Service	Layer		

The Service Layer is logically concerned with the addressing, connection and communication between 
services, which  are  usually described  using Web  Services8,  exchanging data with  SOAP9 messages 
[SOAP07] or JSON10 objects [JSON14], and have protocols like REST11 [ELKS08]. 

Here RERUM plans to adopt this concept and integrate additional security mechanisms into existing 
communication infrastructures and protocols. This way RERUM is also able to leverage a lot of existing 
“Internet Security” mechanisms, e.g. TLS and HTTPS12. 

Summarising, plus the already mentioned mechanisms, RERUM provides security at service  layer  in 
the Security association between the application and the Gateway. That is, all incoming requests from 
the Internet are secured not only at device level, but also at service layer. Specifically, RERUM defines 
user registering and authentication mechanisms in Section 4.2 Service level authentication in RERUM, 
and authorization mechanisms that depend on the service accessed, which are covered in Section 4.4 
Design of Authorization Components. These security associations are already shown in the previous 
figures in the red dotted arrows. 

1.5 Overview	of	RERUM	Security	Mechanisms	
At device communication  layer,  this deliverable contains  the  technical description of  the  following 
security mechanisms: 

 Communication Security Profile: DTLS 

 Communication Security Profile: on‐device‐signatures 

 Communication Security Profile: 802.15.4 Security 

 Communication  Security  Profile:  Lightweight  and  secure  encryption  using  channel 
measurements 

 Design of bootstrapping components 

 Design of automatic monitoring components at network and device level  

 

At  service  layer,  this  deliverable  contains  the  technical  description  of  the  following  security 
mechanisms: 

 Definition of User authentication procedures 

 Design of authorization components 

 Design of automatic monitoring components at service level  

 Design of a Platform for Run‐time Reconfiguration of Security 

In short the functionalities mentioned in the DOW and their allocation in the document is shown in the 
following table: 

                                                            
8 Software function provided over the internet. 

9 Simple Object Access Protocol: Protocol for exchanging structured information in web services. 

10 JavaScript Object Notation, format that uses human‐readable text to transmit data consisting of attribute–
value pairs 

11 Representational State Transfer: Set of guidelines for creating scalable web services 

12 HiperText Transfer Protocol Secure: Protocol for secure communication over a network 
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Table 1: Location of the functionalities described in the DOW within this document 

Functionality  Chapter / Section 

Authentication  Chapter 3 at network level 

Section 4.2 at service (user) level 

Authorization  Chapter 4 

Data Integrity and Non Repudiation  Chapter 3 

Confidentiality  Chapter 3 

Bootstrapping  Section 5.1 

Self configuration  Section 5.2 

Self management  Section 5.3 

 

Note, it is not possible to provide a similar table for the innovations of D2.1 here because it would be 
necessarily incomplete, as the innovations of RERUM are not necessarily covered all in this document. 
Instead, each section that cover any innovation state so in their corresponding introduction section. 
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2 Use	of	Cryptography	in	RERUM	

2.1 Introduction,	Motivation	and	Link	to	User	Requirements	
This chapter gives the results of the analysis and provides background on existing security methods 
and related work in the area of cryptographic schemes.  

This is done in order to provide RERUM with a joint terminology and provides the basis to understand 
how RERUM will use cryptographic methods and key material. In this chapter RERUM states the chosen 
symmetric and asymmetric methods and gives a list of what key material will be used or needed for 
these different methods.  

RERUM’s goal is to provide security on the basis of strong cryptographic primitives. These become the 
building blocks to allow secure communication and secure authorization. The communication security 
in RERUM  is  logically grouped around  security associations  (SAs) between communicating entities. 
They can be used to establish secure communication, which protect  integrity, origin authentication 
and confidentiality. This will be described in Chapter 3 Secure Communication. However, the SAs are 
also used for authorization that is explained in Chapter 4 Authorization in RERUM.  

This  deliverable  (D3.1)  is  focused  on  security  rather  than  privacy;  hence,  the  three  goals  of 
confidentiality, integrity and authorization are the security goals for which cryptographic mechanisms 
will be described here. However, security  is required to achieve privacy. For example to make data 
only available to services that the user consented to, we need to authenticate the services, and we 
need  to encrypt  the data on  the  transport  to  those authorized services. Thus, without  these basic 
security functionalities established in the IoT, solutions that can offer privacy are not possible at all. In 
short security mechanisms are a pre‐requisite to privacy. However, RERUM’s focus on privacy shows 
already in this deliverable, as general cryptographic mechanisms that will offer an increase in privacy 
are  already mentioned  here,  e.g. Group  Signatures  or Malleable  Signatures. More  details  on  the 
application and adjustment of  those  cryptographic primitives will be provided  in deliverable D3.2. 
Stating them already in D3.1 is done for several reasons: (a) to disseminate RERUM’s first findings and 
enhancements of the current state of the art, (b) to document an agreed terminology and provide a 
project wide notation, and (c) to ensure and demonstrate that RERUM’s mechanisms are flexible and 
can indeed be implemented using different cryptographic primitives that achieve the minimal desired 
properties. The latter ensures that RERUM’s mechanisms are designed to be adaptable towards future 
cryptographic developments. 

Following  the  requirements  from  deliverable  D2.2,  it  is  important  that  RERUM  can  provide 
mechanisms to support secure communication in the complete IoT device chain, from the devices all 
the way to the applications. RERUM’s goal was to use cryptographically strong protection methods and 
this chapter provides the necessary cryptographic notation, background and insights. To address this 
need for suitable and configurable security, to allow protecting access to the system is universal in IoT, 
the mechanisms of this chapter are applicable to all use cases in the project and can be validated in all 
trials. 

Thus, this chapter provides the background that is needed to cryptographically address many of the 
requirements listed in D2.2 Section 2.6 on Security and Privacy Requirements: 

o Req. 2.4‐10 Low energy consumption 

o Req. 2.4‐11 Lightweight dynamic data compression 

o Req. 2.4‐12 Over‐the‐Air Programming 

o Req. 2.6‐1 Energy‐efficient cryptographic primitives 
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o Req. 2.6‐2 Integrity protection of SL‐I data in transit 

o Req. 2.6‐3 Integrity protection of SL‐I data at rest 

o Req. 2.6‐6 Confidentiality protection of SL‐C data at rest 

o Req. 2.6‐7 Confidentiality protection of personal data in transit 

o Req. 2.6‐8 Device authentication 

o Req. 2.6‐9 User authentication 

o Req. 2.6‐10 Attribute‐based access control 

o Req. 2.6‐19 Secure bootstrapping of operational cryptographic credentials 

o Req. 2.6‐20 Availability of initial credentials 

o Req. 2.6‐21 Support of different operational credentials types 

o Req. 2.6‐22 Avoidance of manual interactions during credential bootstrapping 

o Req. 2.6‐23 Update of operational credentials 

o Req. 2.6‐24 Find deployable software to RERUM devices 

o Req. 2.6‐25 Object configuration isolated per application 

o Req. 2.6‐26 Secure design and implementation of RERUM components 

In more detail, you will find these links again in the sections of this deliverable that describe the secure 
communication profiles or the authorization. 

This chapter also shows RERUM’s clear focus to select cryptographic mechanisms that are suitable to 
be executed on a RERUM device  itself, which  includes constrained devices. For this reason selected 
mechanisms will be subjected to  lab experiments to execute  in RDs, and  if successful potentially be 
implemented  into the trials. This also means that the mechanisms described  in this chapter will be 
found at many places inside the RERUM architecture, as seen in Figure 4. Security is in effect in every 
layer, allowing to be enabled in the complete framework, fulfilling the “by design” requirement. Thus, 
RERUM supports use cases that need security by design, and if not required for a use case, it could be 
configured to suit the use case’s needs. 
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Figure 4: Architectural Layers of RERUM from Deliverable D2.3 

 

This Chapter is organized in the following parts: 

 Section 2.2 gives background on Symmetric and Asymmetric Cryptographic Mechanisms  
o The focus  is on those mechanisms that RERUM selected as suitable for constrained 

devices, as RERUM seeks the possibility to provide end‐to‐end security, where one end 
is a constrained device.  

o The selected candidate cryptographic schemes and protocols are presented by stating 
the notation and description of the algorithms and if available software interfaces.  

o User Authentication at device level in RERUM is also explained. Here, RERUM will rely 
on existing user authentication approaches of the Internet space. Further research is 
not in the scope of RERUM. 

 Section 2.3 lists the Key‐Material. This follows the analysis of the required security associations 
and lists what kind of cryptographic material will be required by RERUM. This list is not meant 
to be exhaustive, but shows the barely needed keys. 

 Section 2.4 explains briefly how the keys will be managed and stored  for different security 
goals to be reached in RERUM. 
 

2.2 Background	 on	 Symmetric	 Cryptography	 with	 Focus	 on	
Constrained	Devices	

RERUM warns  that  symmetric  key, while  it might be more efficient, always bears  the  risk of  key‐
compromises having a severe impact. Shared keys are shared between several entities and could be 
extracted from devices  if they get captured, so called node‐capture.  In order to reduce this attack, 
shared keys shall be only used for a short time, e.g. initial setup or as shorter‐lived session keys.  
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2.2.1 Integrity	Using	Symmetric	Key	Cryptography	

When protecting against unauthorised changes, e.g. tampering of messages  in transit, mechanisms 
based on symmetric key cryptography require the integrity protection application and the verification 
to use the same key. Hence, the integrity protection cannot only be generated by the party that has 
applied the integrity protection mechanism to the data, but it can be generated (using the shared key) 
by all the parties that can access the shared key in plain. Access to that shared secret key is also needed 
by the integrity verification algorithm, which is executed by the recipient of the data when wanting to 
verify the data’s integrity. The only way to prohibit the verifier from getting access to the shared secret 
is to embed the verification algorithm and the shared verification key  inside a HSM13. Without this 
protection from a HSM a valid integrity check result corroborates that the integrity protected data has 
not  been  modified  (or  destroyed)  in  an  unauthorised  manner  since  the  integrity  protection 
mechanisms has been applied to the data by some `outside` party that has no access to the shared 
secret. These mechanisms are called Message Authentication Codes (MAC).  

The state of the data’s integrity cannot be proven by a verifier to a third party without such a HSM. 
Hence,  RERUM  calls  this  internally  verifiable  integrity  protection.  Internally  as  it  does  not  build 
evidence that can be used to cryptographically convince a third party unless a HSM is used.  

RERUM considers the use of MAC whenever there is a need for efficient exclusion of outsiders. RERUM 
might consider the use of HSM, e.g. as in [AF12] at later development stages. 

 

2.2.2 Origin	Authentication	Using	Symmetric	Key	Cryptography		

A symmetric key based cryptography origin authentication could internally establish that the message 
originated from an entity that knows the shared secret. Internally as it does not build evidence of the 
data’s origin that can be used to cryptographically convince a third party unless a HSM is used. Just like 
for  integrity  a MAC,  described  in  2.2.1,  this means  that  the  verifier  can  also  generate  the  origin 
authentication on arbitrary messages,  if he has access  to  the key and  it  is not  inside a HSM which 
restricts use  to  the verify algorithm and does not  leak  it. RERUM considers  the use of  these origin 
authentications, which are usually very efficient, whenever there is a need for efficient differentiation 
between data / messages from insiders (know the shared secret) and malicious data / messages from 
outsiders (not knowing the key).  

 

2.3 Background	on	Asymmetric	Cryptography	with	a	Focus	on	
Constrained	Devices	

2.3.1 Comparison	of	Symmetric	vs.	Asymmetric	Methods		

At a very general level, one can divide cryptographic methods onto two groups, namely symmetric‐key 
(private‐key) and asymmetric‐key (public‐key) schemes. The first group, i.e. the symmetric‐key group, 
typically includes schemes that, in order to encrypt and decrypt messages, use identical (or a trivially 
related) keys [MOV01]. Considering scenario, where two parties would like to communicate with each 
other and where data confidentiality is required, these keys (or a key) have to be exchanged (shared) 
beforehand  via  some  trusted  communication  channel.  In  this  category,  two  underlying  classes  of 
algorithms might be distinguished, i.e., block and stream ciphers. The former ones take as an input the 
fixed‐size  blocks  of  a  plaintext  and  produce  the  fixed‐size  blocks  of  a  ciphertext.  The  latter  ones 
calculate (using a key) so‐called key stream. This key stream  is further combined (using a  logic XOR 

                                                            
13 Hardware Security Module: A hardware component specialized in performing security operations, supposedly 
much faster than a program executed by a non‐specialized computer 
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operation) with a plaintext producing a ciphertext. One of a very well‐known and commonly used in 
practices representative of the symmetric‐key methods is AES block cipher [FIPS01], standardised by 
NIST in 2001. 

Irrefutable advantage of  symmetric‐key  cryptography  (in  comparison  to public‐key methods)  is an 
ability  to maintain  a  high  data  throughput  using  considerable  low  computational  overheads  and 
relatively short keys. On the other hand, as mentioned before, a shared key needs to be exchanged via 
trusted  channel  before  communication  and  usually  have  to  be  unique  for  each  communication 
channel. These  features  imply  in some cases much more complicated key management techniques 
than those used in public‐key counterparts. 

The second group, i.e., asymmetric‐key schemes, was introduced by Diffie and Hellman in [DH76]. In 
general, those schemes are based on the idea of using so‐called trapdoor one‐way functions, in which 
one can relatively easy compute the output, whereas is hard to compute the inverse of the function 
without knowing  the  trapdoor. Based on  that  fact,  it  is possible  to design a scheme  that uses  two 
related keys: a private and public key pair. The private key is kept secret, whereas the public key can 
be distributed via untrusted and open communication channel. The public key is generated from the 
private key by applying above‐mentioned trapdoor function. Such a construction allows one to encrypt 
data using other party public key and allows only a party that possesses the private key to preform 
decryption procedure successfully. The first practical and well‐known algorithm that belongs to this 
category  is called RSA  [RSA78] and was  introduced  shortly after  the  theoretical work of Diffie and 
Hellman.  

The main advantages of asymmetric‐key methods (over symmetric‐key schemes) are the fact that both 
parties  can perform  communication without a need of  sharing a  symmetric‐key, which has also  a 
positive  impact  on  a  complexity  of  key management  procedures.  Disadvantages  however  lay  in 
relatively  low data throughput and  larger key sizes. Asymmetric‐key schemes are also usually more 
computationally costly when compared to symmetric‐key counterparts. 

It  is worth mentioning  that  in practice, especially  in  secure protocols,  symmetric‐ and asymmetric 
schemes might be used in combination, mitigating their disadvantages, i.e., a public‐key scheme might 
be deployed to exchange a symmetric‐key, which is further used to protect communication data. Such 
a synergy has been successfully deployed in well‐known protocols such as TLS/DTLS or SSH. 
 

2.3.2 Use	of	Elliptic	Curve	Crypto	(ECC)	

Elliptic Curve Cryptography (ECC) is an alternative (to well‐known and commonly used in practice RSA 
algorithm) technique that supports public‐key schemes. Applications of elliptic curves in cryptography 
were presented independently by Miller [M86] and Koblitz [K87] for the first time in 1986. Since then, 
ECC became a subject of intensive studies from both theoretical and practical points of view and until 
now, it is considered to be secure and efficient approach to public‐key cryptography. 

An elliptic curve E over a field K is defined as a set of solutions (x,y) of the equation given by the formula 

E:  y2+a1xy+a3y =  x3+a2x2+a4x+a6, where a1, a2, a3, a4, a6  K and where K  is  an arbitrary  field. The 
equation above  is given as an affine version of a Weierstrass equation, whereas  for cryptographic 

applications, K is usually set to be a finite field Fq, where q = pn, p is a prime number and n  N. Let 
denote E(K) as a set of K‐rational points (the solutions of the equation above) and let include (in case 
of affine representation) the point at infinity O. This set, together with defined group law operations 
called chord‐tangent operations forms an abelian group, where the point at infinity acts as an identity 
point of said group.  
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Figure 5: Doubling a point (left) and adding two points (right). 

 

Let assumes that P and Q are elliptic curve points. In order to add points or multiply point by a scalar, 
the elementary group law operations, namely tangent and chord rules, have to be applied. The first, 
tangent operation is depicted in Figure 5, (here elliptic curve E is over real numbers). In such a case, 
one is able to double the point P, i.e., find a P+P (or [2]P in commonly used notation) point. Firstly, the 
tangent to the point P intersects the curve in point S. Secondly, having the point S, the desired point 
[2]P is the x‐axes reflection of the point S. Similarly (see Figure 5) for chord rule, i.e., to find P+Q for a 
given P and Q, a line between P and Q intersects curve in a point S and again, an x‐axes reflection of 
the point S is a desired point P+Q. 

Using the chord rule iteratively, one is able to compute the basic elliptic curve cryptography operation, 
namely a point scalar multiplication. This operation is defined as [n]P, which is defined as an addition 
of point P repeated n‐1 times, i.e., Q = [n]P = P+P+P+...+P. The defined scalar point multiplication plays 
the principle role in modern cryptography. It is very easy to compute [n]P for a given n and P, but it is 
believed to be hard to find the invert of such an operation, i.e., for a given point P and a given point 
[n]P it is hard to recover n. The aforementioned problem is known as Elliptic Curve Discrete Logarithm 
Problem  (ECDLP) problem, which  is  an equivalent  to Discrete  Logarithm Problem  (DLP) on elliptic 
curves. From the practical point of view, it is essential to note, that ECDLP appears to be much harder 
than DLP, which  implies that schemes based on ECDLP provides greater security per bit than other 
equivalent DLP‐based  schemes.  In practices,  that means  that elliptic  curve based  schemes utilises 
much shorter keys than non‐elliptic curve based counterparts, i.e., for 3072‐bit RSA key, 256‐bit key in 
ECC is considered as equivalent in terms of the security level [ENIS13]. 

Considering  implementation  point  of  view,  every  EC‐based  cryptographic  scheme  could  be 
decomposed on three levels of operations. The first (the lowest level) consists of finite field arithmetic 
operations such as addition, subtraction, multiplication and inversions. The middle level performs an 
elliptic  curve point adding and doubling, whereas  the highest  level  is a  scalar point multiplication 
operation. For efficient and lightweight implementations, it is essential to apply optimisation efforts 
on each of these levels, i.e., for the highest level one can process several bits of the scalar at the same 
time, whereas  for  the  lowest  level,  one  can  tweak  finite  field  arithmetic.  Applying  these  efforts 
different computational metrics such as speed, power consumption, small code footprint etc. might 
be easily achieved. 

There exist many elliptic curve proposals and standards, in the section below, we introduce the most 
relevant ones taking into consideration security and the possible lightweight implementation on the 
prospect RERUM platform. 
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2.3.2.1 NIST	Curves	

First NIST standard that  includes Elliptic Curve Digital Signature Algorithm (ECDSA) was published  in 
2000 (fourth revision can be find here [FIPS11]). Among other recommendations, NIST introduced five 
prime fields and selected randomly one elliptic curve for each prime field. Each of curves over prime 

field are defined by short Weierstrass equation y2 = x3+ax+b, where a, b  Fp. This makes potential 
implementation simpler, i.e., one can use standard and simplified Application Programming Interface 
(API), which  is  independent  from underlying  selected  curve. The NIST  standard  is well‐known and 
widely used in practical implementations and protocols, thus there exist a deep practical knowledge 
of many possible optimisation strategies. For example DTLS protocol with a default cipher suite that 
utilise public‐key cryptography uses a curve named P‐256 from the mentioned standard. Selecting the 
curve P‐256 gives also opportunity to use this curve as a part of both ECDH and ECDSA schemes, which 
can also bring some implementation advantages, i.e. smaller code footprint. 

The recent controversy over the selection of parameters aims toward suggesting that NIST standard 
might include a secret backdoor [BC++14], in similar fashion to a backdoor discovered in Dual Elliptic 
Curve Deterministic Random Bit Generator (Dual_EC_DRBG), which was also standardised by NIST. 
This situation leads to a limited trust in NIST standard, and influence researchers to look for new elliptic 
curve designs. It is worth mentioning that standard NIST curves are also prone to side‐channel attacks, 
i.e., they lack the feature of a constant execution time, and if needed, specific countermeasures have 
to be applied in implementations. Considering that standard is available for a long time there exists 
many  specific  libraries,  including  lightweight  implementation  for wireless  sensor networks  such as 
TinyECC [LN08] or NanoECC [SO++08].  

 

2.3.2.2 Curve25519	and	Ed25519	

Curve25519 is a state‐of‐the‐art elliptic‐curve‐Diffie‐Hellman (ECDH) function introduced by Bernstein 
[B06]. The function is suitable to perform Diffie‐Hellman key exchange operations. In contrast to NIST 
curves over primes, Curve25519 function is based on Montgomery curve defined as y2 = x3 + 486662x2 
+x, which allows efficient x‐coordinate only point operations. Similarly Ed25519 [BD++12] is a signature 
algorithm, defied as the twisted Edwards curve −x2+y2 = 1 − (121665/121666)x2y2. 

Advantage  of  these  pair  of  presented  algorithms  (apart  from  their  security  levels)  lays mostly  in 
practical applications. Montgomery and Edward curves are well‐known for their efficient elliptic curve 
operations,  which  in  consequence  lead  to  high‐speed  implementations  (in  comparison  with 
Weierstrass counterparts. Both Curve25519 and Ed25519 features shot size of secret and public keys, 
i.e., 32‐bit for both keys, and 64‐bit for signature size (in case of Ed25519). Their design prevents input‐
dependent branches, thus algorithms also features side‐channel timing attacks by design. 

Apart  from  [B06,  BD++12],  where  a  high‐speed  implementation  has  been  confirmed  on  32‐bit 
platforms,  there  exists  as  well  investigations  of  Curve25519  and  Ed25519  applicability  towards 
embedded designs, i.e., using 8‐bits AVR microcontrollers [HS13] or using NEON coprocessor [BS12]. 
In the former the authors presented a special version of software library named NaCl14 (which contains 
both Curve25519 and Ed25519 implementations) running on 8‐bit microcontroller showing possibility 
for  a  very  compact  code  size  and  presented  overall  performance  on  said  platform.  In  the  latter 
publication, a NEON coprocessor, which  is available  in many ARM processors, has been utilised  to 
increase a performance of both Curve25519 and Ed25519 computations compared to ``software'' only 
implementation running on the same ARM platform.  

 

                                                            
14 Pronounced “salt”. 
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2.3.2.3 Microsoft's	NUMS	Curves	

Recently, motivated by a possible backdoor in NIST standard, a group of researchers from Microsoft 
have designed a new set of elliptic curves [BCLN14] and proposed them to IEFT standardisation body 
[NUMS14]. Although this proposition is relatively new and security claims together with performance 
results have not been widely studied yet, there are several clues that the proposed set of curves could 
act as a good replacement for the NIST standard (especially taking into consideration curves defined 
over primes). Contrary to Curve25519 and Ed25519, and similarly to the NIST curves, one curve from 
NUMS set, (to be more specific those expressed as short Weierstrass equation and over primes) could 
be used both in ECDH and ECDSA algorithms. In addition, some of the proposed curves are expressed 
as short Weierstrass form, thus is likely to hold the same API. This might be important not only from 
software  perspective  but  might  be  much  more  important  for  hardware  coprocessors,  where 
deployments on chip modifications are very costly. In case of the same API, they are very likely be able 
to handle those curves without any hardware modifications. The first attempt (made by authors) for 
an efficient  implementation shows that performance of many presented curves  is better than their 
NIST counterparts. Similarity to Curve25519 and Ed25519, the NUMS curves feature countermeasures 
against side‐channel timing attacks by design. It is also worth noticing that NUMS curves proposition 
comes with clear selection procedure of curve parameters, which as mentioned before is currently the 
main consideration of the standard NIST curve set.  

 

2.3.3 Data	 Integrity	Using	 Asymmetric	 Cryptography	 for	 3rd‐party	 verification	
(non‐repudiation)	without	a	fully	trusted	verifier		

 

The following definition has been used by RERUM since deliverable D2.2 for data integrity 

Data Integrity  Source: D2.2 and ISO 10181‐6 

The integrity protection, that RERUM requires, must allow the “detection of integrity 
compromises” [96], as opposed to mechanisms concerned with “prevention” [ISO_10181‐6] of 
integrity breaches. The focus will be on protection against the following three violations: 
 “a) unauthorized data modification; 
  c) unauthorized data deletion; 
  d) unauthorized data insertion;” [ISO_10181‐6] 

 

When Data Integrity is cryptographically ensured, this means that the data’s integrity is in a verifiable 
state. However, a third party wanting to verify the  integrity needs a cryptographic verification key. 
When using asymmetric key crypto, the verifier only needs a verification key, and the verifier does not 
get a key able to generate new integrity verification codes, e.g., new signatures need the secret key. 
Hence, mechanisms based on asymmetric cryptography allow verifiable  integrity by a  third party, 
which – in contrast to internally verifiable integrity – must not be entrusted to guard a secret. By just 
knowing the public verification key we can corroborate that the integrity‐protected data has not been 
modified  (or destroyed)  in an unauthorised manner since  the  integrity protection mechanisms has 
been applied to the data. 
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Notes:  

 The above notion does explicitly not exclude authorised modifications; 

 What  constitutes  an unauthorised or  authorised  change must be precisely  codified  in  the 
relevant  integrity security policies that must be enforced to the  full extend by the  integrity 
protection mechanism. Hence, by  choice of  the protection mechanism  the applying entity 
defines what constitutes an unauthorised change; 

 The above notion sees data integrity in accordance with ISO 10181‐615 as “a specific invariant 
on  data”  [ISO10181‐6].  Following  this,  the  integrity  protection  mechanism  “detects  the 
violation of internal consistency” [ISO10181‐6]. “A datum is internally consistent if and only if 
all modifications of this item satisfy the relevant integrity security policies.” [ISO10181‐6]; 

 The above notion  is  concerned with allowing  the detection of  integrity  violations by  third 
parties, e.g. not limited to the party that applied the integrity protection; 

 The above notion is concerned that the current state of integrity can be proven to hold also to 
a third party, e.g. not the sender and the intended receiver of data. This does not limit its use 
internally, i.e. by the party that applied the protection. Hence, third party verifiable integrity 
includes the notion of internally verifiable integrity. 

 

2.3.4 Origin	 Authentication	 Using	 Asymmetric	 Cryptography	 for	 3rd‐party	
verification	(non‐repudiation)	without	a	fully	trusted	verifier		

RERUM sees as an important requirement to offer cryptographically strong authentication of message 
origin, which requires entity authentication.  

Entity Authentication, Verifier, Claimant  Source: [MOV01] 

Entity  authentication  is  the  process  whereby  one  party  is  assured  (through  acquisition  of 
corroborative evidence) of the identity of a second party involved in a protocol, and that the second 
has actually participated (i.e., is active at, or immediately prior to, the time the evidence is acquired).

By Verifier we denote the party that is, after a successful run of the protocol, assured of the identity 
of a second party involved in an entity authentication protocol. 

By Claimant we denote the party that is generating a proof of its identity in an entity authentication 
protocol. 

 

Following the definition of [MOV01], this is the process whereby one party is assured of the identity of 
a second party involved in a protocol. RERUM will not require the generation of evidence used for non‐
repudiation  as  included  in  the  above  textbook  definition. While  RERUM  does  not  restrict  using 
authentication  mechanisms  that  are  strong  enough  to  be  used  to  generate  evidence  of  the 
authentication that can be proven to hold also to a third party, it does not mandate this. 

                                                            
15 ISO 10181‐6 is about integrity frameworks 
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It is also in line with the RFC 494916 that actually quotes the ISO 7498‐217: 

“the corroboration that a peer entity in an association is the one claimed. ̈[ISO7498‐2, RFC 4949]. 

The goal of entity authentication is crucial because only if this can be established, the recipient of a 
message can identify from which entity in a communication the message originated. Or in other 
words the entity that is able to authenticate the other entity can detect if the sending entity is not 
forged. 

“This service is used at the establishment of, or at times during, an association to confirm the identity 
of one entity to another, thus protecting against a masquerade by the first entity.” [RFC 4949] 

The two parties  involved  in an entity authentication dialog can be distinguished. RERUM calls them 
verifier and claimant.  

Note, for a short term or one‐time authentication token, it might be required to involve in the issuance 
of such a token, some long term token. Both tokens must be safe guarded against theft by both parties. 

Note further, that authentication protocols usually only allow to corroborate the other parties claimed 
identity  at  the  time  the  protocol  is  run.  RFC  4949  states  this  limitation  by  saying  that  “...  the 
corroboration provided by the service  is valid only at the current time that the service is provided.” 
[RFC4949] Hence to extend the time of check to the time of use, care must be taken to not become 
vulnerable to so called Time‐of‐check Time‐of‐use (TOCTOU) Race Condition attacks18. 

 

2.3.5 Notation	and	Background	on	Classic	Public	Key	Based	Digital	Signatures		

2.3.5.1 General	Algorithmic	Description	of	Digital	Signature	Schemes	(DSS)	

 

For a message we assume m ∈ {0,1}∗. With the symbol ⊥ ∉ {0, 1}∗ we denote an error or an exception. 
The security parameter is denoted as λ. 

A Digital Signature Scheme for RERUM consists of at  least three efficient (with polynomial runtime) 
algorithms DSS := (KGensig, Sign, Verify): 

Key Generation. There is a key generation algorithm that generates a key pair for the signer. The pair 
of keys contains the private signature generation key sksig and the public signature verification key 
pksig.  

(pksig, sksig) ← KGensig(1λ) 

Signing. The Sign algorithm takes m ∈ {0,1}∗, the signer’s secret signature generation key sksig. It 
outputs the message m and a signature σ (or ⊥, indicating an error):  
(m, σ) ← Sign(1λ, m, sksig) 

                                                            
16 RFC4949 provides definitions, abbreviations, and explanations of terminology for information system security. 
It offers recommendations to improve the comprehensibility of written material that is generated in the Internet 
Standards Process (RFC 2026). 

17 ISO 7498‐2 provides a general description of security services and related mechanisms, which can be ensured 
by the Reference Model, and of the positions within the Reference Model where the services and mechanisms 
may be provided.  

18 http://cwe.mitre.org/data/definitions/367.html 
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Verification. The Verify algorithm outputs a decision d ∈ {true, false} verifying the validity of a 
signature σ for a message m ∈ {0, 1}∗ with respect to the public signature verification key pksig: 
d ← Verify(1λ, m, σ, pksig) 

We require the usual correctness properties to hold. In particular, all genuinely signed messages are 
accepted by verify. For a formal definition of correctness, refer to [BF++09] and [BPS12].  

 

2.3.5.2 Choice	Between	Approved	Algorithms:	RSA‐PSS,	ECDSA,	SHA256,	SHA512	

The research projects NESSIE19 and CRYPTREC20 gave recommendations for digital signature 
algorithms to use. From their list the overlapping choice was to use either: 

 ECDSA by Certicom Corp 

 RSA‐PSS by RSA Laboratories 

The former uses elliptic curves, while the  latter  is based on RSA. As current research shows elliptic 
curve cryptography (ECC) is far better suited for constrained devices [Certicom], RERUM will base its 
asymmetric key cryptography when possible on ECC. For a mathematical introduction to elliptic curves 
see [M06]. 

Both algorithms work in two steps when generating the signature of a message m, they first hash the 
message and then sign the digest, that why RERUM calls these Hash and Sign. 

In RERUM we will use H to denote a cryptographically secure hashing function. So with H being a secure 
hashing function and m being the message the two steps in the signature generation are denoted as 
follows: (m, σ) ← Sign(1λ, H(m), sksig).  

Among the widespread implementations of hash functions that are found to be secure according to 
NESSIE and CRYPTREC, are: 

 SHA-256 defined in US FIPS 180-2; 

 SHA-512 defined in US FIPS 180-2 and 

 WHIRPOOL defined in ISO/IEC 10118-3. 

Those three, all have existing implementations, and those will be re‐used preferably in RERUM for on 
device implementations. 

 

2.3.5.3 Details	on	the	ECC	based	Signature	Algorithm:	ECDSA	

RERUM  plans  to  use  ECDSA  algorithms  to  generate  signatures. UNI  PASSAU  has  built  a  research 
prototype on Zolertia Z1 devices where two Z1 are exchanging UDP messages that are signed. Details 
of this can be found in this deliverable in Section 3.2 on the On‐Device‐Signatures. To be able to use 
signatures we need a minimum of  two  interfaces: one  for singing and one  for verification. RERUM 
foresees the headers of that interface to look as follows in C language.  

 

                                                            
19 https://www.cosic.esat.kuleuven.be/nessie/  

20 http://www.cryptrec.go.jp/english/images/cryptrec_01en.pdf  
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Signing: 

/* 
 * \param shasum    Hash of the message to sign using SHA256 or others 
 * \SHA_DIGEST_LENGTH  Length of the digest output that shasum has,  
              depends on algorithm used 
 * \param r        Parameter of the curve used 
 * \param s        This will store the Signature generated  
     over the shasum 
 * \param pr_key    private key used to sign shasum 
 */ 
 
void ecdsa_sign(uint8_t shasum[SHA_DIGEST_LENGTH], NN_DIGIT *r, NN_DIGIT 
*s, NN_DIGIT *pr_key); 
 

Verification:  

/* 
 * \param shasum           Hash of the message to verify using  
      SHA256 or others 
 * \SHA_DIGEST_LENGTH    Length of the digest output that shasum has,  
                         depends on hash algorithm used  
 * \param r               Parameter of the curve used 
 * \param s                Signature of the message 
 * \param pb_key           public key used to verify the Signature  
      over shasum 
 * \return         1 if the signature is verified under pb_key 
 */ 
 
uint8_t ecdsa_verify(uint8_t shasum[SHA_DIGEST_LENGTH], NN_DIGIT *r, 
NN_DIGIT *s, point_t *pb_key); 

 

2.3.6 Notation	and	Background	on	Group	Signatures		

Group signatures have been recognized as one of the major privacy enhancing technologies to reach 
data minimization and privacy by design [MF12]. Group signatures ensure unforgeability for messages, 
authenticate signers and provide k‐anonymity21 for the members of a signing group. Since the original 
proposal  of  group  signatures  by  Chaum  and  van  Heyst  [CV91]  (the  scheme  is  described  in  the 
following),  there have been many  extensions  and  adaptions  to  group  signatures. We  refer  to  the 
simplified description of [MF12] to explain how group signatures work. 

                                                            
21 A group member is said to be k‐anonymous if his signatures cannot be distinguished from at least k‐1 other 
group members, which could have generated the same signatures as well. 
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Figure 6: Group Signature Scheme with linking functionality (adapted from [MF12])	

 

Figure 6 displays the overall scheme of group signatures. Several parties can be identified in a group 
signature scheme: 

The  key  issuing  party  does  the  key management  for  all participants.  The  issuing  party  generates, 
distributes and revokes keys. It is not involved in the verification or linking/opening procedures of the 
scheme.  

The issuing party is able to generate all keys with a function GKg(), which takes as input the initial size 
of a group: 

GKg(number_of_initial_members_i)  

The  function generates as an output  three keys,  the group’s public key,  the member keys and  the 
opening key: 

GPubKey, Memberkeyi, GOpeningKey 

The issuing party then distributes the keys between the different parties: 

Issuing Party -> Member 1 to Member i: Memberkey1…i 

Issuing Party -> Verifier(s) or public: GPubKey 

Issuing Party -> Opening Party: GOpeningKey  

Note: The issuing party has to remember which member received which key to assist the opening party 
in relinking a signature to a member. This is done in a member‐secret distribution table. 	

Additionally, the issuing party can add several members to the group with the function AddMember():  

AddMember(GPubKey, number_of_new_members_m) creates	additional	member	keys 
Memberkey(i+1)…(i+m) 

The issuing party can also revoke keys with the function: 

RevokeKey(GPubKey, Memberkeyi) 
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The  results of  revocation are different depending on  the used  scheme. Several  schemes allow  the 
revocation of the group public key to successfully revoke a member key. Others need to update the 
group public key and all member keys.  

The group members join a group by obtaining secret signing keys. They are able to create digital group 
signatures in the name of the whole group. Neither a verifier nor the members themselves are able to 
recognize the source of a signed message.  

GSign(Memberkeyi, message) generates a signature Gsignaturemessage 

The signature does not resemble the original message key and is verifiable with the group public key. 

The verifier(s) has access to the group’s public key. He is able to verify that the group is the authentic 
source of  a message, but he  is not  able  to pinpoint  the  group member  that originally  signed  the 
message. 

The function GVrfy(GPubKey, Gsignaturemessage, message) gives the output True/False in case 
of a valid or invalid verification of the message. 	

The opening party has a unique key, which allows it to relink a signature to one member key of the 
group. Relinking means  recreating  the  link between a given  signature, a message and  the original 
signer. This process, in contrast to the revoking process of a key, does neither change member‐keys 
nor the group public key. That means, there are no further consequences for neither the verifiers nor 
the group members. This property is needed, in case a malicious member is culpable of fraud or has to 
provide compensation of damages for his misbehaviour. The opening party is supposed to have a high 
trust level, and only relink signatures in justifiable circumstances.  

The opening party uses the function Open() with following arguments: 

Open(GOpeningKey, Gsignaturemessage, message, key_distribution_table)  

The	function	then	outputs	a	specific	member	key	Memberkeyi 	

Note: The member key does not identify a user by itself. The opening party needs to know from the 
issuing party, which user was given the key that was generated as output from the Open()-function.  

 

2.3.7 Notation	and	Background	on	Identity	Based	Signatures	

When using Identity based cryptosystem the public key needed to encrypt data for a recipient or to 
verify  the  signature  consists only of public  identification  information, e.g.  a unique name  like  the 
hardware address or the IP in the current network, and the public information of the trusted authority. 

The public parameters are denoted as IBE_params and the trusted authority is denoted T. 

T holds a IBE_masterkey that corresponds to the IBE_params, such that they could be seen as the 
asymmetric keypair, and indeed IB‐schemes are classified as asymmetric [MOV01]. For participating 

entities T generates a private key that computed from two main inputs: entity’s identity information 

and IBE_masterkey. 

Note, only T can create valid private keys corresponding to given identification information under the 
IBE_params. 

T acts as a key generator and is a trusted third party, when it comes to generating keys, hence, T could 
impersonate (by generating itself keys) any entity and it needs to safeguard IBE_masterkey. As the 
IBE_masterkey that is held by the trusted third party T can be used to generate the secret keys for 
any arbitrary ID string. 

Very common instantiation is the Feige‐Fiat‐Shamir identification scheme [FFS88].  
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As  the  authors  of  [MOV01]  have  already mentioned,  the main  benefit  for  this  schemes  lies  in 
interactions where “another party’s public key  is needed at  the outset”  [MOV01]. This means  that 
these schemes are theoretically quite efficient when used in key agreement and public‐key encryption 
but not so much when used for signature and entity authentication. Recent state of the art shows that 
it is important to choose exactly the right scheme and that schemes with certain flexibilities, e.g. multi‐
proxy signatures, are not secure  in strong attacker models, e.g. secure against proxy key exposure 
[ASS14]. 

The  state of  the art  is  rapidly evolving  in  the area of applying  IB‐identification  to Wireless  sensor 
networks.  Especially  approaches  like  [MA12],  [YRW10],  or  [QZ++14]  published  recently,  sound 
interesting. RERUM continues to monitor activity in this field. 

 

2.3.8 Notation	and	Background	on	Implicit	Certificates		

Implicit  certificates  are  another  special  form  of  an  asymmetric  cryptographic  mechanism.  One 
published  instantiation  is  based  on  the  Elliptic  Curve Qu‐Vanstone  (ECQV). When  comparing  the 
verification  steps  for  a  signature  based  on  an  implicit  certificate  with  the  steps  when  using  a 
conventional certificate the most notable difference is that in implicit certificates there is no separate 
verification of the certificate chain. If you look at a classical certificate chain as depicted below, than 
you would always also have to check  if the next trusted hierarchy, e.g. finally the root‐of‐trust, has 
issued  it. Using  implicit  certificates  the  signature verification process gets  the  following  input:  the 
trusted public parameters of the CA, the signature, and the signed data. It outputs valid if and only if 
the data is as it was supposed to be (integrity preserved) and if the secret signature generation key 
was  indeed endorsed by the CA to which the public parameters correspond. In order to do this the 
implicit certificate also has the subject’s ID public key but they are super imposed into a string the size 
of the public key including the implicit endorsement of the CA. This results in savings of some additional 
operations and a decrease in the size of the certificate, the stated example says that on a curve with 
160 bit sized points, an implicit certificates has the size of 160 bits [Certicom], [PV00], [BGV01]. 

 

Figure 7: Certificate chain 

Figure 7 shows an example of a Certificate Chain, with Certificate#1 being trusted it is possible to derive 
trust into the Public Key #3 and by that in Signature#4 and the data that this signature protected. 

The following notation is adapted from the original authors as follows: 

The entity, called Bob has an  implicit certificate for himself, denoted IMPL_CERT, this shall contain 
unique  information, denoted  I  in  the original paper,  identifying Bob, e.g.  ID or  address  and  some 
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certificate ID. This IMPL_CERT contains the secret IMPL_SK but also allows the reconstruction of the 
public  key  IMPL_PK  (originally  B) when  combined with  the  trusted  public  parameters  of  the  CA, 
denoted (originally C) IMPL_PARAMS.  

Setup: Initially the system parameters / keys of the CA are generated; there are public IMPL_PARAMS 
and  secret  IMPL_CA_SEC.  The  secret  key  can  then  be  used  to  issue  IMPL_CERT  for  strings  of 
information I. 

Sign: When signing, Bob will use his IMPL_SK to create a signature σ for a message m ∈ {0, 1}∗ 
(m, σ) ← Sign(1λ, m,IMPL_SK) 

Verify: For verification the verifier needs to have IMPL_PK, but only needs to trust IMPL_PARAMS. The 

Verify algorithm outputs a decision d ∈ {true, false} verifying the validity of a signature σ for a message 

m ∈ {0, 1}∗ with respect to the public key of the signer IMPL_PK and the trusted public key of the 
Certificate Issuing TTP IMPL_PARAMS: 

d ← Verify(1λ, m, σ, IMPL_PK, IMPL_PARAMS) 

 

2.3.9 New	 Harmonized	 Notation22	 and	 Background	 on	 Malleable	 Signature	
Schemes	

Apart  from  standard  digital  signature  schemes  based  on  the  hash‐then‐sign  paradigm  and  using 
cryptographically secure hashes like SHA256 or RIPE‐MD, there are so called malleable signatures. 

This  section of  the deliverable will briefly discuss  the background behind  the notion of malleable 
signatures,  it will  state  the mathematical notation used  in RERUM, and also provide an executive 
summary of the results published as a result of RERUM’s analysis at ESSoS’14 [MPPS14]. 

At the time of preparing this section of the deliverable there was no work that considered identifying 
the mathematical relations between the notions of two  important strands of malleable signatures: 
redactable  signature  schemes  (RSS)  and  sanitizable  signature  schemes  (SSS).  For  a  deeper  and 
thorough understanding, and in order to identify which schemes to implement on RERUM Devices first, 
so as part of  the work  in T3.2  (aiding also T3.3) RERUM carried out  this analysis and an executive 
summary is provided, all mathematical proofs can be found in [MPPS14]. 

Malleable signature schemes (MSS) allow generating a signature over data that allows a specified third‐
party to modify signed data and re‐compute a potentially different signature, which is again valid for 
the modified data; the re‐computation of the signature can be done without the signer’s signature 
generation key. 

The signature on the modified data is valid under the signer’s public verification key if and only if the 
signer‐specified rules for subsequent modifications are adhered to. 

As such, malleable signatures schemes (MSS) offer: 

1. integrity protection for the message, protecting against subsequent malicious or random, but 
unauthorised modifications and 

2. authentication of origin of the message, as the party that applied the protection on a message, 
by signing it, can be identified by the corresponding verification key. 

RERUM thoroughly analysed the current state of MSS to understand what algorithms to choose for 
RERUM’s  idea  to  apply malleable  signatures  already on devices,  identified  two different  currently 
studied cryptographic constructions:  

                                                            
22 These research results from RERUM have been published in [MPPS14].  
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1. redactable signature schemes (RSS) and  

2. sanitizable signature schemes (SSS). 

These research results from RERUM have been published in [MPPS14].  

 

2.3.9.1 Concept	of	Redactable	Signature	Schemes	(RSS)	

Redactable  Signatures  (RSS)  have  been  introduced  in  2002  in  two  independent works  under  two 
different names:  

(1) Steinfeld, Bull and Zheng named it “content extraction signature” [SBZ02] and  
(2) Johnson, Molnar, Song and Wagner named it “homomorphic signature” [JMSW02]. 

 

The original description from Steinfeld et al. is easy to understand, so we cite it here: 

“A CES [Content Extraction Signature] allows the owner, Bob, of a document 
signed by Alice, to produce an ’extracted signature’ on selected extracted 
portions of the original document, which can be verified to originate from 
Alice by any third party Cathy, while hiding the unextracted (removed) 

document portions.” [SBZ02] 

RERUM  follows  recent  work  calling  them  redactable  signature  schemes  (RSS),  e.g.  [WH++12], 
[BB++10], or [SR10] as the schemes allow removing parts from signed data and allowing to re‐compute 
the signature, such that this removal will not be invalidating the new signature.  

 

2.3.9.2 Concept	of	Sanitizable	Signature	Schemes	(SSS)	

Sanitizable signature schemes (SSS) have been introduced by Ateniese et al. [ACMT05] at ESORICS in 
2005. They differ from RSS mainly in the fact that the signer can control who – that entity is denoted 
as sanitizer – is able to modify the document by the use of cryptographic keys. The party authorised to 
do the change has the correct cryptographic keys and is then able to change the parts for which it holds 
authorisation arbitrarily. The initial description of Ateniese et al. from [ACMT05] captures this and so 
it is re‐stated here: 

“We define a sanitizable signature scheme as a secure digital signature scheme 
 that allows a semi‐trusted censor to modify certain designated portions of the message 

 and produce a valid signature of the resulting (legitimately modified) message 
 with no interaction with the original signer.” [ACMT05] 

This definition also states a very important point of MSS: both RSS and SSS do not require the party 
modifying parts, that it has been authorised to, to engage in any interaction with the signer, neither 
before, nor during, nor after the redaction. The same holds true for the relation and interaction 
between the party verifying the signature of modified content and the party that modified it, there is 
no interaction or key exchange needed between those two parties.  

This independence of the execution of a once authorised modification makes MSS such a suitable 
tool for integrity in environments where entities benefit from being loosely coupled on the 
networking layer, like in the IoT.  
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2.3.9.3 State	of	the	Art	in	Redactable	and	Sanitizable	Signatures	Schemes	

SSS have been  introduced by Ateniese et al. [ACMT05] at ESORICS’05. Brzuska et al. formalized the 
most  essential  security  properties  [BF++09][BF++09b].  These  have  later  been  extended  for  the 
properties  of  unlinkability  [BFAS10]  [BPS14]  and  (block/groupwise)  non‐interactive  public 
accountability  [BPS12]  [MPPS13]. Moreover,  several  extensions  and modifications  like  limiting‐to‐
values  [CJ10]  [KL06]  [PSP11],  trapdoor SSS  [CLM08] and multi‐sanitizer environments  [CJL12] have 
been considered. 

RSS have  since  its  introduction  [SBZ02  [JMSW02]  in 2002 been  subject  to much  research and  got 
extended  to  tree‐structured  data  [BB++10]  [KB08]  and  to  arbitrary  graphs  [KB10].  Samelin  et  al. 
introduced the concept of redactable structure in [SP++12b]. The standard security properties of RSS 
have been formalized in [BB++10] [CLX09] [SP++12] Ahn et al. introduced the notion of context‐hiding 
RSS  [AB++11].  Even  stronger  privacy  notions  have  recently  been  introduced  in  [ALP12]  [ALP13]. 
However, the scheme by Ahn et al. only achieves the less common notion of selective unforgeability 
[AB++11]. Moreover,  [AB++11]  [ALP12]  [ALP13] all not offer  the  flexibility needed  for RERUM’s  IoT 
data, as they are limited to quoting, i.e., redactions are only possible at the beginning, or end resp., of 
a list. There exists many additional works on RSSs. However, note that RERUM requires for reasons of 
privacy as described in detail in D3.2 that usable schemes fulfil a notion that RERUM would call strongly 
private RSS defined formally by Brzuska et al. in [BB++10]. If a verifier can make statements about the 
original message, that contradicts the intention of an RSS, and hence the privacy definition presented 
in [BB++10] forbids this. Hence, for RERUM schemes like [HH++08] [IIKO11] [IKPS09] [LLP12] [MI++05] 
are not suitable for RERUM as they are not considered strongly private under Brzuska et al.’s privacy 
notion. Most of these schemes achieve a weaker notion that RERUM will call weak privacy. 

Combinations  of  both  approaches,  i.e.  RSS  and  SSS,  appeared  in  [HH++08],  [IIKO11],  [IKPS09]. 
However, their schemes do not preserve privacy as stated in [SP++12].  

 

2.3.9.4 Executive	Summary	of	Analysis	Results	on	the	Relation	between	RSS	and	SSS	
(published	in	ESSoS’14	[MPPS14])	

At the time of preparing this section of the deliverable, and to the best of the author’s knowledge, 
there was no work  that considered  identifying  the mathematical  relations between  the notions of 
redactable  signature  schemes  (RSS)  and  sanitizable  signature  schemes  (SSS).  For  a  deeper  and 
thorough understanding, and in order to identify which schemes to implement on RERUM Devices first, 
so as part of the work in T3.2 (aiding also T3.3) RERUM carried out this analysis. 

The following results were obtained: 

 an RSS is not trivially a “special case” of SSS as mentioned in [BF++09], [YSLM08] and [YPL10] 

 an unforgeable SSS can emulate a standard signature by disallowing any modifications by any 
sanitizer [YPL10] 

 a RSS for a message of n blocks, fulfilling strong privacy according to [BB++10], can trivially, but 
runtime inefficiently, be constructed by deploying O(n2) standard digital signatures [SP++12] 
[BB++10]. As SSS can emulate standard signatures, by disallowing modifications, O(n2) SSS are 
cryptographically sufficient to construct one RSS.  

Thus,  from a  theoretical point of view, SSSs directly  imply  the existence of RSSs. However,  from a 
practical point of view, such constructions are rather inefficient. Especially as RSSs can be constructed 
in O(n) for computation and storage [SP++12].  

The  analysis  results  in  the  statement  that RSSs  are  less  expressive  than  SSSs.  In other words, no 
unforgeable RSS can be transformed into an SSS. For the opposite direction a black‐box transformation 
of a single SSS, with tightened security, into an RSS is possible. 
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The  detailed  results  containing  the mathematical  proofs  of  this  analysis  have  been  published  by 
Springer  International Publishing  in the  In Proc. of the 6th  International Symposium on Engineering 
Secure Software and Systems (ESSoS 2014), see [MPPS14].  
 

2.3.9.5 Notation	of	an	SSS	(published	in	ESSoS’14	[MPPS14])	

The used notation is adapted from in [BF++09]. 

For a message m = (m[1],...,m[l]), we call m[i] ∈ {0,1}∗ a block, where “,” denotes a uniquely reversible 
concatenation of blocks or strings. The symbol ⊥ ∉ {0, 1}∗ denotes an error or an exception. For a 
visible redaction, we use the symbol ☐∉ {0, 1}∗, ☐ is not equal to ⊥. 
A  SSS  consists  of  at  least  seven  efficient  (with  polynomial  runtime)  algorithms  SSS  := 
(KGensig,KGensan,Sign,Sanit,Verify, Proof, Judge): 

Key Generation. There are two key generation algorithms, one for the signer and one for the sanitizer. 
Both create a pair of keys, a private key and the public key, using the security parameter λ: 

(pksig, sksig) ← KGensig(1λ), (pksan, sksan) ← KGensan(1λ) 

Signing. The Sign algorithm takes m = (m[1],...,m[l]), m[i] ∈ {0,1}∗, the signer’s secret key sksig, the 
sanitizer’s public key pksan, as well as a description adm of the admissibly modifiable blocks, where 
adm contains the number l of blocks in m, as well the indices of the modifiable blocks. It outputs the 

message m and a signature σ (or ⊥, indicating an error): (m, σ) ← Sign(1λ, m, sksig, pksan, adm) 

Sanitizing. Algorithm Sanit takes a message m = (m[1], ...,m[l]), m[i] ∈ {0,1}∗, a signature σ, the public 
key pksig of the signer and the secret key sksan of the sanitizer. It modifies the message m according 
to  the modification  instruction mod, which  contains  pairs  (i, m[i]′)  for  those  blocks  that  shall  be 
modified. Sanit  calculates a new  signature  σ′  for  the modified message m′ ← mod(m). Then Sanit 

outputs m′ and σ′ (or ⊥, indicating an error): 
(m′, σ′) ← Sanit(1λ, m, mod, σ, pksig, sksan) 

Verification.  The  Verify  algorithm  outputs  a  decision  d ∈  {true,  false}  verifying  the  validity  of  a 
signature σ for a message m = (m[1], ...,m[l]), m[i] ∈ {0, 1}∗ with respect to the public keys: 
d ← Verify(1λ, m, σ, pksig, pksan) 

Proof.  The  Proof  algorithm  takes  as  input  the  security parameter,  the  secret  signing  key sksig,  a 

message m =  (m[1],  ..., m[l]), m[i] ∈ {0, 1}∗ and a signature σ as well a set of  (polynomially many) 

additional message‐signature pairs {(mi, σi) | i ∈ N} and the public key pksan. It outputs a string π ∈{0, 
1}∗ (or ⊥, indicating an error): 

π ← Proof(1λ, sksig, m, σ, {(mi, σi) | i ∈ N}, pksan) 

Judge. Algorithm Judge takes as  input the security parameter, a message m = (m[1],...,m[l]), m[i] ∈ 
{0,1}∗ and a valid signature σ, the public keys of the parties and a proof π. It outputs a decision d ∈ 
{Sig, San, ⊥}  indicating whether  the message‐signature pair has been created by  the signer or  the 

sanitizer (or ⊥, indicating an error): d ← Judge(1λ, m, σ, pksig, pksan, π) 

To have an algorithm actually able to derive the accountable party for a specific block m[i], Brzuska et 
al. introduced the additional algorithm Detect [BFA10]. The algorithm Detect is not part of the original 
SSS description by Ateniese et al., since it is not required for the purpose of a SSS [ACMT05] [BF++09]. 
(See Def. 6 of the original paper [MPPS14]). 
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Detect. On  input of  the security parameter  λ, a message‐ signature pair  (m, σ),  the corresponding 
public keys pksig and pksan, and a block index 1 ≤ i ≤ l, Detect outputs the accountable party (San or 

Sig) for block i (or ⊥, indicating an error): 

d ← Detect(1λ, m, σ, pksig, pksan, i), d ∈ {San, Sig, ⊥} 
We require  the usual correctness properties to hold.  In particular, all genuinely signed or sanitized 
messages are accepted, while every genuinely created proof π by the signer leads the judge to decide 
in  favour of  the  signer. For a  formal definition of correctness,  refer  to  [BF++09]  [BFA10].  It  is also 
required by every SSS that adm is always correctly recoverable from any valid message‐signature pair 
(m, σ). This accounts for the work done in [GQZ11].  

An SSS is secure if it is unforgeable, immutable and strongly private. 

RERUM will define software interfaces for SSS in T3.3 delivered in D3.2. such that SSS can be used in 
the integrity verification component. 
 

2.3.9.6 Notation	of	an	RSS	(published	in	ESSoS’14	[MPPS14])	

The following notation is derived from [SP++12b].  

For a message m = (m[1], ...,m[l]), we call m[i] ∈ {0,1}∗ a block, where “,” denotes a uniquely reversible 
concatenation of blocks or strings. The symbol ⊥ ∉ {0, 1}∗ denotes an error or an exception. For a 
visible redaction, we use the symbol ☐∉ {0, 1}∗. Note, ☐ is not equal to ⊥. 
An RSS consists of  four efficient  (with polynomial runtime) algorithms RSS  :=  (KeyGen, Sign, Verify, 
Redact): 

KeyGen. The algorithm KeyGen outputs the public key pk and private key sk of the signer, where λ 
denotes the security parameter: 

(pk, sk) ← KeyGen(1λ ) 

Sign. The algorithm Sign gets as input the secret key sk and the message m = (m[1], ..., m[l]), m[i] ∈ 
{0, 1}∗: (m, σ) ← Sign(1λ, sk, m) 

Verify. The algorithm Verify outputs a decision d ∈ {true,false}, indicating the validity of the signature 
σ, w.r.t. pk, protecting m = (m[1],...,m[l]), m[i] ∈ {0, 1}∗: d ← Verify(1λ, pk, m, σ) 

Redact. The algorithm Redact takes as input the message m = (m[1], ..., m[l]), m[i] ∈ {0,1}∗, the public 
key pk of the signer, a valid signature σ and a list of indices mod of blocks to be redacted. It returns a 

modified message m′ ← mod(m) (or ⊥, indicating an error): 
(m′, σ′) ← Redact(1λ, pk, m, σ, mod) 

We denote the transitive closure of m as span|=(m). This set contains all messages derivable from m 
w.r.t. Redact. 

As for SSSs, the correctness properties for RSSs are required to hold as well. Thus, every genuinely 
signed or redacted message must verify. Refer to [BB++10] for a formal definition of correctness. 

RERUM will define software interfaces for RSSs in T3.3 delivered in the future deliverable D3.2. 
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2.3.9.7 Executive	Summary	of	the	Security	Required	to	be	Achieved	by	RSS	and	SSS	
for	Use	in	RERUM	

RSS and SSS are called secure for the use  in RERUM  if they achieve the following four fundamental 
security properties: 

 Unforgeability.  No  one  should  be  able  to  compute  a  valid  signature  on  a message  not 
previously issued without having access to any private keys [BB++10]. This is analogous to the 
unforgeability requirement for standard signature schemes [GMR88], except that it excludes 
valid redactions from the set of forgeries for RSSs, while for SSSs no alterations are allowed. 

 Immutability. The idea behind immutability is that an adversary generating the sanitizer key 
must  only  be  able  to  sanitize  admissible  blocks. Hence,  immutability  is  the  unforgeability 
requirement for the sanitizer. 

 Privacy. No one should be able to gain any knowledge about sanitized parts without having 
access  to  them  [BF++09].  This  is  similar  to  the  standard  indistinguishability  notion  for 
encryption schemes. The basic  idea  is  that  the attacker provides  two, potentially different, 
messages and instructions on how to change them to another party, whose operations it can 
not observe, called “oracle”. The Oracle either signs and sanitizes the first message (m0) or the 
signs  and  sanitizes  the  second  (m1),  while  the  oracle  checks  that  the  resulting  sanitized 
message must be the same for each message and change instructions. One sanitized message 
with a valid signature is then given from the oracle to the adversary. The adversary must not 
be able to decide which input message was used when given the signed but sanitized output. 

 Weak  Blockwise  Non‐Interactive  Public  Accountability.  The  basic  idea  behind  breaking 
accountability is that an adversary, i.e., in the role of a sanitizer, has to be able to make the 
Detect algorithm accuse the signer, even if it was not the accused party that signed the specific 
block. Moreover,  in  this weak accountability notion  foreseen as  suitable  for use of MSS  in 
RERUM, the signer is not considered adversarial, contrary to Brzuska et al. [BPS12]. An example 
for a weakly blockwise non‐interactive publicly accountable SSS is the scheme introduced by 
Brzuska et al. [BPS12]. 

Next follows the detailed cryptographic security definitions containing the mathematical games and 
the proofs from the published paper [MPPS14]. 
 

2.3.9.8 	Cryptographic	Security	Models	and	Properties	of	RSS	and	SSS	

This section contains  the required security properties and models. They are derived  from  [BF++09] 
[GQZ11] [SP++12b], but have been significantly altered. The requirement that adm23 is always correctly 
reconstructible  is  captured within  the  unforgeability  and  immutability  definitions. Note,  following 
[BF++09] [BPS12] [BPS14], an SSS must at least be unforgeable, immutable, accountable and private 
to  be  meaningful.  Hence,  we  assume  that  all  used  SSS  fulfill  these  four  fundamental  security 
requirements; if these requirements are not met, the construction is not considered an SSS and the 
results of this research are not directly applicable. On the other hand, an RSS must be unforgeable and 
(weakly) private to be meaningful [BB++10]. In the following game based security definitions are used, 
so for every property there is a so‐called “experiment” which is a game that the attacker must win with 
non‐negligible probability.  

 

                                                            
23 adm holds the information about admissibly modifiable blocks, in detail think that adm contains the number l 
of blocks in m, as well the indices of the modifiable blocks. 
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Definition of RSS Unforgeability:  

An RSS is said to be unforgeable, if for any efficient (PPT) adversary A the probability that the 
game depicted in Figure 8 below returns 1, is negligible (as a function of λ). 

 

Figure 8: Unforgeability Experiment for RSS 

Definition of SSS Unforgeability:  

An SSS is said to be unforgeable, if for any efficient (PPT) adversary A the probability that the 
game depicted in the Figure 9 below returns 11 is negligible (as a function of λ). 

 

Figure 9: Unforgeability Experiment for SSS 

Next  is the definition of Weak Blockwise Non‐Interactive Public Accountability. The reasons for this 
adversary model are given after the introduction of all required security properties. Note, pksan is the 
sanitizer’s public key and it is fixed for the oracles. For SSS, we also have sanitization and proof oracles 
[BF++09]. 

Definition of SSS Weak Blockwise Non‐Interactive Public Accountability:  

A sanitizable signature scheme SSS is weakly non‐interactive publicly accountable,  

if Proof=⊥, and if for any efficient algorithm A the probability that the experiment given in 
the Figure 10 below returns 1 is negligible (as a function of λλ). 

 

Figure 10: Weak Blockwise Non‐Interactive Public Accountability Experiment for SSS 
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Definition of SSS Standard Privacy: 

An SSS is said to be (standard) private, if for any efficient (PPT) adversary A the probability that 
the game depicted in the Figure 11 below returns 1, is negligibly close to ½ (as a function of λ). 

 

Figure 11: Standard Privacy Experiment for SSS 

 

The  aforementioned  privacy  definition  from  [BF++09]  only  considers  outsiders  as  adversarial. 
However, RERUM would also require that even insiders, i.e., sanitizers, are not able to win the game. 
Note, the signature generation key sksan is not generated by the adversary, but by the sanitizer, only 
known to it. The need for this alteration is hopefully clearer after the next definitions. For the definition 
of strong privacy, the basic idea remains the same: no one should be able to gain any knowledge about 
sanitized parts without having access to them, with one exception: the adversary is given the secret 
sanitizing key sksan of  the  sanitizer. This notion extends  the definition of  standard privacy  to also 
account for parties knowing the secret sanitizer key. In a sense, this definition captures some form of 
“forward‐security”. Examples  for strongly private SSS are  the schemes  introduced by Brzuska et al. 
[BF++09b] [BP12] [BPS14], as their schemes are perfectly private. As the adversary now knows sksan, 
it can trivially simulate the sanitization oracle itself. 

Definition of SSS Strong Privacy: 

An SSS is said to be strongly private, if for any efficient (PPT) adversary A the probability that 
the game depicted in Figure 12 below returns 1, is negligibly close to ½ (as a function of λ). 

 

Figure 12: Strong Privacy Experiment for SSS 
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In a weakly private RSS, a third party can derive which parts of a message have been redacted without 

gathering more information, as redacted blocks are replaced with ☐, which is visible. The basic idea 
is that the oracle either signs or sanitizes the first message (m0) or the second (m1). As before, the 
resulting redacted message m’ must be the same for both inputs, with one additional exception: the 

length of both inputs must be the same, while ☐ is considered part of the message. For strong privacy, 
this constraint  is not required. Note, that Lim et al. define weak privacy  in a different manner: they 
prohibit  access  to  the  signing  oracle  [LLP12].  Our  definition  allows  for  such  adaptive  queries. 
Summarized, weak privacy only makes statements about blocks, not the complete message. See [KB08] 
for possible attacks. Weakly private schemes, following above definition, are, e.g., [HH++08] [KB08]. In 

their schemes, the adversary is able to pinpoint the indices of the redacted blocks, as ☐ is visible. 

Definition of RSS Weak Privacy: 

An RSS is said to be weakly private, if for any efficient (PPT) adversary A the probability that 
the game depicted in below Figure 13 returns 1, is negligibly close to ½ (as a function of λ). 

 

Figure 13: Weak Privacy Experiment for RSS 

 

The next definition is similar to weak privacy. However, redacted parts are not considered part of the 
message. 

Definition of RSS Strong Privacy: 

An RSS is said to be strongly private, if for any efficient (PPT) adversary A the probability that the game 
depicted in the Figure 14 below returns 1, is negligibly close to ½ (as a function of λ). This is the standard 
definition of privacy found in [BB++10]. 

 

Figure 14: Strong Privacy Experiment for RSS 
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Definition of SSS Immutability: 

A sanitizable signature scheme SSS is immutable, if for any efficient algorithm A the probability 
that  the  experiment  from  the  Figure  15  below  returns  1  is  negligible  (as  a  function  of  λ) 
[BF++09]. 

 

Figure 15: Immutability Experiment for SSS 

 

For weak immutability, an adversary knowing, but not generating, the sanitizer key must only be able 
to sanitize admissible blocks. Hence, once more pksan is fixed and cannot be changed by the adversary. 

Definition of SSS Weak Immutability: 

A sanitizable signature scheme SSS  is weakly  immutable,  if for any efficient algorithm A the 
probability  that  the  experiment  given  in  the  Figure  16  below  returns  1  is  negligible  (as  a 
function of λ). 

Interestingly, weak immutability is enough for the construction to become unforgeable, while for an 
RSS used in the normal way, this definition is obviously not suitable at all due to accountability reasons. 
We omit the security parameter λ for the rest of the section to offer an increased readability. 

 

Figure 16: Experiment for SSS weak immutability 

 

2.3.9.8.1 Implications	and	Separations	of	the	Cryptographic	Properties.	

Theorem 1: There exists an RSS, which is only weakly private. 

Proof: For a proof see for example in [HH++08] [IIKO11] [IK++09] [LLP12]. 

Theorem 2: Every SSS which is immutable, is also weakly immutable. 

Proof: Trivially implied: A generates the sanitizer key pair honestly. 
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Theorem 3: There exists an SSS, which is private, but not strongly private. 

Proof:  The  proof  is  done  by  modifying  an  arbitrary  existing  strongly  private  SSS.  Let 
SSS=(KGensig,KGensan,Sign,Sanit,Verify,Proof,Judge) be an arbitrary private SSS. Next the private SSS is 
altered into SSS’ =(KGen’sig,KGen’san,Sign’,Sanit’,Verify’,Proof’,Judge’) as follows: 

 KGen’sig := KGensig 

 KGen’san := KGensan, while an additional key pair for a IND‐CCA2‐secure encryption scheme ENC 
is generated. 

 Sign’ is the same as Sign, but it appends the encryption e of a digest of original message to the 
final signature, i.e., σ`=( σ,e), where e  ENC(pksan, H(m)) and H() some cryptographic hash‐
function. 

 Sanit’  is  the  same as Sanit, while  it  first  removes  the encrypted digest  from  the  signature, 
appending it to the resulting signature. 

 Verifiy’  , Proof’ and  Judge’ work  the same as  their original counterparts, but  removing  the 
trailing e from the signature before proceeding as the originals. 

Clearly, a sanitizer holding the corresponding secret key for ENC, can distinguish between messages 
generated by the signer and the sanitizer using the encrypted information contained in e within the 
signature σ’=(σ,e). Without knowledge of the encryption key, which is part of sksan, this information 
remains hidden due to the IND‐CCA2 encryption. 

 

2.3.9.8.2 Definition	of	a	Secure	RSS	and	a	Secure	SSS.	

Especially  note  that  accountability,  as  defined  for  SSS  in  [BF++09], will  be  researched  as  part  of 
RERUM’s work plan in the near future and can be found in deliverable D3.2. This is because Redact is 
a public algorithm. Hence, no secret sanitizer key(s) are required for redactions. To circumvent this 
inconsistency, this research suggests utilize a standard SSS and let the signer generate the sanitizer key 
sksan, attaching it to the public key of the signer. This also explains why pksan is fixed in the security 
model. If any alteration without sksan is possible, the underlying SSS would obviously be forgeable. As 
previously it was defined that this would mean that this SSS is non‐secure this case is omitted. Hence, 
the secret sksan becomes public knowledge and can be used by every party. This is the reason why the 
adversary only knows sksig but cannot generate it. These at first sight very unnatural, restrictions are 
required  to  stay  consistent with  the  standard  security model of  SSS  that have been  formalized  in 
[BF++09] by Brzuska et al. This security model  is very common and well established  in the research 
community and the current body of work. Hence, the urge to stay consistent and compatible with this 
important  security model  for  SSS. Moreover,  the  signer  is generally not  considered an adversarial 
entity in RSS [BB++10]. If other notions or adversary models are used, the results may obviously differ.  

In  the  following  sections, we  show  that any SSS achieving only  standard privacy,  is not enough  to 
construct a weakly private RSS and additional impossibility results. 

2.3.9.8.3 Generic	Transformation	

This  section  presents  the  generic  transform.  In  particular,  a  generic  algorithm  is  provided  that 
transforms any weakly  immutable,  strongly private, and weakly blockwise non‐interactive publicly 
accountable SSS into an unforgeable and weakly private RSS. 

The basic idea of the transform is that every party, including the signer, is allowed to alter all given 

blocks. The verification procedure accepts sanitized blocks, if the altered blocks are ☐. ☐ is treated 



Deliverable D3.1  RERUM FP7‐ICT‐609094 

© RERUM consortium members 2015  Page 53 of (160)  

as a redacted block. Hence, redaction is altering a given block to a special symbol. As it was defined 

that an SSS only allows for strings m[i] ∈ {0,1}∗, we need to define ☐:= and m[i]0, if m[i]=  and 

m[i]m[i]+1 else to codify the additional symbol ☐. Here,  expresses the empty string. Hence, we 
remain  in the model defined. Moreover, this  is where weak blockwise non‐public  interactive public 
accountability comes in: the changes to each block need to be detectable to allow for a meaningful 

result, as an SSS allows for arbitrary alterations. As ☐ is still visible, the resulting scheme is only weakly 
private, as statements about m can be made. This contradicts our definition of strong privacy for RSS. 
Moreover, as an RSS allows every party to redact blocks, it is obvious that sksan must be known to every 
party, including the signer. Therefore, we need a strongly private SSS to achieve our definition of weak 
privacy for the RSS, the proof follows after the construction. 

Let  SSS=(KGensig,KGensan,Sign,Sanit,Verify,Proof,Judge,Detect)  be  a  secure  SSS.  Define 
RSS=(KGen,Sign,Redact,Verify) as follows: 

 

Key Generation:  

Algorithm KeyGen generates on  input of the security parameter λ, a key pair (pksig, sksig) ← 
SSS.KeyGensig(1λ ) of the SSS and also a sanitizer key pair (pksan, sksan) ← SSS.KeyGensan(1λ ). It 
returns (pk,sk) = ((pksig, pksan, sksan), sksig). Where pk=(pksig, pksan, sksan) is considered the public 
key. 

 

Signing:  

Algorithm  RSS.Sign  on  input m ∈  {0,1}∗ ,  sk,  pk  sets  ADM  =  (1,…l)  and  computes  σ  ← 
SSS.Sign(1λ, m, sksig, pksan, ADM). It outputs: (m, σ).   

Redacting:  

Algorithm RSS.Redact on input message m, modification instructions mod, a signature σ, keys 
pk=(pksig, pksan, sksan), first checks if σ is a valid signature for m under the given public keys using 

RSS.Verify.  If not,  it stops outputting ⊥٣. Afterwards,  it sets mod’= {(i, ☐) |  i ∈ mod}.  In 

particular, it generates a modification description for the SSS which sets block with index i ∈ 
mod to ☐. Finally, it outputs (m’,σ’) ← SSS.Sanit(1λ, m, MOD’, σ, pksig, sksan). 

 

Verification:  

Algorithm RSS.Verify on input a message m ∈ {0,1}∗ , a signature σ and pk first checks that 
ADM = (1,…l) and that σ is a valid signature for m under the given public keys using SSS.Verify. 
If not, it returns false. Afterwards, for each i for which SSS.Detect(1λ, m,MOD’, σs, pksig, pksan ,i) 

returns San, it checks that m[i] = ☐. If not, it returns false. Else, it returns true. One may also 
check, if sksan is correct and that all m[i] are sanitizable, if required. 

 

Theorem 4: The above Generic Transformation Construction is Secure 

If  the utilized SSS  is weakly blockwise non‐interactive publicly accountable, weakly  immutable and 
strongly private, the resulting RSS is weakly private, but not strongly, and unforgeable. 

Proof: Proving this requires to show that the resulting RSS is unforgeable and weakly private, but not 
strongly private. 

 



RERUM FP7‐ICT‐609094  Deliverable D3.1 

Page 54 of (160)   © RERUM consortium members 2015 

Each property is proven on its own. 

• Unforgeability. Let A be an algorithm breaking the unforgeability of the resulting RSS. We 
can then construct an algorithm B which breaks the weak blockwise non‐interactive public 
accountability of the utilized SSS. To do so, B simulates A’s environment  in the following 
way: 

1. B receives pksan, sksan, pksig and forwards them to A 

2. B forwards every query to its own signing oracle 

3. Eventually, A outputs a tuple (m*,σ*)  

4. If (m*,σ*) does not verify or is trivial, abort 

5. B outputs (m*,σ*) 

  m cannot be derived from any queried message, with the exception of m[i] = ☐ for any index i. 

Hence,  i : m[i]  ☐, which has not been signed by the signer. The accepting verification requires 
that  Sig=Detect(1λ,m*,σ*,pksig,pksan).  Therefore,  (m*,σ*)  breaks  the  weak  blockwise  non‐
interactive publicly accountability. The success probability of B equals the one of A. 

• Weak Privacy. To show that our scheme is weakly private, we only need to show that an 
adversary A cannot derive information about the prior content of a contained block m[i], as 

☐ is considered part of the resulting message m’ and all other modifications result  in a 
forgeable RSS. Let A be winning the weak privacy game. We can then construct an adversary 
B which breaks the strong privacy game in the following way: 

6. BB receives pksan, sksan, pksig and forwards them to A  

7. B forwards every query to its own oracles 

8. Eventually, A outputs its guess b* 

  B outputs b* as  its own guess. The oracle requires that mod1(m1) = mod2(m2), disregarding ☐ 
Note, the messages are the same. Hence, the success probability of B  is the same as A’s. This 
proves the theorem. 

• No Strong Privacy. Due to the above, we already know that our scheme is weakly private. 
Hence, it remains to show that it is not strongly private. As a redaction leaves a visible special 

symbol,  i.e., ☐,  an  adversary  can win  the  strong  privacy  game  in  the  following way: 
Generate two messages m0 and m1, where m1=(m0,1), so there is one additional part in m1. 
Hence, they differ in length such that l0 < l1, while m0 is a prefix of m1. Afterwards, it requests 
that the only different part m1[l1] is redacted, i.e., mod1 = (l1) and mod0 = (). Hence, if the 

oracle chooses b=0, it will output m2=m0 and for b=1, m2 = (m1, ☐). Hence, the adversary 

wins the game, as (m1, ☐) is easily detectable to be different from m0. 

As RSS allow for removing every block, we require that adm= (1,…,l). This rules out cases where a signer 
prohibits alterations of blocks. This  constraint  can easily be  transformed  into  the useful notion of 
consecutive disclosure control [MHI06] [SP++12]. 

 

2.3.9.8.4 Requirements	to	Transform	a	SSS	into	a	RSS	

In  this  section,  it  is  shown  that  standard private  SSS  are not enough  to build weakly private RSS. 
Moreover, it is proven that weak blockwise non‐interactive public accountability is required to build 
an unforgeable RSS. To formally express these intuitive goals, we need the following Theorems: 
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Theorem 5: Any non‐strongly private SSS results in a non‐weakly private RSS.  

If the transformed SSS is not strongly private, the resulting RSS is not weakly private. 

Proof: Let A be an adversary winning  the strong privacy game as defined previously. Then one can 
construct an adversary B, which wins the weak privacy game as defined previously, using A as a black‐
box: 

2. B receives the following keys from the challenger: pksan, sksan, pksig and forwards them to A 

3. B simulates the signing oracle using the oracle provided 

4. Eventually, A returns its guess b* 

5. B outputs b* as its own guess 

Following the definitions, the success probability of B equals the one of A. This proves the theorem. 

 

Theorem  6: No  Transform  can  Result  in  a  Strongly  Private  RSS.  There  exists  no  algorithm which 
transforms a secure SSS into a strongly private RSS. 

Proof: Once again, every meaningful SSS must be immutable, which implies weak immutability due to 
Theorem 2. Hence, no need to make any statements about schemes not weakly immutable. It remains 
to show that any transform T achieving this property uses a SSS’ which is not weakly immutable. Let 
RSS’ denote the resulting RSS. One can then derive an algorithm which uses RSS’ to break the weak 
immutability requirement of the underlying SSS in the following way: 

1. The challenger generates the two key pairs of the SSS. It passes all keys but sksig to A 

2. A transforms the SSS into RSS’ given the transform T 

3. A calls the oracle SSS.Sign with a message m=(1,2)  

4. A calls RSS’.Redact with mod= (1) 

5. If the resulting signature σ does not verify, abort 

6. AA outputs (m’, σSSS ) of the underlying SSS 

 

As lm  lmod(m) , meaning that the length is different, the tuple with the modified m, denoted as (mod(m), 
σSSS) breaks the weak  immutability requirement of the SSS. Moreover, as hiding redacted parts of a 
message is essential for strong privacy, no algorithm exists, which transforms a weakly immutable SSS 
into a strongly private RSS, as adm needs to be correctly recoverable. This proves the theorem. This 
concrete example is possible, as only required behaviour was used. 

 

Theorem 7: Weak Blockwise Non‐Interactive Public Accountability is required for any Transform T. For 
any  transformation algorithm T,  the utilized SSS must be weakly blockwise non‐interactive publicly 
accountable to result in an unforgeable RSS. 

Proof: Let RSS’ be the resulting RSS from the given SSS. Perform the following steps to show that the 
used  SSS  is  not weakly  blockwise  non‐interactive  publicly  accountable.  In  particular,  let  A  be  an 
adversary winning  the unforgeability game, which  is used by B  to break  the weak blockwise non‐
interactive public accountability of the used SSS. 
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1. The challenger generates the two key pairs of the SSS. It passes all keys but sksig to B 

2. B forwards all received keys to A 

3. A transforms the SSS into RSS’ given the transform T 

4. Any calls to the signing oracle by A are answered genuinely by B using its own signing oracle 

5. Eventually, A returns a tuple (m’, σRSS) to B 

6. If the resulting signature does not verify or does not win the unforgeability game, A and 
therefore also B abort 

7. B outputs the underlying message‐signature pair (m’, σSSS’ )  

Following  the definition  (m’,  σSSS’) breaks  the weak blockwise non‐interactive public accountability 
requirement of the SSS, as there exists a block, which has not been signed by the signer, while the 
signer will be accused by Detect. Moreover, the success probabilities are equal. The contrary, i.e., if 
the SSS used  is not weakly blockwise non‐interactive publicly accountable,  the proof  is  similar. To 
achieve the correctness requirements, our accountability definition must hold blockwise. 

 

Theorem 8: No Unforgeable RSS can be transformed into an SSS. There exists no transform T, which 
converts an unforgeable RSS into an unforgeable SSS. 

Proof: Let SSS’ be the resulting SSS. Now perform the following steps to extract a valid forgery of the 
underlying RSS: 

1. The challenger generates a key pair for an RSS. It passes pk to A. 

2. A transforms RSS into SSS’ given the transform T 

3. A calls the oracle RSS.Sign with a message m=(1,2) and simulates SSS’.Sign with adm=(1) 

4. A calls SSS’.Sanit with mod= (1,a), a R {0,1} λ 

5. If the resulting signature does not verify, abort 

6. Output the resulting signature σRSS of the underlying RSS 

As  (a,  2)   span|=(m)  ,  ((a,2),  σRSS  )  is  a  valid  forgery  of  the  underlying  RSS.  Note,  this  concrete 
counterexample is possible, as only required behaviour is used. 

 

2.4 List	of	Key‐Material	needed	in	RERUM		
Different  cryptographic mechanisms  require  different  keys.  As  RERUM  foresees  that  very  diverse 
cryptographic mechanism can be used in the course of the project, it therefore considers a diversity of 
cryptographic key‐material, too. The following tables show potential key‐material that shall be handled 
/  generated  / distributed within RERUM  if  the mechanism  is used.  This  key‐material  list provides 
information about each key, including where possible the foreseen length in bits, which is important 
for the impact on communication when transport keying material and for the storage. 
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2.4.1 Notation	 and	 Description	 of	 Key	Material	 Needed	 and	 Generated	 during	
Credential‐Boot‐Strapping	

 

Notation  for 
Key Material 

Description of Key Material and its use  Potential 
Format and Size 
(indicative) 

JK_RDx_SC The  join  key  is  a  symmetric  key  to  establish  a  first  security 
association between  the new RERUM Device and  the  Security 
Center.  The  key  allows  a  RERUM  Device  to  join  the  RERUM 
network.  

Symmetric 
(128 bit) 

NK_PAN The network key is a symmetric key used for security on layer 2 
(802.15.4). Each IEEE 802.15.4 PAN cluster has its own network 
key which  is  distributed  during  the  credentials  bootstrapping 
process to RERUM Devices and RERUM Gateways. 

Symmetric 
(128 bit) 

K_RDx_SC Each  RERUM  device  gets  during  the  credential  bootstrapping 
procedures a symmetric key to protect  further communication 
with the SC based on DTLS. 

Symmetric 
(128 bit) 

CERT_SC The Security Center’s public key must be installed and marked as 
trusted  on  RERUM  Devices.  This  is  a  public  key  from  an 
asymmetric crypto scheme that serves as the root of trust for the 
flat public key infrastructure (PKI).  

X509 certificate 

2.4.2 	Notation	and	Description	of	Key	Material	Needed	and	Used	during	Network	
Security	Protocols	

Notation  for 
Key Material 

Description of Key Material and its use  Potential 
Format and Size 
(indicative) 

K_RDx_SC Each RERUM device gets during  the credential bootstrapping 
procedures a symmetric key to protect further communication 
with the SC based on DTLS. 

Symmetric  

(128 bit) 

RAW_SC Each RERUM Device gets during  the credential bootstrapping 
procedures a raw public/private key pair in the form of limited 
X509 certificate or in the design specific format.  

X509  certificate 
(limited version) 
or  design 
specific format 

CERT_SC The Security Center’s public key must be installed and marked 
as  trusted  on  RERUM  Devices.  This  is  a  public  key  from  an 
asymmetric crypto scheme that serves as the root of trust for 
the flat public key infrastructure (PKI). 

X509 certificate 

CS-based 
key 
generation 

The key is symmetric and used to encrypt/decrypt information 
at the application layer 

Size can vary 
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2.4.2.1 Notation	and	Description	of	Key	Material	Needed	and	Used	during	Integrity	
and	Origin	Authentication	Keys		

RERUM  further  follows  RFC  4949  that  states  an  association  to  be  established  beforehand  “...  an 
association to exist between the two entities ...” [RFC4949]. In the case of origin authentication RERUM 
needs  the means  to check  the presented  identity. This, so called, security association can be build 
either upon the knowledge of a shared or corresponding token on both sides. 

Notation  for  Key 
Material 

Description of Key Material and its use  Potential  Format 
and  Size 
(indicative) 

MACKEY Using Message Authentication Codes  (MAC) a verifier and 
claimant  both  have  access  to  a  shared  secret;  the 
authentication  protocol  will  make  use  of  symmetric 
encryption  and  decryption  as  cryptographic  primitives 
involving this token as a key. Usable by protocols like HMAC 
[ISO/IEC 9797‐1] 

HMAC_SHA256  is 
256 bit size 

HMAC_SHA512  is 
512 bit size 

IBE_params, 

IBE_masterkey,  

IBE_privkey 

Using Identity based authentication the claimant has access 
to a secret key that corresponds to his ID and every verifier 
has  the  trusted  public  parameters  of  the  TTP,  denoted 
IBE_params.  This  is  called  identity‐based  cryptography 
(IBE) and is in the group of public‐key cryptography. The ID 
is  a  string  representing  the  claimant’s  publicly  known 
identity, like the physical device address or the IP address. 
The authentication protocol  is based on  the  fact  that  the 
verifier can derive the claimant’s public key from the ID and 
the  public  parameter;  this  can  be  facilitated  in  an 
authentication  protocol  based  on  asymmetric  IBE 
encryption  and  IBE  decryption  or  to  run  a  signature 
verification algorithm. The public parameters IBE_params, 
must be trusted and known to the verifier. There also needs 
to  be  a  trusted  third  party  that  is  able  to  issued  the 
IBE_privkey to the entitiy that shall be able to carry out 
private operations, e.g. signing or decrypting, this TTP needs 
to  safeguard  IBE_masterkey.  As  the  IBE_masterkey 
that is held by the TTP can be used to generate the secret 
keys for any arbitrary ID string. 

depends  on  the 
concrete  scheme 
selected 

GPub-Key, 
Memberkeyi, 
GOpeningKey 

 

Group signatures allow  identity based authentication and, 
at the same time, provide k‐anonymity for the signers.  

For verification, the group public key is used. The length of 
the group public key  is not affected by the group size, see 
[CS97].  

The members of the group use their individual member keys 
to generate group signatures of a size between 171 and 200 
Bits. 

The  group  opening  key, which  is  used  to  relink  a  group 
signature  to  a member  key,  is of  the  same  length  as  the 
group public key. It is provided to the Security Center.   

Same size as any 
private 

(Memberkey) 
and public key 

(GPubKey) for 
system entities. 
 
The opening key 
equals the size of 
the group public 
key, see [CS97]. 
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sksan, 
pksan 

Key  pair  (Secret  key  and  Public  key)  belonging  to  and 
identifying the sanitizer in a malleable signature scheme.  

Same size as any 
secret and public 
key for system 
entities. 

CERT_SC, 

sksig, 

pksig 

The Security Center’s key must be pre‐installed and marked 
as  trusted  on  RERUM  Devices  to  identify  messages 
originating  from  the  Security  Center  (SC).  CERT_SC 
contains  (among potentially other  information)  the public 
key  from  an  asymmetric  crypto  scheme  that  is  used  to 
authenticate  the  Security  Center  or  to  send  encrypted 
messages only to the Security Center. Additionally CERT_SC 
serves  as  the  root  of  trust  for  the  flat  public  key 
infrastructure (PKI).  

For  authentication  the  claimant  has  access  to  the  secret 
signature  generation  key  sksig  that  corresponds  to  the 
verifier’s signature verification key pksig; the authentication 
protocol  is  based  on  signature  generation  and  signature 
verification algorithms using the public and secrets parts of 
an  asymmetric  key  as  a  token.  The  claimant’s  public  key 
must be trusted or it must be traceable to a trusted origin, 

like  the CERT_SC. Hence,  this  is  commonly  known  as  a 
public key infrastructure (PKI). 

RERUM assumes this to be ECC based keys, with a security 
of an ECC keysize of at least 256bit. For the X509 encoding 
see RFC 3279, RFC 5480, and RFC 5758. 

a 256‐bit elliptic 
curve needs two 
32‐byte values, 
giving a total key 
size of 64 bytes 

X.509  probably 
has  a  size  in  the 
order  of  of 
around  688 
Bytes24  

IMPL_PK, 
IMPL_PARAMS, 
IMPL_SK, 
IMPL_CERT, 
IMPL_CA_SEC 

Implicit certificates nicely reduce the amount of operations 
necessary to verify a signature and the CA‐issued certificate 
of the public key holder. It does this in a combined operation 
that is less heavy than consecutive checking of the signer’s 
signature on the data and the CA’s signature on the signer’s 
public  key  (e.g.  the  signer’s  certificate).  This  is  shown 
possible  in  ECC,  especially  in  Elliptic  Curve  Qu‐Vanstone 
(ECQV). 

Implicit 
certificates  has 
size  equal  to 
points,  e.g.  in  a 
160  bit  ECQV25, 
the  implicit 
certificate  has 
160 bits  

 
Finally, let us note that the security association can be built upon a proof of knowledge of a token by 
the claimant, without the need to revealing it, using so called zero‐knowledge proofs. RERUM has no 
plans  to  investigate  the  latter  further  in  this  Deliverable;  however,  there  might  be  interesting 
applications in RERUM like scenarios, so these types of protocols are subject to be revisited in D3.2. 
 

                                                            
24 openssl ecparam -genkey -name prime256v1 -out key.pem 

 openssl req -new -key key.pem -out csr.pem providing the standard values 

 openssl req -x509 -days 365 -key key.pem -in csr.pem -out certificate.pem 

 ls –la certificate.pem yields a size of 688 Bytes 

25 Elliptic Curve Qu‐Vanstone (ECQV): one kind of implicit certificates. 
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2.5 Key	Management	in	RERUM		
Keys being used for the authentication of origin must be bound to the entities that they represent, and 
in RFC 4949 there exists a definition of the term system‐entity. 

“system‐entity: A system entity that  is the subject of a public‐key certificate and that  is using, or  is 
permitted and able  to use,  the matching private key only  for purposes other  than signing a digital 
certificate; for example, an entity that is not a Certificate Authority. The subject of a digital certificate 
is created by using a Distinguished Name (DN) which may contain the entity’s identity information.” 
[RFC4949] 

The above definition from [RFC4949] is in very close relation to entity authentication mechanisms that 
builds on certified public‐key, so some form of PKI. While RERUM will not forbid such structures to be 
used, it does not mandate them, nor thinks that they are extremely suitable for resource constrained 
device environment, without adaptation. Hence, this section states the approach of RERUM. 

RFC 4949 points to X509‐public‐key‐certificates; a data structure for holding public keys defined by 
X.509. Currently  in version 3 such an X.509 public‐key certificate contains a sequence of fields, and 
finally a digital signature computed over  that sequence of  fields. Following  [Coo+08]  the minimum 
fields found are:  

 Version 

 Serial number 

 Signature Algorithm 

 Issuer 

 Validity (time period)  

 Subject 

 Subject’s Public Key Information 

 

RERUM will seek to provide a more suitable representation, or reduce fields  in order to reduce the 
sheer size this information needs.  

 

2.5.1 Certificate	Chain	Verification	Overhead	Reduced	by	Flat	Hierarchy		

Basing the entity authentication on a Public Key Infrastructure (PKI) implies that the verifier needs to 
verify  and  validate  public‐key‐certificates, not only  the  certificate of  the other  entity,  but  also  all 
relevant certificates  if a chain  is provided to establish trust  to the entity  that  is authenticated. The 
steps are the following: 

1. Detect / extract /obtain the public‐key‐certificate of the claimant 

2. Detect / extract /obtain the certificate chain that connects the claimant’s public‐key‐certificate 
to a trusted entity that the verifier trust 

3. Cryptographic Verification of the claimant’s public‐key‐certificate including its certificate chain 

4. Validation  of  the  claimant’s  public‐key‐certificate  involving  the  collection  of  signed  status 
information of a public‐key‐certificate from the certificate authority. 
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If you take the example of verifying an X509‐public‐key‐certificate then you must have a trusted public 
key of the certificates issuer in order to generate useful output from the execution of cryptographic 
algorithms. 

If public‐key‐certificates shall be used to control who can still be participating in the RERUM application 
and who shall not, then the public‐key‐certificates can be marked as valid only for some time, or even 
before  that  pre‐defined  time marked  as  invalid.  For  example  if  a  claimant’s  key  pair  has  been 
compromised or if the device holding this key has been sold or stolen. This process of invalidating a 
certificate before its expiry date is called certificate revocation [AL11]. If such a revocation happens, 
step 4, the process to retrieve the current status  information, which would contain the  information 
about this revocation from a certificate authority, also called certificate validation, is important. 

The use of certificate chains is done in order to deduce some trust from the hierarchical structure used 
in a Public Key Infrastructure. The idea is that a number of initially trusted entities (trust anchors, or 
root of  trust) are  implanted during  setup by  the  security administrator, e.g. during  the  credential 
bootstrapping this is the key of the Security Center (SC) denoted by CERT_SC. Trust here is meant as 
the trust that is managed/transported by the means of a Public Key Infrastructure [Jø13] as meaning: 
Trust  is a directional relationship between two parties that can be called  the relying party and  the 
trusted party. 

To deduce this trust, several so‐called Trust Models can be used. Different kinds of trust models have 
been  developed  and  described  with  their  corresponding  trust  relationships  [Jø13] 
[MC96][SM95][JP04][Woe06]: 

The overhead for this checking and decoding increases linearly with each intermediate layer for each 
certificate in the certificate chain, the trust model’s security properties must be fulfilled. This results 
in the need to carry out step 3 the cryptographic verification, but also the validation. Thus, the verifier 
needs  to  verify a  certificate as  valid at  verification  time  t.  IETF  in RFC 1421 – 1424 defined  three 
common trust models, further discussion can be found in [Lin93][Ken93][Bal93][Kal93]: 

‐ Shell Trust Model: At verification time all certificates in the chain need to be valid  

‐ Modified Shell Trust Model: At  signature generation  time, which  is before  the verification, all 
certificates in the chain need to be valid 

‐ Certificate Chain Trust Model: Following [Woe06] this is the weakest; each certificate in the path 
was valid at the moment of use 

 

Generally, the overhead for each certificate is generated by execution of the cryptographic signature 
verify algorithm once to gain Cryptographic Verification (step 3). However, if required the certificate 
additionally  needs  to  be  checked  for  the  validity  (step  4).  This  might  again  need  additional 
cryptographically secured communication. Might, because it may be enough to just checking validity 
periods against the current time. But if getting a notion of current time on a constrained device might 
require getting it from a trusted source, and as such requires secure communication. Another reason 
for additional communication overhead involving cryptographic security protection is when requesting 
the current status, i.e. revoked or not revoked, from a trusted third party. 

To get the current time on the RD might be required by other functions of RERUM, in case of this re‐
usability the extra effort might be well spent [PV11], but  it must be noted that to get current time 
securely is not an easy task, and comes with additional costs. 
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Under the supervision of Henrich C. Pöhls, Markus Doering listed in his M.Sc. thesis26 all the steps that 
need to be carried out when validating and verifying each hierarchical level in a certificate chain. As 
this overhead is linear with the number of certificates in that chain, which corresponds to the level of 
hierarchies in the PKI, the overhead can be reduced when the hierarchy is flattened.  

RERUM proposes to use the only existing separation of duties to build a flat PKI hierarchy: RERUM 
Gateway is the root of trust and Certificate issuer and RERUM Devices under this Gateway get their 
public‐keys all certified by the Gateway. 

RERUM wants to build on the cryptographic primitives best suited. We have identified that ECC based 
crypto  is promising  in  terms of  speed and  can be  implemented  to  run  in a  variety of  constrained 
devices [LN08, SO++08, HS13]. To reduce the overhead in key management and certificate verifications 
we use the flat PKI, enabling us to more or less directly save the ECC point values of the trusted keys 
inside the RERUM Device, as there  is foreseeable only a  limited number of those keys needed, e.g. 
CERT_SC. Also, RERUM plans to facilitate the internal workings of ECC by using implicit certificates or 
curves where one only needs one point, instead of two to become even more efficient.   

In Figure 17 below you can see how RERUM could use implicit certificates to distribute the keys for a 
later lean device to device authentication based on implicit certificates. After this has been done by all 
devices, each device could authenticate all other devices that are below the same RERUM Gateway. 
The RERUM Gateway (RG) acts as the Local CA (LCA). The Security Center (SC) acts as the global CA 
(GCA) that is in the hierarchy above the local CAs. 

                                                            
26 Steps and Challenges in Certificate based Entity Authentication ‐ Illustrated with Practical Implementations of 
TLS by Markus Doering in fullfilment of his M.Sc. degree at the UNI PASSAU 
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Figure 17: Use of Implicit Certificates in a flow of messages to allow obtaining key material for a later 
Device to Device authentication 

RD ID=U RD ID=VLCA on RG 
ID=G1

GCA

has obtained via bootstrapping and 
stored locally in 'protected' flash 
(in node-capture-resilient clone-

resilient storage):
pkGCA   (SHOULD* be only written 
by bootstrapping process and re-
keying process)
skU           (SHOULD* be bound to 
hardware device)

runs credential 
bootstrapping

has
description-of-deviceU 

*out-of-scope in RERUM

search and join
 guest-RPL- instance

has
ability to send messages to LCA

Certificate Request

Stores K 
Certificate Request Generation
         generate localidU 
              (could be {U,N}_pkGCA or 
               pseudonym or IPv6-adress or MAC)
         generate r_U
         R_U = r_U * G
         Generate N_U
Generate MAC= | R_U, localidU, N_U |_K

localidU, R_U, N_U, MAC

Requestor hello

(description-of-deviceU)?
list-of-ciphersuites, 
{U,N}_pkGCA

CA hello

  | QLCA, {U,N}_pkGCA |_pkGCA,
  {K}_pkU, selected-ciphersuites

Verify Identity Request

has
pkGCA
(in the trusted credential store)

{U,N}_pkGCA

Verify Identity Answer

  |QLCA|_pkGCA, {U,N}_pkGCA, 
{K}_pkU, K

has obtained via bootstrapping
pkU

runs credential 
bootstrapping

checks validity of U
e.g. looks up U in DB

has
QLCA

Encrypt Identifier U for GCA
Compile list-of-ciphersuites

stores K
selects cipher-suite from 

list-of-ciophersuites

Verify MAC
Prepare Certificate
     r_CA ...... stuff from paper
     Cert_U = R_U + r_CA * G
     e = H (Cert_U)
     s = e*r_CA+d_CA (mod n)
Generate N_CA
Calculate 
    MAC'= | Cert_U, s, N_CA |_K

Compute implicit certificate
          QU = e * Cert_U + QLCA

Certificate

Cert_U, s, N_CA, MAC' 

Verify MAC
Compute implicit certificate     
     e = H (Cert_U)
     d_U = e*r_U + s (mod n)
     QU = d_U * G

Client Finished

Server Finished



RERUM FP7‐ICT‐609094  Deliverable D3.1 

Page 64 of (160)   © RERUM consortium members 2015 

 

2.5.2 Trusted	Credential	Store		

According to D2.3, the trusted credential store ‘is responsible for storing the credentials in a secure 
and trusted way. In this respect, the store restricts unauthorized read or write access to credentials 
stored  in  it.  Regarding  read  and  write  access  this means  that  RERUM  assumes  to  store  secret 
credentials, like cryptographic tokens and keys in this store and assumes that the access to those is 
restricted to only the component that is authorized to access the credential. With respect to only write 
access, the Trusted Credential Store allows providing a public, but read‐only, list of public keys that are 
associated with another component or service and that this relation is marked as trusted. This would 
allow  storing a public‐key certificate of  the application  server, a certification authority, or another 
trusted entity here’. 

RERUM differentiates between those RDs capable of running a Java Virtual Machine (JVM) and those 
that not. RDs that cannot run or do not want to run a JVM due to hardware constraints, such as the 
Z1, provide their own custom trusted credential store. Besides, they are custom implementations, their 
design is out of the scope of this document. 

Regarding those RDs capable of running a JVM, which normally act as servers hosting middleware or 
security components, such as the gateway instance or the PRRS server, the selected trusted credential 
store is the java class java.security.CertStore for direct java invocation or, alternatively, its command 
line counterpart keytool. Both of  them support PKCS#12 certificates,  the ability  to work with both 
symmetric and asymmetric keys and they also support protecting the keys themselves via a password. 
Complete  documentation  of  the  keytool  tool  is  accessible  at 
http://docs.oracle.com/javase/8/docs/technotes/tools/#security,  the  technical  documentation  for 
the java.security.CertStore class can be found at the jce documentation at oracle.com27 

There is, however, an important note regarding the use of the new encrypting mechanisms of RERUM. 
No matter what mechanism  is used  for cyphering or  signing any object,  it  is necessary a  code  for 
implementing them, and the new signing mechanisms for RERUM are not an exception. For this reason, 
in order  to use the new keys  in RERUM,  it  is necessary to develop the code  for using  them.  In  the 
concrete  case of  the  java  classes  for  cryptography,  it  is possible  to use  existing  classes,  including 
CertStore, for combining them with the new types of keys providing only the code to deal with the 
new key without having to rewrite the whole communication libraries. This, in practice, means that for 
any application trying to use CertStore to hold the new keys, it is necessary to write a security provider 
able to deal with that code. Complete documentation about how to write a security provider for java 
is available the Oracle guide to implement a security provider28. 

 

 

                                                            
27 Java KeyStore Class: http://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html  

28 Java Security Provider: 
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/HowToImplAProvider.html 
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3 Secure	Communication		
In the following RERUM will explain four different, but freely combinable, mechanisms to secure the 
communication, which RERUM  in  this deliverable will  call  profiles.  The  communication  security  in 
RERUM is logically grouped around security associations (SAs) between communicating entities. At the 
end of each of the four profiles this chapter states between which entities the profile can be used to 
establish  secure  communication,  and  which  protection  goal  (integrity,  authentication  and 
confidentiality) the profile accomplishes. 

We recall below, the Fig. 39 from Deliverable D2.3 on RERUM’s architecture (see Figure 18).  

 

Figure 18: Security components in the communication layer from D2.3 

The profiles described in this chapter will be able to provide the functionalities of: encryption, integrity 
checking,  authentication  and  authorization.  The  profiles  are  designed  to  be  flexible  enough  to 
encompass future RERUM developments in the direction of reputation (Deliverable D3.3) and privacy 
(Deliverable D3.2).  

 

3.1 Profile	DTLS		

3.1.1 Introduction,	Motivation	and	Link	to	User	Requirements	

Among  others,  the main  factors  of  successful  future  Smart  Cites  lays  in  secure  and  reliable  IoT 
networks. Considering the complexity of task, both these requirements are not easy to fulfil in practice 
by one  general  and  elegant  solution.  Focussing only on  security  issue,  there  exist many different 
solutions  to  address  main  security  requirements  such  as  confidentiality,  integrity  and  origin 
authentication. In this section we introduce the first of our security profiles, namely DTLS profile, in 
which all these three requirements are met, especially device‐to‐device authentication.  

DTLS is a well‐known security protocol that recently received significant attention in IoT community. 
One of the major factors of this attention lays in maturity of the said protocol, meaning that DTLS has 
been widely used by non‐IoT world. This suggests that  in case of successful adoption  in IoT, e.g.,  in 
RERUM Devices, DTLS might be used not only as secure communication protocol between RERUM 
Devices, but in much more interoperable way, i.e., between RERUM Devices and a cloud server, which 
supports the DTLS protocol. Although DTLS seems to be theoretically applicable, the real issues come 
with  a  practical  deployment  in  constrained  environments.  Security  schemes,  which  are  key 
components  of  the  said  protocol,  demand  (especially  those  public‐key  based)  significant 
computational power  in order  to be efficient. This efficiency usually depends on  selected  security 
schemes  and  underlying  platform.  Such  efficiency,  i.e., memory  requirements,  speed  and  power 
consumption is a subject of future investigation in D5.1.  
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Described  DTLS  profile  is  applicable  to  any  devices  in  RERUM  architecture  that  requires  secure 
communication (either end‐to‐end or hop‐by‐hop) at the transport layer level. The profile can be used 
transparently by any end applications, which themselves resident in the application layer of OSI model. 
This transparent feature implies that DTLS profile could be applied to all four presented in D2.1 Use‐
Case scenarios and also directly addresses the following User Requirements:  

o UR‐7: The user needs to protect his measurements from malicious users; 

o UR‐25: User requires open solutions for authentication between devices, ensuring the integrity 
of their data as well as the confidentiality. 

 

That is, user requires his messages to not be forged by malicious users and user requires open solutions 
for authentication between devices, ensuring the integrity of their data as well as the confidentiality. 

 

3.1.2 DTLS	Protocol	

Transport  Layer  Security  (TLS)  [DR08]  is  a  cryptographic  protocol,  designed  to  allow  a  secure 
communication over the Internet between two parties (usually referenced as peers or as a client and 
a server).  In peer‐to‐peer networks the client  is a peer that  initialises communication, whereas the 
server is the peer that responds on the client initialisation. TLS protocol is widely used by many popular 
applications such as web browsers, e‐mails or voice‐over‐IPs. It belongs to a class of TCP/IP protocols 
and residents in the session and presentation layers in the standard OSI model. TLS itself consists of 
two  layers,  namely  TLS  Record  Protocol  (residents  in OSI  presentation  layer)  and  TLS Handshake 
Protocol (residents in OSI session layer). The former is deployed to encapsulate higher‐level protocols 
from OSI application layer, providing secure and reliable connection. The latter is used to authenticate 
client and  server with each other  (or optionally only one peer), negotiate  cryptographic  keys and 
algorithms used  later  in TLS Record Protocol. Both TLS Record and Handshake Protocols run over a 
reliable TCP channel and are  transparent  for higher‐level protocols. The reliability  feature of a TCP 
channel means that TLS protocol might assume that no single package is lost and all are delivered in 
the correct order, which is essential for some cryptographic algorithms mode of operations.  

Since TLS requires reliable TCP channel to communicate,  it  is not suitable for networking protocols 
based on unreliable communication such as User Datagram Protocol (UDP) and to address this issue a 
new Datagram Transport Layer Security (DTLS) protocol has been introduced [MR04]. In general, DTLS 
is a modified version of TLS designed to handle issues associated with unreliable connection, i.e., DTLS 
provides a mechanism that allows packet retransmissions and reordering whenever it is required. DTLS 
reassembles  also most  of  the  TLS  features  and  design  choices  and  provides  equivalent  security 
guarantees. Due  to  lower packet header overheads, code  footprint and RAM  requirements UDP  is 
considered as a better option for Wireless Sensor Networks (WSN) than TCP. This  implies DTLS as a 
potentially  better  and  more  suitable  choice  for  a  cryptographic  protocol  in  WSN.  Taking  into 
consideration those arguments, Internet Engineering Task Force29 (IETF) standardisation community 
appointed the DTLS In Consternated Environments (DICE) group [DTLS15] to investigate applicability 
of the mentioned standard to constrained devices. The main tasks of the group are ``to define DTLS 
profile  suitable  for  Internet of Things'',  ''to define how DTLS  record  layer  can be used  to  transmit 
multicast  messages  securely''  and  ``investigate  practical  issues  around  the  DTLS  handshake  in 
constrained  environments''  [DTLS15].  As mentioned,  DTLS  is  a  transport  layer  protocol  and  it  is 
independent  from application  layer,  thus  is able  to prove  security objectives  such as authenticity, 
integrity  and  confidentiality  to  application  layer  protocols  i.e.,  it might  be  easily  integrate  with 

                                                            
29 IETF is an open standard organisation with a strong focus on developing Internet standards and protocols.  
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emerging  application  layer  protocol  designed  especially  for  constrained  environments,  so‐called 
Constrained Application Protocol (CoAP) [BFSH12].  

 

3.1.3 DTLS	v1.2	Handshake	

As mentioned  in  the  previous  section, DTLS  consist  of  handshake  and  record  protocol.  The main 
purpose of the handshake protocol is to authenticate communication parties, negotiate a cipher suite 
and exchange keys  that are  later used  to protect  traffic data. Focusing only on authentication,  the 
handshake allows three options to be considered: no authentication, unilateral (a client or a server) 
authentication  and  mutual  authentication,  i.e.  both  client  and  server  are  authenticated.  The 
handshake protocol in DTLS is very similar to the TLS handshake, with few significant changes, which 
are adopted to handle unreliable transport protocol. The first important addition is an introduction of 
a stateless cookie, which is exchanged over the first phase of the handshake. Its main purpose is to 
prevent Denial‐of‐Service  (DoS) attacks30. The exact prevention  technique has been adopted  from 
[KS99]. The second difference is a modification of the handshake header in order to support message 
losses and message reorders, whereas as the third main addition, one can mark the introduction of 
retransmit timers in order to support aforementioned massage losses [MR04]. 

 

 

Figure 19: Overview of the handshake protocol 

 

All handshake messages  can be divided on  six groups of messages  (so‐called  flights) between  the 
communication parties (cf. Figure 19); three flights are sent from a client to a server and three from a 
server  to a  client. The  client  initialises  the  first  flight by  sending  the ClientHello message. The 
message contains a 32‐bit random value, used later on to generate shared keys. The server answers 
with the HelloVerifyRequest message (mark on the Figure as the second flight), which contains a 
stateless cookie. After receiving the message from the server, the client (the third flight) retransmits 

                                                            
30 A type of attack where adversary tries to make a target machine or a service unavailable for users.  
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the ClientHello message, which includes the cookie. The server validate client's cookie and has a 
possibility to terminate handshake whenever the validation fails or proceeds with the fourth flight. It 
is worth mentioning, that the DoS prevention mechanisms mitigates possible DoS attacks with spoofed 
IP31 addresses (when the client is not able to retransmits a cookie) but does not prevent DoS from valid 
IP addresses. These three above‐mentioned flights are present only in DTLS and are not present is such 
a form in original TLS protocol. Additionally, in cases where the raw public key mode is considered, the 
third  flight,  i.e.,  the ClientHello message contains extension of ClientCertificateType and 
ServerCertificateType, which indicates what types (raw or X.509 certificates) of public keys are 
going to be used, e.g., both sides can use raw public keys or only one side can use raw keys while other 
can use X.509 certificates.  

The fourth flight starts with the ServerHello message sent by the server and consists of at least two 
messages. The exact number and types of messages is depended on mode of the handshake, i.e., for 
pre‐shared keys this flight consist only ServerHello and ServerHelloDone messages, whereas for 
the raw keys and X.509 certificates additional messages such as Certificate, ServerKeyExchange 
and CertifacateRequest are included. The ServerHello message contains a 32‐bit random value 
and selected cipher suite, which is based on the available cipher suite information received from the 
client. Similarly like 32‐bit value received form the client in the ClientHello message, the random 
value sent by server  is used  in the process of generation of shared keys.  If pre‐shared keys are the 
considered option, the flight is closed with the ServerHelloDone message, whereas for the public‐
key option, the server sends its certificate (included in the Certificate message). In case of the full 
X.509 certificates option, the client (after receiving certificate) can start validating the certificate chain, 
i.e., by using  information provided by  the  certificate. Whenever  certain  types of  cipher  suites are 
considered, i.e., with ECDH key exchange, the server might start generating ephemeral DH public and 
secret  keys.  The  ephemeral DH  public  key  is  then  encapsulated  (together with  the  elliptic  curve 
parameters) and signed using the server's public‐key in the ServerKeyExchange message. 

Then next batch of messages (the fifth flight) is the client replay to the server's fourth flight. The client 
sends  his  certificate  in  Certificate  massage  (if  public‐key  mode  is  considered), 
ClientKeyExchange,  which  contains  the  client's  ephemeral  DH  public‐key  and  the 
CertifcateVerify message, which  contains  the  signed hash of previous message  flights. Upon 
sending  the  CertifcateVerify  message,  both  sides  exchanged  all  necessary  information  to 
calculate  a  secret  session  key.  First,  both  sides  calculate  ECDH  shared  secret  key,  following  by 
calculation using Pseudo‐Random Function, where both sides uses ECDH secret keys and exchanged 
random values. The PRF output is used as a session key to encrypt traffic data. This flight might also 
consist the ChangeCipherSpec message, which indicates that data messages will be protected using 
the newly negotiated cipher suite and keys. The flight is ended with the Finished message, in which 
data  are  encrypted  under negotiated  keys  and  consist of  the hash  value of  all  flights.  The  server 
responses in a similar way with the sixth flight, i.e., by sending the ChangeCipherSpec and Finised 
messages. After the successful handshake, the server and the client are authenticated to each other 
(or only one side depends on the option used) and possesses the shared key (negotiated in case of use 
public keys), which is used to encrypt and authenticate transferred data. 

As mentioned above, the DTLS protocol consists of both secret (a pre‐shared key) and public‐key (raw 
public keys and X.509 certificates) options. All three are described in more details below.  

 

3.1.3.1 Pre‐Shared	Keys	

A pre‐shared key technique applies  to the scenario where secret keys  (symmetric keys) are shared 
between peers before communication is established [ET05]. Following the argumentation of [ET05], 

                                                            
31 An attacker creates an IP packet inserting a trusted host IP as a source address.  
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one can distinguish at least two possible advantages for such scenario. The first one is a possibility to 
mitigate (depending on the cipher suite) a need of public‐key operations, which in general, might be 
very  costly  (computation  time,  bandwidth  etc.)  especially  for  resource‐constrained  devices.  The 
second argument concerns that in some deployments, e.g., where devices might be strictly controlled 
and connections are pre‐defined, the manual configuration of the keys might be much more efficient 
than general  key management  techniques. On  the other hand,  the disadvantage of  this approach 
comes with scalability, i.e., more deployed devices, the harder the key management problem becomes. 
In the worst‐case scenario each peer has to handle a different key for each peer whom  it wants to 
communicate with. This also  increases a key storage cost  issues, which are especially  important  in 
constrained environments. Mandatory cipher suite for pre‐shared keys defined in the DTLS protocol 

standard  is  TLS_PSK_WITH_AES_128_CCM_8,  which  requires  AES‐128  in  CCM32  mode  of 
operation with 8‐octet authentication tag. The standard also assumes a default PRF, which  includes 
HMAC33 that utilise the SHA‐256 hash function.  It  is worth noticing, that the pre‐shared techniques 
without applying DH do not provide Perfect‐Forward Secrecy (PFS), i.e., an attacker is able to decrypt 
old messages if keys are compromised, lack of which makes protocol deployment more vulnerable.  
 

3.1.3.2 Raw	Public	Keys	

A raw public key technique  is the extension to the handshake protocol that has been  introduced  in 
[WT++14]. Similarly to X.509 certificates, it uses a public/secret key par but without a full support of 
X.509 certificates, which in general means that a key pair is generated by a device manufacturer (or 
deployment entity) and installed on a specific device. 

In many DTLS/TLS deployments, a commonly used  is an  in‐band procedure for validating client and 
server public keys. This is performed during a handshake protocol and this X.509‐based procedure uses 
trust  anchors  to  validate mentioned  keys.  In  general  its  complexity might  be  high,  especially  for 
constrained environments. The less complicated variant uses so‐called self‐signed certificates, which 
are also commonly adopted especially in small deployments. In such a case, the certificate distribution 
is  out‐of‐band,  but  generated  certificates  still  uses  full  structure  of  X.509  certificates  with  all 
unnecessary information overheads. Apart from protocol‐based methods for obtaining the client and 
the  server  public  keys  suggested  in  [WT++14],  there  is  also  possibility  to  include  all  necessary 
information in the firmware, i.e., a device is pre‐configured with its public and private keys as well as 
a server address and together with its public key.  

In order to reduce processing and storage overheads and avoid unnecessary overheads, DTLS may use 
the  raw  public  keys  option,  which  contains  only  a  small  subset  of  certificate  structure,  i.e., 
SubjectPublicKeyInfo.  The  certificate  format  still might  be  hold,  i.e.,  exiting ANS.1  format  is 
allowed but the certificate contains very limited information.  

A raw public key option extends ClientHello and ServerHello messages in the handshake with 
ClientCertificateType and ServerCertificateType information leaving the possibility for a 
hybrid solutions, i.e., a client might indicate an use of raw public keys where server might indicate an 
use of the full X.509 certificate method (or vice versa). An authentication of a client and/or a server is 
done by using information carried out in the SubjectPublicKeyInfo field of the reduced certificate 
with  a  use of  an out‐of‐band method.  In  case of  raw public  keys,  a default  cipher  suite  is  set  to 
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, which uses NIST's secp256r1 curve, along with AES‐128 
block cipher in CCM mode and 8‐octet authentication tag. To communicate effective with many peers 
many raw keys are allowed.  

                                                            
32 (Counter with CBC‐MAC), a mode of operation for cryptographic block ciphers 

33  Hash Message  Authentication  Code:  Construction  for  calculating  a message  authentication  code  (MAC) 
involving a cryptographic hash function in combination with a secret key 
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3.1.3.3 X.509	Certificates	

Apart from the raw public key option, DTLS might use a full X.509 certificates (details are in [C08]). This 
is the most common deployment scenario for DTLS/TLS, and assumes use of public key infrastructure 
(e.g., certificate authority) with X.509 certificate specifications. Each device houses a public/secret‐key 
pair, as well as list of the trust anchors, which are used to validate certificates.  

The certificate meta‐data and data are expressed in Abstract Syntax Notation One (ASN.1) format, and 
handles three main sections, namely: certificate data, certificate signature algorithm, and certificate 
signature.  The  certificate  signature  algorithm  holds  a  name  of  algorithm  that  is  being  used  for 
signature, i.e., ECDSA, whereas the certificate signature field holds a signature of whole certificate data 
field.  Further,  the  certificate  data  field  holds  additional  information  such  as  issuer,  validity  of 
certificate, as well as information about extensions (cf. [C08] for specific details). Similarly to raw public 
keys,  this  option must  support TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8  cipher  suite,  i.e., 
NIST's secp256r1 curve and ECDSA signature algorithm.  

Although PKI with X.509 gives great  flexibility, especially across different CA domains,  it  increases 
computation and bandwidth costs. The certificate validation chain procedure is one of the main issues. 
As  another  issue,  it  can  be  objected  the  information  overheads  that  are  needed  to  support  this 
flexibility,  which  increases  the  storage  costs  and  the  computational  costs  for  parsing  the  ASN.1 
structures. The one of the solution of this problem is an aforementioned extension to DTLS to handle 
raw keys, which gives a possible trade‐off between flexibility and associated overheads.  

 

3.1.4 Analysis	of	the	current	state	of	software	implementation	

Currently, DTLS version 1.2  (open source  implementation TinyDTLS34) has been  integrated and  run 
under Contiki on Re‐Mote platform. The version could be configured to support both: pre‐shared keys 
and certificate‐based (no support for X.509, public/secret keys are provided as raw data in software 
code). Both versions run under emulator in Cooja, i.e., a handshake is successfully completed, as well 
as run on the real hardware platform (see Figure 20). Our test platform consists of two Re‐Mote boards 
configured to communicate with each other. The optimization of the ECC‐based version, running on 
the said test platform, is a subject of further development. 
 

 

Figure 20: Prototype of DTLS on Re‐Mote platforms 

 

                                                            
34 http://tinydtls.sourceforge.net 



Deliverable D3.1  RERUM FP7‐ICT‐609094 

© RERUM consortium members 2015  Page 71 of (160)  

3.1.5 Summary	of	Profile	

Layer  Transport 

Security Association provided between    RERUM Device to RERUM Device (e.g. RD1‐to‐‐
RD3 in Figure 2) 

 RERUM Device to RERUM Device – End‐to‐End 
(e.g. RD1‐to‐RD3 via RD2 in Figure 2) 

 RERUM Device to RERUM Gateway (e.g. RD3‐to‐
RGW in Figure 2) 

 RERUM  Device  to  RERUM  Gateway  –  End‐to‐
End  (e.g.  RD3‐to‐RGW  via  RD2  and  RD1  in   
Figure 2) 

 USER to RERUM Gateway (e.g. USER‐to‐RGW in 
Figure 2) 

 USER  to  RERUM  Device  (e.g.  USER‐to‐RD3  in 
Figure 2) 

Provides Confidentiality  Yes  

Provides Integrity  Yes  

Provides Origin Authentication  Yes  

End‐2‐End  Yes 

Hop‐2‐Hop  Yes 

Needed Key Material  K_RDx_SC, RAW_SC, CERT_SC 

 

3.2 Profile	On‐Device‐Signatures	

3.2.1 Introduction,	Motivation	and	Link	to	User	Requirements	

The result of D2.1 showed RERUM,  that users would  like to have the ability  to  identify  if data was 
modified by unauthorized parties or in unauthorized ways. The goal of RERUM is to provide integrity 
on the basis of strong cryptographic primitives. This then becomes a building block to allow secure 
communication and secure authorization. The mechanism for Integrity is part of RERUM’s functional 
component  for  secure  communication  (see  deliverable D2.3).  It must  be  flexible  to  be  used with 
different  signature  schemes.  It  can  be  facilitated  to  protect  the  integrity  and  provide  origin‐
authentication between any two entities for which a security association (SA) exists.  

The on‐device capability of signing and verification described here  is one of  the steps on RERUM’s 
roadmap to fulfil Contribution 6: Implicit Certificate Based Device‐to‐Device Authentication as given in 
deliverable D2.1 (in the latest version). 

In more  detail,  the  on‐device‐signature  profile  is  created  to  fulfil  the  following  requirements  in 
deliverable D2.2: 

 Req. 2.6‐1 Energy‐efficient cryptographic primitives; 
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 Req. 2.6‐2 Integrity protection of SL‐I data in transit; 

 Req. 2.6‐3 Integrity protection of SL‐I data at rest; 

 Req. 2.6‐4 Authorised modification of integrity protected data; 

 Req. 2.6‐5 Detection of authorised modification of integrity protected data 
    if the underlying signature scheme allows it (i.e. malleable signatures); 

 Req. 2.6‐8 Device authentication; 

 Req. 2.6‐9 User authentication and 

 Req. 2.6‐18 Accountability 
    if the underlying signature scheme and signature generation key can be used  
    to identify the device and if the scheme gives accountability 

As an example take the over‐the‐air programming capability of RERUM Devices. It is not secure enough 
to just send the update to the RDs and have them install it and then reboot: an attacker could send 
malicious  software  updates.  To  counter  this  attack,  the  origin  of  the  software  update must  be 
authenticated by  the  receiving RD  and  the  software  received  shall have not been modified  in  an 
unauthorized way. The capability to verify signatures on the RD allows RERUM to protect software 
updates by  a  signature. Only when  the  signature  has been  created  by  an  entity with  a  signature 
generation key for which the verifying RD has a trusted verification key, the update will be installed.  

This is where on‐device signatures help to secure the communication across the complete IoT layers, 
if needed. On device signatures secure the integrity of the signed data end‐to‐end between devices, 
or between MW and devices or even from the device all the way to the applications outside RERUM. 

The mechanisms described in this section enhance the capabilities on the RERUM Device. While this 
focus is important, please note this means that the signature created by a RD can be verified wherever 
it is still present in functional components of “upper” architectural layers. Also vice versa, a signature 
created by a component for which the RD has a trusted signature verification key can be verified as 
the originator of that message. Hence, the mechanisms described in this section will be found at many 
places inside the RERUM architecture, as seen in Figure 21. The profile can be used as indicated by the 
overlaid arrows allowing integrity protected communication. 
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Figure 21: RERUM architecture (Fig. 29 from deliverable D2.3) with On‐Device Signatures 

Following the technical requirements for the capability to allow integrity protection in an end‐to‐end 
fashion  all  the way  to  the  devices,  RERUM  uses  as  the  integrity mechanisms  ECC  signatures  on 
messages,  such  that  h‐data,  e.g.  the  actual  application  level  content  such  as  sensed  values  or 
commands can be signed and verified on the RERUM Device, regardless of the underlying transport 
layer  protections.  That means  that  as  this  allows  the  signature  to  travel with  the message,  the 
message’s integrity can be verified whenever the corresponding public verification key is known by the 
endpoint. This end‐point can be on a RERUM Device or on the “Internet”. This signature is applied on 
the h‐data. H‐data is application level data, e.g. the sensed value. Hence this signature mechanism’s 
protection  is  compatible  with  all  other  Profiles  (e.g.  DTLS)  and  also  when  other  transport  layer 
mechanisms  on  the  Internet  are  facilitated  (e.g.  TLS,  IPsec).  Note  that  the  security  of  Internet 
Communication is not in RERUM’s scope. However, the integrity protection and origin authentication 
is achieved standalone by this profile. 

Further  note,  that  the  actual  signature  algorithm  and  the  used  key material  steer  the  protection 
properties achieved by the signature over the h‐data.  

This also allows this profile to facilitate any of the previously described signature scheme:  

 Classical signatures like ECDSA 

On‐Device	
(Sign/Vrfy)

Integrity	by	
Signature	
(Sign/Vrfy) 

On‐Device		
(Sign/Vrfy) 

Integrity	by	
Signature	
(Sign/Vrfy) 

Integrity	by	
Signature	
(Sign/Vrfy) 

Integrity	by	
Signature	
(Sign/Vrfy) 

Integrity protected communication enabled by on‐device signatures 
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 Group Signatures 

 Identity based signatures 

 Implicit Certificates 

 Malleable Signatures 

Note, the exact properties regarding integrity protection and origin authentication will depend on the 
selected algorithm. For this deliverable RERUM has researched the applicability of classical signatures 
on resource constrained devices (e.g. Zolertia’s Z1). The next deliverable (D3.2) is planned to provide 
among others insight into the applicability of malleable signatures on resource constrained devices. 

3.2.2 Analysis	 of	 the	 Current	 State	 and	 Selection	 of	 IETF	 Draft	 on	 JSON	Web	
Signatures	(JWS)	

Data needs to be encoded for transport. XML is one standard way of doing it, but seems to be very 
heavy on the  increase  in message sizes and the parsing overhead  is quite  large.   Looking at current 
trends on how data  is represented, RERUM assumed  that data could be emitted by  the devices as 
JSON, and indeed the website for JSON list good arguments why JSON is superior over XML35.  

For RERUM the following reasons where of most importance and resulted in the selection of JSON as 
RERUM’s data encoding format: 

 JSON is a standard (ECMA‐262) 

 JSON format is text only, just like XML 

 JSON is, compared to XML, a lightweight data‐interchange format 

 JSON is language independent 

 JSON is "self‐describing", easy to understand 

In the following “Example” we show JSON formatted temperature value of 23.4 with some meta‐data: 

{ 

 “measurement_id”: 3, 

 “node_id”: “foo_bar”, 

 “data”: “23.4” 

} 

Following JSON further, this shall be transformed into a canonical representation of JSON. A canonical 
representation  is needed to provide the same string representation repeatedly. Because signatures 
need to hash the JSON‐encoded data during the signature generation. Canonical JSON shall remain 
parsable with any full JSON parser and also allow  it to be arranged differently  if the meaning  is not 
changed. The signature generation and verification processes need to ensure that input is in canonical 
form before generating any hash of that input. 
However, there is no standard for the transformation, which shall not be confused with what is called 
minification. There was an IETF draft, but that expired in 2013. The OLPC group36 has documented the 
following procedure called canonical JSON that RERUM has slightly adopted: 

 No whitespace. 

 No escape sequences in strings other than \" and \\.  
All other characters must be represented literally, including control characters. 

                                                            
35 http://www.json.org/xml.html 

36 http://wiki.laptop.org/go/Canonical_JSON 
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 No trailing commas. 

 Object keys sorted by Unicode character values (code points).  
The sorting occurs before escape sequences are added. 

 No decimal points in numbers (i.e. only integers allowed) or leading zeros. "‐0" is not 
allowed. 

 OLPC: Encoded as UTF‐8 in Unicode Normalization Form C. 
RERUM: Keep encoded as is 

Note: The OLPC spec allows arbitrary byte sequences in strings, for easy storage of binary data. But 
this contradicts the JSON specification, which clearly states that "a string is a sequence of zero or more 
Unicode characters". 
 
During canonicalization care must be taken not to remove whitespaces from values, but only from the 
JSON  object.  So  for  the  example  "node_id": "foo bar"  must  not  become 
"node_id":"foobar".  
 

3.2.2.1 Steps	to	Generate	the	JSON‐Sensor‐Signature	(JSS)	

JWS  is currently only  in draft state at the IETF. RERUM  in the following documents the steps of the 
current IETF draft. However, RERUM suggests to adapt them slightly to enable the signature to be less 
intrusive, than the JWS which results in an encoded instead of a plaintext h‐data, e.g. RERUM allows 
non‐signature aware processing steps to still access the h‐data encoded in JSON in the same manner 
as  if  it would not be signed. For the purpose of differentiation RERUM will call these  JSON‐Sensor‐
Signature (JSS).  

Note, the following steps are the thought example for the canonical JSON payload data from the above 
example in the beginning of Section 3.2.2. That is a single temperature of 23.4 with the metadata in 
one JSON object is going to be signed. 

Note, using BASE64URL37 [RFC4648] encoding allows to include actual UTF encoding of newlines or the 
JSON content being binary data etc. if they occur in the JSON data. For this simplified printed example 

all the encoded values have been truncated denoted by the 0s. 

As there was no BASE64URL encoding RERUM has developed a implementation for Contiki, which was 
missing,  and  plans  to  release  this  implementation  as  open  source  to  Contiki within  the  scope  of 
RERUM. 

RERUM next describes how to generate the ECC signature using ECDSA build on a NIST p256 curve over 
a SHA256 to generate a JSON Sensor Signature (JSS). 

0.) Key Setup for an ECC key based on curve secp256r1, that is the P‐256 curve equivalently used 
in XML Signatures described as http://www.w3.org/2001/04/xmldsig-more#ecdsa-
sha256   

1.) Creation of the JSS header specifying the algorithm ECDSA/SHA256 is specified in the IETF draft 
(JSON Web Algorithms) as being referenced by ES256:  {"alg":"ES256"} 

2.) Encoding header as URL‐safe Base 64: eyJhbGciOiJFUzI1NiJ9Cg   

3.) Encoding of payload,  the payload  is  the  actual minified  JSON object  as  seen  in  the  above 
mentioned  example.  This  will  be  URL‐safe  Base64  encoded: 
eyAibWVh000000000000zLjR9Cg 

                                                            
37 Base 64 Encoding with URL and Filename Safe Alphabet 
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4.) Concatenation of the header.payload, so the base64url‐encoded header followed by the 
character “.” followed by base64url‐encoded payload:             
eyJhbGciOiJFUzI1NiJ9Cg.eyAibWVh000000000000zLjR9Cg 

5.) Hash the concatenated string using the cryptographic hash function defined in the heard, here 
we have selected SHA‐256 

6.) Sign hash using the signature algorithm selected, here ECDSA, using the signer’s secret key 

7.) Base64url encode the generated cryptographic signature:  
MEYCwoBK000000000000emhDlLzc-27rM9KLVF8pA 

8.) Integrate the header and the signature alongside the payload JSON object  
 

3.2.2.2 RERUM	Proposal:	Transporting	JSS	as	Enveloped	or	Enveloping	Signature	

Following the current IETF draft the flattened JWS JSON Serialization Syntax would look like this: 

  { 

   "payload":"<payload contents>", 

   "protected":"<integrity-protected header contents>", 

   "header":<non-integrity-protected header contents>, 

   "signature":"<signature contents>" 

  }  

However, this will, when following the IETF draft for JWS, always have the payload being base64url 
encoded. Because  the  IETF draft  for  JWS states  that  the “payload” member MUST be present and 
contain the value BASE64URL(JWS Payload).”38.  
 
RERUM does not want to require all non‐signature interested parties to need BASE64 decoding. 
Henceforth we define two encodings for transporting the JSS along the JSON payload: enveloped and 
enveloping. This follows the ideas that XML signatures39 have already long time. 
 
Enveloped Signature: 

{  <plain payload contents>, 

   {"protected":"<plain integrity-protected header contents>", 

   "signature":"<base64url encoded signature contents>"} 

} 
Enveloping JSON Sensor Signature (JSS) is around the payload: 

{   

   {<plain payload contents>}, 

   "protected":"<plain integrity-protected header contents>", 

   "signature":"<base64url encoded signature contents>"} 

} 

A detached signature makes no sense, because (a) we want to keep the JSS with the JSON payload and 
(b) it would require to a have a message id that could be used to link the JSS object to the JSON payload 

                                                            
38 https://tools.ietf.org/html/draft‐ietf‐jose‐json‐web‐signature‐41#appendix‐A.7 

39 http://www.w3.org/TR/xmldsig‐core/ 
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object that was signed. Note that line breaks and indents are for readability and the size of the base64‐
encoded data is shortened. 

Enveloped JSON Sensor Signature (JSS) is inside the payload: 

{ "measurement_id":3,"node_id":"foo bar","data":"23.4", 
 {"protected":{"alg":"ES256"}, 
  "signature":"MEYCwoBK000000000000emhDlLzc-27rM9KLVF8pA" 
 } 
} 

Flattened and canonical JSON following OLPC (line breaks are only for this printed version): 

{"data":"23.4","jws.protected":{"alg":"ES256"},"jws.signature":"MEYCwoBK000
emhDlLzc27rM9KLVF8pA","measurement_id":3,"node_id":"foo bar"} 

 

3.2.3 Description	of	Application	in	order	to	fulfil	the	security	requirement		

This security mechanism of signing JSON data with a JWS protects against the Loss of U‐DATA Integrity 
(Threat#01 from RERUM Deliverable D2.1).  

An attacker can modify U‐DATA while at rest or in transit. 

 At Rest: If a user manages to modify U‐DATA by executing malicious code on an SO or gateway, 
or by gaining remote access to one. 

 In Transit: Through attacks on the network infrastructure. This can be the result of a man in 
the middle attack, by exploiting routing protocol, or neighbour discovery vulnerabilities. 

If an attack is successful, the application will start providing incorrect S‐DATA values. Of a more severe 
nature  is  the  case  of  integrity  loss  of A‐DATA, whereby  a malicious  user  can  trigger  undesirable, 
potentially even privacy‐breaching actuations, such as opening a window or turning on audio recording 
equipment. 

This attack may be used as a facilitator to launch subsequent attacks against software confidentiality, 
integrity as well as availability, and it is thus considered of very high severity. 

A more detailed scenario could be the following: Assume that certain environmental hazards when 
detected based on sensor reading would cause a costly reaction, e.g. dispatching special units of the 
fire  brigade  or  evacuating  a  public  building.  The  sensor’s  that monitor  these  conditions  could  be 
deployed with signature generation keys. The signature verification keys can be distributed among 
various parties as they are public. Then the sensors can be  instructed to sign their readings before 
sending them to the gateway. The gateway could verify the signatures  locally  if required and  if the 
public verification key(s) of the sensors are trusted and known. The gateway then could only process 
or forward correctly signed data. As this  is end‐to‐end even an application behind the gateway or a 
functional component in the RERUM middleware could, if provided with access to the sensors’ public 
verification key(s) and a way to evaluate that the public key belongs to that sensor be able to still verify 
the integrity and origin (by means of the identifying string that is linked to the key). 

 

3.2.4 Research	Prototype	

To demonstrate and check the ability to implement and overhead induced, this mechanism in an early 
form was built as a research prototype. The setup is shown in the following Figure 22. 
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Figure 22: On‐Device‐Signatures prototype implemented using Zolertia Z1’s by UNI PASSAU 

 

The Zolertia Z1, compared to the RERUM Mote, Zoertia’s Re‐Mote40, has limited memory (RAM and 
ROM). As a starting point RERUM used ecc‐light41. This Contiki library was developed by employees of 
the National Institute of Standards and Technology (NIST), and others, that has been contributed to 
the public domain. From this available library, the core ECDSA implementation was singled out and the 
remaining code removed. Regarding the keys for the p160 NIST curve, the private key and a public 
certificate was generated on one Z1 and exported. Then the private key was hardly encoded into the 
signing Z1 (#2 in the above figure) and the public certificate was hard‐coded into the Z1 that verifies 
(the one connected to the Raspberry PI in the above figure). During the prototyping the functionality 
for signing and verification was more and more stripped down. Then the JSON canonicalization method 
was implemented in Contiki. The prototype for RERUM’s on‐device‐signatures was presented at Net 
Futures 201542. RERUM  currently gathers  the  results and plans  to publish  them  together with  the 
lessons  learned when  implementing  certificates and  JSON  signatures  to  the academic  community. 
Note,  that  this  research prototype  is  limited  to SHA256  for hashing and a  to a 160‐bit NIST curve. 
RERUM foresees to not continue implementing this on Re‐Motes. RERUM already for the DTLS decided 
to use other ECC curves, i.e. Curve25519. The implementation of those is part of the DTLS mechanism. 
RERUM will continue to  implement on Re‐Motes,  thus Z1 development will not actively continued. 
Future development will be on implementing digital signature schemes with a focus on privacy in D3.2, 
research prototypes are expected  to be on the Re‐Mote as part of  the cryptographic development 
activities in WP3 and WP5.  

 

 

 

 

                                                            
40 http://zolertia.io/product/hardware/re‐mote 

41 https://github.com/nist‐emntg/ecc‐light‐certificate 

42 http://ec.europa.eu/digital‐agenda/en/news/net‐futures‐2015 
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3.2.5 Summary	of	Profile	

 

Layer  Cross‐Layer 

Security Association provided between   RD and any other (RD, GATEWAY, APP): 

 RERUM  Device  to  RERUM  Device  (e.g. 
RD1‐to‐RD3 in Figure 2) 

 RERUM Device to RERUM Device – End‐
to‐End  (e.g.  RD1‐to‐RD3  via  RD2  in 
Figure 2) 

 RERUM Device to RERUM Gateway (e.g. 
RD3‐to‐RGW in Figure 2) 

 RERUM  Device  to  RERUM  Gateway  – 
End‐by‐End  (e.g.  RD3‐to‐RGW  via  RD2 
and RD1 in Figure 2) 

 APP  to  RERUM  Gateway  (e.g.  APP‐to‐
RGW in Figure 2)  

 APP to RERUM Device (e.g. APP‐to‐RD3 
in Figure 2) 

Provides Confidentiality  No 

Provides Integrity  Yes  

Provides Origin Authentication  Yes 

End‐2‐End  Yes  

Hop‐2‐Hop  Yes  

Needed Key Material  CERT_SC, sksig, pksig for classical ECDSA and 
possible others for other signature schemes 

 

3.3 Profile	802.15.4	Security	

3.3.1 Introduction,	Motivation	and	Link	to	User	Requirements	

It  is of no doubt that state‐of‐the‐art communication networks cannot be deployed  in a real world 
without any form of security support. IoT ecosystem is not any different, and as proven, e.g., in this 
section, there exists many different profiles that one can successfully apply to provide such a security 
support for IoT solutions. This section presents another profile in which confidentiality, integrity and 
origin authentication is provided, but the profile itself targets only layer 2 of OSI model, so‐called link‐
layer. In general, a link‐layer provides a node‐to‐node communication link (a link between two directly 
connected points in a network). Such a link extended with security mechanisms, in consequence will 
provide a secure connection between these two points. It is essential to note that security mechanism 
is only between directly connected nodes, and any security connection between more distinct nodes 
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(those which are not connected directly with each other  in  link‐layer sense) will be possible only  in 
hop‐by‐hop fashion (in contrast to descried in Section 3.1 DTLS profile). Although a hop‐by‐hop secure 
connection  introduces a risk of communication being  intercepted by a malicious node, the benefits 
come with a better efficiency and simplicity. 

In 2003, the IEEE published the first version of IEEE 802.15.4 [IEEE06], a specification for the physical 
and  link  layer operation  for  low‐power  radio communication. The document also specifies a set of 
security services, which aim to secure the communication between devices. 

Described 802.15.4 security profile is applicable to any devices in RERUM architecture that uses IEEE 
802.15.4 standard to communicate within each other. The profile targets  low  level OSI  layer which 
implies  applicability  to  all  four  presented  in  D2.1  use  case  scenarios  and  directly  addresses  the 
following user requirements:  

o UR‐7: User requires his messages to not be forged by malicious users; 

o UR‐21: User needs to have reliable and energy efficient networking connectivity at his devices 
and 

o UR‐25: User requires open solutions for authentication between devices, ensuring the integrity 
of their data as well as the confidentiality. 

i.e., user requires his messages to not be forged by malicious users; user needs to have reliable and 
energy efficient networking connectivity at his devices; user requires open solutions for authentication 
between devices, ensuring the integrity of their data as well as the confidentiality. 

 

3.3.2 Overview	of	Layer	2	Security	in	IEEE	802.15.4	

In order to achieve secure communication, the standard specifies that all the security services will use 
the AES algorithm with 128‐bit keys. It is also important to note that the IEEE 802.15.4 standard allows 
the use of  group  keys, where  a  common  key  is used  from  a  group of nodes  (devices) mainly  for 
multicasting and broadcasting. As mentioned  in the standard, when a shared group key  is used the 
provided protection is only against the outsider nodes and not against malicious nodes in the specific 
group, sharing the same key. 

The  specification  does  not  provide  details  on  how  the  keys  are  created  or  disseminated.  It  only 
mentions  that  the keys are provided by processes on higher  layers and assumes  that  the keys are 
stored securely. The specification also does not discuss what kind of authentication policies can be 
applied. 

 

3.3.3 Security	Suites	

The standard defines 8 different security suites, which can be used to provide different combinations 
of confidentiality, integrity and origin authentication. One of the suites provides no security, whereas 
the remaining 7 suites use one of the following AES modes of operation: 

 Cipher Block Chaining Message Authentication Code (CBC‐MAC), with Message Authentication 
Codes (MAC) of three different sizes 

 Counter (CTR) 

 CCM mode (Counter with CBC‐MAC), with three different sizes of MACs 

 

The table below presents an overview of those security services: 
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3.3.4 IEEE	802.15.4	Security	with	the	Contiki	OS	

As of October 2014,  the Contiki Operating System provides off‐the‐shelf support  for  IEEE 802.15.4 
security services. In order to enable support for those security services, the user simply needs to set a 
configuration directive at build‐time. For example, in order to select the AES-CCM-64 suite, the user 
would have to specify the following in the project configuration file: 

#define NETSTACK_CONF_LLSEC        noncoresec_driver 
#define LLSEC802154_CONF_SECURITY_LEVEL  6 

The first  line enables the Contiki’s  layer 2 security sub‐system, whereas the second  line selects the 
AES-CCM-64 suite. In order to switch between among suites 1 and 7, the user simply has to change 
the value of LLSEC802154_CONF_SECURITY_LEVEL to the desired security level. 

Contiki’s source tree  includes a software  implementation of the AES algorithm, but  it also provides 
drivers for some AES acceleration hardware, such as the CC2420. 

A detailed description of Contiki’s security services and configuration system is out of the scope of this 
deliverable, but interested readers may find more information in Contiki’s blog and wiki pages43, 44,45. 

Currently, the implementation uses pre‐shared keys, but efforts have been made to add support for 
key establishment mechanisms and group communication schemes [KRM13, IOT13]. 

 

3.3.5 Summary	of	Profile	

This  profile  provides Hop‐2‐Hop  confidentiality,  integrity  and Origin  Authentication  at  the Device 
Communication Layer, in the case where devices communicate with one another using IEEE 802.15.4 

                                                            
43 https://github.com/contiki‐os/contiki/pull/557 

44 http://contiki‐os.blogspot.se/2014/10/a‐big‐step‐for‐contiki‐built‐in.html 

45 https://github.com/kkrentz/contiki/wiki 

Security 

Level 
Suite 

Data 

Confidentiality 

Data 

Integrity 

Origin 
Authentication 

Length of MAC 

(bits) 

0  No security   No  No  No  N/A 

1  AES-CBC-MAC-32 No  Yes  Yes  32 

2  AES-CBC-MAC-64 No  Yes  Yes  64 

3  AES-CBC-MAC-128  No  Yes  Yes  128 

4  AES-CTR Yes  No  No  N/A 

5  AES-CCM-32 Yes  Yes  Yes  32 

6  AES-CCM-64 Yes  Yes  Yes  64 

7  AES-CCM-128  Yes  Yes  Yes  128 
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wireless radio links. Keys are symmetric and they always have a length of 128 bits. All cryptographic 
operations use the 128‐bit AES algorithm. 

From a RERUM perspective, this functionality constitutes a protective mechanism that can be used to 
mitigate threats Threat#01 to Threat#09 inclusive, as listed in Section 3.6 of D2.1. The functionality is 
transparent to the system’s user as well as to citizens. The functionality is relevant to all RERUM Use‐
Cases.  

Layer  Device Communication Layer 

Security Association provided between   RERUM Device  to RERUM Device –  Single Hop 
Only (e.g. RD1‐RD3 in Figure 2) 

RERUM Device to RERUM Gateway – Single Hop 
Only (e.g. RD1‐RGW in Figure 2) 

Provides Confidentiality  Yes 

Provides Integrity  Yes 

Provides Origin Authentication  Yes 

End‐2‐End  No 

Hop‐2‐Hop  Yes 

Needed Key Material  NK_PAN 

 

3.4 Profile	 Lightweight	 and	 Secure	 Encryption	Using	 Channel	
Measurements46		

3.4.1 Introduction,	Motivation	and	Link	to	User	Requirements	

Wireless sensor networks are the building blocks of the  Internet‐of‐Things architectures, conveying 
critical and often sensitive and private information. As these networks often consist of severe resource 
constrained devices, lightweight encryption mechanisms are of paramount importance for achieving 
energy  efficiency.  However,  the  majority  of  the  proposed  algorithms  do  not  fully  fulfil  the 
requirements  for energy efficiency.  Furthermore,  key distribution  schemes are necessary  for  their 
proper operation, making  the network vulnerable  to adversaries  that manage  to  capture  the keys 
during key exchange. In this section, we describe a scheme where key extraction is performed using 
channel measurements, thus there is no need for any key distribution mechanism. The derived keys 
are used for encryption/decryption using the primitives of the compressed sensing (CS) theory [CW08], 
which allows encryption and compression simultaneously. The evaluation results show that legitimate 
nodes experience a very low reconstruction (decryption) error. Of course, a given error can be justified 
depending on  the  specific application, as  some applications  can  tolerate a higher error  and other 
cannot. At the same time, adversaries located at a distance greater than half of the carrier frequency's 
wavelength, experience a higher error, thus being unable to capture sensitive information. 

                                                            
46 Part of this work has been published in Wireless Vitae 2015 conference in Aalborg, Denmark [FTT14]. 
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A variety of algorithms for secure communications in several layers of the communications stack has 
been proposed,  for example,  the Elliptic Curve Diffie‐Hellman, ContikiSec, RSA, etc. Most of  these 
algorithms have a number of important inefficiencies: 

 They are not optimized to be energy efficient. This  is critical as sensors are severe resource 
constrained devices in terms of memory, CPU, and processing; 

 Key distribution schemes are required. This consumes valuable energy, and there is also the 
risk of information hijacking (by an adversary) during the key exchange and 

 Keys have to be pre‐stored  in the sensor device, usually during manufacturing. This poses a 
significant  security  threat  as  sensors  can  be  easily  compromised when  placed  in  outdoor 
environments. 

Here, we address all these issues by proposing an algorithm that does not require any key distribution 
scheme.  The  encryption  key  between  two  communicating  parties  is  created  using  channel 
measurements, and more specifically, utilizing the Received‐Signal‐Strength‐Indicator (RSSI), available 
in all off‐the‐shelf wireless transceivers. The algorithm we consider for encryption uses the principles 
of  the  relatively  new  theory  of  compressed  sensing  (CS).  CS‐based  encryption  is  lightweight  and 
provides  acceptable  security  against  adversaries  [OAS08],  [RB08].  Also,  CS  performs  a  lossy 
compression on the encrypted data; hence encryption and compression take place simultaneously. 

Related work contains several significant contributions. Mathur et al. [MVTM11]utilize the change in 
phase of a transmitted signal for secret key generation. They show that [RB08] the speed with which 
nodes  securely  communicate  depends  on  the  variations  of  the monitored  channel.  This method 
however has two disadvantages for use in a WSN: (i) it requires an external signal source (e.g. an FM 
transmitter) to emit energy, and (ii)  it uses the phase of the signal; a metric that  is not available  in 
commodity hardware  like the sensors. Other related contributions [OPJC++K13], [LXMT06] consider 
the Received‐Signal‐Strength or the channel amplitude for key generation. All the proposed techniques 
generate  keys  that are  suitable  for  common encryption algorithms  (e.g. RSA, AES, etc.). Our work 
focuses  on  key  generation  for  CS‐based  encryption.  CS  has  the major  advantage  of  performing 
lightweight encryption and compression simultaneously, so energy‐efficiency becomes feasible. To the 
best of our knowledge, the only work that considers key generation using channel measurements for 
CS‐based encryption is described in [DT13]. Our work differs in two areas: (i) we use experimental data 
collected from a real WSN, and (ii) we show how the reconstruction error is affected using different 
quantization levels. 

The algorithm described here fulfils the security requirements of the innovation table for RSSI‐based 
CS encryption keys  (described  in RERUM Deliverable D2.1). More specifically, the user requirement 
linked to this work is 

o UR‐17: «The end user (or the service provider) needs to install a CS key for each one of the 
deployed devices. The user needs the key to be changed dynamically and not be pre‐stored on 
the  device.  The  user  also  needs  to  avoid manual  installation  or  update  of  the  key.»  The 
compression  scheme described  in  this  section  fulfils  these  requirements as:  (i)  it does not 
require any key pre‐storage in RDs, (ii) it does not require any key distribution mechanism, and 
(iii) keys can be updated dynamically. 

 

The advantages of the proposed RSSI‐based scheme (energy efficiency, and secure communication) 
make it ideal for use in three of the proposed RERUM use cases (described in RERUM Deliverable D2.1). 
Lightweight encryption and compression, as well as on‐the‐fly secret generation can be used for the 
environmental monitoring where a large number of unattended sensors may be used. In this case, a 
centralised  secret  key  distribution  scheme may  not  be  feasible.  Furthermore,  energy  efficiency  is 
important as sensors’ battery replacement operations can become very difficult when the sensors are 
deployed in harsh environments. 
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Regarding the home energy management, and the comfort quality monitoring use cases, apart from 
the energy efficiency of the deployed algorithms, privacy is a major concern as part of the monitoring 
data (e.g. energy consumption, home appliances used, etc.) can reveal sensitive data (e.g. daily habits, 
etc.) to an outsider. The algorithm proposed here can highly secure the collected data, as it has been 
shown that compressive sensing achieves high secrecy. 

The simultaneous encryption and lightweight operations using RSSI‐based key generation, as proposed 
here, can be used in all RERUM components for single‐hop wireless communication. For example, it 
can be deployed for data encryption and compression between the Resource Monitor and the Alert 
Processor, between the RERUM Devices and the Gateway, etc. 

 

3.4.2 Compressed	Sensing	Background	

The recently introduced theory of CS exploits the structure of a signal in order to enable a significant 
reduction  in the sampling and computation costs. CS has been used  in many research areas,  like  in 
wireless  intrusion  detection  [DT13],  energy‐efficiency  [FRAAT13],  indoor  localization  [FNT12],  etc. 

Assume that 
Nx  refers to information collected by a sensor. According to CS theory, if x  is sparse 

in  some domain,  it can be  reconstructed exactly with high probability  from  M   randomized  linear 

projections of signal x  into a measurement matrix
M NΦ  , whereM N . A signal is called sparse 

if most of its elements are zero in a specific transform basis. Signal 
Nx   can be expressed using a 

dictionary Ψ  of  1N   vectors  1{ }N
iψ  such that x Ψb , where  Nb   is a sparse vector with  S

non‐zero components ( 0 Sb‖‖ ). The general measurement model is expressed as follows: 

  y Φx ΦΨb Θb  (1) 

where Θ ΦΨ . The original vector , and consequently the sparse signal x  are estimated by solving 

the following  1 ‐norm constrained optimization problem: 


1arg min . . .s t b b y Θb‖‖  (2) 

Finally, the reconstructed signal is given by  x Ψb . 

Observe in (1) that information x is multiplied by the measurement matrixΦ , producing signal y  that 

is a compressed and encrypted version of x . Consequently, CS unifies compression and encryption in 

a  simple  linear measurement  step,  using  Φ   as  the  encryption  key.  But  how  secure  is  such  an 
encryption scheme? Rachlin et al. [RB08] have demonstrated that although CS‐based encryption does 
not  achieve  Shannon's  definition  for  perfect  secrecy,  it  can  however  provide  a  computational 
guarantee of secrecy. In [OAS08], the authors study the security implications of CS by considering brute 
force  and  structured  attacks.  The  structured  attacks  refer  to  attacks based on  the  symmetry  and 

sparsity  structure  of  the  measurement  matrixΦ .  Their  results  show  that  the  computational 
complexity of these attacks renders them infeasible in practice. 

Cryptography using CS is a symmetric operation as the same key Φ  is used for both encryption and 
decryption. Decryption  is performed by  solving  the optimization problem  shown  in  [CW08]. A key 
difference with other cryptographic methods is that CS does not require both communicating parties 
to hold exactly the same key. The reconstruction error of the CS‐based encryption depends on the 
similarity of the keys owned by those parties. 

 

b
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3.4.3 Key	Generation	

Secret  key  establishment  is  a  fundamental  requirement  as  WSNs  carry  sensitive  and  private 
information  over  unattended  environments.  As  sensors  are  severe  resource  constrained  devices, 
energy efficient cryptographic algorithms are a necessity. An approach for key generation but without 
involving key distribution is to enable the interested communicating parties to extract cryptographic 

keys  (in our case  the matrixΦ ) directly  from  the wireless channel. Following  the notation used  in 
similar works, we assume that there is a legitimate transmitter named Alice, a legitimate receiver with 
the name Bob, and an adversary named Eve; a passive eavesdropper. The distances between Alice‐
Bob, Alice‐Eve, and Eve‐Bob are denoted by	݀ଵ,	݀ଶ, and ݀ଷ, respectively (Figure 23). 

Alice aims to extract key  1Φ  using channel measurements. Afterwards, she will use this key in order 

to encrypt plaintext x , producing ciphertext  y  using (1), and finally, she will transmit  y  to Bob using 

an appropriate communication protocol. Bob, in order to decrypt y , he needs key 1Φ . As there is no 

key  distribution mechanism,  he will  attempt  to  extract  the  decryption  key  2Φ   from  the wireless 

channel,  following  the  same  operation  as  Alice.  After  key  extraction,  Bob will  use  (2)  to  decrypt 
ciphertext y . As this  is a symmetric encryption/decryption operation, the reconstruction error  (the 

fidelity of the decrypted message) depends on the similarity between  1Φ  and 2Φ . The challenge here 

is to employ a mechanism that enables Bob and Alice to extract almost the same key from the wireless 
channel, while making Eve unable  to extract  such a key  that will  further allow her  to decrypt  the 
ciphertext with high fidelity. 

 

Figure 23: Key extraction from the wireless channel with the presence of an eavesdropper 

 

3.4.4 RSSI	Sampling	

The wireless channel can be regarded as a time and space varying filter that any point in time has the 
same  filter  response  for  transmissions  between  two  wireless  nodes  [PJC++K13].  The  signal 
transmissions between Alice and Bob, and vice‐versa, are modified by the channel in a manner that is 
unique between these two. The multipath properties between Alice and Bob (gains, phase shifts, and 
delays) are  identical on both directions of the communication  link. This  is usually called as channel 
reciprocity. How  fast  these properties change depends on  the coherence  time  (CT) of  the network, 
defined as  the minimum  time channel properties are  invariant. Based on  these, Alice and Bob can 
extract a common key from the wireless channel by considering one or more channel properties at 
intervals greater than CT. A question that arises here is if Eve is able to extract the same (or almost the 
same) key from the channel. It is shown in [JAW74] that the received signal rapidly de‐correlates over 

a distance of roughly half a wavelength, therefore if  2 3,
2

d d


  (Figure 23), where    is the carrier 

frequency's wavelength, Eve will extract a completely different key. 
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RSSI  is a popular  statistic of  the  radio  channel made available by  the majority of  the off‐the‐shelf 
wireless transceivers, and for this reason we use it in order to extract the secret key from the channel. 
We set up the experimental network shown in Figure 23 using three wireless Z1 sensors [SENSO] in a 
room with several objects, and people freely moving around. The distances between the nodes are as 
follows:	݀ଵ ൌ 120ܿ݉:, ݀ଶ ൌ 100ܿ݉, and ݀ଷ ൌ 100ܿ݉. For  transmission we use  the  IEEE 802.15.4 

MAC at the 2.4 GHz. At this frequency, 12,5
2

cm

 , so Eve is at a distance that will not hopefully allow 

her to extract the same key as Bob and Alice. 

For RSSI collection, Alice periodically transmits UDP packets to Bob. As soon as Bob receives a packet 
from Alice,  it records the corresponding RSSI value. At the same time, when Alice receives the ACK 
packet from Bob, acknowledging a correct packet reception, she records the RSSI value for that packet. 

 

3.4.4.1 Quantization	

The raw RSSI measurements cannot be directly used  for key extraction. Firstly, we  filter out of the 
collected RSSI  its mean value, as RSSI  is a predictable function of the distance, so an adversary that 
knows Alice and Bob's positions could estimate their recorded RSSI values. Next, we split RSSI  into 
several blocks of length ܤ௟	and then we quantize its values per block. A quantization function Q(.) takes 
as input an RSSI vector of length ܤ௟	and produces a binary stream. Supposing ܴܵܵܫ஻೗  is the vector that 

contains  the  RSSI  values,  function  Q(.)  first  computes max min
l lB Bp RSSI RSSI  .  Then,  given 

n   the number of bits used for quantization, we split the recorded ܴܵܵܫ஻೗ into 
2n

p
 equally‐sized 

regions, and for each region we assign an n‐bit binary word. For example, if ܴܵܵܫ஻೗ ൌ ሼ20,22,23,24ሽ 
and n=2 bits, then Q(.) gives  {(00),  (01),  (10),  (11)}. The  total number of bits after the quantization 

process equals lB n . Furthermore, we encode Q(.)'s output using the Gray code [FNT12] as this type 

of  encoding  ensures  that  small  RSSI  discrepancies  cause  no more  than  a  single  bit  error.  This  is 
important as the possible key mismatch between Alice and Bob has to be minimized. 

 

3.4.4.2 Key	Uniformity	

As mentioned previously, the measurement matrix Φ  is used as the encryption/decryption key in our 
CS‐based scheme. The performance of CS (in terms of the reconstruction error) heavily depends on 
two factors: (i) sparsity, and (ii) coherence. Sparsity gives a measure of how many non‐zeros of x  exist 
when projected  into dictionaryΨ . On  the other hand, coherence measures  the  largest correlation 

between any two elements of Φ  andΨ . The smaller the coherence, the higher CS performance  is. 
Several works have  shown  (e.g.  )  that when  considering measurement matrices built using values 
selected  independently  from certain distributions, exact signal  recovery can be achieved with high 
probability. One such choice is the uniform distribution used in several works (e.g. [FRAAT13]). 

As uniformity gives higher CS performance, we hash Q(.)'s output with an appropriate secure hashing 

function, targeting to achieve uniformity for key Φ . We utilize Uquark [AHP13], a  lightweight hash 
algorithm which takes as input a 64‐byte block and produces a 17‐byte hashed output. This algorithm 
has a very low number of collisions; hence, high probability of achieving uniformity. 
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3.4.4.3 Information	reconciliation	

Both Alice and Bob follow the previously described steps and have now created their own keys: ݕ݁ܭ஺, 
and ݕ݁ܭ஻, respectively. As Eve is fully aware of the key generation algorithm, she has created ݕ݁ܭா . 
Actually, taking into account that RSSI is initially split into equally‐sized blocks of length 	ܤ௟, these keys 
are supersets of one key per block, e.g.  with  [1, ]i k . The same holds for Bob and Eve. There are two 

challenges here: (i) to find the appropriate block id such as key୅౟  is very close to key୆౟, while key୉ is 
as different as possible. In fact, we are seeking for a mechanism that will enable Alice and Bob to agree 
on the appropriate block id, without exchanging private information that could be captured by Eve. 

 

Figure 24: Bit mismatch rate between the keys of Alice‐Bob and Alice‐Eve 

 

We run a number of experiments using the topology shown in Figure 23. Alice transmits a single UDP 
packet to Bob every 1 msec. Based on this traffic, RSSI samples are collected by all nodes, and the 
corresponding  keys  are derived using  a 3‐bit quantization.  Figure 24  shows  the bit‐mismatch‐rate 
(BMR) between Key୅ and		ݕ݁ܭ஻, and Key୅ and Key୉, for the different blocks. BMR gives the number 
of bits that are found to be different when comparing two keys at the bit level. BMR can significantly 
vary between the blocks because measurements are taken in a dynamic environment where multipath 
fading causes significant RSSI fluctuations. 

Observe that Alice and Bob achieve a low BMR ( 0.9% ) for the block id=8. BMR cannot be zero as 
there are RSSI variations due to noise, interference, and hardware limitations. For the same block id, 
the BMR  for Key୅ and Key୉  is over 30%. Nevertheless, as Alice does not know Key୆,  she cannot 
estimate BMR, so she is not able to select the appropriate block id. Moreover, Alice and Bob cannot 
exchange keys as Eve is able to capture them. 

In order to address those limitations, we propose the use of a cryptographic primitive called as secure 
sketch (SeS). Using a SeS, Bob can produce a public information SeS୆ about its key Key୆ that however 
does not reveal Key୆. Alice, upon receiving SeS୆ from Bob, can extract Key୆ using SeS୆ and her own 
key (Key୅). Exact recovery is possible if the BMR between Key୆ and Key୅ is not too high. This process 
is often called as information reconciliation. For generating the SeSs we use the algorithm proposed in 
[DORS08]. Note that Bob computes the SeSs that are further transmitted to Alice. Alice then performs 
information reconciliation extracting Key୆, and now she is able to compute BMR and find the block id 
where it takes its minimum value. Finally, it transmits in clear that block id to Bob, so he knows which 
key to use for decryption. On the other hand, Eve  is able to capture both the SeS and the optimum 
block  id. However, as her key significantly differs from Bob's key, she will not be able to accurately 
compute Key୆ using the SeS. Furthermore, as she does not hold the correct key Key୆, the capture of 
the optimum block id does not provide any useful information to her. 
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The algorithm shown below summarises the steps for key generation that both Alice and Bob follow, 
except the Transmit_Sketch function that is executed by only one of them. So Bob transmits his SeSs 
to  Alice,  then  Alice  performs  the  information  reconciliation  process,  and  sends  back  to  Bob  the 
optimum block id. 

Key generation algorithm: 

Variables: 

1) RSSI: the RSSI samples over a time window 

2) bl: the length of the equally‐sized blocks that comprise RSSI  

3) L: the number of the equally‐sized blocks that comprise RSSI 

 ௕௟೔: the RSSI values that belong to block iܫܴܵܵ (4
5) n: the number of bits per quantisation 

6) ܳ௜: the quantised values of block i 
  ௜: the hashed values of block i, after quantisationܪ (7
8) ܵ݁ ௜ܵ: the secure sketches of block i 

Functions: 

1) Quantise_RSSI: the function that quantises a block of RSSI samples , given the number of bits 

2) Create_Hash: the function that hashes the quantised RSSI block 

3) Create_Sketch: the function that computes the secure sketches 

4) Transmit_SKetch: the function that transmits the secure sketches to the node that will perform the 

information reconciliation task 

Algorithm: 

for i=1 to i=L do 

ܳ௜=Quantise_RSSI(ܴܵܵܫ௕௟೔ , ݊) 

 ௜=Create_Hash(ܳ௜ሻܪ

ܵ݁ ௜ܵ=Create_Sketch(ܪ௜) 

Transmit_Sketch(ܵ݁ ௜ܵ) 

end for 

 

3.4.5 Performance	evaluation	

In order to evaluate the proposed key generation algorithm, we consider collected RSSI samples using 
the  topology shown  in Figure 23 Key extraction  from the wireless channel with the presence of an 
eavesdropper. Also, we make the following assumptions about Eve: (i) she can overhear all the packets 
exchanged  between Alice  and Bob,  (ii)  she  is  fully  aware of  the  key  generation  algorithm  and  its 
configuration  parameters,  (iii)  she  does  not  interfere  with  Bob  or  Alice,  and  (iv)  she  does  not 
masquerade as Bob or Alice. 

We proceed with the evaluation by considering the following scenario. Alice has collected a number of 
ambient temperature measurements that wishes to encrypt and transmit to Bob. Actually, we feed 
Alice with  the  ambient  temperature measurements  provided  by  a  real WSN  [SENSO]. As  CS  also 

performs compression, we select the compression ratio as 50%, so 0.5
M

N
 . Next, both Alice and Bob 

perform the key generation algorithm, deriving Key୅ and Key୆, respectively. While Eve is overhearing 
the whole communication, she generates Key୉. 

We compute the reconstruction error of the collected measurements, defined as, where x  and  x  are 
the original and reconstructed temperature measurements, respectively. During the evaluation, Alice 
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encrypts data with Key୅, while Bob and Eve decrypt them with Key୆, and Key୉, respectively. The 
decryption process is often referred as reconstruction in CS terminology. For decryption we use the 
OMP algorithm [TG07]as it is computationally very efficient. The length of the equally‐sized RSSI blocks 
is set to 25000 (line 3 in Algorithm 1). As RSSI sampling is performed every 1 msec, this results to a key 
generation every 25 secs that is an adequate time for key refreshment. 

Figure 25 shows the cumulative density function (CDF) of the reconstruction error when information 
is decrypted by Bob, for an increasing number of quantization bits (line 6 in Algorithm 1). Observe that 
as the number of bits increases, the error also increases. This is because BMR increases for the keys of 
Alice and Bob when the bit length of the keys increases (Figure 26). However, the error even for the 4‐
bit  quantization  is  less  than  0.05  for  the  80%  of  the  encrypted  information  (temperature 
measurements are split into blocks and encrypted separately). For a 3‐bit quantization, the error is less 
than 0.05 for more than the 90% of the encrypted blocks. 

When Eve decrypts  information using Key୉, the reconstruction error  is extremely high as shown  in 
Figure  27  (note  that  this  figure  has  a  different  x‐axis  scale).  Even  for  the  1‐bit  quantization,  Eve 
experiences an error of more than 0.6, meaning that the decrypted data differ by more than 60% with 
the original data, thus making Eve unable to steal potential sensitive information. 

 

Figure 25: Reconstruction error at Bob or Alice for different quantization levels 

 

Figure 26: Bit mismatch rate for different quantization levels 
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Figure 27: Reconstruction error at Eve for different quantization levels 

3.4.6 Summary	of	profile	

Layer  Application 

Security Association provided between   RERUM Device to RERUM Device – Hop‐by‐Hop 
(e.g. RD1‐to‐RD3 via RD2 in Figure 2) 

Provides Confidentiality  Yes 

Provides Integrity   No 

Provides Origin Authentication  No 

End‐2‐End  No 

Hop‐2‐Hop  Yes 

Needed Key Material  CS‐based key material 
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4 Authorization	in	RERUM	

4.1 Introduction,	Motivation	and	Link	to	User	Requirements	
This chapter explains the mechanisms for authorizing requests in RERUM. That is, deciding whether to 
allow or reject a request to a RERUM service or resource. Authorization may be used for enforcing 
both security and privacy requirements. As this document is focused on security rather than privacy, 
this chapter is focused on the authorization mechanisms for security only. Note that many of the said 
authorization mechanisms will be  reused  to protect privacy as well. The differences of how  these 
authentication mechanisms are used for such protection will be provided in Deliverable D3.2. 

The components explained  in  this chapter correspond with  the authorization component stated  in 
D2.3 as shown in Figure 28 extracted from it: 

 

 

Figure 28: Security components in the communication layer from D2.3 

 

Specifically,  in  this  chapter  we  explain  the  design  of  an  Attribute  Based  Access  Control  (ABAC) 
mechanism and its integration with RERUM, as stated in the table of innovations of RERUM in D2.1, 
i.e., for Contribution 10: Integration of ABAC in IoT with support for specific business data contained 
in the request’. This contribution is linked to the following user requirement: 

o UR‐12: The user requires being able to define specific access criteria so that the system 
can make decisions based on the attributes of the user that is issuing the request, and the 
context of the request. 

One of the main concerns that is hindering the adoption of IoT is the lack of trust in this technology 
due to  insufficient security support. Access control  is an essential security feature to control who  is 
accessing to the resources and services of the system. The ability to take access decisions based on any 
attribute  not  only  from  the  user,  but  also  from  the  request,  is  the most  flexible  and  powerful 
mechanism of above‐mentioned ABAC mechanism, because it is the one that allows considering the 
most information available in the process of controlling the access. The need of configuring the access 
to the system is universal in IoT and therefore is applicable to all use cases in the project and will be 
validated in all trials. 

Besides, RERUM also addresses an issue that is not often addressed by generic platforms. Sometimes 
it is necessary to define access criteria based on information that is completely specific from the service 
that is being invoked. For example in UC‐O1:  The administrator might decide to enable certain service 
only for user’s who hold the attribute ‘police’, which is only provided for user that are to members of 
the local police. A regular citizen, i.e., Alice, making an attempt to get information about the position 
of a citizen’s car will be rejected, because only policemen are allowed to get that  information,  i.e., 
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users  whose  type  equals  to  ‘police’.  Instead,  Alice  is  just  allowed  to  get  the  information  of  an 
information post, whose type is ‘public’. For doing this kind of check, it is necessary to know in advance 
the  characteristics of  the  service  invoked and all  the parameters  it  is  receiving. Though  there are 
already some technologies, such as XACML47 that allow defining such criteria. The main issue is that 
they often need to specify directly in the code how to access the specific parameters that are used to 
take a decision. Considering that each service is different from the others, this makes generic platforms 
unable to deal with specific criteria. In contrast, RERUM is able to cope with this problem while still 
keeping the platform generic. This gives RERUM a flexibility that other platforms lack, because it allows 
adding  new  services  that  need  specific  access  criteria without  having  to modify  the  code  of  the 
platform. 

This chapter is organized in the following parts: 

 authentication in RERUM, where an explanation of the relationship and differences between 
authentication and authorization is provided and how RERUM requires the authentication to 
be carried out, 

 analysis of authorization options, where a general analysis of the main trends in authorization 
available as well as their pros and cons in RERUM context is described, and  

 explanation of the design of authorization components where the technical details of how the 
authorization components defined in the architecture document are designed in RERUM. 

 

4.2 Service	level	authentication	in	RERUM	
First of all, authentication is not the same as authorization. In general terms, authentication is a process 
of making  sure  that  any  entity  accessing  the  system  is  he who  claims  to  be. On  the  other  hand 
authorization is a process of deciding whether to grant access or not to a concrete resource to that 
concrete entity, possibly based on the attributes of that entity. That is, authentication is not the same 
and is even not the part of the authorization, but the authorization heavily relies on the authentication. 

When the authentication is carried out to prove that a device accessing any system corresponds to a 
device already known by the system addressed by said device, we name  it authentication at device 
level. This was previously discussed in Sections 2.2.2 and 2.3.4. 

When the authentication  is carried out that the request  is being made on behalf of a user that has 
previously defined in the system, it is named authorization at service level. 

In the concrete case of RERUM, service level authentication means that any application accessing the 
system  is  acting on behalf of  the human user  that  it  is  claiming  to  act on  behalf of. And  for  the 
authorization it means deciding whether to grant or reject access to RERUM services and resources to 
that application based on the attributes of the human user that the application is acting on behalf of. 

As explained in D2.3, service level authentication is not part of RERUM, authentication is not part of 
RERUM, and therefore it is not in the scope of RERUM to provide any design or implementation of an 
authentication system. But authorization is indeed in the scope of RERUM, and RERUM performs this 
authorization based, among other things, on the attributes of the requesters that try to access RERUM 
resources or services. However, authentication can be carried out in different ways, and the way to 
access these attributes can be carried out in different ways as well. For this reason, it is very important 
for RERUM to define how it expects this authentication to be carried out and how these attributes are 
provided or otherwise the RERUM authorization components might try to access these attributes on a 
way that were different from the one provided by the Authentication. This section does precisely that: 

                                                            
47 XACML stands for eXtended Access Control Markup Language and is a standard language for defining access 
control criteria from the OASIS standardization body. 
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it specifies the minimum RERUM needs of how the authentication should be carried out and how the 
attributes of the user should be provided to RERUM. 

Authorization is normally carried out based on the attributes of the entity issuing a concrete request. 
In the concrete case of RERUM, the originator of a request may be either human users or applications 
acting on behalf of a human user, which means that the device issuing the request should be able to 
authenticate  itself on behalf of such user.  In any case,  it  is necessary  that  the authentication  layer 
provides  an  unified  interface  to  the  authorization  components  to  access  the  attributes  of  the 
requester, let it be a human being or a service installed on a device acting on behalf of a human being. 

The  idea  is  that any access  to  the system must be carried out on behalf of a valid user previously 
registered  in  the  system,  even  an  anonymous  user,  in  order  to  let  the  security  policies  to make 
decisions based on the identity of such user. The security policies will then be able to make decisions 
based on the attributes of the user that is issuing the request, even for anonymous users. 

RERUM  proposes  that  any  device  trying  to  access  the  system must  provide  first  a  security  token 
obtained from an identity platform when logging in it. The identity platform might not necessarily be 
part of the RERUM system. This security token will have to be associated with a user registered in the 
platform and signed by the identity platform to ensure it is not tampered. 

RERUM proposal envisages three types of access: 

(a) Access from unknown devices external to the RERUM installation that do not have any specific 

user associated: the only way these devices will be able to access the RERUM system will be 

by using an anonymous user. This anonymous user will have its operations restricted to only 

those  that  the  system  administrator  has  decided  to  be  open  publicly.  For  instance,  the 

administrator of the municipality might decide to let citizens to have access to the measures 

of pollution using this user; 

(b) Access from VRD belonging to the RERUM system. These devices will work with special internal 

users  of  RERUM.  As  these  devices  have  been  previously  incorporated  to  the  RERUM 

installation by  the administrator,  they are  considered  to be  trusted, and  their permissions 

should be set accordingly  

(c) Access from VRDs that have a valid user registered in the system different from the anonymous 

and internal ones. Note the administrator of RERUM will be one of these users as well, with 

the only difference that it will be granted access to all administration tasks in RERUM 

In all these cases, there must be a user registered in the platform to be able to log in it. The registration 
process has the following operations associated in the same order they are numbered in the list: 

1. A requesting device asks for a new user and provides the necessary means to authenticate 

itself  from  the  ones  that  the  identity  platform  API  supports.  These means might  be,  for 

instance, a user and password or, more commonly, a valid user certificate signed by a CA. The 

requesting device may also provide additional  information about  itself or the human being 

that it is acting on behalf of; 

2. The  identity platform associates  the new user with  the means provided by  the  requesting 

device and performs a partial and provisional assignment of the values of the attributes of the 

new user based on the data provided by the requesting device and their internal criteria and 

assign it an status of ‘pending to be confirmed; 

3. The identity platform stores the new user and notifies its administrator of a new user pending 

to be confirmed and 
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4. The administrator checks the provisional attributes set to the new user and fills in the values 

for the remaining ones. These attributes will be utilized later for granting access to the RERUM 

service. Finally the administrator sets the state of the new user to ‘valid’ and saves it. 

 

Figure 29 shows the complete registering sequence: 

 

Figure 29: Registering users 

 

According to the three types of access stated above, it will be necessary to perform the following tasks. 

In case  the system supports access  (a)  it will be necessary  to create an anonymous user  from any 
requesting device and have the administrator of the identity platform to fill their values the way he 
see fit. Once this user is created, external unknown devices will be able to log in the system using this 
user. 

In case of (b) it will be necessary to create at least one internal user for RERUM Devices and have the 
administrator of the  identity platform to fill their values the way he see fit. Note, however, though 
these users might be perfectly a single one,  this  is not necessarily  true. For  instance, a VRD of  the 
indoor scenarios may possible be more trusted than the ones from the outdoor scenarios because they 
could be more difficult to be attacked. Hence, it can make sense to have different internal users with 
different permissions for these different kinds of VRDs. These devices will work always using these 
special users, so they are capable of accessing other devices of the same RERUM system For this reason 
and  to enhance performance,  it  is reasonable that  the  installation process  for these devices gets a 
security token that never expires for them, possibly from an internal RERUM IdP (they are special non‐
public users) 
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Also note  that depending on whether  there  is a negotiation phase with  the authorization  layer  for 
asking the attributes of the user, the VRD running the authorization layer will require an internal user 
as well. 

In case (c) any device trying to access the system will have to have a user previously registered. Hence, 
if  it does not have any user registered yet,  it will have to ask for a registration by a user using the 
following procedure. 

Once the users have been created in the system, the responsibilities of the involved components are:  

 Identity platform needs to: 

o check the authenticity of the credentials of the user when logging into the system; 

o include  a  security  token  in  a  header  of  the  http  session  that  includes  at  least  a 

reference for the user and sign this token; 

o provide an API  for  the authorization  layer  to negotiate  the values  required  for  the 

authorization. This negotiation might be as simple as the authorization layer asking for 

the each needed attributes every time. Alternatively, the identity may include all the 

attributes of the user in the token at once; 

o assign an expiration hour for the token possibly depending on the attributes of the 

user, and 

o sign the token to prevent it from being tampered later.  

 Requesting VRDs need to: 

o obtain a valid security token from the Identity Provider. For access in case (b) and (c) 

this will be performed when trying to access the system. However, for components 

meant to be permanently connected to the system, such as the VRDs registered in the 

system, it is conceivable to provide them directly with the security token obtained at 

the time of registration of their internal users, and  

o provide this security token in a header of the http request. 

 The authorization layer needs to: 

o retrieve the security token from the header of the http request; 

o check the integrity of the security token; 

o check the expiration date of the security token; 

o negotiate the needed fields with the Identity Provider, and 

o fulfill  all  other  responsibilities  that  are  inherent  to  the  authorization  operation, 

including, of course, granting or rejecting access to the request based, among other 

things,  on  the  attributes  of  the  user  corresponding  to  the  one  referenced  in  the 

security token 

Figure 30 shows the process for retrieving the security token for a service or for any device that acts 
on behalf of a user without requiring him to authenticate each time. 
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Figure 30: Retrieving a security token for later use 

 

Figure 31 shows the process for retrieving the security token for an application that does not stores 
any user credentials and must ask the user for them each time: 
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Figure 31: Authenticating users on each startup of the application 

 

Basically,  the  authorization  layer  could  do  the  forwarding  for  the  application,  but  this  way  the 
application would have a better control of the execution flow. 

Figure 32 shows a simplified view of how the security token is delivered to the authorization layer and 
is used by it after the application / service has already got the security token: 
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Figure 32: Reusing a security token already retrieved 

Example 1: May  the administrator’s name be  Juan.  Juan  installs  the RERUM  traffic application and 
starts  it. The  installation process did not  install the user credentials of Juan. When the RERUM app 
initially  communicates with  the  authentication  layer  in  the GW  instance,  the  authentication  layer 
cannot locate the security token in the http header. Hence, it responds with an unauthorized code so 
the application can redirect to a login page of the identity platform where the user authenticates him 
with the credentials and user obtained in the registration process. The identity platform then fills the 
http header with the content of Juan’s attributes and signs it. Now the authorization layer detects the 
availability of a token. The token contains Juan’s attributes and the authorization layer can check the 
signature to ensure the token is valid, non‐obsolete and generated by a trusted entity. 

Example 2: A RD needs to access another one. The RD has previously received a security token from 
the  identity platform  for user  ‘internal’ using, whatever authentication mechanism  the application 
designer might see fit for internal RDs. Alternatively, the RD may have been provided with a security 
token during some startup‐phase from the middleware. When the RD needs to access another one, it 
includes his own token in the request. This token can then be used as any other in the authorization 
layer. 

Example 3: A RERUM Device from the electricity operator (EO) wants to access the electricity counter 
of my home. For this purpose, the EO has already received his own user from the certificate of the 
server that will be used to authenticate the EO server. Now when the EO server wants to access the 
RERUM system, it must get his authentication token associated to his user by authenticating itself by 
providing  the  certificate  corresponding  to  the  user  associated with  the municipality.  The  identity 
platform will  generate  the  security  token with  the  information  of  the  associated  user  (that was 
previously filled from the SO server), sign it, and include it in the http request. Now the SO server can 
access the RERUM system with this token and the authorization layer will be able to read the attributes 
of the SO server and check the signature of the security token. 

Example 4: An unknown RERUM Device wants to access the system. In this case the unknown RERUM 
Device  can  only  try  to  access  the  system  by  authenticating  itself  in  the  identity  platform  as 
‘anonymous’.  Previously,  the  administrator will  have  to  define  the  allowed  actions  for  user with 
attributes that correspond to an anonymous user. When such a request arrives at the authentication 
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layer  the  request will be evaluated according  to  the  rules. Hence, an anonymous user can do only 
actions that have been previously defined by the administrator. 

Note: A valid digital certificate should be deployed in every GW instance to let the connecting RD to 
check it. 

 

4.3 Analysis	of	authorization	options	
This  section  analyses  the  three most widely  used  options  for  authorization  and  its  suitability  for 
RERUM. With  this purpose, we will  first make a brief  introduction about how  they work and  then 
explain whether they fit or not in RERUM. This analysis aims to be easy to understand, and for that 
reason  it  tries  to avoid complex  technical details and keep at a conceptual  level as  far as possible. 
Complete technical details will be exposed later in Section 4.4 for the chosen option. 

Authorization is not at all the same as authentication. Authentication is the action of checking that any 
requester is he that claims to be, while authorization is the action to decide whether or not to grant 
access  to  a  given  service  or  resource.  Although  authentication  is  an  essential  prerequisite  for 
authorization, the goal of this section is not discussing authentication but it assumes that it has been 
achieved instead. RERUM’s proposal for authentication is explained in detail in Section 4.2. Therefore, 
this analysis explains authentication processes only when they refer to non‐RERUM procedures that 
are tied to the different authorization options explained. 

Note that this analysis covers several authorization mechanisms that already exist outside RERUM. For 
that reason, it needs to refer some concepts that are not specific from RERUM but whose names are 
the  same  as  the ones used  for RERUM. As  such,  and only  for  this  analysis,  these  terms must be 
interpreted  in  a  general  way,  not  necessarily  constrained  to  a  RERUM  scope.  For  helping  to 
differentiate these concepts from the ones used  in RERUM throughout the rest of documents, they 
are presented in Italic font. These concepts are: 

Application: Any piece of Software capable of processing data, either directly or by  invoking other 
pieces of Software, which may not be necessarily part of it. 

Resource: Any functionality or piece of data that can be accessed by an application 

Service: Any running application that exposes resources. Hence, note that a service is a special kind of 
application itself, but an application is not necessarily a service as it may not expose any resource to 
other applications. 

GUI (Graphical User interface): A special kind of software specialized only in interacting with human 
users  to present  and obtain  information  from  them. Though, basically, nothing  impedes  a GUI  to 
process data on its own, this is not part of its definition. Instead, pure GUIs are supposed not to make 
any process on data themselves, but delegating this process to service. Hence, such pure GUI are not 
considered to be applications. 

 

4.3.1 Option	1:	Ad‐hoc	authorization	provided	by	the	application	when	registering	
in	the	system	

The authorization process relies in proper authentication of the requester. This authentication may be 
carried out for each operation of once for all the session. As the authentication is subject to be a heavy 
task, both in computer and human effort, the approach usually taken is usually the latter. That is, the 
requester provides her credentials at  the start of a session and gets authorized  for  the  rest of  the 
session or until this authorization expires. The process of providing the credentials to get authenticated 
and gain access to the system is named ‘logging in the system’. 
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This option is the oldest and simplest one, which comes even from before the client – server paradigm. 
It basically consists on the addressed application checking all the permissions of the logged user each 
time the user starts it. This usually involves retrieving these permissions from a storage associated to 
the logged user, such as a database query for the user and making these permissions available from 
the service, usually in a variable stored in memory. From this moment on, the application may simply 
disable the proper actions to make them not accessible or preferably making the services checking the 
variable that contains the permissions previously retrieved. 

This option has the advantage of letting the authorization process to be as complex and powerful as 
needed, because it has access to all the information treated by the application, and it is also very fast 
because the permissions are calculated only once per time the user logs in the application. 

Though the ad‐hoc authorization suits with client‐server models,  it couples tightly the authorization 
process with the application it is protecting. That is, the SW in charge of the authorization needs to 
have a deep knowledge in advance of the Application it is protecting and the way it stores and access 
its data. Besides, modern Internet applications usually decouple services from GUIs, running GUIs on 
the device utilized by the human user and services often run on different machines, bringing the need 
to transmit the permissions and their integrity. Moreover, the segregation between GUIs and services 
also make possible the need to split the authorization decision between the different services accessed 
by the GUI. 

Finally, in modern applications where services and GUIs are split from each other, it is possible that a 
single service has to serve several GUIs and / or other services, and they may not necessarily need to 
access the same functionalities of the service and therefore they do not necessarily need the decision 
for the same set of operations available. 

 

4.3.2 Option	2:	OAuth		

OAuth  copes with  the  coupling problem of  the ad‐hoc procedure by  letting  any  server produce a 
standard token with a set of permissions that can be reused among different applications. For this 
reason, and because its authorization times are still very fast, It is currently an authorization technology 
very  widely  used  in  Internet.  Besides,  it  is  the  authorization  counterpart  for  a  very  popular 
authentication mechanism, which is OpenId [OpId12]. 

In short, OAuth provides the requesting applications a security token that already contains the result 
of the authorization evaluation for all resources to be accessed in the system. 

In short, OAuth consists  in the authorization being resolved for the resources to be accessed  in the 
system and being able of reusing this authorization later. This is carried out in the following way:  

When an application tries to access any URL / operation on behalf of a user,  it must get an OAuth 
security token48 for that user / application. If the application does not have it, then it needs to ask it to 
an authorization server, which will redirect the request to the  Identity Provider so  it can check the 
authenticity of the user and decide on whether to provide the needed attributes for the authorization 
or not. If the user gets authenticated, then the authorization server generates an access token for the 
id of the user that is logged on. The access token contains a given expiration date. This access token 
will contain the permissions associated to the requested service plus the information needed for the 
service to check the identity of the user. From now on, the application may store internally and use it 
repeatedly to access the service till the validity of its ticket expires. Though it is not mandatory to reuse 
this ticket, the process to obtain it involves authenticating the user / application each time the security 

                                                            
48 Actually, the technical name used  in OAuth for the security token  is ‘access token’, but we prefer the term 
‘security token’ for keeping consistence with the rest of the document, which uses a similar concept with the 
name ‘security token’ 
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token is requested. And the authentication operation may not be necessarily a lightweight operation. 
For that reason, OAuth makes special sense when the application asks for a security token for all the 
needed resources to be accessed at once and it reuses this token later once and again. 

When an application tries to access any URL of a system on behalf of a user, It must provide the access 
token and the system must first check first the validity of the token and whether it grants access to the 
requested URL. After this, the access to the resource is granted according to the permission in it. If the 
security  token did not  exist  the  system  returns  an http  code 403 meaning  that  it  is necessary  to 
authenticate  the  user  first  because  the  security  token  also  includes  the  credentials  to  access  the 
system.  If  the  security  token did not  include permission  for  the  requested URL,  then  the access  is 
rejected. 

Although it is theoretically possible to obtain a security token accessing any content of the request, in 
order to do so, the Application would have to ask for the security token for each request because the 
concrete values of the request will not be known until the request is issued. For example: A video store 
would like to check the age of the user before selling a video that is rated adult‐only. The store would 
have to access both the age of the user and the rating of the requested video. Their values will be only 
available on the request itself. Hence, for checking this it would be necessary to create a security token 
each time a new request for a video with age restriction arrives. 

This is feasible, but it removes the main advantage of OAuth, which consists in authorizing once and 
accessing multiple times, while it still keeps its main drawback, which is the need to authenticate the 
user / application each time the security token is issued. That is, it does not make much sense to use 
OAuth asking for a new security token per each request, because there are other technologies that 
allow doing it without having to authenticate the requests each time. For that reason the rest of this 
analysis is aimed only to the case where the same security token is reused for several requests. 

Under this assumption, OAuth may suit some Internet applications provided that: 

 The set of available URL / operations to be granted is previously known and not very large; 

 The access to them can be easily granted basing only on the attributes provided by the identity 

platform and 

 The complexity of the application itself is small enough to hold all the authorization logic in a 

single point 

If  the application  covers  these  conditions,  then OAuth has  the  advantage of being quite  fast  and 
lightweight, because the authorization decisions are evaluated only once for all the application, with 
no need to execute an authorization process each time a URL is accessed. 

But OAuth is not suitable for RERUM because: 

 OAuth does not support checking the purpose of the request or the subject being accessed 

due to this can only be known when request is issued; 

 For  the  same  reason, OAuth has no mean  to base  the access decision on any  information 

coming  from  the  request, which makes  almost  impossible  to  use  business  specific  logic, 

because non‐trivial specific logic for any service or resource will depend on arguments included 

in the request. Once OAuth has evaluated the access to a given URL, it has no mean to check 

the privacy of the resulting data, because this result is not available unitl after the processing 

of the request. For instance, if a query returns a set of records that each of them needs to be 

checked, there is no way that OAuth provides this; and 

 Finally,  though  theoretically  the  OAuth  specification  does  not  impose  any  kind  of 

authentication provider, in practice, almost all OAuth implementations only work with OpenId 

Authentication, which is a specification for an Authentication protocol. Although it is followed 

by many of the most important authentication providers, it is not universally accepted yet. As 
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a consequence, using OAuth in RERUM would in practice remove the RERUM flexibility to work 

with any authentication provider that complies with the authentication procedures defined in 

Section 4.2. 

 

4.3.3 Option	3:	Policy	based	access	proxy	

This option is not necessarily tied to a concrete technology, but to a general concept instead. In this 
option, the decision of granting access to a given URL / operation is taken each time the operation is 
requested and based on:  

 some security criteria previously defined to be applicable to that operation requested, 

 the identity of the user issuing the request, including the attributes of the user, 

 information contained in the request itself. 

 

These security criteria are normally defined in a formal language specific for defining access criteria 
and stored in a file named policy, such as XACML [XACML 13], and evaluated with software that is able 
to obtain the information of the request and combine it with the applicable policies to make an access 
decision. 

Note that accessing the attributes of the user is not a trivial issue. The easiest option would be to dump 
all of them on the request after the authentication of the user, but this could lead to privacy issues, 
due  to accessing all  the attributes unnecessarily. Another alternative  could be  to ask only  for  the 
needed attributes, but  this would  require a negotiation with  the  Identity Provider whose message 
could last more than the evaluation of the request itself. In any case, the concrete way to deal with 
this issue depends on each system. 

The advantages of this option are: 

 Completeness: It is possible to define security criteria that are based in any information that is 

included  each  time on  the  request  and  the  attributes of  the  user, which  can  allow  these 

security criteria to be defined even on business specific logic; 

 Online refreshment of the attributes of the requester: This approach is not affected because 

of the attributes of the user being changed, because they are provided per each request; 

 Ability  to  implement policies  specific  for privacy  criteria: The  security policies may  include 

decisions based on the purpose of the request, the identity of the human user whose data are 

being accessed and  the  identity of  the  requester, which are needed  to  take a decision on 

privacy constraints. Moreover, as  this option  is not necessarily constrained  to evaluate  the 

access decision only before the service is reached by the request, it still can check the privacy 

policy against the result of the request, making possible to evaluate this policies also on the 

result itself. For instance, if the request asks for a list of cars that passed through a crossing, 

the initial evaluation of the policy could grant access, but if there are some cars in the list that 

deny access to its position, a policy based access proxy could check this in the response, that 

is, after  the  service has been executed and  return a  security violation page  instead of  the 

response itself; 

 Safety:  Security  good  practices  encourage  checking  access  to  a  resource  each  time  it  is 

accessed and locate the decision as close as possible to the resource accessed as possible and 

 The criteria for granting access to a resource can be decoupled from the  implementation of 

the resource itself. 
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The drawbacks of this approach are: 

 The processing of the security policies require a relatively high computational cost (especially 

in an IoT environment), which might be relevant if we are executing them for each request and 

 The evaluation of  the access decision of a  resource could  take  far more  time  if  it  requires 

accessing the Identity Provider for retrieving the attributes of the user for each request and 

very especially if it required communicating with the Identity Provider per each attribute to be 

retrieved 

 

4.3.4 Conclusions	of	the	Analysis	

The only option that seems suitable to cover the very strict privacy requirements addressed by RERUM 
is the Policy based access proxy. However, due to the very constrained environment of IoT, it is very 
advisable to take some compromises to try to minimize the impact of evaluating the access of each 
request, especially in the part that could delay it most, which is the negotiation of the attributes to be 
retrieved from the  Identity Provider. For this reason, RERUM design will have to focus on trying to 
minimize the messages with the Identity Provider for retrieving the suitable attributes of the user. 

Moreover, the set of attributes retrieved will need to be reduced as well, in order to comply with the 
principle of privacy by design of using only the information of the user that is needed for the operation. 

However,  the  concrete  set  of  attributes  applicable  to  authorize  the  requests may  vary  from  one 
request to another. Hence, a minimum set of attributes per request would require negotiating them 
for each request, which would bring the overload of communicating with the Identity Provider that we 
aim to avoid. Thus, RERUM’s design will have to leverage the balance between an absolutely minimum 
set of attributes and asking on advance a more complete set for minimizing messages with the Identity 
Provider. 

Finally, the policy‐based access proxy ability to access each request also makes it the only one capable 
to provide security criteria based on business specific logic dependant on the content of the request. 

 

4.4 Design	of	Authorization	Components	
Before explaining the design of the authorization components, it is very important to recall that this 
section is focused on explaining those components that enforce only the security criteria, but not the 
privacy ones. Although the whole design supports both security and privacy criteria, this design is the 
result of a first step that focuses only on the security criteria. The full explanation of the remaining 
components that cover the privacy criteria as well is contained in deliverable D3.2. 

The conclusions of the options analysis explain why it is necessary to provide a negotiation to reduce 
the  set of attributes used by  the authorization and  the number of  times  it  is  requested. Although 
RERUM’s  design  addresses  this  issue,  it  is  a  privacy  related  one, which  is  not  the  scope  of  this 
document. The components described in this documents assume that they are provided with all the 
attributes needed to make the decision. The concrete components that negotiate and gather these 
attributes are explained in deliverable 3.2. 

Figure 33, taken from D2.3, recalls how the main authorization components are meant to interact with 
each other: 
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Figure 33: Managing security policies 

 

In short: 

0. Security  criteria  are  previously  defined  by  the  administrator  of  the  system  and  saved  as 
security policies through the Authorization policy manager 

1. Any request of the system is intercepted by a Policy Enforcement Point (PEP) 
2. PEP delegates the authorization decision on a Policy Decision Point (PDP) 
3. PDP asks a Policy Retrieval Point (PRP) for the policies applicable to the requested service 
4. The PRP retrieves the applicable policies from a Security Policies Store 
5. The PDP evaluates the policies and decides whether to grant access or not to that service 
6. The PEP allows the request to reach or not the service according to the decision taken by the 

PDP 

 

The security criteria will be defined in a standard language for specifying security criteria. In concrete, 
the project has chosen XACML because  it  is a standard for defining access policies specified by the 
OASIS [OASIS] consortium widely accepted in the Internet. 

 

4.4.1 Policy	Enforcement	Point	(PEP)	

As  stated  in D2.3:  ‘The  Policy  Enforcement  Point  is  responsible  for  intercepting  incoming  service 
requests in the system and granting or denying access to them. To do so, it will retrieve all necessary 
input from the request in a protocol independent manner and invoke the Policy Decision Point (see 
below) to know whether to grant or reject the decision. Depending on that, the PEP will let the request 
pass or it will reject the request. The sensitivity and the requirements to access a certain set of data 
are described in the access policies. The input to the PEP will be the request itself, which must contain 
a security token with the  information related to the attributes of the user  issuing the request. The 
output of the PEP will be either letting the request to pass or rejecting it and returning a security error 
page’. 

Hence,  the  enforcement  action  consists  in  letting  pass  or  rejecting  an  intercepted  request.  But 
intercepting a request is not trivial and can be carried out in different ways, including, but not limited 
to the following three options: 
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Option (1) Deploying all services and resources in an application server and installing the PEP as 
a filter for the applications; 

Option (2) Designing the PEP as a proxy installed in the same host that is running the services and 
resources and intercepting all traffic that goes to the ports where they are listening and 

Option (3) Installing a proxy that is running on a separate proxy. 

Option (3) is not contemplated in the architecture and option (1) might need a lot of resources that 
might not be necessarily be  available on  a GW  instance.  For  this  reason,  the RERUM PEP will be 
designed according to option (2). That  is,  it will be an  independent application  installed on the GW 
instance itself that will be listening in the same port where the services and resources are meant to be 
exposed and will grant or reject access to the corresponding services depending on the decision taken 
by the PDP. 

However, though RERUM implementation will be based on option (2), the design will be prepared to 
support the three options, by separating the authorization logic from the intercepting one. Hence, we 
will have: 

 Intercepting logic: Proxy part 
o Obtain destiny host and ports (for possible redirections of case 3) 
o Obtain listening port (for intercepting requests) 
o Listen on intercepted port 
o Listen on intercepted response 

 Authorization logic 
o Obtain security (authentication) token from the request 
o Gather  relevant  information  of  the  request,  including  the  token,  and  place  it  in 

protocol independent structure 
o Evaluate  access  for  the  request,  by  invoking  the  PDP  passing  it  the  information 

gathered before 
o Evaluate access for the response, by invoking the PDP 

Note, however, that actually the evaluation of access for the response  is only necessary for privacy 
issues, and hence, it will be discussed in D3.2. 

In any case, the PEP needs to have two subcomponents. The first subcomponent, which will be named 
Security Interceptor, will take the responsibility for carrying out the intercepting logic. As mentioned, 
this  logic can either be  implemented as a proxy or as a filter  installed on an application server. The 
second subcomponent will be the authorization logic stated for the PEP and will be named ‘Authorizer’.  

The Authorizer itself will delegate the decision in the PDP, which is explained in the following section. 
For collecting the information from the request and passing it to the PDP, the PEP uses an object named 
XACMLContext, which  is an XACML standard way  to pass  information  to a PDP.  In practice XACML 
Context is an object that constructs a valid XML content compliant with the XACML specification for 
providing input to a PDP from the information contained in the request, whose name in the XACML 
specification is Access Context. It is also able to interpret the decision of the PDP itself. The only reason 
for naming this object ‘XACMLContext’ instead of ‘AccessContext’ is only to differentiate it from the 
internal objects that the XACML libraries uses internally in the PDP. 

Figure 34 shows the relationship of the distinct components mentioned. 
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Figure 34: PEP components and their relationship with PDP 

As the figure shows, the PEP  is comprised of a Security  Interceptor and an Authorizer. The Security 
interceptor may be a Filter to be installed on an application Server or a classic intercepting proxy. The 
Authorizer carries out the authorization process by invoking a PDP. Figure 35 show the processing of a 
request. 

 

Figure 35: Interaction of PEP components with the rest of the system 

The XACML context is paramount for one of the innovations in RERUM. Although XACML itself already 
supports the evaluation of business specific criteria by including request parameters in the resource 
part of the policy, the problem with this approach is the following: it is necessary that the PEP that will 
invoke  the PDP with  the XACML  libraries provide  the values  for  these request parameters, and  for 
providing these values, the PEP itself needs to know where to obtain them. In practice, this is usually 
dealt with by hard coding in the PEP where to obtain these values. But the problem with this approach 
is that: it makes the PEP dependent on each service to protect, because it needs knowledge about how 
the service work, and this makes impossible that the same PEP can serve other services  it does not 
know. In short, supporting business specific logic usually comes at the cost of lack of adaptability. But 
in  RERUM we  follow  a  different  approach.  In  concrete,  RERUM  assumes  that  all  the  information 
contained in the request will follow a given usual nomenclature in case it is really there, and dump this 
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information in the XACML content following this nomenclature without needing to have any previous 
knowledge of the nature or structure of the service. 

The exact nomenclature assumed by the XACML Context is the following: 

Request content  Entry name XACML 
context 
section 

Protocol version  REQUEST_LINE_protocol_version <resource> 

Request  line 
method 

REQUEST_LINE_METHOD <resource> 

header  HEADER_<headerName> <resource> 

uri  REQUEST_LINE_protocol_version <resource> 

Security  token: 
user attribute 

<Atribute_name> <subject> 

Uri.query  REQUEST_Query <resource> 

Uri.authority  REQUEST_Authority <resource> 

Uri.fragment  REQUEST_Fragment <resource> 

Uri.host  REQUEST_Host <resource> 

Uri.path  REQUEST_Path <resource> 

Uri:  resource 
identifier 

ACTION_action_id <action> 

URL: 
named_parameter 

ACTION_<param_name> <action> 

URL: 
unnamed_paramet
er 

ACTION_PARAM_<param_order> <action> 

Body of type HTML. 
POST field 

POST_<fieldName> <resource> 

Body of type Form: 
POST field 

POST_<fieldName> <resource> 

Body  of  type  XML: 
tag value 

<xpath name of the tag> <resource> 

System.CurrentTim
e 

urn:oasis:names:tc:xacml:1.0:environment:cur
rent-time 

<Environmen
t> 



RERUM FP7‐ICT‐609094  Deliverable D3.1 

Page 108 of (160)   © RERUM consortium members 2015 

Figure 36: Nomenclature for request contents to be included in the XACML context 

 

Following this nomenclature, a policy administrator, who knows the structure of the services of the 
system, may create policies according to this nomenclature, which, together with the ability of the PEP 
to include each value of the request in the XACML context following the same nomenclature, will allow 
the PDP later to properly evaluate the XACML policy. 

 

4.4.2 Policy	Decision	Point	(PDP)	

As stated in D2.3: ‘The Policy Decision Point is responsible for deciding whether a request is granted 
or not, based on  the  information provided by  the PEP and  the  security policies applicable  for  that 
request. The PDP utilizes  its own specific data structure and  it does not reuse the original request, 
aiming to be independent from the protocol that the request was originally carried on. The input of 
the  PDP  will  be  a  protocol  independent  description  of  the  request  containing  the  information 
necessary to evaluate the security policies corresponding to the requested resource. The result of the 
PDP will be a protocol independent response stating whether to accept or not the request’. 

In the case of RERUM, the PDP evaluates XACML policies applicable to a request for a concrete XACML 
content, which is the protocol independent description stated in D2.3. For doing so, the PDP makes 
use of libraries that evaluate the XACML policies themselves. It might be argued that if such libraries 
already exist, then there is no need for the PDP object itself. However, those libraries have the problem 
that they do not offer a common API and the version 2.0 of XACML is not compatible with version 3.0. 
Hence, for a matter of maintenance and versatility, the PDP object wraps the access to these libraries 
for the PEP in a way that is independent from the library used and the version of XACML being used. 

Besides, a given request can be applicable to many policies. For this reason, it is necessary to previously 
obtain the policies applicable. This task is delegated in the Policy Retrieval Point explained in the next 
section. 

Figure 37 shows the classes involved in the process and how they work with each other. 

 

Figure 37: PDP related classes 
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4.4.3 Policy	Retrieval	Point	(PRP)	

As stated in D2.3: ‘The Policy Retrieval Point provides the security policies applicable for the requested 
services  so  that  the PDP  can evaluate  them. The  input of  the PRP will be a protocol  independent 
request including at least the data referring to the resource whose access wants to be decided. The 
output  of  the  PRP will  be  the  content  of  a  set  of  policy  files  /  rules  applicable  for  the  resource 
requested’. 

There are 2 possible ways to achieve this: 

a) Let the PRP itself filter policies that have to be applied in base of the URL requested, possibly 
according to some kind of configuration and 

b) Letting the XACML library itself to decide whether a policy is applicable or not by evaluating its 
<target> section, whose purpose is precise. 

Note that actually a) and b) do not necessarily exclude each other, but they can be combined together, 
instead. In fact, this is the approach of the RERUM PRP. That is, the RERUM PRP first make a selection 
of applicable policies and nothing impedes these policies to include their own <targets> sections that 
the XACML library will evaluate to constrain the set of applicable policies further. 

In a first approach, the PRP could make a direct association between the resource to be authorized 
and the policy to be applied. However, this would force to have at least one policy for each resource 
to be authorized, making almost impossible to reuse the same policy for a whole set of resources. But 
in practice, RERUM resources might be grouped according to his URL. For instance, the indoor comfort 
management use case could state that only the members of a given floor can adjust the temperature 
of the floor, but this is applicable to all the temperature actuators of the same floor.  

The actuators are being exposed as REST services with the given structure:  

https://<anyRERUMhost>/temperature/floor/set/?floorNumber?newTemperature 

In this case, we are interested in reusing the same policy that check the number of the floor, so we 
could  be  interested  in  setting  up  a  policy  for  all  URLs  that  match 
‘https://myRERUMhost/temperature/floor/set’, and this can be achieved easily with a regular 
expression. 

And this is exactly what the PRP does. The PRP reads its configuration from a file, which assigns regular 
expressions in java format to a set of applicable policies, including their corresponding relative paths 
for them, which allows defining and storing these policies in a hierarchical way. Moreover, as a given 
URL may match more  than a single  regular expression,  it  is even possible  to define overall  regular 
expressions that point to policies defined by the overall administrator of the system and more specific 
regular expressions that point to finer grained policies. 

Upgrading the previous example, an overall administrator policy could state that only users that are 
active can access the system. In practice, this would lead to a configuration like: 

https://myRERUMhost/.*:active_user_policy 

https://myRERUMhost/ temperature/floor/set .*:temperature_setting_policy 

 

The first line will match all URL’s starting by ‘https://<myRERUMhost>’, that is, all https accesses to 
the host myRerumHost, including, but not limiting to the temperature setting ones. And it means that 
all operations addressed to myRerumHost will be applied the policy active_user_policy. 

The  second  line  will  match  only  those  urls  starting  by  ‘https://myRERUMhost/ 
temperature/floor/set’, that  is, only the temperature setting operations, and  it means that all 
temperature setting operations will be applied the policy temperature_setting_policy. 
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Hence,  for a  temperature  setting operation,  the PRP will  select 2 policies, active_user_policy 
because of the first line, and temperature_setting_policy because of the second line. 

It  is also possible  that we want  to apply distinct policies  to  the  same  resource  that each of  them 
evaluates a single condition. For instance, the room temperature service could have several operations 
for getting and setting the temperature, which are discriminated by the http method (PUT or POST). 
Although it is possible to have a single policy stating conditions for method = PUT and method = POST, 
it would be a quite complex policy and the administrator of these service could be interested in having 
distinct policies because he conceive  these operations are distinct  services. For  that case,  the PRP 
allows  defining  several  policies  applicable  to  the  same  resource.  The  method  for  doing  that  is 
separating the applicable policies by commas. In this case: 

https://myRERUMhost/.*:active_user_policy 

https://myRERUMhost/temperature/floor/.*:temperature_SET_policy,        
                                         temperature_GET_policy 

The first line is identical to the previous example and states to apply the policy to check that the user 
is active for all services. The second line states that all the floor operations must be applied the policies 
temperature_SET_policy and temperature_GET_policy. These two policies are expected to 
check the field REQUEST_LINE_METHOD for checking the proper request method as stated in Section 
4.4.1. 

Another interesting point is depending on the library implementing the XACML standard, it might not 
possible to use always the same PRP obtaining the policies directly, but the library could impose a given 
PRP itself, though with a different name. For instance, the sun library for XACML 2.0 in practice imposes 
some concrete classes for accessing the policy files, and also implies them to be accessed as physical 
files. Though this is acceptable as a first approach, a better one could be to at least support caching 
the policies in memory so they do not need to be read from the disk each time the request is evaluated. 

For  this  reason,  the PRP will be  a  class  Factory  itself, with will  contain  the proper getInstance 
method to retrieve the suitable PRP object. Alas, as this object will be defined by the third party library 
implementing  the XACML standard,  there  is no way  to enforce  it will  follow a given  interface. This 
forces to define its method as Object getInstance(enum engineType) and later cast the returned 
object to each required type. 

Figure 38 shows how PEP, PDP, PRP and the trust engine  interact with each other to grant or deny 
access to the services requested: 
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Figure 38: Interaction PDP‐PRP 

 

4.4.4 Introduction	Level	

As explained before  in Section 4.2 for the Service  level authentication  in RERUM, the authorization 
needs to know some attributes of the user that is issuing the request and, more importantly, it needs 
to make sure  that  the  requester  is he who claims  to be, and  this  is a  responsibility of  the  Identity 
Provider. However, there are several ways that this provider may provide this  information, each of 
them with his pros and cons. In concrete, the authentication provider may provide the attributes of 
the user when entering  the system or  it may provide  them when explicitly asked  for  them. As  the 
authentication  provider  is  not  part  of  RERUM,  the  project  can  hardly  guarantee  this.  But  the 
authorization components still need this information to be provided, and preferably always in the same 
way. For this reason, and to ensure the authorization components always receive the attributes of the 
user in the same way, RERUM includes a new component that will do this homogenization work, which 
is named the ‘Identity Agent’ (IdA). The IdA checks that the user has properly been authorized by the 
identity platform and collects the  information needed about the user for the authorization process. 
Next, it includes them as a security token in a header of the request so the authorization components 
can use them in the decision process. As the information will be in a predefined header of the request, 
which already complies with the way the XACML context collects the information for sending it to the 
PEP, the authorization components do not be even need to be aware of the IdA making his job. They 
only need is to check that the security token collected from the header has been signed by the IdA. 

There  is another functionality / reason for the  IdA. The collection of user attributes can be a heavy 
task, especially  if RERUM  is aimed  to be an  interoperable platform.  In order  for RERUM  to be an 
interoperable platform,  the  retrieval of  the attributes of  the user  should either be based on open 
standards, such as SAML, or implemented at least for the main Identity Providers. And in both cases 
the retrieval of these attributes is subject to be a heavy task, both in terms of computational resources 
and number of messages transmitted to retrieve the messages. Although it is possible to retrieve the 
needed attributes for each request, this way would imply a lot of messages for retrieving the relevant 
attributes for each request, which is even worse having into account that many http requests often 
imply additional requests associated to the main one. For this reason, it is very important that the IdA 
is also responsible for holding a cache of the attributes of the recent requesters so it does not need to 
ask for them for each request but it supports some expiry date for them after what they are removed. 
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This cache feature has strong implications from the point of view of privacy, because the IdA should, 
among other things, ask only for those attributes that are needed, ensure it is not possible to disclosure 
the  identity  of  the  requester  and  keep  them  updated. However,  privacy  is  not  the  scope  of  this 
document  and  for  that  reason  the  components  related  with  the  IdA  that  are  related  with  the 
enforcement of the privacy and their explanations are included in the D3.2 document, which is focused 
on privacy issues. 

The signature is necessary for security reasons. The IdA and their transmissions are subject to attacks 
as any other component of the system and for that reason their transmissions also need protection. In 
more detail: 

 The security token must be signed for avoiding it to be forged 

 The signature of a security token should have an expiration date assigned 

 The transmission of the security token must be encrypted to avoid confidential information of 
the user to be disclosed 

 

There are basically three options how the IdA could provide the security token to the Authorization 
layer: 

Option (a) The applications get authenticated once  in  the  Identity Provider of  their  choice by 
providing  it the credentials of the user and pass their authentication token to the  IdA each 
time it is executed, which is once for each request, and the IdA talks with the Identity Provider 
(if necessary) each time to retrieve the user attributes; 

Option (b) The applications get authenticated once  in  the  Identity Provider of  their  choice by 
providing it the credentials of the user and pass their authentication token to the IdA just after 
being authenticated to have the IdA obtain the attributes from the Identity Provider once or 

Option (c) The applications get authenticated once through the IdA by providing it the credentials 
of the user, which forwards the authentication request to the proper Authentication provider 
and asks it for the proper user attribute only once. 

 

Option (a) is undesirable because it means that the IdA needs to make a conversation with the Identity 
Provider to retrieve the attributes of the user for each request. Options (b) and (c) do not have this 
problem and could both suit RERUM, but option (c) has the advantage for the RERUM applications that 
they only need to make a single interaction with the IdA and let it to interact with the Identity Provider 
instead of invoking first the Identity Provider and later the IdA. More importantly, in option (c), the IdA 
acts as a façade for the Identity Provider itself, offering the same interface and hiding the complexity 
of the process, and thus comply with the standard procedures stated in Section 4.2 for the Service level 
authentication in RERUM. For this reason, the option chosen is (c), which is illustrated in the Figure 39. 
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Figure 39: Obtaining security token through the IdA and using it 

 

As explained, the IdA has to interact with the Identity Provider to get it to authenticate the request 
and obtain the proper attributes. However, each Identity Provider is subject to work in its own way, 
which leads to many possible interfaces to be implemented. For this reason, the IdA allows indicating 
the API he will need to use to communicate with the  Identity Provider.  If he  is not reported,  It will 
assume SAML by default because it is a widely used Internet standard. 

 

4.4.5 Authorization	Policies	Manager	

The authorization policies manager allows defining the security criteria used for deciding whether to 
grant or reject access to the RERUM system. These criteria will be saved in a standardized format so 
they can be obtained later by the PRP (see Section 6.11.1.7) to be provided to the PDP (see Section 
6.11.1.6) so  it can evaluate them against the request to  take a decision. The Authorization policies 
manager  supports  the  standard  operations  for  adding,  deleting  and  modifying  policies.  The 
Authorization Policies Manager  takes as  input  the policy  files provided by  the administrator of  the 
system and gives as output  the Policy  files  to be saved  to  the Security Policy Store, which can be 
considered as a specific instance of the Trusted Credentials Store described above. 

Figure  40  shows  the  relationship  between  the  Authorization  Policy Manager  and  the  rest  of  the 
components involved in the evaluation of the security policies of the system: 
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Figure 40: Managing security policies 

Note: The interactions for the “modify” and “delete” operations are basically the same as for the “add” 
operation. That is, they modify the set of security policies applicable for a given request and these are 
finally supplied by the PRP. 

4.4.6 Interaction	with	Other	Modules	

The authorization components that need to interact with other components of the system are: 

 The  IdA  talks with  the  Identity  Provider  to  check  the  identity  of  a  user  and  obtain  their 
attributes; 

 The PEP  let pass or rejects the requests coming from the Internet to the requested RERUM 
services and 

 The authorization policy manager lets the administrator providing the authorization policies 
to the PDP; 

 The  architecture  of  the  System  let  other  components,  such  as  the  reputation  engine,  to 
provide additional information to the PEP by acting as additional proxies themselves that add 
more headers to the request that PDP will process later. 

Basically, the Policy Retrieval Point also needs to talk with the consent manager to obtain the privacy 
policies to be evaluated on each request. But that  is a privacy  issue that  is covered  in ‘D3.2 Privacy 
enhancing  techniques  in  the Smart City applications’ and hence  its  interface  is not defined  in  this 
section. Besides, the PEP also interacts with the reputation engine, but that interaction is related with 
the trust engine, which will be described in ‘D3.3 Modelling the trustworthiness of IoT’. 

The rest of the authorization components only interact internally with each other. That is, they do not 
publish or use any external interface and hence they are included here. 

 

4.4.6.1 Interaction	of	the	PEP	with	the	requested	RERUM	services	

The PEP is designed to be transparent for the requested RERUM services and almost transparent for 
the requesting applications.  

In the case of the requesting applications, it is ‘almost’ transparent because the PEP needs a security 
token issued and signed by the IdA to both check that the user has properly been authenticated and 
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access the needed attributes of the user for checking  its access. The exact structure of the security 
token issued by the IdA has been previously defined in Section 4.4.4 Introduction Level. 

The interaction with the services of the PEP with the services is shown in the following Figure 41: 

 

Figure 41: PEP interaction with services 

As  the  figure  shows, after encryption  / decryption provided by  the TLS protocol of a  request  that 
already included a security token, some other components can be hooked to make additional process 
and potentially modify or enrich the request.  In fact the encryption / decryption components work 
that way and there is at least one component, the reputation engine, which will be connected this way 
in the future. Here the key point is the PEP gets a non‐encrypted request whose headers include at 
least a security token previously signed by the IdA, but the other potential components may modify 
the request further, for instance, adding headers to the request with an evaluation of the reputation 
engine. 

Once the PEP gets the enriched request, it decides whether to grant access or not to the requested 
resource. If it does, then it forwards the enriched request to the request to the service, which will also 
allow the service to invoke other services subject to authorization themselves. 

In short: Though the PEP interacts with the requested services, this interaction is transparent for them 
and hence there is no additional API involved. 

4.4.6.2 Interaction	of	the	authorization	policy	manager	with	the	PEP	

The authorization manager exposes a Java Interface AuthorizationPolicyManager with a single 
method that is exposed below:  

void IncludePolicy(String resourcePath, String policy, String policyId); 

where 

resourcePath is a URL identifying the resource to be protected 

policy is the xacml policy to be evaluated when the resource is trying to be 
accessed. Note that it makes sense to have several policies applied to the 
same resource. 

policyId is a unique identifier for that policy and resource. Note that it 
makes sense to have to policies with the same policyId as long as they do 
not refer to the same resource. 

 

The policy manager  is defined to allow combining several policies. However, RERUM use cases only 
use this feature for combining access and privacy policies. For this reason, the  implementation and 
details of this feature will be described in D3.2 
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5 Secure	RERUM	Device	Configuration	

5.1 Introduction,	Motivation	and	Link	to	User	Requirements	
This chapter details the procedures and components involved in ensuring the proper configuration of 
each device connected to the RERUM network and also provide mechanisms to detect and react to 
malfunctions  or  misconfigurations  on  those  devices.  This  configuration  includes  managing  the 
software updates of the RERUM Devices and, potentially, registering and processing events received 
from the whole system. 

In the sub‐sections below the design of the following protocols and components is explained: 

 The  ‘Fast and Secure Network Bootstrapping’  section defines  the approach used  in RERUM  to 
minimize security attacks at the initial bootstrapping of RERUM Devices added to the network. This 
approach describes the technical contribution ‘Contribution 1: Secure Credential Bootstrapping’ 
stated in D2.1. The RERUM architecture uses several security mechanisms to provide security and 
privacy during operation. As the strength of these mechanisms relies on the confidentiality of the 
applied credentials the secure bootstrapping of security credentials is necessary for all use cases 
considered in RERUM. The user requirement linked to this sub‐section is: 

o UR‐1: A user wants to securely introduce a new device into the network, so that afterwards 
messages sent by his device to the gateway and to other devices of his network are kept 
confidential and are not modified by unauthorized people. 

The sub‐section details the steps for network bootstrapping with the focus on bootstrapping of 
security credentials. These steps consist of “Initialization of the Security Center”, “Initialization and 
bootstrapping  of  the  RERUM  gateway”,  “Distribution  of  a  Join  Key”  and  “Initialization  and 
bootstrapping of RERUM Devices”.  

 The  ‘Secure  and  context  aware  dynamic  auto  configuration’  section  covers  the  technical 
contribution ‘Contribution 12: Incorporating adaptability to an IoT platform using PRRS and OAP’ 
of  D2.1.  This  contribution  allows  the  maintenance  of  the  system  fixing  bugs  or  security 
vulnerabilities,  updating  software,  configuring  devices  and  in  general managing  remotely  the 
whole RERUM network. This technical contribution consists in incorporating the PRRS Module and 
the OAP Module as parts of the SW Component Manager described in the RERUM Architecture. 
The user requirements (UR) linked for this section are: 

o UR‐14: The user requires being able to remotely configure and upgrade the firmware and 
the security mechanism of his devices in an automated way, without needing any manual 
installation. 

o UR‐15:  The  administrator  also  requires  low  maintenance  costs  and  low  technical 
administration overhead. 

 In the ‘Self management and self monitoring mechanisms’ section contains information about the 
technical contribution ‘Contribution 16: Lightweight framework for sensor monitoring’, explaining 
how the devices are monitored and also how this data is processed to perform a real‐time analysis 
of  the  system events by  integrating a SIEM  in  the RERUM network, as  is  said  in  the  technical 
contribution ‘Contribution 11: SIEM in a generic IoT platform’. The SIEM introduced here is a way 
to  implement  examples  of  Alert  Processors  and  Alert  Reactors  as  they  are  described  in  the 
Architecture  document  together  with  a  Resource  Monitor  that  provides  the  monitoring 
information to process. All this modules are inside the Monitoring Manager Functional Component 
of the RERUM Architecture and linked with the user requirements: 

o UR‐13: The user doesn’t want  to worry about  reporting errors or malfunctions on  the 
Smart Devices or Network to fix them. Those problems must be auto‐detected. 
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o UR‐19: User needs to have an automated system for monitoring the status of the devices 
and of the network connections to avoid missing alarms and to ensure the functionality of 
the services. 

For the evolution and adoption of the IoT, technologies need to facilitate the use to regular users by 
making the processes transparent for them. With the innovations described in this chapter the RERUM 
system becomes more adaptable, secure and easy to use.  

In all use cases defined in RERUM, the secure installation of a new device in the RERUM network, the 
auto detection of any problem and the automatic configuration of the installed device are common 
requirements that will be covered here. 
 

5.2 Fast	and	Secure	Network	Bootstrapping	
The RERUM architecture  contains  several  security and privacy mechanisms  to protect  the RERUM 
system from security attacks and loss of personal data. Examples earlier described in this document, 
are Device‐to‐Device authentication,  Secure Communication, Authorization or privacy mechanisms 
that will be described in the future RERUM deliverable D3.2. These security mechanisms typically rely 
on security credentials and the strength of the security architecture depends on the strength of the 
security credentials. If the credentials are weak or compromised, the security mechanisms cannot fulfil 
the intended security properties such as provisioning of confidentiality, authenticity or integrity. 

In that sense, the setup of a network of RERUM Devices is a sensitive process and innovation 1 ’Secure 
Credential Bootstrapping’ of the RERUM deliverable 2.1  is about provisioning and bootstrapping of 
security credentials in a secure manner. It is relevant for each of the four use cases of RERUM. Fresh 
RERUM Devices to be installed as part of a Smart City use case typically do not have security credentials 
available in the first step, so that some bootstrapping mechanisms need to be in place. Bootstrapping 
of credentials is closely related with the setup of the network and the setup of the first communication 
links between RERUM Devices or other entities. A possible attacker may be already in place while a 
network of RERUM Devices  is  installed or an attacker may  later try to connect or  insert a malicious 
device  into an existing network. The goal of  fast and secure network bootstrapping  is  to minimize 
security attacks at the initial configuration of a network of RDs. When the network is initialized, the 
objects are quite vulnerable, because they do not have any knowledge regarding the environment and 
their neighbour nodes and no knowledge about security credentials to protect communication. Also it 
is the goal of fast and secure network bootstrapping to avoid the installation of malicious devices into 
an existing network. 

In most of the envisioned use cases a network of constrained RERUM Devices rely on the following 
network  layers according  to  the OSI  layer model  (the  following bootstrapping procedure does not 
concern the case of arbitrary participatory sensing devices, such as citizen smartphones): 

 Layer 2: IEEE802.15.449 [IEEE802.15.4] 

 Layer 3: 6LoWPAN50 [RFC4944] and RPL51 [RFC6550] 

 Layer 4: UDP and ICMP52 

                                                            
49 IEEE Standard for Local and metropolitan area networks‐‐Part 15.4: Low‐Rate Wireless Personal Area Networks 
(LR‐WPANs) 

50 Transmission of IPv6 Packets over IEEE 802.15.4 Networks 

51 IPv6 Routing Protocol for Low‐Power and Lossy Networks 
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The secure bootstrapping procedures start from establishing the  lower  level  layer 2  links, getting a 
security base for further instantiation of the layers above and bootstrapping of operational credentials 
required within the RERUM network and Smart City use case. 

Figure 42 depicts an example of a network of RERUM Devices from a layer 2 and 3 network point of 
view. It consists of one or more PAN coordinators, each responsible for its PAN cluster, and constrained 
RERUM Devices being connected via IEEE802.15.4 hops towards the PAN coordinator. In RERUM the 
role of a PAN coordinator is applied by the RERUM gateway which provides also the link towards the 
Internet. The bootstrapping of credentials is controlled by the Security Center which is located in the 
Internet. Depending on the concrete application use case, the Security Center may be also located on 
one of the RERUM gateways. The Security Center is responsible for authentication and authorization 
of new RERUM Devices and granting access  to  the RERUM network by provisioning of operational 
security credentials to the RERUM Devices in a secure manner.  

 

 

Figure 42: Network of RERUM Devices 

 

In the following description we will explain the bootstrapping procedures with focus on bootstrapping 
security credentials  in a  secure way,  first  introducing a RERUM gateway  into  the  system and  then 
installing and connecting RERUM Devices to a PAN cluster controlled by the RERUM gateway. The steps 
consist of: 

 Initialization of the Security Center: Here the first steps are described to set up the Security 
Center for bootstrapping of devices; 

 Initialization and bootstrapping of the RERUM gateway: In a second step the first RERUM 
gateway is initialized to connect to the Security Center; 
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 Distribution of the Join Key: The Join Key with which a RERUM Device protects the first 
communication to the Security Center is distributed and 

 Initialization and bootstrapping of RERUM Devices: A new RERUM Device is connected to the 
RERUM network and the credentials are bootstrapped. 

 

5.2.1 Related	Technology	

The RERUM network relies on different network layers, each providing its own security mechanisms. 
However, often standards are explicitly excluding the procedures how keys are distributed towards 
different entities before the specified security mechanisms can be applied. 

IEEE802.15.4 

This  standard  specifies  different  security  mechanisms  to  protect  authenticity,  integrity  or 
confidentiality of layer 2 frames. The procedures to bootstrap the required keys towards the network 
entities are excluded in the standard. There has been much research work in the past on defining key 
management  procedures  for  wireless  sensor  networks.  All  have  in  common  that  a manual  pre‐
installation phase is required before devices can be bootstrapped. The key management approaches 
can be categorized into the following groups: 

 Key management based on network key (e.g., [LKV02]) 

 Full pair wise keys (e.g., [CP05]) 

 Key management based on group keys (e.g., [WP++13]) 

 Trusted third party based key management (e.g., [PS++02]) 

 Matrix based key distribution (e.g., [RSH10]) 

 Polynomial based key distribution schemes (e.g., [LN03]) 

 Hash based key distribution schemes (e.g., [BCB13]) 

 Location based key distribution (e.g., [RLZ08]) 

 Probabilistic key pre‐distribution (e.g., [CPS03]) 

There is no optimal key management schema available. Either 

 protocols have a  limited security scope, because they rely on few keys which are known to 
multiple entities or 

 key distribution  schemas  require much  storage  capacity and do not  scale, e.g.  to  store all 
possible pair‐wise keys or 

 protocols  require much  computation  resources  to  calculate pair wise  keys with neighbour 
hops. 

 

6LoWPAN 

Research is on‐going to support IPSec communication security over 6LoWAPN networks too and first 
few IPSec implementations exist in that context. However, the challenge to bootstrap credentials onto 
constrained devices that are applied for establishment of authenticated communication channels  is 
not solved. These credentials need to be configured manually. 
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RPL 

RPL provides security mechanisms to protect routing messages. The key management aspect is also 
excluded  from  that  standard  and  future  research.  The  application  of  security mechanism  for  RPL 
routing messages can be also omitted if the layer below provides the required security properties. 

DTLS 

Similar as IPSec, DTLS is a protocol to establish a secure channel and to negotiate temporary session 
keys.  Authentication  of  the  DTLS  handshake  protocol  requires  some  existing  credentials  on  the 
constrained devices. The standard does not specify the procedures to bootstrap these kinds of keys. 

EAP 

EAP  is  a  generic  framework  for  authentication  of  devices,  e.g.  used  in  the  context  of  802.1X 
authentication  in  WLANs  or  fixed  LANs.  EAP  authentication  relies  again  on  some  pre‐installed 
credentials to authenticate the requesting and responding entity, which are not available for newly 
introduced devices. In addition, as EAP is a generic framework to fulfil a broader range of scenarios, it 
does not fit well in the context of constrained devices with a limited ROM. 

PANA 

PANA adapts the EAP framework on the IP layer. In that sense the same limitations exist as described 
for EAP. 

 

Conclusion: 

Smart City applications and communication of RERUM Devices rely on different network layers. The 
available  security  approaches  per  layer  cannot  be  considered  separately,  but  they  need  to  be 
considered  in  conjunction with each other  to  find  the  right balance.  It  is not  reasonable using all 
security mechanisms  of  each  layer  in  parallel,  but  to  focus  on  the  required  ones.  The  security 
mechanisms described above typically consider only one layer. Bootstrapping procedures to distribute 
necessary credentials are not described by  the standards at all or are designed  in  the context of a 
specific layer only. 

The RERUM credential bootstrapping procedures described in the next sections are balancing the use 
of security mechanism across network layers as necessary to secure the distribution of different type 
of credentials needed by the RERUM framework. They start from establishing the lower level layer 2 
links,  getting  a  security  base  for  further  instantiation  of  the  layers  above  and  bootstrapping  of 
operational credentials required within the RERUM network and Smart City application.  

 

5.2.2 Initialization	of	the	Security	Center	

The  Security Center  (SC)  is a  trusted RERUM  server  in  the  Internet providing  security and privacy 
functionalities  to  RERUM  Devices  requiring  a  central  reachable  server  component.  For  the 
bootstrapping process the Security Center is responsible for authentication and authorization of new 
RERUM Devices and granting access to the RERUM network by provisioning of operational security 
credentials to the RERUM Devices in a secure manner. 

The Security Center is located in the Internet and may be installed as separate entity or on a RERUM 
gateway depending on the HW resources of the gateway. For indoor use cases the Security Center may 
be also located within the local network / Intranet of the indoor application. 

The Security Center  is being  controlled by a  security administrator who  is authorized  to  configure 
security credentials (see Figure 43). For proper operation of the bootstrapping procedures described 
later  on,  the  Security  Center  acts  as  key management  center  and  PKI  certification  authority.  As 
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described in section 2.5 a flat hierarchy of certificates is intended for RERUM Smart City applications 
and the trust anchor of the PKI is the certificate of the Security Center. 

During the bootstrapping procedures secure communication channels will be established towards the 
SC, either from the RERUM gateway or RERUM Devices. These channels will be realized by TLS in case 
of  the RERUM gateway and DTLS  in case of  the constrained RERUM Devices using  the appropriate 
credentials. The TLS and DTLS cipher suites shall support mutual authentication. 

5.2.3 Initialization	and	Bootstrapping	of	the	RERUM	Gateway	

The  first  step  to  set up a network of RERUM Devices  is  the  installation of a RERUM gateway. The 
gateway acts as a IEEE802.15.4 PAN coordinator to whom RERUM Devices can connect to. The gateway 
provides also the transition from/to the Internet. For indoor use cases the RERUM gateway may not 
need to provide this transition depending on the concrete application scenario. 

The RERUM gateway hardware platform differs from the hardware platform of the constrained RERUM 
Devices,  as  it  has more  resources  for  operation  as  network  transition  point  and  provisioning  of 
interfaces to the RERUM middleware, if the middleware itself is not running on the gateway. 

The  gateway  is  configured  by  a  RERUM  administrator  responsible  to  setup  the  network.  Besides 
network  configuration,  the  RERUM  administrator  also  needs  to  configure  the  PKI  credentials  or 
certificate  issued  by  the  Security  Center  to  allow  establishment  of  mutual  authenticated  TLS 
connections.  This  process  follows  state‐of‐the‐art  certificate  enrolment  protocols  applied  in  the 
Internet and Enterprise networks already today and  is out of scope of this document. Examples are 
PKCS#10 requests, Simple Certificate Enrolment Protocol or Certificate Management over CMS. The 
RERUM administrator needs also to configure the trust anchor of the Security Center. 

Figure 43 depicts the bootstrapping procedures of the RERUM gateway: 

 

Figure 43: Initialization of RERUM gateway 
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While the RERUM gateway boots up, the IEEE802.15.4 layer and IP layer are initialized. 

 The gateway acts as PAN coordinator and selects an unused PAN ID.  

 The gateway initializes the 6LoWPAN IP stack and RPL routing protocol. 

 The IPv6 address is based on the 802.15.4 MAC address according to the derivation function 
in [IEEE802.15.4]. 

 The gateway selects an unused RPL instance ID, sets up as DODAG root for routing of IP packets 
and the DODAG ID is set to the IPv6 address of the gateway.  

 

After basic network initialization the RERUM gateway establishes a mutual TLS connection towards the 
Security Center based on the enrolled PKI credentials from the Security Center. All further messages 
between the gateway and the SC are protected on layer 4 (confidentiality, authenticity and integrity). 

After successful establishment of the TLS channel the 802.15.4 network key is bootstrapped.  

 GW_CRED_REQ (GW_ADDR, PAN_ID) 

The gateway requests a 802.15.4 network key from the Security Center. 

 GW_CRED_RESP (PAN_ID, NK_PAN) 

The SC associates the ID of the gateway with the PAN ID, generates the requested network 

key sends it back to the gateway. 

 

The network key NK_PAN will later be used for security on layer 2 (802.15.4) between RERUM 

Devices and the RERUM Gateway. 

 

5.2.4 Distribution	of	the	Join	Key	

The  join key  is a symmetric key and  is  the  initial  trust anchor between the RERUM Device and  the 
Security Center. A  join  key has  to be  available  in  the RERUM device  that wants  to  join  a RERUM 
network. The security of the initial bootstrapping process is based on this join key. This key has to be 
configured/established/transported into the Security Center prior to the join procedure of a RD. In the 
following  description  different  procedures  are  provided  to  configure  this  key  in  a  secure  and 
comfortable manner. These procedures are applied before  the RERUM Device  is connected  to  the 
802.15.4 network. 

 

5.2.4.1 Join	Key	Pre‐Installed	on	the	Device	

The “pre‐installation” of the join key on the RERUM Device can be done in different ways: 

 The key  is configured  into a non volatile storage of the device during manufacturing as one 

step of the manufacturing procedure or 

 The device provides a mechanism to generate a fresh key during the first start up of the device 

or on request of a user.  

 

Independent of the way how the  join key  is generated  in the RD the following actions have to take 

place: 

 The join key of the RERUM Device and the corresponding device ID, e. g. the MAC address, has 

to be provided to the person who is setting up the RERUM network. For the following section 
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this  person  is  called  RERUM  technician. Depending  on  the  interfaces  available  at  RERUM 

Devices there are different ways for doing this: 

o Barcode: Additional to the key stored inside the device the key and the ID of the device 

are written as barcode on a  label attached  to or sent with  the device. The RERUM 

technician has a barcode reader and stores the key and the corresponding device ID 

on his installation device like a smartphone, tablet, laptop. 

o Physical  limited hardware  interface  that  allow  to  retrieve  the  join  key,  e.  g.  serial 

interface, memory card, USB, NFC, 802.15.4 with reduced range, simple display, LEDs, 

etc.  Depending  on  the  interface  the  retrieval  of  the  join  key  is  more  or  less 

comfortable. The key and the corresponding device ID on his installation device like a 

smartphone, tablet, laptop. 

 The RERUM technician delivers the join keys/IDs of the RERUM Devices to be installed to the 

Security Center over a secure channel. This secure channel could be 

o a TLS connection to the SC from the RERUM technician’s installation device, 

o e‐mail  transport of an encrypted  ID and associated  join key  file  to  the  SC over an 

unsecure channel or 

o storing the  join key and RD  ID on a storage medium  like a USB stick or CD which  is 

imported into the Security Center later on. 

Figure 44 shows the transport of the join key and RD ID via a secure TLS channel from the installation 
device of the RERUM technician towards the Security Center. The end‐to‐end security association is 
established  between  the  installation  device  of  the  RERUM  technician  and  the  Security  Center. 
Regarding secure communication the RERUM Gateway in the following diagram is transparent but it 
has to do the routing from the RERUM network to the Security Center that may be accessible over the 
internet. 

This  installation method allows storage of  the  join key  into  the Security Center while  installing  the 
RERUM Device into the RERUM network.  

 NEW_RD_JK_REQ(RD_ID, JK_RD1_SC) 
Authorization that the RERUM Device with RD_ID is allowed to join the RERUM network by 
using the join key JK_RD1_SC 

 NEW_RD_JK_RESP 
Acknowledgement by the Security Center 

 

Figure 44: Pre‐installed join key 
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This procedure  grants  access  to  a RD  to  join  the RERUM network while  the RERUM  technician  is 
installing the RD. The time that a join key can be used and may be misused is limited to the time the 
RERUM technician has authorized a RD to join and the time the RD has joined. On the other hand, each 
device installation requires a manual interaction with the device and requires a connection towards 
the Security Center at the premises. 

In contrast to that and for Smart City applications in which an automated installation procedure has 
higher priorities, another installation method allows to collect the join keys offline, e.g. by a system 
integrator, and to store the pairs of device ID and join key on a storage medium. Afterwards all join 
keys are imported into the Security Center and the devices are authorized to join the RERUM network 
in a later step fully automated. 

5.2.4.2 Join	Key	is	Installed	in	the	RERUM	Device	During	Installation	

In the following scenario the RDs are distributed without credentials stored inside the device during 
manufacturing and without the ability to generate the join key inside the device itself. In this case a 
join key has to be pushed  into the device during  installation of the RD before  it can participate  in a 
RERUM network. As in the pull method described in the previous sub section, the interface to push a 
join key is a physical limited hardware interface, e. g. serial interface, memory card, USB, NFC, 802.15.4 
with reduced range. 

The join keys can be generated in two different ways. Either 

 join keys are generated offline, e.g. by a system integrator, and imported into the Security 

Center all at once or 

 join keys are generated by the Security Center on request of the RERUM technician while 

installing a RERUM Device. 

A RERUM technician who wants to install a RD needs to retrieve the device ID of the RD. Afterwards 
he requests a join key for that device and in the last step pushes the join key retrieved from the Security 
Center  into  the  RERUM  Device.  As  in  the  scenario  above  the  end‐to‐end  security  association  is 
established between  the  installation device of  the RERUM  technician and  the Security Center. The 
RERUM Gateway has to do the routing from the RERUM network to the Security Center. 

 

Figure 45: No pre‐installed join key 

 



RERUM FP7‐ICT‐609094  Deliverable D3.1 

Page 126 of (160)   © RERUM consortium members 2015 

 NEW_RD_JK_REQ(RD_ID) 
Authorization that the RERUM Device with RD_ID is allowed to join the RERUM network and 
requesting a join key 

 NEW_RD_JK_RESP(RD_ID, JK_RD1_SC) 
Transmission of a join key to the RERUM technician. The join key is either generated freshly 
or offline generated keys are used. 

  

5.2.5 Initialization	and	Bootstrapping	of	RERUM	Devices	

In this section the initialization and bootstrapping of RERUM Devices during installation of the RD into 
an RERUM network is described.  

The  assumptions here  are  that  the  initializations  as described  in  the previous  sections have been 
carried out: 

 The RD knows its join key. The join key  is established in the RD with one of the procedures 
described above. 

 The gateway  is up and  running. Especially  the GW knows  the network key NK_PAN of  the 
relevant 802.15.4 network (see above). 

 The Security Center is up and running. Especially the SC knows the IDs of the RDs authorized 
for installation in the considered RERUM network and the corresponding join keys (see above). 

 Already installed RDs are up and running. Especially the RDs know the network key NK_PAN 
for securing communication on 802.15.4. How this network key  is distributed to the RDs  is 
part of the bootstrapping described below. 

 

At a high level the following steps are performed for initializing and bootstrapping a RD. These steps 
are performed automatically without manual interaction of a RERUM technician: 

 Set up of the 802.15.4 network. 

 Establishment of the network key NK_PAN for securing communication on 802.15.4 as well as 
symmetric key for secure communication between RD and SC (K_RDx_SC). K_RDx_SC  is an 
individual key of each RDx. 

 Set up of the IP layer (6LoWPAN). The messages on layer 2 (802.15.4) to set up 6LoWPAN and 
to establish routing information are secured by the 802.15.4 network key NK_PAN. 

 If the RD needs additional credentials these credentials are requested/transported between 
RD and SC above layer 3. The communication is secured by K_RDx_SC. 

 

In the following sections these steps are explained in more detail. Figure 46 shows the phase starting 
with initializing the 802.15.4 network. The result is the secure establishment of the 802.15.4 network 
key (NK_PAN) and the key for communicating to the SC (K_RDx_SC). 
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Figure 46: Bootstrapping 802.15.4 network key and the keys to communicate to GW and SC 

 

The initial steps to connect to the 802.15.4 network are not protected: 

 The RD tries to associate with 802.15.4 networks in range by sending a beacon request. 

 The GW configured as PAN coordinator (or a coordinator) sends out the beacons. 

 The RD sends an association request. 

 The GW (or a coordinator) sends an association response. 

At this point the RD is associated with the 802.15.4 network and can send layer 2 messages to the GW. 
The  next  step  is  to  bootstrap  keys  for  secure  layer  2  communication  and  for  secure  end‐to‐end 
communication between RD and GW and between RD and SC. 

 The RD sends a layer 2 message: AUTH_REQ (RD1_ID, RD1jcount) 

o The message contains the  identifier of the RD and a  join counter to prevent replay 
attacks. 

o This message  is not protected on  layer 2, but  the message  is end‐to‐end  integrity 
protected between RD and SC by the join key. 

o The message is forwarded by the GW to the SC additionally secured on layer 4. 

 The  SC  sends  back:  AUTH_RESP (RD1_ID, GW1_ID, RD1jcount+1, NK_PAN, 
K_RD1_SC) 

o The message contains the network key for the 802.15.4 network (NK_PAN), the RD‐SC 
key (K_RDx_SC) and the incremented join counter. 

o The message  is  end‐to‐end  integrity  protected  and,  besides  the  identifier  of  RD1, 
encrypted between RD and SC by the join key. 

o Between SC and the GW the message is additionally secured on layer 4. 
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o The GW forwards the message to the RD on layer 2 (the message is not protected on 
layer 2, but secured end‐to‐end). 

 The RD decrypts the message and checks integrity. If successful the RD has now the keys: 

o NK_PAN for secure communication on layer 2 

o K_RDx_SC for end‐to‐end security between RD and SC 

 

As just described, the messages AUTH_REQ and AUTH_RESP are not protected on layer 2. On the other 
hand it is reasonable to configure secure communication on layer 2 to protect all communication above 
layer 2, e. g. routing messages with RPL. If secure layer 2 communication is configured this would result 
in  security errors on  the RDs  that are already  installed,  if an unsecured AUTH_REQ or AUTH_RESP 
messages has to be forwarded. Therefore the 802.15.4 stack has to look into the 802.15.4 payload if it 
is a unsecured 802.15.4 data message and has to decode the first byte of the message. If the first byte 
decodes  to  an  AUTH_REQ  or  AUTH_RESP  message,  it  has  to  be  forwarded  unsecured  without 
generating a security error. 

The subsequent steps to fully set up a RD are secured on layer 2 by the 802.15.4 network key (NK_PAN). 
The steps are (see Figure 47): 

 Setup of the IP communication (6LoWPAN) 

 Setup/update of routing information in the already installed RDs and the new RD 

 

After  these  steps have been performed  the RD  is  able  to  communicate on  layer 3  (IP  layer).  The 
remaining  configuration  and  bootstrapping  is  done  based  on  IP  communication.  Especially  the 
bootstrapping of additional security credentials is done by establishing a DTLS secure channel based 
on K_RD1_SC between the RD and the Security Center and using two commands: 

 RD_CRED_REQ 

o The RD sends this command towards the SC to get all credentials that are configured 
for the RD. 

 RD_CRED_REQ (RD1_cred) 

o The message contains all the credentials that are configured for the corresponding RD. 

Either the RERUM Device is requesting a concrete type of credentials or it is requesting all credentials 
relevant for that device. At first the RERUM Device gets based on the RD_CRED_REQ command the 
necessary credentials to establish a secure DTLS channel towards the GW. 
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Figure 47: Setup of IP communication and bootstrapping further credentials 

5.2.6 Credential	Storage	on	RERUM	Devices	

Security  credentials  are  sensitive  data  on  which  the  RERUM  security  architecture  relies  on.  If 
credentials are stored in clear‐text in the non‐volatile memory of RERUM Devices, these are vulnerable 
to be compromised. An attacker may dump the content of the non‐volatile memory and tries to find 
potential credentials being used by a RD. Therefore, it is recommended to protect the confidentiality 
and integrity of stored security credentials. 

It is out of scope of RERUM to define new credential storage types. The standard PKCS#12 [PKCS#12] 
is a commonly used key file container to store asymmetric and symmetric. A PKCS#12 key container is 
organized in SafeBags allowing encryption and integrity protection of sensitive credentials by another 
symmetric key. This symmetric key is generated out of a password by a password based key derivation 
function. During  the  first  boot  procedure  a  RERUM Device may  generate  a  nonce  to  be  used  as 
password to protect the key store. 

5.2.7 Relation	to	RERUM	Architecture	

The subsections of 5.2 detail the procedures and identify the collaborating components of the RERUM 
architecture  for  fast  and  secure  network  bootstrapping.  Especially  subsection  5.2.5      elaborates 
conceptually  the  Credential  Bootstrapping  Client  and  the  Credential  Bootstrapping  Authority  as 
introduced in the deliverable 2.3. Figure 48 from deliverable 2.3 depicts the location of these functional 
components  and  their  relation  to  additional  functional  security  components  the  Credential 
Bootstrapping  Client/Authority  builds  on.  For  RERUM  “Device  Authentication  client”,  Integrity 
Generator/Verifier” and “Data Encrypter/Decrypter  for data at  transit” are provided by  the  secure 
communication  functionality described  in  the “Profile DTLS” and  the “Profile 802.15.4 Security” of 
Chapter 3. Credentials are securely stored by the “Secure Storage” component that provides “Data 
Encrypter/Decrypter  for data  at  rest”  and  the  “Integrity Generator/Verifier”  (see  Section 5.2.6 on 
Credential Storage on RERUM Devices)  
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Figure 48: Credential Bootstrapping Client / Authority and related security components 

 

5.3 Secure	and	Context	Aware	Dynamic	Auto	Configuration	
The content of this section is related with the “SW Components Manager” component defined in the 
RERUM Architecture as shown in Figure 49: 

 

 

Figure 49: Configuration manager components from D2.3 

 

5.3.1 RERUM	Device	Initial	Configuration		

The process to follow for check and get initial configuration for a new VRD is: 

1. A RD is installed and connected to the Network. 
2. The new RD is registered in the RERUM network (as described previous Section 0) 
3. The GVO Manager (Register) adds this new device in the registry and adds context 

information about this device. 
4. The Gateway Instance puts a message in the Message Bus noting that a new RD has been 

added to the network. 
5. A SIEM Agent, which is listening the Message Bus, reads the new RD message and generates 

an event in SIEM format with the information available about the RD added. 
6. The SIEM receives and stores the event from agent, detects that an action is required and 

reacts sending an alert to PRRS. 
7. The PRRS registers the alert and executes the associated rule (previously defined by admin) 

of search appropriate firmware configuration for this Device and Context (additional context 
information will be requested to GVO Manager if needed). Finally sends information to OAP 
module to update the software installed in the RD if needed. 
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8. The OAP module receives the base firmware and the additional software components 
needed for that device to build them together and send the final built firmware to the RD 
Deployer. 

9. The RD receives the firmware and installs it checking that is signed by a trusted authority and 
coming from a reputable supplier. 

10. The RD sends a signal with the new firmware version installed ok to the MW (to the OAP 
Module?). 

11. The OAP Module updates context information for the target RD in the GVO Register. 

 

For installing new software components to the RERUM Devices, the OAP Module is the one in charge 
of building a firmware that fits with the characteristics of the target RERUM Device together with the 
software components previously selected by the PRRS. 
Once the new firmware is built, it is sent to the target device following the specifications given by the 
communication module of the RERUM Device and, finally, the new firmware is deployed by the RERUM 
Deployer inside the RERUM Device. 
The Firmware to deploy must be signed by a trusted authority and must come from a valid RERUM 
OAP Module. 

 

5.3.2 Integration	with	a	PRRS		

The  Internet  of  Things,  per  definition,  allows  devices  to  interact  and  work  together. Moreover, 
marketing  is permanently  looking  for a way  to make different products work better  together. The 
problem of this great goal is that you don’t know what products are coming next, so you don’t know 
how the future products might interact. For this reason is needed a way to add flexibility to the system, 
allowing the addition, reconfiguration and upgrade of devices that are part of the network. 

The  Platform  for  Runtime  Reconfiguration  of  Security  (PRRS)  aims  to  cover  this  requirement  of 
flexibility providing a way to maintain the devices up to date. 

 

 

Figure 50: PRRS components and workflow 

The components of PRRS are shown in Figure 50. The PRRS receive alerts in a predefined format and 
process  them  for  react  and  take  appropriate  actions  depending  on  the  nature  of  the  alert,  the 
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remediation rules defined for that kind of alert and the context variables associated with the RERUM 
Device that throws the alert. 

The artefacts to deploy can also be found manually using a PRRS interface for searching solutions in 
the repository of artefacts, introducing constraints and properties that we want to look for. 

5.3.2.1 Security	SW	Component	Selection	

The PRRS bases its decisions on the context information gathered from incoming alerts and external 
monitors  or  knowledge  bases,  in  this  case  from  the  GVO  Registry  (D2.3,  Section  6.2.2)  and  the 
integrated SIEM (5.4.3) 

The context variables will be defined in a configuration file indicating the sources for retrieve its values 
and the regular expression that matches with the given value. As an example: 

{"contextVars": [ 

{"name" : "temperature", 

"source" : "http://localhost:8080/PRRS-services/resources/requests", 

"format" : "/^\d+(,\d+)?$/" 

} 

{"name": "deviceId", 

"source" : "http://localhost:8080/PRRS-services/resources/requests/", 

"format" : "^\d+$" 

} 

{"name" : "OperatingSystem", 

"source" : "http://rerumserver/gvoregistry/resources/rerumdevices/", 

"format" : "/^Contiki|Linux|Windows/$" 

} 

]} 

 

Those context variables previously declared can be used to define rules in the PRRS Cofiguration Web 
Interface that is depicted in Figure 51. 
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Figure 51: PRRS rule web editor snapshot 

 

The  syntax  of  the  rules  is  being  improved,  by  building  a more  powerful  rule  language  to  allow 
incorporating  logic  dynamically  to  the  component  instead  of  building  an  ad‐hoc  internal  logic.  It 
prevents re‐writing code if the system context or monitors change and allows re‐use of this component 
in future projects. 

Once the rules are defined, they are checked every time the PRRS is alerted by any event. If any rule is 
met,  taking  into  account  the  actual  values  of  the  context  variables,  the  associated  action will  be 
launched. 

5.3.2.2 SW	Component	Allocation	

The software components available for enrich the RERUM Device’s firmware with new functionalities 
or  for  solving  concrete  issues, will  be  stored  in  a  secure  and  reliable  repository.  Each  software 
component must have several meta‐data labels associated, for example: 

 

 <ComponentName> 

 <Developer> 

 <Functionality> 

 <Version> 
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 <SecurityGoal> 

 <SecurityMechanism> 

 <OperatingSystemSupported> 

 

Those  labels  could  be  referenced while  the  rules  are  being  created  for  filtering which  software 
component is suitable for the current use case that is being described in the rule. 

When a rule is evaluated, the PRRS finder seeks in the software components repository, by filtering for 
the given context variables, and  the  labels  that defines  the components. When  the  search gives a 
result,  it  returns  the URL of  the  software component. This URL  is  sent  to  the OAP  component  for 
building  the  new  firmware with  the  new  software  component  and  taking  into  account  the  given 
context. 

5.3.3 Over	the	Air	Programming		

OAP is a service based on reliable broadcast communication for challenging the issues of maintenance 
of a more or less complicated network. It is necessary to fix bugs, update codes and manage application 
requirement  changes  to  build  an  adaptive  system.  The  typical  functionalities  provided  by  an 
implementation of OAP technology that allows managing remotely the whole IoT network are: 

 Discovering new devices. 

 Recovering any device which sets stuck. 

 Upgrade firmware versions of an entire network without physical access. 

 

The OTA mechanism requires that the existing software and hardware of the target device support the 
feature, namely the receipt and  installation of new software received from the provider.  In RERUM 
this piece in charge of applying new firmware in the device is called RD Deployer. 

 

5.4 Self	Management	and	Self	Monitoring	Mechanisms		
The components of the architecture defined in D3.2 related with this section are the Alert Processor 
and the Resource Monitor as shown in Figure 52: 

 

Figure 52: Monitoring manager components from D2.3 

 

Specifically the sub‐section 5.4.3 is describing an implementation of an example of Alert Processor with 
a SIEM and  the sections 5.4.1 and 5.4.2 are components  that provide  information about hardware 
resources of the RERUM Devices as part of a Resource Monitor as described in Section 6.8.2.1 of the 
architecture document D3.2. 
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5.4.1 Network	Monitoring	Mechanisms	

5.4.1.1 Introduction	

Self‐management and self‐monitoring  techniques,  from  the network perspective, usually  fall  in  the 
broader category of network management. For RERUM, network management is of high importance, 
as it can ensure network high availability mainly through energy saving and QoS support. As described 
in RERUM Deliverable D2.3, one of the RERUM’s main components is the Network Manager that will 
support a number of functionalities such as network monitoring, spectrum management, clustering, 
mobility management, neighbour discovery, etc. Among those functionalities, here, we focus on the 
network monitoring one, which will make feasible a network‐wide inspection mechanism. 

RERUM envisions a reliable and resilient IoT architecture for smart cities. The fundamental blocks of 
such  architectures  are  wireless  sensor  networks  (WSNs)  that  can  consist  of  hundreds  or  even 
thousands of miniature  sensors.  These devices  are used  in  numerous  applications  like  agriculture 
[XPHZ13], military [WS++13], health care [KLS++10], traffic management [PN++S12], etc., as they are 
capable of collecting a diverse type of data like humidity, ambient temperature and light, acceleration, 
location, etc. However, these devices are severe resource constrained in terms of memory, CPU, and 
storage. A typical sensor device might not contain more than 8KB of memory. Furthermore, in many 
scenarios,  the  sensors  operate  in  unattended  or  even  in  harsh  environments  where  human 
intervention  (e.g. battery replacement)  is not possible. Moreover, WSNs are susceptible to harmful 
interference as they mainly operate in the ISM band that  is heavily overcrowded. In such scenarios, 
network  life‐time prolonging  is of paramount  importance. For these reasons, a network monitoring 
scheme is of key importance as it can guarantee, if properly designed and deployed, decent network 
operation and it can extend network’s life‐time as much as possible. 

 

5.4.1.2 Network	Monitoring	System	Requirements	

A network monitoring system (NMS) designed for the resource constrained WSNs should have several 
characteristics. First of all, lightweight operation is of key importance for this system to be deployed in 
the  sensors;  therefore,  it  should  not  require  too much  CPU  and  memory  resources  for  proper 
operation.  

Another  important characteristic a NMS should have  is fault tolerance against failures either at the 
network or the sensor level. At the network level, significant packet loss can occur in the network due 
to various reasons such as harmful  interference or protocol  inefficiencies. Moreover, at the sensor 
level, a number of sensors may become inoperable due to, for example, battery depletion. NMS should 
be  robust  against  these  failures  and being  able  to detect  the potential  failures  even  if  significant 
information is missing (e.g. when an out‐of‐band mechanism is used).  

In general, a WSN is highly dynamic, in the network context, as a number of sensors may join/leave 
the  network  or  become  inoperable  due  to  energy  problems.  NMS  should  be  flexible  and  adapt 
accordingly to the specific network states.  

As mentioned previously, a WSN for  IoT purposes can utilize hundreds or thousands of sensors. An 
efficient NMS should be scalable in order to operate efficiently as the network size increases. 

Finally,  although  the proliferation of  the  sensor  systems has  been  remarkably  the  last  few  years, 
medium‐cost sensors that could be massively deployed in the IoT domain, still lack adequate memory 
size. A NMS should have minimal storage requirements for use in those sensors. 
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5.4.1.3 Network	Monitoring	Schemes	

Several monitoring schemes have been proposed in the literature. They can be classified as centralized, 
distributed of hierarchical  that perform proactive or  reactive monitoring  [LDO06].  The  centralized 
schemes (e.g. [SKLS05], [TC05], [RKE05], [TURON05]) assume there is a single controller (sink or server) 
that  periodically  collects  information  from  the  sensors  and  infers  regarding  network  problems. 
Information collection can be performed using different modes like: (i) event‐driven, when information 
flows  to  the  controller  after  an  event  has  occurred,  (ii)  polling,  when  the  controller  requests 
information from a sensor or from a group of sensors, and (iii) hybrid, which is a combination of the 
event‐driven and polling schemes. A major advantage of the centralized schemes is that the sensors 
do not have  to perform  any  intensive  tasks.  They  exclusively  collect  and  transmit  the monitoring 
information  to  the  controller  that  performs  the  most  intensive  tasks  of  network  management. 
However, in these schemes, excessive traffic is generated within the network, and valuable network 
and sensor resources (e.g. bandwidth, battery) are consumed. Also, interference increases leading to 
significant  packet  loss.  Furthermore,  the  controller  is  a  single‐point‐of‐failure  for  the  network 
management system. 

On  the other hand,  in  the distributed network monitoring  schemes  (e.g.  [RAYA05],  [BS03]), major 
monitoring  tasks are assigned  to  the  sensors,  so no excessive  traffic  is generated  in  the network. 
Usually, the sensors monitor themselves, as well as their one‐hop neighbours, inferring about potential 
problems. This means that the sensors have to assign resources (CPU, memory, storage) for running 
these tasks. Major disadvantages regarding the distributed monitoring schemes are that the scarce 
sensor resources may not be adequate to run  these tasks, creating a  two‐fold problem:  (i) sensors 
become inoperable to perform any tasks, and (ii) the NMS may be negatively affected when a numbers 
of  sensors  do  not  functionally  operate.  Another  disadvantage  of  those  schemes  is  that  they  are 
complex and very difficult to manage. 

In order  to address  the  limitations of  the centralized and distributed schemes, several others have 
considered  the deployment of  local controllers  (e.g. cluster heads  in a clustered WSN)  that collect 
monitoring information from a limited part of the network (cluster). These are known as hierarchical 
network management systems (e.g. [DBN04], [KH03]). Here, mainly by using an appropriate cluster 
algorithm, the WSN  is partitioned  into clusters, and  then,  for each cluster, a sensor with adequate 
resources is elected as the cluster head (CH). Network management tasks can execute on the sensors, 
as well as on each CH. Furthermore, CH  is responsible to convey management  information from  its 
cluster to a global server (and vice‐versa).  

Another distinction between the network management systems can be performed according to the 
approach followed for monitoring and control [LDO06]. Passive monitoring refers to schemes where 
information about the network states is collected. Later, offline analysis may follow for detecting issues 
related to network stability and sensor failures. Fault detection monitoring [HL06] refers to information 
collection  for detecting  if  failures within  the network have occurred. Reactive monitoring  [KH03], 
[FRL05] involves the process where data is collected from the network and based on their processing; 
decisions are taken for adaptively re‐configuring network’s parameters. On the other hand, proactive 
monitoring [SKLS05],  [RKE05] refers to  information collection  in order to detect past events and to 
predict future ones. 

 

5.4.1.4 RERUM	Network	Monitoring	

As mentioned previously, the network monitoring tasks are assigned to the Network Manager entity 
of the RERUM architecture given in RERUM Deliverable D2.3. We plan to adopt the hierarchical type 
of network monitoring as it has several advantages over the centralized and distributed approaches. 
For this reason, we will consider a clustered‐based architecture where the network monitoring and 
management tasks will be assigned to both the sensors and the CHs (Figure 53). 
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Figure 53: Hierarchical network management and monitoring 

 

For  the  network  monitoring,  we  will  follow  a  two  level  approach.  At  the  sensor  level,  several 
information regarding various parameters (at different layers) will be collected. We aim to explore the 
feasibility for collecting the following information: 

 Receive‐Signal‐Strength  Indicator  (RSSI)  available  at  the  physical  layer.  RSSI  gives  an 
estimation of the signal (RF) power received at a receiver when this signal is transmitted by a 
specific transmitter. RSSI depends on the distance between the receiver and the transmitter, 
the transmission power of the transmitter, the antennas of the communicating parties, and 
the multipath effects in that area.  
 

 Link‐Quality‐Indicator (LQI) that is available for the IEEE 802.15.4 devices. LQI  is superior to 
RSSI as  it has a strong correlation with  the packet  loss, so  it can more  reliably express  the 
wireless  link’s  quality.  However,  RSSI  and  LQI  when  used  together  can  enhance  the 
performance of the several algorithms (e.g. [HK12]). 
 

 Packets with Cyclic‐Redundancy‐Check (CRC) errors. This information can be available at the 
MAC layer and can be used to detect harmful interference caused by transmitters that emit 
energy within the same channel ([F++A12]). 

 

 IP‐layer  related  statistics  like  the number of  received packets,  the number of  transmitted 
packets, the number of the forwarded packets, the number of the dropped packets, packets 
dropped to various reasons (wrong IP version, wrong IP length, checksum errors, etc.). 

 

 Transport‐layer  related  statistics  like  the  number  of  the  received,  sent,  and  forwarded 
packets; packets with errors (bad checksum, etc.). 

The following table summarizes the network related information that can be collected by an RD: 
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Table 2 Network Monitoring Information 

Network Layer  Information 

PHY  RSSI, LQI 

MAC  CRC errors 

IP  Dropped,  received,  and  transmitted 
packets;  packets  with  errors;  type  of 
errors 

Transport  Dropped,  received,  and  transmitted 
packets;  packets  with  errors;  type  of 
errors 

 

5.4.1.5 Protocol	Definition	

In Section 5.4.1.4 we described the network statistics that can be collected in each RD, for use within 
the context of the RERUM network monitoring scheme. The collected data will be sent to the Alert 
Processor  (described  in RERUM Deliverable D2.3);  however not directly, but  through  the  Security 
Information  and  Event Management  (SIEM)  component,  described  later  in  Section  5.4.3.  For  this 
reason, an appropriate communication protocol has to be defined.  

Here we  propose  the  use  of  the  Constrained Application  Protocol  (COAP),  as  it  has  a  number  of 
attractive  characteristics. COAP  is  software protocol  intended  to be used by  resource  constrained 
devices. This is an application layer protocol that can run over UDP, and can optionally support DTLS. 
COAP’s message format is shown below [COAP14]: 

 

On top of COAP we will define a suitable protocol (e.g. using JSON) to efficiently represent the network 
monitoring statistics. 

5.4.2 On‐Device	Resource	Monitoring	

To  complement  network monitoring mechanisms  described  in  Section  5.4.1  Network Monitoring 
Mechanisms, RERUM will also provide  the ability  to monitor on‐device  resources  that can provide 
indications about the correct operation of the hardware, as well as to assist with the generation of 
alerts in cases of hardware faults. 

Monitoring of on‐device resources will use the same protocols and messages as those described  in 
Section 5.4.1.5. Thus, on‐device resources will be reported inside CoAP messages. In order to be able 
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to monitor their health and correct operation, RDs will expose the following resources: To monitor the 
health of each RD, Each device will expose two resources: 

1. On‐chip  temperature.  An  alert will  be  generated  if  the  value  of  this  resource  exceeds  a 
configurable threshold. 

2. Input voltage. For the CC2538 System‐on‐Chip [TI13], the absolute maximum input voltage is 
3.9V, with a recommended maximum of 3.6V [TI14]. If input voltage exceeds these operating 
recommendations, an alert will be generated. 

Both those metrics are available on all devices powered by the CC2538 System‐on‐Chip and will thus 
be available on Zolertia’s Re‐Mote platform. To expose those metrics as CoAP resources, we will adopt 
the path template and Resource Type recommendations of the IP for Smart Objects (IPSO) alliance. 
They are documented in the “IPSO Application Framework” [ZC12] and presented in Table 3. 

 

Table 3 On‐Device Resources, their Paths and Resource Types 

Resource  Path  Resource Type 

On‐chip Temperature  “sen/temp”  “C” 

Input Voltage  “sen/vdd3”  “mV” 

 

Depending on  the device  type and capability,  it may be possible  to add more  resources  for device 
health monitoring. For example, if a device is equipped with an ambient temperature sensor, an alert 
can be generated  if the temperature exceeds the device’s recommended operating conditions. For 
example, the recommended operating ambient temperature range for the CC2538 is between ‐40 and 
125 oC [TI14], and this information can be used to generate events accordingly. 

 

5.4.3 Integrating	a	System	Information	and	Event	Management	

The analysis of  the  information gathered  from Devices and Network, allows  the RERUM system  to 
control and manage what is happening in the RERUM environment. For this reason we include in the 
system a Security Information and Event Management (SIEM) component that can provide a real‐time 
analysis of the generated events, visualisation of events evolution through a console and also storage 
for a later forensic analysis and reporting of log data as shown in Figure 54. 

 



RERUM FP7‐ICT‐609094  Deliverable D3.1 

Page 140 of (160)   © RERUM consortium members 2015 

 

Figure 54: SIEM components and workflow 

 

The SIEM agents  installed  in the context of RD,  let’s say a RERUM Gateway, collect  information by 
parsing  logs  containing  the  information  generated  by  Network  Inspection  (5.4.1)  and  Resource 
Inspection (5.4.2). Once the events are formatted by context agents, they are sent to the SIEM server 
where they are stored and analysed to detect anomalous behaviour as shown in Figure 55. 

 

Figure 55: Events sequence diagram 
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5.4.3.1 Triggering	Security	Alarms	

The SIEM Agents are installed in the RERUM servers where the activity of the RERUM Devices is being 
logged. They are in charge of collecting the events generated by RERUM monitors and forward them 
to the SIEM server. In the next sections is described how the generated events are manipulated and 
analysed for generating Security Alerts. The SIEM used for RERUM  is based  in OSSIM (Open Source 
Security  Information  Management),  which  is  one  of  the  most  widely  used  Open  Source  SIEM. 
Therefore  most  formats,  protocols  and  configuration  have  been  adopted  from  this  OSSIM 
implementation. 

 

5.4.3.1.1 Event	Collection	

The event collection  is one of the first things required  in a SIEM. Data collection  is firstly done as a 
result of the Agents installed in Sensors; the concept of ‘Sensor’, in the SIEM context, refers to a server 
that registers the activity that we want to analyse. Each server can receive data from different sources, 
but data collection is only possible from: 

 Agents: These are the main sources for incoming events. 

 Other Server: This is only possible in multi‐level architecture. 

In the RERUM context, the SIEM core will receive events coming from different sources like the MW 

Message / Event Bus or the Network Monitor. Consequently, our main goal here  is to describe the 

specification of the SIEM agents that collect the incoming events to be processed by the SIEM. 

Agents: 

The SIEM agents are the components responsible for collecting all the data sent by the various devices 
existing on the network, in order to subsequently send them to the SIEM server in a standardized way. 

The agents are installed on the sensor machines (for example a RERUM GW Instance or another server 
in the RERUM Network), normally one per machine although it is possible to install more than one if 
necessary. This will normally occur only in multi‐level environments, where one machine with several 
agents can be sending information to various different servers, each from different devices. 

The way in which the agent receives the data (which will then be converted into events for the SIEM) 

that it is going to send to the server is by means of reading a log file in most cases. Specifically in RERUM 

will be read one log generated by the Resource Monitor that receives the information from the final 

device and another log written by a RabbitMQ client that is listening service related data from the MW 

Event Bus. The port for communication between the Agent and the Server can be configured in the file 

/etc/ossim/agent/config.cfg. 

Each of the events received by the SIEM server has always been processed beforehand by an agent in 

order to standardize them. The point of standardizing events prior to sending them to the server is so 

that the latter can deal with these events equally and so that storage and processing is simpler and 

more coherent. 

For any device from which one wishes to collect data a plugin has to have been created beforehand so 

that SIEM is capable of processing it. This is achieved thanks to the creation of a plugin which basically 

consists of a series of regular expressions matching with a list of fields that allows the event type being 

produced to be unambiguously identified. 

Plugins: 

Plugins are configuration files defined in the Agent to analyse and standardize the information from a 

data source. Plugins are used to improve the collection capabilities of the Sensors and to indicate to 
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the system how to understand and to collect events generated by each application and device (data 

sources)  that we are  interested  in. Once  this has been  standardized  it  is passed  to  the  remaining 

functionalities of the Agent in order to be sent to the SIEM server in the form of an event. 

In OSSIM there are two types of plugins: 

 Detectors: Their job is to read from the logs that store the devices and to standardize them so 

that the Agent can send them to the OSSIM server. Detector plugins passively read a file or 

socket and send events upon pattern‐matching lines. 

 Monitors: These plugins will  receive a question  from  the OSSIM  server and  send  it  to  the 

corresponding tool; then as they obtain the reply, let the server know whether it agrees or not 

with what  it has asked, for example  if a specific host:port  is open/filtered/closed. In 
RERUM is not planned to use this kind of plugins. 

In  general,  each  of  the  plugins  can  read  and  send  data  from  a  specific  data  source  identified  by 

its plugin_id and each event type belonging to that plugin is identified as its plugin_sid. 

The plugins consist of two basic files, one with its configuration, and another with the information that 

the OSSIM server needs in order to correlate the events subsequently. In order to create a new plugin, 

it will only be necessary to create these two files as specified in the OSSIM documentation. One of the 

most important parts is to create a regular expression which must match with each line in the log file 

of the device for which we are creating the plugin. Both the server and the plugin have to agree on 

what each plugin_id and plugin_sid of each event means; both files are therefore inseparable and it is 

essential to have both in order for the plugin to work. 

In the RERUM scope news plugins are required to read events coming from the Network Monitor or 

from the MW Bus. 

Collection Methods: 

There are several ways of collecting information in OSSIM and it is important to know which ones will 

be used in order to configure the agents and the plugins required to process the incoming data. The 

most common ways are: 

 Syslog 

The device from which the logs wish to be extracted can inject information directly into the 

syslog of an OSSIM sensor. An agent will be active in this sensor to read from this syslog, and 

will standardize the events so that they can be sent to the server on which it depends. 

 SNMP53 

An agent  can  receive events  in SNMP  format. Anyway,  in order  to  receive  them  from any 

device, it will be necessary to install in the sensor, which is going to receive the data, additional 

software to establish the connection and make the sensor be able to understand this protocol. 

This software is available on SNMP Sourceforge web site. 

 Log Files 

In the same way as with Syslog and SNMP, an agent can be configured in order to read from 

any log file once a dedicated plugin has been configured for this purpose. 

 Osiris: Unix HIDS 

                                                            
53 Simple Network Management Protocol Internet protocol for managing devices on IP networks 
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Osiris is a Host Integrity Monitoring System that periodically monitors one or more UNIX hosts 

for  change.  It maintains  detailed  logs  of  changes  to  the  file  system,  user  and  group  lists, 

resident kernel modules, etc. 

It is possible to define both an agent and a plugin to extract information from UNIX machines 

by accessing Osiris stored information. 

 Snare: Collecting from Windows 

Snare is the method OSSIM uses to extract information from a windows box. Each Windows 

host with snare agent  installed must be able to send UDP port 514 data towards an OSSIM 

sensor. Then Windows events are normalized into the OSSIM nomenclature and sent to the 

ossim‐server. 

 FW1LogGrabber: Collecting from Checkpoint FW‐1 

It is also possible, by installing in the sensor machine some additional software (available as 

part of Checkpoints OPSEC API) to download the logs from the Checkpoint FW‐1. These logs, 

once downloaded and stored in the sensor hard drive, will be read from a plugin, exactly equal 

as the other plugins in the Agent. 

 

5.4.3.1.2 OSSIM	Event	Description	

OSSIM defines four types of events that are recognized by the server: 

 Normalized event 

 Mac event 

 OS event 

 Service event 

The events received will be treated in a different way depending on the type of data. Plugins should 

parse events from different sources to these standardized ones, typically to the first of them as the 

other three are dedicated for special situations. Consequently, any developer who wants to implement 

a  new  plugin  in  compliance  with  the  SIEM  provided  by  the  RERUM  platform  should  take  into 

consideration this event description. 

In the RERUM SIEM, only OSSIM normalized event are considered for its parsing and later correlation 

to generate alarms. The fields of which the standardized event consists are detailed in the table below: 
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Field name  Description 

Type  Type of event: detector or monitor 

Date  Date on which the event is received from the device 

Sensor  IP address of the sensor generating the event 

Interface  Deprecated 

Plugin_id  Identifier of the type of event generated 

Plugin_sid  Class of event within the type specified in plugin_id 

Priority  Deprecated 

Protocol  Three types of protocol are permitted: TCP, UDP, ICMP 

Src_ip  IP which the device generating the original event identifies as the source of this event

Src_port  Source port 

Dst_ip 
Ip which the device generating the original event identifies as the destination of this 

event 

Dst_port  Destination port 

Log 

Event  data  that  the  specific  plugin  considers  as  part  of  the  log  and which  is  not 

accommodated in the other fields. Due to the Userdata fields, it is used increasingly 

less 

Data 
Normally stores the event payload, although the plugin may use this field for anything 

else 

Username 
User who has generated the event or user with whom it is identifying mainly used in 

HIDS events 

Password  Password used in an event (HIDS events) 

Filename  File used in an event, mainly used in HIDS 
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Userdata 1 to 9 

These  fields  can  be  defined  by  the  user  from  the  plugin.  They  can  contain  any 

alphanumeric information, and on choosing one or another, the type of display they 

have in the event viewer will change. Up to 9 fields can be defined for each plugin 

 

This event structure is followed for compatibility reasons, nevertheless all those fields could be null, 
so they may be used as needed. Typically the USERDATA fields are used as ad‐hoc data that don’t fit 
into the rest of fields. 

 

5.4.3.1.3 Event	Correlation	

Event correlation  is a way to create complex rules that  imply more than one event, adding certain 

conditions. For instance, a naive solution for a failed login event would be just adding an OSSIM policy 

that detect this failed login event, but this means that an administrator will have to deal with a lot of 

false positives from genuine users that just forgot/mistyped their password. Also, in a big network it is 

not unusual that the number of these events can reach hundreds or thousands in an hour or a day. 

To illustrate here the creation of these correlation directives in the SIEM we are going to describe a 

misuse case where there will be a big number of failed login attempts with a particular username and 

coming from the same machine. 

From this we can create a tree of events for the misuse case that will be the structure of the correlation 

directive: 

 User Bob fails to authenticate (root of the tree and start of the correlation) 

o User Bob authenticates  correctly  (user  just  forgot/mistyped  the password, but he 

logged in the second attempt) 

This will be a leaf of the tree and will terminate the correlation rule. 

o User Bob fails to authenticate more than 5 times (user keeps entering the password 

incorrectly) 

This will be the other leaf of the tree but also will trigger the alarm because there is a 

big chance that an intruder is trying to steal Bob's credentials. 

Once a correlation rule is met and it triggers an alarm, this alarm is stored in the SIEM database and its 
structure  is basically an AlarmID and the  list of Events that caused the alarm with all events’  fields 
described before. 

 

5.4.3.2 Reacting	to	Security	Events	

Policies and Actions 

We can define actions  to automatically  respond  to events that match the policy in order to tackle the 
misuse case presented. In OSSIM there are three types of actions: 

 Open a ticket 

You can create and assign a new ticket to a given user  in order to delegate the function to 
investigate a certain problem to someone with expertise in that matter. When that user logs 
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into the Service Level SIEM interface, he/she will see a new ticket in the list and can decide 
what actions to take; 

 Send an email 

You can send an email to a given user. The email is fully customizable and you can include parts 
of the event with the use of keywords (source/destination IP, port, date, type, priority, etc.) 
and 

 Execute a command 

This is a rather powerful option because it allows the user to execute a BASH script with the 
event parameters as  input and do virtually anything that can be done with a console, both 
locally and from a remote computer. 

Below you can see how to define an action in the OSSIM web interface. Note that all the fields defined 
in the event are available for use as variables  in the action for  its execution  in runtime as shown  in 
Figure 56. 

 

Figure 56: SIEM Action designer 

Finally we can use  the defined Action  inside a Policy  that will be  the start point of  the correlation 
process, filtering by a concrete Event Type, which is called ‘RERUM_Alarm’ in the example shown in 
Figure 57. 



Deliverable D3.1  RERUM FP7‐ICT‐609094 

© RERUM consortium members 2015  Page 147 of (160)  

 

Figure 57: OSSIM Policy designer 

 

5.4.3.3 Security	Reactions	for	VRD	Reconfiguration	

The OSSIM Actions potential is limited by what we can do in a shell command line. The final objective 
is to react to the generated alerts by reconfiguring the RERUM Devices taking into account those alerts 
and the context of each device. For that reason we are delegating some of those reactions to a tool 
that take  into account the system context to make a decision based  in predefined rules, that  is the 
Platform for Runtime Reconfigurability of Security, describes previously in Section 5.3.2. 
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6 Summary	/	Conclusion	
This deliverable provided an overview of the security mechanisms that are developed within RERUM. 
This is provided at two logically different levels: device communication and service level. Both of these 
are  supported  by  cryptographic  primitives.  The  goal was  to  provide  a  detailed  description  of  the 
components of  the RERUM Security architecture. Basically,  this document  is  the  first of a series of 
three deliverables (of WP3) that jointly will provide a holistic Security, Privacy and Trust architecture 
for IoT deployments. This document set the foundations for this architecture, by providing the detailed 
components of the Security part. 

Cryptography is the foundation of the security mechanisms within RERUM, thus in this document we 
first provide the notations and background on cryptographic primitives. This gives project partners, 
the  IoT‐ and  the academic‐community  the necessary background  to understand  the  cryptographic 
primitives that are the basis for the security mechanisms described  in this Deliverable. Note, group 
signatures or malleable  signatures,  for which  the harmonized notation was  already accepted as a 
scientific publication, are not yet used in any of the mechanisms described in this Deliverable. They are 
described  in  this  deliverable  already  to  ensure  that  all  developments  designed  so  far  are  flexible 
enough to be compatible also with cryptographic primitives that are updated or enhanced in future. 
The harmonised cryptographic notations stem from a very good and on‐going collaboration among the 
security experts of RERUM and the discussion of their results with other partners. 

One of the major IoT security issues concerns the security of the communication between the devices. 
Due  to  the  fact  that most  IoT devices are  resource constrained and cannot  run advanced  security 
mechanisms, up until now, most software developers didn’t embed any type of security on the devices. 
Thus, secure communication is an important part of the RERUM architecture and within this document 
RERUM  has  described  four  secure  communication mechanisms  called  “profiles”.  RERUM  already 
prototypically implemented the profiles on RERUM devices to ensure the confidentiality and integrity 
of the communication, and allow origin authentication for messages exchanged securely within the 
RERUM world.  

Briefly, the four profiles are: 

 Profile DTLS describes how DTLS was brought on the Re‐Mote, developing a research prototype 
for  Contiki  and  the  Re‐Mote  platform,  by  using  the  tinyDTLS  library  as  our  starting  point 
(https://ict‐rerum.eu/dtls‐prototype/). With DTLS becoming available, RERUM is able to establish 
integrity  and  confidentiality  (either  end‐to‐end  or  hop‐by‐hop)  at  the  transport  layer  level, 
including origin authentication. This transport layer security is achieved between RERUM Devices, 
but additionally between a RERUM Device and any other entity  in, or even outside, the RERUM 
domain. With  DTLS  implementations  being  also  available  for  non‐constrained  environments, 
RERUM greatly extends the coverage of confidentiality‐protected communication. 

 Profile On‐Device‐Signatures achieves seamless end‐to‐end integrity protection by implementing 
a  cryptographically  strong  digital  signature  on  a  constrained  device  in  a  format  that  can  be 
preserved as  long as possible. This  format, devised by RERUM,  is called  JSON Sensor Signature 
(JSS). We implemented elliptic curve cryptography (ECDSA) using the ecc‐light library by NIST as a 
starting point. JSS uses the JSON Web Signature (JWS) as a starting point. But JSS keeps the JSON 
object's  payload  unchanged,  so  signed  JSON  stays  compatible  and  the  signed  data  can  be 
processed as before by any processing step that correctly handles JSON. This includes entities like 
servers, outside of the constrained domain, and outside of RERUM’s focus. Additionally, the format 
is open to be extended to different signature algorithms, allowing RERUM to later use it together 
with more privacy preserving  cryptographic primitives  that are  researched  in RERUM  (RERUM 
Deliverable  D3.2).  JSS  are  also  capable  of  using  ECC  based  signatures  based  on  Bernstein’s 
Ed25519.  From  the  research prototype  (https://ict‐rerum.eu/jss‐ecdsa‐prototype/) we  can  see 
that in only about two seconds even a constrained device like the Zolertia Z1 (MSP 430@16MHz) 
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can seamlessly lay the foundation for cryptographically strong end‐to‐end integrity protection of 
communications with RERUM Devices.  

 Profile 802.15.4 Security presents  the  IEEE 802.15.4  security mechanisms  that RERUM can use 
when  securing  low‐level  device  communication.  Again,  this  allows  RERUM  to  secure  the 
communication on constrained devices. These mechanisms achieve integrity and confidentiality in 
a hop‐by‐hop fashion between RERUM devices. 

 Profile Lightweight and Secure Encryption Using Channel Measurements describes a secret key 
generation algorithm based on the compressive sensing (CS) theory is presented. It was accepted 
as an academic paper. This is used for lightweight symmetric encryption/decryption, as well as for 
compression/decompression, all in a single step. Secret key extraction is mainly based on channel 
measurements  by  recording  the  RSSI,  fully  available  in  commodity  hardware.  RSSI  values  are 
initially quantized and  then hashed  for achieving uniformity, a  significant property  for high CS 
performance.  Secure  sketches  are  then  used  for  information  reconciliation  and  final  key 
generation. The evaluation results show that if an adversary is at a distance of more than a half of 
the wavelength of the carrier frequency, he experiences a reconstruction error of more than 60%, 
thus becoming unable to steal sensitive information. On the other hand, legitimate transceivers 
experience an error of less than 5%, depending on the quantization level. 

Apart from the secure communication of the devices, an important part for protecting the devices is 
to ensure their secure configuration, which ensures the proper configuration of each RERUM Device 
connected to the RERUM network. Mechanisms for Secure Device Configuration have been provided 
in the deliverable, together with mechanisms to detect and react to malfunctions or misconfigurations 
on those devices.  

In detail the procedures described within this document are the following: 

 Fast and Secure Network Bootstrapping minimizes security attacks at the initial bootstrapping of 
RERUM Devices added to the network. Fresh RERUM Devices to be installed as part of a Smart City 
Use  Case  typically  do  not  have  security  credentials  available  in  the  first  step.  The  defined 
procedures balance the use of security mechanism across network layers as necessary to secure 
the distribution of different type of credentials needed by the RERUM framework. They start from 
establishing the  lower  level  layer 2  links, getting a security base for further  instantiation of the 
layers above and bootstrapping of operational credentials required within the RERUM network 
and Smart City application.  

 Secure and Context Aware Dynamic Auto Configuration adapts the PRRS tool for take into account 
the  context  information  in  order  to  maintain  the  RERUM  Devices  software  updated  and 
configured.  

 Self  Management  and  Self  Monitoring  Mechanisms  defines  how  the  RERUM  Devices  are 
monitored to know its status and how this information can be used by an Alert Processor, in this 
case implemented with a SIEM, to trigger alerts in case of something strange happen in the RERUM 
Network. With this RERUM provides self‐monitoring support.  

At the Service level, RERUM has provided details on mechanisms for taking very controlled decisions 
based on the authorization of the requesting party. 

Authorization  in  RERUM  describes  the  access  control  mechanisms  of  the  RERUM  system.  As 
authorization depends on proper authentication this  is described for Service  level authentication  in 
RERUM. The goal was to support almost all available Identity Providers, both commercial and open 
source ones. In details, these authentication conditions state that all access to RERUM devices from 
the Internet must be done providing a security token issued by a trusted authentication provider, and 
user attributes must be included in that token as well. By an Analysis of authorization options the main 
options have been judged and the option elected is the policy based access proxy. RERUM suggests an 
authorization  engine  based  on  XACML  policies.  In  this  Deliverable  RERUM  has  developed  the 
authorization  components  defined  in  Deliverable  D2.3.  These  components  support  authorization 
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decisions based on the attributes of the user, but also based on business specific logic contained in any 
text  field of  the  request. The Design of Authorization Components has also been provided  in  this 
document. 

The following table shows the relationship of the distinct security requirements of RERUM and the 
section of the document that fulfils them: 

 

Table 4: Requirements addressed in this document 

Requirement  Section 

Secure bootstrapping of operational 
cryptographic credentials 

5.2 

Availability of initial credentials  5.2 

Support of different operational credentials 
types 

3.1 and 3.2 and 5.2 

Reduction of manual interactions during 
credential bootstrapping 

5.2 

Update of operational credentials  5.2 

Energy‐efficient cryptographic primitives   2.3 and 3.1 and 3.2 and 3.3 and 3.4 

Confidentiality protection of SL‐C data in transit  3.1 and 3.3 and 3.4 

Device authentication  3.1 and 3.2 and 3.3 and 3.4 

Integrity protection of SL‐I data in transit   3.1 and 3.2 

Integrity protection of SL‐I data at rest  2.5.2 and 3.2 

Authorised modification of integrity protected 
data 

4.4 and 
additionally this requirements is planned to be 
addressed by special MSS (planned to be 
described in Deliverable D3.2) 

User authentication  4.2 (and technically also in 3.2)  

Attribute‐based access control  4.4 

Low energy consumption   3.1 and 3.2 and 3.3 and 3.4 

Microcontroller performance  3.1 and 3.2 and 3.3 and 3.4 

Centralised management of constrained 
networks 

5.3 and 5.4 

Self‐* mechanisms  5.3 and 5.4 
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Over‐the‐Air Programming  5.3 

Find deployable software to RERUM devices  5.3 

Monitoring and traceability by the middleware  5.3 

Object configuration isolated per application  to be supported by application design 

Secure design and implementation of RERUM 
components 

all described mechanisms of this document 
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