

Runtime Environment

Project acronym: COMPAS

Project name: Compliance-driven Models, Languages, and Architectures for Services

Call and Contract: FP7-ICT-2007-1

Grant agreement no.: 215175

Project Duration: 01.02.2008 – 28.02.2011 (36 months)

Co-ordinator: TUV Technische Universitaet Wien (AT)

Partners: CWI Stichting Centrum voor Wiskunde en Informatica (NL)

UCBL Université Claude Bernard Lyon 1 (FR)

USTUTT Universitaet Stuttgart (DE)

TILBURG UNIVERSITY Stichting Katholieke Universiteit Brabant (NL)

UNITN Universita degli Studi di Trento (IT)

TARC-PL Telcordia Poland (PL)

THALES Thales Services SAS (FR)

PWC Pricewaterhousecoopers Accountants N.V. (NL)

This project is supported by funding from the Information Society Technologies Programme under the 7th
Research Framework Programme of the European Union.

D1.4
Version: 1.0

Date: 2010-12-29
Dissemination status: PU
Document reference: D1.4

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 2 of 30

Project no. 215175

COMPAS

Compliance-driven Models, Languages, and Architectures for Services

Specific Targeted Research Project

Information Society Technologies

Start date of project: 2008-02-01 Duration: 36 months

D1.4 Runtime Environment
Revision 1.0

Due date of deliverable: 2010-12-31

Actual submission date: 2010-12-29

Organisation name of lead partner for this deliverable:

USTUTT – Universitaet Stuttgart, Germany

Contributing partner(s):

TUV – Technische Universitaet Wien, Austria

UNITN – University of Trento, Italy

TARC-PL – Telcordia Poland, Poland

Project funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 3 of 30

History chart

Issue Date Changed page(s) Cause of change Implemented
by

0.1 2010-05-20 All sections New document, initial
structure, draft of content

USTUTT

0.2 2010-06-17 Structure has been revised,
Abstract has been written and
first version of section on
Process Engine Environment
has been composed

Preparation of discussion on
the contribution of the
involved COMPAS partners

USTUTT

0.25 2010-07-01 Structure has been revised and
advices regarding future
content and partner
contributions have been
adapted due to feedback and
comments from discussion
during meeting in Pergine
Valsugana

Final preparation of initial
version for agreement with
involved partners on future
content and expected partner
contributions

USTUTT

0.3 2010-07-13 Comments and improvement
suggestions from USTUTT
internal review of first draft
have been integrated

Preparation of final version of
first draft

USTUTT

0.35 2010-07-20 Subsections of sections 4.6 and
4.7 have been combines

Comments during finding of
an agreement on final version
of first draft

USTUTT

0.4 2010-09-26 Subsection 4.4.4 has been
updated. First version of
contribution by TARC-PL has
been integrated (Subsections
4.6 and 4.8.1)

Update of optional prefiltering
in Compliance Custom
Controller. Integration of
initial version of contribution
from TARC-PL

TARC-PL

0.45 2010-10-06 Sections 3 and 4 have been
updated.

Updates and extensions in
preparation of 10th quarterly
COMPAS meeting

USTUTT,
TARC-PL

0.5 2010-11-08 Section 4.2 Update the generation of
BPEL and deployment
configuration with VbMF

TUV

0.51 2010-11-21 Section 4.1 MORSE information retrieval TUV
0.6 2010-11-21 Section 4.2 Revise the section, replace

new figures
TUV

0.7 2010-11-26 All sections Prepared for internal review USTUTT
0.8 2010-12-13 All sections Revision USTUTT,

TUV,
UNITN

0.81 2010-12-17 All sections Prepared for approval USTUTT
1.0 2010-12-24 Approval TUV

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 4 of 30

Authorisation

No. Action Company/Name Date

1 Prepared USTUTT 2010-12-17
2 Approved TUV 2010-12-24
3 Released TUV 2010-12-29

Disclaimer: The information in this document is subject to change without notice. Company
or product names mentioned in this document may be trademarks or registered trademarks of
their respective companies.

All rights reserved.

The document is proprietary of the COMPAS consortium members. No copying or
distributing, in any form or by any means, is allowed without the prior written agreement of
the owner of the property rights.

This document reflects only the authors’ view. The European Community is not liable for any
use that may be made of the information contained herein.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 5 of 30

Contents

1. Introduction .. 7

1.1. Purpose and scope ... 7

1.2. Document overview .. 7

1.3. Definitions and glossary .. 7

1.4. Abbreviations and acronyms ... 8

2. Integration into the COMPAS architecture .. 8

3. Concept and application of traceability .. 10

4. Integrated COMPAS tools for checking compliance at runtime .. 11

4.1. Compliance information retrieval ... 12

4.2. Process generation and deployment .. 13

4.3. Process execution and event publishing .. 15

4.4. Subscription to the Enterprise Service Bus ... 19

4.5. Online process instance monitoring .. 21

4.6. Online compliance monitoring .. 26

4.7. Online monitoring dashboard .. 26

4.8. Offline compliance monitoring ... 28

5. Summary .. 29

6. Reference documents ... 30

6.1. Internal documents .. 30

6.2. External documents ... 30

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 6 of 30

List of figures

Figure 1 Overall COMPAS architecture .. 9

Figure 2 Overview on traceability .. 10

Figure 3 Integrated COMPAS architecture for compliance checking at runtime 11

Figure 4 VbMF supports for generating BPEL/WSDL and configuration 14

Figure 5 VbMF Preference Page for deployment and traceability configuration 15

Figure 6 Selection menu for deployed processes and corresponding instances 22

Figure 7 Excerpt of the full mode of the business process diagram for WatchMe 23

Figure 8 Compact mode of the business process diagram for WatchMe. Diagram is still too
complex and requires abstraction. .. 24

Figure 9 Excerpt from the business process diagram, where activities of little importance
are omitted and activities related to time-based plan are highlighted 25

Figure 10 Realization of Online Compliance Governance Dashboard – overall view 27

Figure 11 Realization of Online Compliance Governance Dashboard – detailed view of
composition violation regarding “SportAudio” provider ... 27

List of listings

Listing 1 Example for traceability information ... 10

Listing 2 Java-example on how to retrieve a compliance requirement 12

Listing 3 Java-example on how to retrieve all compliance requirements that are related to a
certain compliance target ... 13

Listing 4 Excerpt of BPEL process file augmented with traceability information 16

Listing 5 Example of an execution event emitted ... 18

Listing 6 Java source code for creation of the JMS topic ... 18

Listing 7 Java source code for publishing an event message to the JMS topic 19

Listing 8 XML Schema of Events (Excerpt) ... 20

Listing 9 Java source code for subscribing to a JMS topic ... 21

Listing 10 Java source code for handling messages received from a JMS topic after
subscription 21

Listing 11 Example of Complex Event Processing rule .. 26

Listing 12 Example of compliance_governance_event_receiver code used to retrieve
events from the ESB and store them into the Event Log database ... 29

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 7 of 30

Abstract

This deliverable introduces the integrated COMPAS runtime environment which enables
compliance checking and monitoring at runtime. The runtime environment considers storage
of compliance-related process data and the enactment of process execution including
traceability aspects. The compliance-enabled service environment publishes execution events
via an enterprise service bus. Several components are subscribed to the published events to
enable online and offline compliance monitoring. The results of the monitoring are displayed
in a compliance governance dashboard. This deliverable contains integration code for
prototypes developed in the project (e.g., code for connecting publishers and subscribers for
the enterprise service bus). In addition, we present a new prototype for online process instance
monitoring which provides basic monitoring functionality missing in the standard distribution
of the process engine.

1. Introduction

1.1. Purpose and scope

This deliverable provides a prototype for checking the compliance rules for the runtime
compliance environment. The runtime environment consists of different components, which
enable checking compliance rules at runtime and analyzing violations.

1.2. Document overview

Section 2 describes the positioning of this deliverable in the overall COMPAS architecture.
Section 3 briefly describes the motivation and concept of traceability and its impact on the
COMPAS runtime components. Section 4 presents the integration code for each component
and provides references to the source code and binaries of the tools. Section 5 contains
references to internal and external documents.

1.3. Definitions and glossary

The most important terminology concerning the COMPAS project is listed on the public
COMPAS Web-Site [D7.1] available at http://www.compas-ict.eu, section “terminology”.
This helps to make the overall COMPAS approach more comprehensive for the general
public.

In the following the definitions of terms valid only in the scope of this deliverable (and
therefore not listed on the public COMPAS Web-Site) are specified. To offer a self-contained
deliverable, general terms of the COMPAS terminology are copied here.

Compliance requirement: A Compliance requirement is a constraint or assertion that results
from the interpretation of compliance sources.

Compliance fragment: A Compliance fragment (i.e., a process fragment for compliance) is a
connected process structure that can be used as a reusable building block to
ensure a consistent specification of compliance regarding a business process.
Compliance fragments can be used to implement a compliance rule in terms of
activities and control structures.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 8 of 30

Compliance target: A Compliance target is a generic specification, such as a business
process, or a compliance fragment, which is a target of compliance
requirements.

Traceability: Traceability in the field of compliance denotes the property to be able to trace a
compliance requirement throughout the lifecycle of artefacts. An artefact in
COMPAS is an activity, a variable, a correlation set of a process, a process
model itself, a process instance, execution events, etc.

1.4. Abbreviations and acronyms

BPEL

CEP

Business Process Execution Language

Complex Event Processing

CLRT

DSL

MDD

MDSD

Compliance Language Request Tools

Domain-Specific Language

Model-Driven Development

Model-Driven Software Development

MORSE

oAW

ODE

SQL

UUID

VbMF

WSDL

XML

Model-Aware Repository & Service Environment

openArchitectureWare

Orchestration Director Engine

Structured Query Language

Universally Unique Identifier

View-based Modelling Framework

Web Services Description Language

Extensible Markup Language

2. Integration into the COMPAS architecture
This chapter describes which of the components of the COMPAS overall architecture are
affected and involved in the compliance monitoring and checking at runtime. This includes
the mechanism how the traceability is achieved. Note that we focus in this deliverable mainly
on the components contained within the runtime compliance environment as well as the
compliance governance architecture. The basis for traceability is provided by the MDSD
Software Framework when generating the BPEL processes as well as the configurations for
components. Such components are the Compliance Custom Controller (Java Properties File)
and the CEP Engine (CEP rules).

Figure 1 depicts the overall COMPAS architecture and highlights the components affected in
this deliverable. The model repository deals with storage and traceability information (see
Section 4.1). The centrepiece of the execution is the process engine which executes business
processes by means of service orchestration. During execution of a process, execution events
are emitted by the process engine and the services which are invoked. These events are
published to an Enterprise Service Bus (ESB), which forms the integration platform between
runtime and monitoring. The online monitoring components subscribe to the ESB in order to

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 9 of 30

receive these events. The complex event processing engine also generates higher level events,
which are themselves published to the ESB. The event log stores the events which are
published on the ESB in order to enable offline monitoring.

C
om

pl
ia

nc
e

T
ar

ge
ts

an

d
F

ra
gm

en
ts

S
pe

ci
fic

at
io

ns
 o

f
C

om
pl

ia
nc

e

Figure 1 Overall COMPAS architecture

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 10 of 30

3. Concept and application of traceability
Figure 2 presents an overview on the concept of traceability. It shows from left to right a
high-level process model, a low-level process model, an engine-internal model, execution
events and a dashboard. A traceability information is identified by an ID and shown as a red
ID in the figure. In the high-level process model, a single activity is annotated with an ID.
From a compliance point of view, this identifier is related to a compliance requirement. This
ID is used in the whole lifecycle of the process. The low-level process is an executable
process model used for deployment at a process engine. New annotations may be made at this
stage (blue IDs). Possibly, the engine also injects identifiers to the deployed process model
stored using an internal format. All these IDs are contained in the events published by the
engine. These events are used at a compliance dashboard to enable drill-down of compliance
violations to the root cause. In summary, it is fundamental to support traceability in a
compliance-enabled runtime environment.

Figure 2 Overview on traceability

With respect to the COMPAS components traceability information is injected into the
processes using universally unique identifiers (UUIDs). This happens at the level of BPEL
processes. Listing 1 shows an excerpt of the traceability information for the WatchMe use
case [D5.4, D6.3]. The code presented in Listing 1 assigns a unique identifier to an activity.

<morse:traceability
 xmlns:morse=”http://xml.vitalab.tuwien.ac.at/ns/
 morse/traceability.xsd”
 build=”56810150-5bd8-4e8e-9ec5-0b88a205946b”
 xmlns=”http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”>
 <row query="/process/sequence[1]/pick[3]/onMessage[1]
 /sequence[1]/if[2]/elseif[1]/sequence[1]/flow[1]
 /sequence[1]/invoke[1]">
 <uuid>ab12349a-iu1z-007a-1z5z-1xy56df11654</uuid>
 </row>
</morse:traceability>

Listing 1 Example for traceability information

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 11 of 30

4. Integrated COMPAS tools for checking compliance at
runtime

Figure 3 presents the technical architecture of the components described in this deliverable.
The figure shows the exchange of artefacts (black arrows), the deployment of processes and
configurations (red arrows) as well as the flow of events (blue arrows). The upper part of the
figure contains the components of the MDSD software framework and the repositories. The
middle part makes up the runtime compliance environment. It consists of an extended Apache
ODE process engine, a compliance custom controller for emission of events augmented with
traceability information, and an enterprise service bus (Apache ActiveMQ). The lower part
consists of the components of the compliance governance architecture. The architecture is
split up into online and offline monitoring. The following subsections describe the
corresponding integration code for each of these groups of components.

Extended Process
Engine

Apache ODE

Compliance Custom
Controller

Event
Augmentation

ESB
Apache ActiveMQ

Compliance
Governance Input

JMS-Topic

Code
Generator

Online Compliance Monitoring Offline Compliance Monitoring

Compliance
Governance
Dashboard

CEP-Based
Compliance
Monitoring

Business
Protocol

Monitoring

Event
Log

Analysis /
Business

Intelligence

ETL

Log
Mining

Data
Warehouse

BPEL
Process

containing
UUIDS

Deployment
Descriptor

CEP
Rules

containing
UUIDs

System
Level

Events
containing

UUIDs

System Level
and Business Level

Events containing UUIDs

System Level
and Business Level

Events containing UUIDs

System Level
and Business Level

Events containing UUIDs

Display
Information

Display
Information

Display
Information

Data

Data

Events

Event
Logs

Legend

Deployment

Events

Exchange of
artefacts

Model
Repository

MDSD software framework and Repositories

Runtime compliance environment
Compliance governance architecture

Models & Model
Instances

Information on Models &
Model Instances

Figure 3 Integrated COMPAS architecture for compliance checking at runtime

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 12 of 30

4.1. Compliance information retrieval

All models and model instances that are used for generating the model-driven SOA (e.g.,
compliance targets) or relate to concepts from the COMPAS conceptual model (e.g.,
compliance requirements) are retrievable from the MORSE model repository by any (runtime,
design-time) component interested. This is, besides interfaces for the storage of instances
from the View-based Modelling Framework and the COMPAS conceptual model, the MORSE
repository particularly offers service-based interfaces for the retrieval of these to runtime
monitoring components (see also Table 1 from [D4.4b]).

Besides these XML and RESTful Web service interfaces the MORSE also automatically
generates ready to use Java clients (i.e. proxies). These are packaged and distributed via a
Maven repository and can, e.g., be included as a Maven dependency, in the client software.

The code example presented in Listing 2 uses the MORSE library for the COMPAS conceptual
model and retrieves a compliance requirement for a given UUID.

CRequirementServiceImpl impl = new CRequirementServiceImpl(uuid);
CRequirement req = null;
try {
 req = impl.retrieve();
} catch (RemoteException e) {
 System.err.println("Some error while communication with MORSE!");
} catch (CRequirementNotFoundException e) {
 System.err.println(“Compliance Requirement not found!”);
}

Listing 2 Java-example on how to retrieve a compliance requirement

The code example displayed in Listing 3 uses the MORSE library for the COMPAS conceptual
model. For a given compliance target, identifiable by the UUID uuidTarget, it
demonstrates how to retrieve all compliance requirements that are related to these compliance
targets via controls. In this example the query operation is called with following parameters:
head, jpaJoin, jpaWhere, jpaOrder, firstResult, and maxResults. If the first
parameter is false then version specific copies are queried otherwise so called version
independent copies. The MORSE repository realizes a transparent model versioning so that
identifiers can be reused for retrieving the most recent version of a model. In addition to such
a version independent copy of the model, the MORSE repository also stores version specific
copies of the model as the runtime usually needs to relate to a specific version of a model.
Thus, for runtime component it usually makes sense to query an exact version; however if the
runtime needs to consider the most recent, e.g., compliance requirement, this parameter can
be set to true. The second parameter specifies the JOIN clause of a JPA Query (JPQL) (cf.
[JPA09]). Similarly the two following optional parameters specify the WHERE and ORDER
clause of such a query. Finally, for pagination firstResult and maxResults can be set
to zero or specific numbers (cf. JPA 2.0 specification [JPA09]), e.g., for only returning the
fifth and sixth result the parameters would be specified as 5-1 and 2.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 13 of 30

Collection<ControlImpl> controls = null;
try {
 controls = new ControlServiceImpl().query(
true, "o.targets t" , "t.uuid = '" + uuidTarget + "'", null, 0, 0);
} catch (RemoteException e) {
 System.err.println("Some error while communication with MORSE!");
} catch (ControlNotFoundException e) {
 System.err.println("There are no Controls for the process!");
}
EList<CRequirement> reqs = new BasicEList<CRequirement>();
for (ControlImpl control : controls) {
 reqs.addAll((Collection<? CRequirement>) control.getRequirements());
}
// reflect on all Requirements
for (CRequirement req : reqs) {
 // reflect on the compliance Requirement: req
}

Listing 3 Java-example on how to retrieve all compliance requirements that are
related to a certain compliance target

4.2. Process generation and deployment

Figure 4 shows the Eclipse-based user interface of the View-based Modeling Framework
(VbMF) for generating process implementation in BPEL/WSDL as well as the deployment
configuration and runtime directives for traceability. VbMF also offers the deployment of
BPEL processes into Apache ODE engine [Apache09a]. Firstly, the option “…with
deployment files” in the code generation dialog (see Figure 4) must be checked such that the
deployment configuration for the Apache ODE engine will be generated accordingly.
Secondly, the users can configure corresponding VbMF preferences (see Figure 5) to let
VbMF know where the Apache ODE engine is hosted. Finally, users just go to menu “VbMF”
and choose “Deploy”.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 14 of 30

Figure 4 VbMF supports for generating BPEL/WSDL and configuration

In addition, users can also configure the generation of traceability elements in the
aforementioned preference page.

VbMF is one of the main contributions of [D1.2] and has been implemented in [D1.3].
Therefore, we opt to not elaborate further in this document but rather recommend the readers
to consult [D1.2, D1.3] for more details.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 15 of 30

Figure 5 VbMF Preference Page for deployment and traceability configuration

4.3. Process execution and event publishing

The extended process engine consists of a modified version of Apache ODE and a compliance
custom controller. The Apache ODE has been extended to support the “pluggable framework
for enabling the execution of extended BPEL behaviour” [KKL07]. This framework provides
the generation of generic BPEL events, which are independent of the BPEL engine used.
These events provide information of status changes of activities and variables. A so-called
“custom controller” can connect to the engine in order to receive and process such events. We
have implemented such a custom controller and call it “compliance custom controller”.
Details are described in [D4.4b]. The compliance custom controller generates events with
traceability information (Section 3) and publishes them to the Enterprise Service Bus
(Section 4.4), where they are consumed and used to perform online compliance monitoring
(Section 4.6) and offline compliance monitoring (Section 4.8). The traceability information
enables the monitoring components to retrieve additional information from the Model
Repository for drill down in case a compliance violation has been detected, see Figure 3.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 16 of 30

Each BPEL process has to be enriched by traceability information (Section 3). BPEL allows
the process definition to be extended with elements not defined in the BPEL specification.
The extension has to be declared in an <extensions> element. The extension itself may be
put at the beginning of each element. We added the traceability information at the beginning
of the <process> element. Listing 4 shows an example for a BPEL process definition with
traceability information. This process definition is sent along with a “process deployed” event
to the compliance custom controller, which stores the traceability information to enable the
addition of UUIDs to the events generated by the engine.

<bpel:process name="WatchMeProcess" targetNamespace="http://www.compas-
ict.eu/watchme">
 <morse:traceability
xmlns:morse="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"
xmlns="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"
build="c3fc8f18-50db-4589-b296-26b5132650a3">
 <row query="/process"
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
 <uuid>4c546447-db90-41e0-a3c5-f82229e55346</uuid>
 <uuid>ba3e61a2-60e2-4c25-a080-44ada7e2d9cf</uuid>
 <uuid>8f964426-12f8-4845-8d1d-dc4d44707c02</uuid>
 <uuid>5c9ff665-fa02-4ead-8256-c58e2cf9c79a</uuid>
 <uuid>a8526580-c373-4676-944e-67a5e04f1a63</uuid>
 <uuid>7b54edf8-3acd-4823-a0a2-c084a71a7c44</uuid>
 <uuid>4da0069b-b4de-4f9a-bb2a-9d3967be4e63</uuid>
 </row>
 <row
query="/process/sequence[1]/pick[1]/onMessage[1]/sequence[1]/invoke[1]">
 <uuid>50b9f4d6-624c-35ba-a617-1736dee0dc17</uuid>
 </row>
 <row
query="/process/sequence[1]/pick[1]/onMessage[1]/sequence[1]/if[1]/sequence
[1]/invoke[1]">
 <uuid>491a73fa-d3cf-3599-9921-3da57e479885</uuid>
 </row>
 <row
query="/process/sequence[1]/pick[1]/onMessage[1]/sequence[1]/if[1]/sequence
[1]/reply[1]">
 <uuid>3ba56ccf-105f-3486-8d53-0729750eb7e4</uuid>
 </row>
 ...
 </morse:traceability>
 ...
 <bpel:extensions>
 <bpel:extension mustUnderstand="no"
namespace="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"/>
 </bpel:extensions>

Listing 4 Excerpt of BPEL process file augmented with traceability information

Listing 5 shows an example of an execution event which is emitted by the compliance custom
controller. The event denotes the start of the execution of the activity invoking the service
responsible for checking the user data. This event is sent to the enterprise service bus, where
the monitoring components use it for compliance monitoring. The topic used is named
“eu.compas_ict.events.lowlevel”.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 17 of 30

<Event xmlns="http://xml.infosys.tuwien.ac.at/ns/compas/event">
 <timestamp>2010/11/22 23:02:33</timestamp>
 <source>Process Engine</source>
 <type>ActivityExecutingEvent</type>
 <name>ac0af35f-45a5-4907-ba02-a67d1abc573e</name>
 <processBuildUUID>268a3509-bbca-4640-a00a-9ab2ca2592c1
 </processBuildUUID>
 <processInstanceId>3251</processInstanceId>
 <property name="messageID">27</property>
 <property name="activityName">Check user data</property>
 <property xmlns:ns3="http://www.compas-ict.eu/watchme"
 name="processName">ns3:WatchMeProcess
 </property>
 <property name="processUUIDList">
 <ns2:uuid
xmlns:ns2="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd">5a3b5
7ac-ac45-4381-8f79-0853ab90e58a
 </ns2:uuid>
 <ns2:uuid
xmlns:ns2="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd">f2be4
55d-aceb-4c8c-9eca-0c71d24f4ed0
 </ns2:uuid>
 <ns2:uuid
xmlns:ns2="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd">445f2
8ff-0be5-4019-ae30-e03cccfbea13
 </ns2:uuid>
 <ns2:uuid
xmlns:ns2="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd">594bb
ecc-5df2-4afb-9f13-4b3e54381f9f
 </ns2:uuid>
 <ns2:uuid
xmlns:ns2="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd">13878
820-c310-493c-8d21-4409dfcdbc1c
 </ns2:uuid>
 <ns2:uuid
xmlns:ns2="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd">5cd1d
8ea-d0ef-44c7-b6dc-16adbaec9418
 </ns2:uuid>
 <ns2:uuid
xmlns:ns2="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd">c2c53
4c0-2af1-4afd-a14f-fb8d006d965a
 </ns2:uuid>
 </property>
 <property name="processVersion">5</property>
 <property name="activityInstanceID">3302</property>
 <property
name="activityXPath">/process/sequence[1]/pick[1]/onMessage[1]/sequence[1]/
invoke[1]
 </property>
 <property name="scopeInstanceID">3301</property>
 <property name="scopeXPath">/process</property>
 <property name="uuid">50b9f4d6-624c-35ba-a617-1736dee0dc17</property>
 <property xmlns:ns="http://www.compas-ict.eu/watchme"
name="portType">ns:UserDataCheck
 </property>
 <property name="operation">checkUserData</property>
 <property name="endpointReference">
 <service-ref xmlns="http://docs.oasis-open.org/wsbpel/2.0/serviceref">
 <EndpointReference xmlns="http://www.w3.org/2005/08/addressing">
 <Metadata>

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 18 of 30

 <ServiceName
xmlns="http://www.w3.org/2006/05/addressing/wsdl"
 xmlns:servicens="http://www.compas-ict.eu/watchme"
EndpointName="UserDataCheck">servicens:UserDataCheckService
 </ServiceName>
 </Metadata>
 <Address>
http://localhost:8080/UserDataCheckWS/services/UserDataCheck
 </Address>
 </EndpointReference>
 </service-ref>
 </property>
</Event>

Listing 5 Example of an execution event emitted

The compliance custom controller is part of the compliance runtime environment. It has to be
integrated with the components of the compliance governance architecture, namely Event
Log, Business Protocol Monitoring and CEP-Based Compliance Monitoring (cf. Figure 3).
This integration is described here. We use the publish/subscribe messaging paradigm and use
the Java Messaging Service to integrate the components. Apache ActiveMQ [Apache09b] is
used as JMS provider. Details are described in Section 4.4.

The compliance custom controller publishes events to a JMS topic. The events are augmented
with traceability information and contain information required for compliance checking. The
JMS topic is created by the compliance custom controller (Listing 6).

The UUID identifying the build process as well as the UUIDs uniquely identifying the views
that have been used during generation at design time are contained in all events emitted by the
compliance custom controller.

// variables for setup of topic
// used to send messages to the governance architecture

private ConnectionFactory factory;
private Connection outConnection;
private Session outSession;
private Topic outTopic;
private MessageProducer outPublisher;
try {
 factory = new ActiveMQConnectionFactory("tcp://localhost:61616");
 outConnection = factory.createConnection();
 outSession = outConnection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 outTopic = outSession.createTopic("eu.compas_ict.events.lowlevel");
 outPublisher = outSession.createProducer(outTopic);
 outPublisher.setDeliveryMode(DeliveryMode.PERSISTENT);
 System.out.println("Connection to Apache ActiveMQ established
 successfully!");
}
catch (Exception e){
 System.out.println("Establishing connection to Apache ActiveMQ
 failed!");
 System.out.println(e);
}

Listing 6 Java source code for creation of the JMS topic

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 19 of 30

public void sendMessageToGovernanceArch(Serializable aObject){
 try {
 ObjectMessage aObjectMessage = outSession.createObjectMessage();
 aObjectMessage.setObject(aObject);
 outPublisher.send(aObjectMessage);
 System.out.println("Message has been sent to topic of governance
 architecture including corresponding uuids from traceability
 information.");
 }
 catch (JMSException e){
 System.out.println("Message could not be send to Topic.");
 System.out.println(e);
 }
 catch (Exception e){
 System.out.println("Exception while sending message to Topic.");
 System.out.println(e);
 }
}

Listing 7 Java source code for publishing an event message to the JMS topic

The compliance custom controller subscribes to the JMS topic created by the extended
Apache ODE. The subscription is similar to the one used to be used subscribe to the topic
created by the compliance custom controller. The description of subscribing to a topic is
provided in Section 4.4.

4.4. Subscription to the Enterprise Service Bus

In COMPAS we use the open source Apache ActiveMQ [Apache09b] as messaging
infrastructure. Creation of JMS topics and the sending of messages has been described in
Section 4.3. In this section, we show the subscription to a JMS topic and how messages can
be processed.

Listing 8 presents an excerpt of the XML schema describing the format of each published
event. The full XML schema is provided with the source code.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:evt="http://xml.infosys.tuwien.ac.at/ns/compas/event"
targetNamespace="http://xml.infosys.tuwien.ac.at/ns/compas/event">
 <xs:element name="Event">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="evt:timestamp"/>
 <xs:element ref="evt:source"/>
 <xs:element ref="evt:type"/>
 <xs:element ref="evt:name"/>
 <xs:element ref="evt:processBuildUUID"/>
 <xs:element ref="evt:processInstanceId"/>
 <xs:element ref="evt:property" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="EventType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ActivityCompleteEvent"/>
 <xs:enumeration value="ActivityExecutedEvent"/>
 <xs:enumeration value="ActivityExecutingEvent"/>

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 20 of 30

...
 <xs:enumeration value="VariableModificationEvent"/>
 <xs:enumeration value="VariableReadEvent"/>
 <xs:enumeration value="ComplianceViolationEvent"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="name" type="xs:string"/>

 <xs:element name="timestamp" type="xs:string"/>

 <xs:element name="source" type="xs:string"/>
 <xs:element name="processBuildUUID" type="xs:string"/>
 <xs:element name="processInstanceId" type="xs:string"/>
 <xs:element name="type" type="evt:EventType"/>
 <xs:element name="property">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 <xs:anyAttribute namespace="##other"
 processContents="lax"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Listing 8 XML Schema of Events (Excerpt)

Listing 9 shows the subscription to a topic. First of all, the URL of the ActiveMQ broker has
to be provided. We put ActiveMQ’s failover transport on top of the tcp transport in order to
be able to deal with inactivity timeouts: ActiveMQ closes the connection after a certain period
of time. As compliance monitoring has to be always available, the connection should never be
closed. This is enabled by the failover transport. The class used to handle each incoming
message is set by the method “setMessageListener”.

// variables for subscribing to the topic
private TopicConnectionFactory mTopicConnectionFactory;
private TopicConnection mCommunicationInConnection;
private Topic mCommunicationInTopic;
private TopicSubscriber mCommunicationInSubscriber;
private TopicSession mCommunicationInSession;
try {
 // JMS- Topic the Compliance Custom Controller events are published to -
 Topic for incoming messages for all interested components of
 compliance governance architecture
 mTopicConnectionFactory =
 new
ActiveMQConnectionFactory(("failover:(tcp://localhost:61616)?wireFormat.max
InactivityDuration=0,timeout=3000,maxReconnectAttempts=65535");
 mCommunicationInConnection =
 mTopicConnectionFactory.createTopicConnection();
 mCommunicationInSession =
 mCommunicationInConnection.
 createTopicSession(false,TopicSession.AUTO_ACKNOWLEDGE);
 mCommunicationInTopic =
 mCommunicationInSession.createTopic("eu.compas_ict.events.lowlevel");
 mCommunicationInSubscriber =
 mCommunicationInSession.createSubscriber(mCommunicationInTopic);
 // register MessageDispatcher for Topic

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 21 of 30

 MsgDispatcher messageDispatcher = new MsgDispatcher();
 mCommunicationInSubscriber.setMessageListener(messageDispatcher);
 mCommunicationInConnection.start();
 System.out.println("Connection to Apache ActiveMQ established
 successfully!");
}
catch (Exception e) {
 System.out.println("Establishing connection to Apache ActiveMQ
 failed!");
 System.out.println(e);
}

Listing 9 Java source code for subscribing to a JMS topic

Listing 10 presents the method being called at each receipt of a message. In COMPAS, XML-
based event are used [D5.4]. As a consequence, each received event has to be converted to a
Java-Object and then processed or directly processed using an XML processor. In Listing 10,
the XML processor StAX [Codeh10] is chosen to process the received message. In COMPAS,
several components are subscribed to the execution events emitted by the process engine, for
instance the Complex Event Processing (CEP) and the Event Log,

public void onMessage(Message message) {
 TextMessage msg = (TextMessage) message;
 String xmlText = null;
 try {
 xmlText = msg.getText();
 } catch (JMSException e) {
 System.out.println("Error occurred during serialization of
 received message!");
 System.out.println(e);
 }
 // parse XML using your favorite parsing framework
 // here we use StAX
 try {
 XMLInputFactory inputFactory = XMLInputFactory.newInstance();
 InputStream in = new
 ByteArrayInputStream(xmlText.getBytes("UTF-8"));
 XMLEventReader eventReaderUnfiltered =
 inputFactory.createXMLEventReader(in);
 XMLEventReader eventReader = eventReaderUnfiltered;
 while (eventReader.hasNext()) {
 XMLEvent event = eventReader.nextEvent();
 // handle event here
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}

Listing 10 Java source code for handling messages received from a JMS topic after
subscription

4.5. Online process instance monitoring

The Business Process Illustrator (BPI) is a web-based tool for monitoring the execution of
business processes. It displays the current state of a process instance. The process graph is
refreshed regularly. The tool has been developed in a Diploma Thesis, supervised by

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 22 of 30

USTUTT [Lat10]. The source code, binaries, and installation manual are available for
download at SourceForge [BPI10].

In [SLS10a] we discussed the foundations of views on processes. In [SLS10b] we built on this
knowledge, and described how views on processes can be used to support compliance
management. BPI builds on this research and implements concepts which are related to
compliance management in business processes. With respect to business process monitoring,
these are the highlighting and hiding of compliance fragments. Another important feature of
this tool beyond regular process monitoring is the omission of structures which are of little
importance for understanding, e.g., assign or validate activities. This feature is important
when dealing with complex processes containing a large number of activities. BPI is
integrated with the BPEL process engine Apache ODE, which we extended to support
traceability, as discussed in [D4.4b].

For selection of a process to be monitored, the user may choose from the selection menu
shown in Figure 6. This menu allows selecting, searching and filtering for particular process
models which are deployed on the process engine (upper part), and selecting corresponding
process instances (lower part).

Figure 6 Selection menu for deployed processes and corresponding instances

After a selection of a process instance has been made, the process diagram is generated using
Scalable Vector Graphics (SVG), which is subsequently displayed in the client’s browser. BPI
supports several viewing modes for process diagrams: the full mode shows for each activity
the start and end time, the activity type, name, status and a corresponding icon, as shown in
Figure 7. The process diagram is updated in pre-defined refreshment cycles. Thus, the process
diagram always reflects the current state of the process instance.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 23 of 30

Figure 7 Excerpt of the full mode of the business process diagram for WatchMe

The compact mode reduces the amount of information displayed, however for complex
processes the overall complexity is still very high, see for instance the business process
diagram for the WatchMe use case depicted in Figure 8.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 24 of 30

Figure 8 Compact mode of the business process diagram for WatchMe.
Diagram is still too complex and requires abstraction.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 25 of 30

In order to reduce the complexity of a process the tool supports the omission of activities
which are of little importance for particular tasks. For instance, assign and validate activities
can be omitted, or fault handling logic can be hidden, without impairing the overall process
structure. Another feature is the possibility to highlight particular parts in a process. As we
discussed in [SLS10b], such feature can be used to clearly highlight process structures which
are related to compliance, i.e., compliance fragments. Figure 9 shows an excerpt from the
process diagram of the WatchMe use case, where activities of little importance are omitted,
and activities of a compliance fragment are highlighted in order to support an auditor. The
compliance fragment implements the requirement “time-based plan” originating from domain
licensing.

Figure 9 Excerpt from the business process diagram, where activities of little
importance are omitted and activities related to time-based plan are highlighted

The tool is tightly integrated with the Apache Ode engine. It provides an adapter concept
allowing it be used in other contexts.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 26 of 30

4.6. Online compliance monitoring

Complex Event Processing (CEP) is used to enable detection of compliance violations at
runtime. The CEP engine evaluates predefined compliance rules against patterns of events
flowing through it. It enables matching of various event pattern templates (including time
dependencies), event aggregations, filtering and various kinds of logical and arithmetic
operations on event streams. The technique is based on active databases and is often called a
reverse database – as instead of queries evaluated against whole relations, the flowing events
are evaluated against the rules and only some events, needed for the rule to be matched, are
kept in a temporary storage.

public class CompositionEventStmt
{
 private EPStatement statement;
 public CompositionEventStmt(EPAdministrator admin)
 {
 String stmt = "select * from " + "pattern [every (" +
 "V1 = Event(name='WatchMeGetVideoStreamEvent' AND " +
 "properties.Property[2].value='1') AND " +
 "(A2=Event(name='WatchMeGetAudioStreamEvent' AND " +
 "properties.Property[2].value='2'))" + ") " +
 "where timer:within(5000 msec)] where
 (A2.properties.Property[1].value"+"=V1.properties.Property[1].value)
 AND (A2.properties.Property[4].value = V1.properties.Property[3].value)";

 statement = admin.createEPL(stmt);
 }

 public void addListener(UpdateListener listener)
 {
 statement.addListener(listener);
 }
}

Listing 11 Example of Complex Event Processing rule

Listing 11 shows the source code of the class that specifies Complex Event Processing rule
for monitoring the composition permission compliance requirement. The statements are
specified using a special Event Processing Language (EPL) which resembles SQL. Unlike
SQL, the language allows for a specification of various event patterns. Listing 11 presents an
example of a pattern created with the use of simple logical AND relation.

If any of the violations patterns are detected, then a high-level notification event is generated
which is directly sent to the COMPAS ESB, where it can wait for the Compliance
Governance Dashboards (or other components) to be processed.

4.7. Online monitoring dashboard

This section describes the online monitoring dashboard, which is connected to the extended
business process engine by consuming the events from the topic available at the ESB (cf.
Section 4.4). The overall design and the prototype are delivered in the deliverable [D6.2].

A set of events or sometimes an individual event that match a single rule can cause a violation
to occur. Such violations are shown on the CEP online monitoring dashboard grouped by their
type and provider in real time.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 27 of 30

Figure 10 Realization of Online Compliance Governance Dashboard – overall view

Details of each single violation can be obtained by double-clicking one of the fields where
numeric value is greater than 0 which opens up the new tab. The detailed fields vary
depending on the type of violations.

Figure 11 Realization of Online Compliance Governance Dashboard – detailed view
of composition violation regarding “SportAudio” provider

The detailed view gives the information on each every single violation occurrence including
timestamp, providers, process/session ID, etc. User is able to navigate between different
views/sets of violations by switching tabs.

The dashboard consists of three java applets, from which two of them are emulating other
parts of COMPAS architecture before the actual integration. At the top there is a main applet
which listens for violation events from ActiveMQ using JMS. The dashboard is a subscriber
of the topic eu.compas_ict.events.highlevel, which provides real time updates whenever a

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 28 of 30

violation happens. When the message arrives it is added to the overall view window ‘Run-
time dashboard’ and all other tabs which correspond to this event’s type.

In the Figure 10 the dashboard indicates that there were 5 composition violations
corresponding to the Sporting Audio provider. A double click opens new tab with details on
these particular violations. In case a new violation occurs, both of these tabs will be updated
accordingly.

The first applet in the bottom of the dashboard is responsible for starting/stopping the CEP
engine server. The second applet allows generating random events for testing purposes. The
random event generation client is a component which connects to the ESB and sends mock
events generated according to the COMPAS event model and WatchMe requirements. The
corresponding applet allows for generation of arbitrary number of such events.

4.8. Offline compliance monitoring

The offline compliance monitoring, in the context of the COMPAS project, can be done
according to three main approaches: Compliance Governance Dashboard (CGD), Root Cause
Analysis, and Protocol Monitoring.

The CGD serves as a starting point to detect non-compliance behaviours (violations) of
running process. Using it different users (e.g., CIO, external and internal auditors) have access
to the most important compliance status information in order to take decision and avoid, or at
least reduce, compliance risks. The design and development of the CGD are completely
described in the deliverable [D5.5]. In addition, the prototype of the CGD is available on the
web at http://compas.disi.unitn.it:8080/CGDs/main.jsp. The prototype supports data from the
both COMPAS case study scenarios, WatchMe (Telecom CGD) and Loan Approval (Banking
CGD). More information is available at the COMPAS CGD website at
http://compas.disi.unitn.it/CGD/home.html.

Whenever non-compliant behaviour is detected, root-causes can be explored using the Root
Cause Analysis tool. Hence, the final users can discover why some specific and frequent
violations occur during the execution of a business process. Details about the design and
implementation of the tool are present in the deliverables [D5.4] and [D5.5]. Moreover, the
final prototype version of the Root Cause Analysis tool is available at
http://compas.disi.unitn.it:8080/CGDs/main.jsp. At the moment, the tool is just working with
syntactic data related to the WatchMe scenario.

In order to provide the data for the application aforementioned we developed a routine, named
compliance_governance_event_receiver, to capture low-level and high-level events from the
ESB and store them into the Event Log (more details in [D5.3]). The Java code used is
composed of 3 main classes: Main, Communication, and Dispatcher. The first class
coordinates the execution by invoking and instantiating the main objects and methods. The
second subscribes to the ESB topic assigned for the compass scenarios and consumes the
events. The third checks the content of the events and insert them into the main Event Log
table.

Listing 12 shows the piece of code used to connect to the Event Log database, retrieve and
process those events according to the destination table, and the SQL routine applied to insert
them to the same table.

if (object instanceof ProcessDeployedMessage){
 ProcessDeployedMessage aProcessDeployedMessage =
 (ProcessDeployedMessage) object;

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 29 of 30

 Connection conn = null;
 Calendar cal = Calendar.getInstance();
 SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMddhhmmss");

 try{
 OracleDataSource ds = new OracleDataSource();
 ds.setDriverType("thin");
 ds.setServerName("compas.disi.unitn.it");
 ds.setPortNumber(1521);
 ds.setServiceName("compas");
 ds.setUser("COMPAS");
 ds.setPassword("******");
 conn = ds.getConnection();
 conn.setAutoCommit(false);
 Statement stmt = conn.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,ResultSet.CONCUR_READ_ONLY);

 String source = aProcessDeployedMessage.getSource();
 QName processName = aProcessDeployedMessage.getProcessName();
 Long timeStamp = aProcessDeployedMessage.getTimeStamp();
 String formated_timeStamp = new
 java.text.SimpleDateFormat("yyyyMMddHHmmss")
 .format(new java.util.Date (timeStamp));
 Long eventID = aProcessDeployedMessage.getMessageID();

 TextMessage body = (TextMessage)
 Communication.aXStreamMessageTransformer.consumerTransform
 (Communication.mCommunicationInSession,
 Communication.mCommunicationInSubscriber, msg);

 stmt.executeQuery("INSERT INTO log_table
 (log_id,source,process_name,timestamp_date,load_date,eventBody)
 VALUES"+
 "("+ eventID.toString() +",'"+ source +"','"+ processName.toString()
+"',(to_date('" + formated_timeStamp+ "', 'YYYY/MM/DD
HH24:MI:SS')),(to_date('" + sdf.format(cal.getTime())+ "', 'YYYY/MM/DD
HH24:MI:SS')), EMPTY_CLOB())");
 conn.close();
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Database access error: " + e);
 }
}

Listing 12 Example of compliance_governance_event_receiver code used to retrieve
events from the ESB and store them into the Event Log database

5. Summary
In this deliverable we have shown the integration of the COMPAS runtime environment
which enables compliance checking and monitoring at runtime. The main point of integration
is the ESB. We provided integration code to create a communication channel (JMS topic), to
publish execution events using this channel, and we showed how to subscribe to it. As we
discussed in this deliverable, several components are subscribed to the events to enable online
and offline compliance monitoring. The results of the monitoring are displayed in a
compliance governance dashboard. Furthermore, we showed how the repositories and the
process generation tool are integrated with this architecture.

FP7-215175 COMPAS D1.4v1.0

File: D1.4_Runtime-Environment Page 30 of 30

6. Reference documents

6.1. Internal documents

[D1.2] “Core meta-models, transformation templates, and languages”, 2009-12-31.

[D1.3] “MDSD software framework for business compliance – Final version”, 2010-
12-31.

[D4.4b] “Supporting infrastructure – process engine, process artefact repository,
process generation tool”, Version 1.0 of 2010-12-23.

[D5.4] “Reasoning mechanisms to support the identification and the analysis of
problems associated with user requests”, Version 2.1 of 2009-12-22.

[D5.5] “Final Prototype of Compliance Governance Dashboards”, Version 1.0 of
2010-12-23.

[D6.2] “Application implementation and case study prototypes”, Version 1.1 of
2010-07-31.

[D7.1] “Public Web-Site”, http://www.compas-ict.eu

6.2. External documents

[Apache09a] Apache Software Foundation: Apache ODE (Orchestration Director Engine),
http://ode.apache.org.

[Apache09b] Apache Software Foundation: Apache ActiveMQ,
http://activemq.apache.org.

[BPI10] Business Process Illustrator: http://sourceforge.net/projects/bpi/

[Codeh10] Codehaus. The Streaming API for XML (StAX), http://stax.codehaus.org/

[JPA09] Java Specification Request 317: JavaTM Persistence 2.0, Java Community
Process, Dec. 2009, http://jcp.org/en/jsr/summary?id=317

[KKL07] R. Khalaf, D. Karastoyanova, F. Leymann: Pluggable Framework for Enabling
the Execution of Extended BPEL Behavior. In: Proceedings of the 3rd
International Workshop on Engineering Service-Oriented Application
(WESOA'2007), Springer, 2007.

[Lat10] G. Latuske: Sichten auf Geschäftsprozesse als Werkzeug zur Darstellung
laufender Prozessinstanzen. Diploma thesis, Universität Stuttgart, Fakultät
Informatik, Elektrotechnik und Informationstechnik, 2010.
ftp://ftp.informatik.uni-stuttgart.de/pub/library/medoc.ustuttgart_fi/DIP-
3036/DIP-3036.pdf

[SLS10a] D. Schumm, F. Leymann, A. Streule: Process Viewing Patterns. In:
Proceedings of the 14th IEEE International EDOC Conference (EDOC 2010).

[SLS10b] D. Schumm, F. Leymann, A. Streule. Process Views to Support Compliance
Management in Business Processes. In: Proceedings of the 11th International
Conference on Electronic Commerce and Web Technologies (EC-Web),
Springer, 2010.

[All links were last followed on December 17, 2010.]

