

Management tools for compliant behaviour

Project acronym: COMPAS

Project name: Compliance-driven Models, Languages, and Architectures for Services

Call and Contract: FP7-ICT-2007-1

Grant agreement no.: 215175

Project Duration: 01.02.2008 – 28.02.2011 (36 months)

Co-ordinator: TUV Technische Universitaet Wien (AT)

Partners: CWI Stichting Centrum voor Wiskunde en Informatica (NL)

UCBL Université Claude Bernard Lyon 1 (FR)

USTUTT Universitaet Stuttgart (DE)

TILBURG UNIVERSITY Stichting Katholieke Universiteit Brabant (NL)

UNITN Universita degli Studi di Trento (IT)

TARC-PL Telcordia Poland (PL)

THALES Thales Services SAS (FR)

PWC Pricewaterhousecoopers Accountants N.V. (NL)

This project is supported by funding from the Information Society Technologies Programme under the 7th

Research Framework Programme of the European Union.

D3.4

Version: 1
Date: 2011-02-04

Dissemination status: PU
Document reference: D3.4

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 2 of 11

Project no. 215175

COMPAS
Compliance-driven Models, Languages, and Architectures for Services

Specific Targeted Research Project

Information Society Technologies

Start date of project: 2008-02-01 Duration: 36 months

D3.4 Management tools for compliant behaviour

Revision 0.4

Due date of deliverable: 2010-12-31

Actual submission date: 2011-02-04

Organisation name of lead partner for this deliverable:

UCBL – Université Claude Bernard Lyon 1, France

Contributing partner(s):

CWI – Stichting Centrum voor Wiskunde en Informatica, Netherlands

Project funded by the European Commission within the Seventh Framework Programme
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 3 of 11

History chart
Issue Date Changed page(s) Cause of change Implemented by
0.1 2010-12-23 All sections New document UCBL
1.0 2010-12-31 Document Approve & Release TUV

Authorisation
No. Action Company/Name Date
1 Prepared UCBL 2010-12-12
2 Approved TUV 2010-12-31
3 Released TUV 2010-12-31

Disclaimer: The information in this document is subject to change without notice. Company
or product names mentioned in this document may be trademarks or registered trademarks of
their respective companies.

All rights reserved.
The document is proprietary of the COMPAS consortium members. No copying or
distributing, in any form or by any means, is allowed without the prior written agreement of
the owner of the property rights.

This document reflects only the authors’ view. The European Community is not liable for any
use that may be made of the information contained herein.

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 4 of 11

Contents
1. Introduction .. 5

1.1. Purpose and scope ... 6

1.2. Document overview .. 6

2. User guide for the compatibility library ... 7

2.1. Generic interfaces for transition specifications ... 7

2.2. Implementing a new kind of specification .. 8

2.3. Business protocols ... 9

3. Implementation details ... 9

4. Source Code and additional information .. 10

5. Conclusion .. 10

6. Reference documents ... 11

6.1. Internal documents .. 11

6.2. External documents ... 11

List of figures
Figure 1 Part of the global COMPAS architecture ... 6

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 5 of 11

Abstract

This deliverable describes the adaptation of compatibility and replaceability tools of
deliverable [D3.3] to the COMPAS infrastructure.

Compatibility refers to the fact that two services can interact without problem, which
means that the behaviour of each of them fulfils the other’s expectations. This is of
particular importance when the compliance of the service with some compliance
request relies on the others’ compliance. Moreover, would one of the services need to
be replaced, it should be replaced with one that fulfils the other’s expectations
without having to check the whole process again. This approach was demonstrated in
deliverable [D3.3] on credential based access control policies. This deliverable
describes the reimplementation of this library in a generic way, protocol being
parameterized by transition specifications that reflects compliance requirements and
compliance fulfilments. We demonstrate how linear temporal logic, which is used as
an underlying language for compliance requests in COMPAS [D2.6], can be used as
transition specification. We also show how the library allows combining various
kinds of specifications, taking care of the behaviour induced interferences.

This deliverable limits its objectives in providing information on the use of the
generic compatibility and replaceability library, some implementation details and
location of sources of the compatibility library.

1. Introduction
Compliance is a term generally used to refer to the conformance to a set of laws, regulations,
contracts, or best practices (compliance sources according to COMPAS conceptual model
[D7.1]).

Model assessment (also referred to as model compliance) addresses the issue of conformance
towards a policy, standard, law or technical specification that has been clearly defined. This
also includes but is not limited to conform towards business regulations and stated user
service requirements [D7.1]. As the authors in [EY09] point out in their survey, compliance
toward regulations is finding more and more attention in the eyes of the research community.
Applications of model assessment include workflow checking, protocol verification, and
constraint validation [MMZ05]. Factors that motivate model compliance utility are: cost of
the implementation prototype just for assessing the model, cost of re-implementing once that
assessment results are negative, risk of testing on real-world already deployed systems,
complexity of designed systems which prohibits exhaustive static verification and validation.

In order to lighten the cost reimplementation in case of negative assessment results and to
ease the integration of legacy components, one should be able to check compliance
requirement not only at the level of the whole system, but also at the level of each component.
Behaviour of components can be represented as compliance annotated business protocols.
Compatibility notion allows checking whether a component’s behaviour complies the one that
is expected by the other components, in particular in terms of the compliance annotation of
the protocol. On another hand, replaceability is the dual notion stating that a component can
replace another one without violating other components’ expectations. If a component cannot
be used it is also important to indicate which parts of the components behaviour diverges
from the expected one and how it could affect the compliance of the overall process. A first

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 6 of 11

implementation of compatibility and replaceability checking has been demonstrated in [D3.3].
This deliverable describes the reimplementation of this library in a generic way, in order to
support various compliance annotations on the behaviour of components as well as the
combination of such compliances annotations.

1.1. Purpose and scope
Error! Reference source not found. provides an illustration of the relationship between the
compatibility tools library the other components of the COMPAS architecture. The
compatibility tools library is part of the process verification tools and the annotated business
protocols will be stored in the Fragmento service, which implements the process repository
(described in [D4.4]). Whenever a component is to be used the currently designed process, the
compatibility library can be used to check if the component can be used in the process.
Business protocols an also be obtained by transforming a constraint automaton describing the
behaviour of a Reo process [D3.2]. The generic implementation of the library allows for using
the compliance request language [D2.2, D2.6] as a compliance annotation for a business
protocol.

Figure 1 Part of the global COMPAS architecture

1.2. Document overview
The deliverable is organized as follows: Section 2 provides a user guide for the compatibility
library. Section 3 gives an overview on the implementation details of the library, especially
how annotations can are combined. Section 4 provides information on where the reader can
download the source code of the library. Finally, Section 5 draws conclusions.

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 7 of 11

2. User guide for the compatibility library

2.1. Generic interfaces for transition specifications

Transition specifications
The library relies on a set of interfaces abstracting on one side the protocol implementation
details and on the other side the transition specification. Transition specifications are
instances of data domains described in [D3.1]. The Java interface for transition specifications
is parameterized by the type of transitions specifications. In most cases this parameter is
instantiated by the class of the implementation or the root class if the implementation of the
interface relies on a hierarchy of classes. There can be three kinds of transitions
specifications: for incoming messages, for outgoing messages and products of an incoming
specification with an outgoing one. The distinction between the three kinds is only necessary
when the specification is asymmetric between incoming and outgoing messages, like for
access control policies and credentials and as opposed e.g. to schema constraints on messages
or message meaning expressed in description logics. Some specifications can also be
cumulated, which means that the actual value of the specification is obtained by adding to the
current specification the specifications appearing on the different paths in the protocol leading
to the current transition (e.g. accumulation of access control credentials).

We describe now the main methods of the TransitionSpecification interface. In the
following, the type E is the parameter, which will be instantiated when implementing the
interface.

• E and(E spec): should return the specification expressing that both specifications,
this and spec are fulfilled.

• E product(E spec, boolean direction): should return a product transition
specification matching this and spec. The direction parameter is true if this is
considered as an incoming specification and spec as an outgoing one. Note that if the
specification is symmetrical then product and and methods should return the same
result.

• boolean in(Collection<E> specs): states whether this is included in the
collection of specifications. From a logical point of view, the inclusion is to be
checked with reference to the disjunction specs, that is this can span over several
elements of specs.

• E cumulate(E prevState, boolean isIncomming): should return the result of
adding to this a specification corresponding to the specifications encountered on the
different paths leading to the state from which the current transition starts. The
accumulation only occurs on incoming or outgoing transition, not on product
transitions, therefore isIcomming can be used to determine the kind of transition
specification.

Combination of transition specifications

The library provides a particular implementation (CombinedTransitionSpecification<E
extends TransitionSpecification<E>, F extends TransitionSpecification<F>>)
of the transition specification interface that allows one to combine two implementations,
provided that they do not directly interfere one with the other. For example access control and

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 8 of 11

message meaning specification can be considered as non interfering unless the message
meaning specification allows to say something about access control and credentials.

Time related issues
Implicit timeout transitions are transformed into additional time specifications on other
explicit transitions (see [D3.3]). For handling this transformation, the
TimeSpecificationContainer interface must be implemented. This interface extends the
TransitionSpecification interface and references TimeSpecification for handling time
related issues. The TimeSpecification class implements the TransitionSpecification
and represents simple time constraints using time intervals.

We describe now the main additional methods for TimeSpecificationContainer.

• TimeSpecification getTimeSpecification(): should return the timed part of the
specification.

• E shift(double shiftValue): should return a specification of the same type (E)
that is equivalent to this except for the timed part, which should be shifted by given
amount.

• E timedAnd(TimeSpecification ts): should return an equivalent specification
except for the timed part, which is to be combined with the provided time
specification.

The CombinedTransitionSpecification has been extended to support timed aspects. More
precisely the second specification in TimeCombinedTransitionSpecification is expected
to be a TimeSpecificationContainer and al time related operations are delegated to it.
Note that only one of the two specifications can be time related as otherwise it means that
they could interfere one with the other.

2.2. Implementing a new kind of specification
In this section we give an example of implementation transition specification based on linear
temporal logic, which is the backend language for compliance requests [D2.2, D2.6]. A
formula on an incoming transition expresses that the service will fulfil the formula upon
reception of the message. A formula on an outgoing transition expresses that the service
expects the formula to be fulfilled when the message is sent.

We assume that LTL formulas are represented through a hierarchy of classes (named LTLXY,
where XY is the name of the LTL operator) and that the following methods are available on
those classes: isTrue() and step(). The first method can be implemented by converting the
formula to a Büchi automaton. The step method returns a LTL formula representing what
should be fulfilled after one step on the Kripke structure.

Since the requirement is put on incoming messages, the intuitive interpretation has to be
reversed: the formula on the incoming transition has to be stronger than the one on the
outgoing transition. This will impact the in() method.

Implementation of and and product
The implementation of those methods are straightforward, using the LTLAnd(,) constructor:
public AbstractLTLFormula product(AbstractLTLFormula spec, boolean dir) {
 return new LTLAnd(this,spec);
}

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 9 of 11

Implementation of in()
This method must check whether this is covered by the collection of LTL formulas. Since this
represents the expected behaviour, it should imply the disjunction of the provided formulas:
public boolean in(Collection<AbstractLTLFormula> specs) {
 AbstractLTLFormula f = null;
 boolean first = true;
 for(AbstractLTLFormula f2 : specs) {
 if (first) {
 f = f2;
 first = false;
 } else {
 f = new LTLOr(f,f2);
 }
 }
 return (new LTLOr(new LTLNot(this),f)).isTrue();
}

Implementation of cumulate()
This method is used to cumulate previous assertions. Its implementation mainly relies on the
step() method.
public AbstractLTLFormula cumulate(AbstractLTLFormula prevState,
 boolean isIncomming) {
 // cumulate on incomming transitions only
 if (isIncomming) {
 return new LTLAnd(prevState.step(),this);
 } else {
 return this;
 }
}

2.3. Business protocols
The business protocols are represented using the ProtocolImpl class. The class provides
methods for adding transitions, checking compatibility and replaceability. It also contains a
method for transforming implicit transition into time specifications, which is necessary for
compatibility checking. The class is parameterized by the class of states and the class of
transition specifications. The transition specifications should be time aware. A time aware
transition specification can be obtained by combining with a TimeSpecification using a
TimeCombinedTransitionSpecification.

3. Implementation details
The library is build as a maven project, which eases the integration into other Java code.

Compatibility and replaceability checking
Compatibility checking involves four steps that delegate all transition specification related
work to the transition specification implementations.

The first step is implicit transition elimination. It translates transition occurring after an
implicit transition to the start state of the implicit transition, adding a time constraint to
represent the effect of the implicit transition. It also adds time constraint to transition starting

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 10 of 11

in the same state as an implicit transition to represent the fact that the transition cannot occur
after the implicit transition has been taken.

The second step consists in cumulating specifications that need to be cumulated (such as
credentials for access control specifications and formulas in incoming transition for LTL).
The algorithm works by first assigning specifications to states representing the effect on the
transitions ending in this state and then updating those specifications by including the effect
of the specification of the starting state of a transition into the transition’s specification. This
update step is repeated until a fixpoint is reached. The transitions specifications are then
updated using the specification of the start state of the transition.

The third step consists in checking that each outgoing transition is fully matched by a set of
transitions in the product automata. This is where the method in() is used. The algorithm
proceeds by simply traversing the product automaton.

The fourth step consists in checking whether each reachable pair of states in the product
automaton is the starting point of a path to a final state.

Replaceability checking works in a similar way.

Specification combination

Combining two independent specification classes is straightforward, except for the in()
method, by delegating to both specifications. The in() method requires special care as
illustrated by the following example. Consider a first incoming transition with time interval
specification [1,10] and a LTL specification X (a or c) (next a or c is true), and a second
specification with [9,20] as time specification and X (b or c) as LTL specification. Their
“specification by specification union” would be [1,20] and X (a or b or c). But this includes
[1,8] and X b which is neither covered by the first or the second specification. However [5,15]
and X c is covered by their combination. The implementation of the in() method proceeds by
transforming the comparison into an equivalent set of comparisons that requires only
comparison between specifications of the same kind (e.g. only time with time and LTL with
LTL). The cost of the transformation can be exponential in the size of the specification
collection to compare to. We plan to apply frequent itemset datamining techniques in order to
tackle the potential cost of this comparison.

4. Source Code and additional information
The compatibility tools code is released as an open source project under the GNU General
Public License (GPLv3).

The sources are available at https://svn.liris.cnrs.fr/ecoquery/protocols/CompatibilityTools.
Compilation requires JDK version 1.6 and the maven 2 (http://maven.apache.org/) build tool.

5. Conclusion
This deliverable presented a generic library implementing compatibility and replaceability
checks. It also presented how new kinds of transition specifications can be used to
parameterize the library. Further evolutions of the tool will include several additional
transition specifications to be provided with the library as well as service based access to the
library.

https://svn.liris.cnrs.fr/ecoquery/protocols/CompatibilityTools
http://maven.apache.org/

FP7-215175 COMPAS D3.4v1.0

File: D3.4_Management-tools-for-compliant-behaviour.doc Page 11 of 11

6. Reference documents

6.1. Internal documents
[D2.2] “Initial Specification of Compliance Language Constructs and Operators”, ver.
2.0 of 2009-06-08.

[D2.6] “Implementation of an Integrated Prototype handling Interactive User
Specified Compliance Requests in a Compliance Language”, ver. 1.1 of 2009-12-17.

[D3.1] “Specification of a Behavioral Model for Services”, ver. 2.0 of 2009-06-08.

[D3.2] “Visual Environment for Service Description”, ver. 1.4 of 2009-07-31.

[D3.3] “Compatibility_and_replaceability_tools”, ver. 1.0 of 2009-12-22.

[D4.4] “Supporting infrastructure”, ver. 1.0 of 2009-12-22.

[D7.1] “Public Web-Site”, http://www.compas-ict.eu

[DoW] “Description of Work”, ver. 15 of 2007-09-25.

6.2. External documents
[EY09] E.Young. European fraud survey 2009. Available at:

http://www2.eycom.ch/publications/items/fraud_eu_2009/200904_EY_European_
Fraud_Survey.pdf

[MMZ05] E. D. Maria, A. Montanari, M. Zantoni. Checking workflow schemas with time
 constraints using timed automata. Proceedings of OTM Workshops, 2005.

