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1 Introduction – Friction model 
 
Road weather monitoring networks are a very important component of road safety in 
countries where slippery conditions occur frequently (e.g. during winter time). Road 
weather models and products have been developed in many countries to help timely im-
plementation of road maintenance operations as well as making better road weather 
forecasts. The Pulp Friction pilot aims at combining road weather modelling with road 
weather information as a background. Information on the FMI’s road weather model, 
including friction modelling, and the Pulp Friction pilot were presented in the Roadidea 
report D3.4a [ROADIDEA, 2009].  

The friction model has been run operationally during the winter 2009/10 with the out-
puts of the runs being stored. The calculation points are located at sites where a road 
weather station (including the Vaisala DSC111 sensor) is installed, so that verification 
data can be directly collected from the station measurements. Data from two previous 
winters were used in the statistical analysis and the friction equation development work. 
The amount of calculation points in the pilot reached almost 100. The outputs were de-
livered to the Roadidea platform hosted by Destia. There are two channels for the use of 
the model, either via Internet browser or mobile phone application.  

The winter 2009-2010 was cold in Finland and there was quite much snow on the ground 
compared to previous winters. Winters 2007/08 and 2008/09 were quite different with 
higher temperatures and less snow. The latest version of the statistical friction model 
was developed using observations from these two winters, so it is possible that the for-
mulas are not working so well in colder temperatures. 

Information about the quality of friction forecasts and the results of the end user survey 
are presented in D8.3b.  

2 Model development and used data  
 
The FMI road weather model has been under further development during the winter 
2009-2010 by improving the friction equations as well as the general structure of the 
road weather model.  

2.1 First version of the friction model  
 
The development of the first version of the statistical model is described in [ROADIDEA, 
2009] and the work was also introduced to the R&D community at the EMS meeting in 
Toulouse, France, 28 September – 02 October 2009 [Hippi et al., 2009] and at the SIR-
WEC conference in Quebec City, Canada, 5-7 February 2010 [Hippi et al., 2010] and 
[Nurmi et al., 2010].  

The first versions of the statistical friction equations were based on the optical friction 
measurements data (with the Vaisala's DSC111 instrument) during the winter 2007/08. 
In those equations, the dependent parameters with substantial correlations in the re-
gression were the road surface temperature and the sum of snow and ice thicknesses. 
On wet surfaces, the water thickness was the only dependent parameter. These parame-
ters had the highest correlations with the observed friction. FMI also tested the use of 
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other parameters, for example the temperature difference between road surface tem-
perature and dew point temperature (indicating the formation of hoar frost), but it did 
not display much correlation with the observed friction in the whole dataset (although in 
some individual cases it might be important). The main goal for the development work 
was that the friction equations would later be part of the operational road weather fore-
casting system, using background (input) data from a road weather model.  

The resulting statistical equations for friction were:  

For snow and/or ice covered roads:  

Friction = A x f(snow_mm + ice_mm) + B x T_road + C, where the thicknesses of snow 
and ice are in equivalent mm, f is a mathematical function/operation, by which the 
nonlinear and scattered distribution is made more compact for regression  

For water covered roads:  

Friction = D x water_mm + E  

For dry roads:  

Friction = 0.82  

The coefficients A-E are statistical fitting parameters depending on local conditions. 
These equations were calculated for a couple of points in southern and eastern Finland 
based on observations from winter 2007/08 and they were tested with independent data 
from winter 2008/09. The results were promising with relatively high correlations be-
tween the modelled and observed friction (0.85 for snow and ice covered roads and 0.93 
for water covered roads). However, when the observed friction was low, the statistical 
equation gave a bit too high friction values in average. This might result from the fact 
that winter 2007/08 was very mild and during winter 2008/2009 there were more wintry 
conditions. Another problem that was noticed later was the too high thicknesses of snow 
and ice in FMI's road weather model. The friction equations use the model data as back-
ground information and any systematic error in that data could result in too low friction 
values in operational forecasts.  

2.2 Further development of the statistical equations  
 
The friction model equations were further developed by extending the dependent data 
and examining the utilization of different mathematical functions in making the observed 
friction distribution more linear and compact for regression application. We also investi-
gated more thoroughly the connection between friction and the thicknesses of snow, ice 
and water. A special situation appears when all those three forms exist simultaneously. 
This can result either from prevailing temperature around 0 oC or from the use of salting 
in colder conditions (then the water is supercooled).   

As the method was further developed at FMI, the dependent data covering two winters, 
2007/08 and 2008/09 was validated against a new independent data-set from winter 
2009/10 (November - March). All these data were delivered by the Finnish Transport 
Agency. The new updated statistical equations were calculated using the dependent data 
from the two earliest winters at four locations: Utti, Anjala, Orivesi and Kuopio (see loca-
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tions in Fig. 1). The data from those four stations covered in total 207943 individual ob-
servations, of which 40503 (19.5%) were connected to snow and/or ice covered roads, 
64602 (31.1 %) to water covered roads and 102838 (49.5 %) were linked to dry road 
surface. Scatter plots of observed friction vs. the thickness of snow and/or ice as well as 
vs. the water layer thickness are depicted in Figure 2. The regression equations were 
calculated with these data, and for comparison, separate local equations were also calcu-
lated for those four locations using only the data from the specific station. Then, both 
the "general" and local site equations were tested with the independent data (winter 
2009/10) at the four locations: Utti, Anjala, Orivesi and Kuopio. 

 

 

Figure 1. Locations of Utti, Anjala, Orivesi and Kuopio road weather stations.  

 

2.3 General road weather model development  
 
The road weather model has been improved during this last winter. One of the main 
problems of the model has been the too big storage of water/snow/ice/frost. The 
amount of ice and frost has been the most troublesome values. The problem is that too 
big amount of modelled ice/snow/frost on the surface produces too low values of the 

Kuopio

Anjala

Utti 

Orivesi



  

 

5 

modelled friction. The main improvement work has been focused on the storage process 
and the influence of traffic has been made more efficient so that the wearing of wa-
ter/snow/ice/frost occurs faster now in the model. Some changes dealing with road sur-
face temperature were also introduced. After these improvements, the model seems to 
perform better, but the storage terms are still too big compared to observations.  

 

 

 

Figure 2. Scatter plot of observed friction vs. the layer thickness (water content) of snow 
and /or ice (above) and vs. the thickness of water (below) on the road. Data based on 
DSC111 measurements during winters 2007/08 and 2008/09 in Utti, Anjala, Orivesi and 
Kuopio (data source: Finnish Transport Agency). 
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3 Implementations of the friction model  
 
One of ROADIDEA project's goals was to develop new services for drivers. In the Pulp 
Friction pilot two different kinds of services were developed for end users. One of the 
implementations is a Google maps-based product presenting short time road weather 
forecasts, including friction forecasts (see Fig. 3). The product can bee seen on the web 
page http://pilot.roadidea.eu/friction/ and the site is available for everyone. This product 
is mainly aimed for professional end users, like meteorologists and road maintenance 
personnel. There has been about 90 calculation points where the friction model has been 
running operationally.  

 

 

Figure 3: Forecasted friction and other road weather parameters presented in the Google 
maps ROADIDEA application. It is based on close collaboration between ROADIDEA part-
ners FMI, Destia and Demis.  

 

Another product for end users is the mobile phone application presenting information 
about road weather forecasts and accident information. Additionally, pictures from the 
nearest road weather cameras can be seen via this service. The application locates the 
user and the presented information is from the area where the user is situated. This ser-
vice is aimed for all drivers. A screen shot of the application is presented on Fig. 4.   
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Figure 4: Screen shot of ROADIDEA mobile phone application presenting e.g information 
of (observed and) forecasted friction. 

 

4 Results: the statistical friction equations and their 
validation  

 
The dependence of friction on snow, ice and water thickness was investigated at FMI. 
Pearson correlation coefficients were calculated by using the dependent data from win-
ters 2007/08 and 2008/09. The distributions were quite wide and nonlinear (Figure 2), so 
that we had to first make them more compact with the use of a mathematical func-
tion/operation, after which the linear regression was applied. Both logarithmic and 
square root functions were tested here, and the square root proved to be the most 
workable. Applying the square root function to the thicknesses of water, ice and snow 
substantially improved the Pearson correlations in the dependent data. For example, 
while the correlation between snow and friction was -0.50, the correlation between the 
square root of snow and friction rose to -0.71. Eventually, the resulting statistical method 
for friction prediction is:  

Friction F1 for icy and snowy road surfaces:  

F1 = A1*SQRT(Snow_mm)+B1*SQRT(Ice_mm)+C1*T_road+D1  

Friction FW for water covered road surfaces:  

FW = Aw*SQRT(Water_mm)+Bw  

In case of simultaneous existence of snow, ice and water on the road, the equation is:  

F2 = A2*SQRT(Snow_mm)+B2*SQRT(Ice_mm)+C2*SQRT(Water_mm)+D2*T_road+E2  

As mentioned earlier, this situation (equation F2) is the result of temperature being 
around 0 oC or of salting actions. When salt is used in sub-zero temperatures, it melts 
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snow and ice and the resulting water layer is super cooled. The effect of salting is not 
included in the present version of FMI's road weather model and super cooled water 
cannot exist in the model, so the operational use of equation  F2 is not reasonable and 
F1 is used instead in the friction pilot application. Anyway, the equation F2 was also 
tested here with the independent data to see if it had better scores than F1.  

The coefficients in the equations of F1, FW and F2 were calculated from the whole de-
pendent data: Winters 2007/08 and 2008/09, observations from Utti, Anjala, Orivesi and 
Kuopio. In addition, we calculated local point models for these four locations (using the 
two winter data from the specific location only). These equations were validated with the 
independent data (winter 2009/10) from these four points. The observed thicknesses of 
snow, ice and water were used in calculation of the modelled friction F1, F2 and FW, and 
those friction parameters were then validated with the observed friction. The results are 
shown in Table 1.  

Table 1. Pearson correlation coefficients for modelled friction (F1, F2, FW) when tested 
with observations from winter 2009/10 (independent data). The verifying friction obser-
vations are from four locations: Utti, Anjala, Orivesi and Kuopio. The local friction models 
for these points were also evaluated. 

 Utti  Anjala  Orivesi  Kuopio  

F1  0.86  0.83  0.78  0.48  

F2  0.88  0.88  0.81  0.61  

FW  0.98  0.98  0.97  0.96  

F1, local model  0.85  0.87  0.82  0.53  

F2, local model  0.86  0.88  0.85  0.62  

FW, local model  0.98  0.98  0.97  0.96  
 

The results depicted in Table 1 show that the Pearson correlations for the equation (FW) 
of water covered roads in all four locations are very high (both for the "general" and lo-
cal model), so we have a straight forward, relatively simple relationship between the wa-
ter layer thickness and friction. For the equations (F1 and F2) of snow and ice covered 
roads (and in some cases also simultaneous existence of water) the correlations are 
lower. The results for Utti and Anjala (in southeastern Finland) are relatively good (see 
also Fig. 5), but the values for Kuopio are much weaker. This might result from the fact 
that the winter 2009/10 data included on average much smaller thicknesses of ice than 
the data from the previous two winters at the Kuopio location. However, winter 2009/10 
was cold especially in eastern and northern Finland and there were probably more days 
with dry cold winter weather and rather loose/drifting snow on the roads than ice. 

If we compare the values of F1 and F2 we notice that the inclusion of water in the equa-
tions for snow and ice covered roads (F2) improves the correlations a bit, so the slushy 
conditions are then modelled in a more proper way. Also the local models for F1 and F2 
have a bit higher correlations than the "general model" except for Utti, where the "gen-
eral model" had slightly higher correlations than the local point model. 

Figures 5 and 6 visualize the validity of the friction modelling equations. From Fig. 5 we 
can see that although the distribution in the scatter plot of modelled (F1) vs. observed 
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friction is quite wide and a bit curved, the result is relatively good, with great majority of 
the values near the diagonal. For the equation of water covered roads (FW) the results 
are very good (as the correlations in Table 1 show also). Fig 6 shows the modelled (F1) 
and observed dependence of friction on the thickness of snow and ice. We can see that 
the modelled friction simulates the observed one quite well. Although the absolute values 
of the modelled friction at the lower end with thicker snow and ice layer are not exactly 
correct, the accuracy is sufficient for example in such applications where we use catego-
rization (thresholds, for example 0.6/0.4/0.2).  

 

 

Figure 5. Above: Scatter plot of observed (FRICTION_OBS) and modelled (FRIC-
TION_MOD) friction (equation F1) in case of snowy and/or icy road, Pearson correlation r 
= 0.86. Below: The same for water covered roads (equation FW), r = 0.98. Based on 
data from Utti during winter 2009/10 (the independent data). 
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Figure 6. Modelled friction F1 (Friction_MOD, above) and observed friction (Friction_OBS, 
below) in function of the observed thickness of snow and ice (water content). Based on 
observations in Utti during winter 2009/10 (the independent data). 

One of the problems in the friction modelling is the lack of information of road mainte-
nance actions. Hopefully the information of salting and snow removal would come public 
and available so the information could be used to initialize the state of the roads in the 
road weather model (the background information of the friction equations).  

5 Discussion  
Modelling of road surface friction seems to be a new way to predict slipperiness and this 
study is a pioneer in its field globally. The friction model has raised interests in many 
places where it has been presented. As the work presented here is based on the obser-
vations made by Vaisala’s optical DSC111 instrument, with this statistical modelling we 
are in a way simulating the measuring instrument itself. The friction values measured by 



  

 

11 

the device have been validated (Pilli-Sihvola, 2008) and a relatively good agreement with 
mechanical friction measuring devices has been observed. 

The results for friction modelling are promising although verification results point there is 
clear room for further improvements. The statistical model could be improved to some 
extent with more data covering different kinds of weather situations and point locations. 
Also, we could improve the mathematical and statistical methods used in the equations. 
The meteorological input to the friction model comes mainly from the background data 
from the road weather model and it is very important to validate and improve that model 
also. The lack of the effect of road maintenance actions in the road weather model is an 
insufficiency that is challenging to improve. When evaluating the friction forecast we 
should keep in mind that the road maintenance actions worsen the verification results. 
The friction forecasts should rather be regarded as risk forecasts, indicating the worst 
road conditions that can exist without maintenance actions.  

As an alternative, instead of deterministic forecasts it would be suitable to calculate 
probabilistic friction or slipperiness forecasts using the developed friction model.  
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7 Introduction – Fog model  
 
During the Roadidea project, partner ARPAV have developed the Veneto Fog Pilot sys-
tem, which takes direct and indirect visibility information and merges it into a fog prob-
ability and a fog alert product. This system is based on a dedicated visibilimeter network, 
a meteorological surface observation network and satellite observations. It can work, in 
principle, on various levels of complexity, based however on the Roadidea visibilimeter 
network. Complexity here mainly means the way in which meteorological information is 
related to the presence of fog, extended spatially, and the usage of PBL specific variables 
which are believed to be important for fog diagnostics.  
 
In the perspective of judging the portability of the Veneto Fog Pilot system it is neces-
sary to evaluate the degree of added value from added complexity. Again, this is espe-
cially important for the effort needed to pre-process the data from the meteorological 
surface observation network, and the description of the state of the planetary boundary 
layer (PBL). The simpler the system, the more portable the system! Even in its simplest 
form, there are a number of tuning parameters (e.g. relative weights of visibility meas-
urements to satellite observation) whose value may not be known a priori. 
 
The overall work needed to systematically evaluate the quality of the various compo-
nents of the fog alert system can be subdivided into: 
 

• performing sensitivity analysis w.r.t. PBL variables and different methods of 
spatial interpolation; 

 
• optimizing the relative weights of visibility observations, meteorological in-

formation, and satellite data; 
 

• illustrating the impact/benefit of additional data sources (visibility reports of 
drivers). 

 
This verification and optimization benefitted significantly from the Roadidea extension, in 
that valuable data became available during the Winter season 2009-10. As a matter of 
fact, the Winter season 2008-09, in which the data collection of visibility measurements 
of the ARPAV Roadidea network and the satellite information just started, featured an 
unusually low frequency of fog events.   
 
As the Fog Pilot is inherently a probabilistic tool verification needs to be done accord-
ingly. The methodology is not straightforward and, therefore the optimization of a num-
ber of model parameters is presented, based on quality measures defined.  The potential 
impact of parameters describing the state of the PBL is presented and finally also the 
value of additional visibility information is illustrated and the potential of the open archi-
tecture of the Fog Pilot for becoming a community tool is underlined. 
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8 Evaluation and verification of the fog pilot model 
 

8.1 Verification methods and measures for probabilistic esti-
mates  

 
The Fog Pilot output consists of areal products which are constructed on a limited set of 
direct in situ visibility measurements (visibilimeter network) and indirect observations 
(meteorological station network and satellite cloud classification) to interpolate the point 
information on to the area. Verification is, therefore, of principal importance for establish-
ing the “goodness” of the fog probability maps and warnings that are output from the 
Fog Pilot.  
 
The verification process was chosen to act on the products derived from the individual 
data sources, as well as on the final merged product. This allows judging the added value 
of the individual data sources over a simple spatial interpolation of direct visibility meas-
urements in a systematic way. Also it provides measures of the performance of the prod-
uct, which in principle allows a feedback to correct the product by tuning internal pa-
rameters of the Fog Pilot model. Such a measure also yields the best probability thresh-
old for fog warning by balancing the False Alarm Rate and Probability of Detection of the 
output. Two kinds of reference data were used in the verification process: 
 

• Products derived from indirect observations can be compared directly to the visi-
bility measurements as they are independent; 

• Products derived from the direct visibility observations are not independent of the 
visibility measurements, so that a cross verification needs to be applied; this 
means that for any visibility measurement the product was calculated by exclud-
ing this observation and then compared to it, as it now is independent; this 
method was applied for the visibilimeters alone and the merged products; 

• All products can be compared with direct human observations (performed for a 
test period in winter 2009-2010). 

 
As the Fog Pilot is inherently a probabilistic instrument, methods used for the verification 
need to be selected accordingly. Of the many statistical indices and methods available for 
verification purposes, the following, which can be considered standard, were applied: 
 

• Reliability diagram, which compared the probability estimates with the effective 
observed fog frequency given the probability estimate from the fog model; when 
these correspond, and therefore these points lie close to the 1:1 line, the model is 
said to be reliable; 

 
• Probability of Detection (POD) and Probability of False Detection (POFD, i.e. false 

alarms) for various event thresholds, and the corresponding relative operating 
curve (ROC), which is obtained by connecting the resulting POD/POFD values;.if 
the ROC curve is close to the 1:1 line, there is no skill in the model, while the 
more the curve approaches the upper-left corner the more skilful the model, as 
large values of POD are obtained with low values of POFD; conversely, if the ROC 
curve lies below the 1:1 line, the model had less skill than a random guess, as the 
POD is smaller than the POFD. The area between the 1:1 line and the ROC curve 
is called ROC area and is positive/negative if the curve is above/below the 1:1 
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line. The ROC area is a frequently used summary measure for probabilistic fore-
cast models. 

 
Another index of goodness of the Fog Pilot estimates is proposed here that measures the 
difference between the average of the probability density distribution of the “events” and 
the “non-events”. This measure expresses, to some extent, the “event non-event separa-
tion” and is large for a good model which is able to distinguish between fog and no-fog 
easily, while it is small for a poor model.  
Examples of evaluation indexes are given in the results section. 
 

8.2 The economic value of a warning system 
 
It is instructive to express the impact of a warning system in terms of its economic value. 
This is done by assuming a loss L which is incurred in case of an event without having 
taken mitigating action, and the cost c of the mitigating action. This cost can be com-
pared with a number of scenarios, such as never or always taking mitigating action, tak-
ing action with a perfect or a random forecast system (see equations 2.1). It is clear that 
the benefit of a warning system depends on the ratio of c / L, the cost-loss ratio. If the 
costs for mitigating actions is very small compared to the potential loss, it will be conven-
ient to minimize the misses at the price of having many false alarms (which will not cost 
much in this case). If conversely c is large mitigation is not convenient and one may 
have to bear the losses (which may not be very high in this case). 
 
To calculate the relative economic value of a realistic warning system it can be compared 
to having no warning system at all, i.e. to the scenario of never taking mitigating action. 
The headroom for the benefit, on the other hand, it given by the costs incurred having 
an hypothetical perfect warning system. 
 
 

Table 2. Contingency table for verification and assessment of the relative economic 
value of the Fog Pilot warning system. ‘hits’ denote the correct warnings, ‘false alarms’ 
the incorrect warnings, ‘misses’ the missed warnings, and ‘correct negatives’ the cor-
rectly non-warnings. Note that hits + misses = number of events, and false alarms + 
correct negatives = number of non-events. 

 

 EVENT NOT EVENT 
WARNING Hits false alarms 
NO WARNING Misses correct negatives 

 
Using the notation defined in the contingency table shown in Table 2 the total costs of 
various scenarios are expressed in equations 2.1. For example, no warning system will 
cost L every time an event happens, while a perfect warning system reduces the costs to 
c every time an event happens, assuming c < L. The relative economic value can then be 
expressed as the relative difference of costs between any too approaches. In the case of 
a realistic (non-perfect) warning system is given by 1 – c / L – misses / nevents. So the 
difference to a perfect forecast system is equal to misses / nevents which highlights the 
importance of keeping the misses low in case of large losses L. 
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The same concepts can be expressed in terms of the POD and POFD, which can be seen 
as characterizing a warning system in relative terms. From equation 2.2 it is clearly seen 
that a high POD boosts the economic value, while a high POFD is reducing it. For  exam-
ple, for a cost-loss ratio of 0.5, POD of 70%, POFD of 20%, and an event-non_event ra-
tio of 1:5 the economic value is –0.15, while for a cost-loss ratio of 0.2 it becomes 
+0.36. It emerges that if the cost for mitigating action is relatively high, even a good 
warning system is not able to reduce costs compared to having no warning system. The 
most impacting factor here is that rare events are inherently linked to many false alarms, 
given the POFD. 
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8.3 Data set  
 
The data set that was used for this verification exercise spans the 175 day period from 4 
September 2009 to 26 February 2010 (taking advantage of the Roadidea extension!). 
More specifically, a subset of around 760 hours, including some 20 days with fog occur-
rence, was selected from this period in order to evaluate the pilot ‘around’ fog situations. 
This was done on the one hand to reduce the size of the data set and thus improve the 
performance of the verification (and optimization) procedure. On the other hand, it re-
flects the effective operational deployment during meteorological conditions which can 
produce fog. Indeed, during summer or during the passage of a perturbed weather sys-
tem the (climatological) fog frequency is close to zero. For the chosen verification data 
set the base rate, or frequency of occurrence, of fog is about 1:5, i.e. five times more 
hours with good visibility than hours with reduced visibility. The single record is com-
posed by the following elements: 
 

• The visibility coming from a visibilimeter of the network 
• The correspondent information on “event” or “non-event”, which depends on the 

chosen warning threshold (500 meters in our case) 
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• an estimated probability for “event” 
• a date label 
• a describing label (e.g. location, instrument name). 
 

Figure 7.  Fog probability product obtained using the complete visibility network (A) and 
without a visibilimeter (B). The production in modality B use the Nth visibilimeter for the 
verification. 
 
The estimated probability is the value calculated on the grid mesh containing the visibili-
meter station. 
 
Probabilistic verification of products 
In case of probability fields generated independently of the visibility information, we ap-
ply the verification to the normal dataset (satellite estimation, and CART estimation from 
meteorological parameters at the ground), compared with the visibility records at the 
ground. 
 
Probabilistic cross verification of products 
In case of probability fields generated with the contribution of the visibility records, we 
create a special dataset. Every record referred to a specific visibilimeter contains an esti-
mated probability value generated excluding the information coming from the visibilime-
ter itself, but including the other visibilimeters in the network. This method is particularly 
useful when is impossible to find an external measurement of the phenomenon. The so 
produced estimate is independent of the visibility measurements, and provides the ex-
cluded measurements for independent verification. 
 
The case in the Error! Reference source not found. shows the difference in the prod-
uct obtained “crossing” a visibilimeter in the network. The numerical result in the B map, 
in the point correspondent to the Nth visibilimeter, will be compared with the value 
measured by the visibilimeter. In that case, a value of 42% of fog probability will be 
compared with a 450 meters of measured visibility (i.e. event). 
 
Verification output 
Standard validation for Satellite and Stations, and crossed validation for Visibilimeters and 
final merged output are reported. 
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Human observations and webcam: 
The human observations on the field, recorded until now, confirm in general the reports 
obtained from visibilimeters. A systematic analysis of the images from the archive of a 
webcam in the town of Venice was used to complement the Fog Pilot verification. The 
results of product are compared with this direct estimation of visibility, performed along 
the period 1 November 2009 – 1 April 2010. 
The results are available in the following Paragraphs. 
 

 
Figure 8. Field of probability of SAFNWC-based method. a) Probability class distribution of 
the events: blue bars are “Event” (fog) and yellow ones “no-Event”. b) Reliability curve of 
fog estimation. c) Relative operating curve (ROC) of the estimations. 
 

8.4 Product performance 
 
In this section the results of the verification of the sub-products and the final, merged 
product are presented in form of a probability density distribution (Panels a of Figures 8, 
9, 10, 11 and 12), a reliability curve (Panels b), and a ROC diagram (Panels c), which are 
discussed. Also, the indices POD and POFD in the ROC diagram can be used to evaluate 
the economic value for a chosen probability threshold. These descriptions allow to assess 
the added value of additional observations in the Fog Pilot. 
 

8.4.1 SAFNWC-based product verification 
 
The verification applied to satellite-derived fog probability shows a lack in reliability for 
middle ranges probability estimation (30-70%). However, the results are acceptable for 
our aims, even if this behaviour can be improved by tuning parameters of the satellite 
estimate model. At the current stage, the response of the SAFNWC derived fog estimates 
can be considered satisfactory, since the most part of the samples are classified in the 
probability range from 0% to 20%, that shows a good reliability, and the high probabili-
ties range classify well the fog events, as shown in Error! Reference source not 

a b c 
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found.a, where the bar plot evidence the good distribution of probability estimation. The 
reliability appears to fall down in the middle probability estimations, suggesting an over-
estimation of fog cases (Error! Reference source not found.b). For this reason the 
ROC curve shows a lack of probability of detection in the middle probability thresholds. 

8.4.2 meteorological surface station-based product verification 
 
CART processing of meteorological data from the ground stations gives a very reliable 
result for low probabilities range (0 to 30%), but does not gives information on higher  

probabilities (see Figure). This product does not discriminate between “very foggy” and 
“moderately foggy” situations, except for a very small number of cases with probability of 

a b c 

 

 

Figure 9. Field of probability of Meteorological surface station-based method. a) Probabil-
ity class distribution of the events: blue bars are “Event” (fog) and yellow ones “no-
Event”. b) Reliability curve of fog estimation. c) Relative operating curve (ROC) of the es-
timations. 

a b c 

 
Figure 10. Field of probability of Visibilimeter-only-based method. a) Probability class distribu-
tion of the events: blue bars are “Event” (fog) and yellow ones “no-Event”. b) Reliability 
curve of fog estimation. c) Relative operating curve (ROC) of the estimations. 
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around 60 percent. That is why, in the final product, a quite low weight has been as-
signed to the CART 
 

8.4.3 Visibilimeter-only-based product verification 
The product derived from direct visibility observations shows a good discrimination be-
tween “event” and “not event”, but also an overestimation of fog increasing with the es-
timated probability (see Figure 10.). This behaviour is related to the spatialization proc-
ess. In the final product, using the weight of this information (related to the distance of 
the instruments), the overestimation present in the field produced by the visibility net-
work is corrected by the merging process. 
 

8.4.4 The merged fog pilot product verification 
 
The verification of the final product gives encouraging and consistent results, in that the 
overall performance is superior than for the single data source-based products, except 
maybe for a slight overestimation of the frequency of the events. The bar plot graphic 
shows as no-fog cases are well classified and only a few cases of fog are missed (Figure 
11a). The reliability of the overall product is well distributed along the different probabil-
ity values, despite a problem common to the most part of the distribution is a slight 
overestimation of the fog probability (probability > frequency, Figure 11.b). Finally the 
ROC shows the behaviour of the Fog Product, varying the probability threshold for fog 
alert; thresholds around 30-50% are a good compromise that allows having low false 
alarm in front of relatively high probability of detection (Figure 11.c). 
 
To conclude, the Fog Pilot monitoring system, at the current stage, allows to detect the 
fog presence (defined as visibility less of equal 500 meters) by choosing the 30% of 
probability as the threshold for issuing a fog alert, with a Probability Of Detection of 
around 70% (we match the 70% of events) and False Alarm Rate of 20% (we meet the 
20% of possible false alarm). As illustrated earlier, the relative economic value of such a 

a b c 

 
Figure 11. Field of probability of the Fog Pilot Merged final product. a) Probability class 
distribution of the events: blue bars are “Event” (fog) and yellow ones “no-Event”. b) Re-
liability curve of fog estimation. c) Relative operating curve (ROC) of the estimations. 
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warning system is 0.36 for a cost-loss ratio of 0.2. This means that the total costs in-
curred when having no warning system can be reduced by 36% percent. 
 

8.4.5 Verification estimates from a webcam located in the city of 
Venice 

A coarse estimation of the actual visibility was performed through the analysis of an im-
ages archive recorded by a webcam located by ARPAV on a building roof (around 15 me-
ters height) in the city of Venice. Thanks to the presence of several benchmarks in the 
picture it was possible to give an acceptable estimate of fog or no fog condition (visibility 
below or above 500 meters). The product output was extracted for the specific point 
(area of 4x4 km) corresponding to the city of Venice, for a dataset of 640 cases (640 
hours) during the winter 2009-2010. 
 
 

 
These results, as shows Figure  12b, are very good, significantly better than the ones 
obtained through the cross validation procedure (see last paragraph). The reliability of 
the product is almost equivalent to the result of cross validation (Figure a); it becomes 
better in the high probability range, over the 60%. Indeed, in this case for a fog prob-
ability warning threshold of 30% the POD = 80% and POFD = 10% the system yields a 
relative economic value of 54% for a cost-loss ratio of 0.2 (see Figure c)! This encourag-
ing result maybe due to a good correlation of the fog occurrence in Venice and the near-
est visibilimeter in Cavallino at a distance of about 12 km. Also, the coherence of fog 
over this distance, about a third of the average distance of the visibilimeters in the net-
work, maybe significantly larger than at longer distances. 
 
More independent points of verification, like the webcam of Venice, have to be used, in 
order to investigate the performance of the product in different meteorological situations 
and geographical positions. 
 

a b c 

 
Figure 12. Field of probability of estimates from a webcam. a) Probability class distribution 
of the events: blue bars are “Event” (fog) and yellow ones “no-Event”. b) Reliability curve 
of fog estimation. c) Relative operating curve (ROC) of the estimations. 
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8.5 Conclusions 
An extensive verification procedure was set up in order to assess the meteorological and 
warning quality of the Veneto Fog Pilot. The main findings can be summarized as fol-
lows: 
 

• The extension of the Roadidea project allowed to extend the data set collected in 
the previous winter 2008-09, which exhibited an unusually low frequency of fog 
occurrence; the data set comprises some 760 hours, including some 20 days with 
fog occurrence, of observations with a fog-non fog ratio of about 1:5; 

 
• the fog pilot is inherently a probabilistic warning system, thus requiring a probabil-

istic verification approach; the system has been characterized by the frequency 
distribution, a reliability diagram, a ROC curve constructed with the probability of 
detection (POD) and the probability of false detection (POFD), and a relative eco-
nomic value; 

 
• systematic cross validation of the products coming from the individual data 

sources reveals low value for the meteorological surface station values; acceptable 
values for the high and low fog probabilities coming from the satellite, and best 
values for the simply interpolated visibilimeter network; 

 
• the merged product features a clear added relative to the individual products, with 

a POD of 70% and a POFD of 20% for a fog warning threshold of 30% resulting 
from the systematic cross verification which yields a relative economic value of 
36% for a cost-loss ratio of 0.2; 

 
• verification of the merged product with webcam imagery suggests even higher 

scores, in the case of the City of Venice for a fog probability warning threshold of 
30% the POD = 80% and POFD = 10% which yields a relative economic value of 
54% for a cost-loss ratio of 0.2; 

 
• finally, Table  3 and Figure 13 summarize the economic value of various warning 

system setups, i.e. never warn, always warn, individual components as well as the 
merged version of the Fog Pilot, and the value for a site like Venice. It can be ob-
served that all the individual components of the Fog Pilot have a value, and that 
the merged product yields the best performance, also in terms of cost minimiza-
tion and relative economic value. 
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Table 3. Comparison of the performance indices (POD, POFD, total cost COST, and 
relative economic value) between the individual components and the merged Fog Pilot 
products for a cost/Loss ratio of 0.2; the reference values are the absence of action 
(never protect) and the maximum of the security (always protect). Result column 
“Venice” is referred to the value of the merged product with reference to the inde-
pendent webcam observation of Venice city. 

 never always CART SAF VIS MERGED Venice 
BEST POD 0 1 0.52 0.43 0.76 0.73 0.76
BEST POFD 0 1 0.23 0.008 0.22 0.18 0.05
COST (L) 1 1.2 0.8254 0.74 0.6229 0.6049 0.4544
economic val-
ue 0 -20% 17% 26% 38% 40% 55%
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Figure 13. Relative economic value of the different warning systems listed in Table. 3. 
The merged product (last two values) gives the best results. 
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9 Optimization by tuning of model parameters  
 

9.1 The range of influence of visibilimeters: The distance factor 
 
The distance factor is an inner parameter of the Fog Pilot system; this parameter ap-
pears into the formula that gives the probability of fog from the visibilimeter network. 
This probability comes from the single probabilities given from each visibilimeter, and is 
obtained by a weighted mean. This procedure is repeated for every point on the map. 
The weight of the probability of every single visibilimeter depends on the distance be-
tween instrument and the point. 
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The weight (vis_k) of the measure in the weighted mean decreases, following the func-
tion represented in Figure . 
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Figure 14. In the X-axis the distance between the visibilimeter and the considered 
point, while in the Y-axis the weight that the information coming from the visibilimeter 
will have into the weighted mean. 

The weight of the information coming from a visibilimeter decreases to a 73% at a dis-
tance equivalent to a distance factor, and fall down to a 27% at a distance double than 
the distance factor. 
A cross-verification was performed for the complete dataset, on the final product, vary-
ing the distance factor. The results are showed in the following graphs, reporting the 
ROC Area, the BRIER Score and the Event Separation versus the distance factor. 
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Figure 15. Diagrams of performance indexes for the fog probability field obtained with 
the Visibilimeters network, varying the Distance Factor; the optimal results are clearly 
obtained for a Distance factor close to 20 km. This value allows to maximize the ROC 
Area, the Economic Value and the Separation between Event and NotEvent;, while the 
Brier Score is minimized. 
 
The results suggest the choice of a distance factor of around 20 km, instead the 10 km 
used for the first test and initial operational period of the system. 
The indexes we were tuning are improved of a 3-4% in comparison to the initial values. 
 

INDEX Test period (Distance Fac-
tor=10km) 

After tuning (Distance Fac-
tor=20km) 

ROC AREA 0.34 0.355 
BRIER SCORE 0.097 0.095 
SEPARATION 35 36.5 

ECONOMIC VALUE 0.184 0.196 
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9.2 Tuning the parameters for the correction of SAFNWC-
derived probability field 

The SAFNWC software reports a product called “Cloud Classification Type”; this product 
provides a description of the present cloud cover, that for our aims can be divided in the 
three following sorts: overcast, clear sky, low and very low clouds. 
Every point in our map will be associated to one of these three types of cloud cover; 
starting from the satellite cloud type classification we can assign to every point on the 
map a probability to have limited visibility at the ground. 
Empirically we assigned to the three cloud type class the following probability of fog: 
Overcast – 10% 
clear sky – 5% 
low and very low clouds – 70%. 

 [It must be observed that this assignment of such a probability will require a deeper 
analysis, once a greater dataset will be available, with at least 12 month of visibility-
satellite comparative data - end of summer 2010 - ] 

 
Figure 16. Diagrams of performance for the Satellite-derived field, varying the 2 in-
dexes correcting the Satellite estimation with ground visibility records. 
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Since we know that the information coming from satellite is unsure, we have produced a 
correction method, comparing the satellite-derived estimation with the ground visibility 
records. 
In the core system of Fog Pilot two indexes are produced, one measuring the coherence 
between low clouds detection from satellite, and visibility reduction at the ground, and 
another measuring the opposite condition (incoherence between satellite and visibilime-
ters). 
We will call them respectively Fog_and_Low_Clouds_Index and Low_Stratus_Index. 
These indexes are used to lift or lower the probability and the weight of satellite-derived 
field. 
The performance of the system was tested, varying between 0 and 1 the largeness of 
the effect of the indexes. 
The evaluation of the performance is tested calculating the following four quantities: 
 

• ROC area (higher is better) 
• Brier Score (lower is better) 
• Event Not-Event Separation, i.e. the distance between probability mean of 

events and not-events (higher is better) 
• Maximum Economic Value of the warning system, with L/C = 0.2 (lower is 

better) 
 
Results are presented in the graphs in Figure . 
 
At a first look, is clear that the two correction components have a positive impact on the 
performances of the system. 
It can be noted, in particular from the Brier Score graph, that increasing of the weight of 
the Fog_and_Low_Clouds_Index (index of coherence, lifting the value of the probability) 
doesn’t give a positive contribution to the product, without increasing the weight of the 
Low_Stratus_Index. This can be explained observing the Reliability Diagram, which 
clearly shows that the system tends to overestimate in case the first index is significantly 
higher than the second. 
By the other hand, the Event Not-Event Separation value takes advantage from the in-
creasing of the effect of the Fog_and_Low_Clouds_Index, because increasing this index, 
higher probabilities are filled; because of that the distribution of events, even if present 
an overestimation of fog occurrence, is more separated from the not-event distribution 
(see Figure ). 
 

Figure 17. Increasing systematically the forecast probability of events, the Separation of 
mean values becomes greater, but it’s reasonable to expect an overestimation of measures. 
This explains why the Separation and the Brier Score show a behaviour quite different in the 
diagrams. 
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From the results of the tuning here described, we have opted for equal value of 0.75 for 
both indexes. These values seem to provide an acceptable compromise between the dif-
ferent evaluation methods of the performance. 
 
The following table reports the advantages obtained applying this kind of correction to 
the crude satellite-derived field of fog probability: 

 

INDEX No correction (0; 0) After System Tuning (0.75; 
0.75) 

ROC AREA 0.16 0.217 
BRIER SCORE 0.184 0.142 
SEPARATION 16 26.3 

ECONOMIC VALUE 0.157 0.258 
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9.3 Tuning the relative weights for the final product production 
 
As previously described, the merging method requires a weight for each different field 
that takes part in the process. The fields involved are: 
 

• Satellite-derived estimation 
• CART statistical method on CALMET output  
• Visibilimeters network 

 
As we can see in the following formula of the weighted mean, used to obtain the merged 
probability field, 
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every field of probability is weighted, point by point, by a local weight (the w values), 
and with a total weight (the sigma, σ, values), constant for the probability field. 
This weight sigma represents the “importance” of the single probability field in the final 
merging process. 
Varying these sigma values for the three principal fields, and running the fog pilot for the 
entire verification dataset, a map of evaluation index are obtained; these maps allows to 
select the best set of weight for the three probability fields. 
It must be noted that we can divide the upper and the lower member of the formula for 
the σvis, and proceed varying the ratio σsat / σvis and σcart / σvis. 
The formula becomes: 
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This operation allows a tuning with only 2 parameters, instead the three different 
weights. 
In Figure 17 are reported the results of the tuning of 2 mentioned parameters. Since we 
taken the weight of visibilimeters field equal to 1, these parameters are equivalent to the 
CART field and satellite derived (SAFNWC) field weights. 
 
The results obtained with the tuning of weights are the following: 

 
• the impact of the variation of the weights is evident; in particular there are areas 

in the plots that show significant lost of system performance, while the lower-left 
side of the graph presents the best results; 

• the Roc Area, Brier Score and Economic Value are optimized with weight values 
roughly between 0.1 and 0.4-0.5; 

• the Event NonEvent Separation is higher when the CART weight is close to zero; 
this corresponds to an overestimation of the events; 

• considering the previous observations our selected best weights for the system 
are 0.2 for the CART and 0.4 for the SAFNWC. 

 



  

 

29 

 

Figure 18. Diagrams of performance for the Final Product of fog probability (Merged field), 
varying the 2 relative weights (of CART and Satellite-derived fields) used in the weighted 
mean of the three basic products (CART, Satellite-derived, Visibilimeters Network). 
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In conclusion, in comparison to the basic setting of the system, with weight equal to (1; 
1; 1) we have changed the weights to (1; 0.4; 0.2), improving the performance of the 
system as it can be seen below: 

 

INDEX Base Setting(1; 1; 1) After System Tuning (1; 0.4; 
0.2) 

ROC AREA 0.32 0.34 
BRIER SCORE 0.096 0.093 
SEPARATION 24.1 31.0 

ECONOMIC VALUE 0.365 0.393 
 
The optimization is appreciable in all the considered scores. 
With the triplet of weights obtained with the tuning the reliability of the system (Brier 
Score) is slightly improved, the discrimination (Separation) between event and non 
events distribution is higher, and the utility of the forecast (Roc Area and Economic 
Value) is increased. 
New performance analysis will be essential for further improvements the system. The 
refinement of the system parameters may require years and years of data. 
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10 Impact of PBL parameters on the Veneto fog pilot 

10.1   Introduction and main results 
Assessing the impact of variables or parameters describing the state of the planetary 
boundary layer (PBL) was among the additional activities ARPAV has proposed. It makes 
sense consider two sets of parameters, which are not independent but are retrieved in a 
very different way. The vertical temperature structure of the PBL can be observed by the 
microwave radiometer network operated by ARPAV. The temperature profile gives impor-
tant information on the stability of the PBL which, in turn, is intimately linked to fog con-
ditions. 
 
On the other hand, there is a set of parameters describing the turbulent state of the PBL. 
These cannot be directly measured, but need to be estimated by relatively complex 
models which account for the turbulent dynamics of the PBL. Most notably, the PBL mix-
ing height (Hmix) denotes the height to which the part of the atmosphere which is in 
contact with the surface can be considered well mixed. This means that quantities like 
temperature, momentum, humidity, and air pollutants are distributed in the entire PBL 
by the process of turbulent mixing, which leads to characteristic profiles of temperature 
and wind. In relation to fog, the idea is that if turbulent mixing and therefore the mixing 
height is large, conditions for having fog are very unlikely. On the other hand, if the mix-
ing height is very low (weak or absent turbulent mixing), the likelihood for fog conditions 
increase. The friction velocity (u*) and the inverse of the Monin-Obukhov length (1/L) 
are used as indicators of the amount of mechanical and convective turbulence. They 
both are not independent of the mixing height, but respectively reflect the action of wind 
and radiation on the turbulent mixing in the PBL. 
 
The main results obtained from this analysis are anticipated here and discussed in more 
detail in the remainder of this section. They can be summarized as follows: 
 

• knowledge of the local vertical profile of temperature (along with the relative hu-
midity) is among the most efficient parameters which identify fog conditions from 
meteorological surface station network data; 

 
• stability conditions as expressed by Hmix, u*, and 1/L do not pinpoint fog condi-

tions, as a very stable PBL often has no reduced visibility; 
 
• conversely, conditions of instability as expressed especially by 1/L seem to ex-

clude fog conditions quite efficiently; 
 
• subjective thresholds for these parameters were identified as Hmix < 2-300m, u* 

< 2 m/s, and -100m < L < 200m. 
 
 
 
 



  

 

32 

10.2   PBL Temperature profiles 
 

10.2.1 Approach 
 
The impact of the PBL temperature profile, or vertical temperature gradient, on the iden-
tification of fog conditions is performed by the non-parametric classification and regres-
sion tree analysis (CART), as used for extracting fog probabilities in the Fog Pilot model 
and described in D3.4. There, the vertical temperature gradient was extracted from the 
two relatively close by surface stations Legnaro and Mt. Grande, which are located at 
about 10 and 470 m above sea level, respectively. Such a profile can be considered local 
for the area of Padova and surroundings, but less so for Verona, for instance. The value 
of this information as assigned by the CART analysis comes from the fact that positive 
temperature differences between the upper and lower level indicate temperature inver-
sions and therefore stable to very stable PBL conditions. Together with relative humidity 
close to saturation such conditions are necessary, but not sufficient, ingredients for fog 
formation. 
 
Figure  illustrates the value of having local profile information, in that a relatively well 
peaked probability distribution for fog emerges from the CART for surface station Mon-
tagnana using the microwave radiometer (MWR) in Legnago, where the two locations 
are located about 14 km apart. As a matter of fact, fog occurrence is predominant for 
temperature differences between the upper (500 m) and the lower (surface) level 
greater or equal zero, i.e. stable conditions. The peak is between 2-4°C. If, on the other 
hand, the CART for surface station Villafranca Veronese using the microwave radiometer 
in Legnago (88 km distance), the probability distribution for fog is much flatter and indi-
cate fog conditions on a much broader range of temperature gradients. In particular, the 
number of fog events related to conditions with no thermal inversions is about doubled. 
 
The differences in the actual CART tree are shown in Figure , along with the contingency 
tables for fog yes or no, based on the visibility threshold of 500 m, and a number of 
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Figure 19. Fog event (blue) and non-event (red) frequency distributions as a function of 
the vertical temperature gradient (K/500m) for the station Montagnana and the 14km 
distant MWR Legnago (left panel), and for station Villafranca Veronese and the 88km 
distant MWR Padova (right panel). 
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scores. The version of the CART analysis with the more localized temperature profile in-
formation (derived from the MWR) have a higher CSI, POD and Accuracy, while the FAR, 
POFD, and BIAS are smaller. Both sets of scores differ quite significantly. The main dif-
ference of the two classifiers seems to be the massive reduction of false alarms (from 
4128 to 1616) and misses (from 5392 to 3193). 
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Figure 20. Optimal tree based on the lowest cross-validated relative error: ground parameters 
and temperature difference from surface stations Mt. Grande (470masl) and Legnaro (10masl) 
(left panel), and temperature differences between levels 500m and surface from MWR Padova 
and Rovigo (right panel). Contingency tables and a number of scores are evaluated on the ba-
sis of the visibility threshold of 500m for fog conditions (CSI: critical success index, POD: prob-
ability of detection, FAR: false alarm ratio, POFD: probability of false detection, BIAS: bias). 

 
The CART analysis yields the relative importance of the predictors used in the classifica-
tion process. This means that CART will tell which variable are most useful for distin-
guishing, in our case, fog from non-fog, and which ones are of very little value. Figure  
shows this ranking for the two classifiers discussed in this section. In case of one single 
information on the vertical temperature gradient (Figure , right panel) the relative hu-
midity emerges to be by far the most important distinguishing variable, followed by the 
vertical temperature gradient. In case of the two MWRs the ranking changes, in that now 
the vertical temperature gradient information of the Padova MWR appears to the most 
important selector, followed by the one in Rovigo and the pressure information, relative 
humidity and temperature tendency. 
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Importance plot
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Importance plot
Dependent variable: VIS5
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Figure 21. Relative importance of parameters in detecting visibility values below 500m as 
output by the CART analysis when respectively including the one pseudo temperature profile 
obtained from the surface stations at Mt. Grande (470masl) and Legnaro (10masl, left panel), 
and the temperature differences between levels 500m and surface from MWR Padova and 
Rovigo (right panel).  

 
 In conclusion, the more local information on the vertical temperature gradient seems to 
give an additional value to the fog – non-fog classification done by CART on the tradi-
tional meteorological observations. This highlights the potential of having PBL tempera-
ture profilers. In case no such devices are available, a set of relatively close by stations 
with an altitude difference of the order of 500m can provide useful information. 
 

10.3  Turbulent state of the PBL 
 

10.3.1 Approach 
The remainder of this section is devoted to illustrating and discussing these main find-
ings. The approach chosen to assess the impact of observations related to the turbulent 
state of the PBL is as follows: 
 

• calculation of the PBL parameters Hmix, u*, and 1/L; 
 

• visual inspection of the co-variance of the PBL parameters and visibility for a 
number of fog episodes and two stations; 

 
• basic statistical description of the PBL parameters and visibility for the winter 

months (December, January, February) 2008-09 and 2009-10; 
 

• subjective assessment of the potential use of the PBL parameters in the fog pilot 
model. 
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10.3.2 Results 
Visual inspection of the co-variance of visibility, Hmix, u*, 1/L, relative humidity (RH), 
and temperature (T) give a clear indication that there is a close relation between the 
state of the PBL and conditions which are conducive to fog formation. Note that the ex-
tra horizontal line on plots denotes the visibility = 500 m threshold for indicating fog. The 
following findings emerge from the four fog periods spanning a total of 9 days: 
 

• Values of Hmix above about 300 m are mostly related to good visibility; when 1/L 
is negative and not close to zero, visibility appears to be far from the 500 m 
threshold; the impact of u* on Hmix seems to be less effective on fog dispersion; 

 
• Low values of Hmix and u*, and values of 1/L indicating atmospheric stability are 

not sufficient conditions for visibility to be reduced, even with high RH and low T; 
 

• In evident fog conditions, short episodes of mixing, especially by thermally in-
duced turbulence (1/L << 0), re-establishment of fog is lagging the stabilization 
of the PBL by several hours, i.e. fog formation appears as a slow process. 

 
These findings are based on a limited number of cases as seen on two stations. They 
are, however, more or less confirmed by the basic statistical analysis given in the scat-
terplots in Figures 22, 23 and 24. All of the three inquired PBL parameters exhibit a scat-
terplot with a characteristic triangular shape which is very broad in terms of observed 
visibility values for stable to very stable PBL conditions, and becomes narrow towards 
very high visibility values as instability conditions increase. This confirms that the indica-
tion of stability conditions does not pinpoint fog conditions, but, conversely, conditions of 
instability seem to exclude fog conditions. For Hmix a good subjective threshold could be 
picked at 2-300 m, for u* at about 0.2 m/s, and for -100 m < L < 200 m. 
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Figure 22. Visibility (log10(m)) versus Hmix (m) for the winter periods (DJF) 2008-09 and 
2009-10. 
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Figure 23. As in Figure 22 but for surface friction velocity u* (m/s). 
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Figure 24. As in Figure 22 but for Monin-Obukhov length L (m). 
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10.3.3 Potential of application in the fog pilot 
A conceptually straight-forward benefit of these findings consists in applying such 
thresholds in the context of a decision tree, especially where there is no direct observa-
tion of visibility. This points to the satellite-derived fog probability map, for which prob-
ability values for fog (visibility < 500 m) could be substantially reduced if the PBL pa-
rameters indicated instability conditions. A more delicate decision would have to be made 
if such conditions were analyzed where direct visibility measurements indicated fog. Full 
implementation of the PBL parameters into the Fog Pilot was not possible in the time-
frame of this deliverable, but will be pursued. 
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11 Open fog pilot architecture: processing of addi-
tional information 

 

11.1   Introduction 
The Fog Pilot system in its current version real-time processes data retrieved from a 
dedicated visibilimeter network of 10 stations, the cloud classification scheme of the Me-
teosat Nowcasting Satellite Application Facility (SAFNWC), and a conventional meteoro-
logical observations of 30 stations. As laid out in deliverable D3.4 the data are of each 
source are transformed into a probability of fog occurrence based on a visibility threshold 
(500 m in our case) and assigned a data quality. Then the three fields are merged taking 
the relative quality into account. 
 
Such an architecture can, in principle, accommodate additional data sources which can 
be transformed into fog probabilities and whose quality compared in relative terms to the 
other data sources. The Fog Pilot system architecture can, therefore, be considered an 
open architecture, and able to accommodate a potentially significant number of addi-
tional and novel information types. As such it very well fits into the Roadidea data exploi-
tation philosophy. A list of such potential information sources includes: 
 

• Visibility estimates from webcam networks; 
• Occasional reports from visibilimeters outside the permanent network; 
• Direct human visibility reports; 
• Automatic direct and indirect reports from intelligent cars (e.g. direct measure-

ments, indirect information from fog light activation or reduced speed). 
 
The extra work required for each of these categories to be included into the current Fog 
Pilot structure consists in: 
 

• webcam networks: devise automatic visibility estimates via suitable image proc-
essing, and determine relative weight w.r.t. direct visibility measurements from 
reference network; 

 
• Occasional reports other visibilimeters: establish confidence of observation quality; 

 
• Direct human visibility reports: potentially large number of reports of heterogene-

ous quality requires robust statistical pre-processing to establish actual informa-
tion content; 

 
• Automatic direct and indirect reports from intelligent cars: as for human reports. 

 
It is beyond the scope of the Fog Pilot to include such information in a systematic man-
ner. It is, however, the scope of Roadidea to pinpoint non-conventional, potentially valu-
able data sources which can benefit road transport on the European Scale. The Fog Pilot 
was designed to do this w.r.t. direct and indirect visibility information, potentially avail-
able along the major road transport routes throughout the continent. In this sense, the 
Fog Pilot would have the potential to become a community tool, which would allow, for 
example, a number of (professional) users to feed data into the system and benefit from 
the compositing done by the system. 
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The remainder of this section is dedicated to illustrating how extra information can bene-
fit the performance of the Fog Pilot on the regional scale of Veneto. Two scenarios were 
selected:  
 

• sparse fog which was non detected by the reference system, but additional infor-
mation did; 

 
widespread fog in which the scale of the reference system did not pick up smaller-scale 
variation of the phenomenon 

11.2   Fog not observed by the reference system 
 
The reference visibilimeter network currently features an effective horizontal resolution 
of some 30 km. For the potentially highly variable phenomenon fog such a resolution can 
be insufficient even to pick up relatively large patches of fog. Figure  shows the fog  

 
Figure 25. Fog probability (left column) and alert (right column) maps for the Veneto Fog 
Pilot reference system (upper row), and the system extended with additional visibility in-
formation (lower row). Political borders of the Provinces of the Region Veneto are drawn 
in blue, the points in which visibility observations are available are drawn as green 
squares. 
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probability map (upper left panel) and fog alert map (upper right panel) of the reference 
system. The resulting low fog probabilities in the coastal regions do not trigger a fog 
alert (e.g. based on a 40% fog probability threshold).  
 
Additional direct visibility reports in the coastal southern regions detect probabilities for 
reduced visibility conditions in the range of 70%. This signal is now sufficiently strong to 
trigger a fog alert in the south-eastern part of Veneto.  

11.3  Add small-scale information in a widespread fog situation 
The second example in which additional visibility observations can be valuable is illus-
trated in Figure . The upper left panel shows widespread high values of fog probabilities 
and the corresponding widespread fog alert (upper right panel). In particular, the entire 
area bordering the visibilimeter network to the north is included in the fog warning. 
 
Additional visibility information becoming available in the northern and south-western 
part of the visibilimeter network changes the picture by reducing the fog probabilities 
below the alert threshold. Now the fog warnings along the northern border is better de-
lineated, as well as in the south-west, where the additional reports reveal an area with 
significantly lower fog probabilities. 

Figure 26: as for Figure . 
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11.4  Open issues 
As stated in the introduction of this section, inclusion of non-conventional data sources 
into the concrete Fog Pilot is beyond the scope of Roadidea, highlighting the potential of 
such data sources, however, is at its heart. The Fog Pilot has, in principle, characteristics 
that would allow it to become a community tool. Such a tool would give a benefit which 
is increasing with an increasing number of contributors (road traffic community). How-
ever, in order to include an unknown number of pieces of information from unknown 
sources would require paying close attention to at least the following issues: 
 

• Robust statistical pre-processing, especially in view of plausibility; 
• Treatment of incoherent data in the same area; 
• Attribution of a quality, or weight, to unknown data relative to the reference net-

work; 
• Handle differing data density, i.e. how to handle areas with few or many data 

points. 
 
This list is certainly not complete and only points towards a few theoretical issues in 
handling and processing information, which would need additional attention. 
 
 
 


