SEVENTH FRAMEWORK
PROGRAMME

Project n0.223975
MOBESENS

Mobile Water Quality Sensor System

Instrument: CA STREP II=] NOE

Please tick

ICT-2007.6.3: ICT for environmental Management and Energy Efficiency

D4.4.1 — Overall MOBESENS grid and networking architecture

Due M24 (May 2010)
Actual submission date: June 2", 2010

Start date of project: June 1%, 2008 Duration:36 months

Organisation name of lead contractor for this deliverable: GET-INT

Revision 1.0

Project co-funded by the European Commission within the Seventh 2
Framework Programme (2007-2013) =
Dissemination Level g
E =
PU | Public 32
ER
PP Restricted to other programme participants (including 5 g
the Commission Services) E5
wE
RE Restricted to a group specified by the consortium g5
(including the Commission Services) R
L]
co (_‘,onfid(_antial, only for_mgmbers <_)f the consortium X ane.
(including the Commission Services) o

Deliverable D4.4.1

Overall MOBESENS grid and networking
architecture

Confidential

4

2007 - 2013

Date May 31% 2010

Confidential

Contractual Delivery Date
Actual Delivery Date
Contributing WPs

Project Number 223975

Project Title Mobesens

Deliverable Type Report

Deliverable Number D4.4.1

Title of Deliverable Overall MOBESENS grid and networking architecture
Nature of Deliverable Report

Internal Document Number D4.4.1

May 31% 2010
May 31% 2010
WP4

system.

capabilities.

Author(s) Eric Renault (Institut Télécom)
Wassim Drira (Institut Télécom)
Djamal Zeghlache (Institut Télécom)
Abstract

The main objective of this document is to report the outcome of the activities on the Mobesens
grid architecture to provide an easy-to-use global communication and storage space to save,
archive and search for raw and processed data collected by the MOBESENS measurement

A brief presentation of the global organization of the different components of the MOBESENS
system highlights first the role and position of the grid. This is followed by a detailed description
of the storage space (in terms of organization and capabilities...), a presentation of the
networking solutions and a report on the adopted visualisation approach and the resulting

MOBESENS

Date May 31% 2010 Confidential

Table of contents

1 INErodUCtion...cceceecccssssssecssccssse 5
2 MOBESENS Global Architecture....cccoeecssneeeecsscsnnssssssssssssssssssssssssssssssses 6
2.1 Functional ArchiteCture....ceeeeeeeeseeeeeeeeeeceraeeeesaeeeessaeeeeessaeesessaseccsssesesssseessassesssssessassoses 6
2.2 Abstract view of the grid architecture......ccceeceeeeeeeseeiseeesseeenseecsseeensaeeesseessaesessasessaeeecesnnnes 7
2.3 The grid architeCture....ccceeseeeesreessuecisaeeessencssacessacessaeessaessssessssosssasessssssssssesssessssssssssssssssssee 11
2.4 TANOE...ccieeenerinisnnniasensenanennerssssnsnasssnsnssssnsesssssssssssssasssnsassssnssssssssssssnsassssnsessssasssssssssasssssnns 12
2.5 eXISt-0D.ccueeeereeeieecnsaeensseensaeensseeessnsesanessanessssesssesssseesssssessasessssessssesssssssssssssssssssesassssssssssase 13

3 MOBESENS Storage Architecture.......cccecesseecscsnsicsccnssesscnsssssccnsssssssssssec 1S

3.1 Object MOAel..ccceeeeeseeeesseeesaeeesseeessacesanesanessasesssesssseesssessssassssssessasessasessssssssssssssssssssssasssses 15
3.2 OGC — Open Geospatial CONSOItitM......cceseieesensssunossassnsnsossassssassssssssssssssssssssassssssssssnsssas 16
R I T3 111 0) 60 N 16
3.2.2 Observations & MeasuremMeNtS....cceeeeeeeeesaeessseessseessseesssesessasessscessssessssesssssssssssssssssssses 18
3.3 Information Model.....c.cceeeeeeseeessaeessaeessaeensanessaeeessasessasessasessasessssessssessssessssesssssssasssscssasaace 19

7 ACKNOWIEdZMENTS. cccueeeeecsnseeeecsseencenseecscssecsssnssessssssasssssssacsssassessnssscssensssd()

8 Abbreviations and ACrONYIMS.....ccceeeeseececsseescsseecscsssecssssssecssssssessenssesscsssad |

O R O EIICES ceuueerenccerencssassssssnsssssssssssssssssssssssssassddy

MOBESENS 3

Date May 31% 2010 Confidential

List of figures

Figure 1: Functional Architecture.........iicinveeicsssneeicssnreccssnneneeeecccccssnnnns 6
Figure 2: Abstract Implementation VieW......ccccoevvvueeeeeeenneneeeeneenneeneeeeeennes 10
Figure 3: Grid Architecture.........cceeiiciiseicsisneecsssnneccssssssnnnnnseenecessssenes 11
Figure 4: Tahoe Cloud Storage SySteNl..........cccccveeeessnnrcsssnnrecssneneneccssnns 13
Figure 5: eXist-db Internal Organization [4]........cccececerecvcnricsicnnrccscnnnnenne 14
Figure 6: The Object Model...........uiiivvriinivnricsssnnnicsssnsncsssssnssssseeescssssnns 15
Figure 7: Conceptual model of processes in SensorML [2]......cccceeeeeennnee 17
Figure 8: ISFET Sensor Description using SensorML...........ccceeiececinnne. 18
Figure 9: An example of measure for the ISFET sensor......................... 19
Figure 10: Metalist Model..........ccouueeeiinneeiinineenisineeecccsssssnnnnnneeeseccccssanns 21
Figure 11: ICEfaces - Ajax Push.......eiiinneiiinnneiicsnnerncsnnenccssnneececcnnne 27

MOBESENS 4

Date May 31% 2010 Confidential

1Introduction

The two main objectives of the MOBESENS WP4 are the development of storage and
processing to store, search and retrieve data like sensor characteristics, measurements
and annotations of these measures, and the development of a visualisation interface to
display information about the sensor network, i.e. information about sensor themselves,
about the measurements or any kind of statistics (raw data, history or even more
complex operations such as computing first and higher order moments), preferably in a
graphical way. This led to a set of general properties:

- Transparent data fusion and data processing from the user point of view.
- Open interfaces compliant with INSPIRE directives and SEIS objectives.

— Optimization of the MOBESENS system as a whole, in prototyping and for
validation.

More specifically, the following functionalities should be provided by the designed
MOBESENS grid:

— Store and manage MOBESENS water quality measurements.

— Allow measurement annotations with time and location, device ID and then store,
and fuse measurements with device characteristics and relevant traceability
information.

— Make data available on demand for analysis.
— Allow customized retrieval, publish, subscribe and notification.
— Visualize on going measurements for analysis, monitoring and decision.

The goal of this document is to present both the specification and the design of the
MOBESENS grid architecture, including the grid services and the design of internal and
external interfaces.

The document is organized as follows: first, a global overview of the architecture is
provided. The organisation of data and meta-data is then developed. The next chapter
presents the API that has been developed so that the other modules of the MOBESENS
system can use the grid. Finally, the last chapter is dedicated to the relationship
between the grid and the visualisation interface.

MOBESENS 5

Date May 31% 2010 Confidential

2MOBESENS Global Architecture

This chapter aims at presenting the different levels of understanding of the MOBESENS
grid. First, the functional architecture is presented to highlight the various functionalities
offered by the grid. Second, the abstract view of the architecture describes how the grid
shall be seen from the end-user point of view. Then, the effective implementation of the
grid is described. Finally, the last two sections briefly present the two main tools that
have been used to implement the grid for data storage and indexing: Tahoe on one hand
and eXist-db on the other hand.

2.1Functional Architecture

The goal of the MOBESENS grid is to provide a set of functionalities to the end-users.
Figure 1 presents a global overview of these services. A central part of the architecture
is the data management system which aims at storing all the information relevant to the
project:

-Measurements provided by sensors.

-Application-generated data which are the result of the execution of some internal
and user-provided programs.

-Meta-data provided both by sensors and/or end-users to describe measurements
and application-generated data.

Application Servers Visulaisation Interfaces & Pertals
R

Consoles QIEE’ Groiios Users Organizations.

Applications & Portals

+
T X
0 | Service BUS l)
e L
= S . = o— L 4
Store | HSALL Publish, | Find | i Bind
S ' Subscribe, Notify b ;
3
o ;mﬁles Rights Managpment
| Se&rv éﬁrﬁﬂfﬁ?ﬂm = N o < | AS::;S View Download Transfer ‘ | Invoke
iscovery Service) N . .
. Distributed Dictionary | (semanhcg;ymbulebased) .4_| « Senice \Serwce . Service P | Service In Service |
VD WP =12 P e o :'l Distriouied even DHT based P2P, uue‘w'ﬂ fors nof preciuded ™ o
/| Mobesens ' S o il
l Registers Service - e
: Measurement Distributed Description Data sets v
i System dictionary & metadata metadata) \Spatal dalasets J -
(WP2/3/5)

Grid management system

Figure 1: Functional Architecture.

MOBESENS 6

Date May 31% 2010 Confidential

-Spatial data collected from different locations to provide an efficient visualisation
interface.

This information is distributed over a set of machines using a peer-to-peer like system
and are accessed and managed by a set of services that hide the complexity of the
underlying implementation of the grid. Two levels of services have been identified. At the
top, services accessible by end-users are providing user-friendly interfaces, while at the
bottom, services are providing an abstraction of the underlying implementation. Among
the services, the most noticeable ones are:

-The Store service (at the top) which is invoked by end-users to store information
(data and meta-data) in the grid.

-The Publish/Subscribe/Notify service (at the top) that allows creation of and
registration to events so that end-users can be notified when any kind of events
arise.

-The Find service (at the top) to allow a large variety of search operations on all kind
of data and meta-data stored in the grid. This service can be seen as one user-level
entry point to the Discovery Service as described below.

-The Discovery Service (at the bottom) which aims at performing semantic and
attribute-based searches on the different sets of data and meta-data stored in the
grid system.

-The Data Access Service (at the bottom) that enables access to data, meta-data
and spatial data sets.

-The View Service (at the bottom) used to render spatial data.

All the services described above are not necessarily accessible to any users as control
is performed through an access rights management transversal service. This access
right management is performed when accessing services at the bottom level as all top-
level services are based on one or more bottom-level services and no data is directly
accessible from top-level services.

Top-level services are accessible though a Service Bus on top of which applications and
portals can be developed. In the scope of the MOBESENS project and more specifically
in the scope of WP4, a web-based visualisation interface has been developed and
improvements shall continue. However, other means to access the MOBESENS grid
may be developed like for example an access from a console or UNIX terminal. This is
especially interesting for the MOBESENS project as sensors are supposed to push their
collected data directly to the storage grid and it would not be efficient to develop a web-
based graphical client to be executed on sensors while a simple socket-based RESTful-
compliant application would be lighter and efficient enough. This is the mechanism that
has been chosen to allow WP2, WP3 and WP5 to communicate with the grid.

This architecture as a whole is compliant with both the INSPIRE directives and the SEIS
objectives as described in [5] and [6] respectively.

2.2Abstract view of the grid architecture

The architecture we have implemented can be understood by end-users as depicted in
Figure 2. The grid is mainly composed of two different spaces:

MOBESENS 7

Date May 31% 2010 Confidential

—A Storage Space which aims at storing any information in the grid. The storage is
based on Tahoe [7], a secure peer-to-peer distributed storage solution, known for its
efficiency and ease of management.

—An Indexation Space that compiles any meta-data provided by sensors, end-users
and applications to enable efficient searches. The tool used to perform the indexation
is eXist-db [8] which has been developed for the indexation of XML documents.

Real Time
Visualization

Control
parameters

RESTful AP ﬁ.\
~._ Networking !

,u'h“ Swiage - ! — e Route
Euw . {merw meESUREL
. — Caleulation

Sensor
Data

ActiveMQ
JMS Server

Sensor |

Sensor :
descriptions [

-:Ie-ac*prin-‘sJ

Sensor
Sensor

data

Meta-data Indexation Cloud Storage Space
(eXist-db) (Tahoe)

Figure 2: Abstract Implementation View.

Access to both storage and indexation spaces is performed though a RESTful compliant
API as described in Chapter 4. This API allows sensors to push their collected data to
the grid. These data can be visualized in a web-based client using the same API. End-
users are able to display real-time and history data, perform statistics, control the
sensors and send control parameters back to them, and/or plan for sensor routes.

Once stored, data in the storage space are persistent. They can be used for displaying
history data or processing at any time. Another possibility consists in displaying the most
up-to-date data in a real-time manner. This has been made possible with the introduction

MOBESENS 8

Date May 31% 2010 Confidential

of an eventing system based on a combination of JMS (Java Message Service) Server
[9] and ICEfaces [10]. This solution allows data to be visualized on the graphical user
interface without refresh notification required by the user or client. Moreover, the time
needed to update the graphical user interface is very small compared to the frequency of
the measurements. This is a key feature since even if data are not updated in a real-time
manner in the graphical user interface, the data update is performed quickly enough so
that information provided to the end-user is always up to date.

Note also that all clients are synchronised and updates happen concurrently towards all
the clients? Changes in the sensed or stored data trigger automatically updates in all the
clients according to their subscriptions and expressed interests. Note also that when
clients induce a change it is also reflected to the entire user community.

2.3The grid architecture

The implementation of the MOBESENS grid is a little bit more complex than the abstract
overview. It is mainly composed of a set of sensors, servers and visualisation interfaces.
Figure 3 presents the relationships between the different components of the grid.

Google maps,
IFREMER data,
IGN data

Console and !] _
N
PUSH

' Events/changes
‘ @ occurrence time

Visualisation
(Web based interfaces / browsers)

Packets translated to
an XML description

P
\\\ —
NS I
T, WP4 storage
] using Tahoe

e)
Indexation system

Web interface & browser
updates, synchronisation
and management

i

AJAX based)
automated updates
and query handling

A\

Sensors, probes, drifters, buoys

Storage specific
to WP3 needs

[Mobesens GRID or backend J ! [Mobesens]
i

Measurement system

Figure 3: Grid Architecture.

The two main components are the MOBESENS Measurement system which includes
the sensing elements of the project (sensors, probes, drifters and buoys) and the
MOBESENS Grid that includes both servers and visualisation interfaces. This last
component is composed of:

—A set of servers to store all data for the project (the storage space) using the Tahoe
filesystem.

MOBESENS 9

Date May 31% 2010 Confidential

—A server to store the indexation system (the indexation space) using the eXist-db
database system.

—A server used by WP3 to store their specific data (typically, all frames provided by
the WiseNodes in order to make sure no data were lost on the path from the sensors
to the grid).

—Any number of visualisation interfaces that can be used for both displaying data or
controlling sensors. For visualisation, geographical data can be taken from various
third parties like Google Map, IFREMER and/or IGN.

—A server devoted to compute the location of sensors, optimize their path to
destinations.

Updates of real-time data in the visualisation interfaces is performed using AJAX Push.
This element is located in the web interface server and is connected to all visualisation
interfaces.

2.4Tahoe

Tahoe-LAFS (for Least-Authority Filesystem) is an open source, secure, decentralized,
fault-tolerant, peer-to-peer and cloud filesystem. The Tahoe-LAFS architecture is
composed of three layers:

—At the top are applications using the filesystem.

—At the middle layer, the decentralized filesystem is organized as a directed graph in
which the intermediate nodes are directories and the leaf nodes are files.

—At the bottom is located the key-value store. In this context, the keys are
"capabilities" — short ASCII strings -- and the values are sequences of data bytes. A
key identifies a file or a directory in the filesystem with the authority to do something
with it (such as reading or modifying the contents).

Data are encrypted and distributed across a number of nodes. The storage of a file in
the Tahoe filesystem follows the steps shown on figure 4:

-The file is encrypted.
—~The cipher text is divided into small segments.

—-An erasure coding function is applied on each segment to produce blocks of which
only a subset is needed to reconstruct the segment (only 3 out of 10, with the default
settings).

—-One block from each segment is sent to a given server.

The set of blocks on a given server constitutes a "share". Therefore, a subset from the
shares (i.e. 3 out of 10, by default) are needed to reconstruct the file. A Merkle Tree is
built from the blocks to conduct correctness verification of a subset of the data without
requiring all the data.

MOBESENS 10

Date May 31% 2010 Confidential

T block T\ \
Al Bl || || [e]| D1
[block \ \\ block \ [block k\ [block
\ A2 B2 c2 D2
\ block \\ block \\ block § block
A3 B3 c3 D3
\ block \ block \ block \ block Ta hoe ClOUd
N B4 c4 D4 Storage System

Figure 4: Tahoe Cloud Storage System.

There exists two main ways to interact with the Tahoe filesystem: the RESTful web API
and the SFTP API. In the current stable version of Tahoe-LAFS (v1.6), storing and
extracting files through the RESTful APl has a significant overhead of around 1.2s
whatever the size of the file. As a result, due to performance requirements, the SFTP
APl is used in the scope of the MOBESENS project.

2.5eXist-db

eXist-db is an open-source native XML database, i.e. it indexes XML documents and
provides efficient execution of search operations. In order to improve the search, eXist-
db also allows the creation of collections and offers the possibility to perform a search on
a given collection or set of collections to improve efficiency even more. Figure 5 presents
the current organization of the eXist-db framework. It highlights the fact that when an
XML document or a set of XML documents are presented to eXist-db, their data are
distributed over several indexes:

—dom.dbx is used to store the XML documents as is. This is very important to return
the content of the XML document back to the users.

—structure.dbx creates a index based on both elements and attributes of XML
documents. This index improves the efficiency of search when looking for documents
in which a given element or attribute is associated a specific value.

MOBESENS 11

Date May 31% 2010 Confidential

—collections.dbx organizes the XML documents into an hierarchy as specified by
the users. Providing a hierarchy of the XML documents allows to perform requests
on a subset of the whole set of documents.

—symbols.dbx is the compilation of all elements, attributes, words that are used in
the XML documents. It also enables name or ID mapping and resolution.

dom.dbx: structure.dbx:
Stores Persistent DOM as Index elements/attributes by
Sequence of Pages their QName
I I I gnameSym, docld nodeld ‘
docl H dOC:, do(::1 “ gnamesym. ‘ docld, odeld, ‘
gnamesSym. I docld_ 1odeld ‘
S)
—
; tevite 10C, e
/OD/SYSIEM| Metadata | Metadata symbols.dbx:
Maps namespaceURIs and
rdbitest dog, doc, names to ID
iy Metadata | Metadata
collections.dbx:
Collection Hierarchy

Figure 5: eXist-db Internal Organization [4].

Interactions with eXist-db may be performed through different APIs, including RESTful
and XML-RPC. The one chosen in the scope of the project is XML-RPC.

As a result, various standard APl may be used to send requests to eXist-db, like
XML:DB, Cocoon, XML-RPC and the SOAP interface.

The expression of requests for search can be done using XQuery. As of today, eXist-db
is the database system that is the most conformant to the XQuery specifications. Other
languages like SQL are provided as external modules and may be used to perform
requests.

MOBESENS 12

Date May 31% 2010 Confidential

3MOBESENS Storage Architecture

This chapter aims at describing the way data, measurements and meta-data are stored
and organized. The first section presents the two kinds of objects that are used to store
data and measurements on one hand, and meta-data on the other hand. Then, the next
three sections focus on the specific storage of sensor characteristics using SensorML
and sensor measured data using O&M. The last section of the chapter introduces the
information model used to feed the indexation space with meta-data.

3.10bject model

Data in the storage space are divided up into two levels (as presented in Fig.6). At the
bottom, BOs (for Bit-level Objects) are storing the effective raw data. At the top, 10s (for
Information Objects) are storing the meta-information associated to the objects.

Bit-Level Objects. There is no specific structure for the storage of BOs. From the
storage space point-of-view, a BO only consists in an array of bits that has to be stored
and retrieved in the same order. As the size of BOs is fixed, more than one BO may be
required to store a complete object. As a result, a BO may be understood as a block of
data in the Unix file system or as a chunk in BitTorrent. Each BO is associated a
cryptographic identity. This cryptographic identity is not revealed to the end-user and is
only used internally by the storage space.

I OS IOS Semantic
search

R N S

Search
10
M by ID

BO BO BO Acceas to
chject

Figure 6: The Object Model.

Information Objects. There are of two different types. On one hand, 10y are used to
manage the access to BOs; on the other hand, 10s are used to provide semantic
information about objects. For the purpose of consistency, both conform to the metalist
syntax as presented below. However, data they store are different:

—IOw are typically storing data to manage the access to objects, e.g. the list of BOs
that are composing the object, the set of users that are allowed to access the object
and their access rights for reading, writing, etc. Even though these data are
controlled by the end-users, they are managed by the grid. As there may be critical

MOBESENS 13

Date May 31% 2010 Confidential

information for the system, they are not indexed and cannot be searched for by the
end-users.

—IOs are storing more general information that are provided, managed and controlled
by the end-user. As long as the data provided in 10s are conforming to the Metalists,
there is no restriction on their use. As they are the typical data one will use to
perform a semantic search, they are systematically indexed in the index space.

It is important to note that both 10s and BOs are stored in the storage space. This is
mandatory due to the fact that any references or modifications of IOs must be possible
and, as a result, a non indexed version of 10s must be resident. Therefore, 10s are all
stored in the storage space using sets of BOs that are accessible through there
associated |Ow.

3.20GC - Open Geospatial Consortium

The Open Geospatial Consortium (OGC) is a non-profit, international, voluntary
consensus standards organization that is leading the development of standards for
geospatial and location-based services [1]. OGC has launched the Sensor Web
Enablement project to enable interoperability between traditionally disparate community
sensor networks. The project has been producing two interesting standard XML
encodings: SensorML (for Sensor Modeling Language) and O&M (for Observations and
Measurements Schema).

3.2.1SensorML

The preliminary work for the specification of SensorML began in 1998 and version 1.0
was available on July 2007. SensorML provides standard models and XML Schemas for
describing the geometric, dynamic, and observational characteristics of sensors and
sensor systems. It supplies information needed for the discovery of sensors and the
location of sensor observations. SensorML is flexible since it allows the description of
simple sensors as components and complex systems as interconnected collections of
components and processes (see Fig. 7). This property is extremely useful in the scope
of the MOBESENS project since the platform (the set of WiseNodes) and sensors (for
example, the ISFET, the VIP system and the acoustic resonator) are provided from
different partners and various combinations can be made depending on the needs.

Figure 8 shows a part of the description of the ISFET sensor which is divided into eight
blocks. Each block includes specific information to be used for searching, discovering or
interconnecting with the other components:

—Keywords, Identification and Classification properties provide both human and
software readable names. Keywords give a list of words that defines the tags for the
component and that can be used to enable text search on a collection of sensor
descriptions. Both Identification and Classification properties provide relevant
information that can be mined to support asset discovery and cataloging.
Identification contains relevant information to identify the component like its name, a
unique identifier and/or its manufacturer. Classification specifies the application of
the component, the type of the sensor and the observed phenomenon.

—Characteristics and Capabilities properties provide information that are useful for
discovery and assistance to humans. Typical Characteristics could include physical

MOBESENS 14

Date May 31% 2010 Confidential

properties or power requirements, while Capabilities might include measurement
characteristics or operational limits.

—Interfaces specify the physical connectors of the sensor to connect it to other
components. For example, in the scope of the MOBESENS project, the ISFET
includes an RS-485 interface that allows it to be connected as a slave to the
WiseNode platform.

—Inputs provide the inputs of the component and Outputs provide the outputs of the
component. For example in the case of the ISFET sensor, Inputs are the “observable
properties” (pH, NH4+, etc.) and the management frame structure, while Outputs
describe the structure of the output frames, like the frame that contains the
measurements.

AbstractFeature

+ name : string
+ descrption : string

]

AbstractProcess

+ metadataGroup

+ input : AnyData [0..7]

+ output : AnyData [0..7]

+ parameters - AnyData [0..7]

b

ProcessModel ProcessChain System Gomponent
+ method : ProcessMethod + method : ProcessMethod
b s << »2
CompositePropertiesGroup PhysicalPropertiesGroup
+ component : AbstractProcess [1..%] + spatialReferenceFrame : EngineeringCRS [0..1]
+ connection - Link [0..%] + temporalReferenceFrame : TemporalCRS [0..1]

+ boundedBy : Envelope [0..1]
+ position : Position [0..1]
+ interface : InterfaceDefinition [0..1]

Figure 7: Conceptual model of processes in SensorML [2].

MOBESENS 15

Date May 31% 2010

<swl:Component gwl:id='ISFET_sensor>
<gml : nawe>ISFET</ gl : name>

Confidential

<swl:characteristics>
<swe:DataRecord>

<swe:field name="physicalProperties">
<swe:DataRecord definition="urn:ogc:def:prop
<swe:field name="weightRange'>
<sve:QuantityRange definition="urn:oge
<sve:uom code='kyg' xlink:href=""/>
<swe:value>0.1 0.2</swe:value>
</swe:QuantityRange>
<fswe:field>
<swe:field name="electronicsDimensions®>

<gml:description>This sensor let us to measure 1 or 2 parameters from pH k+ Ca(2+) F

ISFET Sensor description coml keywords>
<sml:KeywordListc>
SensorML <aml: keyword>ISFET</sml : keyword>
</sml:KeywordList>
</sml:keywords>
Keywords
= Jesml:identification>
i <swl:TdentifierList>
— <sml:identifier namwe="UID">
- <swl:Term definition="urn:oge:def:identifier:06C:unid">
Identification <sml:value>EF00145222ABC123</3ml :value>
</ sml: Terms>
— </aml:identifier>
<sml:identifier name=‘manufacturer®>
~ <swl:Term definition="urn:oge:def:identifier:0GC:manufacturer®>
—~ <smlivalue>Microsens</sml:value>
<smiiclassiiications
<sml:ClassifierList>
<swliclassifier name="intendedApplication’>
<sml:Term definition="urn:ogc:def:classifier:06C:application®>
<smlivalue>pH measurement k+ Ca2+ WH 4+</swl:ivaluer
</=ml:Term>
e : </sml:classifier>
Classification <smliclassifier name="sensorType'>
<sml:Term definition="urn:sensor:classifier:sensorType’>
<sml:value>gate insulating layer Ta205</=ml:value>
</sml:Term>
</sml:classifier>
~ <swl:classifier name="phenomenon’ >
Characteristics e <aml:Term definition="">
[TERITERETECTEETEEY
<swe:DataRecord>
~ <swe:field name="physicalProperties">
Capabilities <swe:field neme='carvier's
AN <swe:field neme="dataStorage’>
<swe:field nawe="profilingCapability”>
™~ </swe:DataRecord>
Interfaces </sml:characteristics>
<sSmi:capapilitiess
<swe:DataRecord>
Inputs <swe:field name="measurementProperties’>
<swe:DataRecord definition="urn:ogc:def:property:0GC:measurementProperties">
<swe:field name='pH measurement'>
Outputs <sve:field name='Ca measurement'>
<sye:field na HH4 measurement ' >
<swe:field name="H03 measurement'>

<swe:field nane='monitoringDepthDosmTo’ >

<swe:field nawe="durationOfOneMeasurement’ >

Figure 8: ISFET Sensor Description using SensorML.

3.2.2 Observations & Measurements

The Observations and Measurements Schema (O&M) provides standard models and
XML Schema for encoding observations and measurements from a sensor, for both
archive and real-time. It is a complement of SensorML since the latter is not intended to
provide the framework for encoding the actual observation values. These values should
be encoded and transmitted within an O&M instance. This instance should be equivalent
to an output of the component or the system using its SensorML description. Figure 8
shows the measurement output of an ISFET sensor. The XML file contains different
fields, each value is annotated by its name, unit of measure and a definition in a catalog
or a link to an ontology. This structure allows the indexation and the storage of
measurement data in both human and software readable structure. As a result, both
extraction and fusion of data become easier.

MOBESENS

16

Date May 31% 2010 Confidential

<2xml version="1.0" encoding="UIE-8" />
<om:Observation xmlns:om="http:/fuww.opengis.netf1.0../fom.xsd" xmlns:gul="http:f/ wvww.opengis
<om:result>
<gswe:DataRecord definicion="urn:ogc:def:property:06C: ISFETSpeciallutput" >
<swe:field name="SensorType":>
<gwe:cext definition="urn:sensor:classifier:sensorType">
<swe:value>ISFET-Ta205</3we:value>
</swe:text>
<fave:field:>
<swe:field name="UID">
<swe:text definition="urn:ogc:def:identifier:06C:unid"> Identifier
<swe:value>EF00145222ABC123</sve:value>
<fswe:texc>
<fswe:field>
<swe:field name="Time">
<swe:Time definition="urn:ogc:def:identifier:06C:uuid" >
<swe:uom Xlink="urn:ogc:def:unit:IS0:8601" />
<swe:value>Tue Mar 16 15:35:23 CET 2010</swe:valus>
<fzwe:Time>
<fswe:field>
<swe:field name="measure pH">
<swe:(uantity definition="urn:ogc:def:property:0GC:measure_ pH":>
<swe:value>2.9464269</swe:value>
</ swe:Quantity>
<fswe:field>
<gswe:field name="measure_ fCa">
<swe:Quantity definition="urn:ogc:def:property:06C:measure_Ca">
<swe:uom code="mMol" />
<swe:value>0.8546448</swe:value>
</swe:Quantity>
</swve:field>

<swe:field name="measure NH4">

Figure 9: An example of measure for the ISFET sensor.

3.3Information Model

The metalist model as described in Fig. 10 aims at allowing end-users and the grid to
provide meta-information about objects. Two pieces of information are associated to a
metalist: the first one is meta _id, ie. the ID of the metalist itself, returned by the grid
when submitting the metalist, and the second one is object_id, ie. the ID of the object the
metalist is describing. Three ways to provide meta-information are offered to users:

MOBESENS 17

Date May 31% 2010 Confidential

NetInf:metaliat

meta_id
object_id

(0,1)

NetInfinclude ‘ NetInfmetadata

meta_id

meta_id
format id
object_id

attoibute
value

NetInf format

format_id
object_id

Data Object

Figure 10: Metalist Model.

—NetInf:metada shall be used to provide meta-data directly. The value field contains
the meta-data itself while the attribute field can be used to tag the meta-data. The
attribute field is not mandatory. The value field is mandatory unless the attribute field
is specified. In fact, if no aftribute is specified, an empty value would result in no
meta-information added to the object; however, if an afttribute is specified, an empty
value may be interpreted as a lack of information, or no, or false, or whatever, ie. in
this case, a meta-information is effectively added to the object. Any number of meta-
data may be provided inside a metalist.

—Netinf:include can be used to refer to another pre-existing metalist. This allows an
object description to be shared by several objects. The main advantage is that it
enables consistency when the same meta-information for more than one object has
to be updated. The ID of the metalist to be included (meta_id) is the only field that
has to be specified. Any number of metalists may be included inside a description
using this mechanism and there is no theoretical limit on the depth of inclusion, i.e.
the number of times a metalist is included inside another metalist which is also
included inside another metalist, etc.

—Netinf:.extern performs almost the same operation as the previous one, except that
the meta-information to be included inside the current metalist is not supposed to be
in the metalist format. As a result, the original format of the meta-data has to be
specified together with the location of the meta-information so that a translation of

MOBESENS 18

Date May 31% 2010 Confidential

the meta-information is performed from the original format to the metalist format. The
format_id field is used to refer to the NetInf:format object that holds the process used
to perform the translation. The object _id in the Netinf:format description is the ID of
the object that holds the process stored in the storage space. The object _id in the
Netinf.extern description is the ID of the object that holds the meta-data in the other
format to be included in the metalist. If no object id is specified in the Netinf.extern
description, a meta_id can be alternatively provided to refer to another metalist which
associated object_id will be used instead. If no meta_id, nor object_id is specified,
the meta-information in the other format is supposed to be located inside the object
itself, i.e. inside the object which ID is stored inside the inner-most Netinf:metalist
embedding the Netinf:extern description. Any number of Netinf:extern can be
included inside a metalist.

MOBESENS 19

Date May 31% 2010 Confidential

4MOBESENS Storage API

The MOBESENS Storage API is the set of functionalities that are made available from
outside the grid in order to allow the different component of the MOBESENS project to
store, search and retrieve their data. The first part of the chapter aims at introducing the
principle of the REST architecture style. The remaining part of the chapter is then
devoted to the presentation of the implemented API for the MOBESENS project.

4 1REST

REpresentational State Transfer (REST) is an architectural style for building loosely
coupled systems, which means that it is not a concrete system architecture, but instead
a set of constraints that are applied when designing a system architecture. The
difference between an architectural style and an architecture is that the former tells
general principles informing the creation of an architecture, while the latter is the fact of
designing a solution to a problem according to given constraints. As a result,
architectural styles inform and guide the creation of architectures [3]. The web
(URI/HTTP/HTML/XML) is an instance of this style.

The REST architectural style describes the following five constraints applied to the
architecture:

—Resource identification: URL, URN.

—Uniform interface: a small set of verbs applied to a large set of nouns (GET, HEAD,
PUT, DELETE, POST).

—Self describing messages: they describe how to process messages (eg. MIME
types).

—Hypermedia driving: if a client wants to access related resources, these should be
identified in the representation returned.

—Stateless interaction: this allows moving states to clients or resources (and avoids
state in server-side applications).

4.2RESTful Web Service API

A RESTful web service (or web API) is a simple web service implemented using the
HTTP protocol and the principles of REST. This APl was chosen for the implementation
in order to guarantee the interoperability between the grid and the gateway (or any other
third party applications), since almost all platforms and programming languages have
implemented an HTTP stack today.

As shown below, operations supported by the grid are closely related to the REST
architecture style.

Push (Data) -> ID | Error

This operation is used to push any kind of data in the storage space. This occurs when
the gateway receives a new frame and wants it to be stored in the grid. The HTTP PUT
function needs to be called to push the data (a file or an array of bits) on the URL. In
return, it receives the unique identification of this object or an error.

MOBESENS 20

Date May 31% 2010 Confidential

A typical example of calling this function using the curl (Client URL Request Library)
command line:

curl -T file http://157.159.103.45:8080/NetInf/api/rest

Publish (Metadata) -> ID | Error

This operation is used to publish a metalist. This occurs when the gateway or the
operator wants to provide meta-data to describe measurements and/or sensors. The
HTTP PUT function needs to be called to push the meta-data. The value returned by this
operation is the unique identifier of the metalist or an error.

The calling operation in this case is very similar to the push operation described above
using the curl command. In fact, the difference differs in the location of these specific
data (the meta-data) in the hierarchy.

curl -T file.xml http://157.159.103.45:8080/NetInf/api/rest/ios

Get (ID) -> Data | Error

This operation is used to retrieve the content of an object from the grid using the unique
identifier returned by either the push or publish operation as described above. The HTTP
GET function has to be called to retrieve the content. The value returned by this
operation is the effective content of the object or an error.

The call to this operation is significantly different from the two previous ones. First, no
external file or data has to be provided. Second, the unique identifier the user or the
application is looking for must be provided at the end of the URL.

curl http://157.159.103.45:8080/NetInf/api/rest/|ID

Search (Request) -> { Metadata } | Error

The search operation is used to retrieve information that matches a given set of criteria.
This is a very useful function since it can execute queries on the indexation block,
retrieve data and then build the response as described in the query. For example, a
response can be an XML file, a text file or a CSV file. It can also be an error if the
XQuery request is incorrect.

For example, to obtain the temperature and the depth at which the measurements were
performed by sensor 99 on April 16, 2010, one can send the following query to the grid:

<result>

{
for $b in collection('/db/tsp/rs2m/netinf/readings/99')//Observation

where contains($b/Time/text(), '16/04/2010'")

return
<rows>
<c>{$b/Temperature/value/text()}</c>
<c>{$b/Depth/value/text()}</c>
</rows>

MOBESENS 21

http://157.159.103.45:8080/NetInf/api/rest/ID
http://157.159.103.45:8080/NetInf/api/rest/ios
http://157.159.103.45:8080/NetInf/api/rest

Date May 31% 2010 Confidential

}

</result>
The call to this operation can be performed as follows:

curl http://157.159.103.45:8080/NetInf/api/rest/search?query=the query
where the_query can be any XQuery expression.
Note:

1.For all the presented operations above, the IP address is dynamic and can be
changed in the future or when deploying the final version. This could be done for
instance using an appropriate domain name like Mobesens-grid.eu.

2.The objective of designing a RESTful API is to make the system flexible and
extensible to communicate with other applications and/or project. However, in the
scope of the MOBESENS project, this API is transparently used to the end-user,
since users are connected to the visualisation interface to interact with the system.
The gateway should use the API to push received RAW data from the wireless
sensor network.

We also planed to add the support of SOS (Sensor Observation Service) to the grid.
SOS is an OGC standard web service interface for requesting, filtering, and retrieving
observations and sensor system information.

MOBESENS 22

http://157.159.103.45:8080/NetInf/api/rest/search
http://157.159.103.45:8080/NetInf/api/rest/search?query

Date May 31% 2010 Confidential

S5MOBESENS Visualisation Architecture

This chapter describes the way the visualisation is performed using the MOBESENS
architecture. The next section presents the aim of the visualisation interface. Then, Sec.
5.2 shows how the visualisation interface is automatically updated to display up-to-date
data using AJAX Push. The other sections are presenting the different elements of the
visualisation interface, including geographical data and data charts.

5.1Visualisation

The visualisation interface aims at displaying any information relevant to the end-user in
the more convenient way. Three kinds of data have been identified:

-Geographical data. In the scope of the MOBESENS project, this is typically a map with
the position of the different sensors. This map may be provided by different
organizations like Google Map, IFREMER or IGN. The main advantage of being able to
choose between different map providers is that some data may be available on some
specific maps and not on the others.

-Real-time data. Once a sensor has collected data, this information has to be made
available to the end-user as soon as possible. As the time between two successive
measures may be large (up to 1 hour for the VIP for example), real-time does not
necessarily mean instantaneous, but as soon as possible and without polling from the
end-user. The web interface server is in charge of notifying the end-users interfaces that
new data are available.

—History data and Statistics. End-users may be willing to display any set of raw data or
pre-processed data for any period of time. In the same way as for real-time data, any
new data in the period taken into account for the history or the statistics shall be taken
into account automatically.

The most important property for all these data to be displayed in the visualisation
interface is the customizability according to the end-user needs, i.e. any choice for the
position or content of the different components of the visualisation interface are left to
the end-user. This critical point is very important as all users are different and are not
expecting the same data to be displayed on their personal visualisation interface. As a
result, instead of trying to identify what would the best visualisation interface, it was
decided to provide a very convenient way to let end-users chose and customize their
personal environment. This also implicitly allows as many visualisation interfaces as
needed by users, considering that users may use more than one visualisation
environment each.

5.2ICEfaces — AJAX Push

Figure 11 shows the process of communication between the wireless sensor network
and the end user visualisation interfaces, and the used technologies to maintain
displayed information up-to-date in real time with minimum traffic between client and
server. In the next paragraph, we describe briefly this process.

MOBESENS 23

Date May 31% 2010 Confidential

Gateway y————— -\ e

RAW Frame S
010101001011 A g _::: ;
i ‘m—; Ajax PUSH
RAW ' e
51182 ...1Si]...15n
Frame | | O&M < ICEFaces
GRID

*Si" measurement & position

ActiveMQ Hpate

Storage JMS Server
\.& Indexation

Figure 11: ICEfaces - Ajax Push.

The grid receives RAW data from the wireless sensor network through the gateway.
Then, data is converted to the O&M standardized XML format. Both versions of data
(raw and O&M) are stored and indexed in the system and a unique identification of the
IOwm is returned to the gateway. After the data have been transformed, the O&M file is
encapsulated in a message and sent to the ActiveMQ eventing server — a
publish/subscribe server. The ICEfaces application and/or any other applications can
subscribe to the measurement update topic.

When an update arrives, the ActiveMQ server notifies subscribers. Upon the reception of
the message, the ICEfaces application executes a pseudo-code (similar to the one
presented below) to notify all the subscribers and update in a real-time manner the
visualisation interface using the AJAX Push technology.

onMessage(Message message) {

if(message instanceof MeasurementUpdate {
/I Etract information from the message
parsedMessage = parse(message)
/I Produce a new abstract sensorData object
/I depending on the type and readings of the sensor
sensorData = SensorDataFactory.getinstance(parsedMessage)
/I Update the list of sensor measurements
myDatal.ist.update(sensorData.getUID, sensorData)
/I Notify subscribers (Visualization interface)
SessionRender.render("SensorDataUpdateTopic")

MOBESENS 24

Date May 31% 2010 Confidential

The added value of this technology is that no useless traffic is generated between the
client and the server. Messages from the server to the clients are asynchronous and
generated only when notifying updates is needed. This technology was chosen to
update real-time sensor measurements on a map and/or in data tables. This capability is
also to be added to charts visualisation to let end users compare sensors measurements
in real-time through different categories of charts.

MOBESENS 25

Date May 31% 2010 Confidential
6Summary

This document presented the conception and the organization of the MOBESENS grid. It
shows that the grid has been built on top of a set of tools (Tahoe, eXist-db, ICEfaces,
JMS, etc.) and provides a very simple API to interact with.

At present, the MOBESENS grid has been successfully built and is operational. Any
component in the project is able to push, retrieve and search for data and meta-data
using the API as described in Chapter 4.

The next step consists in providing end-users a graphical interface to visualise the data
stored in the storage grid. The main concern in the design and development of the end-
users graphical interface is hiding the complexity of the communication with the storage
grid.

MOBESENS 26

Date May 31% 2010 Confidential

/Acknowledgments

The authors of the deliverable would like to express their deep gratitude to all the people
that have been involved in the development of WP4:

- Barbara Perez Felices (Institut Télécom) who participate in the development of the
visualisation interface.

- Oscar Caraballo Vargas (Institut Télécom) who is in charge of the automatic
translation of data from the raw format to the understandable XML format.

- Houssem Medhioub (Institut Télécom) who enabled the real-time update of data
through ICEfaces.

MOBESENS 27

Date May 31% 2010

8Abbreviations and acronyms

ActiveMQ — Active Message Queuing

AJAX — Asynchronous Javascript And Xml

API — Application Programming Interface

BO - Bit-level Object

HTML — HyperText Markup Language

HTTP — HyperText Transfer Protocol

INSPIRE — INfrastructure for SPatial InfoRmation in Europe
IO — Information Object

ISFET — Ion-Sensitive Field-Effect Transistor
JMS — Java Message Service

MIME — Multipurpose Internet Mail Extensions
O&M — Observations and Measurements

OGC — Open Geospatial Consortium

REST — Representational State Transfer

RPC — Remote Procedure Call

SEIS — Shared Environmental Information System
SensorML — Sensor Model Language

SFTP — Secure File Transfer Protocol

SOAP — Service Oriented Architecture

SOS — Sensor Observation Service

SQL — Structured Query Language

Tahoe-LAFS — Tahoe Least Authority FileSystem
URI — Uniform Resource Identifier

URL — Uniform Resource Locator

URN — Uniform Resource Name

XML — eXtended Markup Language

MOBESENS

Confidential

28

Date May 31% 2010 Confidential

9References

(1]
(2]

(3]
(4]

[3]

(6]

[7]
(8]
(9]
[10]

The Open Geospatial Consortium. http://www.opengeospatial.org/

M. Botts and A. Robin. OpenGIS Sensor Model Language (SensorML) -
Implementation Specification, Open Geospatial Consortium, Inc.

E. Wilde. What is REST?, WWW2009, Madrid, Spain.

W. Meier. eXist-db — Document Storage and Indexing. XML Prague 2010.
The Infrastructure for Spatial Information in Europe Directive.
http://inspire.jrc.ec.europa.eu/

The Shared Environmental Information System.
http://ec.europa.eu/environment/seis/

Tahoe-LAFS. http://tahoe-lafs.org/trac/tahoe-lafs

eXist-db: the Open Source Native XML Database. http://exist.sourceforge.net/
Java Message Service (JMS). http://java.sun.com/products/jms/

ICEfaces — Open Source Ajax, J2EE Ajax, JSF Java Framework.
http://www.icefaces.org/main/home/

MOBESENS 29

	1Introduction
	2MOBESENS Global Architecture
	2.1Functional Architecture
	2.2Abstract view of the grid architecture
	2.3The grid architecture
	2.4Tahoe
	2.5eXist-db

	3MOBESENS Storage Architecture
	3.1Object model
	3.2OGC – Open Geospatial Consortium
	3.2.1SensorML
	3.2.2 Observations & Measurements
	3.3Information Model

	4MOBESENS Storage API
	4.1REST
	4.2RESTful Web Service API

	5MOBESENS Visualisation Architecture
	5.1Visualisation
	5.2ICEfaces – AJAX Push

	6Summary
	7Acknowledgments
	8Abbreviations and acronyms
	9References

