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Abstract

The objective of the EVITA project is to design, verify, and prototype an architecture for
automotive on-board networks where security-relevant components are protected against
tampering, and sensitive data are protected against compromise. Thus, EVITA will pro-
vide a basis for the secure deployment of electronic safety aids based on vehicle-to-vehicle
and vehicle-to-infrastructure communication.
This document summarizes Unified Modeling Language (UML) modeling and verification
of EVITA low level SW components (Low Level Drivers). Verification is focused on func-
tional and safety aspects and aims to increase the level of assurance and reliability of
components. By implementing an UML-to-C code generator, verified UML-models can
be automatically translated to C-code to be finally integrated into the EVITA prototype
architecture. The experience and results within this approach are described.
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1 Introduction

As stated in the EVITA Description of Work and in the Annex I, the following technical
work was proposed to be achieved by Institut Télécom as part of T4200:

• Demonstrate that the use of high-level models and formal techniques can enhance
low-level software components reliability.

• Demonstrate that the use of code generation techniques from high-levels models can
also enhance low-level software components reliability.

This report gives a closer look on the work performed by Institut Télécom within D4.2.2.
It also serves as a public report about non-confidential T4200 issues.
For high-level models, the description of work proposes to rely on the use of UML-like lan-
guages. For formal proof or code generation purpose, we suggested to reuse our previous
work on the TURTLE UML profile [3]. Indeed, TURTLE includes formal proof facilities as
well as code generation techniques. However, TURTLE suffers several drawbacks. In par-
ticular, it was based on an “old” version of UML: AVATAR [13] now supersedes TURTLE,
and is fully supported with a free software toolkit named TTool [10]. AVATAR/TTool
offers high-level modeling edition facilities in SysML. It also includes simulation, formal
verification and code generation capabilities. In particular, formal verification capabil-
ities were introduced in the scope of EVITA [6], and code generation techniques were
introduced in the scope of the work reported in this document. Along with that, results
on modeling and verification of EVITA components with regard to security have been
published [14]. Necessary adaptations of AVATAR for the specific purpose of drivers
reliability are presented in this report.

1.1 Objectives and Tasks

The two main objectives in this work are listed just below:

1. Perform formal verifications of the Basic Software“LLD” described in [5],
and provided by Fujitsu. This task is achieved with the formally defined AVATAR
SysML environment. In AVATAR, formal verification can indeed be performed at
the push of a button. AVATAR also comes with simulation techniques that are
useful for a fast model debugging.

2. Provide automatic generation of C code from UML models (i.e., from
AVATAR models). To accomplish this objective, an automatic UML-to-C code
generator should be specified and implemented. Ideally, the automatic generation
of code shall be evaluated with regards to reliability of automatically generated code
vs. handmade code, and with regards to code integration. The main challenges are:
to make the code suitable for the target EVITA architecture and to ensure that
some properties proved at UML level are preserved by the C code. According to the
manpower dedicated to this task, we do not intend to settle a certified / qualified
code generator, but simply to demonstrate that code generation can be
practically applied to high-level models.
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To reach previous objectives next tasks were carried out:

T. 1: Closely understand Driver specification D4.2.2 [5] and related EVITA specifica-
tions (D4.1.1 [7], D3.2[16])

T. 2: Analyze Driver C code made by Fujitsu

T. 3: Identify/choose relevant subparts of Drivers, e.g., control parts

T. 4: Define how the functional correctness of the model can be evaluated

T. 5: Design a model compliant with Driver specification and code

T. 6: From the driver model, evaluate Driver functional correctness

T. 7: Propose Driver improvements and design an improved model of Drivers

T. 8: Provide feedback to D4.2.2 [5] according to evaluation results

T. 9: Propose and analyze candidate translations of AVATAR models into C code

T. 10: Select a translation, implement it, and test it

T. 11: Work on how the generated code could be integrated into the EVITA platform

T. 12: Elaborate this report and get partners feedback

T. 13: Iterate on previous tasks until verification and code generation goals are reached

1.2 Outline

This report is structured as follows. A brief description of the SysML/UML profile
AVATAR is presented in section 2. AVATAR profile was proposed in the scope of EVITA,
but in fact AVATAR targets the modelling and verification of embedded systems in gen-
eral. The overall methodology and its limitations are presented in this section. Section 3
briefly presents the Driver model as well as an overview of formal proofs on the model.
The overall verification results are accordingly presented at the end of the section. In
section 4 the UML-to-C code generation is presented, first in its general approach, and
then on examples, including LLD. Finally in section 5, the conclusions of our work are
presented.
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2 AVATAR Approach Overview

2.1 The AVATAR Profile

The AVATAR environment reuses eight of the SysML diagrams [12]. It further struc-
tures Sequence Diagrams using an Interaction Overview Diagram (a diagram defined in
UML2 [12], not by SysML). The AVATAR profile is syntactically and semantically de-
fined by a meta-model. Besides a syntax, a semantics and a tool support, a profile is also
characterized by a methodology.

2.1.1 Methodology

The AVATAR methodology comprises the following stages (see figure 1):

Figure 1 Five stage methodology associated to AVATAR profile

1. Requirement capture. Requirements and properties are structured using AVATAR
Requirement Diagrams. At this step, properties are just defined with a specific label
as test cases.

2. System analysis. A system may be analyzed using usual UML diagrams, such as
Use Case Diagrams, Interaction Overview Diagrams and Sequence Diagrams.

3. System design. The system is designed in terms of communicating SysML blocks
described in an AVATAR Block Diagram, and in terms of behaviors described with
AVATAR SMDs.

4. Property modeling. The formal semantics of properties is defined within TEPE
[9] Parametric Diagrams (PDs). Since TEPE PDs involve elements defined during
the system design phase (e.g, a given integer attribute of a block), TEPE PDs may
be defined only after a first system design has been performed.
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5. Formal verification. Safety properties can finally be verified over the system
design, and for each test case.

Once all properties are proved to hold, requirements, system analysis and design, as
well as properties may be further refined. Thereafter, and similarly to most UML profiles
for embedded systems, the AVATAR methodological stages are reiterated. Having reached
a certain level of detail, refined models may not be amenable to formal verification any
more. Therefore the generation of prototyping code may become the only realistic option.

2.1.2 Block and State Machine Diagrams

Apart from their formal semantics, AVATAR Block and State Machine Diagram (SMD)
only have a few characteristics which differ from the SysML ones.
An AVATAR block defines a list of attributes, methods and signals. Signals can be
sent over synchronous or asynchronous channels. Channels are defined using connectors
between ports. Those connectors contain a list of signal associations. Figure 2 gives the
example of a block defining attributes, and in/out signals.

Figure 2 Block showing its list of attributes and communication signals

A block defining a data structure merely contains attributes. On the contrary, a block
defined to model a sub-behavior of the system must define an AVATAR State Machine.
AVATAR SMDs are built upon SysML State Machines, including hierarchical states.
Figure 3 presents a typical AVATAR state machine made upon states, message sending
and receiving, and transitions enriched with guards, temporal constraints and operations.

AVATAR State Machines further enhance the SysML ones with temporal operators:

• Delay: after(tmin, tmax). It models a variable delay during which the activity of
the block is suspended, waiting for a delay between tmin and tmax to expire.

• Complexity: computeFor(tmin, tmax). It models a time during which the activity
of the block actively executes instructions, before transiting to the next state: that
computation may last from tmin to tmax units of time.
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Figure 3 Overview of a SMD showing logical conditions (in green), operations (in
violet), delays and complexities (in brown)

The combination of complexity operators (computeFor()), delay operators, as well as
the support of hierarchical states - and the possibility to suspend an ongoing activity
of a substate - endows AVATAR with main features for supporting real-time system
schedulability analysis.

2.2 Formal Verification

The formal semantics of AVATAR is defined by model transformation to timed automaton.
TTool implements that transformation, and relies on the UPPAAL model checker [4] to
evaluate properties. More precisely, the following properties can be directly evaluated in
TTool with a press-button approach:

Deadlock freedom: A deadlock situation arises when no logical progress is possible in
the application. The property is satisfied if no deadlock situation is possible.

State Reachability: A state St within a SMD is reachable, if there exists a sequence of
traversable transitions starting from the initial state and leading to the state St.

State Liveness: A state St within an SMD satisfies liveness property if St is eventually
reached independently of the sequence of transitions that is traversed from the initial
state.

More complex properties can also be expressed in TTool using CTL formulae. Further,
TTool can automatically verify them with UPPAAL and display the verification result.
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3 UML Modeling and Formal Verification

3.1 LLD Requirement Analysis

As proposed in the methodology, an AVATAR model is expected to be made with regard
to a set of requirements and the system specification. However, in the scope of LLD
models, the coding of EVITA Drivers was made almost “on the fly”, i.e., independently
of a specification. Later, when the specification came, an iterative process between spec-
ification and code began, i.e., modifications within code pushed changes in specification
and conversely. Consequently, the model and properties to be verified was not clear until
the specification and code were finally released. Hence, the property analysis could not be
performed as expected. However, based upon our previous experience on similar systems,
several informal goals were established as general requirements. Those requirements were
afterwards modified according to final specification and code (see subsection 3.3). The
final requirements for verification are:

1. The Driver must be deadlock free, or differently said, the Driver must not get blocked
forever in any circumstance.

2. All Driver interface functions must satisfy given properties stated in the specifica-
tion, e.g., function re-entrancy.

3. Driver is stateful, that is, calls on driver interfaces results in corresponding modifi-
cations on internal driver data structures.

4. Driver phases must be correctly accomplished, e.g., initialization, de-initialization,
request, response.

5. The Driver must correctly manage error callbacks from all HW modules used by t
he driver, and in particular the HSM Hardware Security Module (HSM).

6. The Driver must process requests according to given directives, e.g., priority order-
ing.

3.2 LLD Modeling Overview

The LLD modeling task follows a combined top-down/bottom-up approach. The top-
down approach takes into consideration the interfaces offered to requesting applications,
as specified in EVITA deliverable D3.2 [16]: the EMVY Security Framework and the
AUTOSAR stack. Indeed, both frameworks are considered to be the Middleware of the
system executing right on top of drivers. On the other side, the bottom-up approach
takes EVITA hardware components as the resources with which the driver communicate,
that is the TC1797 TriCore and the HSM. Those components are further referred to as
LLD Resources. Of course, resource layers are modelled taking EVITA D4.1.1 [7] as well
as D3.2 [16], section 4, as main references. Finally, our LLD model is the tie between
Middleware and Resources models (see figure 4).
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Figure 4 Overview of LLD model

Next paragraphs briefly describe LLD model components, represented as UML Blocks
(<<block>>). We recall that an AVATAR Block in the model is defined through a list of
attributes - that may include user defined data types -, a list of methods - provided as docu-
mentation only -, and finally a list of input and output signals. Blocks are linked together
via ports allowing signal-based synchronous and asynchronous communications. Along
with that, Block’s behavior is formally captured in an associated UML State Machine Di-
agram (SMD), i.e., an automata defined by states and directed transitions. Transitions are
amenable for representation of boolean conditions, variable assignations, computational
complexity and latencies. In addition, transitions can link input and output signals with
states. An outgoing transition is traversed only if its respective conditions are satisfied.
In case of transitions with non-mutually exclusive conditions, several transitions could be
taken. For model simulation, a branch is randomly taken whilst for formal verification all
traversable transitions are considered.

Middleware Model

Middleware Blocks are mostly used to test LLD functionalities. Indeed, test cases are
defined within middleware Blocks and used later in simulation and formal verification.
Figure 5 shows an overview of Middleware diagram model.

TESTCASE INIT: Initializes, deinitializes and gets driver status.

TESTCASE DRVREQS: Interface for sending HSM requests and performing call-
backs asynchronously.

Driver Model

Blocks of the LLD model are listed below. This driver model is based upon the final
versions of specification D4.2.2 [5] and LLD code made by Fujitsu. An overview of the
model is shown in figure 6.

HSM DRIVER: Receives requests from Middleware and puts requests in Request Queue.
For each request, a respective entry is added in the Request List to trace the transac-
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Figure 5 Overview of Middleware block diagram

tion. Callbacks from HSM are mapped to callback functions using the Request List.
This Block serves as an interface to transfer signals to/from HSM Comm Driver.

HSM Comm Driver: Initializes/Deinitializes lower HW modules (ICU, DIO & SPI in
Resources model). Models initialization, request and response phases, manages
HOST buffer used for HSM data transfers and calls the Request Queue to process
requests. This Block controls all communications with Resources model and models
the communication handler coded by Fujitsu.

HSM QueueDriver: Models a circular buffer able to receive, queue and pop out re-
quests from Middleware. Requests are ordered by priority.

HSM ListDriver: Models a buffer storing the Request List. Each entry of the list stores
a caller application id, the respective callback function and an identification assigned
to the transaction.

Figure 6 Overview of LLD block diagram

The general behavior of the Driver model is as follows (see figure 7). When the
HSM Driver receives a request from Middleware (point 1), it is stored in the queue HSM -
QueueDriver waiting for processing (point 2). The request may include an entry indicating

8



Figure 7 Driver overall behavior

its priority which is used to classify the request in the queue. Along with that, a reference
to the transaction is stored in the bufffer named HSM ListDriver (point 3). To process
a request, HSM Comm Driver reads the head of HSM QueueDriver (point 4), serializes
the request and sends it to the HSM block via Serial Peripheral Interface (SPI) (point
5). Afterwards, the HSM Comm Driver waits for an acknowledgement from HSM block.
In the mean time, no other requests can be processed, since the HOST buffer used for
SPI communication is locked (point 6). When the acknowledgement is received (point
7), the HSM Comm Driver pops out the front of HSM QueueDriver (point 8) and the
HOST buffer is released (point 9). When a response to a previous request is signaled to
HSM Comm Driver, it reads the response from the HSM block (point 10), de-serializes
it, and sends a callback command to HSM Driver (point 11). Then, HSM Driver searches
for the respective entry stored in HSM ListDriver (point 12). Once found, the entry is
removed (point 13). Finally, the returned data are sent to the original caller using the
callback function associated to the request (point 14).

Resources Model

Blocks of this layer are listed just below. The implementation of the Hardware Security
Module (HSM) specified in [7] is modeled among the resources. Further modules are
considered for establishing a link between LLD and HSM functionalities.

EVITA ICU: Receives interrupts from HSM, sends HOST-INT line status to HSM -
Comm Driver Block.

EVITA DIO: Resets SPI module on HSM, checks Input Capture Unit (ICU) status and
controls Master Output Slave Input (MOSI) and Master Input Slave Output (MISO)
communication modes, raises/lowers Chip Select line.
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EVITA SPI: Sends command Header, Latency and Data in MOSI mode, receives La-
tency and Data in MISO mode, models serializing and deserializing operations.

SPI Connection: Transfers signals and data from slave SPI towards HSM and from
HSM towards SPI slave.

SPI Slave: Receives/sends data from/to TriCore modules (ICU, Digital Input/Output
(DIO), SPI). Behaves as an interface for Communication Control and Status module
(CCS). Reads and writes data from/to SharedMessageRAM Block, respectively.

CCS: Performs read and write operations on 6 HSM registers that control HSM com-
munication and status. Raises/lowers host interrupts - received by LLD - and HSM
interrupts - received by HSM CPU.

SharedMessageRAM: Models input (LLD-to-HSM) and output (HSM-to-LLD) RAM
buffers. Stores input and output payload and size.

HSM Mgmt: Sets CCS registers to allow LLD-HSM communication, transfers Security
Building Block (SBB) calls and responses, controls HSM output buffer, reacts to
HSM interrupts.

SBB XYZ: Models a Security Building Block (SBB). Every SBB receives, processes
and returns a response to each request.

Figure 8 Excerpt of Resources block diagram showing HSM model

3.3 LLD Verification

Three layers have been modeled: Middleware, Driver and Resources. To verify the cor-
rectness of the Driver model, first the Resources model was validated against the specifica-
tion provided in [7]. Afterwards, the Driver model was validated against the specification
provided in [5], and taking the code of the Driver as reference. The model was finally
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presented to Fujitsu. To accomplish this stage, LLD behavior was represented in sequence
diagrams and in state flow charts. The LLD constains three phases:

Initialization phase: Corresponds to Driver initialization. Buffers are cleared and HW
modules are started. Once initialized, the Driver remains in idle state if the Request
Queue is empty, if there is no interrupt from HSM or at last if the Driver waits for
an acknowledgement from HSM.

Request phase: A request from the Middleware has been written into the Request
Queue. The respective entry is created in the Request List. The Driver reads
the front of the Queue, serializes and sends the request to the HSM. Afterwards, a
HSM/CCS register is modified to signal the request to the HSM. The Driver can
not send another request until the HSM acknowledges the current one.

Response phase: The LLD is called by the Resources layer via an interrupt. The LLD
reads a HSM/CCS register to determine whether the instruction is an acknowledge-
ment or a signal for returning data. In case of acknowledgement, the HSM/CCS
register is reset and the request in front of the Queue is popped out. In case of
returning data, they are read from shared RAM and afterwards the HSM/CCS reg-
ister is reset. Afterwards, the data are deserialized and mapped into a callback
function using the respective entry in the Request List.

The verification approach consists of two stages: Test Case Simulation and Formal
Verification. Simulation stage helps to quickly execute specific test cases. Traces of the
model’s behavior can thus be analyzed. Amongst others, Simulation is used for model
debugging. Formal verification stage proves whether expected properties are satisfied or
not, not only in a specific trace but for the whole set of possible sequences thus achieving
exhaustive proofs. As shown in figure 9, simulation and verification are carried out relying
on a blackbox approach in which the model receives certain stimuli and returns a response.
More precisely, stimuli and response are characterized and evaluated with respect to Driver
specification and relying upon following notation:

SIS: Stimuli inside of specification

SOS: Stimuli Outside of Specification

MR: Model Response

According to previous statements, next definitions are adopted hereinafter for evalu-
ation of results in model testing and verification.

System Correctness: Both the stimuli provided to the target model and the corre-
sponding response are as specified.

System Inconsistency: The model receives a stimuli inside specification (SIS) but the
respective response is not as specified.

System Robustness: When a stimuli outside of specification (SOS) is received, the
system continues its nominal operation with other requests.
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Figure 9 Stimuli/Response Model verification

Finally, Simulation and Formal Verification of Driver model are conducted as follows
(see figure 10):

Test Case Simulation: Several test cases are defined in the Middleware model target-
ting HSM functionalities or Driver phases. Test cases call one or more SBBs with
different parameters and may apply these calls either in parallel or sequentially. The
simulation purpose is to compare expected traces with obtained ones. In a nominal
scenario, the model is tested with values inside of specification and without consid-
ering intentional misbehavior. Conversely, in an altered scenario, the model is tested
using values outside of specification or intentionally introducing a misbehavior case,
e.g., callbacks with wrong parameters. Thus, through simulation, model correctness
and robustness are targetted by identifying possible inconsistencies or weaknesses.

Formal Verification: Several (informal) verification goals are first established in order
to provide a first set of properties, and also in order to determine the scope of
formal verifications. The goals mainly target deadlock freedom and correct Driver
state handling as explained in section 3. Each verification goal is associated with one
or more CTL expressions (formulas) representing the goal. Each CTL expression is
automatically verified on the Driver model, and a true/false answer is thus obtained1.

Table 1 presents a list of defined Test Case scenarios and expected Driver model
behavior. Indeed, Test Cases define the values that should be returned by the HSM.
Moreover, the model includes specific states to explicitly characterize Driver behavior.
This way of modeling is particularly useful for simplifying model analysis and verification
tasks. Thus, for instance, Driver behavior is considered as “correct” or “accomplished”
if a specific state - or set of states - can be reached and the there is a match between
expected and actually returned values.

1Combinatory explosion may be encountered. In that case, the property cannot be proved, and so,
the only option is to further abstract the model
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Figure 10 LLD verification approach

Table 1 Test Cases for Simulation

Test Case Description Expected Driver Behavior

ST1:

Single request sent to HSM
Driver model should be initialized and request and
response phases accomplished

ST2:

Sequence of non-continuous re-
quests, i.e., Middleware waits for re-
sponse before sending a new request
to the same SBB

Initialization, request and response phases should be
correctly performed. The HSM should be able to pro-
cess all the requests

ST3:

Continuous requests: the same SBB
is called until the Request Queue is
full

Initialization, request and response phases should be
correctly accomplished. Once Request Queue is full,
the Driver is unable to process additional requests

ST4:

Continuous requests, several SBBs
are called until the Request Queue
is full

Initialization, request and response phases should be
correctly accomplished. Once Request Queue is full,
the Driver is unable to process additional requests

ST5:

Continuous requests, several SBBs
are called by several Middleware
users until the Request Queue is full

Initialization, request and response phases should be
correctly accomplished. Once Request Queue is full,
the Driver is unable to process additional requests.
Callbacks should be addressed to the original caller

ST6:

Continuous requests, several SBBs
are called by several Middleware
users until the Request Queue is full.
Request priorities are introduced

Initialization, request and response phases should be
correctly accomplished. Once Request Queue is full,
the Driver is unable to process additional requests.
Callbacks should be addressed to the original caller
according to request priorities

Table 2 shows a list of verification goals with associated CTL formulas and respective
semantics and rationale. CTL formulas are automatically proved by injecting them in the
TTool front-end.
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Table 2 Verification goals and CTL formulas

Verification Goal 1

Deadlock freedom
Rationale: As a mandatory property, the Driver must not get
blocked forever in any circumstance
CTL Semantics: Apart from final states, no deadlock situa-
tions must appear

CTL1: AG[not(deadlock) or FinalState]

Verification Goal 2

Correct HW modules
initialization

Rationale: It proves that the initialization phase is always
correctly accomplished by HSM Comm Driver. Initialization
(Init phase) is mandatory for Driver operation
CTL Semantics: If the HSM Comm Driver receives an init
signal from the stop status, it must always finally initialize HW
modules

CTL2: AG[ HSM Comm Driver.InitCommDriver ⇒ AF[HSM Comm Driver.ComDrvInitialized]]

Verification Goal 3

Correct HSM Driver ini-
tialization

Rationale: It proves that the initialization phase (Init phase)
is always correctly accomplished by HSM Driver. Initialization
is mandatory for Driver operation
CTL Semantics: If the HSM Driver receives an init signal
from the stop status, it must always initialize HSM Comm -
Driver and clear HSM QueueDriver and HSM ListDriver

CTL3: AG[ HSM Driver.InitDriver ⇒ AF[HSM Driver.DriverInitialized]]

Verification Goal 4

Correct HW modules
de-initialization

Rationale: It proves that HSM Comm Driver can eventually
de-initialize lower HW modules and go to stop status. De-
initialization is a functional property of de-init phase
CTL Semantics: If the HSM Comm Driver receives a de-init
signal from the idle status, it must always de-initialize HW
modules

CTL4: AG[ HSM Comm Driver.Deinit HW ⇒ AF[HSM Comm Driver.ComDrvStop]]

Verification Goal 5

Correct HSM Driver de-
initialization

Rationale: It proves that HSM Driver can eventually de-
initialize HSM Comm Driver and go to stop status. De-
initialization is a functional property of de-init phase
CTL Semantics: If the HSM Driver receives a de-init signal
from the idle status, it must always de-initialize HSM Comm -
Driver

CTL5: AG[ HSM Driver.DeinitDrv ⇒ AF[HSM Driver.DrvStop]]

Verification Goal 6

Correct Queuing of re-
quests

Rationale: This property is mandatory to ensure that, unless
the Queue is full, requests are always accepted by the Driver
to be processed (request phase)
CTL Semantics: If the HSM Driver is in the idle status and
receives a request from the Middleware, it must always queue
the request unless Request Queue is full

CTL6: AG[HSM Driver.QueuingRequest and HSM QueueDriver.level<max ⇒

AF[HSM Driver.RequestInQueue]]

Continued on next page
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Table 2 Verification goals and CTL formulas – continued from previous page

Verification Goal 7

Adequate HOST buffer
protection

Rationale: The property is mandatory to ensure that requests
are not overwritten in the HOST buffer (request phase)
CTL Semantics: The HSM Comm Driver must not process
any request unless the variable controlling HOST buffer access
is set to true

CTL7: AG[ HSM Comm Driver.CheckQueue ⇒ HSM Comm Driver.WriteEnable==true]

Verification Goal 8

Correct processing of
requests

Rationale: The property ensures that if a request in the Queue
is read, it is always sent to the HSM what makes the Driver
unable to process another request (request phase)
CTL Semantics: Whenever there is a request in the Queue,
the request phase must be accomplished and the HOST buffer
locked

CTL8: AG[HSM Comm Driver.ProcessRequest ⇒
AF[HSM Comm Driver.LockHostBuffer and HSM Comm Driver.WriteEnable==false]]

Verification Goal 9

Correct management of
HSM interrupts

Rationale: The property ensures that HSM interrupts are cor-
rectly managed. The HOST INT line should be raised before
the Driver reads data from HSM shared RAM (response phase)
CTL Semantics: Whenever an interrupt is signaled to the
Driver, the HOST INT line must be raised and the respective
data must be finally read from the HSM shared RAM

CTL9: AG[HSM Comm Driver.CheckHOSTINTline ⇒

AF[HSM Comm Driver.WaitHSM2HTF ack]]

Verification Goal 10

Driver processes HSM
acknowledgement

Rationale: The property ensures that HSM acknowledge-
ments (response phase) enable HSM Comm Driver for process-
ing more requests. It implies that requests accepted by the
HSM are removed from the Queue (data life cycle)
CTL Semantics: Whenever the HSM acknowledges a request
to HSM Comm Driver, the front of the Queue is pop out and
the HOST buffer is unlocked

CTL10: AG[HSM Comm Driver.ResetHSM2HTF ack ⇒

AF[HSM Comm Driver.PopFrontQueue and HSM Comm Driver.WriteEnable==true]]

Verification Goal 11

Driver processes SBB
return code

Rationale: It proves that HSM Comm Driver properly man-
ages returned data from HSM until respective command is sent
to higher layers (response phase)
CTL Semantics: Whenever the HSM signals returned data
to HSM Comm Driver (callback), the data is read from shared
RAM and deserialized. The resulting command must be finally
sent to HSM Driver

CTL11: AG[HSM Comm Driver.ReadHSM2HTF provide ⇒

AF[HSM Comm Driver.SendCBcommand]]

Continued on next page
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Table 2 Verification goals and CTL formulas – continued from previous page

Verification Goal 12

Request Queue/List
correspondence

Rationale: The property proves returned-sent data correspon-
dence. Assuming that every request is processed by the HSM,
it also ensures that entries in the Request List will be eventu-
ally removed (data life cycle)
CTL Semantics: Whenever a callback command is received
by HSM Driver, a respective entry must be found in the Re-
quest List

CTL12: AG[HSM Driver.OperateOnList ⇒ AF[HSM Driver.ReadEntry]]

Verification Goal 13

Correct callback func-
tion mapping

Rationale: The property proves a correspondence between
callbacks and callers: each callback must be associated to a
single caller what concludes the request-response cycle
CTL Semantics: Whenever an entry is found in the Request
List, the callback function must send the HSM response to
origin caller

CTL13: AG[HSM Driver.ReadEntry ⇒

AF[HSM Driver.BackIdle4 and HSM Driver.response==1]]

Verification Goal 14

Correct test case execu-
tion

Rationale: It is proved that the state of the Test Case showing
correct termination is always reached. Moreover, it implicitly
proves that request-response correspondence is respected and
correct overall Driver behavior
CTL Semantics: Whenever a test case is executed the “end”
state of the test case is reached

CTL14: AF[TESTCASE DRVREQS.InitTestCase ⇒ AF[TESTCASE DRVREQS.EndTestCase]]

3.3.1 Abnormal Scenario: Race Condition in Queuing

The methodology upon which verification relies (see section 2), leads to an iterative pro-
cess until targeted properties are satisfied. During that process, several issues were identi-
fied in the EVITA Driver. Thus, a relevant one is used to exemplify formal verification of
an abnormal situation. Indeed, the EVITA Driver contains race conditions when accessing
shared buffers like the Request Queue. Amongst others, the scenario:

1. Initializes the Driver, sends two requests in parallel and waits for the respective
responses.

2. Executes the main phases of Driver behavior (init, request and response).

3. Models a non-exclusive access to the Request Queue.

4. Contains a race condition that may lead to request over-writting.

5. Targets model correctness and also robustness by exploring specific conditions.

6. Helps to formally prove Driver weaknesses or inconsistencies.

7. Is compliant with the behavior of the final Driver version used in the EVITA pro-
totype.
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The verification results for this scenario are presented as a traceability matrix in table
3. Proofs were carried out over an early model of EVITA Driver.

Table 3 Verification results for the abnormal scenario

Verification Goal Result
Verification Goal 1
Deadlock freedom

Not Satisfied

Verification Goal 2
Correct HW modules initialization

Satisfied

Verification Goal 3
Correct HSM Driver initialization

Satisfied

Verification Goal 4
Correct HW modules de-initialization

Satisfied

Verification Goal 5
Correct HSM Driver de-initialization

Satisfied

Verification Goal 6
Correct Queuing of requests

Not Satisfied

Verification Goal 7
Adequate HOST buffer protection

Satisfied

Verification Goal 8
Correct processing of requests

Satisfied

Verification Goal 9
Correct management of HSM interrupts

Satisfied

Verification Goal 10
Driver processes HSM acknowledgement

Satisfied

Verification Goal 11
Driver processes SBB return code

Satisfied

Verification Goal 12
Request Queue/List correspondence

Satisfied

Verification Goal 13
Correct callback function mapping

Satisfied

Verification Goal 14
Correct test case execution

Not Satisfied

3.3.2 Nominal Scenario: Queuing Parallel Requests

The Driver model was improved to cope with identified issues. To make a comparison
with respect to previous scenario, the model is also proved with two requests in parallel.
However, the conditions become part of a nominal case which the Driver should be able
to deal with. Amongst others, the scenario:

1. Initializes the Driver, sends two requests and waits for the respective responses.

2. Executes the main phases of Driver behavior (init, request and response).
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3. Targets model correctness and possible Driver inconsistencies.

4. Helps to prove model improvements, e.g., mutually exclusive access to shared buffers.

5. Copes with state explosion problem during verification and decreases the time spent
in verification tasks.

6. Is partially compliant with the behavior of the final Driver version used in the
EVITA prototype.

The results from verification are presented as a traceability matrix in table 4. The veri-
fication was carried out over the improved model of EVITA Driver. More precisely, the
improved model:

• Grants mutually exclusive access to shared buffers.

• Supports parallel and sequential execution of requests.

• Introduces and manages priorities in requests (used for queuing requests according
to its relevance).

3.3.3 Formal Verification with Observers

In previous subsections, several verification goals were described and proved based on
CTL formulas. That approach requires skills on the CTL language and on formal verifi-
cation in general, which might be a limitation for non-experimented users. To overcome
such issue, Observers can be introduced in the model using AVATAR blocks. Indeed, an
Observer is a non-intrusive element that gets signals from the model, and uses them to
determine whether the system is in a specified state, or not. In that latter case, an error
state is usually defined: it suffices to prove the non-reachability of that error state to
prove that the property modeled by the Observer is satisfied. To exemplify our approach,
an instance of an Observer is described in next paragraphs.

The defined Observer targets the Verification Goal 6 defined in table 2. A nominal
sequence of signals indicating a correct processing of a request is as follows:

1. A request is received by the Driver.

2. The request is sent by the Driver to the Request Queue and List.

3. After responses evaluation, the Driver signals correct storing of request.

Also, the Observer may have to simultaneously handle several requests sent to the
driver at the same time. The observer is presented in figure 11 and its SMD diagram
is given in Figure 12. The following signals are used by the observer to evaluate the
property:

ARequestWasReceived(): Indicates that a request has been received by the Driver.

QueueLevel(level): Informs the response from the Request Queue.
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Table 4 Verification results for the nominal scenario

Verification Goal Result
Verification Goal 1
Deadlock freedom

Satisfied

Verification Goal 2
Correct HW modules initialization

Satisfied

Verification Goal 3
Correct HSM Driver initialization

Satisfied

Verification Goal 4
Correct HW modules de-initialization

Satisfied

Verification Goal 5
Correct HSM Driver de-initialization

Satisfied

Verification Goal 6
Correct Queuing of requests

Satisfied

Verification Goal 7
Adequate HOST buffer protection

Satisfied

Verification Goal 8
Correct processing of requests

Satisfied

Verification Goal 9
Correct management of HSM interrupts

Satisfied

Verification Goal 10
Driver processes HSM acknowledgement

Satisfied

Verification Goal 11
Driver processes SBB return code

Satisfied

Verification Goal 12
Request Queue/List correspondence

Satisfied

Verification Goal 13
Correct callback function mapping

Satisfied

Verification Goal 14
Correct test case execution

Satisfied

ARequestWasQueued(): Signals a correct storing of the request in the Queue.

The observer is able to sequentially receive signals corresponding to different requests.
This explains why a second input signal “ARequestWasReceived()” is used in the Ob-
server (see figure 12). Also, the Observer is able to detect if a request is overwritten: the
input signal “RequestOverWritten()” is made for that purpose. And so, receiving that
event may lead to an error state, depending whether the signal contains a 0 or 1 attribute.
Finally, the use of Observers eases formal verification of properties because properties are
directly described with the formalism of the model, and directly within the design.
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Figure 11 Overview of a block Observer

Figure 12 SMD of an Observer verifying correct queuing of requests
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3.4 Conclusions

LLD is a critical component of the EVITA architecture and the tie between middleware
applications and HW resources layer. Indeed, LLD provides an interface to directly in-
teract with HSM resources. Consequently, Driver reliability is a major requirement in
the scope of the EVITA prototype architecture. This section described a methodology to
verify the correctness of LLD, and thus improve reliability of their implementation.

More precisely, our approach relies on a SysML/UML modeling environment named
AVATAR. AVATAR natively includes formal verification features. During the verification
process applied on several driver versions, several weaknesses were identified, leading to
make improvement proposals. More particularly, a race condition problem was identified
when accessing shared buffers. The race condition was identified with deadlock searches
and analyzing incorrect queuing of requests. After respective improvements, the model of
drivers grants mutually exclusive access to shared buffers, supports parallel and sequen-
tial execution of requests and introduces and manages priorities in requests. On that last
model, verification results demonstrate that all evaluated properties are satisfied. How-
ever, even if several tests and proofs were made, more complex scenarios should still be
analyzed in order to better explore Driver behavior, e.g., for managing errors and values
outside of specification.
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4 Automatic C-Code Generation

This section presents the work achieved in the scope of the code generation for LLD. The
objective of code generation is to allow to generate an executable code from a UML or
SysML model in order to improve code quality. Code quality refers to software engineering
quality criteria, and more particularly robustness in the scope of critical software. Indeed,
UML or SysML models are expected to be intensively verified. Combined with a model-
to-code generator, the overall approach is expected to improve the final code quality.
The overall process could also be enhanced using certified formal and executable code
generators. Certification is not addressed in this deliverable.
More specifically, when dealing with the EVITA project, code generation is expected
to improve the quality - and therefore the security - of LLD. Modeling at a high level
abstraction is commonly applied to controlling parts of applications. Previous sections
have already presented the modeling of the controlling parts of LLD. This modeling
activity was useful to identify LLD weaknesses, which have been addressed in a second
model. Then, from that second model, three different approaches could be used:

• Ad-hoc coding. Recoding the LLD controller by hand, simulating and comparing
traces with the ones of the reference model and then, integrating missing elements,
that is, the data manipulation part of drivers.

• Code generation. Generating the LLD controller automatically, and then enhanc-
ing the generated code with data manipulation.

• Enhanced model and full code generation. Enhancing models with data ma-
nipulation, and generating a fully functional version of LLD.

The section interest is clearly on the second and third options. They are both detailed
hereafter.

4.1 Code Generation

The late availability of drivers conducted us to implement a generic code generator from
AVATAR models. By “generic”, we mean that the generated code is not specific to a given
class of applications (e.g., drivers), but simply relies on a main entry point - a main()
function - that relies on the POSIX interface to implement the model. This code is meant
to be linked with an AVATAR library (also called AVATAR Runtime).

4.1.1 AVATAR to C/POSIX

Basically, the C/POSIX code generator of TTool works as follows:

• One .c and one .h files are generated for each block: they contain a representation
of the State Machine Diagram (SMD) of the corresponding block. The translation
of operations on variables, method calls and tests is quite straightforward. On
the contrary, synchronous data exchange, asynchronous data exchange, and time
manipulation are more complex and are thus handled by the AVATAR library (i.e.,
the AVATAR runtime)
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• The main file (main.c) is in charge of defining one thread per block, setting the
attributes of those threads (e.g., on which CPU each thread must be executed,
which scheduling policy to use, etc.), starting all threads, and finally waiting for
their termination

4.1.2 AVATAR Runtime

The AVATAR runtime is a set of libraries that handle all synchronous and asynchronous
communications between blocks. Basically, it relies on data structures to store requests
from blocks, and on mutex and condition variables to achieve necessary synchronization
between threads of blocks. Its implementation is lightweight (about 2000 lines of C code).
The AVATAR runtime is automatically linked against the generated code when compiling
the latter.

4.1.3 Use of the Generated Code

The generated code can be used in three ways:

• On the local platform. The code is generated, compiled for the local platform,
and executed. This step is particularly useful for fast debugging purpose. This is
the only option when the target platform has not yet been defined.

• On a prototyping platform. If the target platform is defined but not yet avail-
able, a prototyping platform can be used to evaluate the performance of the overall
system (code + OS + HW target).

• On the target platform. In the scope of LLD, it means executing the Driver on
the Tricore environment.

All these usages of the code generator are intended to be applied on refined models. A
refined model is a model in which some abstractions of a more abstract model have been
resolved. For example, AVATAR designs make it possible to abstract algorithms with
their estimated durations: a computeFor(minDuration, maxDuration) can be added to
state machines transitions. Another example of abstraction is to let branches of choices
undetermined, that is, at a high level of abstraction, all branches of choices may be
considered. At formal verification level, this means that all branches have to be explored.
But on a more refined model, branches of a choice are not randomly taken, but they
are usually rather selected according to the result of previous computations. Finally,
abstractions shall be resolved before generating code.

To do so, an AVATAR user could use the AVATAR state machines to put more in-
formation in its model. Unfortunately, when coming to complex algorithms - e.g., in
our case, cryptographic algorithms - , a graphical model based on state machines is not
practical. Therefore, the best option is probably to directly replace given elements of an
AVATAR design with its corresponding implementation code, e.g. replacing a compute-
For(minDuration, maxDuration) by the C algorithm it models. If this C code included
into the model is actually ignored by the integrated simulation and formal verification
capabilities of TTool, this code can be automatically included in the POSIX/C code
generated by TTool.
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Finally, the most abstract AVATAR models performed with TTool generally represent
the control part of applications, and are thus often amenable to simulation and formal
verification. On the contrary, more refined models resolve non determinism behaviors
with low-level representations (e.g. in C) of data and algorithms. Those refined models
are not amenable to simulation and formal verification, but are definitely useful for pro-
totyping purpose.

4.1.4 Implementation and Results

The AVATAR-to-C code generator we implemented in the scope of EVITA is already inte-
grated in the latest beta release of TTool [10]. This code generator has been successfully
tested on several AVATAR models. Moreover, this work has been published and presented
at SAME’2011 [1], and will be published and presented at ERTSS’2012 [2]. In the scope
of those research works, the code generator has been applied to an academic case study
(an e-reader application) and to the emergency braking system of EVITA described in
D2.1 [8], respectively.
For the second application, it has also been prototyped on the virtual prototyping plat-
form SocLib [15] which is now linked to TTool. This prototyping phase, as implemented
in TTool (see Figure 13), works as follows:

1. Generation of the cross-compiler. A cross-compiler for the target platform
must be generated. In our example, we have used gcc-based cross-compilers. In
the scope of our example, we have prototyped the active braking application on
various 32-bit processor architectures, including PowerPC, Arm, Mips and Sparc.
The Tricore environment is not available in SoCLib.

2. Generation of the C/POSIX code. From an AVATAR model in which non
deterministic behaviors have been resolved (ideally), TTool generates a set of .c and
.h files, as previously explained. The main file describes how threads are mapped
on the different CPUs of the hardware architecture. In the scope of LLD, only one
CPU would be used.

3. Compilation of the code. The generated C code, the AVATAR runtime, and
MutekH [11] are compiled with the cross-compiler, and linked together as one exe-
cutable file. The executable file could obviously be run on the real hardware or a
virtual prototyping platform built using SoCLib. Another operating system could
obviously be used instead of MutekH.

4. Prototyping with SoCLib. The SoCLib simulator is started with the desired
hardware configuration which runs the executable file generated at previous step.
The active braking application has been tested on several processors: PowerPC,
which are commonly used in automotive systems, but also Mips, Arm and Sparc
processors

5. Results analysis. Results of the prototyping simulation can be visualized either in
the console, or directly in TTool as a UML sequence diagram (see Figure 13). Indeed,
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Figure 13 Prototyping environment based on TTool, SoCLib and MutekH

the generated code might be instrumented so as to contain model references. The
GNU debugger gdb can also be used to have more information about the execution
of the code, e.g., about memory allocations, to perform step-by-step execution,
to monitor which threads are currently executing, etc. From simulation traces,
important prototyping information can be obtained. For instance, in the active
braking application of EVITA, the latency between the receiving of an emergency
message and the corresponding braking action can be clearly evaluated for each
processor type. The same evaluation could be applied for the LLD.

4.1.5 Applying the Code Generator to LLD

Once again, the implemented code generator generates a stand-alone application. Cur-
rently, a stand-alone application can thus be generated from the LLD model presented
at previous section, and execution traces can be analyzed at UML level. The code has
been generated from the whole model, that is, it contains a representation in C of layers
communicating with the driver: the driver test bench (i.e., blocks named “TESTCASE”
in the model), and the underlying layers with which the LLD interacts, that is the SPI
and the HSM.

Figures 14 and 15 present an excerpt of traces we obtained when executing the code
generated from the driver models on a Linux machine. The trace in the first Figure 14 cor-
responds to a request sent from a testcase block to the LLD. The request is subsequently
added to the list of requests of the driver. The second trace in Figure 15 corresponds to
the communication between the core of the driver with the underlying SPI layer. Those
two traces were obtained using an instrumentation of the code, and converting traces
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Figure 14 Excerpt of execution traces of LLD: request to the LLD

produced by the code into a format corresponding to the one used at modeling level, thus
allowing the debugging directly at model-level. Thus, TTool now implements the code
instrumentation and the displaying of code execution directly at UML level.

4.1.6 Adaptation of code Generation for Drivers

As explained in the previous subsection, a few adaptations are still necessary to make
this automatically generated code directly executable as a driver, since currently, an
application is generated, and definitely not a driver.
A driver generally handles communications with either the upper software layer or with
the controlled hardware.

• The upper layer usually relies on an interface to communicate with the driver. In
UNIX-like systems, this interface relies on a set of standard functions, the main
of which are: init(), open(), read(), write(), ioctl(), close(). This Application
Programming Interface (API) applies to most Linux drivers.

• The driver is informed by the controlled device of the completion of an operation or
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Figure 15 Excerpt of execution traces of LLD: communication between LLD and
SPI
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of a data availability either with an interrupt, or reading regularly a specific register
of the controlled hardware (polling technique).

The EVITA LLD is informed by the underlying device with interrupts. From the up-
per layer, a specific API can be used to send requests to the HSM. The result is obtained
using a callback approach. Due to the late release of drivers and execution environment
(e.g., Autosar), we were not able to adapt the implemented AVATAR code generator, but
we do provide a few hints on how it could be adapted to suit the EVITA needs.

An AVATAR model is built upon a set of blocks. Currently, each AVATAR block
is translated as a (POSIX) thread, and can wait for the receiving of events. However,
the AVATAR system is self-contained, and therefore it cannot wait for external calls, e.g.
function calls or interrupts: this is the main facility we would need to add to AVATAR
models. The code generator would obviously need to be adapted as well. We are assuming
that drivers implementation can rely on the thread interface so as to reduce modifications
on the code generator. Finally, here are the main modifications to perform on AVATAR
and its code generator:

• Enhancing models with functions and external signals. The code that needs
to be generated for the interface of the driver must support the call of functions.
In AVATAR, only internal signals are currently supported, that is, when a signal is
received by an AVATAR block, the latter executes in its thread the corresponding
actions. A driver does not work that way: when a call to a driver function is per-
formed, actions corresponding to that call are realized inside of the caller’s thread:
that scheme is not supported in AVATAR. Therefore, the code generated for the
interface of a driver with the upper layer shall not be generated as a thread, but as
a collection of functions.

This generation of functions could be done as follows. An AVATAR signal might be
defined as external, and does not need to be connected to another block. Each block
that does not correspond to a thread - but to a collection of function, i.e., an inter-
face - shall be tagged with the keyword “interface”. Then, all blocks tagged with
“interface” can have specific state machines states also tagged with “interface”. All
external signals that can be received from those states are considered as functions of
the drivers. For example, if a state tagged “interface” and called “WaitingforUser-
Input” waits for two external signals open and close, it means that this system has
two functions open() and close() that can be called by external threads. The same
approach could be used for interrupt using external signals, and blocks and states
tagged with “interrupt”.

• Enhancing the code generator with functions and interrupts. All blocks are
generated as threads, except the ones with tagged “interface” or “interrupt”. For
the latter, only a set of C functions are derived. The prototype of those functions
is the one of external signals that can be received from “interface” and “interrupt”
states. Code generated for interrupts will have to be adapted to the local platform
since that kind of code is very specific to the hardware platform. However, the
controlling part of interrupt code will be generated from the AVATAR model.
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4.2 Full Code Generation

The code generation approach presented at previous section takes the assumption that
the code is first generated from the model, and then the latter is enhanced by hand, more
probably with definitions and manipulations of data. Indeed, the model mostly contains
controlling parts of applications, and so, of drivers. A way to avoid this “by hand” step
would be to put all information directly in the model. In that case, models would have to
be annotated with additional information. We think that one main enhancement could
resolve that issue: putting references to functions on state transitions:

• Functions are first declared and implemented in external C and H files. This function
are most likely to to declare complex data structures not present in the model, and
various functions to initialize and manipulate them

• Calls to functions are added at state machine level. On the transition exiting the
“start” state of state machines, there will probably be a call to a function that
initializes data not present in the model. Anyway, all state transitions can be
enriched with functions calls. The formal verification step totally ignores those
additional information

• The code generator works the same way as before, apart from the fact that calls to
those new state transition functions are added in the code

• The code can then be compiled and further linked with the implementation of
external functions defined in the first step

4.3 Conclusion

In the scope of the EVITA project, a model-to-C code generator has been specified,
implemented and tested. In particular, the code generator has been tested for automotive
applications, and for complex models. Its implementation is now part of the latest releases
of TTool.
Yet, the defined and implemented code generator shall be enhanced to support explicitly
the particularities of drivers, in particular, requests to drivers and interrupts. A first
proposal for handling these features has been provided, but is not yet implemented.
The environment we settled targets in particular the improvement of code quality. This
point has still to be compared with regards to the manual approach.
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5 Conclusions and Future Work

To complete the EVITA Description of Work and Annex I, the following technical work
was achieved by Institut Télécom as part of T4200:

• An adequate environment has been proposed for the modeling and formal verifica-
tion of drivers. The environment we develop offers a high-level language, SysML,
and integrates formal verification techniques that can be applied directly from the
model, without any specific knowledge. EVITA LLD was successfully modeled and
verified. An important weakness has been identified and accordingly corrected. The
overall approach has been implemented in TTool [10].

• A code generation scheme has been proposed to be able to generate part of the
LLD code from a high-level environment. A first code generator has been defined
and implemented in TTool. The code generator has been experimented for several
applications, including the LLD. Currently, it still needs to be enhanced since the
code generator generates a stand-alone application that can therefore not interact
with its environment. In particular, the interrupt issue should be addressed in the
scope of drivers.

Thus, the overall approach is expected to have a final version of LLD better respecting
its specification while being more reliable.
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H. Seudié, J. Shokrollahi, and A. Keil. Secure On-board Architecture Specification.
Technical Report Deliverable D3.2, EVITA Project, 2010.

32


	Introduction
	Objectives and Tasks
	Outline

	AVATAR Approach Overview
	The AVATAR Profile
	Methodology
	Block and State Machine Diagrams

	Formal Verification

	UML Modeling and Formal Verification
	LLD Requirement Analysis
	LLD Modeling Overview
	LLD Verification
	Abnormal Scenario: Race Condition in Queuing
	Nominal Scenario: Queuing Parallel Requests
	Formal Verification with Observers

	Conclusions

	Automatic C-Code Generation
	Code Generation
	AVATAR to C/POSIX
	AVATAR Runtime
	Use of the Generated Code
	Implementation and Results
	Applying the Code Generator to LLD
	Adaptation of code Generation for Drivers

	Full Code Generation
	Conclusion

	Conclusions and Future Work

