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Abbreviations 
 

The following table presents the main terms and acronyms used in this document. 

 

CAD Coronary Artery Disease 

CHF Chronic Heart Failure 

AMI Acute Myocardial Infarction 

FAT Functional Assessment Tool 

LVD Left Ventricle Dysfunction 

MRI Magnetic Resonance Image 

DSS Decision Support System 

DB Database 

NYHA New York Heart Association 

PUFA Polyunsaturated Fatty Acids 

ACE Angiotensin-Converting Enzyme 

HDL High-density lipoprotein 

SGOT Serum Glutamic Oxaloacetic Transaminase 

SGPT Serum Glutamic Pyruvic Transaminase 

LV Left Ventricle 

HF Heart Failure 

LVEF Left Ventricle Ejection Fraction 

IHD Ischeamic Heart Disease 

CRT Cardiac Resynchronization Therapy 

STEMI ST-Segment Elevation Myocardial Infarction 

NSTEMI Non-ST-Segment Elevation Myocardial Infarction 

COPD Chronic Obstructive Pulmonary Disease 

RR Relative Risk 

CI Confidence Interval 

CIHD Chronic Ischeamic Heart Disease 

cIHF Chronic Ischeamic Heart Failure 

ARB Angiotensin Receptor Blockers 

ROC Receiver Operating Characteristic 

CABG Coronary Artery Bypass Graft Surgery 

XML Extensible Markup Language 

ADL Archetype Definition Language 

DBMS Database Management Schema 

GUI Graphic User Interface 

EHR Electronic Health Record 

DICOM  Digital Imaging and Communications in Medicine 

AJAX Asynchronous JavaScript and XML 

FPT Functional Predictive Tool 

CVD Cardio-vascular Disease 
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1. Introduction  

Deliverable 3.4 is based on project task T3.2 – ‘Build a framework system on Data mining and 

available for heterogeneous dataset’ and it is the report describing the work performed during this 

task.  

In the activities described below various VPH2 partners coming from multiple disciplines (data 

mining engineers, software engineers, clinicians, data base experts etc) were involved: 

• CTI, Intercon and Q&R that worked mainly for the application of data mining 

methodologies in the data set and for developing a decision support software addressed to 

cardiologists. 

• Niguarda and CNR that provided the clinical feedback, interpreting the results, asking for 

certain output from the available data set and providing valuable input for decreasing the 

variables and improving the accuracy of the results. 

• WWU that provided feedback for any results containing data from the genetic study  

In this deliverable the work done with Mario Negri dataset coming from GISSI Prevenzione study 

(available from the beginning of 2010) as well as the first results from the work with Niguarda 

dataset (available from 15 July 2010) are described. The GISSI dataset is anyway the most 

complete and the one that is coupled with the results from the genetic analysis conducted by 

WWU, it also sets the framework around which the decision support module of VPH2 project will 

be built. Actually this deliverable can be considered as the first version of the “Application of data 

mining techniques”. A second and final version of this deliverable will be released at the end of the 

work package 3, i.e. month 30 of the project, i.e. December 2010. At that time all the data mining 

work with the various datasets will be thoroughly described and the two versions will constitute 

the description of the data mining activities during VPH2. 

The GISSI study data set is described elsewhere (D2.4, D3.3) and there is no point in providing the 

same information again in this deliverable. On the other hand the Niguarda data set is described in 

chapter 5.1.b. 

It should also be mentioned that this deliverable was delayed for a month in order to include some 

first, yet indicative results of the (ongoing) work done with Niguarda dataset. Niguarda 

retrospective data collection was actually a voluntary work (no commitment for IFC in the DoW) 

carried on at IFC with the administrative personnel of the hospital (no effort claimed). The number 

of patients was much higher than that supposed at the beginning, although in only 50% of the 

population EF and volumes have been collected. The population consists of patients suffering from 

chronic CAD with CHF and AMI with CHF. These patients can be matched with an equivalent 

population of chronic CAD or AMI without CHF. The total number of cases that were extracted was 

2097. The data extraction for all took time, and the effort was taken by a voluntary work of the IFC 

researchers, as already explained. These data became available within the middle of July. The data 
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mining work, always in close cooperation with and consulting from the involved CNR clinicians 

started immediately and the initial results are presented in the following (chapter 5.5).  

The reasons why the other two data sets are not available is different in each case. Specifically: 

• The 100 cases of patients for which the cardiac MRI examination was also extracted are 

available. But the FAT software which is necessary for the extraction of the features from 

this MRI examination will be released in its final, stable version by the end of June which 

means that the time needed for the processing of the MR images and then for the 

application of data mining in the resulting, enriched data set wasn’t enough. Consequently, 

this work will take place during July and August 2010 and the relevant activities will be 

described in the final release of this deliverable in December 2010. 

• CRT data: the agreement with the clinical partners (Pavia, Rozzano, Niguarda) providing the 

blood samples needed for the genotyping study phase II, was to utilize their clinical data 

when the genetic data will be available, in order this deal to be profitable for all involved 

actors. i.e. samples providers and VPH2 partners. The clinical data are available at IFC and 

will take some more time to combine the 2 dataset (genetic and clinical). To sum up, once 

the genotyping analysis phase II is completed and the results are coupled with the existing 

clinical data the data mining work can start.       

  

2. Project Overview 

The VPH2 project aims to develop a patient-specific computational model and simulation of the 

human heart to assist cardiologists and cardiac surgeons in defining the severity and extent of 

disease in patients with Left Ventricular Dysfunction (LVD), with or without mitral regurgitation. 

Associated specific computational methods will allow clinical decision making and planning of the 

optimal treatment for left ventricle-valve repair.  

The associated technological aim of the project is to deliver the most advanced software 

application framework for the development of computer-aided medicine in cardiology and cardiac 

surgery available in the world, going beyond the state of the art of available models.   

This goal will be achieved by integrating some of the leading Open Source software in the area of 

computer-aided medicine and of computational bioengineering. This framework will be used by 

VPH2 to realise its objectives, but also by any other future project (academic or industrial) aiming 

to improve or extend VPH2 objectives. 
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3. The Role of this task in the VPH2 project  

The related tasks are: 

• Task 2.2 ‘Specification of the user requirements from a technical perspective’, since the 

approach adopted has taken into account the users’ needs, e.g. concerning the 

transparency of the methodologies and the user specific modification of the module.  

• Task 3.1 – ‘Analysis of the existing clinical databases’, since the data sets available for the 

project were identified and thoroughly described so as to explore the possibilities of data 

mining and knowledge extraction in these data sets. 

• Task 6.1 ‘Integration of the VPH2 framework using Spiral Approach’; the data mining work 

will be used for the development of the decision support module provided by VPH2 

platform. This module will be integrated with Core DB so as to retrieve patients’ data from 

it and store data back to it. Moreover it will be integrated with the experts’ interfaces, i.e. 

the interfaces that will expose the functionality of this decision support module 

• Task 6.2 ‘Development of Front-End application’. This task includes the implementation of 

experts’ interfaces through which the extracted knowledge and the decision support 

functionalities will be exposed to the end users, i.e. to the clinicians.  

 

4. The Role of this deliverable in the VPH2 project  

 

The role of this deliverable is the detailed description of all activities concerning the whole data mining/ 

knowledge extraction process, i.e. data availability, data management etc. Within this document 

technologies are specified and functions are thoroughly described. Any information necessary for future 

upgrades of these individual VPH2 modules is provided by this document.  

 

The complete picture will be drawn in the second version of this deliverable at the completion of WP3 at 

the end of December 2010. 
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5. Data Mining  

 

5.1 Rationale and Description of datasets 

 

a. GISSI Study 

 

Development of heart failure (HF) after acute myocardial infarction (AMI) is common: the incidence of in-

hospital heart failure after the acute event varies between 18% in databases of clinical trials up to 37% in 

community studies [1]. Remodelling of the left ventricle (LV) as determined by echocardiography in the 

absence of overt HF is likewise very common, even in the current primary angioplasty era: up to one-third 

of patients with successful revascularization and sustained patency of the infarct-related artery, presented 

LV remodelling 6 months after acute MI [2]. 

Early HF after AMI is related to extensive myocardial damage, and thus to the severity of myocardial 

infarction. In contrast, late HF during follow-up correlates to the extent and the severity of the LV 

remodelling process. In the CARE study [3] among stable AMI survivors with no previous history of HF, 6.3% 

had a subsequent HF admission within 5 years; the cumulative incidence of HF increased by 1.3% per year.  

The strongest independent predictors of HF development are age, gender, diabetes and LV dysfunction 

after AMI: for each 1% decrease in baseline LV ejection fraction (LVEF), the risk of HF occurrence increases 

by 4%. 

The extremely high incidence of new onset HF after AMI (40% at a median follow-up of 6 years) in a well-

characterized community cohort [4], and its impressive fatality rate with a median survival of 4 years after 

diagnosis, underscore the clinical relevance of post AMI remodelling and its burden for the National Health 

Systems. 

This work is very promising since, to the best of our knowledge, no previous study addressed the issue of 

data mining based knowledge extraction in a population with post-MI development of myocardial 

remodelling. Homogenous and rigorously collected datasets, such as those available from randomized 

clinical trials, are obviously best suited for this analysis. To achieve this goal a selected patient series, 

enrolled in the nineties in a randomized controlled trial [5] on the efficacy of unsaturated fatty acids in 

preventing mortality after MI (GISSI Prevenzione) is analyzed. 

In a second stage, by blending baseline anonymous individual patient records to genetic variation 

information, cohort data has entered into the VPH2 modelling system, as simulation of source data to guide 

decision-making in the Virtual Pathological Heart with post-ischemic LVD. The study protocol has been 

approved by the Biobank Committee of Instituto di Ricerche Farmacologiche Mario Negri on November 

27th, 2008. 
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Study Population 

The study included patients enrolled in the GISSI Prevenzione trial, according to the following eligibility 

criteria as depicted in the following 

 

Patients meeting the above criteria were retrospectively identified from the GISSI Prevenzione database 

and the variables that were used after the cleansing of the dataset for those patients are depicted in Figure 

1 below. 
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Figure 1: Patients’ data extracted from GISSI dataset 

 

Genetics 

Patients genomic DNA was extracted from mononuclear blood cells and screened for genetic variations. A 

high throughput genotyping approach using TaqMan assays in a 384-well ABI 7900HT Sequence Detection 

System (Applied Biosystems, Foster City, CA) was applied [6]. Primer and probe sequences are available 

upon request.  Candidate genes and linked variants screened in this study  were the result of a multilayer 

process considering most recent consolidated findings in clinical and molecular genetics of cardio-vascular 

dysfunction (CVD) with special respect to their reproducibility [7]. Since CVD is a multi-factorial trait being 

strongly genetically determined with a complex pathophysiology, the included genes represent five of the 

known major biological systems involved:  

1) Adrenergic receptor system 

2) Renin-Angiotensin-Aldosterone system 
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3) Endothelin system  

4) Extracellular matrix enzymes 

5) Inflammatory cytokines and cell adhesion molecules 

Relative frequencies of genotypes and alleles have been compared by chi-square test (exact test when 

appropriate) in index cases (LVEF at baseline ≤ 0.40 or HF during follow-up) vs controls. P-values < 0.05 

have been considered statistically significant without any multiple comparisons adjustment. The software 

gPLINK [8] has been used.  

The most interesting results from data mining in the dataset enriched with the results of the genetic 

analysis are depicted in Chapter 5.4.  

 

Data Preparation /Cleansing 

Two case-control studies were conducted: 

1) Cases were patients with baseline LVEF ≤ 0.40 (strong indication of heart remodelling), selected 

according to the above inclusion/exclusion criteria. Controls are patients with baseline LVEF > 0.40 (most 

probably not presenting heart remodelling) who did not develop late-onset HF during the whole follow-up 

period, matched in a 1:1 ratio to cases for age and gender. The total number of available samples was 1228. 

2) Cases were patients who developed late-onset HF and were hospitalized for a clinical diagnosis of HF. 

Controls are patients who did not develop HF during the whole follow-up period, matched in a 1:1 ratio to 

cases for age and gender. The total number of samples was 202. 

 

The data cleansing approach is described in the following:  

1. Categorization of all patients in two main categories (those that developed late onset heart failure 

against those that did not develop it). 

2. Features having more than 25% missing values are removed, such as stress test results. 

3. Features that show no variation in their values are removed. Also features that are used to 

compute another feature are removed, such as LV end systolic, end diastolic volume, which are 

used to compute ejection fraction. 

4. From the genetic data variants rs4291, rs5443 and rs4646994 were used (the p-values for these 

variants were 0.036, 0.0487 and 0.033 respectively). More details can be found in D4.2 where the 

association between these variants and late onset HF is thoroughly explained. 

5. Due to imbalance of the dataset the SMOTE [9] algorithm was applied using ten nearest neighbours 

to create balanced datasets. 
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All common data mining methodologies (shortly presented in section 5.3 below) were applied in the 

cleansed data set, with the aim of classifying the patients according to the first case-control study: 

individuals where remodelling was observed against those that did not develop this feature.  

Since, from a clinical point of view, this classification was not the most important one for this study, it was 

not further developed and was used much more as an exercise of collaboration between engineers and 

clinicians for the second study. 

The second case control study aimed at classifying the patients in those that developed late onset heart 

failure against those that did not develop it. Since the initial results were not encouraging in terms of 

accuracy on one side and clinical interpretation on the other, the involved clinicians were asked to define 

more controlled datasets possibly increasing the chances of extracting any new knowledge.  

Following clinicians’ suggestions, 7 classifiers were built: 

1. Diabetes, Ejection Fraction, AMI; these are the three more important variables that evidently affect 

the development of late onset heart failure 

2. Diabetes, Ejection Fraction, AMI, Biochemical; in order to assess what lab data (i.e. cholesterol, 

white blood cells, fibrinogen, creatinine, uric acid) in general (and which one in particular) add in 

the predictive accuracy for late onset heart failure 

3. Diabetes, Ejection Fraction, AMI, Genetics; in order to assess in general the genetic analysis results 

effect on the prediction of late onset heart failure 

4. Diabetes, Ejection Fraction, AMI, PUFA; in order to assess what PUFA treatment adds in predictive 

accuracy of late on set heart failure 

5. Genetics when Ejection Fraction > 40; in order to assess if genetic polymorphisms add predictive 

accuracy in healthy people 

6. Genetics when Non Diabetic; in order to assess whether genetic polymorphisms add predictive 

accuracy only in non diabetic patients  

7. Genetics when gender is female and age < 60 or gender is male and gender < 55; in order to assess 

if genetic polymorphisms add predictive accuracy in younger patients.  

Multivariate analysis was performed using the Cox proportional risk model with the main aim being the 

determination of the indicators of LOHF in a large population of low risk survivors of AMI and to determine 

the prognosis of patients with this complication once diagnosed. The secondary aim was to determine the 

predictors of the composite event of death/LOHF. This work was part of the GISSI study (VPH2 had anyway 

access only in the 1228 cases with the DNA and not the whole dataset) and more details can be found in 

[10].  

 

The most important classifiers are clinically interpreted (rule by rule in the most interesting findings) in 

section 5.5 – Clinicians feedback.  
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b. Niguarda dataset 

 

Besides the GISSI dataset, including patients randomized to treatment with polyunsaturated fatty acids or 

placebo after an AMI in the early nineties, data mining was performed in a dataset of retrospectively 

enrolled real world ischemic heart disease patients.   

The rationale for the choice of this population was to: 

- derive real-world contemporary data (see below), obtained at the same location where prospective 

enrolment is ongoing, to populate the platform with data mining results 

- have another AMI population to be compared with/to integrate GISSI (AMI trial patients) data 

- have a population with chronic IHD and/or chronic ischemic heart failure who had undergone 

interventional (angioplasty and/or stenting or CRT or coronary surgery or valvular procedures) to be 

matched with prospectively enrolled patients 

- have an hard end-point, i.e. vital status, as outcome during long-term (>1 year) follow-up 

 

Study population 

This dataset includes all patients admitted to Niguarda 2005 to 2008 with a clinical diagnosis of acute (AMI) 

or chronic IHD, for acute events or planned procedures, discharged alive, with the exclusion of patients 

who developed IHD in a transplanted heart.   

Clinical data were retrieved from current hospital databases and manually checked as needed. No blood 

samples are available for retrospective genotyping in this population. Outcome data (vital status at an 

average follow-up of 3.5 years) was derived from census. 

Patient records with no more than 25% missing values for demographic, clinical, echocardiography, 

laboratory and drug therapy data were considered for analysis.  

Two separate datasets based on clinical diagnosis were examined:  

- patients admitted for AMI (974 cases)  

- patients admitted for chronic ischemic heart disease or chronic ischemic heart failure (404 cases)   

The targeted outcome in both cases is the survival of the patients. 

 

 

Retrospective AMI data set 
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Trends from published epidemiological studies and clinical trials show that in past 20 years, 

pharmacological and interventional therapies in AMI have changed substantially with associated decreases 

in-hospital complications and early case fatality in all infarction types [11-14]. These positive changes in 

outcome occurred despite a higher risk profile of patients presenting with AMI, who are in general older 

and have more frequently history of diabetes, hypertension, current smoking, heart failure, prior 

revascularization, stroke, and hyperlipidemia. Improvements in outcome have been associated to early 

reperfusion strategies and are apparent even in the older population strata [15].  Consistent prognostic 

predictors in the literature include age, gender, type of AMI (STEMI vs NSTEMI), comorbidities such as 

diabetes, anaemia, renal dysfunction, associated non-coronary vascular disease, incident heart failure, left 

ventricular ejection fraction, diabetes, atrial fibrillation, statin treatment [16-19]. 

The AMI retrospective data set includes 974 patients median age 67 years, 39% women, death rate 12.6%. 

Of these 48% were current or previous smokers, 57% had a history of hypertension, 21% of diabetes, 39% 

of dyslipidemia, 18% of chronic kidney dysfunction, 6% of atrial fibrillation, 10% of peripheral or 

cerebrovascular disease. AMI type was STEMI in 76%, 73% of patients underwent a primary percutaneous 

coronary intervention with stent implantation (in more than 1 vessel in 31% of these), while 7% overall 

underwent coronary artery bypass grafting during the index admission. Median LVEF was 55%. LV systolic 

dysfunction (LVEF <45%) was present in 19% and LV dilation in 26% of patients with LV dimensions 

recorded.  Clinical evidence of HF was found in 20%. At discharge statins were prescribed to 79% of patient. 

The clinical profile of the population is therefore consistent with published data.   

The following variables, shown to be predictive of outcome in the literature, were analysed 

 

Table 1: Variables from AMI dataset (Niguarda) 

Demographics Clinical Laboratory Treatment 

Age Hypertension 
Blood Glucose 

(Serum) 
ACE - Inhibitors 

Sex Diabetes Creatinine 
Angiotensin-Receptor 

Blockers 

Body Mass Index Dyslipidemia Haematocrit Beta Blockers 

Smoking Habit Chronic kidney dysfunction Haemoglobin (blood) Calcium Channel Blockers 

 
Atrial fibrillation (chronic, 

transient) 
PCR ASA (AcetylSalicylic Acid) 

 Pre-Existing Vascular Disease 
Serum Total 

Cholesterol 
Double Antiplatelet 

 AMI Type Triglycerides Clopidogrel 

 AMI Site Troponin - T Aldosterone Antagonists 

 N vessels Urea Hypoglycaemic agents 

 STENT Uric Acid Insulin 

 STENT Ves 1h Statins 
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 Echocardiographic LV dilation Leukocytes Loop Diuretics 

 LV Ejection Fraction  PUFA (ω-3) 

 HF signs or symtpoms   

 

To confirm the consistency of this retrospectively enrolled series with AMI populations described in the 

literature, CNR analysed the predictive value of recorded variables by classical Cox proportional hazards 

models. The variables described in Table below significant by invariable analysis where consecutively 

entered in multi-variables models in blocks of   

1. Demographics 

2. Clinical 

3. Laboratory 

4. Treatment 

Independent predictors of outcome (all-cause mortality) identified through a forward selection procedure 

were 

Variable RR 95% CI 

Age 1.067 1.047 -1.086 

Chronic kidney dysfunction 1.556 1.042 -2.326 

COPD 1.939 1.191 -3.158 

Peripheral Vascular Disease 1.830 0.910 -3.682 

Cerebrovascular Disease  1.694 0.899 -3.194 

Both Peripheral and Cerebrovascular Disease  4.796 2.403 -9.573 

LV Ejection Fraction 0.973 0.957 -0.989 

Calcium Channel Blockers 1.951 1.225 -3.108 

Insulin 2.120 1.219 -3.685 

Statins   0.475 0.326 -0.691 

 

These findings are consistent with the published literature, whereby older age; comorbid conditions (with 

insulin treatment to be considered a proxy for complicated diabetes) are associated to a worse outcome 

and better systolic function and statin treatment to a better prognosis. Our results suggest that these 

retrospective individual patient data may reflect larger series, are representative of contemporary patients 

admitted to hospitals for AMI and are appropriate to populate the platform. The application of data mining 

methods may therefore derive rules that improve clinician decision-making.  

 

Retrospective chronic ischemic heart disease (cIHD) and chronic ischemic heart failure (cIHF) data set 
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Ischemic heart disease is nowadays the commonest cause of heart failure in western countries. Consistent 

prognostic predictors in the literature include age, comorbidities such as diabetes, atrial fibrillation, 

anaemia, renal dysfunction, left ventricular ejection fraction and volumes, drug treatment such as ACE- or 

ARB-inhibitors, beta-blockers, and loop diuretics. 

This dataset includes overall 404 patients of whom 172 had chronic ischemic heart disease (cIHD) and 232 

chronic ischemic heart failure (cIHF); median age was 66 years, 16% were women, the overall death rate 

was 17%. 38% were current or previous smokers, 53% had a history of hypertension, 32% of diabetes, 42% 

of dyslipidemia, 22% of chronic kidney dysfunction, 13% of atrial fibrillation, 14% of peripheral or 

cerebrovascular disease. 16% of patients underwent a percutaneous coronary intervention with stent 

implantation (in more than 1 vessel in 44% of these), while 30% overall underwent coronary artery bypass 

grafting during the index admission. Median LVEF was 40%. LV   dilation was present in 60% of patients 

with LV dimensions recorded at discharge statins were prescribed to 69% of patients.    

When compared to cIHD patients, cIHF subjects had a 4-fold higher mortality rate, severely depressed 

ventricular function and dilation, higher proportion of diabetics, and lower proportion of dyslipidemia, 

statin prescription 

Table 2: Variables from chronic dataset (Niguarda) 

Demographics Clinical Laboratory Treatment 

Age Hypertension Glucose ACE - Inhibitors 

Sex Diabetes Creatinine Angiotensin-Receptor Blockers 

Body Mass Index Dyslipidemia Haematocrit Beta Blockers 

Smoking Habit Chronic kidney dysfunction K Calcium Channel Blockers 

 
Atrial fibrillation (chronic, 

transient) 
NA Aldosterone Antagonists 

 Pre-Existing Vascular Disease Total Bilirubine Statins 

 Previous STENT Urea Loop Diuretics 

 N vessels Uric Acid Loop diuretics dose 

 LV end-Diastolic Volume  CABG index admission 

 LV end-Systolic Volume  Number bypass 

 LV Ejection Fraction  Biventricular pacing 

 HF signs or symtpoms  
Implantable Cardioverter 

defibrillator 

 

To confirm the consistency of this retrospectively enrolled series with chronic ischemic populations 

described in the literature, CNR analysed the predictive value of recorded variables by classical Cox 

proportional hazards models. The variables described in Table below significant by invariable analysis 

where consecutively entered in multivariable models in blocks of   

1. Demographics 
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2. Clinical 

3. Laboratory 

4. Treatment 

Independent predictors of outcome (all-cause mortality) identified through a forward selection procedure 

were 

Variable RR 95% CI 

Age 1.051 1.026- 1.077 

Diabetes 2.086 1.288- 3.377 

CABG index admission 0.355 0.159- 0.794 

BetaBlockers 0.415 0.250- 0.688 

Loop diuretics dose 1.006 1.003- 1.008 

cl_groups cIHF vs cIHD 3.564 1.752- 7.249 

 

These findings are again consistent with the published literature, whereby older age, diabetes and higher 

doses of loop diuretics (as proxy for persistent or worsening congestion) are associated to a worse outcome 

and beta-blocker treatment and surgical revascularization for the relief of ischemia to a better prognosis. 

Our results suggest that these retrospective individual patient data may reflect larger series, are 

representative of contemporary patients admitted to hospitals for cIHD/cIHF and are appropriate to 

populate the platform.  

 

Data Preparation /Cleansing 

Two studies were conducted, since the dataset was actually split in two main subsets according to the 

disease the patients suffered from: 

1) Patients admitted for AMI (974 cases) with the outcome being the survival of these patients. 

2) Patients admitted for chronic ischemic heart disease or chronic ischemic heart failure (404 cases) with 

the outcome being the survival of these patients. 

 

As mentioned above the target variable was the survival of the patients. For that specific reason the data 

cleansing approach was the following:  

1) Categorization of all patients in two main categories (those that are still alive against those that died). 
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2) Features selection according to clinicians feedback (in order to save time and work with a more concise 

and straightforward dataset). More details are provided in section 5.4 Results were the variables used for 

each classifier are explained. 

3) Due to imbalance of the dataset the SMOTE [9] algorithm was applied using ten nearest neighbours to 

create balanced datasets. 
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5.2 Data Management Methodologies 

 

SMOTE -- Synthetic Minority Over-sampling Technique[9] 

SMOTE is a technique for the building of classifiers from datasets that are imbalanced. A dataset is 

characterized as imbalanced if the classes are not in the same region, i.e. they are not similarly represented 

in the samples space. Under-sampling of the majority class (i.e. the “normal” category) has been considered 

in some cases in the literature, as a good way of improving the sensitivity of a classifier compared to the 

minority class.  

In VPH2 we have adopted a mixed method consisting of over-sampling of the minority class (“abnormal” 

category) on one hand and under-sampling the majority class(“normal” category) on the other, that  is able 

to reach better classifier performance (in ROC space) when compared with the simple, trivial under-

sampling of the majority class. This mixed method can also achieve better classifier performance (in ROC 

space) than varying the loss ratios (in Ripper) or class priors (in Naive Bayes). 

The imbalance issue is very important and it hinders knowledge extraction in any data set it appears: 

Imbalance on the order of 100 to 1 is common in fraud detection and imbalance of up to 100,000 to 1 has 

been reported in other applications [20]. In another work the SHRINK system was proposed that classifies 

an overlapping region of minority (positive) and majority (negative) classes as positive (i.e. it adopts the 

minority class); it searches for the “best positive region" [21].  

Other common approaches are: 

o “Random re-sampling”, that proposes random re-sampling of the smaller class until it consists of 

equal number of samples with the majority class.  

o “Focused re-sampling”, that proposes re-sampling of the minority examples that occur on the 

boundary between the two classes.  

o “Random under-sampling”, that proposes random under-sampling of the majority class it consists 

of equal number of samples with the minority class. 

o “Focused under-sampling” that proposes under-sampling the majority class samples lying further 

away from the boundary between the two classes. 

One approach that is quite relevant to the one adopted for VPH2 work and thus it is worth referring to it, is 

the work of Ling and Li [22]. They proposed a combination of over-sampling of the minority class with 

under-sampling of the majority class and they preferred lift analysis, and not accuracy in order to measure 

the improvement in a classifier's performance. They further proposed that the test examples can firstly be 

ranked by confidence and then lift can be used as the evaluation criteria. Solberg and Solberg [23] also 

considered the problem of imbalanced data sets (in oil slick classification from SAR imagery). They also used 

over-sampling and under-sampling techniques to improve the classification of oil slicks. To overcome the 
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imbalance problem, they over-sampled (with replacement) 100 samples from the oil slick, and they 

randomly sampled 100 samples from the non oil slick class to create a new dataset with equal probabilities. 

Domingos [24] compares the “meta-cost” approach to each of majority under-sampling and minority over-

sampling. He finds that meta-cost improves over either, and that under-sampling is preferable to minority 

over-sampling. Error-based classifiers are made cost-sensitive. A feed-forward neural network trained on 

an imbalanced dataset may not learn to discriminate enough between classes [25]. The authors proposed 

that the learning rate of the neural network can be adapted to the statistics of class representation in the 

data. Lewis and Catlett [26] examined heterogeneous uncertainty sampling for supervised learning. This 

method is useful for training samples with uncertain classes. The information retrieval (IR) domain [27-30] 

also faces the problem of class imbalance in the dataset. 

The approach adopted in VPH2 proposes an over-sampling of the minority by creating “artificial” instances 

instead of over-sampling with replacement. This idea is actually inspired by a method that proved very 

useful in handwritten character recognition [31]. They created additional, artificial training data by 

modifying, through certain operations, the real data. The operations included rotation and skew that are 

“natural” ways to change the training data set. In VPH2 artificial instances were generated in a more 

generic way, by working in “feature space” instead of “data space”. The minority class is over-sampled by 

taking each instance from the minority class and importing artificial instances beside the line segments 

joining any/all of the k minority class closest neighbors. VPH2 implementation currently uses ten nearest 

neighbors. For example, if the total over-sampling required is 200%, only two neighbors from the ten 

nearest neighbors are selected and one sample is generated in the direction of each. Artificial instances are 

generated as described in the following:  

1. Calculate the difference between the feature vector (instance) being considered and its nearest 

neighbor.  

2. Multiply this difference by a randomly chosen number (in the space between 0 and 1), and add it to 

the feature vector being considered.  

This procedure leads to the selection of a random point along the line segment between two particular 

features and efficiently generalizes the decision region of the minority class.  

The artificial instances “force” the classifier to build larger and “vaguer” decision regions, instead of smaller 

and stricter regions. The minority class instances learn more generalized regions instead of those being 

learned by the majority class instances in the same region. 

The application of SMOTE provides a new aspect of over-sampling. The mixed application of SMOTE and 

under-sampling seems to be more efficient than plain under-sampling. SMOTE was tested on several 

datasets and provided improved accuracy compared to other approaches. The mixed application of SMOTE 

and under-sampling also seems to be more efficient, based on results depicted in ROC space, in comparison 

with varying loss ratios (in RIPPER) or by varying the class priors (in Naive Bayes); these methods that could 

straightforwardly handle the skewed class distribution.  
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Wrapper 

Feature selection is the issue of selecting the most pertinent subset of and ignores the rest 

variables/features that seem to be less important for the classification that must be performed. In order to 

reach the best possible accuracy/performance with a specific learning algorithm on a specific training data 

set, the feature selection method must consider the interaction between the algorithm and the training 

data set.  

The adopted in VPH2 project wrapper methodology searches for the best possible feature subset adapted 

to a certain algorithm and the respective domain. The task of the training algorithm, or the inducer, is to 

induce/ train a classifier which will be functional when classifying future cases. What the classifier does is a 

mapping of features to class values. In the adopted wrapper approach [32], the feature selection method 

acts as a wrapper around the induction/training algorithm. The feature selection method explores the full 

data set for a functional subset using the induction/training algorithm as it is and as part of the function 

that evaluates the possible feature subsets.  

The concept behind the wrapper approach is straightforward: the induction/training algorithm is 

considered to be a black box. It is thus run on the data set, typically split into internal training and holdout 

sets, with diverse sets of features detached from the data. The feature subset with the maximum 

evaluation score is selected as the final set and the induction/training algorithm is applied on it. The 

classifier that is produced is then evaluated based on an independent (holdout) test set that was omitted 

throughout the training. The purpose of feature subset selection is to find a subset of the original data set, 

ensuring that whenever an induction/learning algorithm is applied on data including only these selected 

features builds a classifier with the maximum accuracy. Of course feature selection creates a subset of 

features choosing from real and existing features, and does not create new features. 

The feature selection method looks for a good sub set using the induction/training algorithm itself in the 

evaluation function. The estimation of the accuracy of the produced classifiers is based on accuracy 

estimation techniques [33]. 

The wrapper explores the space of potential parameters. This exploration requires: 

o a state space 

o an initial state 

o a termination condition 

o a search engine [34;35] 

In the following a short comparison of the two most commonly used search engines is presented: hill-

climbing and best-first search. For a total of n features, n bits exist in each state, and every bit indicates if a 

feature is present (i.e. 1) or absent (i.e. 0). Operators define the connectivity among the states, and 

operators that append or erase a particular feature from a state are used, equivalent to the search space 

usually used in stepwise methodologies in Statistics domain.  
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As an example we assume that we have a state space and operators for a 4 feature problem. The range of 

the search space for n variables/ features is 0, so it is obviously unreasonable to explore the whole space 

thoroughly, unless n is small. In the following the different search engines are compared.  

The aim of the hill climbing search is to discover the state that is best evaluated, by means of a heuristic 

function to direct it. Since the accuracy of the induced classifier is still unknown, we can make use of 

accuracy estimation as both the heuristic and the evaluation functions do. The evaluation function that we 

employ is 5-fold cross-validation repeated several times. The amount of repetitions is determined per case 

by looking at the accuracy estimate and the standard deviation that it presents, considering that they are 

independent. If the standard deviation is higher than 1% and 5 cross-validations still have not been 

executed, we trigger an additional cross validation run. Despite the fact that this is just a heuristic, it 

performs well in practice and avoids numerous cross-validation runs in cases of large datasets. This 

heuristic has the useful characteristic that it executes cross-validation less times on large datasets than on 

smaller datasets. Since smaller datasets need reduced time to learn, the overall accuracy estimation time, 

which is the result of the induction/ training algorithm running time and the time needed for cross-

validation, grows slower. This way “hardness” is preserved through the use of this heuristic: small data sets 

are cross-validated several times in order to face the variation that is the result when working with purely 

populated data sets. For huge datasets, the best approach is to change to a holdout heuristic in order to 

save more time. 

Best-first search [34;35] is more sturdy than hill-climbing. The basic idea is the selection of the most 

promising node we have constructed to this point and which has not previously been expanded. Best-first 

search typically terminates when it accomplishes the goal. Since in VPH2 the problem is actually an 

optimization problem the search can end at any spot and the best solution found hitherto can be returned 

(supposedly improving over time)  at any time making thus the algorithm what is called an “anytime 

algorithm” [36].  

In fact, we should anyway stop the run at some stage, and we employ what is called a stale search: if an 

improved node wasn’t found in the previous k expansions, the search is stopped. An improved node is the 

node with an accuracy estimation at least E higher than the best one found thus far. 
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5.3 Data Mining Methodologies 

 

In order to decide which algorithm will be used in the Decision Support System of the VPH
2 

platform the 

following methodologies were applied to Mario Negri data set. Those that proved to be the most useful 

and efficient in terms of accuracy and transparency were also applied in Niguarda dataset. In any case and 

for the sake of the deliverable’s completeness a short overview of the applied methods is provided in this 

section while more details are given for the main methods adopted in VPH2 (PART, Decision Trees, Decision 

Tables, kNN).  

 

Naive Bayes Classifier [37;38] 

A Naive Bayes Classifier is a simple probabilistic classifier that estimates the conditional probability of an 

instance to belong in a specific class using the Bayes theorem. Naive Bayes Classifier assumes that all 

attributes are conditionally independent given the class.  In order for the variable X to be conditionally 

independent from the variables Y and Z the following condition must be true: 

( | , ) ( | )P X Y Z P X Z=  

Naïve Bayes Classifier classifies an instance t = {t1, t2, …,tn}  to the class the Bayes theorem is applied thus 

for every value of the class: 
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The instance is then classified to belong to the class having the probability mentioned above maximum. 

 

 

Bayesian Network [37;38] 

A Bayesian Network is a graphical model that represents the probabilistic relationships between variables. 

In such a graphical model each vertex is a variable or a group of variables and each edge is the probabilistic 

relationship between the variables which it connects, for each conditional distribution between variables a 

direct edge is added.  

In Figure 1 a Bayesian Network is depicted and the conditional probabilities P (AMI | FollowUp). 
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Figure 2: A Bayesian Network and the conditional probabilities P (AMI | FollowUp). 

 

The decision making using Bayesian networks is similar to the one using Naive Bayes classifier, considering 

the “parents” of the of the class vertex. 

 

 

Multilayer Perceptron [37;38] 

Multilayer Perceptron (MLP) is the most successful neural network model in the category of pattern 

recognition. The Multilayer Perceptron consists of the input layer, the output layer and one or more hidden 

(intermediary) layers of neurons. The input and output neuron layers generally have linear activation 

function, contrary to the hidden layers in which neurons have non linear, usually sigmoid functions. In feed 

– forward multilayer perceptron, each node from each layer is connected with all the nodes from the next. 

The goal in training a multilayer perceptron is to find the optimal parameters wij
(k)

, which is the weight of 

the connection of the neuron j in layer k to neuron i in layer (k+1), and bj
(k)

, which is the bias of the neuron j 

in layer k, in order to minimize the total sum of squared errors: 
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Where 
^

iy is the output of the multilayer perceptron and iy the desired output. The algorithm consists of two 

steps the forward and the backward pass. 

o In the forward pass, the outputs corresponding to the inputs are computed.  

o In the backward pass the error is propagated backwards through the network and weights are 

changing using gradient descent. 

 

Radial Basis Function Network [37] 

A Radial Basis Function (RBF) network is a neural network that has an input layer, an output layer and in 

most cases one hidden layer. The activation function of the neurons in a RBF network, is radial basis 
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function the most common function used is a Gaussian transfer function. The concept behind the RBF 

networks is that instances in a close distance are more possible to have the same predicted value. During 

RBF network training, one or more neurons are placed in the instances space, in our methodology the 

position and radius of the neurons (centre and deviation of Gaussian kernel) is decided by applying the 

algorithm k – nearest neighbors. In training phase the weights of the connection between the neurons are 

optimized in order to minimize the total sum of squared errors: 

^
2

1

1
( ) ( )

2

N

i i
i

E w y y
=

= −∑  

Where 
^

iy is the output of the RBF network and iy the desired output. 

 

K nearest Neighbours [38;39] 

K nearest neighbours classifier is a part of a more general technique called instance based learning.  K 

nearest neighbours does not require building a classification model. In order to classify an instance using K 

– NN a proximity (distance) measure is required, the distance between the instance to be classified and all 

the instance of the training set is computed. The k nearest instances are obtained and the class of the 

instance is decided based on the majority class of its k nearest neighbours. 

 

Voting Feature Intervals [40] 

In VFI classification during training the algorithm constructs an interval for each feature, which represents a 

set of values for the feature, the interval is represented by a vector containing the lower bound, and 

number of instances from each class that belongs to the specific interval, the upper bound of the interval 

can be found by checking the lower bound of the next interval. In order to classify a new instance the 

algorithm checks in which interval each feature of the instance falls, each feature then gives a vote for each 

class equal to the ratio of the count of the class in the interval to the overall class count. A vector is then 

constructed for each feature containing the votes for each class.  The vectors are then summed up and the 

predicted class is the one with the highest total vote. 

 

Decision Table [41] 

A Decision Table consists of two parts the schema, which is a set of features included in the Decision Table 

and the body which is a set of labelled instances containing the features described in the body. In order to 

get the Decision Table rules, given an unlabelled instance the algorithm searches in the data set to find 

matching instances, the search is done by looking only the features that belong in the schema. The 
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predicted class of the instance is the class of majority of the matched instances, if no instances match the 

pattern the predicted class is the majority class of the data set. The key for to learning a Decision Table is to 

select a schema with highly discriminative features. 

 

Decision Table Naive Bayes Combination [42] 

The combination of Naive Bayes and Decision Table is a simple Bayesian Network which uses the Decision 

Table to represent the conditional probabilities. The algorithm for learning the Decision Table - Naive Bayes 

combination model is similar to the one from learning the Decision Table model described above. At each 

step in the search of matching instances the algorithm uses an evaluation measure to the best split of the 

features in two subsets, one for the Decision Table and one for the Bayesian Network. 

 

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)[43] 

This algorithm scales almost linearly with the number of training examples and is particularly suited for 

building models from data sets with imbalanced class distributions. RIPPER also works well with noisy data 

sets because it uses a validation set to prevent model over fitting. RIPPER chooses the majority class as its 

default class and learns the rules detecting the minority class. For multi-class problems, the classes are 

ordered according to the frequencies. Let (y1, y2... yc) be the ordered classes, where y1 is the least 

frequent class and yc is the most frequent class. During the iteration instances that belong to y1 are 

labelled as positive examples, while those that belong to other classes are labelled as negative examples. 

Next, RIPPER extracts rules that distinguish y2 from other remaining classes. This process is repeated until 

we are left with yc, which is designated as the default class. 

Ripper employs the general-to-specific strategy to grow a rule and the FOIL’s information gain measure to 

choose the best conjunct to be added into the rule antecedent. It stops adding conjuncts when the rule 

starts covering negative examples. The new rule is then pruned based on its performance on the validation 

set. The following metric is computed to determine whether pruning is needed: (p-n)/(p+n), where p(n) is 

the number of positive (negative) examples in the validation set covered by the rule. If the metric improves 

after pruning then the conjunct is removed.   

   

Non Nested Generalised Exemplars (NNGE)[44] 

This innovative algorithm generalises exemplars without nesting or overlap. NNGE is the extension of NGE 

algorithm [45], which generalises by merging exemplars, forming hyperrectangles in feature space that 

represent conjunctive rules with external disjunction. NNGE forms a generalisation whenever a new 

instance is imported to the database, by associating it to its closest neighbour of the same class. NGEE does 

not permit hyperrectangles to overlap or nest. 
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NNGE algorithm is trained incrementally: it firstly classifies and then generalises each new instance. For 

that purpose a modified Euclidian distance function is used that handles hyperrectangles, symbolic 

features, and exemplar and feature weights. Normalisation of numeric feature values is performed by 

dividing each value by the range of values observed. And the class predicted is the class of the single 

nearest neighbour. Moreover, NNGE uses dynamic feedback to regulate exemplar and feature weights each 

time a new instance is classified. During instances’ classification, more than one hyperrectangles may be 

found in which the new instance belongs, but which may be of the mistaken class. NNGE prunes these in 

order the new instance to no longer be a member.  

Once it is classified, the new example is generalized by merging it with the nearest exemplar of the same 

class, which may be either a single example or a hyperrectangle. In the former case NNGE creates a new 

hyperrectangle, whereas in the latter it grows the nearest neighbor to encompass the new example. Over-

generalization, caused by nesting or overlapping hyperrectangles, is not allowed. Before a new example is 

generalized, it checks to see if there are any examples in the affected area of feature space that conflict 

with the proposed new hyperrectangle. If so, the generalization is aborted and the example is stored 

verbatim.  

 

PART[46] 

The method is a combination of C4.5 and RIPPER, which are the two most popular schemes for rule learning 

and which both are adopt a two stages approach. At the first stage they produce a set of rules that they 

refine at the second. This second stage optimizes the set of rules by either omitting (in C4.5) or by adjusting 

(in RIPPER) the various rules in order to improve their overall performance and their “cooperation” for 

producing decisions.  PART is a methodology for inferring rules by repetitive generation of partial decision 

trees. It combines thus the two aforementioned methodologies (C4.5 and RIPPER) by generating rules from 

decision trees and then by utilizing the “divide and conquer” rule learning method. PART is simple and well-

designed. Moreover, tests on standard experimental datasets demonstrate that the resulting rule sets are 

comparable both in terms of accuracy and in terms of size to those generated when using C 4.5 and are 

more precise than those generated using RIPPER. PART is a rule induction method that even though it 

avoids global optimization it generates rule sets that are both accurate and solid. PART has taken its name 

by partial decision trees in which it is based. 

As it is already stated above, PART does not require global optimization to generate its set of rules and this 

additional straightforwardness is actually its main improvement. By adopting the “divide and conquer” 

strategy, it first produces a rule, then removes the instances that are covered by this rule and keeps 

building rules recursively for the residual instances until none is left. Its main difference is the technique 

based on which a single rule is built:  

o a pruned decision tree is built for the current set of instances 

o the leaf with the largest coverage is made into a rule 

o that tree is discarded 
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This approach avoids rushed oversimplification by generalizing when and only when the implications are 

established. The usage of a pruned tree to get a rule, instead of building it incrementally by adding 

conjunctions sequentially, overcomes the over pruning problem of the fundamental “divide and conquer” 

rule learner. 

The main idea in PART is to construct a partial decision tree and not of a completely explored tree. A partial 

decision tree is a regular decision tree that has branches to undefined sub-trees. Such a tree is generated 

by integrating the building and pruning stages with the purpose of finding a stable sub-tree that cannot be 

further cut down. When this sub-tree has been created, tree building ceases and a single rule is produced. 

The tree building algorithm is depicted in Figure 1 below.  

 

PART is executed as described in the following: A set of examples is split recursively into a partial tree. A 

single test is chosen and the examples included are divided into subsets accordingly. The choice is made in 

exactly the same manner as it is made in C4.5. Then the various subsets are expanded according to their 

average entropy, starting with the smallest. This procedure continues recursively until a subset is expanded 

into a leaf and then continues further by backtracking. But as soon as an internal node appears which has 

all its children expanded into leaves, pruning begins the algorithm checks whether that node is better 

replaced by a single leaf.  

This is just the standard “sub-tree replacement” operation of decision-tree pruning, and the proposed 

implementation makes the decision in exactly the same way as C4.5. If replacement is performed the 

algorithm backtracks in the standard way, exploring siblings of the newly-replaced node. However, if during 

backtracking a node is encountered all of whose children are not leaves and this will happen as soon as a 

potential sub-tree replacement is not performed then the remaining subsets are left unexplored and the 
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[47]corresponding sub-trees are left undefined. Due to the recursive structure of the algorithm this event 

automatically terminates tree generation. 

A particular rule is extracted each time a partial tree is built and finalized. Each leaf is potentially a new 

rule, and the algorithm looks for the “best” leaf of those sub-trees (which are usually the minority) that 

have been expanded into leaves.  PART aims at the most broad rule by selecting the leaf that covers the 

maximum number of instances.  

Missing values in PART are treated in precisely the same manner as in C4.5: if an instance cannot be 

assigned deterministically to a branch because of a missing attribute value, it is assigned to each of the 

branches with a weight proportional to the number of training instances going down that branch, 

normalized by the total number of training instances with known values at the node. 

Because a decision tree can be built in time O (an log n) for a dataset with n examples and a attributes, the 

time taken to generate a rule set of size k is O (kan log n). Assuming (as the analyses of [43;47]] do) that the 

size of the final theory is constant, the overall time complexity is O (an log n), as compared to O (an log
 2

 n) 

for RIPPER. 

 

Decision Tree Induction (C 4.5) [48] 

Decision tree classifiers are another straightforward and broadly used classification method. Typically each 

tree has three different types of nodes: 

• Root nodes, which do not have any incoming edges any may have 0 or more outgoing edges 

• Internal nodes, which have one incoming edge and 2 or more outgoing 

• Leaf or terminal nodes, which have one incoming edge and do not have any outgoing 

Each leaf of the decision tree is assigned a class label. The root and any other internal nodes contain 

attribute test conditions to split records that have different features.  

The classification of a test record is simple after a decision tree is built. Starting from the root node the test 

condition is applied to the record and the suitable branch, based on the result of the test, is followed.  

 

Random Forest [49;50] 

Random forest is a class of ensemble methods specifically designed for decision tree classifiers. It combines 

the predictions made by multiple decision trees, where each tree is generated based on the values of an 

independent set of random vectors. The random vectors are generated from a fixed probability 

distribution, unlike the adaptive approach used in AdaBoost, where the probability distribution is varied to 

focus on examples that are hard to classify. Bagging using decision trees is a special case of random forests, 

where randomness is injected into the model-building process by randomly choosing N samples, with 

replacement, from the original training set.
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5.4 Results 

 

a. Mario Negri Results 

 

In the following chapter the most significant results of the data mining work in Mario Negri data set are 

presented. 

In Table 4 below the results (specificity, sensitivity, accuracy) of the classifiers we have tested with ejection 

fraction as the targeted outcome are presented. All these classifiers were trained with certain variables 

(depicted in Table 3 below) indicated by the clinicians involved in this data mining study.  

Table 3: Variables from Mario Negri dataset from classification targeting Ejection Fraction 

ATTRIBUTES 

 Gender  

 Smoke  

 Nofcigarettes  

 AMI  

 Family Diabetes  

 Family Hypertension  

 Claudicatio intermittens 

 Β blockers 

 Ace inhibitor  

 Calcium channel 

blockers 

 Lipid lowering 

 Diuretics  

 Wine Intake  

 PUFA 

 BMI  

 Age  

 

Actually the classifiers with Ejection Fraction as outcome were not used in the decision support and it was 

much more an exercise and example for the collaboration with the clinicians who hadn’t previously been 

involved in such machine learning studies. Moreover, the accuracy in this study was significantly low and 

consequently not useful for any decision support. 
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Table 4: Results classifiers with Ejection Fraction as outcome 

Method Specificity                                    Sensitivity Accuracy

Bayes Network Local Search 65.83% 73.18% 69.70%

Bayes Network Global Search 66.41% 73.36% 70.06%

Bayes Network  Fixed Search 64.88% 73.88% 69.61%

Bayes Network Ci Search 65.45% 73.53% 69.70%

Naïve Bayes 65.45% 73.53% 69.70%

Naïve Bayes Simple 64.88% 72.32% 68.79%

Naïve Bayes Updateable 64.68% 72.84% 68.97%

Logistic 63.15% 73.01% 68.33%

MLP 54.89% 80.62% 68.43%

RBF Network 62.57% 71.80% 67.42%

Simple Logistic 62.57% 76.30% 69.79%

SMO 62.57% 74.91% 69.06%

Voted Perceptron 10.56% 94.81% 54.87%

IB1 54.89% 64.53% 59.96%

K Nearest Neighbors 61.04% 75.61% 68.70%

k* 57.58% 64.53% 61.24%

LWL 58.35% 70.24% 64.60%

Hyperpipes 99.42% 0.00% 47.13%

Voting Feature Intervals 67.95% 69.90% 68.97%

Conjuctive 50.86% 71.97% 61.97%

Decision Table 60.08% 77.16% 69.06%

DTBN 56.81% 78.89% 68.43%

RIPPER 63.53% 72.15% 68.06%

OneR 64.68% 68.17% 66.52%

PART 61.61% 67.13% 64.51%

Ridor 49.71% 79.58% 65.42%

ADTree 65.07% 72.32% 68.88%

Decision Stump 50.86% 71.97% 61.97%

FT 59.50% 69.72% 64.88%

C 4.5 63.29% 73.53% 68.66%

C 4.5 graft 59.31% 76.64% 68.43%

LAD Tree 62.96% 73.53% 68.52%

LMT 63.92% 74.57% 69.52%

NBTree 65.45% 73.53% 69.70%

Random Forest 62.00% 71.80% 67.15%

Random Tree 60.84% 63.67% 62.33%

RepTree 58.73% 75.61% 67.61%  

 

Next we have started working with late onset heart failure as the targeted outcome. The issue was that the 

dataset was very unbalanced since there were 101 cases of patients who actually developed late onset 

heart failure against 1123 who didn’t develop. To overcome this problem the first approach was based in 

building stratified balanced datasets, i.e. we have created 10 subsets of patients that didn’t develop late 
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onset heart failure each one consisting of 112 patients. Then we have started applying/ testing the various 

algorithms using as training datasets the resulting 10 balanced training datasets, each one consisting of 213 

samples: the 101 patients that developed late onset HF and the 10 different 112 patients’ datasets that 

didn’t. The default values of the parameters of the algorithms used are depicted in Table 5. 
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Table 5: Default Values When Testing Methods. 

Method Parameter Value

Conditional probability estimator 

algorithm
Simple Estimator

Method for searching network 

structures
K2

Layers 1

Neurons (attributes + classes) / 2

Learning Rate 0.3

Momentum 0.2

Number of epochs 500

Minimum cluster's standard 0.1

K-Means cluster number 2

Ridge value 10
-8

K 10

Nearest neighbour search algorithm Linear Search

Distance Euclidian

Voting Feature Intervals Bias 0.6

Measure  to evaluate the performance 

attribute subsets
Accuracy

Search method for attribute subsets Best First

Measure  to evaluate the performance 

attribute subsets
Accuracy

Search method for attribute subsets Forward selection /backward 

Minimum total weight of instances in a 

rule
2

Number of optimizations 2

Number of attempts for generalization 5

Number of folders for mutual 

information
5

Reduced error prunning Yes

Minimum number of instances per rule 2

Reduced error prunning Yes

Minimum number of instances per rule 2

Number of randomly chosen attributes. log2(number_of_attributes) + 1

Maximum depth of the tree Unlimited

Number of trees 10

Number of randomly chosen attributes. log2(number_of_attributes) + 1

Maximum depth of the tree Unlimited

Random Tree

RIPPER

Non Nested Generalised Exemplars

PART

C 4.5

Random Forest

Bayes Network

Multilayer Perceptron

RBF Network

K Nearest Neighbors

Decision Table

Decision Table Naive Bayes Combination

 

The results depicted in Table 7 below are the average of the 10 subsets. Moreover, the variables were split 

according to the series of patient specific data collection the clinician follows during the assessment of 

patients’ condition on the routine daily practice (Table 6).  
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Table 6: Variables according to the series the clinician follows for the assessment of patients’ condition 

on the routine daily practice 

 

The five methodologies that are most commonly used in this type of clinical data mining problems were 

further studied and multiple parameters were tested for each of these methods. In Table 8 the results are 

depicted. 

The second methodology used for balancing the unbalanced dataset was the Synthetic Minority Over – 

Sampling TEchnique (SMOTE) that is described in chapter 5.2. Using this technique we created balanced 

dataset, by over – sampling the minority class and creating new instances, for every instance using its ten 

nearest neighbours. In Table 9 below the specificity, sensitivity and accuracy of the fourteen classifiers that 

were tested is presented. In order to evaluate the statistical differences of the classifiers with the highest 

accuracies we have performed the McNemar test. The results are presented in Table 10 below, where NS 

denotes Non Significant differences, while S denotes significant differences. The McNemar test compares 

Demographics 
Anthropome

trical 
Drugs 

Physical 

findings 
Biochemical Echocardiography Genetics 

Gender BMI PUFA SBP 
Total 

Cholesterol 
Ejection Fraction 

rs4291 

allele 1 

Smoke  Β blockers DBP 
Hdl 

Cholesterol 
 

rs4291 

allele 2 

Number of 

cigarettes 
 

ACE 

inhibitor 
BPM Triglerides  

rs5443  

allele 1 

Wine intake  

Calcium 

Channel 

Blockers 

Claudicatio 

intermittens 
Fibrinogen  

rs5443  

allele 2 

Age  
Lipid 

lowering 
AMI Aematocrit  

rs4646994 

allele 1 

  Diuretics Diabetes 

White 

Bloodcell 

counts 

 
rs4646994 

allele 2 

   
Hypertensio

n 
Glycaemia   

    Creatinine   

    UricAcid   

    PCR   

    SGOT   

    SGPT   

    NA   
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the differences between the classifiers pairwise. In order to compute the statitistical differences between 

the classifiers the decision differences and agreements between the two classifiers form a contingency 

table.  

 

 Classifier 2: Positive Classifier 2: Negative 

Classifier 1: Positive a b 

Classifier 1: Negative c D 

 

where a is the number of instances that both classifier 1 and classifier 2 predict correct, b is the number of 

instances that classifier 1 predicts correct and classifier 2 predict wrong, c is the number of instances that 

classifier 1 predicts wrong and classifier 2 predict correct and d is the number of instances that both 

classifier 1 and classifier 2 predict wrong. In order to compute the McNemar test statistic the following 

formula is applied: 

 

Under the null hypothesis, that the two classifiers have no significant statistical differences  has a chi-

squared distribution with 1 degree of freedom. If the  result is significant the null hypothesis is rejected, 

thus the classifiers have significant differences. 

In Table 11 the results of the five most commonly used classifiers with various parameter values are shown. 

As in the methods testing in Table 12 the McNemar tests are depicted in order to notice whether the 

classifiers have significant differences or not. The classifiers depicted are the ones that had the largest 

accuracy from each algorithm. 

In Table 13 the results of the classifiers are depicted when the features of each dataset are restricted using 

the Wrapper technique. 
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Table 7: Results of several methods when the stratified balanced dataset is used 

 
Demographics Anthropometrical 

Drugs 

Demographics Anthropometrical 

Drugs Physical Findings 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography Genetics 

Genetics 

Method Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 

Bayes Network 81.36% 67.13% 74.23% 81.26% 67.13% 74.18% 78.97% 67.23% 73.09% 81.44% 71.39% 76.40% 81.54% 74.75% 78.14% 56.83% 64.16% 60.50% 

Naive Bayes 78.67% 70.30% 74.47% 77.77% 69.70% 73.73% 77.68% 62.28% 69.96% 80.35% 63.96% 72.14% 81.25% 64.55% 72.88% 59.90% 55.84% 57.87% 

Multilayer Perceptron 68.91% 68.81% 68.87% 68.73% 67.52% 68.13% 72.51% 67.03% 69.76% 76.17% 71.19% 73.68% 78.45% 73.07% 75.76% 66.14% 55.05% 60.59% 

RBF Network 75.18% 67.43% 71.30% 73.99% 67.43% 70.70% 76.49% 62.57% 69.52% 77.18% 65.05% 71.10% 77.77% 67.23% 72.49% 58.42% 57.52% 57.97% 

K Nearest Neighbours 67.73% 56.93% 62.33% 69.12% 55.84% 62.47% 67.93% 60.00% 63.96% 73.19% 63.37% 68.27% 76.56% 60.69% 68.61% 70.59% 42.77% 56.68% 

Voting Feature Intervals 82.25% 65.84% 74.03% 81.85% 65.74% 73.78% 74.89% 67.33% 71.10% 77.86% 71.68% 74.77% 80.94% 70.79% 75.86% 75.45% 43.17% 59.31% 

Decision Table 80.49% 66.83% 73.64% 80.49% 66.83% 73.64% 79.79% 65.25% 72.50% 87.01% 69.80% 78.39% 91.46% 71.09% 81.26% 70.10% 48.91% 59.50% 

Decision Table Naive Bayes 

Combination 
78.08% 65.45% 71.75% 78.28% 65.84% 72.05% 76.20% 65.64% 70.91% 83.14% 71.88% 77.49% 85.82% 74.65% 80.22% 67.82% 52.57% 60.20% 

RIPPER 78.99% 64.46% 71.70% 80.88% 64.16% 72.49% 76.22% 63.37% 69.77% 82.44% 67.43% 74.91% 87.50% 69.01% 78.24% 65.15% 47.13% 56.14% 

Non Nested Generalised 

Exemplars 
67.05% 67.33% 67.19% 69.63% 67.92% 68.77% 63.77% 69.80% 66.79% 69.91% 71.58% 70.75% 76.18% 72.67% 74.42% 68.12% 43.47% 55.79% 

PART 71.31% 64.75% 68.03% 68.63% 67.62% 68.13% 70.52% 66.63% 68.58% 75.17% 71.78% 73.48% 75.38% 72.97% 74.17% 57.92% 53.66% 55.79% 

C 4.5 80.08% 63.66% 71.85% 76.29% 64.55% 70.41% 71.43% 67.03% 69.22% 76.07% 71.98% 74.03% 74.87% 71.39% 73.13% 60.30% 52.38% 56.34% 

Random Forest 78.37% 63.07% 70.71% 79.07% 63.56% 71.30% 79.75% 66.04% 72.89% 82.24% 67.23% 74.72% 81.73% 67.82% 74.77% 56.93% 56.73% 56.83% 

Random Tree 66.06% 63.56% 64.81% 64.38% 62.97% 63.67% 65.17% 59.90% 62.53% 66.94% 65.84% 66.39% 66.64% 65.45% 66.04% 58.22% 56.24% 57.23% 
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Table 8: Results of Random forest, c 4.5 part, Multilayer perceptron and Bayes Network using different parameter values and stratified balanced 

datasets 

 Demographics Anthropometrical Drugs 
Demographics Anthropometrical Drugs 

Physical Findings 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Echocardiography 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Echocardiography Genetics 

Genetics 

Method Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 

Random Forest (10 Trees) 78.37% 63.07% 70.71% 79.07% 63.56% 71.30% 79.75% 66.04% 72.89% 82.24% 67.23% 74.72% 81.73% 67.82% 74.77% 56.93% 56.73% 56.83% 

Random Forest (20 Trees) 77.48% 63.96% 70.71% 77.58% 64.55% 71.06% 79.17% 66.53% 72.84% 82.53% 69.31% 75.91% 81.73% 69.11% 75.41% 58.12% 57.23% 57.67% 

Random Forest (30 Trees) 78.08% 64.36% 71.20% 77.38% 65.54% 71.45% 78.77% 67.33% 73.04% 85.01% 70.40% 77.69% 81.63% 70.79% 76.20% 57.82% 57.82% 57.82% 

Random Forest (40 Trees) 77.68% 64.65% 71.16% 78.18% 66.34% 72.24% 78.97% 66.14% 72.54% 84.12% 70.79% 77.44% 82.53% 70.89% 76.70% 57.82% 57.03% 57.43% 

Random Forest (50trees) 76.59% 65.64% 71.10% 78.28% 66.04% 72.15% 79.37% 66.93% 73.14% 84.42% 71.09% 77.74% 83.23% 71.09% 77.15% 58.32% 57.62% 57.97% 

C 4.5 ( Min No Of 

Instances/Leaf: 2) 
82.75% 64.55% 73.64% 81.47% 64.26% 72.84% 80.09% 64.65% 72.35% 86.22% 69.80% 77.99% 86.51% 68.61% 77.55% 60.59% 48.51% 54.55% 

C 4.5 ( Min No Of 

Instances/Leaf: 5) 
83.24% 64.55% 73.88% 81.66% 63.66% 72.64% 81.07% 62.57% 71.80% 86.81% 67.62% 77.20% 86.52% 68.02% 77.25% 59.11% 45.74% 52.43% 

C 4.5 ( Min No Of 

Instances/Leaf: 10) 
84.14% 60.40% 72.24% 83.94% 61.19% 72.54% 83.35% 60.40% 71.85% 88.30% 66.04% 77.15% 87.80% 66.14% 76.95% 57.23% 47.23% 52.23% 

C 4.5 ( Min No Of 

Instances/Leaf: 20) 
77.90% 60.50% 69.17% 78.40% 60.10% 69.22% 80.87% 57.43% 69.12% 85.03% 65.05% 75.01% 83.94% 64.16% 74.02% 59.31% 44.26% 51.78% 

Part (Min No Of 

Instances/Rule: 2) 
79.08% 63.17% 71.11% 76.99% 64.85% 70.91% 76.69% 63.47% 70.06% 83.23% 68.22% 75.71% 82.32% 69.80% 76.05% 58.51% 51.49% 55.00% 

Part (Min No Of 

Instances/Rule: 5) 
81.15% 64.36% 72.74% 81.16% 63.47% 72.30% 80.46% 62.57% 71.50% 87.10% 65.94% 76.50% 86.19% 68.12% 77.14% 57.72% 48.91% 53.32% 

Part (Min No Of 

Instances/Rule: 10) 
80.87% 60.89% 70.86% 81.46% 60.00% 70.71% 81.47% 62.77% 72.09% 88.00% 64.16% 76.05% 86.21% 66.14% 76.15% 57.62% 48.81% 53.22% 

Part (Min No Of 

Instances/Rule: 20) 
77.21% 63.37% 70.26% 77.81% 62.48% 70.11% 79.49% 61.68% 70.56% 85.43% 67.13% 76.25% 84.13% 67.62% 75.85% 64.26% 39.01% 51.63% 

Decision Table (Search 

Method: Best First) 
80.49% 66.83% 73.64% 80.49% 66.83% 73.64% 79.79% 65.25% 72.50% 87.01% 69.80% 78.39% 91.46% 71.09% 81.26% 70.10% 48.91% 59.50% 

Decision Table (Search 

Method: Greedy Stepwise) 
80.78% 66.83% 73.78% 80.78% 66.83% 73.78% 80.09% 65.25% 72.64% 86.92% 69.31% 78.09% 92.06% 70.40% 81.21% 70.69% 50.99% 60.84% 

Decision Table (Search 

Method: Linear Forward 

Selection) 

80.59% 66.44% 73.49% 80.68% 66.14% 73.39% 79.79% 64.75% 72.25% 87.21% 69.41% 78.29% 90.07% 72.18% 81.11% 70.40% 49.31% 59.85% 

Decision Table (Search 

Method: Ranks Search) 
80.29% 65.54% 72.89% 80.09% 65.64% 72.84% 79.69% 64.36% 72.00% 84.94% 70.00% 77.45% 86.03% 69.50% 77.74% 75.25% 45.54% 60.40% 

Decision Table (Search 

Method: Scatter Search) 
79.79% 67.03% 73.39% 80.19% 66.93% 73.54% 79.10% 66.73% 72.89% 86.72% 69.80% 78.24% 89.48% 70.79% 80.12% 68.81% 52.28% 60.54% 
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 Demographics Anthropometrical Drugs 
Demographics Anthropometrical Drugs 

Physical Findings 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Echocardiography 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Echocardiography Genetics 

Genetics 

Method Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 

Decision Table (Search 

Method: Subset Size Forward 

Selection) 

79.89% 66.24% 73.04% 79.20% 66.73% 72.94% 78.90% 65.05% 71.95% 85.04% 69.80% 77.40% 90.47% 70.69% 80.57% 74.06% 47.62% 60.84% 

Bayes Network (Method For 

Searching Network Structures: 

Ci Search Algorithm) 

81.36% 67.13% 74.23% 81.26% 67.13% 74.18% 78.97% 67.23% 73.09% 81.44% 71.39% 76.40% 81.54% 74.75% 78.14% 56.83% 64.16% 60.50% 

Bayes Network (Method For 

Searching Network Structures: 

Ics Search Algorithm) 

80.07% 65.64% 72.84% 79.97% 65.74% 72.84% 78.17% 65.94% 72.05% 81.64% 71.49% 76.55% 81.93% 74.36% 78.13% 66.04% 52.18% 59.11% 

Bayes Network (Method For 

Searching Network Structures: 

Naive Bayes) 

81.36% 67.13% 74.23% 81.26% 67.13% 74.18% 78.97% 67.23% 73.09% 81.44% 71.39% 76.40% 81.54% 74.75% 78.14% 56.83% 64.16% 60.50% 

Bayes Network (Method For 

Searching Network Structures: 

Global Hill Climber) 

81.55% 67.62% 74.58% 81.55% 67.72% 74.62% 79.57% 67.03% 73.29% 82.14% 71.29% 76.70% 82.43% 73.76% 78.09% 57.13% 63.76% 60.45% 

Bayes Network (Method For 

Searching Network Structures: 

Global K2) 

81.36% 67.13% 74.23% 81.26% 67.13% 74.18% 78.97% 67.23% 73.09% 81.44% 71.39% 76.40% 81.54% 74.75% 78.14% 56.83% 64.16% 60.50% 

Bayes Network (Method For 

Searching Network Structures: 

Global Repeated Hill climber) 

81.55% 67.62% 74.58% 81.55% 67.72% 74.62% 79.57% 67.03% 73.29% 82.14% 71.29% 76.70% 82.43% 73.76% 78.09% 57.13% 63.76% 60.45% 

Bayes Network (Method For 

Searching Network Structures: 

Global Simulated Annealing) 

73.11% 64.85% 68.97% 74.90% 67.23% 71.05% 74.70% 66.04% 70.36% 64.40% 54.75% 59.57% 0.00% 0.00% 0.00% 61.68% 61.88% 61.78% 

Bayes Network (Method For 

Searching Network Structures: 

Global Tabu search) 

81.55% 67.62% 74.58% 81.55% 67.72% 74.62% 79.57% 67.03% 73.29% 82.14% 71.29% 76.70% 82.53% 73.86% 78.19% 57.13% 63.76% 60.45% 

Bayes Network (Method For 

Searching Network Structures: 

Local Hill Climber) 

82.94% 64.85% 73.88% 82.84% 64.95% 73.88% 79.67% 64.36% 72.00% 81.75% 72.08% 76.90% 83.72% 73.66% 78.68% 74.26% 38.81% 56.53% 

Bayes Network (Method For 

Searching Network Structures: 

Local K2) 

81.36% 67.13% 74.23% 81.26% 67.13% 74.18% 78.97% 67.23% 73.09% 81.44% 71.39% 76.40% 81.54% 74.75% 78.14% 56.83% 64.16% 60.50% 

Bayes Network (Method For 

Searching Network Structures: 

Local Lagd Hill Climber) 

82.84% 64.85% 73.83% 82.84% 64.95% 73.88% 79.67% 64.36% 72.00% 81.75% 72.08% 76.90% 83.72% 73.66% 78.68% 74.06% 40.10% 57.08% 
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 Demographics Anthropometrical Drugs 
Demographics Anthropometrical Drugs 

Physical Findings 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Echocardiography 

Demographics Anthropometrical Drugs 

Physical Findings Biochemical 

Echocardiography Genetics 

Genetics 

Method Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 

Bayes Network (Method For 

Searching Network Structures: 

Local Repeated Hill climber) 

82.94% 64.85% 73.88% 82.84% 64.95% 73.88% 79.67% 64.36% 72.00% 81.75% 72.08% 76.90% 83.72% 73.66% 78.68% 74.26% 38.81% 56.53% 

Bayes Network (Method For 

Searching Network Structures: 

Local Simulated Annealing) 

83.05% 66.63% 74.82% 81.77% 66.44% 74.08% 82.45% 65.25% 73.83% 84.22% 70.79% 77.49% 0.00% 0.00% 0.00% 73.56% 45.54% 59.55% 

Bayes Network (Method For 

Searching Network Structures: 

Local Tabu search) 

81.65% 67.43% 74.53% 81.85% 67.52% 74.67% 79.17% 66.93% 73.04% 82.14% 71.68% 76.90% 82.73% 72.87% 77.79% 78.42% 35.35% 56.88% 

Bayes Network (Method For 

Searching Network Structures: 

Local Tan) 

78.48% 68.61% 73.53% 78.58% 68.51% 73.53% 77.38% 69.21% 73.28% 81.93% 72.28% 77.09% 81.44% 75.15% 78.29% 59.90% 64.16% 62.03% 

Multilayer Perceptron (1 Hidden 

Layer 2 Neurons) 
71.91% 65.54% 68.72% 70.73% 67.82% 69.27% 71.02% 66.24% 68.62% 78.64% 69.90% 74.27% 75.86% 73.47% 74.66% 64.65% 52.67% 58.66% 

Multilayer Perceptron (1 Hidden 

Layer Neurons = [No Of 

Attributes + No Of Classes]/2) 

68.91% 68.81% 68.87% 68.73% 67.52% 68.13% 72.51% 67.03% 69.76% 76.17% 71.19% 73.68% 78.45% 73.07% 75.76% 66.14% 55.05% 60.59% 

Multilayer Perceptron (1 Hidden 

Layer Neurons = No Of 

Attributes) 

68.22% 66.63% 67.43% 72.20% 67.72% 69.96% 73.10% 66.73% 69.91% 76.56% 70.50% 73.53% 78.54% 72.57% 75.56% 64.26% 55.05% 59.65% 

Multilayer Perceptron (1 Hidden 

Layer Neurons = No Of 

Attributes + No Of Classes) 

68.83% 66.14% 67.48% 69.92% 68.51% 69.22% 73.50% 67.62% 70.55% 77.36% 70.79% 74.07% 80.03% 72.48% 76.25% 63.37% 55.54% 59.46% 
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Table 9: Results of several methods using dataset balanced with SMOTE algorithm. 

  

Demographics Anthropometrical Drugs 
Demographics Anthropometrical 

Drugs Physical Findings 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography Genetics 

Genetics 

METHOD Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy 

Bayes Network 
95.19% 87.49% 91.36% 99.02% 90.37% 94.72% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 57.17% 89.02% 73.01% 

Naive Bayes 
84.06% 85.87% 84.96% 83.97% 85.87% 84.92% 74.98% 86.41% 80.66% 78.90% 87.04% 82.95% 82.37% 88.03% 85.18% 62.33% 88.66% 75.43% 

Multilayer Perceptron 
89.05% 89.02% 89.03% 90.03% 89.38% 89.70% 91.54% 91.18% 91.36% 91.81% 91.63% 91.72% 94.39% 92.17% 93.29% 71.15% 87.58% 79.32% 

RBF Network 
83.97% 88.39% 86.17% 84.59% 88.12% 86.35% 79.96% 88.03% 83.97% 83.35% 88.48% 85.90% 86.20% 89.56% 87.87% 60.73% 88.75% 74.66% 

K Nearest Neighbours 
83.97% 89.29% 86.62% 83.97% 90.82% 87.38% 81.75% 91.45% 86.57% 84.59% 91.54% 88.05% 85.49% 92.71% 89.08% 61.89% 88.75% 75.25% 

Voting Feature Intervals 
84.06% 85.87% 84.96% 83.08% 85.87% 84.47% 84.77% 85.42% 85.09% 87.44% 90.19% 88.81% 88.25% 92.35% 90.29% 50.13% 93.07% 71.49% 

Decision Table 
93.05% 87.94% 90.51% 97.33% 85.60% 91.50% 99.73% 82.90% 91.36% 99.73% 82.90% 91.36% 99.55% 82.99% 91.32% 71.15% 87.58% 79.32% 

Decision Table Naive 

Bayes Combination 
94.57% 89.38% 91.99% 98.40% 90.46% 94.45% 100.00% 90.82% 95.43% 100.00% 90.73% 95.39% 100.00% 90.73% 95.39% 71.15% 87.58% 79.32% 

RIPPER 
94.84% 81.19% 88.05% 94.48% 83.98% 89.26% 90.20% 84.43% 87.33% 93.14% 86.68% 89.93% 92.52% 87.58% 90.06% 71.15% 87.58% 79.32% 

Non Nested Generalised 

Exemplars 
87.62% 87.85% 87.74% 85.66% 88.03% 86.84% 87.36% 77.50% 82.45% 88.42% 77.50% 82.99% 92.52% 79.57% 86.08% 71.15% 60.94% 66.07% 

PART 
89.31% 89.74% 89.53% 90.12% 89.92% 90.02% 90.74% 88.75% 89.75% 88.25% 89.47% 88.85% 90.92% 91.45% 91.18% 62.24% 88.66% 75.38% 

C 4.5 
92.43% 88.84% 90.64% 91.45% 89.02% 90.24% 91.45% 88.48% 89.97% 90.83% 88.21% 89.53% 92.25% 91.27% 91.76% 61.71% 88.75% 75.16% 

Random Forest 
95.37% 89.47% 92.44% 95.81% 89.38% 92.61% 96.79% 90.55% 93.69% 95.90% 91.18% 93.55% 97.95% 91.18% 94.58% 61.89% 88.75% 75.25% 

Random Tree 
84.95% 87.04% 85.99% 85.22% 88.30% 86.75% 85.40% 86.41% 85.90% 86.46% 88.39% 87.42% 85.93% 88.39% 87.15% 62.15% 88.66% 75.34% 
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Table 10: Mc Nemar Test of several methods using dataset balanced with SMOTE algorithm 

DEMOGRAPHICS ANTHROPOMETRICAL DRUGS 
DEMOGRAPHICS ANTHROPOMETRICAL DRUGS PHYSICAL FINDINGS 

BIOCHEMICAL ECHOCARDIOGRAPHIC 

  
Bayes 

Network 

Decision 

Table 

C 

4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 
  

Bayes 

Network 

Decision 

Table 

C 

4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

 Bayes 

Network 
NS S S S S S 

 Bayes 

Network 
NS NS S S S S 

 Decision 

Table 
S NS S S S S 

 Decision 

Table 
NS NS S S S S 

 C 4.5 S S NS NS S S  C 4.5 S S NS S S S 

 Multilayer 

Perceptron 
S S NS NS S S 

 Multilayer 

Perceptron 
S S S NS S S 

 PART S S S S NS S  PART S S S S NS S 

 Random 

Forest 
S S S S S NS 

 Random 

Forest 
S S S S S NS 

DEMOGRAPHICS ANTHROPOMETRICAL DRUGS PHYSICAL FINDINGS 
DEMOGRAPHICS ANTHROPOMETRICAL DRUGS PHYSICAL FINDINGS 

BIOCHEMICAL ECHOCARDIOGRAPHIC GENETICS 

  
Bayes 

Network 

Decision 

Table 

C 

4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 
  

Bayes 

Network 

Decision 

Table 

C 

4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

 Bayes 

Network 
NS S S S S S 

 Bayes 

Network 
NS NS S S S S 

 Decision 

Table 
S NS S S S S 

 Decision 

Table 
NS NS S S S S 

 C 4.5 S S NS S S S  C 4.5 S S NS S S S 

 Multilayer 

Perceptron 
S S S NS S S 

 Multilayer 

Perceptron 
S S S NS S S 

 PART S S S S NS S  PART S S S S NS S 

 Random 

Forest 
S S S S S NS 

 Random 

Forest 
S S S S S NS 

DEMOGRAPHICS ANTHROPOMETRICAL DRUGS PHYSICAL FINDINGS 

BIOCHEMICAL 
GENETICS 

  
Bayes 

Network 

Decision 

Table 

C 

4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 
  

Bayes 

Network 

Decision 

Table 

C 

4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

 Bayes 

Network 
NS NS NS S S S 

 Bayes 

Network 
NS S S S S S 

 Decision 

Table 
NS NS NS S S S 

 Decision 

Table 
S NS S NS S S 

 C 4.5 NS NS NS S S S  C 4.5 S S NS S NS NS 

 Multilayer 

Perceptron 
S S S NS S S 

 Multilayer 

Perceptron 
S NS S NS S S 

 PART S S S S NS S  PART S S NS S NS NS 

 Random 

Forest 
S S S S S NS 

 Random 

Forest 
S S NS S NS NS 
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Table 11 Results of random forest, C 4.5 Part, Multilayer Perceptron and Bayes Network using different parameter values and dataset balanced with 

SMOTE. 

  

Demographics Anthropometrical 

Drugs 

Demographics Anthropometrical 

Drugs Physical Findings 

  

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography Genetics 

Genetics 

- 

METHOD Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy 

Random Forest (2 Trees)) 
95.64% 81.91% 88.81% 96.71% 80.92% 88.85% 93.50% 77.50% 85.54% 93.59% 79.21% 86.44% 94.48% 78.40% 86.48% 62.15% 88.66% 75.34% 

Random Forest (10 Trees) 
95.37% 89.47% 92.44% 95.81% 89.38% 92.61% 96.79% 90.55% 93.69% 95.90% 91.18% 93.55% 97.95% 91.18% 94.58% 61.89% 88.75% 75.25% 

Random Forest (20 Trees) 
94.92% 89.92% 92.44% 96.44% 90.64% 93.55% 97.68% 91.27% 94.49% 96.97% 92.08% 94.54% 98.22% 91.27% 94.76% 61.98% 88.75% 75.29% 

Random Forest (30 Trees) 
94.48% 90.28% 92.39% 96.44% 90.64% 93.55% 97.86% 91.45% 94.67% 97.24% 92.26% 94.76% 98.04% 91.36% 94.72% 61.98% 88.75% 75.29% 

Random Forest (40 Trees) 
95.01% 90.46% 92.75% 96.53% 90.82% 93.69% 97.42% 91.36% 94.40% 97.33% 92.17% 94.76% 98.13% 91.45% 94.81% 61.98% 88.75% 75.29% 

Random Forest (50Trees) 
95.28% 90.46% 92.88% 96.71% 90.73% 93.73% 97.86% 91.45% 94.67% 97.06% 91.90% 94.49% 98.22% 91.63% 94.94% 61.98% 88.75% 75.29% 

C 4.5 ( Min Number Of 

Instances/Leaf: 2) 
91.54% 87.94% 89.75% 91.63% 86.68% 89.17% 90.38% 88.21% 89.30% 89.40% 88.75% 89.08% 94.48% 90.19% 92.35% 61.53% 88.75% 75.07% 

C 4.5 ( Min Number Of 

Instances/Leaf: 5) 
89.85% 87.13% 88.50% 91.27% 86.41% 88.85% 90.29% 88.12% 89.21% 88.42% 88.03% 88.23% 92.97% 90.37% 91.67% 61.35% 88.84% 75.02% 

C 4.5 ( Min Number Of 

Instances/Leaf: 10) 
89.14% 86.14% 87.65% 90.74% 85.42% 88.09% 89.49% 86.68% 88.09% 88.07% 87.67% 87.87% 90.92% 89.65% 90.29% 61.35% 88.84% 75.02% 

C 4.5 ( Min Number Of 

Instances/Leaf: 20) 
86.02% 86.86% 86.44% 86.38% 85.24% 85.81% 87.18% 84.97% 86.08% 86.64% 86.59% 86.62% 87.98% 89.38% 88.68% 61.35% 88.84% 75.02% 

PART (Min Number Of 

Instances/Rule: 2) 
92.61% 88.21% 90.42% 93.05% 88.30% 90.69% 94.12% 87.76% 90.96% 92.88% 88.03% 90.47% 94.66% 90.82% 92.75% 62.24% 88.66% 75.38% 

PART (Min Number Of 

Instances/Rule: 5) 
91.99% 86.50% 89.26% 91.45% 86.41% 88.94% 92.43% 86.68% 89.57% 92.79% 88.84% 90.82% 92.34% 90.73% 91.54% 61.80% 88.75% 75.20% 

PART (Min Number Of 

Instances/Rule: 10) 
90.65% 86.41% 88.54% 92.25% 85.06% 88.68% 90.38% 86.68% 88.54% 90.65% 87.76% 89.21% 90.74% 88.66% 89.70% 61.80% 88.75% 75.20% 

PART (Min Number Of 

Instances/Rule: 20) 
87.27% 85.78% 86.53% 85.75% 85.51% 85.63% 88.16% 85.06% 86.62% 88.51% 86.41% 87.47% 90.20% 88.39% 89.30% 61.80% 88.75% 75.20% 

PART (Min Number Of 

Instances/Rule: 25) 
86.38% 87.94% 87.15% 89.49% 85.60% 87.56% 91.01% 85.42% 88.23% 89.85% 86.59% 88.23% 90.03% 89.02% 89.53% 61.80% 88.75% 75.20% 

Decision Table (Search Method: 

Best first) 
93.05% 87.94% 90.51% 97.33% 85.60% 91.50% 99.73% 82.90% 91.36% 99.73% 82.90% 91.36% 99.55% 82.99% 91.32% 71.15% 87.58% 79.32% 
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Demographics Anthropometrical 

Drugs 

Demographics Anthropometrical 

Drugs Physical Findings 

  

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography Genetics 

Genetics 

- 

METHOD Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy 

Decision Table (Search Method: 

Greedy stepwise) 
93.50% 87.94% 90.73% 96.97% 85.51% 91.27% 99.73% 82.90% 91.36% 99.73% 82.90% 91.36% 99.73% 82.90% 91.36% 68.21% 87.67% 77.89% 

Decision Table (Search Method: 

Linear forward selection) 
93.05% 87.94% 90.51% 97.33% 85.60% 91.50% 99.64% 82.54% 91.14% 99.64% 82.54% 91.14% 99.47% 82.63% 91.09% 71.15% 87.58% 79.32% 

Decision Table (Search Method: 

Rank search) 
93.77% 87.67% 90.73% 97.68% 82.45% 90.11% 95.28% 86.14% 90.73% 95.46% 85.96% 90.73% 95.46% 85.87% 90.69% 71.15% 87.58% 79.32% 

Decision Table (Search Method: 

Scattersearchv1) 
92.97% 87.85% 90.42% 95.99% 84.34% 90.20% 99.20% 82.72% 91.00% 99.55% 83.26% 91.45% 98.93% 83.17% 91.09% 62.51% 87.94% 75.16% 

Decision Table (Search Method: 

Subsetsize forward selection) 
93.14% 87.85% 90.51% 96.97% 85.15% 91.09% 99.55% 82.09% 90.87% 99.55% 82.09% 90.87% 99.73% 82.09% 90.96% 67.14% 87.85% 77.44% 

Bayes Network (Method For 

Searching Network Structures: Ci 

search algorithm) 

95.19% 87.49% 91.36% 99.02% 90.37% 94.72% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 57.17% 89.02% 73.01% 

Bayes Network (Method For 

Searching Network Structures: Ics 

search algorithm) 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 57.17% 88.93% 72.96% 

Bayes Network (Method For 

Searching Network Structures: 

Naive Bayes) 

95.19% 87.49% 91.36% 99.02% 90.37% 94.72% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 57.17% 89.02% 73.01% 

Bayes Network (Method For 

Searching Network Structures: 

Global hill climber) 

95.01% 87.67% 91.36% 98.84% 90.28% 94.58% 100.00% 90.91% 95.48% 99.91% 90.91% 95.43% 99.91% 90.91% 95.43% 57.17% 89.02% 73.01% 

Bayes Network (Method For 

Searching Network Structures: 

Global k2) 

95.19% 87.49% 91.36% 99.02% 90.37% 94.72% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 57.17% 89.02% 73.01% 

Bayes Network (Method For 

Searching Network Structures: 

Global repeated hill climber) 

95.01% 87.67% 91.36% 98.84% 90.28% 94.58% 100.00% 90.91% 95.48% 99.91% 90.91% 95.43% 99.91% 90.91% 95.43% 57.17% 89.02% 73.01% 

Bayes Network (Method For 

Searching Network Structures: 

Global simulated annealing) 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 61.44% 88.75% 75.02% 

Bayes Network (Method For 

Searching Network Structures: 

Global Tabu search) 

95.01% 87.67% 91.36% 98.84% 90.28% 94.58% 100.00% 90.91% 95.48% 99.91% 90.91% 95.43% 99.91% 90.91% 95.43% 57.17% 89.02% 73.01% 

Bayes Network (Method For 

Searching Network Structures: 
95.19% 87.49% 91.36% 99.02% 90.37% 94.72% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 57.17% 89.02% 73.01% 
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Demographics Anthropometrical 

Drugs 

Demographics Anthropometrical 

Drugs Physical Findings 

  

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography 

Demographics Anthropometrical 

Drugs Physical Findings Biochemical 

Echocardiography Genetics 

Genetics 

- 

METHOD Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy Specificity  Sensitivity Accuracy 

Local hill climber) 

Bayes Network (Method For 

Searching Network Structures: Lk2) 
95.19% 87.49% 91.36% 99.02% 90.37% 94.72% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 57.17% 89.02% 73.01% 

Bayes Network (Method For 

Searching Network Structures: 

Local lagd hill climber) 

95.46% 88.93% 92.21% 99.20% 90.37% 94.81% 100.00% 90.91% 95.48% 99.91% 90.91% 95.43% 100.00% 90.91% 95.48% 56.63% 89.11% 72.78% 

Bayes Network (Method For 

Searching Network Structures: 

Local repeated hill climber) 

95.19% 87.49% 91.36% 99.02% 90.37% 94.72% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 57.17% 89.02% 73.01% 

Bayes Network (Method For 

Searching Network Structures: 

Local simulated annealing) 

0.00% 0.00% 0.00% 99.38% 90.82% 95.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 60.91% 88.84% 74.80% 

Bayes Network (Method For 

Searching Network Structures: 

Local tabu search) 

95.10% 87.49% 91.32% 98.84% 90.37% 94.63% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 56.72% 89.11% 72.83% 

Bayes Network (Method For 

Searching Network Structures: 

Local Tan) 

96.88% 88.21% 92.57% 99.29% 90.64% 94.99% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 100.00% 90.91% 95.48% 61.44% 88.75% 75.02% 

Multilayer Perceptron (1 Hidden 

Layer Neurons = [Number Of 

Attributes + Number Of Classes]/2) 

89.05% 89.02% 89.03% 90.03% 89.38% 89.70% 91.54% 91.18% 91.36% 91.81% 91.63% 91.72% 94.39% 92.17% 93.29% 71.15% 87.58% 79.32% 

Multilayer Perceptron (1 Hidden 

Layer Neurons = Number Of 

Attributes) 

90.03% 87.94% 88.99% 89.31% 90.01% 89.66% 91.81% 91.81% 91.81% 93.05% 92.44% 92.75% 95.19% 92.62% 93.91% 71.15% 87.58% 79.32% 

Multilayer Perceptron (1 Hidden 

Layer Neurons = Number Of 

Attributes + Number Of Classes) 

89.76% 88.30% 89.03% 89.49% 89.20% 89.35% 92.52% 91.36% 91.94% 92.61% 92.17% 92.39% 94.57% 91.90% 93.24% 71.15% 87.58% 79.32% 

Multilayer Perceptron (1 Hidden 

Layer 2 Neurons) 
87.36% 88.12% 87.74% 86.20% 89.38% 87.78% 89.67% 89.38% 89.53% 90.56% 90.64% 90.60% 94.03% 91.18% 92.61% 70.35% 88.21% 79.23% 
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Table 12: Mc Nemar Test of random forest, c 4.5 part, multilayer perceptron and bayes network with 

using different parameter values and dataset balanced with SMOTE. 

 

 

 

DEMOGRAPHICS ANTHROPOMETRICAL DRUGS 
DEMOGRAPHICS ANTHROPOMETRICAL DRUGS PHYSICAL FINDINGS BIOCHEMICAL 

ECHOCARDIOGRAPHIC 

  
Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 
  

Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

 Bayes Network NS NS NS S NS S  Bayes Network NS S S S S S 

 Decision Table NS NS NS S S S  Decision Table S NS NS S NS S 

 C 4.5 NS NS NS S S S  C 4.5 S NS NS S NS S 

 Multilayer 

Perceptron 
S S S NS S S 

 Multilayer 

Perceptron 
S S S NS S S 

 PART NS S S S NS S  PART S NS NS S NS S 

 Random Forest S S S S S NS  Random Forest S S S S S NS 

DEMOGRAPHICS ANTHROPOMETRICAL DRUGS PHYSICAL FINDINGS 
DEMOGRAPHICS ANTHROPOMETRICAL DRUGS PHYSICAL FINDINGS BIOCHEMICAL 

ECHOCARDIOGRAPHIC GENETICS 

  
Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 
  

Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

 Bayes Network NS S S S S S  Bayes Network NS NS S S S S 

 Decision Table S NS S S NS S  Decision Table NS NS S S S S 

 C 4.5 S S NS S S S  C 4.5 S S NS S NS S 

 Multilayer 

Perceptron 
S S S NS S S 

 Multilayer 

Perceptron 
S S S NS S S 

 PART S NS S S NS S  PART S S NS S NS S 

 Random Forest S S S S S NS  Random Forest S S S S S NS 

DEMOGRAPHICS ANTHROPOMETRICAL DRUGS PHYSICAL FINDINGS BIOCHEMICAL GENETICS 

  
Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 
  

Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

 Bayes Network NS NS S S NS S  Bayes Network NS S S S S S 

 Decision Table NS NS S S NS S  Decision Table S NS S NS S S 

 C 4.5 S S NS S S S  C 4.5 S S NS S NS NS 

 Multilayer 

Perceptron 
S S S NS S S 

 Multilayer 

Perceptron 
S NS S NS S S 

 PART NS NS S S NS S  PART S S NS S NS NS 

 Random Forest S S S S S NS  Random Forest S S NS S NS NS 
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Table 13: Results of random forest, c 4.5, Part and bayes network with using different parameter values and dataset balanced with SMOTE using 

wrapper 

  
DEMOGRAPHICS ANTHROPOMETRICAL 

DRUGS 

DEMOGRAPHICS 

ANTHROPOMETRICAL DRUGS 

PHYSICAL FINDINGS 

DEMOGRAPHICS 

ANTHROPOMETRICAL DRUGS 

PHYSICAL FINDINGS BIOCHEMICAL 

DEMOGRAPHICS 

ANTHROPOMETRICAL DRUGS 

PHYSICAL FINDINGS BIOCHEMICAL 

ECHOCARDIOGRAPHIC 

DEMOGRAPHICS 

ANTHROPOMETRICAL DRUGS 

PHYSICAL FINDINGS BIOCHEMICAL 

ECHOCARDIOGRAPHIC GENETICS 

GENETICS 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Wrapper C 4.5 83.45% 61.19% 72.30% 82.86% 61.49% 72.15% 82.66% 61.58% 72.10% 86.72% 67.62% 77.15% 87.90% 68.71% 78.29% 61.78% 44.95% 53.37% 

Wrapper Decision 

Table  
82.37% 63.17% 72.74% 82.86% 63.47% 73.14% 82.57% 63.17% 72.84% 86.43% 69.70% 78.04% 91.96% 70.00% 80.96% 72.38% 48.81% 60.59% 

Wrapper Part 83.95% 59.90% 71.90% 83.06% 60.30% 71.65% 83.35% 60.99% 72.15% 87.81% 67.03% 77.40% 88.70% 67.92% 78.29% 60.69% 46.44% 53.56% 

Wrapper Bayes 81.67% 64.95% 73.29% 81.57% 64.95% 73.24% 80.68% 65.54% 73.09% 84.34% 72.08% 78.19% 86.22% 73.66% 79.92% 62.28% 57.62% 59.95% 

Wrapper RF 81.96% 62.28% 72.10% 80.46% 61.29% 70.86% 77.09% 64.06% 70.56% 82.73% 68.12% 75.41% 81.94% 69.31% 75.61% 61.29% 55.45% 58.37% 
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The advantages and disadvantages of each classifier were explained to the clinicians. After the results and 

the classifiers’ outputs were presented to the users it was requested that the decision made by the 

classifier must be presented clearly (transparently), thus a rule based classifier must be adopted. The 

clinicians reviewed the rules produced by the rule based classifiers (PART, RIPPER, Decision Table, C 4.5, 

Random Tree and Random Forest). One more remark was that not all rules were reasonable from a medical 

point of view and it was decided to use a classifier that could be edited (permit the user to delete rules that 

were not correct and to add new rules that were common knowledge). Since trees cannot be edited 

(deleting a leaf will lead to unclassified instances and addition of a new leaf can result a non tree classifier) 

the choice was taken between PART and RIPPER. 

The results of the unbalanced dataset were poor in both accuracy and sensitivity; the classifiers only 

predicted the patients that didn’t develop late onset HF. The stratified balanced datasets yield better 

results in both accuracy and specificity, but rules extracted from those dataset didn’t agree with common 

knowledge, mainly because the datasets were not large enough.  

The results of the classifiers that were built using SMOTE datasets were both more accurate and predicted 

patients with late onset heart failure; still, the disadvantage was that the rules were in conflict with 

common knowledge, because there were a lot of features/ variables in each dataset.  

The results that were produced with the dataset that the Wrapper technique was applied were also poor in 

sensitivity. 

Our next step, in order to overcome the issues mentioned above and improve the accuracy of the 

algorithms, was to restrict the dataset to fewer features; those restricted datasets were provided by the 

doctors. Diabetes, ejection fraction and AMI site that are proven according to literature to be good 

predictors for late onset heart failure were indicated as the first dataset. Doctors also needed to know how 

biochemical data, genetics data and PUFA treatment could improve the accuracy in prediction when used 

in addition with Diabetes, ejection fraction and AMI site, so three more restricted datasets were 

constructed referred as “Diabetes Ejection Fraction AMI Biochemical”, “Diabetes Ejection Fraction AMI 

Genetics”, “Diabetes Ejection Fraction AMI PUFA” in the tables below.  

Clinicians also proposed that it would be interesting to see the accuracy of predicting late onset heart 

failure on patients that are difficult to prognose such as young patients, non diabetic and having ejection 

fraction larger than 40%, using the genetics features. Accordingly, three more datasets were constructed: 

o Genetics for patients with  Ejection Fraction over 40% 

o Genetics for non diabetic patients 

o Genetics for female patients younger than 60 years old or male patients younger than 55 years old. 

 

In Table 14 and Table 15 the results of the datasets restricted by the clinicians and the datasets that include 

the genetics respectively, are depicted and several algorithms are presented; the results are the average of 

the corresponding values of the stratified balanced datasets.  
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In Table 16 and Table 17 the results of algorithms most commonly used in such datasets are shown; the 

results are the average of the corresponding values of the stratified balanced datasets. 

Table 18 and Table 20 show the results of several methodologies when the datasets are balanced using 

SMOTE. Table 18 contains the datasets with Diabetes, ejection fraction AMI and the added features in 

order to test the improvement in accuracy and Table 20 contains the results for the datasets including 

genetics. Tables  19 and 21 contain the McNemar tests for the abovementioned datasets using the best 

classifiers. 

In Tables  22 and  24 the results of the five most commonly used classifiers are depicted. Table 22 contains 

the results of “Diabetes Ejection Fraction AMI Biochemical”, “Diabetes Ejection Fraction AMI Genetics”, and 

“Diabetes Ejection Fraction AMI PUFA” datasets. Table 24 shows the results of “Genetics when Ejection 

Fraction > 40”, “Genetics when Non Diabetic», «Genetics when gender is female and age < 60 or gender is 

male and gender < 55” datasets. In Table 23 and Table 25 the McNemar tests used to compute whether the 

classifiers have significant or not significant differences for the abovementioned datasets are depicted. 
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Table 14: Results of several methods from datasets restricted by clinicians’ feedback using stratified balanced datasets  

  Diabetes Ejection Fraction AMI Diabetes Ejection Fraction AMI Biochemical Diabetes Ejection Fraction AMI Genetics Diabetes Ejection Fraction AMI PUFA 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy 
Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 

Bayes Network 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Naive Bayes 
59.13% 68.95% 64.01% 69.72% 88.93% 79.27% 15.26% 69.81% 73.72% 71.75% 7.74% 57.44% 71.11% 64.23% 0.22% 

Multilayer Perceptron 
58.42% 72.46% 65.40% 81.75% 89.38% 85.54% 20.14% 76.05% 90.19% 83.08% 17.68% 51.56% 86.59% 68.98% 3.58% 

RBF Network 
60.28% 69.13% 64.68% 75.16% 86.68% 80.89% 16.20% 69.90% 70.66% 70.28% 5.60% 56.90% 70.66% 63.74% -0.94% 

K Nearest Neighbors 
59.84% 69.94% 64.86% 75.33% 89.56% 82.41% 17.55% 67.14% 91.81% 79.41% 14.55% 52.72% 85.60% 69.07% 4.21% 

Voting Feature Intervals 
58.06% 69.49% 63.74% 79.79% 93.34% 86.53% 22.78% 54.59% 89.02% 71.71% 7.97% 56.72% 72.91% 64.77% 1.03% 

Decision Table 
61.71% 67.87% 64.77% 98.13% 84.61% 91.41% 26.63% 77.29% 88.21% 82.72% 17.95% 54.23% 85.42% 69.74% 4.97% 

Decision Table Naive Bayes Combination 
59.31% 70.39% 64.82% 99.91% 90.01% 94.99% 30.17% 77.38% 88.03% 82.68% 17.86% 54.23% 85.42% 69.74% 4.92% 

RIPPER 
63.22% 68.86% 66.03% 83.08% 89.74% 86.39% 20.37% 75.96% 85.33% 80.62% 14.59% 56.37% 80.47% 68.35% 2.33% 

Non Nested Generalised Exemplars 
63.31% 56.44% 59.89% 85.31% 80.56% 82.95% 23.05% 73.73% 80.02% 76.86% 16.97% 61.80% 56.98% 59.40% -0.49% 

PART 
60.37% 69.67% 65.00% 82.01% 90.82% 86.39% 21.40% 73.82% 87.13% 80.44% 15.44% 52.27% 86.68% 69.38% 4.39% 

C 4.5 
60.28% 69.58% 64.91% 84.77% 88.48% 86.62% 21.71% 73.02% 87.94% 80.44% 15.53% 52.54% 86.68% 69.52% 4.61% 

Random Forest 
61.09% 69.22% 65.13% 87.27% 91.45% 89.35% 24.22% 74.44% 87.49% 80.93% 15.80% 53.25% 85.60% 69.34% 4.21% 

Random Tree 
60.64% 69.49% 65.04% 83.53% 83.17% 83.35% 18.31% 74.71% 87.76% 81.20% 16.16% 53.34% 85.60% 69.38% 4.34% 
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Table 15: Results of several methods from datasets restricted by clinicians’ feedback feedback including genetics using stratified balanced datasets 

  Genetics when Ejection Fraction > 40 Genetics when Non Diabetic 
Genetics when gender is female and age < 60 

or gender is male and gender < 55 

METHOD 
specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Bayes Network 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Naive Bayes 
58.29% 64.72% 61.63% 56.14% 78.35% 67.68% 88.40% 92.43% 90.37% 

Multilayer Perceptron 
56.07% 80.54% 68.78% 65.59% 81.82% 74.02% 95.30% 95.39% 95.35% 

RBF Network 
65.81% 67.88% 66.89% 62.74% 74.28% 68.74% 88.40% 93.42% 90.85% 

K Nearest Neighbors 
38.29% 85.92% 63.02% 46.83% 93.42% 71.04% 90.91% 93.09% 91.97% 

Voting Feature Intervals 
37.78% 86.23% 62.94% 38.68% 94.50% 67.68% 86.52% 95.72% 91.01% 

Decision Table 
50.09% 84.02% 67.71% 57.96% 89.95% 74.58% 94.36% 95.39% 94.86% 

Decision Table Naive Bayes Combination 
54.36% 82.59% 69.02% 58.21% 89.95% 74.70% 94.36% 95.39% 94.86% 

RIPPER 
45.81% 67.56% 57.11% 45.41% 92.94% 70.11% 94.67% 94.41% 94.54% 

Non Nested Generalised Exemplars 
61.37% 56.96% 59.08% 60.41% 68.54% 64.64% 95.92% 93.42% 94.70% 

PART 
53.33% 73.89% 64.01% 51.36% 91.63% 72.28% 91.22% 95.07% 93.10% 

C 4.5 
51.11% 66.14% 58.92% 52.91% 91.27% 72.84% 90.28% 96.05% 93.10% 

Random Forest 
53.16% 70.73% 62.28% 49.16% 92.58% 71.72% 90.60% 88.82% 89.73% 

Random Tree 
54.87% 68.99% 62.20% 50.19% 92.22% 72.03% 89.34% 89.14% 89.25% 
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Table 16: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different parameter values from datasets restricted by 

clinicians’ feedback using stratified balanced datasets 

  

Diabetes Ejection Fraction AMI Diabetes Ejection Fraction AMI Biochemical Diabetes Ejection Fraction AMI Genetics Diabetes Ejection Fraction AMI PUFA 

METHOD specificity sensitivity 
accurac

y 
specificity  sensitivity accuracy 

Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 

Random Forest (10 Trees) 
61.09% 69.22% 65.13% 87.27% 91.45% 89.35% 24.22% 74.44% 87.49% 80.93% 15.80% 53.25% 85.60% 69.34% 4.21% 

Random Forest (20 Trees) 
59.39% 69.94% 64.64% 86.55% 92.26% 89.39% 24.75% 74.35% 87.40% 80.84% 16.20% 53.25% 85.60% 69.34% 4.70% 

Random Forest (30 Trees) 
59.39% 69.94% 64.64% 86.55% 92.62% 89.57% 24.93% 74.71% 87.13% 80.89% 16.25% 53.25% 85.51% 69.29% 4.66% 

Random Forest (40 Trees) 
59.39% 69.94% 64.64% 86.73% 92.62% 89.66% 25.02% 74.62% 87.40% 80.98% 16.34% 53.25% 85.51% 69.29% 4.66% 

Random Forest (50Trees) 
59.39% 69.94% 64.64% 86.38% 92.89% 89.62% 24.98% 74.80% 86.86% 80.80% 16.16% 53.25% 85.51% 69.29% 4.66% 

C 4.5 ( min number of instances/leaf: 2) 
62.60% 67.69% 65.13% 82.28% 91.36% 86.80% 21.67% 72.40% 88.66% 80.48% 15.35% 53.43% 84.16% 68.71% 3.58% 

C 4.5 ( min number of instances/leaf: 5) 
62.60% 67.69% 65.13% 81.75% 91.36% 86.53% 21.40% 70.26% 88.66% 79.41% 14.28% 53.43% 84.16% 68.71% 3.58% 

C 4.5 ( min number of instances/leaf: 10) 
62.60% 67.69% 65.13% 81.48% 91.45% 86.44% 21.31% 67.94% 86.14% 76.99% 11.86% 52.81% 84.16% 68.40% 3.27% 

C 4.5 ( min number of instances/leaf: 15) 
62.60% 67.69% 65.13% 80.85% 90.01% 85.41% 20.28% 68.30% 83.26% 75.74% 10.61% 53.43% 83.53% 68.40% 3.27% 

C 4.5 ( min number of instances/leaf: 20) 
62.60% 67.69% 65.13% 79.25% 91.63% 85.41% 20.28% 69.46% 79.93% 74.66% 9.53% 52.89% 83.53% 68.13% 3.00% 

PART (min number of instances/rule: 2) 
59.13% 69.94% 64.50% 81.21% 90.46% 85.81% 21.31% 72.57% 87.13% 79.81% 15.31% 52.36% 86.50% 69.34% 4.83% 

PART (min number of instances/rule: 5) 
59.13% 69.94% 64.50% 82.64% 89.56% 86.08% 21.58% 71.77% 85.87% 78.78% 14.28% 52.36% 86.59% 69.38% 4.88% 

PART (min number of instances/rule: 10) 
59.13% 69.94% 64.50% 81.39% 91.99% 86.66% 22.16% 70.17% 83.71% 76.90% 12.40% 53.52% 84.52% 68.93% 4.43% 

PART (min number of instances/rule:15) 
59.13% 69.94% 64.50% 80.23% 91.18% 85.68% 21.17% 71.42% 81.55% 76.45% 11.95% 56.81% 79.57% 68.13% 3.63% 

PART (min number of instances/rule: 20) 
59.13% 69.94% 64.50% 80.68% 92.17% 86.39% 21.89% 67.59% 82.36% 74.93% 10.43% 56.37% 78.94% 67.59% 3.09% 

Decision Table (search method: Best First) 
61.71% 67.87% 64.77% 98.13% 84.61% 91.41% 26.63% 77.29% 88.21% 82.72% 17.95% 54.23% 85.42% 69.74% 4.97% 

Decision Table (search method: Greedy Stepwise) 
61.71% 67.87% 64.77% 98.58% 83.80% 91.23% 26.45% 77.29% 88.21% 82.72% 17.95% 55.74% 82.72% 69.16% 4.39% 



G.A. no. 224635 

 

D3.4 – Application of data mining methodologies  

 

Revision: V1.1 Security: Public 

 Page 52/115 

 

 

  

Diabetes Ejection Fraction AMI Diabetes Ejection Fraction AMI Biochemical Diabetes Ejection Fraction AMI Genetics Diabetes Ejection Fraction AMI PUFA 

METHOD specificity sensitivity 
accurac

y 
specificity  sensitivity accuracy 

Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 

Decision Table (search method: Linear Forward Selection) 
61.71% 67.87% 64.77% 98.13% 84.61% 91.41% 26.63% 77.29% 88.21% 82.72% 17.95% 54.23% 85.42% 69.74% 4.97% 

Decision Table (search method: Rank Search) 
60.64% 68.86% 64.73% 93.59% 83.98% 88.81% 24.08% 77.29% 88.21% 82.72% 17.99% 54.23% 85.42% 69.74% 5.01% 

Decision Table (search method: ScatterSearchV1) 
60.64% 68.86% 64.73% 98.93% 83.17% 91.09% 26.37% 77.29% 88.21% 82.72% 17.99% 54.23% 85.42% 69.74% 5.01% 

Decision Table (search method: Subset Size Forward Selection) 
61.89% 69.31% 65.58% 99.91% 82.90% 91.45% 25.87% 77.29% 88.21% 82.72% 17.14% 54.23% 85.42% 69.74% 4.16% 

Bayes Network (method for searching network structures: ICS 

Search Algorithm) 
61.89% 68.68% 65.26% 0.00% 0.00% 0.00% -65.26% 71.33% 82.00% 76.63% 11.37% 57.08% 76.87% 66.92% 1.66% 

Bayes Network (method for searching network structures: Naive 

Bayes) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: Global 

Hill Climber) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: gK2) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: Global 

Repeated Hill Climber) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: Global 

Tabu Search) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: Local 

Hill Climber) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 75.42% 67.60% 71.53% 8.24% 59.22% 67.42% 63.29% 0.00% 

Bayes Network (method for searching network structures: lK2) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: Local 

LAGD Hill Climber) 
45.59% 79.21% 62.31% 100.00% 90.82% 95.43% 33.12% 85.04% 50.95% 68.08% 5.77% 45.59% 79.21% 62.31% 0.00% 

Bayes Network (method for searching network structures: Local 

Repeated Hill Climber) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 75.42% 67.60% 71.53% 8.24% 59.22% 67.42% 63.29% 0.00% 

Bayes Network (method for searching network structures: Local 

Tabu Search) 
45.59% 79.21% 62.31% 100.00% 90.82% 95.43% 33.12% 75.42% 66.79% 71.13% 8.82% 52.63% 71.74% 62.13% -0.18% 

Bayes Network (method for searching network structures: Local 

TAN) 
65.36% 60.67% 63.03% 100.00% 90.82% 95.43% 32.41% 72.22% 75.79% 73.99% 10.97% 58.95% 69.58% 64.23% 1.21% 
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Table 17: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different parameter values from datasets restricted by 

clinicians’ feedback including genetics using stratified balanced datasets 

  

Genetics when Ejection Fraction > 40 Genetics when Non Diabetic 
Genetics when gender is female and age < 60 

or gender is male and gender < 55 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Random Forest (10 Trees) 
53.16% 70.73% 62.28% 49.16% 92.58% 71.72% 90.60% 88.82% 89.73% 

Random Forest (20 Trees) 
56.24% 67.56% 62.12% 49.16% 92.58% 71.72% 90.91% 88.82% 89.89% 

Random Forest (30 Trees) 
54.53% 69.30% 62.20% 49.16% 92.58% 71.72% 91.22% 89.14% 90.21% 

Random Forest (40 Trees) 
55.90% 67.56% 61.96% 49.16% 92.58% 71.72% 90.91% 89.14% 90.05% 

Random Forest (50Trees) 
57.27% 66.61% 62.12% 49.16% 92.58% 71.72% 90.91% 89.14% 90.05% 

C 4.5 ( min number of instances/leaf: 2) 
56.75% 60.92% 58.92% 52.91% 91.27% 72.84% 89.66% 96.05% 92.78% 

C 4.5 ( min number of instances/leaf: 5) 
56.75% 60.92% 58.92% 52.91% 91.27% 72.84% 86.83% 96.38% 91.49% 

C 4.5 ( min number of instances/leaf: 10) 
56.75% 60.92% 58.92% 52.78% 91.27% 72.78% 82.13% 96.38% 89.09% 

C 4.5 ( min number of instances/leaf: 15) 
56.75% 60.92% 58.92% 51.88% 91.27% 72.34% 82.13% 96.38% 89.09% 

C 4.5 ( min number of instances/leaf: 20) 
58.12% 58.39% 58.26% 50.84% 89.95% 71.16% 71.47% 93.09% 82.02% 

PART (min number of instances/rule: 2) 
58.63% 66.61% 62.78% 59.38% 82.89% 71.60% 90.60% 95.39% 92.94% 

PART (min number of instances/rule: 5) 
58.63% 66.61% 62.78% 54.33% 86.96% 71.29% 86.21% 95.72% 90.85% 

PART (min number of instances/rule: 10) 
58.46% 65.82% 62.28% 54.20% 87.20% 71.35% 82.13% 96.38% 89.09% 

PART (min number of instances/rule: 15) 
58.46% 65.82% 62.28% 51.88% 86.72% 69.98% 80.25% 96.71% 88.28% 

PART (min number of instances/rule: 20) 
58.46% 65.82% 62.28% 47.99% 90.43% 70.04% 75.86% 96.71% 86.04% 

Decision Table (search method: Best First) 
50.09% 84.02% 67.71% 57.96% 89.95% 74.58% 94.36% 95.39% 94.86% 

Decision Table (search method: Greedy Stepwise) 
51.28% 81.96% 67.21% 57.96% 89.95% 74.58% 94.04% 95.39% 94.70% 
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Genetics when Ejection Fraction > 40 Genetics when Non Diabetic 
Genetics when gender is female and age < 60 

or gender is male and gender < 55 

Decision Table (search method: Linear Forward Selection) 
51.79% 82.28% 67.63% 57.96% 89.95% 74.58% 94.36% 95.39% 94.86% 

Decision Table (search method: Rank Search) 
54.53% 81.65% 68.61% 58.09% 89.95% 74.64% 94.36% 95.39% 94.86% 

Decision Table (search method: ScatterSearchV1) 
61.54% 74.37% 68.20% 57.96% 89.95% 74.58% 93.10% 95.39% 94.22% 

Decision Table (search method: Subset Size Forward Selection) 
55.21% 77.37% 66.72% 57.70% 90.07% 74.52% 93.73% 95.39% 94.54% 

Bayes Network (method for searching network structures: ICS Search Algorithm) 
83.08% 50.47% 66.15% 52.39% 91.39% 72.65% 85.27% 95.72% 90.37% 

Bayes Network (method for searching network structures: Naive Bayes) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Global Hill Climber) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: gK2) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Global Repeated Hill Climber) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Global Tabu Search) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Local Hill Climber) 
85.30% 49.21% 66.56% 64.81% 75.60% 70.42% 87.46% 95.72% 91.49% 

Bayes Network (method for searching network structures: lK2) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber) 
85.30% 49.21% 66.56% 80.72% 53.23% 66.44% 85.89% 96.05% 90.85% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber) 
85.30% 49.21% 66.56% 64.81% 75.60% 70.42% 87.46% 95.72% 91.49% 

Bayes Network (method for searching network structures: Local Tabu Search) 
85.30% 49.21% 66.56% 60.16% 79.90% 70.42% 86.21% 93.09% 89.57% 

Bayes Network (method for searching network structures: Local TAN) 
70.43% 63.45% 66.80% 58.86% 81.10% 70.42% 88.09% 95.72% 91.81% 
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Table 18: Results of several methods from datasets restricted by clinicians’ feedback using SMOTE 

  

Diabetes Ejection Fraction AMI Diabetes Ejection Fraction AMI Biochemical Diabetes Ejection Fraction AMI Genetics Diabetes Ejection Fraction AMI PUFA 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy 
Improvement of 

accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 

Bayes Network 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Naive Bayes 
59.13% 68.95% 64.01% 69.72% 88.93% 79.27% 15.26% 69.81% 73.72% 71.75% 7.74% 57.44% 71.11% 64.23% 0.22% 

Multilayer Perceptron 
58.42% 72.46% 65.40% 81.75% 89.38% 85.54% 20.14% 76.05% 90.19% 83.08% 17.68% 51.56% 86.59% 68.98% 3.58% 

RBF Network 
60.28% 69.13% 64.68% 75.16% 86.68% 80.89% 16.20% 69.90% 70.66% 70.28% 5.60% 56.90% 70.66% 63.74% -0.94% 

K Nearest Neighbors 
59.84% 69.94% 64.86% 75.33% 89.56% 82.41% 17.55% 67.14% 91.81% 79.41% 14.55% 52.72% 85.60% 69.07% 4.21% 

Voting Feature Intervals 
58.06% 69.49% 63.74% 79.79% 93.34% 86.53% 22.78% 54.59% 89.02% 71.71% 7.97% 56.72% 72.91% 64.77% 1.03% 

Decision Table 
61.71% 67.87% 64.77% 98.13% 84.61% 91.41% 26.63% 77.29% 88.21% 82.72% 17.95% 54.23% 85.42% 69.74% 4.97% 

Decision Table Naive Bayes Combination 
59.31% 70.39% 64.82% 99.91% 90.01% 94.99% 30.17% 77.38% 88.03% 82.68% 17.86% 54.23% 85.42% 69.74% 4.92% 

RIPPER 
63.22% 68.86% 66.03% 83.08% 89.74% 86.39% 20.37% 75.96% 85.33% 80.62% 14.59% 56.37% 80.47% 68.35% 2.33% 

Non Nested Generalised Exemplars 
63.31% 56.44% 59.89% 85.31% 80.56% 82.95% 23.05% 73.73% 80.02% 76.86% 16.97% 61.80% 56.98% 59.40% -0.49% 

PART 
60.37% 69.67% 65.00% 82.01% 90.82% 86.39% 21.40% 73.82% 87.13% 80.44% 15.44% 52.27% 86.68% 69.38% 4.39% 

C 4.5 
60.28% 69.58% 64.91% 84.77% 88.48% 86.62% 21.71% 73.02% 87.94% 80.44% 15.53% 52.54% 86.68% 69.52% 4.61% 

Random Forest 
61.09% 69.22% 65.13% 87.27% 91.45% 89.35% 24.22% 74.44% 87.49% 80.93% 15.80% 53.25% 85.60% 69.34% 4.21% 

Random Tree 
60.64% 69.49% 65.04% 83.53% 83.17% 83.35% 18.31% 74.71% 87.76% 81.20% 16.16% 53.34% 85.60% 69.38% 4.34% 
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Table 19: McNemar test of several methods from datasets restricted by clinicians’ feedback using SMOTE 

Diabetes EF AMI 

  Bayes Network 

Decision Table 

Naive Bayes 

Combination Decision Table 

K Nearest 

Neighbors C 4.5 RIPPER 

Multilayer 

Perceptron 

De 

Bayes PART 

 Bayes Network NS S S S S S S S S 

 Decision Table Naive 

Bayes Combination S NS NS NS S NS S S S 

 Decision Table S NS NS NS S NS S S S 

 K Nearest Neighbors S NS NS NS S NS S S S 

 C 4.5 S S S S NS S S NS NS 

 RIPPER S NS NS NS S NS S S S 

 Multilayer Perceptron S S S S S S NS S S 

 Naive Bayes S S S S NS S S NS S 

 PART S S S S NS S S S NS 

 RBF Network NS S S S S S S S S 

 Random Forest S S S S S NS S S NS 

 Random Tree S S S S S NS S S NS 

 Voting Feature 

Intervals S S S S NS S S NS S 

Diabetes EF AMI PUFA 

  

Decision Table 

Naive Bayes 

Combination Decision Table C 4.5 RIPPER 

Multilayer 

Perceptron PART 

RBF 

Network 

Random 

Forest Random Tree 

 Decision Table Naive 

Bayes Combination NS NS S S NS S S NS NS 

 Decision Table NS NS S S NS S S NS NS 

 C 4.5 S S NS S NS S S NS NS 

 RIPPER S S S NS S S S S S 

 Multilayer Perceptron NS NS NS S NS S S NS NS 

 PART S S S S S NS S S S 

 RBF Network S S S S S S NS S S 

 Random Forest NS NS NS S NS S S NS NS 

 Random Tree NS NS NS S NS S S NS NS 

Diabetes EF AMI Biochemical 

  

Decision Table 

Naive Bayes 

Combination Decision Table C 4.5 RIPPER 

Multilayer 

Perceptron PART Random Forest 

 Decision Table Naive 

Bayes Combination NS NS S S S S S 

 Decision Table NS NS S S S S S 

 C 4.5 S S NS S NS NS S 

 RIPPER S S S NS S S S 

 Multilayer Perceptron S S NS S NS NS S 

 PART S S NS S NS NS S 

 Random Forest S S S S S S NS 

Diabetes EF AMI Genetics 

  

Decision Table 

Naive Bayes 

Combination 

Decision 

Table C 4.5 RIPPER 

Multilayer 

Perceptron PART Random Forest Random Tree 

 Decision Table Naive 

Bayes Combination NS NS NS NS S NS NS S 

 Decision Table NS NS NS S S NS NS S 

 C 4.5 NS NS NS S S NS S S 

 RIPPER NS S S NS S S NS NS 

 Multilayer Perceptron S S S S NS S S NS 

 PART NS NS NS S S NS S S 

 Random Forest NS NS S NS S S NS S 

 Random Tree S S S NS NS S S NS 
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Table 20: Results of several methods from datasets restricted by clinicians’ feedback including genetics using SMOTE 

  

Genetics when Ejection Fraction > 40 Genetics when Non Diabetic 
Genetics when gender is female and age < 60 

or gender is male and gender < 55 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Bayes Network 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Naive Bayes 
58.29% 64.72% 61.63% 56.14% 78.35% 67.68% 88.40% 92.43% 90.37% 

Multilayer Perceptron 
56.07% 80.54% 68.78% 65.59% 81.82% 74.02% 95.30% 95.39% 95.35% 

RBF Network 
65.81% 67.88% 66.89% 62.74% 74.28% 68.74% 88.40% 93.42% 90.85% 

K Nearest Neighbors 
38.29% 85.92% 63.02% 46.83% 93.42% 71.04% 90.91% 93.09% 91.97% 

Voting Feature Intervals 
37.78% 86.23% 62.94% 38.68% 94.50% 67.68% 86.52% 95.72% 91.01% 

Decision Table 
50.09% 84.02% 67.71% 57.96% 89.95% 74.58% 94.36% 95.39% 94.86% 

Decision Table Naive Bayes Combination 
54.36% 82.59% 69.02% 58.21% 89.95% 74.70% 94.36% 95.39% 94.86% 

RIPPER 
45.81% 67.56% 57.11% 45.41% 92.94% 70.11% 94.67% 94.41% 94.54% 

Non Nested Generalised Exemplars 
61.37% 56.96% 59.08% 60.41% 68.54% 64.64% 95.92% 93.42% 94.70% 

PART 
53.33% 73.89% 64.01% 51.36% 91.63% 72.28% 91.22% 95.07% 93.10% 

C 4.5 
51.11% 66.14% 58.92% 52.91% 91.27% 72.84% 90.28% 96.05% 93.10% 

Random Forest 
53.16% 70.73% 62.28% 49.16% 92.58% 71.72% 90.60% 88.82% 89.73% 

Random Tree 
54.87% 68.99% 62.20% 50.19% 92.22% 72.03% 89.34% 89.14% 89.25% 
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Table 21: Methods McNemar Test of several methods from datasets restricted by clinicians’ feedback 

including genetics using SMOTE 

Genetics when Ejection Fraction > 40 

 

Bayes 

Network 

Decision Table 

Naive Bayes 

Combination 

Decision 

Table C 4.5 

Multilayer 

Perceptron PART 

 Random 

Forest  Random Tree 

Bayes Network NS S S S S S S S 

Decision Table Naive Bayes 

Combination S NS NS S S NS S S 

Decision Table S NS NS S S NS S S 

C 4.5 S S S NS NS S S S 

Multilayer Perceptron S S S NS NS S S S 

PART S NS NS S S NS S S 

 Random Forest S S S S S S NS S 

 Random Tree S S S S S S S NS 

Non Diabetic Genetics 

  

Bayes 

Network 

Decision Table Naive 

Bayes Combination Decision Table Multilayer Perceptron PART 

 Bayes Network NS S S S S 

 Decision Table Naive Bayes 

Combination S NS NS NS S 

 Decision Table S NS NS NS S 

 Multilayer Perceptron S NS NS NS S 

 PART S S S S NS 

Genetics when gender is female and age < 60 or gender is male and gender < 55 

  

Bayes 

Network 

Decision Table 

Naive Bayes 

Combination 

Decision 

Table 

K Nearest 

Neighbors C 4.5 RIPPER 

Multilayer 

Perceptro

n 

Non Nested 

Generalised 

Exemplars PART 

 Bayes Network NS S S S S S S S S 

 Decision Table Naive Bayes 

Combination S NS NS S NS NS NS S NS 

 Decision Table S NS NS S NS NS NS S NS 

 K Nearest Neighbors S S S NS S S S S S 

 C 4.5 S NS NS S NS S S S NS 

 RIPPER S NS NS S S NS NS NS NS 

 Multilayer Perceptron S NS NS S S NS NS NS S 

 Non Nested Generalised 

Exemplars S S S S S NS NS NS S 

 PART S NS NS S NS NS S S NS 
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Table 22 Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different parameter values from datasets restricted by 

clinicians’ feedback using SMOTE 

  
Diabetes Ejection Fraction AMI Diabetes Ejection Fraction AMI Biochemical Diabetes Ejection Fraction AMI Genetics Diabetes Ejection Fraction AMI PUFA 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy 
Improvement of 

accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 

Random Forest (10 Trees) 
61.09% 69.22% 65.13% 87.27% 91.45% 89.35% 24.22% 74.44% 87.49% 80.93% 15.80% 53.25% 85.60% 69.34% 4.21% 

Random Forest (20 Trees) 
59.39% 69.94% 64.64% 86.55% 92.26% 89.39% 24.75% 74.35% 87.40% 80.84% 16.20% 53.25% 85.60% 69.34% 4.70% 

Random Forest (30 Trees) 
59.39% 69.94% 64.64% 86.55% 92.62% 89.57% 24.93% 74.71% 87.13% 80.89% 16.25% 53.25% 85.51% 69.29% 4.66% 

Random Forest (40 Trees) 
59.39% 69.94% 64.64% 86.73% 92.62% 89.66% 25.02% 74.62% 87.40% 80.98% 16.34% 53.25% 85.51% 69.29% 4.66% 

Random Forest (50 Trees) 
59.39% 69.94% 64.64% 86.38% 92.89% 89.62% 24.98% 74.80% 86.86% 80.80% 16.16% 53.25% 85.51% 69.29% 4.66% 

C 4.5 ( min number of instances/leaf: 2) 
62.60% 67.69% 65.13% 82.28% 91.36% 86.80% 21.67% 72.40% 88.66% 80.48% 15.35% 53.43% 84.16% 68.71% 3.58% 

C 4.5 ( min number of instances/leaf: 5) 
62.60% 67.69% 65.13% 81.75% 91.36% 86.53% 21.40% 70.26% 88.66% 79.41% 14.28% 53.43% 84.16% 68.71% 3.58% 

C 4.5 ( min number of instances/leaf: 10) 
62.60% 67.69% 65.13% 81.48% 91.45% 86.44% 21.31% 67.94% 86.14% 76.99% 11.86% 52.81% 84.16% 68.40% 3.27% 

C 4.5 ( min number of instances/leaf: 15) 
62.60% 67.69% 65.13% 80.85% 90.01% 85.41% 20.28% 68.30% 83.26% 75.74% 10.61% 53.43% 83.53% 68.40% 3.27% 

C 4.5 ( min number of instances/leaf: 20) 
62.60% 67.69% 65.13% 79.25% 91.63% 85.41% 20.28% 69.46% 79.93% 74.66% 9.53% 52.89% 83.53% 68.13% 3.00% 

PART (min number of instances/rule: 2) 
59.13% 69.94% 64.50% 81.21% 90.46% 85.81% 21.31% 72.57% 87.13% 79.81% 15.31% 52.36% 86.50% 69.34% 4.83% 

PART (min number of instances/rule: 5) 
59.13% 69.94% 64.50% 82.64% 89.56% 86.08% 21.58% 71.77% 85.87% 78.78% 14.28% 52.36% 86.59% 69.38% 4.88% 

PART (min number of instances/rule: 10) 
59.13% 69.94% 64.50% 81.39% 91.99% 86.66% 22.16% 70.17% 83.71% 76.90% 12.40% 53.52% 84.52% 68.93% 4.43% 

PART (min number of instances/rule:15) 
59.13% 69.94% 64.50% 80.23% 91.18% 85.68% 21.17% 71.42% 81.55% 76.45% 11.95% 56.81% 79.57% 68.13% 3.63% 

PART (min number of instances/rule: 20) 
59.13% 69.94% 64.50% 80.68% 92.17% 86.39% 21.89% 67.59% 82.36% 74.93% 10.43% 56.37% 78.94% 67.59% 3.09% 

Decision Table (search method: Best First) 
61.71% 67.87% 64.77% 98.13% 84.61% 91.41% 26.63% 77.29% 88.21% 82.72% 17.95% 54.23% 85.42% 69.74% 4.97% 

Decision Table (search method: Greedy Stepwise) 
61.71% 67.87% 64.77% 98.58% 83.80% 91.23% 26.45% 77.29% 88.21% 82.72% 17.95% 55.74% 82.72% 69.16% 4.39% 

Decision Table (search method: Linear Forward Selection) 
61.71% 67.87% 64.77% 98.13% 84.61% 91.41% 26.63% 77.29% 88.21% 82.72% 17.95% 54.23% 85.42% 69.74% 4.97% 

Decision Table (search method: Rank Search) 
60.64% 68.86% 64.73% 93.59% 83.98% 88.81% 24.08% 77.29% 88.21% 82.72% 17.99% 54.23% 85.42% 69.74% 5.01% 



G.A. no. 224635 

 

D3.4 – Application of data mining methodologies  

 

Revision: V1.1 Security: Public 

 Page 60/115 

 

 

  
Diabetes Ejection Fraction AMI Diabetes Ejection Fraction AMI Biochemical Diabetes Ejection Fraction AMI Genetics Diabetes Ejection Fraction AMI PUFA 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy 
Improvement of 

accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 
specificity  sensitivity accuracy 

Improvement 

of accuracy 

Decision Table (search method: ScatterSearchV1) 
60.64% 68.86% 64.73% 98.93% 83.17% 91.09% 26.37% 77.29% 88.21% 82.72% 17.99% 54.23% 85.42% 69.74% 5.01% 

Decision Table (search method: Subset Size Forward 

Selection) 
61.89% 69.31% 65.58% 99.91% 82.90% 91.45% 25.87% 77.29% 88.21% 82.72% 17.14% 54.23% 85.42% 69.74% 4.16% 

Bayes Network (method for searching network structures: 

ICS Search Algorithm) 
61.89% 68.68% 65.26% - - - - 71.33% 82.00% 76.63% 11.37% 57.08% 76.87% 66.92% 1.66% 

Bayes Network (method for searching network structures: 

Naive Bayes) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: 

Global Hill Climber) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: 

gK2) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: 

Global Repeated Hill Climber) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: 

Global Tabu Search) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: 

Local Hill Climber) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 75.42% 67.60% 71.53% 8.24% 59.22% 67.42% 63.29% 0.00% 

Bayes Network (method for searching network structures: 

lK2) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 72.84% 73.81% 73.32% 10.03% 57.97% 68.95% 63.43% 0.13% 

Bayes Network (method for searching network structures: 

Local LAGD Hill Climber) 
45.59% 79.21% 62.31% 100.00% 90.82% 95.43% 33.12% 85.04% 50.95% 68.08% 5.77% 45.59% 79.21% 62.31% 0.00% 

Bayes Network (method for searching network structures: 

Local Repeated Hill Climber) 
59.22% 67.42% 63.29% 100.00% 90.82% 95.43% 32.14% 75.42% 67.60% 71.53% 8.24% 59.22% 67.42% 63.29% 0.00% 

Bayes Network (method for searching network structures: 

Local Tabu Search) 
45.59% 79.21% 62.31% 100.00% 90.82% 95.43% 33.12% 75.42% 66.79% 71.13% 8.82% 52.63% 71.74% 62.13% -0.18% 

Bayes Network (method for searching network structures: 

Local TAN) 
65.36% 60.67% 63.03% 100.00% 90.82% 95.43% 32.41% 72.22% 75.79% 73.99% 10.97% 58.95% 69.58% 64.23% 1.21% 
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Table 23: McNemar Test of random forest, c 4.5 part, multilayer perceptron and bayes network using 

different parameter values from datasets restricted by clinicians’ feedback using SMOTE 

Diabetes EF AMI Diabetes EF AMI PUFA 

  

Bayes 

Network 

Decision 

Table 

C 

4.5 PART 

Random 

Forest   

Bayes 

Network 

Decision 

Table 

C 

4.5 PART 

Random 

Forest 

 Bayes 

Network 
NS S S S S 

 Bayes 

Network 
NS S S S S 

 Decision 

Table 
S NS S S S 

 Decision 

Table 
S NS NS S NS 

 C 4.5 
S S NS NS NS 

 C 4.5 
S NS NS NS NS 

 PART 
S S NS NS NS 

 PART 
S S NS NS NS 

 Random 

Forest 
S S NS NS NS  Random 

Forest 
S NS NS NS NS 

Diabetes EF AMI Biochemical Diabetes EF AMI Genetics 

  

Bayes 

Network 

Decision 

Table 

C 

4.5 PART 

Random 

Forest   

Bayes 

Network 

Decision 

Table 

C 

4.5 PART 

Random 

Forest 

 Bayes 

Network 
NS NS S S S 

 Bayes 

Network 
NS NS NS NS NS 

 Decision 

Table 
NS NS S S S 

 Decision 

Table 
NS NS S NS NS 

 C 4.5 
S S NS S S 

 C 4.5 
NS S NS S S 

 PART 
S S S NS S 

 PART 
NS NS S NS S 

 Random 

Forest 
S S S S NS  Random 

Forest 
NS NS S S NS 
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Table 24: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different parameter values from datasets restricted by 

clinicians’ feedback including genetics using SMOTE 

  

Genetics when Ejection Fraction > 40 Genetics when Non Diabetic 
Genetics when gender is female and age < 60 

or gender is male and gender < 55 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Random Forest (10 Trees) 
53.16% 70.73% 62.28% 49.16% 92.58% 71.72% 90.60% 88.82% 89.73% 

Random Forest (20 Trees) 
56.24% 67.56% 62.12% 49.16% 92.58% 71.72% 90.91% 88.82% 89.89% 

Random Forest (30 Trees) 
54.53% 69.30% 62.20% 49.16% 92.58% 71.72% 91.22% 89.14% 90.21% 

Random Forest (40 Trees) 
55.90% 67.56% 61.96% 49.16% 92.58% 71.72% 90.91% 89.14% 90.05% 

Random Forest (50 Trees) 
57.27% 66.61% 62.12% 49.16% 92.58% 71.72% 90.91% 89.14% 90.05% 

C 4.5 ( min number of instances/leaf: 2) 
56.75% 60.92% 58.92% 52.91% 91.27% 72.84% 89.66% 96.05% 92.78% 

C 4.5 ( min number of instances/leaf: 5) 
56.75% 60.92% 58.92% 52.91% 91.27% 72.84% 86.83% 96.38% 91.49% 

C 4.5 ( min number of instances/leaf: 10) 
56.75% 60.92% 58.92% 52.78% 91.27% 72.78% 82.13% 96.38% 89.09% 

C 4.5 ( min number of instances/leaf: 15) 
56.75% 60.92% 58.92% 51.88% 91.27% 72.34% 82.13% 96.38% 89.09% 

C 4.5 ( min number of instances/leaf: 20) 
58.12% 58.39% 58.26% 50.84% 89.95% 71.16% 71.47% 93.09% 82.02% 

PART (min number of instances/rule: 2) 
58.63% 66.61% 62.78% 59.38% 82.89% 71.60% 90.60% 95.39% 92.94% 

PART (min number of instances/rule: 5) 
58.63% 66.61% 62.78% 54.33% 86.96% 71.29% 86.21% 95.72% 90.85% 

PART (min number of instances/rule: 10) 
58.46% 65.82% 62.28% 54.20% 87.20% 71.35% 82.13% 96.38% 89.09% 

PART (min number of instances/rule:15) 
58.46% 65.82% 62.28% 51.88% 86.72% 69.98% 80.25% 96.71% 88.28% 

PART (min number of instances/rule: 20) 
58.46% 65.82% 62.28% 47.99% 90.43% 70.04% 75.86% 96.71% 86.04% 

Decision Table (search method: Best First) 
50.09% 84.02% 67.71% 57.96% 89.95% 74.58% 94.36% 95.39% 94.86% 

Decision Table (search method: Greedy Stepwise) 
51.28% 81.96% 67.21% 57.96% 89.95% 74.58% 94.04% 95.39% 94.70% 

Decision Table (search method: Linear Forward Selection) 
51.79% 82.28% 67.63% 57.96% 89.95% 74.58% 94.36% 95.39% 94.86% 
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Genetics when Ejection Fraction > 40 Genetics when Non Diabetic 
Genetics when gender is female and age < 60 

or gender is male and gender < 55 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Decision Table (search method: Rank Search) 
54.53% 81.65% 68.61% 58.09% 89.95% 74.64% 94.36% 95.39% 94.86% 

Decision Table (search method: ScatterSearchV1) 
61.54% 74.37% 68.20% 57.96% 89.95% 74.58% 93.10% 95.39% 94.22% 

Decision Table (search method: Subset Size Forward Selection) 
55.21% 77.37% 66.72% 57.70% 90.07% 74.52% 93.73% 95.39% 94.54% 

Bayes Network (method for searching network structures: ICS Search Algorithm) 
83.08% 50.47% 66.15% 52.39% 91.39% 72.65% 85.27% 95.72% 90.37% 

Bayes Network (method for searching network structures: Naive Bayes) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Global Hill Climber) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: gK2) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Global Repeated Hill Climber) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Global Tabu Search) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Local Hill Climber) 
85.30% 49.21% 66.56% 64.81% 75.60% 70.42% 87.46% 95.72% 91.49% 

Bayes Network (method for searching network structures: lK2) 
71.62% 62.50% 66.89% 64.81% 75.60% 70.42% 86.21% 95.72% 90.85% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber) 
85.30% 49.21% 66.56% 80.72% 53.23% 66.44% 85.89% 96.05% 90.85% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber) 
85.30% 49.21% 66.56% 64.81% 75.60% 70.42% 87.46% 95.72% 91.49% 

Bayes Network (method for searching network structures: Local Tabu Search) 
85.30% 49.21% 66.56% 60.16% 79.90% 70.42% 86.21% 93.09% 89.57% 

Bayes Network (method for searching network structures: Local TAN) 
70.43% 63.45% 66.80% 58.86% 81.10% 70.42% 88.09% 95.72% 91.81% 
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Table 25: McNemar Test of random forest, c 4.5 part, multilayer perceptron and bayes network using 

different parameter values from datasets restricted by clinicians’ feedback including genetics using 

SMOTE 

 

Genetics when Ejection Fraction > 40 

  Bayes Network Decision Table C 4.5 PART Random Forest 

 Bayes Network NS S S S S 

 Decision Table S NS NS S S 

 C 4.5 S NS NS S NS 

 PART S S S NS S 

 Random Forest S S NS S NS 

Genetics when Non Diabetic 

  Bayes Network Decision Table C 4.5 PART Random Forest 

 Bayes Network NS S S S S 

 Decision Table S NS S S S 

 C 4.5 S S NS NS S 

 PART S S NS NS NS 

 Random Forest S S S NS NS 

Genetics when gender is female and age < 60 or gender is male and gender < 55 

  Bayes Network Decision Table C 4.5 PART 

 Bayes Network NS S NS NS 

 Decision Table S NS NS S 

 C 4.5 NS NS NS S 

 PART NS S S NS 

 

After testing all the algorithms mentioned above, the results regarding the sensitivity, specificity and 

accuracy of the produced classifiers were provided to the clinicians, along with rules of the rule based 

classifiers.  

The results of the classifiers produced using stratified balanced datasets were found to be accurate, but the 

rules produced by the rule based classifiers were not satisfying for the clinicians, mainly because of the 

limited number of patients in each subset.  

Results produced by datasets that were balanced using the SMOTE algorithm were both accurate and the 

rules had clinical interpretation. After the clinicians examined the rules produced by all classifiers, once 

more they concluded that all rule based classifiers produced logical and non logical rules, thus the need for 

a classifier that could be edited remained. The classifiers that were produced by PART algorithm were 

preferred since they were more accurate in most datasets than the ones produced by RIPPER algorithm.  
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As it can be observed in Tables  18 and 22 the classifiers produced by the dataset contained Diabetes, 

Ejection Fraction, AMI and biochemical data are more accurate than the classifiers produced from the 

dataset contained Diabetes, Ejection Fraction and AMI and the dataset contained Diabetes, Ejection 

Fraction, AMI and genetics. The clinicians also found, after checking the rules produced by this dataset, that 

they were more accurate and in agreement with common medical knowledge. 

In Tables  20 and  24 the results for the classifiers produced in order to predict the evolution of the disease 

in patients who are difficult to prognose using clinical and biochemical data are depicted; for this kind of 

patients, genetics data were used. From the abovementioned the biologists reviewed the rules produced by 

the rule based classifiers and decided that the resulted rules did not add anything to common medical 

knowledge. On the other hand the classifier produced by the “Diabetes, Ejection Fraction, AMI and 

genetics” dataset provided decision support rules that could be of help for the clinicians during the 

assessment of patient’s condition. 

In the final Decision Support System of the VPH2 platform the classifiers that will be included for the 

prediction of late onset heart failure will be the classifier produced using PART algorithm and the Diabetes 

Ejection Fraction AMI and biochemical dataset and the classifier produced using PART algorithm and the 

dataset that includes Diabetes, Ejection Fraction, AMI and genetics. 

 

b. Niguarda Results 

 

Niguarda dataset was at first split in two subsets the first subset includes patients having AMI and the 

second subset includes chronic patients. Three datasets for each subset were constructed; the fist dataset 

includes all variables except echocardiography and stress test, and it is referred as “ALL”; the second 

dataset referred as “ECHO” includes all variables except the stress test data; the last dataset includes all 

data and is referred as “STRESS TEST”. In Tables  26 and  27 the variables for each dataset are shown in 

detail.  

Niguarda dataset’s target outcome is the vital status of the patient. The datasets were unbalanced, patient 

who finally lived were much more than those that deceased. In order to balance the datasets the SMOTE 

algorithm was used. The stratified balanced datasets method has not been implement yet, due to the late 

arrival of the dataset; stratified balanced dataset is a time consuming method. In Table 28 the results of the 

application of several algorithms that were applied to the AMI datasets are depicted. In Table 29 the results 

of the five most commonly used algorithms with several parameters’ values are depicted. Similarly, in 

Tables  30 and  31 the results of the chronic datasets are presented. In Tables  32 and  34 the results of the 

algorithms are presented when the AMI datasets are balanced using the SMOTE technique. In the first table 

the results of the methods are presented using the default parameter values (Table 5), while in the second 

table the results are presented for different parameter values. In Tables  33 and  35 the corresponding 

McNemar tests are depicted. In the same way, the results for the chronic datasets, when they are balanced 
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using SMOTE, are presented in Tables  36 and  38 and the corresponding McNemar tests in Tables  37 and  

39. 

Table 26: Variables for AMI data subset 

AMI 

ALL ECHO Stress Test  

Age Age Age 

Sex Sex Sex 

Smoking Habits Body Mass Index Body Mass Index 

Hypertension Smoking Habits Smoking Habits 

Diabetes Hypertension Hypertension 

Dyslipidemia Diabetes Diabetes 

Chronic kidney dysfunction Dyslipidemia Dyslipidemia 

Dialysis Chronic kidney dysfunction Chronic kidney dysfunction 

COPD Dialysis Dialysis 

Atrial fibrillation history COPD COPD 

index admissionSTENT Atrial fibrillation history Atrial fibrillation history 

Previous STENT index admissionSTENT index admissionSTENT 

Pre-Existing Vascular Disease Previous STENT Previous STENT 

AMI Type Pre-Existing Vascular Disease Pre-Existing Vascular Disease 

AMI Site AMI Type AMI Type 

PCI AMI Site AMI Site 

N vessels PCI PCI 

STENT N vessels N vessels 

CABG index admission STENT STENT 

Number bypass CABG index admission CABG index admission 

ACE - Inhibitors Number bypass Number bypass 

Angiotensin-Receptor Blockers Echocardiographic LV dilation Echocardiographic LV dilation 

Beta Blockers LV end-Diastolic Diameter LV end-Diastolic Diameter 

Calcium Channel Blockers LV end-Diastolic Volume LV end-Diastolic Volume 

ASA (AcetylSalicylic Acid) LV end-Systolic Volume LV end-Systolic Volume 

Double Antiplatelet LV Ejection Fraction LV Ejection Fraction 

Aldosterone Antag. ACE - Inhibitors Double product 

Clopidogrel Angiotensin-Receptor Blockers Max Workload time 

Ticlopidine Beta Blockers Stopping criteria 

Oral anticoagulants Calcium Channel Blockers ACE - Inhibitors 

Hypoglycaemic agents ASA (AcetylSalicylic Acid) Angiotensin-Receptor Blockers 

Insulin Double Antiplatelet Beta Blockers 

Statins (Lipid Lowering) Aldosterone Antag. Calcium Channel Blockers 

Loop Diuretics Clopidogrel ASA (AcetylSalicylic Acid) 

Digoxin Ticlopidine Double Antiplatelet 

PUFA (ω-3) Oral anticoagulants Aldosterone Antag. 
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dose ACE/ATII inhibitors Hypoglycaemic agents Clopidogrel 

dose Beta Blockers Insulin Ticlopidine 

loop diuretics dose Statins (Lipid Lowering) Oral anticoagulants 

aldosterone antagon dose Loop Diuretics Hypoglycaemic agents 

AMI vs AMIHF Digoxin Insulin 

Vital status (outcome to be tested) PUFA (ω-3) Statins (Lipid Lowering) 

Date index admission dose ACE/ATII inhibitors Loop Diuretics 

Date last follow-up dose Beta Blockers Digoxin 

Date died loop diuretics dose PUFA (ω-3) 

  aldosterone antagon dose dose ACE/ATII inhibitors 

  AMI vs AMIHF dose Beta Blockers 

  Vital status (outcome to be tested) loop diuretics dose 

  Date index admission aldosterone antagon dose 

  Date last follow-up AMI vs AMIHF 

  Date died Vital status (outcome to be tested) 

    Date index admission 

    Date last follow-up 

    Date died 

      

      

      

      

      

      

      

Lab data 

ALT (GPT)     

aPTT     

AST (GOT)     

Blood Glucose (Serum) worst   

Creatinine worst Delta (worst-admission) 

Creatin-kinase     

Creatin-kinase MB     

Fe     

Fibrinogen admission   

Gamma-GT     

Glicate Haemoglobin (blood)     

Haematocrit worst Delta (worst-admission) 

Haemoglobin (blood) worst Delta (worst-admission) 

HDL cholesterol best   

INR     

K (K+)     

NA (NA+)     

NT Pro BNP  worst   
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PCR     

Plateletes     

Red Blood cell counts     

Serum Total Cholesterol best   

Total Bilirubine worst Delta (worst-admission) 

Total Protein     

Triglycerides     

Troponin - T worst   

Urea worst   

Uric Acid worst   

Ves 1h     

White Blood cell counts     

 

 

 

Table 27: Variables for chronic data subset 

CHRONIC 

ALL ECHO STRESS TEST 

Age Age Age 

Sex Sex Sex 

BMI (Body Mass Index) (calculable by Height and 

Weight) 

BMI (Body Mass Index) (calculable by Height and 

Weight) 

BMI (Body Mass Index) (calculable by Height and 

Weight) 

Smoking Habits Smoking Habits Smoking Habits 

Hypertension Hypertension Hypertension 

Diabetes Diabetes Diabetes 

Dyslipidemia Dyslipidemia Dyslipidemia 

Chronic kidney dysfunction Chronic kidney dysfunction Chronic kidney dysfunction 

Dialysis Dialysis Dialysis 

COPD COPD COPD 

Atrial fibrillation history Atrial fibrillation history Atrial fibrillation history 

index admissionSTENT index admissionSTENT index admissionSTENT 

Previous STENT Previous STENT Previous STENT 

Pre-Existing Vascular Disease Pre-Existing Vascular Disease Pre-Existing Vascular Disease 

Previous AMI Previous AMI Previous AMI 

PCI PCI PCI 

N vessels N vessels N vessels 

STENT STENT STENT 

CABG index admission CABG index admission CABG index admission 

Number bypass Number bypass Number bypass 

Mitral valve surgery Mitral valve surgery Mitral valve surgery 

Biventricular pacing Biventricular pacing Biventricular pacing 
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Implantable Cardioverter defibrillator  Implantable Cardioverter defibrillator  Implantable Cardioverter defibrillator  

Implantable Cardioverter defibrillator  Implantable Cardioverter defibrillator  Implantable Cardioverter defibrillator  

BIV+ICD BIV+ICD BIV+ICD 

ACE - Inhibitors Echocardiographic LV dilation Echocardiographic LV dilation 

Angiotensin-Receptor Blockers LV end-Diastolic Diameter LV end-Diastolic Diameter 

Beta Blockers LV end-Diastolic Volume LV end-Diastolic Volume 

Calcium Channel Blockers LV end-Systolic Volume LV end-Systolic Volume 

ASA (AcetylSalicylic Acid) WMSI WMSI 

Double Antiplatelet Mitral Regurgutation Severity Mitral Regurgutation Severity 

Aldosterone Antag. LV Ejection Fraction LV Ejection Fraction 

Clopidogrel ACE - Inhibitors Double product 

Ticlopidine Angiotensin-Receptor Blockers Max Workload time 

Oral anticoagulants Beta Blockers Stopping criteria 

Hypoglycaemic agents Calcium Channel Blockers Peak oxygen uptake (PVO2)  

Insulin ASA (AcetylSalicylic Acid) ACE - Inhibitors 

Statins (Lipid Lowering) Double Antiplatelet Angiotensin-Receptor Blockers 

Loop Diuretics Aldosterone Antag. Beta Blockers 

Digoxin Clopidogrel Calcium Channel Blockers 

PUFA (ω-3) Ticlopidine ASA (AcetylSalicylic Acid) 

dose ACE/ATII inhibitors Oral anticoagulants Double Antiplatelet 

dose Beta Blockers Hypoglycaemic agents Aldosterone Antag. 

loop diuretics dose Insulin Clopidogrel 

aldosterone antagon dose Statins (Lipid Lowering) Ticlopidine 

cIHD vs cIHF Loop Diuretics Oral anticoagulants 

Vital status (outcome to be tested) Digoxin Hypoglycaemic agents 

Date index admission PUFA (ω-3) Insulin 

Date last follow-up dose ACE/ATII inhibitors Statins (Lipid Lowering) 

Date died dose Beta Blockers Loop Diuretics 

  loop diuretics dose Digoxin 

  aldosterone antagon dose PUFA (ω-3) 

  cIHD vs cIHF dose ACE/ATII inhibitors 

  Vital status (outcome to be tested) dose Beta Blockers 

  Date index admission loop diuretics dose 

  Date last follow-up aldosterone antagon dose 

  Date died cIHD vs cIHF 

    Vital status (outcome to be tested) 

    Date index admission 

    Date last follow-up 

    Date died 

Lab data to be appended 

Aldosterone     

ALT (GPT)     

aPTT     
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AST (GOT)     

Blood Glucose (Serum) worst   

Creatinine worst Delta (worst-admission) 

Creatin-kinase     

Creatin-kinase MB     

Fe     

Fibrinogen     

Gamma-GT     

Glicate Haemoglobin (blood)     

Haematocrit worst Delta (worst-admission) 

Haemoglobin (blood) worst Delta (worst-admission) 

HDL cholesterol     

INR     

K (K+) worst admission 

NA (NA+) worst admission 

NT Pro BNP  worst Delta (discharge-worst) 

PCR     

Plateletes     

Red Blood cell counts     

Serum Total Cholesterol     

Total Bilirubine worst Delta (worst-admission) 

Total Protein     

Triglycerides     

Troponin - T worst   

Urea worst Delta (discharge-worst) 

Uric Acid worst   

Ves 1h     

White Blood cell counts     
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Table 28: Results of several methods from Niguarda AMI dataset 

 
   

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

K Nearest Neighbors 94.02% 29.76% 85.31% 95.52% 22.62% 85.63% 96.92% 20.24% 86.52% 

Voting Feature Intervals 84.03% 73.81% 82.65% 85.90% 72.02% 84.02% 86.37% 72.02% 84.42% 

C 4.5 97.57% 58.33% 92.25% 97.57% 58.33% 92.25% 97.57% 58.33% 92.25% 

Decision Table Naive Bayes Combination 98.69% 55.36% 92.82% 98.51% 55.36% 92.66% 98.51% 55.36% 92.66% 

RIPPER 98.97% 63.10% 94.11% 98.88% 61.31% 93.79% 98.23% 60.71% 93.14% 

Non Nested Generalised Exemplars 98.13% 57.14% 92.57% 98.04% 56.55% 92.41% 98.04% 57.74% 92.57% 

PART 96.45% 61.90% 91.77% 96.64% 60.71% 91.77% 97.20% 61.31% 92.33% 

Bayes Network 86.93% 69.64% 84.58% 87.40% 69.05% 84.91% 87.21% 69.64% 84.83% 

Naive Bayes 90.29% 54.76% 85.47% 89.92% 55.95% 85.31% 89.92% 55.95% 85.31% 

RBF Network 97.29% 26.79% 87.73% 96.73% 26.79% 87.25% 96.55% 28.57% 87.33% 

Random Tree 92.06% 52.98% 86.76% 94.21% 42.26% 87.17% 93.56% 47.62% 87.33% 

Random Forest 99.07% 51.79% 92.66% 98.79% 51.79% 92.41% 99.44% 45.24% 92.09% 

Decision Table 99.35% 52.98% 93.06% 99.35% 52.98% 93.06% 99.35% 52.98% 93.06% 

Multilayer Perceptron 95.89% 61.31% 91.20% 96.08% 63.10% 91.61% 96.73% 66.07% 92.57% 

 

 

Table 29: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from Niguarda AMI dataset 

  DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

C 4.5 ( min number of instances/leaf: 2) 98.88% 56.55% 93.14% 98.88% 56.55% 93.14% 98.88% 56.55% 93.14% 

C 4.5 ( min number of instances/leaf: 5) 99.44% 54.76% 93.38% 99.44% 54.76% 93.38% 99.44% 54.76% 93.38% 

C 4.5 ( min number of instances/leaf: 10) 99.63% 55.36% 93.62% 99.63% 55.36% 93.62% 99.63% 55.36% 93.62% 

C 4.5 ( min number of instances/leaf: 15) 99.72% 54.17% 93.54% 99.72% 54.17% 93.54% 99.72% 54.17% 93.54% 

C 4.5 ( min number of instances/leaf: 20) 99.72% 54.17% 93.54% 99.72% 54.17% 93.54% 99.72% 54.17% 93.54% 

PART (min number of instances/rule: 2) 98.51% 60.71% 93.38% 98.69% 61.31% 93.62% 98.69% 60.71% 93.54% 

PART (min number of instances/rule: 5) 98.88% 59.52% 93.54% 98.88% 58.93% 93.46% 98.88% 58.93% 93.46% 

PART (min number of instances/rule: 10) 99.72% 55.36% 93.70% 99.72% 55.36% 93.70% 99.72% 55.36% 93.70% 

PART (min number of instances/rule: 15) 99.72% 55.36% 93.70% 99.72% 55.36% 93.70% 99.72% 55.36% 93.70% 

PART (min number of instances/rule: 20) 99.72% 54.76% 93.62% 99.72% 54.76% 93.62% 99.72% 54.76% 93.62% 

Bayes Network (method for searching 

network structures: lK2) 
86.93% 69.64% 84.58% 87.40% 69.05% 84.91% 87.21% 69.64% 84.83% 

Bayes Network (method for searching 

network structures: gK2) 
86.93% 69.64% 84.58% 87.40% 69.05% 84.91% 87.21% 69.64% 84.83% 

Bayes Network (method for searching 

network structures: Local TAN) 
94.77% 71.43% 91.61% 94.58% 72.02% 91.53% 94.49% 70.83% 91.28% 

Bayes Network (method for searching 

network structures: Naive Bayes) 
86.93% 69.64% 84.58% 87.40% 69.05% 84.91% 87.21% 69.64% 84.83% 

Bayes Network (method for searching 

network structures: Global Tabu Search) 
92.81% 70.24% 89.75% 92.53% 69.05% 89.35% - - - 

Bayes Network (method for searching 

network structures: Local Tabu Search) 
86.37% 69.64% 84.10% 86.93% 69.64% 84.58% 86.93% 69.64% 84.58% 

Bayes Network (method for searching 

network structures: Global Hill Climber) 
- - - 97.01% 69.05% 93.22% - - - 

Bayes Network (method for searching 

network structures: Local Hill Climber) 
86.65% 69.64% 84.34% 86.65% 69.64% 84.34% 86.65% 69.64% 84.34% 

Bayes Network (method for searching 

network structures: Local LAGD Hill Climber) 
86.65% 69.64% 84.34% 86.65% 69.64% 84.34% 86.65% 69.64% 84.34% 

Bayes Network (method for searching 

network structures: Local Repeated Hill 

Climber) 

86.65% 69.64% 84.34% 86.65% 69.64% 84.34% 86.65% 69.64% 84.34% 

Random Forest (2 Trees) 95.52% 33.33% 87.09% 97.57% 45.24% 90.48% 96.83% 35.71% 88.54% 

Random Forest (10 Trees) 98.97% 51.19% 92.49% 98.88% 52.38% 92.57% 99.44% 45.24% 92.09% 

Random Forest (20 Trees) 99.16% 54.76% 93.14% 99.63% 52.98% 93.30% 99.81% 50.60% 93.14% 

Random Forest (30 Trees) 99.53% 55.95% 93.62% 99.63% 51.79% 93.14% 99.63% 50.60% 92.98% 
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  DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Random Forest (40 Trees) 99.35% 56.55% 93.54% 99.91% 52.98% 93.54% 99.72% 51.19% 93.14% 

Random Forest (50 Trees) 99.44% 57.14% 93.70% 99.81% 53.57% 93.54% 99.72% 51.19% 93.14% 

Multilayer Perceptron (1 hidden layer 

neurons = [number of attributes + number of 

classes]/2) 

95.89% 61.31% 91.20% 96.08% 63.10% 91.61% 96.73% 66.07% 92.57% 

Multilayer Perceptron (1 hidden layer 2 

neurons) 
96.92% 59.52% 91.85% 97.01% 55.36% 91.36% 95.89% 60.12% 91.04% 

Multilayer Perceptron (1 hidden layer 

neurons = number of attributes) 
96.08% 60.71% 91.28% 96.64% 61.90% 91.93% 96.45% 62.50% 91.85% 

Multilayer Perceptron (1 hidden layer 

neurons = number of attributes + number of 

classes) 

96.55% 60.12% 91.61% 96.64% 58.93% 91.53% 96.36% 61.90% 91.69% 

Decision Table (search method: Best First) 99.35% 52.98% 93.06% 99.35% 52.98% 93.06% 99.35% 52.98% 93.06% 

Decision Table (search method: Rank Search) 99.63% 54.76% 93.54% 99.63% 54.76% 93.54% 99.63% 54.76% 93.54% 

Decision Table (search method: Greedy 

Stepwise) 
99.63% 53.57% 93.38% 99.63% 53.57% 93.38% 99.63% 53.57% 93.38% 

Decision Table (search method: 

ScatterSearchV1) 
99.63% 54.17% 93.46% 99.35% 54.76% 93.30% 99.35% 54.76% 93.30% 

Decision Table (search method: Linear 

Forward Selection) 
99.53% 54.76% 93.46% 99.35% 54.17% 93.22% 99.25% 54.17% 93.14% 

Decision Table (search method: Subset Size 

Forward Selection) 
99.25% 55.36% 93.30% 99.25% 55.36% 93.30% 99.25% 55.36% 93.30% 

 

 

 

Table 30: Results of several methods from Niguarda chronic dataset 

  
DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

K Nearest Neighbors 
89.78% 30.83% 80.63% 90.75% 24.81% 80.51% 94.06% 24.06% 83.20% 

Voting Feature Intervals 
81.08% 72.18% 79.70% 80.39% 72.18% 79.11% 82.04% 68.42% 79.93% 

C 4.5 
98.62% 54.89% 91.83% 98.62% 54.89% 91.83% 98.62% 54.89% 91.83% 

Decision Table Naive Bayes Combination 
99.45% 47.37% 91.37% 99.17% 47.37% 91.13% 99.17% 47.37% 91.13% 

RIPPER 
98.62% 50.38% 91.13% 98.62% 50.38% 91.13% 98.34% 51.88% 91.13% 

Non Nested Generalised Exemplars 
97.10% 55.64% 90.67% 96.69% 54.89% 90.20% 97.65% 52.63% 90.67% 

PART 
94.89% 57.14% 89.03% 94.75% 57.14% 88.91% 95.17% 56.39% 89.15% 

Bayes Network 
82.18% 73.68% 80.86% 82.32% 74.44% 81.10% 82.18% 75.19% 81.10% 

Naive Bayes 
88.26% 58.65% 83.66% 88.26% 60.90% 84.01% 88.12% 60.15% 83.78% 

RBF Network 
95.72% 28.57% 85.30% 95.72% 23.31% 84.48% 95.99% 26.32% 85.18% 

Random Tree 
89.78% 44.36% 82.73% 90.61% 54.89% 85.06% 92.40% 47.37% 85.41% 

Random Forest 
98.48% 46.62% 90.43% 98.76% 45.11% 90.43% 98.48% 44.36% 90.08% 

Decision Table  
99.03% 47.37% 91.02% 99.03% 47.37% 91.02% 98.76% 46.62% 90.67% 

Multilayer Perceptron 
93.51% 54.14% 87.40% 93.09% 51.13% 86.58% 94.75% 56.39% 88.80% 
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Table 31: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from Niguarda chronic dataset 

  
DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

C 4.5 ( min number of instances/leaf: 2) 
98.90% 47.37% 90.90% 98.90% 47.37% 90.90% 98.90% 47.37% 90.90% 

C 4.5 ( min number of instances/leaf: 5) 
99.17% 47.37% 91.13% 99.17% 47.37% 91.13% 99.17% 47.37% 91.13% 

C 4.5 ( min number of instances/leaf: 10) 
99.86% 47.37% 91.72% 99.86% 47.37% 91.72% 99.86% 47.37% 91.72% 

C 4.5 ( min number of instances/leaf: 15) 
99.86% 47.37% 91.72% 99.86% 47.37% 91.72% 99.86% 47.37% 91.72% 

C 4.5 ( min number of instances/leaf: 20) 
99.86% 47.37% 91.72% 99.86% 47.37% 91.72% 99.86% 47.37% 91.72% 

PART (min number of instances/rule: 2) 
97.79% 48.12% 90.08% 97.38% 48.87% 89.85% 97.24% 48.87% 89.73% 

PART (min number of instances/rule: 5) 
98.62% 48.12% 90.78% 98.62% 48.12% 90.78% 98.62% 48.12% 90.78% 

PART (min number of instances/rule: 10) 
99.72% 48.87% 91.83% 99.72% 48.87% 91.83% 99.72% 48.87% 91.83% 

PART (min number of instances/rule: 15) 
99.72% 47.37% 91.60% 99.72% 47.37% 91.60% 99.72% 47.37% 91.60% 

PART (min number of instances/rule: 20) 
99.72% 47.37% 91.60% 99.72% 47.37% 91.60% 99.72% 47.37% 91.60% 

Bayes Network (method for searching 

network structures: gK2) 
82.18% 73.68% 80.86% 82.32% 74.44% 81.10% 82.18% 75.19% 81.10% 

Bayes Network (method for searching 

network structures: lK2) 
82.18% 73.68% 80.86% 82.32% 74.44% 81.10% 82.18% 75.19% 81.10% 

Bayes Network (method for searching 

network structures: Local TAN) 
92.82% 60.15% 87.75% 93.78% 60.15% 88.56% 93.78% 59.40% 88.45% 

Bayes Network (method for searching 

network structures: Naive Bayes) 
82.18% 73.68% 80.86% 82.32% 74.44% 81.10% 82.18% 75.19% 81.10% 

Bayes Network (method for searching 

network structures: Global Tabu Search) 
91.30% 66.92% 87.51% 91.44% 64.66% 87.28% 91.71% 65.41% 87.63% 

Bayes Network (method for searching 

network structures: Local Tabu Search) 
82.18% 73.68% 80.86% 82.18% 75.19% 81.10% 82.18% 75.19% 81.10% 

Bayes Network (method for searching 

network structures: Global Hill Climber) 
- - - 94.75% 55.64% 88.68% - - - 

Bayes Network (method for searching 

network structures: Local Hill Climber) 
81.77% 74.44% 80.63% 81.49% 75.19% 80.51% 81.49% 75.19% 80.51% 

Bayes Network (method for searching 

network structures: Local LAGD Hill Climber) 
81.77% 74.44% 80.63% 81.49% 75.19% 80.51% 81.49% 75.19% 80.51% 

Bayes Network (method for searching 

network structures: Local Repeated Hill 

Climber) 

81.77% 74.44% 80.63% 81.49% 75.19% 80.51% 81.49% 75.19% 80.51% 

Random Forest (2 Trees) 
95.17% 42.86% 87.05% 95.72% 31.58% 85.76% 95.30% 36.84% 86.23% 

Random Forest (10 Trees) 
98.20% 46.62% 90.20% 98.62% 45.11% 90.32% 98.48% 44.36% 90.08% 

Random Forest (20 Trees) 
99.03% 48.12% 91.13% 99.17% 47.37% 91.13% 99.03% 45.11% 90.67% 

Random Forest (30 Trees) 
99.17% 50.38% 91.60% 99.31% 43.61% 90.67% 99.31% 45.11% 90.90% 

Random Forest (40 Trees) 
99.17% 51.13% 91.72% 99.45% 45.11% 91.02% 99.31% 45.11% 90.90% 

Random Forest (50 Trees) 
99.31% 51.13% 91.83% 99.31% 45.86% 91.02% 99.31% 45.11% 90.90% 

Multilayer Perceptron (1 hidden layer 

neurons = [number of attributes + number of 

classes]/2) 

93.51% 54.14% 87.40% 93.09% 51.13% 86.58% 94.75% 56.39% 88.80% 

Multilayer Perceptron (1 hidden layer 2 

neurons) 
94.89% 48.87% 87.75% 95.30% 44.36% 87.40% 95.17% 51.88% 88.45% 

Multilayer Perceptron (1 hidden layer 

neurons = number of attributes) 
93.23% 54.89% 87.28% 93.65% 52.63% 87.28% 94.34% 48.12% 87.16% 

Multilayer Perceptron (1 hidden layer 

neurons = number of attributes + number of 

classes) 

94.34% 52.63% 87.86% 92.68% 52.63% 86.46% 94.75% 51.13% 87.98% 

Decision Table (search method: Best First) 
99.03% 47.37% 91.02% 99.03% 47.37% 91.02% 98.76% 46.62% 90.67% 

Decision Table (search method: Rank Search) 
99.72% 47.37% 91.60% 99.72% 47.37% 91.60% 99.72% 47.37% 91.60% 
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DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Decision Table (search method: Greedy 

Stepwise) 
99.45% 47.37% 91.37% 99.45% 47.37% 91.37% 99.45% 47.37% 91.37% 

Decision Table (search method: 

ScatterSearchV1) 
99.45% 46.62% 91.25% 99.59% 48.12% 91.60% 99.45% 48.12% 91.48% 

Decision Table (search method: Linear 

Forward Selection) 
99.59% 47.37% 91.48% 99.45% 48.12% 91.48% 99.59% 46.62% 91.37% 

Decision Table (search method: Subset Size 

Forward Selection) 
99.86% 47.37% 91.72% 99.86% 47.37% 91.72% 99.86% 47.37% 91.72% 

 

 

 

Table 32: Results of several methods from Niguarda AMI dataset using SMOTE. 

  
DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

K Nearest Neighbors 
93.28% 89.38% 91.31% 94.86% 87.91% 91.35% 97.11% 87.64% 92.33% 

Voting Feature Intervals 
98.51% 91.94% 95.19% 98.51% 91.58% 95.01% 98.51% 91.67% 95.05% 

C 4.5 
97.85% 94.87% 96.35% 97.85% 94.87% 96.35% 97.85% 94.87% 96.35% 

Decision Table Naive Bayes Combination 
98.04% 93.50% 95.75% 97.95% 93.22% 95.56% 97.57% 93.96% 95.75% 

RIPPER 
98.51% 93.77% 96.12% 98.88% 94.23% 96.53% 98.23% 93.77% 95.98% 

Non Nested Generalised Exemplars 
98.23% 91.21% 94.68% 97.39% 91.12% 94.22% 98.23% 91.85% 95.01% 

PART 
96.17% 94.32% 95.24% 96.45% 94.32% 95.38% 95.99% 94.41% 95.19% 

Bayes Network 
96.73% 90.11% 93.39% 96.17% 90.48% 93.30% 96.64% 90.29% 93.44% 

Naive Bayes 
93.93% 89.93% 91.91% 94.21% 90.29% 92.23% 94.12% 90.48% 92.28% 

RBF Network 
95.33% 87.27% 91.26% 95.33% 88.46% 91.86% 94.40% 88.92% 91.63% 

Random Tree 
92.25% 91.48% 91.86% 89.54% 92.22% 90.89% 91.78% 91.58% 91.68% 

Random Forest 
98.41% 91.85% 95.10% 98.97% 91.85% 95.38% 98.69% 91.85% 95.24% 

Decision Table  
95.05% 89.56% 92.28% 95.61% 88.19% 91.86% 97.11% 93.13% 95.10% 

Multilayer Perceptron 
97.20% 93.86% 95.52% 96.73% 94.32% 95.52% 96.73% 94.23% 95.47% 
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Table 33: McNemar Test of several methods from Niguarda AMI dataset using SMOTE 

AMI ALL METHODS 

 Bayes Network 

Decision Table 

Naive Bayes 

Combination 

Decision Table C 4.5 RIPPER 
Multilayer 

Perceptron 

Non Nested 

Generalised 

Exemplars 

PART 

Rando

m 

Forest 

Bayes Network NS S S S S S S S S 

Decision Table Naive 

Bayes Combination 
S NS S S NS S S S S 

Decision Table S S NS S S S S S S 

C 4.5 S S S NS NS S S S S 

RIPPER S NS S NS NS S S S S 

Multilayer 

Perceptron 
S S S S S NS S S S 

Non Nested 

Generalised 

Exemplars 

S S S S S S S S NS 

PART S S S S S S S NS S 

Random Forest S S S S S S S S NS 

AMI ECHO METHODS 

 
Bayes 

Network 

Decision 

Table Naive 

Bayes 

Combination 

Decisi

on 

Table 

K 

Nearest 

Neighbo

rs 

C 4.5 RIPPER 
Multilayer 

Perceptron 

Non Nested 

Generalised 

Exemplars 

Naïve 

Bayes 
PART 

RBF 

Network 

Rando

m 

Forest 

Voting 

Feature 

Intervals 

Bayes Network NS S S S S S S S S S S S S 

Decision Table Naive 

Bayes Combination 
S NS S S NS S S S S S S S S 

Decision Table S S NS S S S S S S S S S NS 

K Nearest Neighbors S S S NS S S S S S NS S S S 

C 4.5 S NS S S NS NS S S S S S S S 

RIPPER S S S S NS NS S S S S S S S 

Multilayer 

Perceptron 
S S S S S S NS NS S S S S S 

Non Nested 

Generalised 

Exemplars 

S S S S S S NS NS S S S NS S 

Naive Bayes S S S S S S S S NS S NS S S 

 
Bayes 

Network 

Decision 

Table Naive 

Bayes 

Combination 

Decisi

on 

Table 

K 

Nearest 

Neighbo

rs 

C 4.5 RIPPER 
Multilayer 

Perceptron 

Non Nested 

Generalised 

Exemplars 

Naïve 

Bayes 
PART 

RBF 

Network 

Rando

m 

Forest 

Voting 

Feature 

Intervals 

PART S S S NS S S S S S NS S S S 

RBF Network S S S S S S S S NS S NS S S 

Random Forest S S S S S S S NS S S S NS S 

Voting Feature 

Intervals 
S S NS S S S S S S S S S NS 

AMI STRESS TEST METHODS 

 Bayes Network 

Decision 

Table Naive 

Bayes 

Combination 

Decision 

Table 
C 4.5 RIPPER 

Multilayer 

Perceptron 

Non Nested 

Generalised 

Exemplars 

PART 
Random 

Forest 

Voting Feature 

Intervals 

Bayes Network NS S S S S S S S S S 

Decision Table Naive 

Bayes Combination 
S NS NS NS S S S S S S 

Decision Table S NS NS S S S S S S S 

C 4.5 S NS S NS NS S S S S S 

RIPPER S S S NS NS S S S S S 

Multilayer 

Perceptron 
S S S S S NS NS S NS S 

Non Nested 

Generalised 

Exemplars 

S S S S S NS NS S NS S 

PART S S S S S S S NS S S 

Random Forest S S S S S NS NS S NS S 

Voting Feature 

Intervals 
S S S S S S S S S NS 
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Table 34: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from Niguarda AMI dataset using SMOTE. 

  
DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

C 4.5 ( min number of instances/leaf: 2) 
97.67% 94.69% 96.16% 97.57% 94.69% 96.12% 97.67% 94.69% 96.16% 

C 4.5 ( min number of instances/leaf: 5) 
97.85% 94.60% 96.21% 97.76% 94.60% 96.16% 97.85% 94.60% 96.21% 

C 4.5 ( min number of instances/leaf: 10) 
97.48% 94.60% 96.02% 97.76% 94.69% 96.21% 97.48% 94.60% 96.02% 

C 4.5 ( min number of instances/leaf: 15) 
95.80% 92.77% 94.27% 95.80% 92.77% 94.27% 95.80% 92.77% 94.27% 

C 4.5 ( min number of instances/leaf: 20) 
94.86% 92.77% 93.80% 94.86% 92.77% 93.80% 94.86% 92.77% 93.80% 

PART (min number of instances/rule: 2) 
98.32% 93.77% 96.02% 98.23% 93.86% 96.02% 98.32% 93.96% 96.12% 

PART (min number of instances/rule: 5) 
97.39% 94.14% 95.75% 97.39% 94.05% 95.70% 97.39% 94.05% 95.70% 

PART (min number of instances/rule: 10) 
97.67% 93.96% 95.79% 97.67% 93.96% 95.79% 97.48% 94.14% 95.79% 

PART (min number of instances/rule: 15) 
96.27% 94.32% 95.28% 96.27% 94.32% 95.28% 96.45% 94.41% 95.42% 

PART (min number of instances/rule: 20) 
94.58% 94.87% 94.73% 94.58% 94.87% 94.73% 94.40% 95.24% 94.82% 

Bayes Network (method for searching 

network structures: gK2) 
96.73% 90.11% 93.39% 96.17% 90.48% 93.30% 96.64% 90.29% 93.44% 

Bayes Network (method for searching 

network structures: lK2) 
96.73% 90.11% 93.39% 96.17% 90.48% 93.30% 96.64% 90.29% 93.44% 

Bayes Network (method for searching 

network structures: Local TAN) 
96.73% 90.11% 93.39% 96.17% 90.48% 93.30% 96.64% 90.29% 93.44% 

Bayes Network (method for searching 

network structures: Naive Bayes) 
98.32% 90.38% 94.31% 98.13% 91.03% 94.54% 97.85% 90.66% 94.22% 

Bayes Network (method for searching 

network structures: Global Tabu Search) 
96.73% 90.11% 93.39% 96.17% 90.48% 93.30% 96.64% 90.29% 93.44% 

Bayes Network (method for searching 

network structures: Global Hill Climber) 
96.73% 90.11% 93.39% 96.17% 90.48% 93.30% 96.64% 90.29% 93.44% 

Bayes Network (method for searching 

network structures: Local Hill Climber) 
99.63% 87.91% 93.71% 99.16% 88.64% 93.85% 98.97% 88.55% 93.71% 

Bayes Network (method for searching 

network structures: Local LAGD Hill Climber) 
96.64% 90.11% 93.34% 96.17% 90.48% 93.30% 96.64% 90.29% 93.44% 

Bayes Network (method for searching 

network structures: Local Repeated Hill 

Climber) 

96.73% 90.11% 93.39% 96.17% 90.48% 93.30% 96.64% 90.29% 93.44% 

Random Forest (2 Trees) 
96.27% 89.01% 92.60% 96.92% 89.29% 93.07% 95.52% 89.84% 92.65% 

Random Forest (10 Trees) 
98.13% 91.85% 94.96% 99.07% 91.76% 95.38% 98.69% 91.85% 95.24% 

Random Forest (20 Trees) 
98.69% 91.76% 95.19% 99.35% 92.22% 95.75% 99.25% 92.67% 95.93% 

Random Forest (30 Trees) 
99.07% 91.85% 95.42% 99.25% 92.12% 95.65% 99.53% 92.12% 95.79% 

Random Forest (40 Trees) 
99.25% 91.94% 95.56% 99.25% 92.03% 95.61% 99.72% 92.40% 96.02% 

Random Forest (50 Trees) 
99.35% 91.94% 95.61% 99.35% 92.03% 95.65% 99.53% 92.12% 95.79% 

Multilayer Perceptron (1 hidden layer  

neurons = [number of attributes + number 

of classes]/2) 

97.20% 93.86% 95.52% 96.73% 94.32% 95.52% 96.73% 94.23% 95.47% 

Multilayer Perceptron (1 hidden layer 2 

neurons) 
95.70% 93.86% 94.78% 96.36% 93.77% 95.05% 95.70% 94.41% 95.05% 

Multilayer Perceptron (1 hidden layer  

neurons = number of attributes) 
97.11% 93.68% 95.38% 96.55% 94.05% 95.28% 96.55% 94.05% 95.28% 

Multilayer Perceptron (1 hidden layer  

neurons = number of attributes + number of 

classes) 

97.20% 94.14% 95.65% 96.83% 94.41% 95.61% 96.45% 94.78% 95.61% 

Decision Table (search method: Best First) 
95.05% 89.56% 92.28% 95.61% 88.19% 91.86% 97.11% 93.13% 95.10% 

Decision Table (search method: Rank 

Search) 
95.80% 89.19% 92.46% 95.80% 89.19% 92.46% 95.33% 89.93% 92.60% 
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DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Decision Table (search method: Greedy 

Stepwise) 
95.05% 89.56% 92.28% 96.27% 88.10% 92.14% 97.48% 93.04% 95.24% 

Decision Table (search method: 

ScatterSearchV1) 
95.52% 94.23% 94.87% 98.60% 93.68% 96.12% 98.04% 92.95% 95.47% 

Decision Table (search method: Linear 

Forward Selection) 
95.42% 89.29% 92.33% 96.73% 89.01% 92.83% 97.57% 93.04% 95.28% 

Decision Table (search method: Subset Size 

Forward Selection) 94.21% 88.74% 91.45% 94.30% 87.45% 90.85% 97.67% 93.04% 95.33% 

 

 

Table 35: McNemar Test of random forest, c 4.5 part, multilayer perceptron and bayes network using 

different parameter values from Niguarda AMI dataset using SMOTE. 

AMI ALL VALUES 

  

Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

Bayes Network NS NS S S S S 

Decision Table NS NS S S S S 

C 4.5 S S NS S NS S 

Multilayer 

Perceptron 
S S S NS S S 

  

Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

PART S S NS S NS S 

Random Forest S S S S S NS 

AMI ECHO VALUES 

 
Bayes 

Network 
Decision Table C 4.5 PART Random Forest 

Bayes Network NS S S S S 

Decision Table S NS S S S 

C 4.5 S S NS NS S 

PART S S NS NS S 

Random Forest S S S S NS 

AMI STRESS TEST VALUES 

 
Bayes 

Network 

Decision 

Table 
C 4.5 

Multilayer 

Perceptron 
PART 

Random 

Forest 

Bayes Network NS S S S S S 

Decision Table S NS S S S S 

C 4.5 S S NS S NS S 

Multilayer 

Perceptron 
S S S NS S S 

PART S S NS S NS S 

Random Forest S S S S S NS 
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Table 36: Results of several methods from Niguarda chronic dataset using SMOTE. 

  
DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

K Nearest Neighbors 
86.88% 88.51% 87.70% 86.74% 88.65% 87.70% 91.44% 87.69% 89.55% 

Voting Feature Intervals 
98.90% 76.74% 87.77% 99.17% 77.57% 88.32% 99.17% 82.22% 90.65% 

C 4.5 
96.55% 90.83% 93.68% 96.41% 90.83% 93.61% 96.41% 90.83% 93.61% 

Decision Table Naive Bayes Combination 
94.06% 92.48% 93.26% 95.17% 92.48% 93.81% 95.58% 92.48% 94.02% 

RIPPER 
96.96% 90.29% 93.61% 96.69% 91.11% 93.88% 97.93% 89.88% 93.88% 

Non Nested Generalised Exemplars 
96.69% 86.87% 91.75% 96.41% 84.40% 90.38% 97.93% 88.92% 93.40% 

PART 
94.61% 93.16% 93.88% 94.75% 92.89% 93.81% 95.03% 92.75% 93.88% 

Bayes Network 
97.10% 87.69% 92.37% 97.10% 85.77% 91.41% 97.38% 86.73% 92.03% 

Naive Bayes 
92.68% 88.65% 90.65% 93.51% 87.96% 90.72% 94.34% 87.96% 91.13% 

RBF Network 
91.57% 87.82% 89.69% 91.57% 86.87% 89.21% 91.02% 88.51% 89.76% 

Random Tree 
89.64% 89.33% 89.48% 91.16% 88.24% 89.69% 88.67% 89.33% 89.00% 

Random Forest 
96.82% 91.11% 93.95% 97.51% 90.29% 93.88% 97.65% 89.74% 93.68% 

Decision Table  
94.20% 88.37% 91.27% 97.65% 89.60% 93.61% 96.96% 90.42% 93.68% 

Multilayer Perceptron 
92.68% 91.38% 92.03% 93.37% 91.11% 92.23% 92.68% 92.34% 92.51% 

 

 

 

Table 37: McNemar test of several methods from Niguarda chronic dataset using SMOTE 

CIHD ALL METHODS 

  

Bayes Network 
Decision Table Naive 

Bayes Combination 

Decision 

Table 
C 4.5 RIPPER 

Multilayer 

Perceptron 

Non Nested 

Generalised 

Exemplars 

PART Random Forest 

 Bayes Network NS S S S S S S S S 

Decision Table Naive 

Bayes Combination 
S NS NS S S S S S S 

 Decision Table S NS NS S S S S S S 

 C 4.5 S S S NS S S S NS S 

 RIPPER S S S S NS S S S S 

 Multilayer Perceptron S S S S S NS S S NS 

Non Nested Generalised 

Exemplars 
S S S S S S NS S NS 

 PART S S S NS S S S NS S 

 Random Forest S S S S S NS NS S NS 

CIHD ECHO METHODS 

  Bayes Network 
Decision Table Naive 

Bayes Combination 

Decision 

Table 
C 4.5 RIPPER 

Multilayer 

Perceptron 
PART Random Forest 

 Bayes Network NS S S S S S S S 

Decision Table Naive 

Bayes Combination 
S NS NS S NS S S S 

 Decision Table S NS NS S S S S S 

 C 4.5 S S S NS S S NS S 

 RIPPER S NS S S NS S S S 

 Multilayer Perceptron S S S S S NS S NS 
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 PART S S S NS S S NS S 

 Random Forest S S S S S NS S NS 

CIHD STRESS TEST METHODS 

  Bayes Network 
Decision Table Naive 

Bayes Combination 

Decision 

Table 
C 4.5 RIPPER 

Multilayer 

Perceptron 

Non Nested 

Generalised 

Exemplars 

PART Random Forest 

 Bayes Network NS S S S S S S S S 

Decision Table Naive 

Bayes Combination 
S NS NS S NS S S S S 

 Decision Table S NS NS S S S S S S 

 C 4.5 S S S NS S S S NS S 

 RIPPER S NS S S NS S S S S 

 Multilayer Perceptron S S S S S NS NS S NS 

Non Nested Generalised 

Exemplars 
S S S S S NS NS S NS 

 PART S S S NS S S S NS S 

 Random Forest S S S S S NS NS S NS 

 

 

Table 38: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from Niguarda chronic dataset using SMOTE. 

  
DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

C 4.5 ( min number of instances/leaf: 2) 
98.34% 90.01% 94.16% 98.34% 90.01% 94.16% 98.34% 90.01% 94.16% 

C 4.5 ( min number of instances/leaf: 5) 
97.51% 90.29% 93.88% 97.65% 90.15% 93.88% 97.65% 90.15% 93.88% 

C 4.5 ( min number of instances/leaf: 10) 
96.96% 90.01% 93.47% 96.96% 90.01% 93.47% 96.96% 90.01% 93.47% 

C 4.5 ( min number of instances/leaf: 15) 
95.86% 90.56% 93.20% 95.86% 90.56% 93.20% 95.86% 90.56% 93.20% 

C 4.5 ( min number of instances/leaf: 20) 
95.30% 89.74% 92.51% 95.03% 89.74% 92.37% 95.03% 89.74% 92.37% 

PART (min number of instances/rule: 2) 
96.82% 91.66% 94.23% 96.69% 91.52% 94.09% 96.27% 91.52% 93.88% 

PART (min number of instances/rule: 5) 
96.55% 91.38% 93.95% 96.69% 91.24% 93.95% 96.69% 91.11% 93.88% 

PART (min number of instances/rule: 10) 
95.72% 91.24% 93.47% 95.99% 90.97% 93.47% 96.41% 90.83% 93.61% 

PART (min number of instances/rule: 15) 
95.44% 91.11% 93.26% 95.44% 91.11% 93.26% 95.72% 90.97% 93.33% 

PART (min number of instances/rule: 20) 
95.86% 91.11% 93.47% 95.72% 90.97% 93.33% 95.58% 91.11% 93.33% 

Bayes Network (method for searching 

network structures: gK2) 
97.10% 87.69% 92.37% 97.10% 85.77% 91.41% 97.38% 86.73% 92.03% 

Bayes Network (method for searching 

network structures: lK2) 
97.10% 87.69% 92.37% 97.10% 85.77% 91.41% 97.38% 86.73% 92.03% 

Bayes Network (method for searching 

network structures: Local TAN) 
97.79% 86.46% 92.10% 97.51% 86.05% 91.75% 97.38% 86.05% 91.68% 

Bayes Network (method for searching 

network structures: Naive Bayes) 
97.10% 87.69% 92.37% 97.10% 85.77% 91.41% 97.38% 86.73% 92.03% 

Bayes Network (method for searching 

network structures: Global Tabu Search) 
96.27% 88.51% 92.37% 96.41% 88.10% 92.23% 97.38% 87.82% 92.58% 

Bayes Network (method for searching 

network structures: Local Tabu Search) 
96.55% 87.55% 92.03% 96.96% 85.91% 91.41% 97.10% 86.87% 91.96% 

Bayes Network (method for searching 

network structures: Local Hill Climber) 
96.55% 87.55% 92.03% 96.82% 86.18% 91.48% 97.10% 86.87% 91.96% 

Bayes Network (method for searching 

network structures: Local LAGD Hill 

Climber) 

96.55% 87.55% 92.03% 96.82% 86.18% 91.48% 97.10% 86.87% 91.96% 

Bayes Network (method for searching 

network structures: Local Repeated Hill 

Climber) 

96.55% 87.55% 92.03% 96.82% 86.18% 91.48% 97.10% 86.87% 91.96% 

Random Forest (2 Trees) 
94.75% 88.92% 91.82% 93.51% 89.19% 91.34% 94.61% 88.10% 91.34% 
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DATASET ALL DATASET ECHO DATASET STRESS TEST 

METHOD specificity  sensitivity accuracy specificity  sensitivity accuracy specificity  sensitivity accuracy 

Random Forest (10 Trees) 
96.69% 90.83% 93.75% 97.65% 90.42% 94.02% 97.65% 89.74% 93.68% 

Random Forest (20 Trees) 
97.51% 90.29% 93.88% 98.20% 89.33% 93.75% 97.93% 89.19% 93.54% 

Random Forest (30 Trees) 
97.38% 90.97% 94.16% 98.90% 90.29% 94.57% 98.07% 89.88% 93.95% 

Random Forest (40 Trees) 
98.07% 90.97% 94.50% 99.31% 89.74% 94.50% 98.20% 90.01% 94.09% 

Random Forest (50 Trees) 
97.93% 90.70% 94.30% 99.03% 90.15% 94.57% 98.34% 90.01% 94.16% 

Multilayer Perceptron (1 hidden layer  

neurons = [number of attributes + number 

of classes]/2) 

92.68% 91.38% 92.03% 93.37% 91.11% 92.23% 92.68% 92.34% 92.51% 

Multilayer Perceptron (1 hidden layer 2 

neurons) 
92.13% 91.11% 91.62% 91.85% 92.20% 92.03% 92.27% 91.11% 91.68% 

Multilayer Perceptron (1 hidden layer  

neurons = number of attributes) 
92.40% 92.07% 92.23% 92.27% 90.97% 91.62% 93.51% 91.38% 92.44% 

Multilayer Perceptron (1 hidden layer  

neurons = number of attributes + number 

of classes) 

93.09% 91.11% 92.10% 92.54% 91.52% 92.03% 92.82% 91.93% 92.37% 

Decision Table (search method: Best First) 
94.20% 88.37% 91.27% 97.65% 89.60% 93.61% 96.96% 90.42% 93.68% 

Decision Table (search method: Rank 

Search) 
96.69% 87.82% 92.23% 96.82% 84.82% 90.79% 96.69% 85.91% 91.27% 

Decision Table (search method: Greedy 

Stepwise) 
94.20% 88.37% 91.27% 97.65% 89.60% 93.61% 98.07% 90.15% 94.09% 

Decision Table (search method: 

ScatterSearchV1) 
97.51% 90.29% 93.88% 97.38% 90.56% 93.95% 97.65% 90.56% 94.09% 

Decision Table (search method: Linear 

Forward Selection) 
94.89% 88.24% 91.55% 97.79% 89.88% 93.81% 96.96% 90.42% 93.68% 

Decision Table (search method: Subset Size 

Forward Selection) 
94.34% 88.37% 91.34% 97.93% 89.74% 93.81% 97.79% 90.42% 94.09% 

 

 

Table 39 McNemar test of random forest, c 4.5 part, multilayer perceptron and bayes network using 

different parameter values from Niguarda chronic dataset using SMOTE. 

CIHD ALL VALUES 

  Bayes Network Decision Table C 4.5 Multilayer Perceptron PART Random Forest 

 Bayes Network NS NS S S S S 

 Decision Table NS NS S S S S 

C 4.5 S S NS S NS S 

 Multilayer Perceptron S S S NS S S 

 PART S S NS S NS S 

 Random Forest S S S S S NS 

CIHD ECHO VALUES 

  Bayes Network Decision Table C 4.5 Multilayer Perceptron PART Random Forest 

 Bayes Network NS S S S S S 

 Decision Table S NS S S S S 

C 4.5 S S NS S NS S 

 Multilayer Perceptron S S S NS S NS 

 PART S S NS S NS S 

 Random Forest S S S NS S NS 

CIHD STRESS TEST VALUES 

  Bayes Network Decision Table C 4.5 Multilayer Perceptron PART Random Forest 

 Bayes Network NS S S S S S 

 Decision Table S NS S S S S 

C 4.5 S S NS S NS S 

 Multilayer Perceptron S S S NS S NS 

 PART S S NS S NS S 

 Random Forest S S S NS S NS 
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Results for the Niguarda datasets are accurate when the SMOTE algorithm is applied in order to balance the 

datasets. On unbalanced datasets the algorithm have low sensitivity, thus they do not predict patients who 

deceased. 

Although the specificity, sensitivity and accuracy of classifiers produced from the abovementioned datasets 

are high, the rules are not compliant to common medical knowledge. In order to get more reasonable rules 

the clinicians had to further restrict the dataset. Clinicians decided to limit the datasets to one per group of 

patients. Moreover, the variables of each dataset were restricted too, as shown in Table 40. Furthermore, 

clinicians proposed to eliminate patients whose left ventricle ejection fraction was missing, since it is an 

important feature for the prediction. Doing so had as a result that the chronic patients’ dataset was limited 

to 404 patients and the AMI patients’ dataset was limited to 974. The datasets were still highly unbalanced, 

thus the SMOTE algorithm was once again applied in order to balance the datasets. The data mining 

algorithms previously described were applied to AMI and chronic patients’ datasets.  

In Tables  41and  42 the results from the application of the data mining methodologies on the first 

restricted version of the AMI dataset are depicted. In Table 41 the results of several methodologies using 

the default parameter values are shown, whereas in Table 42 the results of the methodologies using 

different parameter values are shown. Similarly, in Table 43 results of the application of the data mining 

algorithms using the default parameter values when applied to the unbalanced chronic dataset are shown 

and in Table 44 the results of the data mining algorithms using different parameter values are shown. 

The results from the application of the data mining methodologies on the datasets balanced using SMOTE 

are presented in Tables  45 -  52. Tables  45 and  47 present the results of the application of the data mining 

methodologies using default  parameter values (Table 45) and different parameter values (Table 47) of the 

data mining algorithms applied on the AMI dataset balanced with SMOTE. Tables  46 and  48 present the 

corresponding Mc Nemar tests. Likewise, Tables  49 and  51 present respectively the results of the data 

mining methodologies using default parameter values and different parameter values of the data mining 

algorithms applied on the chronic dataset balanced with SMOTE. Tables  50 and  52 present the 

corresponding Mc Nemar tests. 

 

Table 40: Variables of first restricted by clinicians’ version of Niguarda dataset 

Variables Chronic Variables AMI 

Age Age 

Sex Sex 

BMI BMI 

Smoking Habits Smoking Habits 

Hypertension Hypertension 

Diabetes Diabetes 

Dyslipidemia Dyslipidemia 

Chronic kidney dysfunction Chronic kidney dysfunction 

Dialysis Dialysis 

COPD COPD 

Atrial fibrillation history Atrial fibrillation history 
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Previous STENT Pre-Existing Vascular Disease 

Pre-Existing Vascular Disease AMI Type 

N vessels AMI Site 

STENT N vessels 

CABG index admission STENT 

Number bypass CABG index admission 

Biventricular pacing Echocardiographic LV dilation 

Implantable Cardioverter defibrillator LV Ejection Fraction 

LV end-Diastolic Volume ACE - Inhibitors 

LV end-Systolic Volume Angiotensin-Receptor Blockers 

LV Ejection Fraction Beta Blockers 

ACE - Inhibitors Calcium Channel Blockers 

Angiotensin-Receptor Blockers ASA (AcetylSalicylic Acid) 

Beta Blockers Double Antiplatelet 

Calcium Channel Blockers Aldosterone Antag. 

Aldosterone Antag. Clopidogrel 

Statins (Lipid Lowering) Hypoglycaemic agents 

Loop Diuretics Insulin 

loop diuretics dose Statins (Lipid Lowering) 

cIHD vs cIHF Loop Diuretics 

Vital status (outcome to be tested) PUFA (ω-3) 

 AMI vs AMIHF 

 Vital status (outcome to be tested) 

Lab data Lab data 

Blood Glucose 

(Serum) worst   

Blood Glucose 

(Serum) worst   

Creatinine worst 

Delta (worst-

admission) Creatinine worst 

Delta (worst-

admission) 

Haemoglobin 

(blood) worst 

Delta (worst-

admission) Haematocrit worst   

K (K+) worst admission 

Haemoglobin 

(blood) worst   

NA (NA+) worst admission HDL cholesterol best   

Total Bilirubine worst   NT Pro BNP  worst   

Urea worst   

Serum Total 

Cholesterol best   

Uric Acid worst   Total Bilirubine worst   

     Triglycerides worst   

     Troponin - T worst   

     Urea worst   

     Uric Acid worst   

      

White Blood cell 

counts worst   

 

 



G.A. no. 224635 

 

D3.4 – Application of data mining methodologies  

 

Revision: V1.1 Security: Public 

 Page 83/115 

 

 

Table 41: Results of several methods from first restricted by clinicians’ version of Niguarda AMI dataset  

METHOD specificity sensitivity accuracy 

Voting Feature Intervals 
84.25% 62.60% 81.52% 

RBF Network 
97.77% 17.07% 87.58% 

Random Tree 
90.60% 25.20% 82.34% 

Random Forest 
98.59% 13.01% 87.78% 

PART 
93.18% 32.52% 85.52% 

Non Nested Generalised Exemplars 
95.65% 23.58% 86.55% 

Naive Bayes 
86.13% 52.03% 81.83% 

Multilayer Perceptron 
94.24% 37.40% 87.06% 

RIPPER 
95.53% 21.14% 86.14% 

C 4.5 
94.95% 26.83% 86.35% 

K Nearest Neighbors 
96.71% 22.76% 87.37% 

Decision Table Naive Bayes Combination 
94.59% 15.45% 84.60% 

Decision Table 
98.35% 7.32% 86.86% 

Bayes Network 
85.55% 61.79% 82.55% 

 

Table 42: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from first restricted by clinicians’ version of Niguarda AMI dataset 

METHOD specificity sensitivity accuracy 

Bayes Network (method for searching network structures: Global Hill Climber) 
91.42% 47.15% 85.83% 

Bayes Network (method for searching network structures: gK2) 
85.55% 61.79% 82.55% 

Bayes Network (method for searching network structures: ICS Search Algorithm) 
90.13% 31.71% 82.75% 

Bayes Network (method for searching network structures: Local Hill Climber) 
86.25% 64.23% 83.47% 

Bayes Network (method for searching network structures: lK2) 
85.55% 61.79% 82.55% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber) 
86.25% 64.23% 83.47% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber) 
86.25% 64.23% 83.47% 

Bayes Network (method for searching network structures: Local Tabu Search) 
85.43% 61.79% 82.44% 

Bayes Network (method for searching network structures: Local TAN) 
91.77% 45.53% 85.93% 

Bayes Network (method for searching network structures: Naive Bayes) 
85.55% 61.79% 82.55% 

C 4.5 ( min number of instances/leaf: 10) 
98.82% 2.44% 86.65% 

C 4.5 ( min number of instances/leaf: 15) 
98.00% 4.07% 86.14% 

C 4.5 ( min number of instances/leaf: 2) 
97.18% 9.76% 86.14% 

C 4.5 ( min number of instances/leaf: 20) 
98.47% 1.63% 86.24% 

C 4.5 ( min number of instances/leaf: 5) 
98.24% 4.07% 86.35% 

Decision Table (search method: Best First) 
98.35% 7.32% 86.86% 

Decision Table (search method: Greedy Stepwise) 
98.35% 6.50% 86.76% 

Decision Table (search method: Linear Forward Selection) 
98.71% 4.88% 86.86% 
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METHOD specificity sensitivity accuracy 

Decision Table (search method: Rank Search) 
97.41% 11.38% 86.55% 

Decision Table (search method: ScatterSearchV1) 
99.29% 5.69% 87.47% 

Decision Table (search method: Subset Size Forward Selection) 
99.18% 6.50% 87.47% 

Multilayer Perceptron (1 hidden layer  neurons = [number of attributes + number of classes]/2) 
94.24% 37.40% 87.06% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes + number of classes) 
93.65% 38.21% 86.65% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes) 
94.36% 39.02% 87.37% 

Multilayer Perceptron (1 hidden layer 2 neurons) 
94.24% 31.71% 86.35% 

PART (min number of instances/rule: 10) 
97.65% 8.94% 86.45% 

PART (min number of instances/rule: 15) 
97.88% 8.13% 86.55% 

PART (min number of instances/rule: 2) 
95.42% 16.26% 85.42% 

PART (min number of instances/rule: 20) 
97.65% 10.57% 86.65% 

PART (min number of instances/rule: 5) 
97.77% 8.13% 86.45% 

Random Forest (10 Trees) 
98.59% 13.01% 87.78% 

Random Forest (2 Trees) 
95.89% 16.26% 85.83% 

Random Forest (20 Trees) 
98.94% 12.20% 87.99% 

Random Forest (30 Trees) 
98.59% 13.82% 87.89% 

Random Forest (40 Trees) 
98.71% 11.38% 87.68% 

Random Forest (50 Trees) 
98.71% 11.38% 87.68% 

 

 

Table 43: Results of several methods from first restricted by clinicians’ version of Niguarda chronic 

dataset. 

METHOD specificity  sensitivity accuracy 

Bayes Network 83.28% 52.17% 77.97% 

C 4.5 94.03% 21.74% 81.68% 

Decision Table 97.31% 7.25% 81.93% 

Decision Table Naive Bayes Combination 89.55% 13.04% 76.49% 

K Nearest Neighbors 85.97% 24.64% 75.50% 

Multilayer Perceptron 89.55% 27.54% 78.96% 

Naive Bayes 82.39% 55.07% 77.72% 

Non Nested Generalised Exemplars 94.33% 13.04% 80.45% 

PART 85.67% 30.43% 76.24% 

Random Forest 95.82% 24.64% 83.66% 

Random Tree 85.97% 27.54% 75.99% 

RBF Network 91.64% 27.54% 80.69% 

RIPPER 92.24% 27.54% 81.19% 

Voting Feature Intervals 74.63% 60.87% 72.28% 
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Table 44: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from first restricted by clinicians’ version of Niguarda chronic dataset 

METHOD specificity  sensitivity accuracy 

Bayes Network (method for searching network structures: Global Tabu Search) 89.55% 31.88% 79.70% 

Bayes Network (method for searching network structures: Global Hill Climber) 89.25% 33.33% 79.70% 

Bayes Network (method for searching network structures: gK2) 83.28% 52.17% 77.97% 

Bayes Network (method for searching network structures: Global Repeated Hill Climber) 89.25% 33.33% 79.70% 

Bayes Network (method for searching network structures: ICS Search Algorithm) 86.57% 37.68% 78.22% 

Bayes Network (method for searching network structures: Local Hill Climber) 80.60% 53.62% 75.99% 

Bayes Network (method for searching network structures: lK2) 83.28% 52.17% 77.97% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber) 80.90% 53.62% 76.24% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber) 80.60% 53.62% 75.99% 

Bayes Network (method for searching network structures: Local Tabu Search) 81.19% 56.52% 76.98% 

Bayes Network (method for searching network structures: Local TAN) 89.85% 40.58% 81.44% 

Bayes Network (method for searching network structures: Naive Bayes) 83.28% 52.17% 77.97% 

C 4.5 ( min number of instances/leaf: 10) 99.40% 1.45% 82.67% 

C 4.5 ( min number of instances/leaf: 15) 99.40% 0.00% 82.43% 

C 4.5 ( min number of instances/leaf: 2) 98.51% 8.70% 83.17% 

C 4.5 ( min number of instances/leaf: 20) 100.00% 0.00% 82.92% 

C 4.5 ( min number of instances/leaf: 5) 99.40% 7.25% 83.66% 

Decision Table (search method: Best First) 97.31% 7.25% 81.93% 

Decision Table (search method: Greedy Stepwise) 99.40% 2.90% 82.92% 

Decision Table (search method: Linear Forward Selection) 96.12% 4.35% 80.45% 

Decision Table (search method: Rank Search) 96.72% 15.94% 82.92% 

Decision Table (search method: ScatterSearchV1) 99.40% 2.90% 82.92% 

Decision Table (search method: Subset Size Forward Selection) 99.70% 2.90% 83.17% 

Multilayer Perceptron (1 hidden layer  neurons = [number of attributes + number of 

classes]/2) 89.55% 27.54% 78.96% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes + number of classes) 90.75% 33.33% 80.94% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes) 89.25% 36.23% 80.20% 

Multilayer Perceptron (1 hidden layer 2 neurons) 91.34% 28.99% 80.69% 

PART (min number of instances/rule: 10) 96.12% 7.25% 80.94% 

PART (min number of instances/rule: 15) 99.10% 0.00% 82.18% 

PART (min number of instances/rule: 2) 94.33% 15.94% 80.94% 

PART (min number of instances/rule: 20) 99.40% 0.00% 82.43% 

PART (min number of instances/rule: 5) 95.82% 20.29% 82.92% 

Random Forest (10 Trees) 95.82% 24.64% 83.66% 

Random Forest (2 Trees) 91.64% 15.94% 78.71% 

Random Forest (20 Trees) 97.91% 18.84% 84.41% 

Random Forest (30 Trees) 97.61% 14.49% 83.42% 

Random Forest (40 Trees) 98.51% 17.39% 84.65% 

Random Forest (50 Trees) 97.91% 14.49% 83.66% 

 

Table 45: Results of several methods from first restricted by clinicians’ version of Niguarda AMI dataset 

using SMOTE. 

METHOD specificity sensitivity accuracy 

Bayes Network 
93.30% 90.46% 91.88% 

C 4.5 
94.71% 89.05% 91.88% 

Decision Table 
96.71% 89.05% 92.88% 

Decision Table Naive Bayes Combination 
95.06% 88.93% 92.00% 

K Nearest Neighbors 
96.12% 87.51% 91.82% 

Multilayer Perceptron 
91.89% 91.64% 91.76% 

Naive Bayes 
94.01% 89.63% 91.82% 

Non Nested Generalised Exemplars 
96.12% 86.10% 91.12% 
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METHOD specificity sensitivity accuracy 

PART 
94.83% 90.69% 92.76% 

Random Forest 
97.41% 88.46% 92.94% 

Random Tree 
89.07% 89.99% 89.53% 

RBF Network 
97.30% 87.87% 92.59% 

RIPPER 
98.59% 87.63% 93.12% 

Voting Feature Intervals 
98.82% 86.45% 92.65% 

 

 

Table 46: McNemar test of several methods from first restricted by clinicians’ version of Niguarda AMI 

dataset using SMOTE. 

 

Decision 

Table Naive 

Bayes 

Combination 

Decision 

Table 

K Nearest 

Neighbors 
C 4.5 RIPPER 

Multilayer 

Perceptron 

Non Nested 

Generalised 

Exemplars 

Naïve 

Bayes 
PART 

RBF 

Network 

Random 

Forest 

Voting 

Feature 

Intervals 

Bayes 

Network 

Decision Table Naive 

Bayes Combination  
NS NS S S NS S S NS S NS S NS NS 

 Decision Table  
NS NS S S NS S S S S NS S NS S 

K Nearest Neighbors 
S S NS S S NS NS S S S NS S S 

 C 4.5  
S S S NS S S S S S S S S S 

 RIPPER  
NS NS S S NS S S S S NS S NS S 

 Multilayer 

Perceptron  
S S NS S S NS NS S S S NS S S 

Non Nested 

Generalised 

Exemplars  

S S NS S S NS NS S S S NS S S 

 Naïve Bayes  
NS S S S S S S NS S NS S NS NS 

 PART  
S S S S S S S S NS S S S S 

 RBF Network  
NS NS S S NS S S NS S NS S NS NS 

 Random Forest  
S S NS S S NS NS S S S NS S S 

Voting Feature 

Intervals 
NS NS S S NS S S NS S NS S NS NS 

 Bayes Network  
NS S S S S S S NS S NS S NS NS 

 

 

Table 47: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from first restricted by clinicians’ version of Niguarda AMI dataset using SMOTE 

METHOD specificity sensitivity accuracy 

Bayes Network (method for searching network structures: Global Hill Climber) 
94.83% 90.46% 92.65% 

Bayes Network (method for searching network structures: gK2) 
93.30% 90.46% 91.88% 

Bayes Network (method for searching network structures: Local Hill Climber) 
92.95% 90.46% 91.71% 

Bayes Network (method for searching network structures: lK2) 
93.30% 90.46% 91.88% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber) 
93.07% 90.46% 91.76% 



G.A. no. 224635 

 

D3.4 – Application of data mining methodologies  

 

Revision: V1.1 Security: Public 

 Page 87/115 

 

 

METHOD specificity sensitivity accuracy 

Bayes Network (method for searching network structures: Local Repeated Hill Climber) 
92.95% 90.46% 91.71% 

Bayes Network (method for searching network structures: Local Tabu Search) 
92.95% 90.46% 91.71% 

Bayes Network (method for searching network structures: Local TAN) 
97.65% 87.04% 92.35% 

Bayes Network (method for searching network structures: Naive Bayes) 
93.30% 90.46% 91.88% 

C 4.5 ( min number of instances/leaf: 10) 
96.00% 88.10% 92.06% 

C 4.5 ( min number of instances/leaf: 15) 
95.42% 88.81% 92.12% 

C 4.5 ( min number of instances/leaf: 2) 
96.94% 87.87% 92.41% 

C 4.5 ( min number of instances/leaf: 20) 
95.77% 88.46% 92.12% 

C 4.5 ( min number of instances/leaf: 5) 
96.24% 88.93% 92.59% 

Decision Table (search method: Best First) 
96.71% 89.05% 92.88% 

Decision Table (search method: Greedy Stepwise) 
96.94% 88.57% 92.76% 

Decision Table (search method: Linear Forward Selection) 
96.71% 89.05% 92.88% 

Decision Table (search method: Rank Search) 
97.06% 87.40% 92.24% 

Decision Table (search method: ScatterSearchV1) 
96.71% 87.87% 92.29% 

Decision Table (search method: Subset Size Forward Selection) 
97.77% 88.34% 93.06% 

Multilayer Perceptron (1 hidden layer  neurons = [number of attributes + number of classes]/2) 
91.89% 91.64% 91.76% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes + number of classes) 
93.54% 91.05% 92.29% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes) 
92.48% 91.05% 91.76% 

Multilayer Perceptron (1 hidden layer 2 neurons) 
94.71% 90.81% 92.76% 

PART (min number of instances/rule: 10) 
95.65% 88.81% 92.24% 

PART (min number of instances/rule: 15) 
95.89% 88.10% 92.00% 

PART (min number of instances/rule: 2) 
95.06% 89.05% 92.06% 

PART (min number of instances/rule: 20) 
96.00% 88.34% 92.18% 

PART (min number of instances/rule: 5) 
96.12% 88.46% 92.29% 

Random Forest (10 Trees) 
97.41% 88.46% 92.94% 

Random Forest (2 Trees) 
96.59% 87.16% 91.88% 

Random Forest (20 Trees) 
97.88% 88.46% 93.18% 

Random Forest (30 Trees) 
98.00% 88.34% 93.18% 

Random Forest (40 Trees) 
98.12% 88.10% 93.12% 

Random Forest (50 Trees) 
98.24% 88.22% 93.24% 
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Table 48: McNemar test of random forest, c 4.5 part, multilayer perceptron and bayes network using 

different parameter values from first restricted by clinicians’ version of Niguarda AMI dataset using 

SMOTE 

 
Decision Table C 4.5 

Multilayer 

Perceptron 
PART Random Forest 

Bayes 

Network 

Decision Table 
NS NS S NS S NS 

C 4.5 
NS NS S NS S NS 

Multilayer Perceptron 
S S S S S S 

PART 
NS NS S NS S NS 

Random Forest 
S S S S NS S 

Bayes Network 
NS NS S NS S NS 

 

Table 49: Results of several methods from first restricted by clinicians’ version of Niguarda chronic 

dataset using SMOTE. 

METHOD specificity  sensitivity accuracy 

Bayes Network 91.94% 86.96% 89.26% 

C 4.5 93.13% 84.65% 88.57% 

Decision Table 90.75% 85.68% 88.02% 

Decision Table Naive Bayes Combination 89.55% 87.98% 88.71% 

K Nearest Neighbors 80.90% 82.61% 81.82% 

Multilayer Perceptron 87.46% 88.24% 87.88% 

Naive Bayes 85.37% 89.51% 87.60% 

Non Nested Generalised Exemplars 95.52% 63.17% 78.10% 

PART 87.76% 87.47% 87.60% 

Random Forest 95.22% 85.42% 89.94% 

Random Tree 86.87% 87.47% 87.19% 

RBF Network 91.94% 85.68% 88.57% 

RIPPER 94.63% 84.65% 89.26% 

Voting Feature Intervals 98.51% 77.49% 87.19% 

 

Table 50: McNemar test of several methods from first restricted by clinicians’ version of Niguarda chronic 

dataset using SMOTE. 

 

Decision 

Table Naive 

Bayes 

Combination 

Decision 

Table 
C 4.5 RIPPER 

Multilayer 

Perceptron 

Naive 

Bayes 
PART 

RBF 

Network 

Random 

Forest 

Random 

Tree 

Voting 

Feature 

Intervals 

Bayes 

Network 

 Decision Table Naive Bayes 

Combination 
NS NS NS NS S S S NS S S NS NS 

 Decision Table NS NS S NS S S S NS S S NS NS 

 C 4.5 NS S NS NS S S S S S S S S 

 RIPPER NS NS NS NS S S S NS S S S NS 

 Multilayer Perceptron S S S S NS S S S NS NS S S 

 Naive Bayes S S S S S NS S S S S NS S 

 PART S S S S S S NS S S S S S 

 RBF Network NS NS S NS S S S NS S S NS NS 

 Random Forest S S S S NS S S S NS NS S S 

 Random Tree S S S S NS S S S NS NS S S 

 Voting Feature Intervals NS NS S S S NS S NS S S NS NS 

 Bayes Network NS NS S NS S S S NS S S NS NS 
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Table 51: : Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from first restricted by clinicians’ version of Niguarda chronic dataset using SMOTE 

METHOD specificity  sensitivity accuracy 

Bayes Network (method for searching network structures: Global Tabu Search) 92.24% 87.72% 89.81% 

Bayes Network (method for searching network structures: Global Hill Climber) 93.13% 87.72% 90.22% 

Bayes Network (method for searching network structures: gK2) 91.94% 86.96% 89.26% 

Bayes Network (method for searching network structures: Global Repeated Hill Climber) 93.13% 87.72% 90.22% 

Bayes Network (method for searching network structures: Local Hill Climber) 91.94% 86.96% 89.26% 

Bayes Network (method for searching network structures: lK2) 91.94% 86.96% 89.26% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber) 91.94% 86.96% 89.26% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber) 91.94% 86.96% 89.26% 

Bayes Network (method for searching network structures: Local Tabu Search) 91.94% 86.96% 89.26% 

Bayes Network (method for searching network structures: Local TAN) 95.82% 85.42% 90.22% 

Bayes Network (method for searching network structures: Bayes) 91.94% 86.96% 89.26% 

C 4.5 ( min number of instances/leaf: 10) 91.34% 85.68% 88.29% 

C 4.5 ( min number of instances/leaf: 15) 90.75% 85.93% 88.15% 

C 4.5 ( min number of instances/leaf: 2) 92.84% 85.68% 88.98% 

C 4.5 ( min number of instances/leaf: 20) 90.45% 86.19% 88.15% 

C 4.5 ( min number of instances/leaf: 5) 91.94% 85.68% 88.57% 

Decision Table (search method: Best First) 90.75% 85.68% 88.02% 

Decision Table (search method: Greedy Stepwise) 90.75% 85.68% 88.02% 

Decision Table (search method: Linear Forward Selection) 91.64% 85.93% 88.57% 

Decision Table (search method: Rank Search) 92.24% 86.45% 89.12% 

Decision Table (search method: ScatterSearchV1) 96.12% 84.14% 89.67% 

Decision Table (search method: Subset Size Forward Selection) 93.43% 85.93% 89.39% 

Multilayer Perceptron (1 hidden layer  neurons = [number of attributes + number of classes]/2) 87.46% 88.24% 87.88% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes + number of classes) 88.06% 88.24% 88.15% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes) 86.27% 88.75% 87.60% 

Multilayer Perceptron (1 hidden layer 2 neurons) 88.36% 88.49% 88.43% 

PART (min number of instances/rule: 10) 92.24% 85.93% 88.84% 

PART (min number of instances/rule: 15) 89.55% 86.45% 87.88% 

PART (min number of instances/rule: 2) 91.94% 85.68% 88.57% 

PART (min number of instances/rule: 20) 89.55% 86.70% 88.02% 

PART (min number of instances/rule: 5) 91.04% 87.47% 89.12% 

Random Forest (10 Trees) 95.22% 85.42% 89.94% 

Random Forest (2 Trees) 91.04% 84.14% 87.33% 

Random Forest (20 Trees) 95.52% 85.93% 90.36% 

Random Forest (30 Trees) 96.12% 85.93% 90.63% 

Random Forest (40 Trees) 96.12% 85.68% 90.50% 

Random Forest (50 Trees) 96.42% 85.42% 90.50% 

 

Table 52: McNemar test of random forest, c 4.5 part, multilayer perceptron and bayes network using 

different parameter values from first restricted by clinicians’ version of Niguarda chronic dataset using 

SMOTE. 

  Decision Table   C 4.5  Multilayer Perceptron  PART  Random Forest   Bayes Network 

 Decision Table  NS NS S NS S NS 

C 4.5 NS NS S NS S NS 

 Multilayer Perceptron S S NS S S S 

  PART NS NS S NS S NS 

  Random Forest  S S S S NS S 

 Bayes Network NS NS S NS S NS 

 

The results from the application of the data mining methodologies were presented to the clinicians along 

with the rules produced from the rule based classifiers. The application of the data mining methodologies 

on the unbalanced datasets was poor in sensitivity, thus classifiers did not predict correctly patients who 

deceased, both in AMI and chronic dataset. 
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Results from the data mining methodologies applied on AMI and chronic datasets balanced using SMOTE 

algorithm were more accurate and had larger sensitivity. Clinicians reviewed the rules produced by PART 

algorithm and decided that most of them stand to the common sense-common knowledge test, although 

rules produced from the AMI dataset were too “broad” to be useful in the extraction of new knowledge. 

After reviewing the above mentioned results the clinicians proposed to check the accuracy of the classifiers 

when the drug treatment of the patients is not included. Two new datasets were constructed using the 

features shown in Table 53. In the next pages the results from the application of the data mining 

methodologies on the second version of the restricted AMI and chronic dataset are presented. In Table 54 

the results of the methodologies using the default parameters values on the unbalanced AMI dataset are 

presented and Table 55 different parameter values are tested in order to find the one giving best result. 

Similarly, in Table 56 the results from the application of the algorithms using default parameter values on 

the unbalanced chronic dataset are presented, while in Table 57 the results when using different parameter 

values are presented. In each table the last column referred as improvement shows the difference in 

accuracy between the current dataset and the first restricted version. 

The next step was to balance the datasets using SMOTE algorithm. In Table 58 and Table 60 the results of 

the application of the data mining algorithms using default parameter values and several parameter values 

respectively on the AMI dataset balanced with SMOTE are depicted. Tables  59 and  61 present the 

corresponding McNemar tests, for the abovementioned methodologies. Tables  62 -  65 depict the results 

of the data mining methodologies on the chronic dataset balanced with SMOTE. Table 62 shows the results 

of the methodologies when using the default parameter values and Table 63 the corresponding McNemar 

test.  

Table 64 shows the results of the methodologies when different parameter values are applied and Table 65 

the corresponding McNemar test. 

 

Table 53: Variables of second restricted by clinicians’ version of Niguarda dataset 

Variables Chronic Variables AMI 

Age Age 

Sex Sex 

BMI BMI 

Smoking Habits Smoking Habits 

Hypertension Hypertension 

Diabetes Diabetes 

Dyslipidemia Dyslipidemia 

Chronic kidney dysfunction Chronic kidney dysfunction 

Dialysis Dialysis 

COPD COPD 

Atrial fibrillation history Atrial fibrillation history 

Previous STENT Pre-Existing Vascular Disease 
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Pre-Existing Vascular Disease AMI Type 

N vessels AMI Site 

STENT N vessels 

CABG index admission STENT 

Number bypass CABG index admission 

Biventricular pacing Echocardiographic LV dilation 

Implantable Cardioverter defibrillator LV Ejection Fraction 

LV end-Diastolic Volume AMI vs AMIHF 

LV end-Systolic Volume Vital status (outcome to be tested) 

LV Ejection Fraction  

cIHD vs cIHF  

Vital status (outcome to be tested)  

Lab data Lab data 

Blood Glucose 

(Serum) 
worst  

Blood Glucose 

(Serum) 
worst  

Creatinine worst Delta (worst-admission) Creatinine worst Delta (worst-admission) 

Haemoglobin 

(blood) 
worst Delta (worst-admission) Haematocrit worst  

K (K+) worst admission 
Haemoglobin 

(blood) 
worst  

NA (NA+) worst admission HDL cholesterol best  

Total Bilirubine worst  NT Pro BNP worst  

Urea worst  
Serum Total 

Cholesterol 
best  

Uric Acid worst  Total Bilirubine worst  

   Triglycerides worst  

   Troponin - T worst  

   Urea worst  

   Uric Acid worst  

   
White Blood cell 

counts 
worst  

 

 

Table 54: Results of several methods from second restricted by clinicians’ version of Niguarda AMI 

dataset 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

K Nearest Neighbors  94.10% 22.13% 85.05% -2.32% 

Voting Feature Intervals  85.50% 57.38% 81.96% 0.44% 

C 4.5  95.75% 25.41% 86.91% 0.56% 

Decision Table Naive Bayes Combination  95.05% 12.30% 84.64% 0.04% 

RIPPER  96.93% 12.30% 86.29% 0.15% 

Non Nested Generalised Exemplars  96.58% 22.13% 87.22% 0.67% 

PART  94.22% 27.87% 85.88% 0.35% 

Bayes Network  87.26% 54.92% 83.20% 0.65% 

Naive Bayes  84.79% 55.74% 81.13% -0.69% 

RBF Network  95.99% 19.67% 86.39% -1.19% 
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METHOD specificity  sensitivity accuracy IMPROVEMENT 

Random Tree  91.86% 24.59% 83.40% 1.06% 

Random Forest  97.88% 14.75% 87.42% -0.36% 

Decision Table  98.58% 6.56% 87.01% 0.15% 

Multilayer Perceptron  93.75% 36.07% 86.49% -0.57% 

 

 

Table 55: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from second restricted by clinicians’ version of Niguarda AMI dataset 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

Bayes Network (method for searching network structures: CI Search Algorithm  87.26% 54.92% 83.20%   

Bayes Network (method for searching network structures: Global Tabu Search  91.75% 42.62% 85.57% 85.57% 

Bayes Network (method for searching network structures: Global Hill Climber  91.75% 42.62% 85.57% -0.26% 

Bayes Network (method for searching network structures: gK2  87.26% 54.92% 83.20% 0.65% 

Bayes Network (method for searching network structures: Global Repeated Hill Climber  91.75% 42.62% 85.57% 85.57% 

Bayes Network (method for searching network structures: ICS Search Algorithm  90.09% 35.25% 83.20% 0.44% 

Bayes Network (method for searching network structures: Local Hill Climber  86.91% 54.92% 82.89% -0.58% 

Bayes Network (method for searching network structures: lK2  87.26% 54.92% 83.20% 0.65% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber  86.91% 54.92% 82.89% -0.58% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber  86.91% 54.92% 82.89% -0.58% 

Bayes Network (method for searching network structures: Local Simulated Annealing  94.69% 23.77% 85.77% 85.77% 

Bayes Network (method for searching network structures: Local Tabu Search  86.91% 54.92% 82.89% 0.44% 

Bayes Network (method for searching network structures: Local TAN  92.69% 44.26% 86.60% 0.66% 

Bayes Network (method for searching network structures: Naive Bayes  87.26% 54.92% 83.20% 0.65% 

C 4.5 ( min number of instances/leaf: 10)  98.58% 6.56% 87.01% 0.36% 

C 4.5 ( min number of instances/leaf: 15)  98.47% 5.74% 86.80% 0.66% 

C 4.5 ( min number of instances/leaf: 2)  98.70% 4.92% 86.91% 0.77% 

C 4.5 ( min number of instances/leaf: 20) 98.82% 4.10% 86.91% 0.66% 

C 4.5 ( min number of instances/leaf: 5)  97.52% 10.66% 86.60% 0.25% 

Decision Table (search method:  Best First  99.41% 6.56% 87.73% 0.87% 

Decision Table (search method:  Greedy Stepwise  99.29% 4.10% 87.32% 0.56% 

Decision Table (search method:  Linear Forward Selection  99.65% 1.64% 87.32% 0.46% 

Decision Table (search method:  Rank Search  99.88% 0.00% 87.32% 0.77% 

Decision Table (search method:  ScatterSearchV1  98.47% 7.38% 87.01% -0.46% 

Decision Table (search method:  Subset Size Forward Selection  98.70% 1.64% 86.49% -0.98% 

Multilayer Perceptron (1 hidden layer  neurons = [number of attributes + number of classes]/2)  93.75% 36.07% 86.49% -0.57% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes + number of classes)  93.87% 34.43% 86.39% -0.26% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes)  95.87% 31.97% 87.84% 0.46% 

Multilayer Perceptron (1 hidden layer 2 neurons)  93.99% 36.07% 86.70% 0.36% 

PART (min number of instances/rule: 20) 98.23% 13.11% 87.53% 1.08% 

PART (min number of instances/rule:10)  98.94% 8.20% 87.53% 0.98% 

PART (min number of instances/rule:15)  99.06% 3.28% 87.01% 1.59% 

PART (min number of instances/rule:2) 97.05% 18.85% 87.22% 0.56% 

PART (min number of instances/rule:5) 96.70% 20.49% 87.11% 0.67% 

Random Forest (10 Trees)  97.88% 14.75% 87.42% -0.36% 

Random Forest (2 Trees)  98.47% 11.48% 87.53% 1.69% 

Random Forest (20 Trees)  96.46% 15.57% 86.29% -1.70% 

Random Forest (30 Trees)  98.58% 10.66% 87.53% -0.36% 

Random Forest (40 Trees)  98.70% 10.66% 87.63% -0.05% 

Random Forest (50 Trees)  98.58% 12.30% 87.73% 0.05% 
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Table 56: Results of several methods from second restricted by clinicians’ version of Niguarda chronic 

dataset 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

Bayes Network  86.87% 46.38% 79.95% 1.98% 

Decision Table  96.42% 7.25% 81.19% -0.50% 

Decision Table Naive Bayes Combination  91.34% 8.70% 77.23% -4.70% 

K Nearest Neighbors  82.09% 20.29% 71.53% -4.95% 

C 4.5  93.13% 17.39% 80.20% 4.70% 

RIPPER  96.72% 17.39% 83.17% 4.21% 

Multilayer Perceptron  89.55% 24.64% 78.47% 0.74% 

Naive Bayes  82.09% 56.52% 77.72% -2.72% 

Non Nested Generalised Exemplars  93.43% 11.59% 79.46% 3.22% 

PART  87.16% 27.54% 76.98% -6.68% 

Random Forest  95.22% 10.14% 80.69% 4.70% 

Random Tree  84.78% 28.99% 75.25% -5.45% 

RBF Network  97.01% 4.35% 81.19% 0.00% 

Voting Feature Intervals  75.82% 57.97% 72.77% 0.50% 

 

 

Table 57: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from second restricted by clinicians’ version of Niguarda chronic dataset 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

Bayes Network (method for searching network structures: Global Tabu Search  91.64% 23.19% 79.95% 0.25% 

Bayes Network (method for searching network structures: Global Hill Climber  91.94% 23.19% 80.20% 0.50% 

Bayes Network (method for searching network structures: gK2  86.87% 46.38% 79.95% 1.98% 

Bayes Network (method for searching network structures: Global Repeated Hill Climber  91.94% 23.19% 80.20% 0.50% 

Bayes Network (method for searching network structures: ICS Search Algorithm  88.66% 37.68% 79.95% 1.73% 

Bayes Network (method for searching network structures: Local Hill Climber  87.16% 33.33% 77.97% 1.98% 

Bayes Network (method for searching network structures: lK2  86.87% 46.38% 79.95% 1.98% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber  87.16% 34.78% 78.22% 1.98% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber  87.16% 33.33% 77.97% 1.98% 

Bayes Network (method for searching network structures: Local Simulated Annealing  93.43% 21.74% 81.19% 81.19% 

Bayes Network (method for searching network structures: Local Tabu Search  86.27% 43.48% 78.96% 1.98% 

Bayes Network (method for searching network structures: Local TAN  91.64% 24.64% 80.20% -1.24% 

Bayes Network (method for searching network structures: Naive Bayes  86.87% 46.38% 79.95% 1.98% 

C 4.5 ( min number of instances/leaf: 10)  100.00% 1.45% 83.17% 0.49% 

C 4.5 ( min number of instances/leaf: 15)  100.00% 0.00% 82.92% 0.50% 

C 4.5 ( min number of instances/leaf: 2)  97.61% 7.25% 82.18% -0.99% 

C 4.5 ( min number of instances/leaf: 20) 100.00% 0.00% 82.92% 0.00% 

C 4.5 ( min number of instances/leaf: 5)  97.61% 4.35% 81.68% -1.98% 

Decision Table (search method:  Best First  96.42% 7.25% 81.19% -0.74% 

Decision Table (search method:  Greedy Stepwise  99.40% 2.90% 82.92% 0.00% 

Decision Table (search method:  Linear Forward Selection  98.21% 4.35% 82.18% 1.73% 

Decision Table (search method:  Rank Search  95.22% 15.94% 81.68% -1.24% 

Decision Table (search method:  ScatterSearchV1  98.51% 2.90% 82.18% -0.74% 

Decision Table (search method:  Subset Size Forward Selection  99.70% 2.90% 83.17% 0.00% 

Multilayer Perceptron (1 hidden layer  neurons = [number of attributes + number of classes]/2)  89.55% 24.64% 78.47% -0.50% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes + number of classes)  88.06% 30.43% 78.22% -2.72% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes)  87.46% 31.88% 77.97% -2.23% 

Multilayer Perceptron (1 hidden layer 2 neurons)  87.16% 24.64% 76.49% -4.21% 

PART (min number of instances/rule: 20) 97.61% 4.35% 81.68% 0.74% 

PART (min number of instances/rule:10)  98.81% 1.45% 82.18% 0.00% 

PART (min number of instances/rule:15)  92.24% 23.19% 80.45% -0.50% 

PART (min number of instances/rule:2) 98.21% 1.45% 81.68% -0.74% 

PART (min number of instances/rule:5) 96.12% 20.29% 83.17% 0.25% 

Random Forest (10 Trees)  95.22% 10.14% 80.69% -2.97% 

Random Forest (2 Trees)  92.24% 15.94% 79.21% 0.50% 

Random Forest (20 Trees)  97.61% 13.04% 83.17% -1.24% 



G.A. no. 224635 

 

D3.4 – Application of data mining methodologies  

 

Revision: V1.1 Security: Public 

 Page 94/115 

 

 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

Random Forest (30 Trees)  96.72% 11.59% 82.18% -1.24% 

Random Forest (40 Trees)  97.91% 13.04% 83.42% -1.24% 

Random Forest (50 Trees)  98.21% 11.59% 83.42% -0.25% 

 

 

Table 58: Results of several methods from second restricted by clinicians’ version of AMI dataset using 

SMOTE 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

Bayes Network 90.57% 91.15% 90.86% -1.03% 

C 4.5  95.64% 88.08% 91.86% -0.02% 

Decision Table 98.00% 86.42% 92.21% -0.67% 

Decision Table Naive Bayes Combination  92.81% 90.20% 91.50% -0.50% 

K Nearest Neighbors  93.99% 70.96% 82.48% -9.35% 

Multilayer Perceptron  91.75% 90.91% 91.33% -0.44% 

Naive Bayes  89.98% 90.44% 90.21% -1.62% 

Non Nested Generalised Exemplars  96.82% 80.64% 88.73% -2.39% 

PART  91.86% 89.02% 90.44% -2.32% 

Random Forest  96.82% 88.90% 92.86% -0.08% 

Random Tree  89.27% 90.32% 89.79% 0.26% 

RBF Network  93.63% 87.96% 90.80% -1.79% 

RIPPER  98.47% 86.42% 92.45% -0.67% 

Voting Feature Intervals  98.23% 87.13% 92.68% 0.04% 

 

 

 

Table 59: McNemar of several methods from second restricted by clinicians’ version of AMI dataset using 

SMOTE 

 

Decision 

Table Naive 

Bayes 

Combination 

Decision 

Table 

C 

4.5 
RIPPER 

Multilayer 

Perceptron 

Naive 

Bayes 
PART 

RBF 

Network 

Random 

Forest 

Voting 

Feature 

Intervals 

Bayes 

Network 

Decision Table 

Naive Bayes 

Combination 

NS S S NS S NS S NS S S NS 

Decision Table S NS S S S S S S S NS S 

C 4.5 S S NS S S S S S S S S 

RIPPER NS S S NS S S S S S NS NS 

Multilayer 

Perceptron 
S S S S NS S S S NS S S 

Naive Bayes NS S S S S NS S NS S S S 

PART S S S S S S NS S S S S 

RBF Network NS S S S S NS S NS S S NS 

Random Forest S S S S NS S S S NS S S 

Voting Feature 

Intervals 
S NS S NS S S S S S NS S 

Bayes Network NS S S NS S S S NS S S NS 
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Table 60: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from second restricted by clinicians’ version of Niguarda AMI dataset using SMOTE 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

Bayes Network (method for searching network structures: Global Tabu Search  91.86% 90.32% 91.09% 91.09% 

Bayes Network (method for searching network structures: Global Hill Climber  92.22% 90.55% 91.39% -1.26% 

Bayes Network (method for searching network structures: gK2  90.57% 91.15% 90.86% -1.03% 

Bayes Network (method for searching network structures: Global Repeated Hill Climber  92.22% 90.55% 91.39% 91.39% 

Bayes Network (method for searching network structures: Local Hill Climber  90.45% 91.15% 90.80% -0.91% 

Bayes Network (method for searching network structures: lK2  90.57% 91.15% 90.86% -1.03% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber  90.21% 91.15% 90.68% -1.09% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber  90.45% 91.15% 90.80% -0.91% 

Bayes Network (method for searching network structures: Local Tabu Search  90.45% 91.15% 90.80% -0.91% 

Bayes Network (method for searching network structures: Local TAN  95.87% 88.43% 92.15% -0.20% 

Bayes Network (method for searching network structures: Naive Bayes  90.57% 91.15% 90.86% -1.03% 

Decision Table (search method:  Best First  98.00% 86.42% 92.21% 0.15% 

Decision Table (search method:  Greedy Stepwise  98.11% 86.30% 92.21% 0.09% 

Decision Table (search method:  Linear Forward Selection  98.00% 86.07% 92.04% -0.38% 

Decision Table (search method:  Rank Search  96.11% 87.72% 91.92% -0.20% 

Decision Table (search method:  ScatterSearchV1  97.88% 87.01% 92.45% -0.14% 

Decision Table (search method:  Subset Size Forward Selection  98.11% 86.66% 92.39% -0.49% 

C 4.5 ( min number of instances/leaf: 10)  95.05% 88.55% 91.80% -0.97% 

C 4.5 ( min number of instances/leaf: 15)  93.63% 89.14% 91.39% -1.50% 

C 4.5 ( min number of instances/leaf: 2)  96.34% 88.43% 92.39% 0.15% 

C 4.5 ( min number of instances/leaf: 20) 93.51% 89.02% 91.27% -1.03% 

C 4.5 ( min number of instances/leaf: 5)  95.64% 87.84% 91.74% -1.32% 

Multilayer Perceptron (1 hidden layer  neurons = [number of attributes + number of classes]/2) 91.75% 90.91% 91.33% -0.44% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes + number of classes) 91.98% 90.67% 91.33% -0.97% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes) 93.40% 90.79% 92.09% 0.33% 

Multilayer Perceptron (1 hidden layer 2 neurons) 92.69% 90.91% 91.80% -0.97% 

PART (min number of instances/rule:10)  95.52% 87.72% 91.62% -0.61% 

PART (min number of instances/rule:15)  94.22% 88.19% 91.21% -0.79% 

PART (min number of instances/rule:2) 94.58% 88.43% 91.50% -0.55% 

PART (min number of instances/rule: 20) 93.99% 88.78% 91.39% -0.79% 

PART (min number of instances/rule:5) 95.52% 88.90% 92.21% -0.08% 

Random Forest (10 Trees)  96.82% 88.90% 92.86% -0.08% 

Random Forest (2 Trees)  95.05% 88.55% 91.80% -0.08% 

Random Forest (20 Trees)  97.05% 88.55% 92.80% -0.37% 

Random Forest (30 Trees)  97.05% 88.43% 92.74% -0.43% 

Random Forest (40 Trees)  97.05% 88.67% 92.86% -0.26% 

Random Forest (50 Trees)  97.05% 88.55% 92.80% -0.43% 

 

Table 61: McNemar of random forest, c 4.5 part, multilayer perceptron and bayes network using 

different parameter values from second restricted by clinicians’ version of Niguarda AMI dataset using 

SMOTE 

 Decision Table C 4.5 Multilayer Perceptron PART Random Forest Bayes Network 

Decision Table NS NS S NS S NS 

C 4.5 NS NS S S S NS 

Multilayer Perceptron S S NS S NS S 

PART NS S S NS S NS 

Random Forest S S NS S NS S 

Bayes Network NS NS S NS S NS 
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Table 62: Results of several methods from second restricted by clinicians’ version of chronic dataset using 

SMOTE 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

Bayes Network  87.66% 87.30% 87.48% -1.78% 

C 4.5  91.46% 86.03% 88.75% 0.18% 

Decision Table 91.14% 76.19% 83.68% -4.34% 

Decision Table Naive Bayes Combination  89.87% 83.49% 86.69% -2.02% 

K Nearest Neighbors  79.43% 77.14% 78.29% -3.53% 

Multilayer Perceptron  87.66% 88.25% 87.96% 0.08% 

Naive Bayes  83.86% 91.43% 87.64% 0.04% 

Non Nested Generalised Exemplars  96.84% 53.02% 74.96% -3.14% 

PART  87.66% 85.71% 86.69% -0.92% 

Random Forest  92.72% 84.44% 88.59% -1.36% 

Random Tree  87.03% 85.08% 86.05% -1.14% 

RBF Network  88.61% 81.59% 85.10% -3.46% 

RIPPER  93.35% 83.81% 88.59% -0.67% 

Voting Feature Intervals  98.10% 74.92% 86.53% -0.66% 

 

 

 

Table 63: McNemar of several methods from second restricted by clinicians’ version of chronic dataset 

using SMOTE 

 

Decision 

Table Naive 

Bayes 

Combination 

Decision 

Table 
C 4.5 RIPPER 

Multilayer 

Perceptron 

Naive 

Bayes 
PART 

Random 

Forest 

Random 

Tree 

Voting 

Feature 

Intervals 

Bayes 

Network 

Decision Table 

Naive Bayes 

Combination 

NS NS NS NS S S S S S NS NS 

Decision Table NS NS NS NS S S S S S NS S 

C 4.5 NS NS NS S S S S S S S S 

RIPPER NS NS S NS S NS S S S NS NS 

Multilayer 

Perceptron 
S S S S NS S NS S NS S S 

Naive Bayes S S S NS S NS S S S NS NS 

PART S S S S NS S NS S S S S 

Random Forest S S S S S S S NS NS S S 

Random Tree S S S S NS S S NS NS S S 

Voting Feature 

Intervals 
NS NS S NS S NS S S S NS NS 

Bayes Network NS S S NS S NS S S S NS NS 
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Table 64: Results of random forest, c 4.5 part, multilayer perceptron and bayes network using different 

parameter values from second restricted by clinicians’ version of Niguarda chronic dataset using SMOTE 

METHOD specificity  sensitivity accuracy IMPROVEMENT 

Bayes Network (method for searching network structures: Global Tabu Search  89.24% 86.98% 88.11% -1.69% 

Bayes Network (method for searching network structures: Global Hill Climber  89.24% 86.98% 88.11% -2.11% 

Bayes Network (method for searching network structures: gK2  87.66% 87.30% 87.48% -1.78% 

Bayes Network (method for searching network structures: Global Repeated Hill Climber  89.24% 86.98% 88.11% -2.11% 

Bayes Network (method for searching network structures: Local Hill Climber  86.39% 86.67% 86.53% -2.73% 

Bayes Network (method for searching network structures: lK2  87.66% 87.30% 87.48% -1.78% 

Bayes Network (method for searching network structures: Local LAGD Hill Climber  86.39% 86.67% 86.53% -2.73% 

Bayes Network (method for searching network structures: Local Repeated Hill Climber  86.39% 86.67% 86.53% -2.73% 

Bayes Network (method for searching network structures: Local Tabu Search  86.39% 86.67% 86.53% -2.73% 

Bayes Network (method for searching network structures: Local TAN  90.19% 88.25% 89.22% -1.00% 

Bayes Network (method for searching network structures: Naive Bayes  87.66% 87.30% 87.48% -1.78% 

Decision Table (search method:  Best First  91.14% 76.19% 83.68% -4.62% 

Decision Table (search method:  Greedy Stepwise  93.35% 75.24% 84.31% -3.84% 

Decision Table (search method:  Linear Forward Selection  93.35% 77.14% 85.26% -3.72% 

Decision Table (search method:  Rank Search  89.87% 84.44% 87.16% -0.99% 

Decision Table (search method:  ScatterSearchV1  92.72% 78.10% 85.42% -3.15% 

Decision Table (search method:  Subset Size Forward Selection  92.09% 75.24% 83.68% -4.34% 

C 4.5 ( min number of instances/leaf: 10)  93.04% 83.49% 88.27% 0.26% 

C 4.5 ( min number of instances/leaf: 15)  89.56% 84.13% 86.85% -1.72% 

C 4.5 ( min number of instances/leaf: 2)  93.35% 83.49% 88.43% -0.69% 

C 4.5 ( min number of instances/leaf: 20) 85.44% 85.71% 85.58% -4.09% 

C 4.5 ( min number of instances/leaf: 5)  89.87% 83.49% 86.69% -2.71% 

Multilayer Perceptron (1 hidden layer  neurons = [number of attributes + number of classes]/2)  87.66% 88.25% 87.96% 0.08% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes)  88.92% 86.35% 87.64% -0.52% 

Multilayer Perceptron (1 hidden layer 2 neurons)  84.18% 87.62% 85.90% -1.71% 

Multilayer Perceptron (1 hidden layer  neurons = number of attributes + number of classes)  88.92% 86.98% 87.96% -0.47% 

PART (min number of instances/rule:10)  89.87% 86.35% 88.11% -0.73% 

PART (min number of instances/rule:15)  88.61% 85.71% 87.16% -0.72% 

PART (min number of instances/rule:2) 92.72% 85.40% 89.07% 0.50% 

PART (min number of instances/rule: 20) 86.39% 85.08% 85.74% -2.28% 

PART (min number of instances/rule:5) 90.82% 85.08% 87.96% -1.16% 

Random Forest (10 Trees)  92.72% 84.44% 88.59% -1.36% 

Random Forest (2 Trees)  93.04% 83.49% 88.27% 0.94% 

Random Forest (20 Trees)  93.35% 85.08% 89.22% -1.13% 

Random Forest (30 Trees)  93.35% 84.44% 88.91% -1.73% 

Random Forest (40 Trees)  93.35% 83.81% 88.59% -1.91% 

Random Forest (50 Trees)  93.04% 83.81% 88.43% -2.06% 

 

 

Table 65: McNemar of random forest, c 4.5 part, multilayer perceptron and bayes network using 

different parameter values from second restricted by clinicians’ version of Niguarda chronic dataset using 

SMOTE 

 Decision Table C 4.5 Multilayer Perceptron PART Random Forest Bayes Network 

Decision Table NS NS S NS S NS 

C 4.5 NS NS S NS S NS 

Multilayer Perceptron S S NS S S S 

PART NS NS S NS S NS 

Random Forest S S S S NS S 

Bayes Network NS NS S NS S NS 
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As expected the results when the datasets are balanced using SMOTE have higher sensitivity. The rules of 

the PART algorithm that were presented to the clinicians were satisfying and their clinical interpretation is 

analysed in the next chapter. 

As future work in the Niguarda dataset the stratified balanced datasets methods must be tested in order to 

see if the accuracy and the rules are more satisfying. Moreover, the clinicians will have to check the rest of 

rule based classifiers in order to assure that the rules produced by PART algorithm are the ones that will be 

followed. Finally, the missing values must be treated in both Niguarda and Gissi dataset. 



G.A. no. 224635 

 

D3.4 – Application of data mining methodologies  

 

Revision: V1.1 Security: Public 

 Page 99/115 

 

 

 

5.5 Clinicians feedback 

 

In this chapter the interpretation of the most important classifiers is provided. These classifiers were 

proposed by the clinicians and after most of the initial results presented above were proved to be 

inaccurate and useless as part of a decision support system. So actually clinicians provided the feature 

subset selection that enabled data mining engineers to build classifiers that could actually extract new 

knowledge and be useful in a decision support system.  

The clinicians have characterized the rules using the following categories:  

• Red: rules at odds with common knowledge 

• Green: rules that are in agreement with common knowledge and do not add new insights 

• Grey: potentially new and interesting findings  

Only the rules that were more accurate than the actual class distribution (i.e. above 91.75% for patients not 

developing late onset HF, i.e. class 0 and above 8.75% for patients that did develop late onset HF, i.e. class 

1) were taken into consideration. This criterion was used as the main metric because it improves the 

accuracy of the prediction when compared to a random prediction which is represented from the class 

distribution in the real data set.  

 

Retrospectively enrolled real world heart failure patients (with various types of AMI) – GISSI Data  

The following table presents the results of the classifier that is based on the variables Diabetes, Ejection 

Fraction, AMI (acute myocardial infarction).These are considered as the three more important variables 

that evidently affect the presence of late onset heart failure. 
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Rule Class

Samples 

following 

the rule

Correct Wrong
Rule 

Accuracy

Diabetes = 0 AND EjectionFraction > 43.38 AND AMI = 2 AND EjectionFraction < 52 1 41 9 32 21,95%

Diabetes = 1 0 375 350 25 93,33%

AMI = 2 0 503 467 36 92,84%

AMI = 3 0 64 58 6 90,63%

AMI = 4 AND EjectionFraction > 43.898536 AND EjectionFraction < 68.599761 AND EjectionFraction < 60.00483 AND EjectionFraction > 480 48 42 6 87,50%

AMI = 1 AND EjectionFraction > 58 1 74 10 64 13,51%

AMI = 4 AND EjectionFraction > 43.898536 AND EjectionFraction < 68 1 68 10 58 14,71%

AMI = 1 AND EjectionFraction > 29.45 AND EjectionFraction < 37 1 40 2 38 5,00%

AMI = 1 AND EjectionFraction > 50 1 147 17 130 11,56%

AMI = 1 AND EjectionFraction > 24.78 AND EjectionFraction < 48 1 143 15 128 10,49%

Diabetes Ejection Fraction AMI
Samples 1224

Patients that did not develop late onset heart failure 1123 (91.75%)

Patients that developed late onset heart failure 101 (8.25 %)

 

This classifier actually shows that none of the three commonly accepted as key indicators by the clinicians 

can provide a decision by itself. Especially Diabetes and AMI seem to provide the opposite results from 

what the clinicians have expected and at least in GISSI data set we can reach the conclusion that neither of 

them is a safe indicator in itself. AMI Site classification in GISSI data study is 

1=inferoposterior;  

2=anterior;  

3=multiple; 

 4= not characterized by abnormal Q waves;  

9=not definable 

which means that 467 out of 503 subjects that had suffered anterior acute myocardial infarction were not 

readmitted to hospital, i.e. did not develop late on set heart failure, while only 36 were readmitted 

according to the following rule.  

AMI = 2 0 503 467 36 92,84%  

Of course many other factors may have contributed to this result but it is an undisputed fact extracted from 

our study and the specific classifier. Something similar happened with multiple AMI with 58 out of 64 

subjects not being readmitted to the hospital. 

AMI = 3 0 64 58 6 90,63%  

Another interesting result coming in contrast with common knowledge is the fact the 350 out of the 375 

subjects that had Diabetes were not readmitted to the hospital.  
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Diabetes = 1 0 375 350 25 93,33%
 

Concerning the VPH2 Decision Support System this classifier can only be used if it is customized by the user 

(add/ remove rules functionality) since the decision support from the original set of rules seems to be 

inadequate. 

 

The classifier that proved to be the most interesting and intriguing for VPH2 clinicians is the one that the 

indicated feature subset consisted of 2) Diabetes, Ejection Fraction, AMI, Biochemical; the aim was 

to assess what do lab data (i.e. Cholesterol (total, HDL), White Blood Cells, Fibrinogen, Creatinine, Uric 

acid, Glycaemia, PCR, SGOT / SGPT, Na, Triglycerides and Aematocrit) in general (and which one in 

particular) add in the predictive accuracy of late on set heart failure/ readmission to the hospital. 
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Rule Class

Samples 

following 

the rule

Correct Wrong
Rule 

Accuracy

Diabetes = 1 AND TotChol < 237.715419 AND Trigl < 129 0 122 117 5 95,90%

Diabetes = 1 AND TotChol < 237.715419 AND AMI = 2 0 107 97 10 90,65%

Diabetes = 1 AND TotChol > 237 0 59 59 0 100,00%

AMI = 4 AND SGOT > 15 0 144 137 7 95,14%

EjectionFraction > 40.98 AND Diabetes = 0 AND Trigl < 76 AND AMI = 1 AND UricAcid < 6 0 7 7 0 100,00%

EjectionFraction > 40.98 AND Diabetes = 0 AND Creatinine < 1.199417 AND Creatinine < 1.1 AND Creatinine < 1.099766 AND Creatinine > 11 0 0 0 --

EjectionFraction > 40.98 AND Diabetes = 0 AND AMI = 1 AND Glycaemia < 142 AND NA > 139.000696 AND Glycaemia > 84 AND Aematocrit < 391 22 5 17 22,73%

EjectionFraction < 40.98 AND PCR < 0.504345 AND Glycaemia < 111 0 81 81 0 100,00%

Trigl > 179.854835 AND Glycaemia < 89 0 84 83 1 98,81%

Trigl > 73 AND Diabetes = 1 AND SGPT < 73 AND NA > 140 0 131 122 9 93,13%

Trigl > 73 AND Glycaemia > 146 AND Diabetes = 0 AND Aematocrit < 42 1 1 1 0 100,00%

Trigl > 172.954682 AND TotChol < 261 AND hdlChol < 35.004969 AND NA < 144.394624 AND Aematocrit < 40 0 56 54 2 96,43%

Trigl > 73 AND Creatinine < 1.199417 AND Creatinine < 1.1 AND Creatinine < 0.998969 AND Creatinine > 0 1 340 31 309 9,12%

Trigl > 75 AND EjectionFraction < 31 0 82 79 3 96,34%

Trigl < 75 0 79 75 4 94,94%

AMI = 4 AND Aematocrit > 40 0 64 63 1 98,44%

NA < 134 AND Fibrinogen > 333 0 34 34 0 100,00%

Trigl > 239.275088 AND hdlChol < 40 0 87 83 4 95,40%

NA > 142.998533 AND Glycaemia < 80 0 27 27 0 100,00%

AMI = 1 AND Creatinine < 0.899822 AND Diabetes = 0 AND Creatinine > 0 1 31 8 23 25,81%

AMI = 3 AND Fibrinogen < 323 1 13 3 10 23,08%

AMI = 3 AND WhiteBloodcellcounts < 9 0 46 44 2 95,65%

AMI = 1 AND NA > 142.998533 AND Aematocrit < 45 0 93 89 4 95,70%

AMI = 1 AND PCR < 35.074973 AND NA > 139.000696 AND TotChol > 212.071814 AND Diabetes = 0 AND NA < 141 1 17 6 11 35,29%

Creatinine < 0.799829 AND Diabetes = 0 AND Creatinine > 0 1 37 6 31 16,22%

AMI = 4 AND PCR < 3.48237 AND SGPT < 19 0 23 22 1 95,65%

AMI = 2 AND Fibrinogen > 377.427873 AND Glycaemia > 82 AND NA > 137.483522 AND UricAcid < 6.841139 AND EjectionFraction < 42.86 AND hdlChol < 410 29 28 1 96,55%

AMI = 1 AND NA < 142 AND PCR < 35.074973 AND Creatinine < 1.000503 AND Trigl < 170 AND Creatinine > 0.748659 AND PCR > 00 64 59 5 92,19%

AMI = 1 AND PCR > 30 1 15 5 10 33,33%

AMI = 1 AND NA > 142 1 106 5 101 4,72%

AMI = 1 AND Aematocrit < 34.992538 AND Fibrinogen > 307 1 41 8 33 19,51%

AMI = 1 AND Diabetes = 1 AND Creatinine > 0.817957 AND EjectionFraction < 48 1 28 3 25 10,71%

AMI = 1 AND SGPT > 63 0 51 46 5 90,20%

AMI = 1 AND Diabetes = 1 AND Trigl > 200 0 51 49 2 96,08%

AMI = 1 AND Diabetes = 1 AND WhiteBloodcellcounts < 6 1 21 3 18 14,29%

AMI = 1 AND Diabetes = 0 1 320 35 285 10,94%

AMI = 2 AND Fibrinogen > 221.371439 AND Fibrinogen < 269.596462 AND SGPT > 12 1 26 6 20 23,08%

AMI = 2 AND Fibrinogen > 270.493281 AND Glycaemia > 101 AND Creatinine > 1 1 80 9 71 11,25%

AMI = 2 AND TotChol > 232.923849 AND SGOT < 23 0 62 60 2 96,77%

AMI = 2 AND Creatinine > 1 0 261 246 15 94,25%

AMI = 2 AND Fibrinogen > 211.862427 AND UricAcid < 4.302888 AND PCR > 1 0 20 20 0 100,00%

AMI = 2 AND Fibrinogen > 211.862427 AND TotChol < 186.169345 AND SGOT > 21.288612 AND hdlChol < 47 1 51 8 43 15,69%

AMI = 2 AND PCR < 31 AND Fibrinogen > 274.216407 AND WhiteBloodcellcounts > 7.012166 AND SGPT > 36 0 79 75 4 94,94%

AMI = 2 AND Fibrinogen > 211.862427 AND PCR < 16 0 303 280 23 92,41%

Fibrinogen < 211 0 59 55 4 93,22%

AMI = 2 1 503 36 467 7,16%

AMI = 1 0 478 433 45 90,59%

AMI = 4 1 171 14 157 8,19%

AMI = 9 0 8 8 0 100,00%

Not Healthy 101 (8.25 %)

Healthy 1123 (91.75%)

No Samples 1224

Diabetes Ejection Fraction AMI Biochemical

 



G.A. no. 224635 

 

D3.4 – Application of data mining methodologies  

 

Revision: V1.1 Security: Public 

 Page 103/115 

 

 

 In the following some of the rules coming in contrast with common knowledge and all the rules 

characterized from the clinicians as potentially new interesting findings are analyzed in order to present the 

knowledge that can be extracted from this classifier and the way a researcher should think when using the 

VPH2 decision support. 

Diabetes = 1 AND TotChol < 237.715419 AND Trigl < 129 0 122 117 5 95,90% 

This rule supports the conclusion reached also with the first classifier: diabetes by itself is not enough to 

prognose late onset heart failure even though it still remains an important risk factor. As long as the total 

cholesterol and the triglycerides are below certain thresholds the prediction for not developing late on set 

heart failure is very accurate: 95.90%. 

Diabetes = 1 AND TotChol < 237.715419 AND AMI = 2 0 107 97 10 90,65% 

Again the total cholesterol threshold seems to be more important than AMI and familiar Diabetes. This rule 

cannot be part of the decision support since it is less accurate than the actual class distribution and this is 

why it was originally ignored by the clinicians that reviewed this classifier after the suggestion of the data 

mining engineers of course. 

Diabetes = 1 AND TotChol > 237 0 59 59 0 100,00% 

This is actually one of the most controversial yet potentially very interesting findings in GISSI data set. There 

are 59 cases that even if diabetes is present and the total cholesterol is above 237 (even though the 

average is 262), haven’t developed late onset heart failure. One such case is for example a 55 years old 

woman which has normal features (normal values in most variables available in her file) and which has 

certain interesting characteristics: PCR value is normal (in most subjects it isn’t), BMI is 33 and she has been 

treated with Beta-Blockers and PUFA. The utility of this rule is the comparison with a similar new case to be 

assessed. A new patient may be better treated if the clinician is aware of a success treatment story of a 

patient with similar characteristics in the past. 

EjectionFraction > 40.98 AND Diabetes = 0 AND Trigl < 76 AND AMI = 1 AND UricAcid < 6 0 7 7 0 100,00% 

This rule combines information: when EF is normal, the patient doesn’t have diabetes and the Uric Acid 

value is normal, patients that had suffered inferoposterior AMI and have low triglycerides most probably 

will not be readmitted. The issue is of course that in only 7 cases this rule is confirmed and thus the 

absolute accuracy it has may be disputed. This rule needs to be applied in independent data sets to prove 

its worth. In any case it is reasonable and potentially very useful for patients with inferoposterior AMI.  

EjectionFraction > 40.98 AND Diabetes = 0 AND AMI = 1 AND Glycaemia < 142 AND NA > 139.000696 AND 

Glycaemia > 84 AND Aematocrit < 39 1 22 5 17 22,73%  
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In this rule some parts are controversial: patients with normal or mild depression of EF, probably normal 

NA, abnormal aematocrit and glycaemia relatively above normal threshold will probably develop late onset 

heart failure. Again the subset of patients following this rule should be re-examined in order to understand 

if there is anything interesting in this small population. 

EjectionFraction < 40.98 AND PCR < 0.504345 AND Glycaemia < 111 0 81 81 0 100,00% 

Even though this rule is at odds with common knowledge, the average values of these specific variables in 

this population (consisting of the 52 subjects for which we know the EF) are close to normal: the average 

PCR is 0.43, the average glycaemia is 104 and the average EF is the strange finding since it is 33% (below the 

threshold that is 40%). Moreover, only 5 women are part of this population which may be not a 

coincidental fact and may worth having a second look at it.    

Trigl > 179.854835 AND Glycaemia < 89 0 84 83 1 98,81%  

This rule is impressively accurate. The average triglycerides are 247 and the average glycaemia is 81.2. The 

main characteristics of this population is that most subjects are males (only 7 females), smokers (with an 

average of 23 cigarettes per day and only 10 subjects not smoking), with an average age 56 years old, a 

quite normal BMI average around 27, and have suffered of various types of AMI. 

Trigl > 73 AND Diabetes = 1 AND SGPT < 73 AND NA > 140 0 131 122 9 93,13%  

This rule is rather controversial. Obviously it confirms that the normal triglycerides and NA values are very 

important factors for avoiding readmission to the hospital. In fact the average triglycerides is 160 and NA is 

139,81 which both are within the normal ranges and prove themselves as more important factor compared 

to the presence of Diabetes. Of course this rule (and by the way all rules that define a lower threshold and 

not an upper) must be completed by the user in order to define normality values of the questioned lab 

exams. 

Trigl < 75 0 79 75 4 94,94%  

The most interesting aspect of this rule, beyond its accuracy based in one parameter only, is that the 

population in which it is applied and confirmed is mixed. Some of the patients are diabetic; some of them 

have familiar hypertension; they take different drugs; they are about 62 years old; the average BMI is 26,6; 

most of them are smokers. SO this subset is worth of a more careful look in order to understand what other 

characteristics apart from low triglycerides that anyway indicate a healthy diet, may be preventive against 

late onset heart failure. 

AMI = 4 AND Aematocrit > 40 0 64 63 1 98,44%  

AMI = 4 AND PCR < 3.48237 AND SGPT < 19 0 23 22 1 95,65%  
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 AMI = 4 is translated as AMI not characterized by abnormal Q waves and the average aematocrit in this 

subset is 44,28. These two rules suggest (in an impressively accurate manner) that people with that have 

suffered from this particular AMI will avoid readmission if they have a normal aematocrit and relatively low 

ASL results. With the exception of Total Cholesterol which is above normal range all the other 

characteristics of this group are normal. 

NA > 142.998533 AND Glycaemia < 80 0 27 27 0 100,00%     

Again this rule is based on just two lab exams results: NA and blood glucose. The average NA is 145,55 

which is slightly above normal NA which is 143. The average blood glucose is 73, which in fact is close to 

lower limit (70). All other average values of the lab exams in this relatively restricted population (27 

samples) are normal with the exception of PCR. Another interesting characteristic is the BMI average which 

is 25,05, i.e. very close to the normal upper limit.  

AMI = 3 AND WhiteBloodcellcounts < 9 0 46 44 2 95,65%   

This rule is applied to a certain subset of patients that had suffered multiple AMI. For those patients the 

prognosis is optimistic as long as their white blood cell count examination is below 9.000. In fact the 

average in this certain population is 6.880. What is controversial in this population is the high fibrinogen 

and blood glucose values among these patients and the low aematocrit they present. 

AMI = 1 AND NA > 142.998533 AND Aematocrit < 45 0 93 89 4 95,70%    

As it happens in the previous rule too again this rule is applied to specific patients: those that were 

diagnosed with an inferoposterior AMI. For those patients the prognosis is optimistic as long as their lab 

exams and especially NA and aematocrit are normal. 

AMI = 1 AND Aematocrit < 34.992538 AND Fibrinogen > 307 1 41 8 33 19,51%   

This rule makes a negative prognosis for the patients: It suggests that a low aematocrit for patients 

suffering from inferoposterior AMI means a higher possibility of readmission to the hospital. This 

population is rather older than previous (67,4 while most are around 62,5) and it presentes elevated 

fibrinogen and blood glucose levels, always in an average level, and a very low aematocrit average value at 

31,7. These are obviosly the main factors contributing to a pesimistic prognosis for these patients. By the 

way the accuracy 19,51% is much better of the 8,25% that the class distribution between the dataset 

samples, presents. And this also stands for the following rules that predict class 1, i.e. patients that will 

develop late onset heart failure. 

AMI = 1 AND Diabetes = 1 AND WhiteBloodcellcounts < 6 1 21 3 18 14,29%   

This rule is complementary to the above one. It suggests that apart other factors the presence of diabetes 

and the white blood cells count can be predictive variables for the development of late onset HF. Of course 
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the relatively few cases in which the rule is applied strengthen the conclusion that diabetes itself cannot be 

considered as a very strong risk factor. 

 

AMI = 2 AND Fibrinogen > 221.371439 AND Fibrinogen < 269.596462 AND SGPT > 12 1 26 6 20 23,08%  

AMI = 2 AND Fibrinogen > 211.862427 AND TotChol < 186.169345 AND SGOT > 21.288612 AND hdlChol < 47 1 51 8 43 15,69%  

When combined these two rules imply that patients suffering from anterior AMI (504 in GISSI study) will be 

readmitted to the hospital even if the lab exams are normal or close to normality. What is notable is that 

most of these patients (above 70%) were treated with ACE inhibitors. Of course any rules supporting 

decisions for class 1 must be further investigated since the small amount of such samples and the resulting 

unbalanced dataset may be misleading when trying to reach any conclusions. However, they are indicative 

and potentially intriguing, for the clinical researchers results. 

AMI = 2 AND Fibrinogen > 211.862427 AND PCR < 16 0 303 280 23 92,41%  

This rule supports decisions for the patients suffering from anterior AMI. As noted above the rules for this 

subset is rather controversial and the conclusion is that the lab exams cannot provide adequate decision 

support. This is also due to the fact that most patients fall into this category. The only suggestion is that a 

low fibrinogen is associated with better prognosis for those patients. 
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Biologists feedback 

 

Rule Class

Samples 

following 

the rule

Correct Wrong
Rule 

Accuracy

Diabetes = 1 AND rs4646994_INS = 5 0 219 210 9 95,89%

rs4291_b = 1 AND rs4646994_DEL = 6 AND Diabetes = 0 AND EjectionFraction > 42.4 AND rs5443_a = 2 AND AMI = 2 AND rs5443_b = 41 2 1 1 50,00%

rs5443_b = 4 AND AMI = 2 AND rs4291_b = 4 AND Diabetes = 0 AND rs4291_a = 1 AND rs4646994_INS = 5 0 62 61 1 98,39%

rs5443_b = 4 AND AMI = 4 0 105 100 5 95,24%

rs5443_b = 4 AND rs5443_a = 4 0 137 130 7 94,89%

rs4291_b = 1 AND rs5443_b = 2 AND EjectionFraction > 48.46 AND Diabetes = 0 AND rs4646994_DEL = 6 AND AMI = 1 1 8 0 8 0,00%

Diabetes = 1 AND rs5443_b = 2 0 167 159 8 95,21%

rs5443_b = 4 AND rs4646994_INS = 6 AND AMI = 2 AND Diabetes = 0 0 62 58 4 93,55%

rs4291_b = 1 AND EjectionFraction > 36.27 AND Diabetes = 0 AND rs4646994_DEL = 6 AND AMI = 2 AND EjectionFraction > 48.217702 AND EjectionFraction < 521 0 0 0 --

AMI = 2 AND rs4291_b = 4 AND Diabetes = 0 0 199 190 9 95,48%

Diabetes = 1 AND rs4291_b = 4 AND AMI = 1 0 85 81 4 95,29%

rs5443_b = 4 AND rs4646994_DEL = 6 AND EjectionFraction < 48.57 AND EjectionFraction > 35 AND rs4646994_INS = 5 AND rs4291_b = 11 19 1 18 5,26%

rs5443_b = 4 AND rs4291_b = 1 0 113 109 4 96,46%

rs5443_b = 4 AND AMI = 3 0 35 32 3 91,43%

rs5443_b = 4 AND EjectionFraction > 46 0 209 191 18 91,39%

rs4291_a = 1 AND AMI = 1 AND EjectionFraction < 39.68157 AND rs5443_b = 2 AND rs4646994_INS = 6 1 10 1 9 10,00%

rs4646994_INS = 6 AND rs5443_b = 2 AND AMI = 4 0 30 26 4 86,67%

rs4291_b = 4 AND AMI = 4 0 105 97 8 92,38%

rs4646994_INS = 6 AND rs4291_a = 4 0 61 58 3 95,08%

AMI = 4 AND rs4646994_DEL = 6 1 141 10 131 7,09%

AMI = 3 0 64 58 6 90,63%

AMI = 2 AND rs4646994_INS = 6 AND Diabetes = 0 0 119 111 8 93,28%

AMI = 4 0 171 157 14 91,81%

rs5443_b = 4 AND EjectionFraction > 35 AND AMI = 1 AND rs4646994_DEL = 6 1 129 10 119 7,75%

rs5443_b = 4 AND EjectionFraction < 39 0 161 154 7 95,65%

EjectionFraction < 38.05 AND EjectionFraction > 28 1 200 12 188 6,00%

rs4291_b = 4 AND Diabetes = 0 0 465 433 32 93,12%

rs5443_b = 2 AND rs4646994_INS = 5 1 330 29 301 8,79%

101 (8.25 %)Not Healthy 

Healthy 1123 (91.75%)

No Samples 1224

Diabetes Ejection Fraction AMI Genetics

 

 

Here we discuss the most prominent data mining results were genetic parameters were used.  As well we 

used the following classification: only the rules that were more accurate than the actual class distribution 

(i.e. above 91.75% for patients not developing late onset HF, i.e. class 0 and above 8.75% for patients that 

did develop late onset HF, i.e. class 1) were taken into consideration. The three genetic variants used 

(rs4291, rs5443 and rs4646994) were shown to be associated with late onset HF in D4.2 (all p-values < 
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0.05). More precisely, we identified a significant association for two genes within the study population. One 

gene encodes for the angiotensin I-converting enzyme (ACE), the other for the guanine nucleotide-binding 

protein (GNB3). Two genetic variations positioned in ACE, termed rs4291_a=1 and rs4646994_INS=6 and 

one positioned in GNB3, termed rs5443_b=2 marked the two identified genes. This translates as follows. 

The three alleles of the identified variants, namely rs4291=1, rs4646994=6 and rs5443=2 are predictors for 

late-onset HF in the study population used. The other alleles rs4291=4, rs4646994=5 and rs5443=4 are not 

associated with late-onset HF. Neither of the variants used are predictors for MI since they were not 

associated with MI. It has to be underlined that the functionality of the variants identified has not been 

experimentally proven. Since we cannot be sure how the present allele effects the function of the protein, 

all findings are marked in grey. Some findings may not be in agreement with common knowledge, since 

genetic data is combined with biochemical and other markers. Discrepancies might point towards 

underlying unknown mechanisms and present potential starting points for selective research activities 

Based on the variables Diabetes, Ejection fraction, AMI and Genetics we found: 

Diabetes = 1 AND rs4646994_INS = 5 0 219 210 9 95,89%
 

Despite the finding that Diabetes is not a predictor for late-onset HF in this population, rs4646994=5 marks 

patients who did not develop late-onset HF. Remarkably, Diabetes alone reaches an accuracy of 93.3%. 

Addition of total cholesterol and triglycerides raise the rule accuracy to 95.9%. The same effect is observed 

for the genetic information rs4646994=5. This genetic marker elevates accuracy of risk prediction by the 

same extend as the biochemical marker. 

 

AMI = 4 0 171 157 14 91,81%
 

rs4291_b = 4 AND AMI = 4 0 105 97 8 92,38%
 

rs5443_b = 4 AND AMI = 4 0 105 100 5 95,24%
 

A quite interesting finding. 91.8% of patients with AMI status 4 were not readmitted to the hospital. 

Addition of the genetic information rs4291=4 raised the rule accuracy to 92.4% while rs5443=4 raised the 

accuracy to 95.2%, suggesting a higher predictive value of variant rs5443=4. In both cases exactly 105 

samples followed this rule. 

 

AMI = 2 0 503 467 36 92,84%
 

AMI = 2 AND rs4291_b = 4 AND Diabetes = 0 0 199 190 9 95,48%
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rs5443_b = 4 AND rs4646994_INS = 6 AND AMI = 2 AND Diabetes = 0 0 62 58 4 93,55%  

rs5443_b = 4 AND AMI = 2 AND rs4291_b = 4 AND Diabetes = 0 AND rs4291_a = 1 AND rs4646994_INS = 5 0 62 61 1 98,39%
 

Looking at these four rules we identify again that patients who had suffered from anterior acute myocardial 

infarction were not readmitted to the hospital. The rule accuracy is raised to 95.5% by adding rs4291=4 and 

Diabetes=0, while diabetes was identified not to be a risk predictor for late-onset HF and vice versa. 

Combining this rule with rs4646994=6, which is associated with late-onset HF, lowers the rule accuracy to 

93.5%. Combining all “protective” alleles of the three genetic variants in one rule, raises rule accuracy to 

98.4%, which is a difference of 5.6%, even if rs4291 is heterozygous (rs4291=4 and rs4291=1). This is a good 

example that combination of genetic variants can remarkably increase accuracy of outcome prediction.  

 

Rule Class

Samples 

following 

the rule

Correct Wrong
Rule 

Accuracy

rs4291_b = 1 AND rs5443_b = 2 1 35 1 34 2,86%

rs4291_a = 1 AND rs4291_b = 1 AND rs4646994_INS = 5 AND rs5443_b = 4 1 40 3 37 7,50%

rs5443_a = 2 AND rs4646994_DEL = 6 AND rs4291_a = 1 AND rs4291_b = 4 AND rs5443_b = 4 AND rs4646994_INS = 5 0 71 66 5 92,96%

rs5443_a = 2 AND rs4646994_DEL = 6 AND rs4291_a = 1 AND rs4291_b = 4 AND rs5443_b = 2 AND rs4646994_INS = 5 1 66 9 57 13,64%

rs5443_a = 2 AND rs4291_a = 1 AND rs4646994_INS = 6 AND rs4291_b = 4 AND rs5443_b = 4 1 34 6 28 17,65%

Not Healthy 79 (11.89 %)

Healthy 585 (88.01 %)

664

Genetics when Ejection Fraction  > 40
No Samples

 

Notably, high rule accuracy was often observed in prediction of positive outcomes (no late-onset HF). Based 

on the variables “Genetics when Ejection fraction > 40” we identified the following rule: 

rs5443_a = 2 AND rs4291_a = 1 AND rs4646994_INS = 6 AND rs4291_b = 4 AND rs5443_b = 4 1 34 6 28 17,65%
 

Patients with the combined genetic markers associated with late onset HF, rs4291=1, rs4646994=6 and 

rs5443=2, even if they are present in a heterozygous situation, are more likely to be readmitted to the 

hospital. This could mark rs4291=1 and rs5443=2 as risk alleles with higher impact on the possible outcome 

than the protective effect of the rs4291=4 and rs5443=4. The effect over average is 5.7% which exactly 

resembles the combined effect of the three alleles not associated with late-onset HF in the dataset based 

on the variables Diabetes, Ejection fraction, AMI and Genetics. Retrospectively enrolled real world 

ischemic heart disease patients - NIGUARDA Data 
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In the following the initial results of the application of data mining methods with the aim to derive rules 

that improve clinician decision-making based on NIGUARDA dataset and more specifically the AMI subset 

are presented. The clinical interpretation is also provided.  

 

Number of patients:

Vital Status = 0 (alive)

Vital Status = 1 (diceased)

Rule Class

Samples 

following the 

rule

Correct Wrong
Rule 

accuracy

Statins_Lipid_Lowering = 1 AND Pre-Existing_Vascular_Disease = 0 0 697 653 44 93,69%

Groups = AMIHF AND Dyslipidemia = 0 AND Beta_Blockers = 1 1 107 36 71 33,64%

Atrial_fibrillation_history = 0 AND Dyslipidemia = 1 0 361 338 23 93,63%

Atrial_fibrillation_history = 0 AND STENT = 1 AND Haemoglobin_blood > 11.548035 0 345 333 12 96,52%

Atrial_fibrillation_history = 0 AND Sex = 1 0 303 263 40 86,80%

COPD = 0 AND  Triglycerides <= 111 0 394 350 44 88,83%

Hypertension = 1 1 554 74 480 13,36%

AMI
974

851 (87.37%)

123 (12.63%)

 

 Rules were classified as defined above. Results are consistent in general with indications from the 

literature even in the reperfusion and statin era. The following are two examples   

Statins_Lipid_Lowering = 1 AND Pre-Existing_Vascular_Disease = 0 0 697 653 44 93,69%
 

 The high accuracy of this rule in the prediction of a good outcome in this wide population subset confirms 

results from RCT on secondary prevention with statins in patients who do not have coexistent vascular 

disease in district other than the coronary one. The following rule also confirms results of previous studies 

[16;17;19;51] 

Atrial_fibrillation_history = 0 AND STENT = 1 AND Haemoglobin_blood > 11.548035 0 345 333 12 96,52%  

The negative prognostic impact of hypertension had been previously described in the classical Cox model 

from the GISSI Prevenzione dataset [10], and is confirmed by our results, even with a relatively low 

accuracy. 

Although the predictive role of clinical HF  on presentation and atrial fibrillation are well established in AMI, 

the combination with other predictors is novel and intriguing; in particular prescription of beta-blockers in 

this subset when still unstable is suggested by the negative impact of this class of drugs of proven efficacy 

in heart failure. 

Data mining appears to provide additional prognostic insight when compared to Cox multivariable models   
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Retrospective chronic ischemic heart disease (cIHD) and chronic ischemic heart failure (cIHF) patients – 

NIGUARDA Data 

In the following the initial results of the application of data mining methods with the aim to derive rules 

that improve clinician decision-making based on NIGUARDA dataset and more specifically the cIHD and cIHF 

subsets are presented. The clinical interpretation is also provided.  

Number of patients:

Vital Status = 0 (alive)

Vital Status = 1 (diceased)

Rule class

Samples 

following the 

rule

correct wrong accuracy

Statins_Lipid_Lowering = 1 AND Groups = cIHD 0 133 129 4 96,99%

Statins_Lipid_Lowering = 0 AND Aldosterone_Antag. = 1 AND CABG_index_admission = 0 AND 

Smoking_Habits = 0
1 31 14 17 45,16%

loop_diuretics_dose <= 86.638455 AND Beta_Blockers = 1 0 271 246 25 90,77%

Number_bypass = 0 AND Calcium_Channel_Blockers = 0 AND COPD = 0 AND Previous_STENT = 1 0 73 67 6 91,78%

Number_bypass = 0 AND Calcium_Channel_Blockers = 0 AND Diabetes = 1 1 74 22 52 29,73%

404

69 (17.03%)

335 (82.92%)

cIHD or cIHF

 

Rules were classified as defined above. Results are consistent in general with indications from the 

literature. The following are two examples   

Statins_Lipid_Lowering = 1 AND Groups = cIHD 0 133 129 4 96,99%  

Statin treatment and the absence of heart failure are associated to a good outcome with very high accuracy 

loop_diuretics_dose <= 86.638455 AND Beta_Blockers = 1 0 271 246 25 90,77%
 

Lower doses of loop-diuretics and administration (and consequently tolerability) of beta-blockers are also 

known to be associated to a better prognosis. 

Statins_Lipid_Lowering = 0 AND Aldosterone_Antag. = 1 AND CABG_index_admission = 0 AND 

Smoking_Habits = 0
1 31 14 17 45,16%

 

This rule is somewhat inconsistent with common knowledge, but it has on the other hand a very poor 

accuracy and is applicable to a limited number of subjects. Conversely the last 2 rules are potentially 

interesting; calcium channel blockers are not a recommended therapy for ischemic heart disease unless 

beta-blockers are not tolerated; the poor outcome of diabetics when not revascularized is also known, but 

the interaction with CCB as potential specific treatment is intriguing 

Number_bypass = 0 AND Calcium_Channel_Blockers = 0 AND COPD = 0 AND Previous_STENT = 1 0 73 67 6 91,78%

Number_bypass = 0 AND Calcium_Channel_Blockers = 0 AND Diabetes = 1 1 74 22 52 29,73%
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