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D1.4.2
Report on entanglement enhanced pointing

Polarization interferometry measurements of two complementary direction on the Bloch 
sphere beating the classical limit have been performed with up to six-photon Dicke states. The 
Dicke-state or the Twin-Fock state, respectively, exhibit both Heisenberg scaling, i.e., 
similarly to the GHZ (N00N) state show a measurement uncertainty proportional 1/N.
Contrary to the GHZ-state, the Dicke state has vanishing <�z>-expectation value and thus 
enables the simultaneous sub-SNL measurement of both �x and �y.

The enclosed preprint describes the basic principle of utilizing the particular features of the 
Dicke state and its zero expectation value along the z-direction, its observation using cavity 
enhanced down-conversion, and the entanglement enhanced precision for phase-estimation 
along �x and �y.
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Non-classical resources can speed up classical information processing but can also improve on

the precision of measurements 1. The goal of quantum metrology 2 is to develop methods for

the latter, for example to determine a parameter like a phase shift from a measurement ob-

servable with an uncertainty beyond the classical shot noise limit. Well-known non-classical

resources as the Greenberger-Horne-Zeilinger 3–5 or N00N states 6, 7 have been identified to

be suitable for this purpose and have also been implemented experimentally, see for example

8–12. In our work, we consider symmetric Dicke 13, 14 and two-mode Fock states 15–17 for mea-

surements better than the classical limit. These states approach the ultimate Heisenberg limit

by a small constant factor 15–17. In our work, we show using the description of a two-state

system, that multi-partite entangled Dicke states allow to achieve this uncertainty for two
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complementary directions on the Bloch sphere. For a quantification thereof, we introduce a

novel criterion, which allows to identify such suitable states. We experimentally demonstrate

the benefits of these states for, in our case, polarization interferometry. To this end, we use

up to six photons 18–20 and are able to beat the classical shot noise limit. Our work reveals

another aspect of phase determination in quantum metrology. (version: December 1, 2010)

Nowadays, the shot noise limit (SNL) is reached in more and more interferometric applica-

tions, foremost in atomic clocks or gravitational wave detectors. This limit determines the lowest

uncertainty obtainable in a measurement on independent particles or photons, respectively. Here,

we consider the measurement of a phase θ that can be determined from an observable Ô with an

uncertainty

Δθ = ΔÔ/

∣∣∣∣∣
∂〈Ô〉
∂θ

∣∣∣∣∣ , (1)

using a simple linearized error model and the variance (ΔÔ)2 = 〈Ô2〉−〈Ô〉2. Thus, a measurement

on N independent particles yields the SNL of ΔθSNL = 1/
√
N . This result can also be obtained

by considering the distinguishability of quantum states using general methods as the quantum

Cramér-Rao bound (QCR) or the quantum Fisher information 21, 22.

The major goal of quantum metrology is now to improve precision measurements beyond

the SNL by utilizing non-classical resources like entangled or squeezed states. Thereby, the

uncertainty can be reduced down to ΔθHL = 1/N , the Heisenberg limit (HL). N00N-states 6, 7

( |N00N 〉 = ( |N, 0 〉l,u + |0, N 〉l,u)/
√
2) of N indistinguishable particles being in a superposi-

tion of all traversing the upper (u) or the lower (l) arm of an interferometer can be used to determine
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a collective phase shift θ at the HL [fig. 1(a)]. Alternatively, when using N individually address-

able particles for interferometry [fig. 1(b)], θ can be determined at the HL by using multi-partite

entangled GHZ-states 3, 4, 10 ( |GHZN 〉 = ( |00 . . . 0 〉 + |11 . . . 1 〉)/√2), with N particles being

in a superposition of states |00 . . . 0 〉 and |11 . . . 1 〉. Effectively, both approaches, i.e. collective

or individual phase shifts, are equivalent as it is only essential that the same phase shift is applied

to all N particles.

Based on developments in quantum information theory, research in multi-partite entangle-

ment is at a stage to apply particular features of other multi-partite entangled states for quantum

metrology applicable for both cases. In this letter, we aim at this and reveal new aspects for in-

terferometry by studying and demonstrating the properties of the two-mode Fock states |TMF 〉

suitable for the determination of a collective phase shift 15–17 (cf. eq. 3) and of their analogy for

individually addressable particles, multi-partite entangled Dicke states |D(e)
N 〉 13, 14 (cf. eq. 4). To

this end, let us consider the properties of quantum states in terms of correlation functions, which

are given as the product of measurement results on individual particles. For qubits, i.e., particles

having two possible states like |0 〉 and |1 〉, a single particle observable is given by

Ô(γ, φ) = (sin γ cosφ) σ̂x + (sin γ sinφ) σ̂y + (cos γ) σ̂z, (2)

where σ̂i denote the Pauli matrices (i ∈ {x, y, z}), and γ and φ are spherical coordinates [fig. 2(a)].

The measurement of Ô(γ, φ) can be used to deduce the latter and, in the case of N particles,

Ô(γ, φ) has to be measured for each particle in order to infer γ and φ with the smallest uncertainty.

This results in the determination of the N -particle correlation 〈Ô(γ, φ)⊗N〉. Comparing the latter

to conventional interferometry, like Mach-Zehnder interferometry (MZI)23 as used for gravitational
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wave detection or Ramsey interferometry 4 as used in atomic clocks (see fig. 1), it can be shown that

the overall state transformation in conventional interferometry is analogous to Ô(γ/2, 0) (Meth-

ods). Obviously, this does not utilize the full dependence of Ô(γ, φ) on both angles γ and φ. In the

following, we therefore generalize conventional interferometry and show the benefits of particular

multi-partite entangled states in this context. To quantify the improvement relative to the SNL let

us use S�n = ΔθSNL/Δθ 24. Here, �n indicates the orientation of the interferometer, which is re-

stricted to the y direction for conventional interferometry (Methods). As explained in Methods, S�n

is closely related to the Fisher information or squeezing. We now have the freedom to choose any

interferometer orientation and also to analyze the variation of an initial state caused by the phases

γ and φ. To take this extension into account, we introduce the improvement over the SNL along

the three interferometer directions x, y and z as (Stot)
2 = (Sx)

2 + (Sy)
2 + (Sz)

2.

In order to demonstrate the power of generalized interferometry, let us now turn to particular

multi-partite entangled states. Symmetric Dicke states or their MZI analogue, the two-mode Fock

states have been discussed in the context of interferometry, noticing that their performance falls

slightly behind GHZ or N00N states15–17. In the following we show that for generalized interfer-

ometry these states turn out to be superior. Two-mode Fock states are given as N1 (N2) photons in

input mode 1 (2) of a MZI (cf. fig. 1),

|TMF 〉 = |N1, N2 〉1,2. (3)

Analogous to these states are the symmetric Dicke states (Methods), which are given as superpo-

sitions of all distinct symmetric permutations Pi( |0⊗(N−e)1⊗e 〉) of (N − e) qubits in state 0 and e
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in state 1:

|D(e)
N 〉 = (Ce

N)
−1/2

∑
i

Pi( |0⊗(N−e)1⊗e 〉), (4)

with Ce
N =

(
N
e

)
and N is an even integer throughout this work. Prominent examples are symmetric

Dicke states with an equal number of qubits in the excited and ground state (e = N/2), as originally

discussed in the context of superradiance 13, or the recently introduced W-state with only one

excitation (e = 1), discussed in the context of quantum information 25. The improvement over the

SNL for |D(e)
N 〉 is given by Sy =

√
1 + 2(N − e) e

N
. Hence, already the W-state improves on

the SNL. However, for increasing N , it approaches a constant value of
√
3, barely better than the

SNL. This is in stark contrast to the state |D(N/2)
N 〉 with Sy =

√
N/2 + 1 16, 17, which for large N

approaches
√
N/

√
2, i.e., a HL-like scaling equal to the GHZ state up to a factor of

√
2.

To identify the full dependence on γ and φ, let us come back to correlation functions.

Fig. 2(b) and (c) compare 〈Ô(γ, φ)⊗N〉 for the six-qubit Dicke state |D(3)
6 〉 and the GHZ state

|GHZ6 〉 . For the latter (fig. 2(c)) one recognizes the 6-fold oscillation period for a rotation around

the z direction, yielding the HL. Yet, for rotations around x or y one obtains a lower oscillation

period, which yields in both cases the SNL. Contrary to this, the significantly different symmetry

of the Dicke state results in no sensitivity to rotations around z, whereas steep gradients close to

the poles yield HL-like scaling for both x and y rotations. This can be quantified by Stot, which,

remarkably, is equal for both states and reaches the maximal value of (Stot)
2 = N + 2 (Methods).

While the GHZ state reaches the HL for z rotations ((Sz)
2 = N ), only the SNL is available for the

other cases ((Sx)
2 = (Sy)

2 = 1), see fig. 2(d). For the Dicke state, the HL is almost reached for x

and y ((Sx)
2 = (Sy)

2 = 1 +N/2, see fig. 2(d)), while no resolution at all is achieved for the third
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direction ((Sz)
2 = 0). This also gives a general viewpoint to squeezing (Methods), where now par-

ticularly for |D(N/2)
N 〉 two complementary orientations are below the SNL (fig. 2(d)), while the

third one has an increased uncertainty. The commonly considered squeezing ellipsoids 23, 26 turn

into structured bodies, shown in fig. 2(e) and (f) for the |GHZ6 〉 and Dicke states, respectively.

Let us now demonstrate these features in an experimental implementation with photons

(fig. 3). An ideal photon source for this purpose is the process of collinear type II spontaneous para-

metric down conversion (SPDC), as it delivers in its (N/2)-th order emission already the two-mode

Fock state |N/2, N/2 〉H,V (called Twin-Fock state) in horizontal (H) and vertical (V ) polarization

modes. Hence, we consider the case of polarization interferometry, whereby the goal is to deter-

mine an optical phase shift between H and V polarization. Starting with the state |N/2, N/2 〉H,V

we are also able to observe the polarization-entangled symmetric Dicke states |D(N/2)
N 〉 after sub-

sequent distribution of the photons into N spatial modes and conditional detection of a single

photon in each of the modes 18–20, 27 (fig. 3). In our work, we implemented the phase measurement

with up to six photons (see Supplementary Information for state fidelities and count rates). We

could choose whether to measure Ô(γ, φ) for each photon individually [i.e. in modes a, b, c, . . . ,

marked in fig. 3 (c) with a dashed green line], or collectively [fig. 3 (b)], data shown here are for

the latter case, for the other case see Supplementary Information.

Fig. 4(a) shows the measurement results for the correlation function Ô(γ, 0), i.e. a rotation

around the y direction, between six photons observed in spatial modes a, b, c, d, e, f . To analyze Sy

we fit the data with two different models: a Fourier decomposition (shown here) and a SPDC noise
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model taking into account noise due to higher order SPDC emissions20, 28, 29 (see Supplementary

Information). From the fitted curve we deduce the improvement Sy over the SNL (fig. 4(c)).

The results show that we not only observe the respective high oscillation rate of the correlation

function, but that also the state’s quality is high enough to clearly surpass the SNL and to reach an

improvement of Sy = 1.27 ± 0.06. Note, due to the presence of noise the minimal uncertainty is

not achieved at angles around γ ≈ n·π/2 (n ∈ {0, 1, . . . }), but at γ ≈ 1.15·(π/2). To illustrate the

advantage of the input state for generalized interferometry, we perform the same procedure for a

rotation around the x axis [Ô(γ, π/2), see fig. 4(b)]. The achieved uncertainty along that direction

[fig. 4(c)] is even lower than the previous one reaching an improvement as high as Sx = 1.35±0.07

compared to the SNL (now for γ ≈ 1.18 · (π/2)).

The determination of the phase relies on previous knowledge of the expected phase interval.

For the six-photon case this interval has to be known within ≈ π/8. In our experiment we can make

direct use of other SPDC emission orders, where, for example, the 2nd and 1st order emissions

deliver four and two photons, respectively. Thereby, we can determine successively the phase

shift better than the respective SNL also within the intervals ≈ π/4 [fig. 4(d,e,f)] and ≈ π/2

[fig. 4(g,h,i)] (see also Supplementary Information).

We want to emphasize that the generalized approach to interferometry together with the

utilization of multi-partite entangled states reveals novel and powerful features such as HL-like

scaling for two complementary directions, which can be ideal for example for tracking magnetic

field fluctuations. This enables significant advances for entanglement-enhanced metrology. In
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particular, multi-partite entangled Dicke and Twin-Fock states turn out to be ideal input states for

this purpose as evidenced by a novel criterion, which will foster the search for further suitable

states. In our experiment, we demonstrated sub-shot noise uncertainty for phase measurements

using up to six photons. Practical usage of our particular experimental implementation would

be greatly enhanced by reducing photon losses. For example, the utilization of highly efficient,

photon-number resolving detectors would enable higher state qualities 20, 28, 29 and, thus, an overall

stronger improvement as well as a direct usage of all SPDC emission orders and, thus, an increased

throughput.

Methods

Dicke states, two-mode Fock states and interferometry. The symmetric Dicke states |D(e)
N 〉 are

eigenstates of the total angular momentum squared Ĵ2 and the angular momentum in the z direction

Ĵz
13, 14, whereby the Ĵ-operators are angular momentum operators Ĵi =

1
2

∑
k σ̂

k
i (i ∈ {x, y, z})

with σ̂k
i acts on the k-th qubit (Ĵ2 |D(e)

N 〉 = N/2(N/2 + 1) |D(e)
N 〉 and Ĵz |D(e)

N 〉 = (N/2 −

e) |D(e)
N 〉 ). For the states |D(N/2)

N 〉 , we have ΔĴx = ΔĴy =
√
N(N + 2)/8 and ΔĴz = 0. The

states |D(e)
N 〉 are isomorphic to the two-mode Fock states |NH , NV 〉H,V , in particular |D(N/2)

N 〉

to the Twin-Fock state |N/2, N/2 〉H,V (see Supplementary Information).

The observable Ô(γ, φ) can also be regarded as a unitary transformation for rotations around

the y and z directions of the Bloch sphere [fig. 2(a)], Ô(γ, φ) = eiπ/2e−iφĴze−i2γĴye−i(π−φ)Ĵz . For

Ô(γ/2, 0) = eiπ/2e−iγĴye−iπĴz the transformation of MZI or Ramsey interferometry is obtained

4, 23, up to the reflection e−iπĴz and the global phase eiπ/2. For the symmetric Dicke states |D(e)
N 〉

8



one obtains 〈Ô(γ, φ)⊗N〉
D

(e)
N

=
∑e

k=0(−1)k+eCk
N−eC

k
e (cos γ)

N−2k(sin γ)2k.

Fisher information, improvement over the shot noise limit and squeezing. The improvement

over the SNL S�n is connected with the Fisher information FQ(ρin)
21, 22 as S�n =

√
FQ(ρin, Ĵ�n)/

√
N .

The Fisher information essentially measures the information content of the observable Ĵ�n for the

amount of rotation around the axis �n when using ρin. It can be calculated for pure states 21, 22 ρin =

|ψ 〉in〈ψ | in as FQ(ρin, Ĵ�n) = 4〈ΔĴ2
�n〉 with Ĵ�n = (cosα sin β)Ĵx+(sinα sin β)Ĵy+(cos β)Ĵz. For

the states |D(e)
N 〉 one obtains FQ(ρin, Ĵ�n) = (N +2e(N − e)) sin2 β, and for the states |GHZN 〉 ,

FQ(ρin, Ĵ�n) = N(sin2 β + N cos2 β). For the total improvement over the SNL Stot we obtain the

following general bound

(Stot)
2 = (Sx)

2 + (Sy)
2 + (Sz)

2

= (FQ(ρin, Ĵx) + FQ(ρin, Ĵy) + FQ(ρin, Ĵz))/N

≤ 4〈ΔĴ2
x +ΔĴ2

y +ΔĴ2
z 〉/N

≤ 4〈Ĵ2
x + Ĵ2

y + Ĵ2
z 〉/N = 4〈Ĵ2〉/N

= 4N(N + 2)/(4N) = N + 2,

which is saturated by the states |D(N/2)
N 〉 and |GHZN 〉 .

To obtain a comparison with the notion of squeezing, we consider the product of the reduced

phase uncertainty (i.e. 1/S�n) for two different rotations: 1
S�n1

· 1
S�n2

, see also fig. 2(d). Then, the

SNL (SSNL = 1) yields the bound 1
SSNL
�n1

· 1
SSNL
�n2

≥ 1. For the states |D(N/2)
N 〉 and rotations along x

and y a smaller value than the SNL is obtained ( 1
1+N/2

), which is even lower than the one for the

|GHZN 〉 state for rotations along x and z ( 1√
N

).
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Figure 1 Typical interferometric arrangements. (a) Schematic of Mach-Zehnder interfer-

ometry 23, where an incoming beam is divided by a 50/50 beam splitter (BS), followed by

a relative phase shift θ and the recombination at a second BS. The phase shift is applied

collectively to all photons traversing the upper (u) arm. (b) In Ramsey interferometry, one

usually considers a sequence of rotations on the Bloch sphere of a qubit 4 [cf. fig. 2(a)]:

a π/2 rotation around, say, the x direction, a further rotation by θ around the z direction,

and, finally, a second rotation by π/2 around the x direction. In this case, the phase θ

is applied to each particle individually. The overall state transformation of Mach-Zehnder

and Ramsey interferometry is essentially equivalent.

Figure 2 Comparing Dicke and GHZ states. (a) Bloch sphere of a qubit: The polar

angle of a pure state vector is γ and its azimuthal angle is φ. For comparing the states

(b) |D(3)
6 〉 and (c) |GHZ6 〉 the expectation value of the observable 〈Ô(γ, φ)⊗6〉 is drawn

on a sphere. Thereby, 〈Ô(γ, φ)⊗6〉 is rotationally invariant around the z axis for |D(3)
6 〉 ,

but not for |GHZ6 〉 . (d) Reduced phase uncertainty (i.e. 1/S�n) for the states |D(e)
6 〉

(e ∈ {1, 2, 3}) for rotations around an axis lying in the x-y plane and for the state |GHZ6 〉

in the x-z plane. A relation of interferometry to squeezing can be illustrated by considering

the expectation values of the angular momenta Ĵi and their variance ΔĴi, where usually

ellipsoids are used as illustrations 23,26 (Methods). The variance ΔĴx,ΔĴy,ΔĴz is shown

centered around 〈Ĵx〉, 〈Ĵy〉, 〈Ĵz〉 for the states (e) |GHZ6 〉 and (f) |D(e)
6 〉 (e ∈ {0, 1, 2, 3}).

The larger ΔĴi, the smaller the phase uncertainty.
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Figure 3 Experimental phase measurement setup. The experimental setup consists

of (a) the spontaneous parametric down conversion (SPDC) photon source given by a

ultraviolet (UV) enhancement cavity 30 pumping a β-barium-borate (BBO) crystal, (b) the

application of the phases γ and φ for determining Ô(γ, φ) by setting appropriate angles of

a half-wave plate (HWP) and quarter-wave plate (QWP) and (c) a linear-optical setup for

distributing the photons into maximally six spatial modes PAj with j ∈ {a, b, c, d, e, f} and

subsequent photon polarization analysis (PA) and detection. SM, single mode fibre; RG,

bandpass filter; BS, polarization-independent beam splitter; IR, interference filter; YVO4,

yttrium-vanadate crystal; PBS, polarizing beam splitter; APD, avalanche photo diode.

Figure 4 Experimental data for phase determination. The measurement results for

〈Ô(γ, φ)⊗6〉 for (a) y [Ô(γ, 0)] and (b) x [Ô(γ, π/2)] rotations on the Bloch sphere are de-

picted along with a fit corresponding to a Fourier decomposition (blue curve in (a) and

green curve in (b)). The red curve shows the expectation for the ideal state |D(3)
6 〉 . (c)

The improvement S over the shot noise limit (SNL) for the fitted data. The SNL is sur-

passed maximally for angles γ ≈ 1.15 · (π/2) for y and γ ≈ 1.18 · (π/2) for x rotations.

Admixture of white noise to |D(3)
6 〉 would also lead to a reduction and shift (dashed red

curve). In (d,e,f) the corresponding results for the 4-qubit observable 〈Ô(γ, φ)⊗4〉 and in

(g,h,i) for the 2-qubit observable 〈Ô(γ, φ)⊗2〉 are shown, upon detection of 4 or 2 photons,

respectively. In both cases, the SNL is surpassed: for four photons 1.31±0.01 (1.25±0.02)

times SNL for y (x) rotations and for two photons 1.348± 0.006 (1.334± 0.041) times SNL.
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Twin-Fock states for determining two complementary phases beyond the shot noise

limit
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In Mach-Zehnder interferometry (MZI) the overall

transformation [1] ei
π
2 Ĵxe−iγĴze−iπ

2 Ĵx = e−iγĴy on an
input state incident in modes a1 and a2 is performed,
whereby Ĵx = (â†1â2 + â†2â1)/2, Ĵy = (â†1â2 − â†2â1)/2i
and Ĵz = (â†1â1 − â†2â2)/2 satisfy the Lie algebra of
SU(2) and âm (â†m) is the annihilation (creation) op-
erator in spatial mode m (Ĵ2 =

∑
i∈x,y,z Ĵ

2
i ). The

modes a1 and a2 can take the role of, for example, spa-
tial or polarization modes. The two-mode Fock states
|Na1 , Na2 〉a1,a2

, which have been studied as input states

to a MZI [2–4], are eigenstates [5] of Ĵ2 and Ĵz, whereby
Na1 and Na2 are the particle numbers in modes a1
and a2 (Ĵ2 |Na1 , Na2 〉a1,a2

= (Na1 + Na2)/2((Na1 +

Na2)/2+1) |Na1 , Na2 〉a1,a2
, Ĵz |Na1 , Na2 〉a1,a2

= (Na1 −
Na2)/2 |Na1 , Na2 〉a1,a2

).
Rewriting e = NV and N = NH + NV for the sym-

metric Dicke states |D(e)
N 〉 , where NH and NV are the

number of horizontally and vertically polarized photons

one obtains Ĵ2 |D(NV )
N 〉 = (NH+NV )/2((NH+NV )/2+

1) |D(NV )
N 〉 and Ĵz |D(NV )

N 〉 = (NH − NV )/2 |D(NV )
N 〉 .

Hence, the states |NH , NV 〉H,V and |D(e)
N 〉 are isomor-

phic as they are eigenvectors to operators forming the
same algebra.

Fitting models, fidelities and count rates.

The Fourier fit used in the main text considers even
Fourier components up to order N when applied to an
N -photon measurement:

〈Ô(γ, 0)⊗N 〉Fit =
N/2∑
k=0

ak sin (2kγ) + bk cos (2kγ), (1)

with ak and bk as fitting parameters. Alternatively, the
SPDC noise model takes the expected SPDC higher or-

der noise into account. To a good approximation the
(N/2+1)-th order SPDC emission upon loss of two pho-
tons yields the strongest noise contribution on top of the
desired (N/2)-th order SPDC emission[6, 7] and results
in the N photon mixed state [8]

ρnoise,N =
(
C

(N+2)/2
(N+2)

)−1 2∑
j=0

Cj
2C

(N+2)/2−j
N ρ

D
((N+2)/2−j)
N

,

(2)

with ρ
D

(e)
N

= |D(e)
N 〉 〈D(e)

N | . This mixed state contains

with a fraction of (N +2)/(2N +2) also the desired state

|D(N/2)
N 〉 . Note, additional noise is expected from the

detection of multiple photons in the same detector or
even higher order SPDC emissions. However, this contri-
bution is much smaller due to the less than unit overall
detection efficiency (for our experiment ∼ 15%). There-
fore, to a good approximation in the experiment a mix-

ture of ρnoise,N and |D(N/2)
N 〉 will be observed

ρ = p
D

(N/2)
N

ρ
D

(N/2)
N

+ (1− p
D

(N/2)
N

)ρnoise,N . (3)

Besides the fit parameter p
D

(N/2)
N

we use a second fit pa-

rameter that is given by the shift γ0 of the measured data
along the γ-direction.

The SPDC noise model fit can be used to determine the
fidelity 〈D(N/2)

N | ρ |D(N/2)
N 〉 of the experimentally mea-

sured state ρ to the ideal Dicke state. To this end, the
fitted value for p

D
(N/2)
N

is required. Further, we inde-

pendently estimate a lower bound on the fidelity using a
three-setting witness operator, for details see Refs. [9, 10].
The fidelities, the used UV pump power and the achieved
count rates are given in Supplementary tab. I. Thereby,
the fidelity determined from the SPDC noise model is
higher than the one estimated via the three-setting wit-
ness. This overestimation can be attributed to the sim-
plifications made for the SPDC noise model.
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Data and fits for collective phase application at low
pump powers.

Supplementary fig. 1 shows the measurement data for
6, 4 and 2 photons along with the fit using the Fourier
decomposition and the SPDC noise model. The data is
the same as in the main text, for a collective phase shift.

Data and fits for individual phase application at
high pump powers.

Supplementary fig. 2 shows the measurement data for
6, 4 and 2 photons along with the fit using the Fourier
decomposition and the SPDC noise model. The data is
obtained for individual phase shifts, which are marked in
Fig. 3(c) of the main text as dashed green line. Note, due
to higher UV pump powers the SPDC higher order noise
contribution is larger reducing the contrast of the corre-
lation functions. This results in nearly no improvement
compared to the shot noise limit.
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FIG. 1: Experimental data for phase determination and collective phase application using (a,b) 6, (c,d) 4 and (e,f) 2 photons.

The measurement results of 〈Ô(γ, φ)⊗N 〉 for (a,c,e) y [Ô(γ, 0)] and (b,d,f) x [Ô(γ, π/2)] rotations are depicted along with a fit
corresponding to a Fourier decomposition (straight curves) and a SPDC noise model (dashed curves). The red curves show the
expected results.
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FIG. 2: Experimental data for phase determination and individual phase application using (a,b,c) 6, (d,e,f) 4 and (g,h,i) 2

photons. The measurement results of 〈Ô(γ, φ)⊗N 〉 for (a,d,g) y [Ô(γ, 0)] and (b,e,h) x [Ô(γ, π/2)] rotations are depicted along
with a fit corresponding to a Fourier decomposition (straight curves) and a SPDC noise model (dashed curves). The red curves
show the expected results.
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TABLE I:
number observable fidelity fidelity shift γ0 UV pump count
of estimated fitted SPDC power (W) rate
photons lower bound noise model (min−1)

collective phase shift, low pump power

6 Ô(γ, 0) 0.79± 0.04 0.84± 0.02 −0.01± 0.01 2.3 0.5

Ô(γ, π/2) 0.74± 0.04 0.85± 0.03 −0.04± 0.01 2.0 0.26

4 Ô(γ, 0) 0.850± 0.003 0.90± 0.02 −0.03± 0.01 2.1 313

Ô(γ, π/2) 0.843± 0.03 0.88± 0.02 −0.03± 0.01 2.3 326

2 Ô(γ, 0) 0.966± 0.002 0.974± 0.003 −0.003± 0.003 2.1 503716

Ô(γ, π/2) 0.962± 0.002 0.98± 0.02 −0.08± 0.02 2.3 496376

individual phase shift, high pump power

6 Ô(γ, 0) 0.65± 0.04 0.70± 0.01 0.01± 0.02 5.2 3.5

Ô(γ, π/2) 0.65± 0.04 0.71± 0.03 −0.07± 0.03 5.2 3.5

4 Ô(γ, 0) 0.757± 0.002 0.79± 0.05 0.02± 0.04 5.2 1072

Ô(γ, π/2) 0.757± 0.002 0.80± 0.05 −0.10± 0.04 5.2 1072

2 Ô(γ, 0) 0.900± 0.001 0.92± 0.01 0.021± 0.006 5.2 737600

Ô(γ, π/2) 0.900± 0.001 0.92± 0.01 −0.09± 0.01 5.2 737600


