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D1.4.4  
 
Proposal for nonlinear interferometry at the interface of nanomechanics 
and atomic ensembles:  
Report on a theoretical study analysing the capabilities of nonlinear 
interferometers applied to the measurement of nanomechanics 
 
 
Currently the field of nano-mechanical systems is rapidly evolving. So far there are several 
concepts for readout strategies via the interface between quantum states of light and 
nanomechanics. The interaction of light with atomic ensembles is formally very similar to the 
light-matter interface, and has already shown within Q-essence how non-linearities enable 
quantum enhanced read-out even beyond the Heisenberg limit (Deliverable D1.4.1). We 
therefore used the interaction between light and the quantum state of atomic ensembles in 
quantum memories as model for the analysis of possible future scenarios for light-
nanomechanics coupling. 
 
In particular, we have analysed the problem of estimating the phase associated to a nonlinear 
evolution which can be obtained by measurement-induced nonlinearities in our atomic-
ensemble based quantum memory. In contrast to previous work previous work now different 
interactions apply. By means of optical interaction with the atomic ensemble, each n photon 
term in a quantum state of light can be made evolving through a coefficient proportional to 
cos(2J n1/2), with the possibility of producing Schroedinger cat states directly. From a 
metrological perspective, the interest is in the precision with which the parameter J, 
associated to the strength of the interaction, can be estimated. We have found that this 
precision, as quantified by the inverse of the Fisher information, scales worse than the 
standard quantum limit (4I )-1/2, where I is the intensity of the probe state. Along the lines 
discussed in [1] we have identified the origin of this reduced scaling in the fact that J is 
associated to a nonlinear term n1/2, differently from the case of Deliverable D1.4.1 for which 
the nonlinear phase  is associated with n2. Our results have highlighted that a nonlinear 
quantum interaction does not generally lead to an improved scaling with respect classical 
resources. 
 
The interface between atomic and nano-mechanical ensembles was due to lack of time not 
studied in detail, also due to delays in experiments. Detailed analysis was however performed 
for the interactions in atomic-ensembles, as they are of significant relevance to the experiment 
with quantum memories using atomic ensembles. The non-linearities in these systems 
however turned out to be not useful for quantum metrology.  
 
 
Publication:  
[1] Animesh Datta & Anil Shaji, QUANTUM METROLOGY WITHOUT QUANTUM 
ENTANGLEMENT, Modern Physics Letters B, Vol. 26, No. 18 (2012) 1230010. 
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We scrutinize the role of quantum entanglement in quantum metrology and discuss
recent advances in nonlinear quantum metrology that allow improved scalings of the
measurement precision with respect to the available resources. Such schemes can surpass
the conventional Heisenberg limited scaling of 1/N of quantum enhanced metrology.
Without investing in the preparation of entangled states, we review how systems with
intrinsic nonlinearities such as Bose–Einstein condensates and light-matter interfaces
can provide improved scaling in single parameter estimation.
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1. Introduction

Precision measurements of physical parameters is very important for science, tech-

nology and commerce. From distinguishing trace chemicals to identifying malignant

cells without damaging benign ones in biological samples, measurements of various

kinds are some of the most immediate technological challenges of our times. Detec-

tion of extremely small quantities such as the amplitude of a passing gravitational

wave or the electron dipole moment lie at the forefront of modern physics. Crucial

to all these advances is the precision attainable in any measurement.

The estimation of all parameters associated with Hamiltonian dynamics can be

cast into a phase estimation. The precision of the estimate is quantified by the

variance of the estimator. The standard quantum limit (SQL), also known as the

shot noise limit, for the estimation of phase of a quantum-mechanical oscillator is
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given by

∆φ =
1

N1/2
, for N � 1 , (1)

where N is the number of excitations in the oscillator. The prototypical precision

measurement is of an unknown phase in an interferometer. The SQL is a conse-

quence of a Mandelstamm–Tamm1 type uncertainty relation that links a parameter

like phase or time that has no corresponding quantum mechanical operator with

an observable like number of excitations or energy. This is in close analogy with

Heisenberg type uncertainty relations between pairs of noncommuting observables.

The parameter-based uncertainty relations have a fundamental a role in quantum

mechanics, derived from the Heisenberg uncertainty relations. The limiting factor

in the precision of estimating parameters turns out to be the inescapable fact that

ultimately the device is really quantum mechanical subject to uncertainty relations

and quantum back action. As such, the SQL and the allied scaling is the bench-

mark against which all quantum-enhanced schemes of metrology are judged. The

point of this review is to explore the strategies and resources required to go beyond

the paradigm of a classical measurement strategy, and from the outset treat the

estimation process as quantum mechanical so as to see how one may go beyond the

SQL.

The field of quantum metrology concerns itself with the enhanced precision in

the parameter estimation that is made possible by quantum mechanics. The original

motivation for investigating the limits of the performance of an interferometer was

for the detection of gravitational waves, and the notion of quantum nondemolition

measurements was developed that circumvent the deleterious effects of quantum

back-action.2–4 Quantum nondemolition measurements, in fact, inquire into some

of the deepest questions in quantum mechanics, and have since 1980s proliferated

into other areas of quantum mechanics such as quantum measurement theory. The

early work of Braginsky, Thorne, Unruh and others led to the proposal by Caves

of injecting squeezed light instead of vacuum into the unused input ports of an

interferometer to suppress the intrinsic quantum noise associated with any inter-

ferometric estimation process.5 Squeezed states are unmistakably quantum states

of light in which the uncertainty of one the quadratures is reduced at the expense

of the uncertainty of the other. Their use is motivated by the realization that it

is the phase fluctuations in the quantum vacuum that enter the empty port of the

interferometer that translate to fluctuations in the amplitude (detector clicks) at

the output end. Therefore, sending in squeezed states with reduced uncertainty in

the phase quadrature into the empty port translates to reduced uncertainties at

the detector. After three decades of persistent advances, the GEO 600 observatory

has recently provided one of the first practical applications of squeezed states in

quantum technology.6

One of the central themes in quantum and classical metrology is the scaling

of the measurement uncertainty with the resources invested. Using the fact that

most measurement schemes can be mapped to the phase estimation problem, the
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resources are typically quantified by N which can stand for number of excitations,

quanta, particles etc. depending on the details of the measurement scheme dis-

cussed. Squeezed state inputs in one of the arms of an interferometer promise an

improved scaling5,7 of

∆φ =
1

N3/4
, for N � 1 , (2)

in the precision of the estimating the phase by suppressing the noise in one of the

quadratures as mentioned above. Better scaling than this is actually possible,a and

the Heisenberg limit, as this scaling has come to be known, is given by9

∆φ =
1

N
. (3)

It is generally accepted that quantum correlations in the form of quantum entan-

glement between the N units of a quantum probe is necessary to attain this limit.

Canonical examples of states that attain this limit include entangled states such

as the two-mode squeezed,10 Schrödinger cat,11 and N00N states.12,13 It has been

suggested that this is a true quantum limit, and there is no way that this can be

beaten.14 That however is only true in the restricted case of when the Hamiltonian

governing the parameter dependent evolution of the quantum probe is linear and

acts independently on each of the N units that make up the probe. The role of non-

linear interactions in providing enhanced scalings to the estimation of parameters

will be discussed in detail in this review.

Inseparable from the discussion of nonlinear interactions is the role of entan-

glement in attaining the enhanced scalings for the measurement precision. Often

entanglement is pointed out as the main reason behind why quantum states of the

probe can perform better than classical ones in parameter estimation. The actual

situation is more involved, since metrological improvement does not change mono-

tonically with respect to the entanglement content of the probe state. There exist

states with far more bipartite entanglement than the Schrödinger cat state, upto

N/2 ebits for equal bipartite splits, that are useless for metrology. Additionally,

measurement sensitivity and optimal probe states depend on local Hamiltonians,

while entanglement measures are independent of such operations. Finally, to further

analyze the role of entanglement in metrology, consider a single mode state of the

form15

|Ψ〉 = |0〉+ |N〉√
2

, (4)

aFeeding both the inputs of a Mach–Zehnder interferometer with vacuum squeezed along two
orthogonal axes provides the Heisenberg limit of 1/N. This is most easily understood as the
outcome of having a two-mode squeezed state in the interferometer.5,8
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that undergoes a dynamics given by Uφ = e−iφa†a. The state after the evolution is

given by

|Ψφ〉 = |0〉+ e−iNφ|N〉√
2

, (5)

and the measurement M = |N〉〈0| + |0〉〈N | allows us to estimate φ with a preci-

sion that scales as 1/N as in Eq. (3). We can therefore beat the SQL, and attain

the Heisenberg limit without investing in the preparation of entangled states, but

merely superpositions.b However, we do require a phase reference to perform the

measurement M and indeed, a shared reference frame is a nontrivial resource, and

its interconvertibility into and from quantum entanglement is an interesting ques-

tion in itself.16 It is therefore clear that some additional coherent resource is indeed

necessary to beat the SQL, but that need not necessarily be entanglement. An inter-

esting parallel is the Grover search algorithm that requires quantum superpositions

but no entanglement in providing a square root improvement17 in the unstruc-

tured database search problem. The connection between parameter estimation and

database search, and the role of quantum superpositions in providing quadratic

improvements is a curious one requiring further research.

An intriguing case-study for quantum enhancement in sensing is quantum illu-

mination introduced by Lloyd.18 The task is to infer the presence or absence of a

weakly reflecting object nestled in a given region of space with a high temperature

thermal bath by shining some light in the direction of the object and analyzing

the light received from that direction. Lloyd’s initial scheme suggested immense

enhancements in distinguishing the two possibilities if one uses an entangled single-

photon state as opposed to unentangled single-photon states.18 This result was

particularly fascinating because the high temperature bath and low reflectivity of

the object results in a final state that has no entanglement at all. Thus, an initially

entangled but eventually unentangled probe provides substantial quantum advan-

tage. It was later shown that the performance of Lloyd’s single-photon “quantum

illumination” system is, at best, equal to that of a coherent-state transmitter of

the same average photon number, and may be substantially worse.19 In fact, in the

low-noise regime, where entanglement depreciation is low, quantum illumination

is unlikely to provide substantial improvement. However, in the high-loss regime

when there is no entanglement, a more complete analysis using two-mode squeezed

states that goes beyond the single-photon analysis, still shows some advantage.20

The mysterious case of attaining a quantum advantage when entanglement is ab-

sent but not when entanglement is present makes the connection between quantum

enhancements and entanglement rather tenuous.

bWhile the baryon number conservation forbids the preparation of superposition of particles with
different masses such as atoms and ions, quantum states with superpositions of different photon
numbers is possible.
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Beyond unearthing the role of entanglement in providing quantum advantages in

quantum metrology,c an additional, and vital question is the amount of advantage

that quantum mechanics can provide. We will address both these issues in this

review. Our discussion will revolve largely around the recent results in nonlinear

quantum metrology.23–35 Theoretical developments and experimental efforts have

opened a new avenue for the development of quantum sensing, and provide a new

workbench for exploring the questions raised above. In particular, we will discuss

the role of nonlinear Hamiltonians in the estimation process vis-a-vis their potential

of generating entanglement, beginning with probe states that are not entangled. We

will discuss the progress in using systems with quadratic ground state Hamiltonians

such as Bose–Einstein condensates (BECs) and cold atomic ensembles in quantum

metrology.

2. Quantum Metrology

The single parameter estimation problem can be cast as the inference of a coupling

parameter γ in the Hamiltonian

Hγ = γH0 , (6)

by observing the evolution of a probe state under it. We take γ to have the units

of frequency, whereby H0 is a dimensionless coupling Hamiltonian and we work in

units where � = 1. The appropriate measure of the precision with which γ can be

determined is the units-corrected mean-square deviation of the estimate γest from

the true value γ36,37

δγ =

√〈(
γest

|d〈γest〉/dγ| − γ

)2〉
. (7)

This estimator uncertainty is inversely proportional to the displacement in Hilbert

space of the state of the probe corresponding to small changes in γ. The funda-

mental limit on the precision of parameter estimation, as an extension of classical

estimation theory, is given by the quantum Cramér–Rao bound36–39 as

δγ ≥ 1√
ν t

√
F

≥ 1

2
√
ν t〈∆H0〉 , (8)

where ν is the total number of interactions, each of duration t, between the system

and the probe, F is the quantum Fisher information of the initial state of the

problem and 〈∆H0〉2 is the variance of H0 with respect to the initial probe state.

The quantum Fisher information (QFI) quantifies the amount of information about

cThere have been suggestions of beating the SQL and even attaining the Heisenberg limit without
the use of quantum entanglement.21 However, it is known that shuttling a single probe through
the system under query does require the maintenance of quantum coherence over an exponentially
extended length of time,22 and infact both the entangled, and entanglement-free protocols have
equivalent communication complexity.
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the unknown parameter that can get imprinted on the state of the quantum probe

when it undergoes the parameter dependent evolution in Eq. (6). Since the probe

is in itself a quantum system, there is the question of the readout of the state of

the probe after the parameter dependent evolution so as to extract the information

about the parameter. The readout is assumed to be such that the it maximizes

the amount of information that is extracted. So the bound on the measurement

precision becomes solely a function of the initial probe state and the dynamics it

undergoes. The optimal readout on the probe always exists in the case of single

parameter estimation, and is given by projective measurements on to the complete

basis set furnished by the orthonormal eigenvectors of the symmetric logarithmic

derivative operator.36 The factor 1/
√
ν is a purely classical statistical improvement

coming from multiple runs of the experiment, and the Cramér–Rao bound for a

single parameter can always be attained in the limit of asymptotically large ν.

Increasing the interaction time t can also enhance precision, but it is often restricted

in practical scenarios by decoherence or temporal fluctuations in γ. For a given H0,

the QFI is upper bounded by25,36√
F ≤ 2〈∆H0〉 ≤ ‖H0‖ = (λM − λm) , (9)

where λM(λm) is the maximum (minimum) eigenvalue of H0, || · || is an operator

seminorm for Hermitian operators.d The inequalities in Eq. (9) are satisfied for a

pure state of the form (|λM〉+eiθ|λm〉)/
√
2. Here |λM〉 (|λm〉) denote the eigenvectors

of H0 corresponding to its maximum (minimum) eigenvalue.

Now, consider a Hamiltonian of the form

H0 =
∑

{j1,...,jk}
H

(k)
j1,...,jk

, (10)

where k is the degree of multi-body coupling, and the sum is over all k-body subsys-

tems. Assume that the k-body coupling H(k) is symmetric, and that the chosen k

is the highest degree of coupling involving the parameter γ. In case there are lower

order terms that include the same parameter, and those terms do not commute,

an effective Hamiltonian and parameter can be obtained to which the theory of

nonlinear quantum metrology can be applied. In general,25

||H0|| ≤
∑

{j1,...,jk}
||H(k)

j1,...,jk
|| ≤

(
N

k

)
||H(k)|| ∼ Nk

k!
||H(k)|| , (11)

where we have used the triangle inequality for the seminorm, the symmetry of the

operator involved, and assumed that k 	 N, where N is the number of constituents

in the quantum probe. In the special case when the multi-body interaction terms

are products of single-body operators

H
(k)
j1,...,jk

= Hj1 ⊗ · · · ⊗Hjk , (12)

dThere are cases, for instance in optical interferometry, where the maximum eigenvalue is un-
bounded. In that case, scaling can be framed in terms of the mean energy.
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the semi-norm of the parameter independent part of the probe Hamiltonian

reduces to

||H0|| ∼ Nk

k!
(λkM − λkm) . (13)

For k = 1, this leads to the Heisenberg limited scaling of 1/N for the measurement

uncertainty. More generally, however, the limit attainable by quantum mechan-

ics scales as 1/Nk, and might more sensibly be labeled as the Heisenberg limit

now.e

The result above is significant both theoretically and experimentally. It shows

that the scaling of 1/N , thought to be a universal, fundamental limit,14 is not, but

rather an instance of a more general result. In hindsight, as it often is, this partic-

ular generalization seems evident, since the precision of any estimate is governed

by the evolution of the probe state under the Hamiltonian. Second, it allows for

parameter estimation with an improved scaling given the same set of resources as

quantified by N , which is the ultimate goal of metrology. This result also implies

that quantum metrology using systems with nonlinear interactions such as BECs

have the potential of providing estimates with higher precisions than those sug-

gested by present experiments.40 Recent studies of condensate systems from this

perspective has lead to improved understanding of BECs and their evolution in

highly anisotropic traps,41 and further advances on these lines can be expected in

the future.

Heuristically, the quantum limit in metrology can be thought of as being propor-

tional to the number of commuting terms in the generating Hamiltonian. In other

words, a quantum probe of the form (|λM〉⊗N + |λm〉⊗N )/
√
2, under H0 in Eqs. (10)

and (12) evolves to (|λM〉⊗N + eiN
kγ |λm〉⊗N )/

√
2, and the enhanced relative phase

picked up by the probe leads to the limit in Eq. (13). This limit of 1/Nk is always

attainable, but might possibly require the preparation of an entangled state just

described or one of the form in Eq. (4). Compared to the SQL of 1/
√
N intro-

duced in Sec. 1, nonlinear dynamics appears to be able to provide a metrological

enhancement greater than entanglement can provide, which is only a square root

improvement. The caveat lies in the validity of the SQL under nonlinear evolutions.

The scaling of the precision in an entirely classical scenario under nonlinear evolu-

tions would be a fairer comparison to the 1/Nk scaling, and will be the subject of

eThe phrase “Heisenberg limit” was first used explicitly by Holland and Burnett,9 referring to
the number-phase uncertainty associated with the Heisenberg uncertainty relation. The essence,
however, was present in the early work of Caves5 which uses nonclassical light to beat the SQL.
Incidentally, the SQL is also a consequence of the Heisenberg uncertainty relations. Therefore, the
excessive sanctity endowed on the phrase “Heisenberg limit” to denote the 1/N limit should be
scrutinized more critically, with particular cognizance to the fact that it should label the ultimate
scaling that quantum mechanics can provide in the precision of estimating a parameter as opposed
to the best classical limit.
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the next section. As we will see, for a broad class of Hamiltonians, the improvement

is always quadratic.f

3. Quantum Metrology with Product States

In this section, we begin with a Hamiltonian of the form in Eq. (12), given by

H0 =

(
N∑
j=1

hj

)k

=
N∑

a1,...,ak

ha1 · · ·hak
, (14)

where we have omitted the tensor products for brevity. Our aim is to derive lower

bounds on δγ in the situation where the initial state is a pure product state,27

|Ψ0〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉 . (15)

We start from the state-dependent bound in Eq. (8) to evaluate ∆H0. We begin by

writing

H0 =
∑

(a1,...,ak)

ha1 · · ·hak
+

(
k

2

) ∑
(a1,...,ak−1)

ha1 · · ·hak−2
h2ak−1

+ · · · , (16)

where a summing range with parentheses, (a1, . . . , al), denotes a sum over all l-

tuples with distinct elements. The two sums in Eq. (16) are the leading- and

subleading-order terms in an expansion in which successive sums have fewer terms.

The first sum in Eq. (16), in which the terms have no duplicate factors, has

N !/(N−k)! = O(Nk) terms, and the second sum, in which one factor is duplicated

in each term, has N !/(N − k − 1)! = O(Nk−1) terms. The binomial coefficient

multiplying the second sum accounts for the number of ways of choosing the factor

that is duplicated. The next sums in the expansion, involving terms with factors h3j
and h2jh

2
l , have N !/(N − k − 2)! = O(Nk−2) terms. These expansions require that

N ≥ k, which we assume henceforth, and the scalings we identify further require

that N � k.

Given the expansion in Eq. (16), the expectation value of H0 has the form

〈H0〉 =
∑

(a1,...,ak)

〈ha1〉 · · · 〈hak
〉+

(
k

2

) ∑
(a1,...,ak−1)

〈ha1〉 · · · 〈hak−2
〉〈h2ak−1

〉

+O(Nk−2) . (17)

fAn exponential advantage in the scaling of the precision attainable in quantum metrology has
been suggested,42 and was in fact, the impetus behind the systematic study of nonlinear metrol-
ogy.25,27,28 The scheme requires N-body interactions, and every value of N would lead to a
different coupling parameter to be estimated. The notion of asymptotic scaling of the precision in
the limit of varying N is therefore not well defined.
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The expression for 〈H2
0 〉 follows by replacing k with 2k, as

〈H2
0 〉 =

∑
(a1,...,a2k)

〈ha1〉 · · · 〈ha2k
〉

+

(
2k

2

) ∑
(a1,...,a2k−1)

〈ha1〉 · · · 〈ha2k−2
〉〈h2a2k−1

〉+O(N2k−2) . (18)

By changing the initial sum in Eq. (17) to an unrestricted sum, we can rewrite 〈H0〉
to the required order as

〈H0〉 =
∑

a1,...,ak

〈ha1〉 · · · 〈hak
〉+

(
k

2

) ∑
(a1,...,ak−1)

〈ha1〉 · · · 〈hak−2
〉∆h2ak−1

+O(Nk−2) .

(19)

Squaring this expression and changing the unrestricted sums back to restricted

ones, again keeping only the leading- and subleading-order terms, gives

〈H0〉2 =
∑

(a1,...,a2k)

〈ha1〉 · · · 〈ha2k
〉+

(
2k

2

) ∑
(a1,...,a2k−1)

〈ha1〉 · · · 〈ha2k−2
〉〈ha2k−1

〉2

+2

(
k

2

) ∑
(a1,...,a2k−1)

〈ha1〉 · · · 〈ha2k−2
〉∆h2ak−1

+O(N2k−2) . (20)

We can now find 〈∆H0〉2 by subtracting Eq. (20) from Eq. (18)

〈∆H0〉2 = k2
∑

(a1,...,a2k−1)

〈ha1〉 · · · 〈ha2k−2
〉∆h2ak−1

+O(N2k−2)

= k2

(
N∑
j=1

〈hj〉
)2(k−1)( N∑

j=1

∆h2j

)
+O(N2k−2) . (21)

In the final form, we take advantage of the fact that in the now leading-order sum,

the restricted sum can be converted to an unrestricted one.

To make the QFI in Eq. (8) as large as possible, we maximize the variance

〈∆H0〉2 of Eq. (21). We can immediately see that for fixed expectation values

〈hj〉, we should maximize the variances ∆h2j , and this is done by using for each

constituent a state that lies in the subspace spanned by |λM〉 and |λm〉. Letting pj
be the probability associated with |λM〉 for the jth constituent, we have

xj ≡ 〈hj〉 = pjλM + (1 − pj)λm = λm + pj‖h‖ ,
〈∆hj〉2 = pjλ

2
M + (1− pj)λ

2
m − x2j = ‖h‖2pj(1 − pj) = (λM − xj)(xj − λm) .

(22)

Thus, we maximize

〈∆H0〉2 = k2

(
N∑
j=1

xj

)2(k−1) N∑
j=1

(λM − xj)(xj − λm) (23)

within the domain defined by λm ≤ xj ≤ λM, j = 1, . . . , N .

1230010-9
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Besides 0 =
∑

j xj which is a potential extremum of 〈∆H0〉2, we find that

the conditions for extrema of 〈∆H0〉2 imply that xj = x (and thus pj = p) for

j = 1, . . . , N . Thus, the optimal states in the initial product state in Eq. (15) have

the form

|ψj〉 = √
p |λM〉+ eiφj

√
1− p |λm〉 . (24)

The only possible difference between the states of the different constituents is in

the relative phase between |λM〉 and |λm〉.
Since the optimal constituent states live and evolve in a two-dimensional sub-

space, we can regard the constituents effectively as qubits, with standard basis states

|0〉 = |λM〉 and |1〉 = |λm〉, serving as the basis for constructing Pauli operators X ,

Y and Z. Restricted to this subspace, the operator h takes the form

h = λM|0〉〈0|+ λm|1〉〈1| = λ̄I+ ‖h‖Z/2 , (25)

where λ̄ ≡ (λM + λm)/2 is the arithmetic mean of the largest and smallest eigen-

values of h.

In the following, we assume that all the constituents have zero relative phase

(φj = 0), giving an initial state |Ψβ〉 = |ψβ〉⊗n, where

|ψβ〉 = e−iβY/2|0〉 = cos(β/2)|0〉+ sin(β/2)|1〉 , (26)

with p = cos2(β/2). The corresponding initial density operator is

ρβ = |Ψβ〉〈Ψβ | =
N⊗
j=1

1

2
(Ij +Xj sinβ + Zj cosβ) . (27)

The variance of H0 now takes the simple form

〈∆H0〉2 = k2N2k−1〈h〉2(k−1)(∆h)2

= k2N2k−1x2(k−1)(λM − x)(x − λm) , (28)

which leads, via the QFI in Eq. (8), to a sensitivity that scales as 1/Nk−1/2 for

input product states. This should be compared with the 1/Nk scaling that can be

obtained by using initial entangled states, as in Sec. 2. Notice that for k = 1, this

reduces the SQL in Eq. (1). More importantly, for k ≥ 2, the 1/Nk−1/2 scaling is

better than the 1/N scaling of the Heisenberg limit, which is the best that can be

achieved in the k = 1 case even with entangled initial states.

3.1. Optimal probe states and separable measurements

The problem of finding the optimal input product state is now reduced to maxi-

mizing the 2k-degree polynomial

f(x) ≡ x2(k−1)(λM − x)(x − λm)

= x2(k−1)
(‖h‖2/4− (x− λ̄)2

)
(29)
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with respect to the single variable x = 〈h〉 on the domain λm ≤ x ≤ λM. The

condition for an extremum is

0 = f ′(x) = 2x2k−3
[
(k − 1)

(‖h‖2/4− (x− λ̄)2
)− x(x − λ̄)

]
. (30)

We assume k ≥ 2, because the k = 1 case is already well understood with a single

maximum at x = λ̄, corresponding to equal probabilities for |λM〉 and |λm〉 and to

〈∆H0〉2 = N‖h‖2/4, as discussed earlier.

The polynomial f vanishes at x = λm, λM and the form of the (nonzero) solu-

tions of Eq. (30) is

x± =

(
1− 1

2k

)
λ̄± 1

2

√
λ̄2

k2
+

(
1− 1

k

)
‖h‖2 . (31)

As k increases, x+ approaches λM, and x− approaches λm. Indeed, as k → ∞,

we have x+ = (1 − 1/2k)λM, corresponding to p+ = 1 − λM/2k‖h‖ and 〈∆H〉2 =

(k/2e)(nλM)2k−1‖h‖, and x− = (1− 1/2k)λm, corresponding to p− = −λm/2k‖h‖
and 〈∆H0〉2 = (k/2e)(−Nλm)2k−1‖h‖.

Another important limiting case occurs when λm = −λM. Then the maxima

occur symmetrically at

x± = ±1

2
‖h‖

√
1− 1/k , (32)

corresponding to probabilities p± = 1
2 + x±/‖h‖ = 1

2 (1 ±
√
1− 1/k) = 1− p∓ and

to

sinβ± =
√
1/k. (33)

The two maxima lead to the same variance, and a QFI of

〈∆H0〉2 = k(1 − 1/k)k−1N2k−1(‖h‖/2)2k , (34)

thus yielding a precision scaling of

δγ ≥ 2k−1

k1/2(1− 1/k)(k−1)/2

1

tNk−1/2‖h‖k . (35)

Of course, when λm = −λM, we can always choose units such that λM = 1/2

(‖h‖ = 1), which means that the single-body operators are hj = Zj/2. It is this

situation that we analyze in the remainder of this section, for k = 2, in which case

δγ ≥ 2

tN3/2
. (36)

We now consider the special case in which the single-body operators are hj =

Zj/2, leading to a coupling Hamiltonian

H =

(∑
j

Zj/2

)k

= Jk
z . (37)
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We introduce Jz as the z component of a “total angular momentum” corresponding

to the effective qubits. We assume an initial state of the form Eq. (27), and we let

this state evolve for a very short time, i.e. φ ≡ γt 	 1. After the time evolution,

we measure the separable observable

Jy =
∑
j

Yj . (38)

Over ν trials, we estimate γ as a scaled arithmetic mean of the results of the Jy
measurements.

The expectation value of any observable at time t is given by

〈M〉t = Tr
(
U †MUρβ

)
= 〈U †MU〉 , (39)

where U = e−iHγt = e−iHφ, and where we introduce the convention that an expec-

tation value with no subscript is taken with respect to the initial state. For small

φ, we have

U †MU =M − iφ[M,H ] +O(φ2) . (40)

Thus, the expectation value and variance of Jy at time t take the form

〈Jy〉t = 〈Jy〉 − iφ〈[Jy , H ]〉+O(φ2) , (41a)

(∆Jy)
2
t = (∆Jy)

2
0 − iφ

〈
(Jy − 〈Jy〉)[Jy, H ] + [Jy, H ](Jy − 〈Jy〉)

〉
+O(φ2) . (41b)

The initial expectation value and variance of Jy are those of an angular-

momentum coherent state in the x–z plane:

〈Jy〉 = 0 , (42a)

(∆Jy)
2
0 = 〈J2

y 〉 =
1

4

∑
j,l

〈YjYl〉 = N

4
. (42b)

In evaluating the other expectation values in Eqs. (41), we can use the expressions

from earlier in the section, since we are only interested in the leading-order behavior

in n. To leading order, the coupling Hamiltonian has the form

H =
1

2k

∑
(a1,...,ak)

Za1 · · ·Zak
+O(Nk−1) . (43)

Here we use ≈ to indicate equalities that are good to leading order in N . We can

now write

[Jy, H ] ≈ 1

2k+1

N∑
j=1

∑
(a1,...,ak)

[Yj , Za1 · · ·Zak
]

=
i

2k

k∑
l=1

∑
(a1,...,ak)

Za1 · · ·Zal−1
Xal

Zal+1
· · ·Zak

=
ik

2k

∑
(a1,...,ak)

Xa1Za2 · · ·Zak
, (44)
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from which it follows that

〈[Jy, H ]〉 ≈ ik

2k

∑
(a1,...,ak)

〈Xa1〉〈Za2〉 · · · 〈Zak
〉

≈ ik〈Jx〉〈Jz〉k−1 . (45)

This procedure can be extended one step further to show that to leading order in

N , the expectation of the terms of O(φ2) Eq. (41b) vanishes. Our results to this

point are

〈Jy〉t ≈ φk〈Jx〉〈Jz〉k−1 +O(φ2)

= φk(N/2)k sinβ cosk−1 β +O(φ2) , (46a)

(∆Jy)t ≈
√
N/2 +O(φ2) . (46b)

If we let our estimator φest be the arithmetic mean of the ν measurements of Jy,

scaled by the factor (d〈Jy〉t/dφ)−1 = 1/k(N/2)k sinβ cosk−1 β, we have

〈φest〉 = 〈Jy〉t
d〈Jy〉t/dφ ≈ φ+O(φ2) , (47)

δφ ≈ 1√
ν

(∆Jy)t
|d〈Jy〉t/dφ| +O(φ)

≈ 1√
ν

2k−1

kNk−1/2 sinβ| cosk−1 β| +O(φ) . (48)

This scheme thus attains the O(N−k+1/2) scaling that is the best that can be

achieved by initial product states. Moreover, the minimum of δφ, occurring when

sinβ =
√
1/k, gives an optimal sensitivity of

δφ ≈ 1√
ν

2k−1

k1/2(1− 1/k)(k−1)/2

1

Nk−1/2
+O(φ) . (49)

For k = 2, the two optimal values of β are β = π/4 and β = 3π/4, and the

sensitivity becomes

δγ ≈ 1

t
√
ν

2

N3/2
+O(φ) , (50)

in harmony with results obtained earlier in Eqs. (35) and (36).

Aside from showing that the optimal scaling for initial product states can be

achieved, the analysis above illustrates how the product-state scheme works in

a regime that has a very simple description. The Jk
z coupling Hamiltonian in-

duces a nonlinear rotation about the z-axis, which rotates the state of the probe

through an angle 〈Jy〉t/〈Jx〉 ≈ φk〈Jz〉k−1. This rotation induces a signal in Jy of

size ≈ φk〈Jx〉〈Jz〉k−1, which is k〈Jz〉k−1 times bigger than for k = 1, and can be

detected against the same coherent-state uncertainty
√
N/2 in Jy as for k = 1.

To take advantage of the nonlinear rotation, we cannot make the Jx lever arm of
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Fig. 1. Left: Scaling exponent ξ for Jx measurements. Right: Scaling exponent ξ for Jy measure-
ments. The dotted (red) line is for J = 103, the dashed (purple) line for J = 105, and the solid
(black) line for J = 107.

the rotation as large as possible, because the nonlinear rotation vanishes when the

initial coherent state lies in the equatorial plane. Nonetheless, we still win when we

make the optimal compromise between the nonlinear rotation and the lever arm.

The optimal compromise comes from maximizing 〈Jx〉〈Jz〉k−1, which turns out to

be exactly the same as finding the optimum in the QFI analysis of Sec. 3.1 because

〈X〉 = sinβ = ∆Z.

A more careful consideration of the terms neglected in this analysis suggests

that, as formulated in this section, the small-time approximation requires that

φ 	 1/Nk−1. Nonetheless, the analysis is consistent because φ can be resolved

more finely than this scale, i.e. δφNk−1 = O(1/
√
N). This conclusion is confirmed

by the more detailed analysis27 of the k = 2 case, which also shows that the simple

model of the evolution of the spin-coherent state eiJyβ |0〉⊗N = |ψβ〉⊗N , can be

extended to much larger times.

To gain further insight into the scaling behavior, we plot the scaling exponent

ξ in δφ = O(n−ξ) as a function of β for Jx and Jy measurements (Fig. 1), using

three very large values of J . For Jy measurements we calculate ξ at the optimal

operating point, φ = 0. The main differences between Jx and Jy measurements are

the following: (i) right at β = π/2, Jx measurements have a scaling exponent of 1,

whereas Jy measurements provide no information about γ; (ii) for Jy measurements,

the plot of scaling exponent has two humps, nearly symmetric about β = π/4 and

β = 3π/4, whereas for Jx measurements, the scaling exponent is better on the

outside of the humps. The overall trend is for both measurements to have a scaling

exponent of ξ = 3/2 in the limit of large J , except at β = 0, π/2, and π.

3.2. Quantum metrology without entanglement

The restriction to small values of φ in the above analysis is to ensure the attain-

ability of the QFI using separable measurements such as Jx or Jy. For longer times,

the phase dispersion in the spin-coherent state following the evolution under a non-

linear Hamiltonian leads to entangled states. One might however think that the
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Fig. 2. Q-function for the evolution of a spin-coherent state under the Hamiltonian. Top: J2
z .

Bottom: nJz . The entanglement and phase dispersion in the top figure is a limitation to attaining
the QFI using separable measurements for longer times.

entanglement generated under this evolution is the resource that leads to the en-

hanced precision of 1/Nk−1/2. The realization to be made is that we would ob-

tain exactly the same scaling if we evolved the initial spin-coherent state under

the Hamiltonian Nk−1Jz. This Hamiltonian will generate no phase dispersion or

entanglement, and we can attain the QFI using separable measurements. The com-

parison between the Q-function under the two different Hamiltonians for k = 2 is

shown in Fig. 2.

With a Nk−1Jz interaction, the optimal initial product state is e−iJyπ/2|0〉⊗N =

[(|0〉 + |1〉)/√2]⊗N . The state remains unentangled at all times, evolving to

[(e−iγtNk−1/2|0〉+eiγtNk−1/2|1〉)/√2]⊗N . A measurement of Jx at time t has expec-

tation value 〈Jx〉 = 1
2N cos(γtNk−1) and uncertainty ∆Jx = 1

2

√
N | sin(γtNk−1)|,

leading to a measurement precision δγ = ∆Jx/
√
ν |d〈Jx〉/dγ| = 1/tNk−1/2

√
ν after

ν trials. A measurement of any other equatorial component of J achieves the same

sensitivity. The enhanced scaling in a protocol that uses an Nk−1Jz coupling and

an initial product state is clearly due to the dynamics alone, not to entanglement

of the constituent qubits. These results indicate that in quantum metrology, entan-

glement is important only in providing an optimal initial state, which leads to an

improvement by a factor of 1/N1/2 over initial product states.

Physically, an Nk−1Jz coupling cannot arise fundamentally as a linear coupling

since the coupling strength would then depend on the number of constituents in

the probe. However, for k = 2, we will now show that such a term can actually be
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Fig. 3. Mach–Zehnder interferometer involving most general two-body interactions.28

arrived at naturally. The most general such Hamiltonian is

Ht/� = χ1N
2
1 + χ2N

2
2 + 2χ12N1N2 , (51)

in systems of bosons that can occupy two modes with creation operators a†1 and

a†2. In the Schwinger representation, with Jz = 1
2 (N1 − N2) and N = N1 + N2,

where N1 = a†1a1 and N2 = a†2a2 are the numbers of particles in the two modes.

The bosons we consider interact with one another, but the interactions conserve

particle number, so the system has a nonzero chemical potential. Our measurement

protocols, for both types of coupling, can be represented in terms of the interfer-

ometer with nonlinear phase shifters depicted in Fig. 3. In terms of the Schwinger

operators,

Ht/� = (χ+ χ12)N
2/2 + (χ1 − χ2)NJz + 2(χ− χ12)J

2
z , (52)

where χ = 1
2 (χ1 + χ2) is the average Kerr phase shift. The first term produces

an overall phase shift and can be ignored. The NJz coupling comes from having

different Kerr phase shifters in the two arms; to eliminate the J 2
z interaction requires

a cross-Kerr coupling χ12 = χ. Under these circumstances, we have H = �γNJz,

with γt = χ1 − χ2.

Having proven that it is possible to beat the SQL without investing in the

preparation of fragile and complicated entangled states, in the next section, we

present a proposal of implementing such a scheme. It involves two-mode BECs of
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a very well-studied species, and we will consider their physics in the next section.

We will also discuss the first experimental demonstration of beating the SQL and

the 1/N limit using light-matter interfaces.

4. Experimental Systems for Nonlinear Quantum Metrology

Any physical system possessing a nonlinear Hamiltonian can be envisaged to imple-

ment the theoretical scheme outlined above. They include Bose–Einstein conden-

sates (BECs), resonantly and off-resonantly coupled atomic ensembles with light,

trapped ions and light in optical fibers. All these systems have been extensively

studied in in their own right, and in the context of quantum information science.

Some have, in fact, been used as test beds of quantum metrology as well. In this

section, we first describe in some detail how the scheme proposed above can be

implemented in a system of two-mode BECs. We then describe a recent experiment

using light-matter interactions that has demonstrated the enhanced precision in the

laboratory.

4.1. Bose Einstein condensates

We consider a BEC of N � 1 atoms that can occupy two hyperfine states, hence-

forth labeled |1〉 and |2〉. We assume the BEC is at zero temperature and that all the

atoms are initially condensed in state |1〉 with wave function ψN (r), which is the N -

dependent solution (normalized to unity) of the time-independent Gross–Pitaevskii

equation43–45(
− �

2

2m
∇2 + V (r) + g11N |ψN (r)|2

)
ψN (r) = µNψN (r) , (53)

where V (r) is the trapping potential, µN is the chemical potential, and g11 is the

intraspecies scattering coefficient. This coefficient is determined by the s-wave scat-

tering length a11 and the atomic massm according to the formula g11 = 4π�2a11/m.

A detailed discussion on quantum interferometry using BECs has recently presented

by Lee et al.46

We describe the system by the so-called Josephson approximation, which as-

sumes that both modes have and retain the same spatial wave function ψN (r) from

Eq. (53). In this approximation, the BEC dynamics is governed by the two-mode

Hamiltonian

Ĥ = NE0 +
1

2
ηN

2∑
α,β=1

gαβâ
†
β â

†
αâαâβ . (54)

Here, â†α (âα) creates (annihilates) an atom in the hyperfine state |α〉, with

wave function ψN , gαβ = 4π�2aαβ/m, E0 is the mean-field single-particle energy,

given by

E0 =

∫
d3r

(
�
2

2m
|∇ψN |2 + V (r)|ψN |2

)
, (55)
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and the quantity

ηN =

∫
d3r|ψN (r)|4 (56)

is a measure of the inverse volume occupied by the condensate wave function ψN .

Notice that this effective volume renormalizes the scattering interactions, thereby

defining effective nonlinear coupling strengths gαβηN . The Josephson approxima-

tion applies if one can drive fast transitions between the two hyperfine levels, the two

levels are trapped by the same external potential, the atoms only undergo elastic

collisions, and the spatial dynamics are slow compared to the accumulation of phases

in the two hyperfine levels. In addition, notice that the zero-temperature mean-field

treatment of the Josephson Hamiltonian in Eq. (54) assumes that the quantum de-

pletion of the condensate is negligible. We make this assumption throughout on the

grounds that the depletion is expected to be very small.45

Using the Schwinger angular-momentum operators, the Josephson-approxi-

mation evolution in Eq. (54) can be written as43

Ĥ = γ1ηNNĴz + γ2ηN Ĵ
2
z , (57)

where we define two new coupling constants that characterize the interaction of the

two modes,

γ1 =
1

2
(g11 − g22) and γ2 =

1

2
(g11 + g22)− g12 . (58)

We omit c-number terms whose only effect is to introduce an overall global phase.

The dynamics governed by Eq. (57) is almost identical to that of an interfer-

ometer with nonlinear phase shifters as in Eq. (52). Due to the different scattering

interactions, the first term of Eq. (57) introduces a relative phase shift that is pro-

portional to the total number of atoms in the condensate, whereas the Ĵ 2
z term

leads to more complicated dynamics that create entanglement and phase diffusion.

Both terms can be used to implement nonlinear metrology protocols whose phase

detection sensitivity scales better than 1/N . For initial product states, the entangle-

ment created by Ĵ 2
z has no influence on the enhanced scaling and therefore offers

no advantage over the NĴz evolution. On the contrary, it is better to avoid the

associated phase dispersion, and we next show how this works.

Suppose the first optical pulse puts each atom in a superposition c1|1〉+ c2|2〉,
where c1 and c2 can be assumed to be real (i.e. the first optical pulse per-

forms a rotation about the y axis of the Bloch sphere). For short times, we can

make a linear approximation to Ĵ 2
z in the Josephson Hamiltonian; i.e. we can set

Ĵ 2
z = (〈Ĵz〉 + ∆Ĵz)

2 � 〈Ĵz〉2 + 2〈Ĵz〉∆Ĵz, with 〈Ĵz〉 = N(c21 − c22)/2. The lin-

ear approximation amounts to neglecting the phase dispersion and corresponding

entanglement produced by the Ĵ 2
z term. We need not make any such short-time

approximation for the NĴz term. Up to irrelevant phases, the resulting evolution is

a rotation of each atom’s state about the z-axis of the Bloch sphere with angular
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velocity

ΩN ≡ NηN
�

[γ1 + (c21 − c22)γ2]. (59)

Under these circumstances, the BEC acts like a linear Ramsey interferometer whose

rotation rate is enhanced by a factor of NηN , leading to a sensitivity that scales as

1/
√
NNηN � 1/N3/2ηN . If γ2 = 0, the optimal initial state has c1 = c2 = 1/

√
2,

but if γ1 = 0, the optimal choice is c1 = cos(π/8) and c2 = sin(π/8), as in Eq. (33).

Achieving a 1/N3/2 scaling requires that ηN have no dependence on N . As noted

above, however, η−1
N is a measure of the volume occupied by the ground state wave

function ψN . As atoms are added to a BEC, the wave function spreads because of

the repulsive scattering of the atoms, thereby reducing ηN as N increases. To pin

down how the measurement accuracy scales with N , we need to determine how ηN
behaves as a function of N .

4.2. Renormalization of the nonlinear interaction terms

In a BEC, the trapping potential and the interatomic scattering competing forces

that provides the equlibrium. The trap tries to bring the atoms together, thereby

reducing the size of the atomic cloud while the scattering tends to spread out

the cloud of atoms. Since all the atoms in the BEC share the same spatial wave

function, the scattering term effectively spreads out the condensate wave function

ψN . Strategies for compensating for the renormalization of the nonlinear interaction

terms arising due to the spreading out of the BEC wave function as a function

of N include using tighter traps and working with BECs confined to less than

three dimensions. Anticipating these results, we compute the effect of ηN on the

measurement accuracy assuming that the BEC is in d-dimensional space and that

the trapping potential has the generic form

V (r) =
1

2
krq (60)

with even q. We have assumed here that the trap is spherically symmetric for

simplicity and extensions to asymmetric traps is quite straightforward.

The large N limit for BECs is the Thomas–Fermi limit where we can ignore the

kinetic term in the Hamiltonian. Then,43–45

|ψN (r)|2 =
µ− V (r)

gN
, (61)

where µ is the chemical potential and g = g11 + g22 + 2g12 for the the two mode

BEC assuming that atoms in both internal states have the same form for the spatial

parts of their wave functions. Since |ψN (r)|2 must be positive, the radial extent of

a BEC in a spherically symmetric potential is bounded from above by R such that

µ =
1

2
kRq . (62)
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The normalization of the single particle wave function yields

1 =

∫
|ψN (r)|2dr = k

2gN

∫
dΩ

∫ R

0

(Rq − rq)rd−1dr

=
k

2qN
Rq+dSd−1

(
1

d
− 1

q + d

)
, (63)

where Sd−1 is the surface area of the d − 1 sphere with unit radius. For the cases

that we are interested in, namely, for one, two and three dimensions, Sd−1 takes on

values 1, 2π and 4π, respectively. We can find R as a function of N from Eq. (63)

and substitute it in Eqs. (62) and (61) to obtain

η =
1

g2N2

∫
(µ− V (r))2ddr

=

(
kq

g

)2− 1
d+q
(

Sd−1

2d(d+ q)

)1− 1
d+q 1

d+ 2q
N− d

d+q ≡ αd,qN
− d

d+q . (64)

The effective N dependence in the measurement uncertainties in γ1 and γ2 will

scale as

δγ1,2 ∼ 1

N
3
2− d

d+q

=
1

N
d+3q

2(d+q)

. (65)

The exponent of N in δγ1,2 is shown as a function of q for the one, two and

three dimensional cases are shown in Fig. 4 (left). For a BEC in three dimensions

contained within a harmonic trapping potential, δγ ∼ 1/N9/10 which is worse than

the 1/N scaling. So either we have to use a trapping potential that confines the

atoms more strongly than the harmonic potential or else work with BECs in less

than three dimensions. In two dimensions, the performance with a BEC trapped

in a harmonic potential will match the 1/N scaling and a one-dimensional BEC

will better this scaling. In the limit of infinitely hard traps q → ∞, the scaling

0 2 4 6 8 10
q

0.5

1.0

1.5

Ξ

0 20 40 60 80 100
q
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1.0

1.5
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q
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1.5
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0 20 40 60 80 100

0.5

1.0
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Fig. 4. (Color online) Left: The exponent of the scaling with N of the measurement uncertainty is
shown as a function of the exponent of r in V (r). One dimension (black), two dimensions (purple),

and three dimensions (green). Right: one loose dimension (black), two loose dimensions (purple),
and three loose dimensions (green).
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attains the maximum possible value, as the shape and size of the wave function is

independent of the number of atoms involved.

Since lower dimensional condensates offer better scaling due to the suppression

of the N -dependence of ηN by constraining the BEC within a hard-walled trap so

that it cannot expand as more atoms are added. BECs effectively confined to two

or one dimensions and held in power-law trapping potentials along these dimen-

sions are the sort found in real experiments. Thus, we look at the dependence of

ηN on N for a BEC that is loosely trapped in d dimensions, referred to as longi-

tudinal (L) dimensions, and tightly trapped in D = 3 − d dimensions, referred to

as transverse (T ) dimensions. We assume that in the longitudinal dimensions, the

atoms are trapped in a power-law potential as in Eq. (60) and that in the transverse

dimensions, the trapping potential is harmonic,

VT (ρ) =
1

2
mω2

Tρ
2 . (66)

The parameter q characterizes the hardness of the longitudinal trapping poten-

tial. We deal with a 3D trap by setting D = 0, meaning there are no transverse

dimensions.

When N is small, the mean-field scattering energy is negligible compared to

the atomic kinetic energy of the atoms and the trapping potential energy. In this

situation, the scattering term in the GP equation can be neglected, and the ground

state wave function is the solution of the Schrödinger equation for the trapping

potential VL(r) + VT (ρ). As more atoms are added to the BEC, the repulsive scat-

tering term in Eq. (53) comes into play and causes the wave function to spread.

The two critical atom numbers, NL and NT , characterize the onset of spreading in

the longitudinal and transverse dimensions. The lower critical atom number, NL,

is defined as the atom number at which the scattering term in the GP equation is

as large as the longitudinal kinetic-energy term and thus characterizes when the

wave function begins to spread in the longitudinal dimensions. The upper critical

atom number, NT , is defined as the atom number at which the scattering term

is as large as the transverse kinetic energy and thus characterizes when the wave

function begins also to spread in the transverse dimensions. The notion of an upper

critical atom number only makes sense for 1D and 2D traps and not for d = 3.

The scaling in estimating the uncertainties of γ1,2 is given by

δγ1,2 ∼ 1√
NNηN

∼ 1

N ξ
, (67)

and is provided in Table 1 in the different regimes. The critical numbers NL,T

are governed by three length scales — the half-widths of the traps in the two di-

rections, and the scattering length, and values for a typical implementation using
87Rb condensates are known.31,32 We next discuss some of the aspects of this im-

plementation.
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Table 1. Precision scaling in different regimes of atom

numbers, plotted in Fig. 4.

N � NL NL � N � NT NT � N

ξ
3

2

d+ 3q

2(d + q)

3

2
− 3− d+ 2d/q

5− d+ 2d/q

1000 104 105 106
N

0.0010

0.0100

0.0050

0.0020
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0.0300

0.0015

0.0150

0.0070

Η
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N
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10�4

0.001

0.01

0.1

Ξ

Fig. 5. (Color online) Left: The scaling of η with different condensate sizes and geometries. Right:
The scaling of ξ with different condensate sizes and geometries, with q = 2 (blue), q = 4 (green),
and q = 10 (red).

4.3. Nonlinear metrology using 87Rb condensates

A good candidate for implementing the generalized metrology protocol is a BEC

made of 87Rb atoms constrained to the hyperfine levels |F = 1,MF = −1〉 ≡ |1〉
and |F = 2,MF = 1〉 ≡ |2〉. These states possess scattering properties that offer a

natural way to suppress the phase diffusion introduced by the Ĵ 2
z evolution; namely,

the s-wave scattering lengths for the processes |1〉|1〉 → |1〉|1〉, |1〉|2〉 → |1〉|2〉,
and |2〉|2〉 → |2〉|2〉, respectively, are a11 = 100.40a0, a12 = 97.66a0, and a22 =

95.00a0,
47 with a0 being the Bohr radius, which implies that γ2 � 0. Consequently,

the J 2
z term becomes negligible, and the effective dynamics is simply described by

the NJz coupling.

Numerical simulations for different trap geometries are presented in Fig. 5. For

these simulations, the transverse frequency is set to 350 Hz and the longitudinal

frequency to 3.5 Hz for the harmonic case (q = 2), with the result that the rescaled

critical number in anisotropic traps N̄T � 14,000 atoms. To compare the simulations

for the different power-law potentials, we choose the stiffness parameter k so that

N̄T remains the same for the two other values of q. All the traps thus have the same

one-dimensional regime of atom numbers. For such choice of parameters, we find

ρ0 � 0.6µm and the aspect ratio of the traps (ρ0:z0) to be approximately equal to

1:10, 1:24, and 1:57, respectively, for q = 2, 4, 10. In addition, when N = N̄T , the

condensate aspect ratios (ρ0:zN ) are 1 : 158, 1 : 146, and 1 : 138 (for q = 2, 4, 10),

parameters typical in elongated BECs.48
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The above studies show that it is entirely feasible to beat the 1/N limit using

two-mode BECs. In a BEC, the most significant loss channel is three-body losses.

For two-mode BECs, there are other mechanisms, such as inelastic two-atom spin-

exchange collisions. Simple analysis shows that there is a ratio of about 20 between

the coherent and the loss mechanisms. It is also helpful that the optimal states

and measurements are products, since loss of atoms does not lead to any loss of

coherence. Of course, the number of atoms in a condensates is known to a finite

precision. In particular, the number of atoms is not fixed from trial to trial. The

variance in the measurement is typically of order
√
N, which is also the typical

precision of atom numbers in BECs.31 The time over which the experiment can be

carried out is also limited by the implicit assumption that the two hyperfine species

share the same spatial wave function is true only for short times, which is however

enough to run our metrology scheme. For longer times, the Hamiltonian in Eq. (57)

is inadequate as it completely ignores the spatial evolution of the wave function.

More sophisticated analysis motivated by this limitation is now available.41

4.4. Nonlinear metrology using light-matter interfaces

We briefly describe the only implementation of a nonlinear quantum metrology

experiment that surpasses the Heisenberg limit. Consider N � 1 ultracold, trapped

alkali atoms, with light pulses of macroscopic numbers of photons passing though

them. The light is far from resonance to limit absorption but close enough that

the optical nonlinearities are resonantly enhanced. Fast nonlinearities such as ac-

Stark shifts and stimulated Raman transitions create atomic-spin-state-dependent

interactions among the photons. The polarization state of the photons evolves in

response to this interaction and is measured, allowing the spin polarization to be

estimated. If the light field is given by E = E + E∗, where E is positive frequency

part, the electric dipole interaction leads to an effective Hamiltonian

Heff = E∗· ↔
α · E , (68)

where
↔
α is the polarizability tensor operator. Using the Stokes vector S to denote

the optical degrees of freedom, the Hamiltonian can be decomposed into irreducible

tensor components as34

H
(2)
eff = α(1)SzJz + α(2)(SxJx + SyJy) , (69)

H
(4)
eff = β

(0)
J S2

zJ0 + β
(0)
N S2

zNA + β(1)S0SzJz + β(2)S0(SxJx + SyJy) , (70)

where the latter is obtained by using perturbation theory for the F = 1 manifold,

NA is the number of atoms, and related to the parameter to be estimated as 〈Jz〉 =
NA. The terms proportional to α(1) and β(1) describe the linear and nonlinear

contributions to paramagnetic Faraday effect. For detunings ∆ relative to the F =

1 → F ′ = 0 in 87Rb, both these parameters can be modulated to zero and nonzero
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values. The precision in the estimate of Fz is given by

δFz =
1

A(∆)N1/2 +B(∆)N3/2
, (71)

where N is the number of photons in the probe, a classical, gaussian light pulse,

and A(∆) ∝ α(1), B(∆) ∝ β(1).

The experiment35 demonstrates a clear transition between the linear and non-

linear scaling of the precision. For an ideal nonlinear measurement, the improved

scaling would guarantee better absolute sensitivity for sufficiently large values of

N . Indeed, when the measurement bandwidth is taken into account, the nonlin-

ear probe overtakes the linear one at N = 3.2 × 106. Consequently, the nonlinear

technique performs better in fast measurements. In contrast, when measurement

time is not a limited resource, the comparison can be made on a “sensitivity-per-

measurement” basis and the ideal crossover point, of 3.2×103 spins atN = 8.7×107,

is never actually reached, owing to the higher-order nonlinearities. Evidently, super-

Heisenberg scaling allows but does not guarantee enhanced sensitivity: for the non-

linear technique to overtake the linear, it is also necessary that the scaling extend

to large enough values of N . This experiment also shows that resource constraints

dramatically influence the comparison between the linear and nonlinear techniques.

5. Conclusion

The aim of this review was to investigate the qualitative and the quantitative roles

of entanglement in quantum enhanced metrology. Or in other words, is entangle-

ment necessary to provide quantum enhancements in metrology, and if so how

much enhancement can it provide? We have shown it is possible to surpass the

erstwhile Heisenberg limit of 1/N for the precision of estimating parameters allied

to a nonlinear Hamiltonian without preparing entangled states, and that when en-

tanglement is present, it can provide at most a square root improvement in the

scaling of the measurement precision. The connection to Grover’s search algorithm

is suggestive, which attains improvements of O(
√
N) in search problems without

the use of entanglement but only superpositions.17

The resources that go into the quantum limited measurement are quantified in

our discussion in terms of the number of particles or the time invested, it could

also be other resources such as energy or space-time volume. Time or energy are

natural resources, while space could correspond to number of modes involved. Re-

sources accounting is additionally important in lossy quantum metrology where

techniques such as post-selection provide a skewed reckoning of the resources in-

vested. Nevertheless, quantum enhancements are possible in lossy implementations

of quantum metrology.49–55 Recently, efforts have also been made to use a quantum

query complexity type argument to count the number of basic gates that make up

the interaction Hamiltonian.56,57 However, they suffer from the intrinsic drawback

that naturally occurring parameter estimation strategies do not necessarily operate

in that manner. It is a property of the particular quantum state the system is in
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that decides the precision of the estimate. For instance, the ground state solutions

of BECs provide precision scalings ∼ 1/N3/2, while solitonic solutions58 of the same

system provides scaling ∼ 1/N3/4 in estimating displacements.

All quantum enhancements in metrology can be traced back to two basic effects.

One is the accelerated accumulation of relative phase in a superposition state of

the eigenvectors corresponding to the maximum and minimum eigenvalues of the

generator Hamiltonian, for instance in Eq. (4). The other is the suppression of noise

and improvement of the signal-to-noise ratio by effects such as squeezing. The latter

is definitely nonclassical, and can be thought of as a precursor of quantum entangle-

ment.59 The former can, as we have shown, exist independently of entanglement. As

is well known, entanglement is not sufficient for quantum enhancements in metrol-

ogy.60 It has also been suggested that other forms of quantum correlations, such as

quantum discord, might provide quantum advantages.61 Eventually, the scaling of

resources invested with palpable quantum advantages is the ultimate benchmark

for quantum enhanced metrology, and the identification of necessary resources a

central task of the field.
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