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Report on new algorithms and proto-type platform for pattern 

detection in probabilistic data streams and new data mining 

algorithm developed 

 

Executive Summary 

Future electricity distribution network operators (DNO) with mass deployment of network 

equipment sensors will generate vast amounts of data, which requires scalable data mining 

techniques in order to turn the data into actionable information. To meet these challenges DNOs can 

benefit from the use of techniques recently developed to cost-effectively solve large scale data 

mining problems using high performance computing platforms.  This in turn, will bring operations 

and maintenance more online moving the industry from reactive to proactive operations, which can 

lead to actions that will improve electrical grid reliability. 

In this report, we introduce new practical data mining applications and techniques designed to 

tackle real problems that arise in DNOs operations. Moreover, the new developed applications 

performance was tested and verified on real data coming from different DNOs consortium partners. 

By doing so, our goal is to demonstrate that data collected by electrical utilities can be used to 

create statistical models for proactive maintenance, to exemplify how this can be accomplished 

through state-of-the–art data mining techniques, and show how DNOs can be most effective in 

building predictions and decision support application, which in turn, can lead to actions that will 

improve electrical grid reliability. 

 

The report is organized as follows: We conduct a literature review on data mining applications and 

techniques for power grids. Thereafter, we describe new data mining and machine learning 

applications designed to tackle real problems that arise in DNOs industrial operations, which were 

tested and verified on real data coming from different DNOs project partners. In addition, we study 

new algorithms to pattern detection in probabilistic data streams. Last, we present our 

recommendation for data mining platform, which is a key ingredient in the development process of 

large scale data mining applications, and disccuss our conclusions. 
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1 Introduction 

According to surveys [40] conducted in Europe and North America power grid reliability will be a key 

issue as electrical grids transform to smart grids throughout the next several decades, and network 

maintenance will become even more important than it is currently. As grid parts are replaced 

gradually and as smart assets are added, the old assets, including cables, switches, sensors, etc., will 

still need to be maintained. Maintaining a massive grid that is a mix of new and old assets is more 

difficult than managing a new grid. Thus, the key to making smart grid components cost effective is 

to use data mining and statistical machine learning for preventive maintenance, and in turn 

preventing cascade failures. More concretely, the electrical grid data, which includes monitoring 

information of the distribution network, can be transformed into scalable machine learning and data 

mining models that aim to predict grid reliability and assisting with maintenance actions. To meet 

these challenges DNOs can benefit from the use of techniques recently developed to cost-effectively 

solve large scale computational problems in areas such as Biology, Finance and Web Services. In such 

systems, increased access to ubiquitous sensing and the web has resulted in an explosion in the size 

of data mining and machine learning tasks, which in turn, driven the growing demand for scalable 

implementations of data mining algorithms on very large datasets (ranging from 100s of GBs to TBs 

of data).  In doing so, DNOs will bring operations and maintenance more online moving the industry 

from reactive to proactive operations, which in turn, can lead to actions that will improve electrical 

grid reliability. 

 

Generally speaking, data mining applications for power grids include various applications such as the 

prediction of power security breaches, forecasting, power system operation, control and 

maintenance, and classification of power system disturbances. In this report, we introduce new 

practical data mining applications designed to tackle real problems that arise in DNOs operations, 

which were tested and verified on real data coming from different DNOs project partners. In 

addition, we propose new algorithms to pattern detection in probabilistic data streams. Our goal is 

to demonstrate that data collected by electrical utilities can be used to create statistical models for 

proactive maintenance, to exemplify how this can be accomplished through state-of-the–art data 

mining techniques, and show how DNOs can be most effective in developing predictions and 

decision support application.  

 

The report is organized as follows: a literature review on relevant topics in data mining is given in 

Section 2. More concretely, in Section 2.1 we survey feature extraction and selection methods, in 

Section 2.2 and 2.3 we review unsupervised clustering techniques and in Section 2.4 we review 

decision tree classifiers. Section 3 describes new data mining applications designed to tackle real 

problems that arise in DNOs operations, which were tested and verified on real data coming from 

different DNOs project partners.  More specifically, in Section 3.1 we introduce a general framework 

for partial discharge (PD) diagnosis in underground cables. We demonstrate our framework 

performance on real industrial data coming from U.K. power networks PD activity database. In 

Section 3.2 we introduce a decision tree algorithm  for condition monitoring application of overhead 

lines based on weather conditions, which we demonstrate on real data coming from Union Fenosa 

and E.G. In Section 3.3 we study clustering uncertain data with arbitrary correlations, which can be 

used to increase the accuracy of the clustering result, in case sensors in the energy 

distribution network fail. Finally, in Section 4 we present our recommendation of data mining 
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platform, which is a key ingredient in the development process of large scale data mining 

applications and our conclusions is given in Section 5.  
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2 Literature Review of Data Mining Techniques in Power System 

2.1 Feature Extraction 

In recent years, there has been growing interest in large-scale machine learning applications for 

which complex datasets with thousands of features are available. One of the key challenges, when 

performing such large-scale analysis of complex data, stems from the number of variables involved. 

The analysis of large number of variables generally requires a large amount of memory and 

computation resources. In order to tackle this problem, feature extraction and selection methods 

were recently introduced, which construct and select combinations of the features while still 

describing the data with sufficient accuracy. 

Generally speaking, feature extraction and selection involves simplifying the amount of resources 

required to describe a large set of data accurately. The goal of feature extraction is to extract 

information from complex input datasets that captures the relevant information in order to perform 

the desired task. According to recent literature surveys (i.e. [20]), there are many potential benefits 

of feature extraction and selection: facilitating data visualization and data understanding, reducing 

the measurement and storage requirements, reducing training and utilization times, defying the 

curse of dimensionality to improve prediction performance. Some methods put more emphasis on 

one aspect than another; however, in essence, feature extraction and selection objective is three-

fold: 

1. Improving the prediction performance of the analysis process, as the machine learning 

algorithms can focus on the relevant information. 

2. Providing faster and more cost-effective learning machine by reducing the size of data to be 

processed, in order to eliminate features or attributes, which are irrelevant or redundant for the 

task at hand. 

3. Providing a better understanding of the underlying process that generated the data. Expressing 

the data mining model with fewer features allows better visualization and understanding of 

data. 

 

For a complete and elaborate review on feature extraction and feature selection techniques the 

reader is referred to the HiPerDNO deliverable 1.3.1. 

 

2.2 Unsupervised Clustering 

Unsupervised cluster analysis is used to discover distribution of patterns in data sets. In general 

terms, the goal of the clustering is to partition a data set into groups (clusters) so that the data 

elements within a cluster are more similar to each other than data elements in different clusters. 

Nonetheless, the notion of a cluster varies between algorithms and is one of the many decisions to 

take when choosing the appropriate algorithm for a particular problem. An elaborate discussion of 

clustering methods can be found in [11, 12, 13]. Here, we briefly review some typical cluster models. 

• Centroid-based clustering   In centroid-based clustering clusters are represented by a central 

vector also known as centroid which is not necessarily a member of the data set. Given a priori k the 
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fixed number of clusters, the well-known k-means clustering gives a formal definition as an 

optimization problem: find the k centroids and assign the observations to the nearest centroid, such 

that the squared distances from the cluster observations are minimized.  

• Density-based clustering   Density based algorithms typically regard clusters as dense regions of 

observations in the data space that are separated by regions of low density. The most popular 

density based clustering method is DBSCAN [14]. 

• Connectivity-based clustering  Connectivity-based or hierarchical clustering [15] creates a 

hierarchy of clusters which is usually represented in a tree structure called a dendrogram. The tree is 

not a single set of clusters, but rather a multilevel hierarchy, such that clusters at one level are 

merged as clusters at the next level. In general, the merges/splits are determined in a greedy 

manner using linkage criteria, which evaluate the distance between sets of observations as a 

function of the pair wise distances between observations. 

• Distribution-based clustering   The clustering model most closely related to statistics is based on 

distribution models (i.e. Gaussian distribution). Clusters can be defined as observations belonging 

most probably to the same distribution. The most eminent algorithm is known as expectation-

maximization clustering algorithm [16].  

As outlined above, a clustering algorithm is based on a criterion for assessing the quality of a given 

partitioning. That is, a clustering method attempts to define the best partitioning of a data set based 

on certain assumptions, not necessarily the one that fits the data set. That is why, when performing 

cluster analysis of high dimensional data, it is important to evaluate the quality of the clustering 

algorithm results using cluster validation techniques. Cluster validation techniques give an indication 

of the quality of the resulting partitioning, and can be considered as a tool at the disposal of the 

domain experts in order to evaluate the clustering results. For unsupervised clustering models, 

clustering results are evaluated based on the data that was clustered itself. This is called internal 

evaluation. The authors in [10] distinguish between two key criteria measures for internal validation:   

1.  Compactness (a.k.a. intra-cluster distance): The members of each cluster should be as close to 

each other as possible.  

2.  Separation (a.k.a. inter-cluster distance): The clusters themselves should be widely separated.  

Compactness assesses cluster homogeneity by looking at the intra-cluster variance, while separation 

quantifies the degree of separation between clusters by measuring the distance between cluster 

centers. Since compactness and separation demonstrate opposing trends, i.e., compactness 

increases with the number of clusters but separation decreases, popular methods combine the two 

measures into a single score, which we address their usage in Section 3.1 of this report. 

2.3 Unsupervised Clustering of Uncertain Data 

Both supervised and unsupervised data clustering are well-established and well-studied subfields 

within data mining. After its introduction in the 1960’s, many new techniques have been designed 

and existing techniques have been improved. About 10 years ago, when research in database started 

explicitly accounting for uncertainty in data, many clustering algorithms (from each of the 

categories listed in Section 2.2) were adopted to work on uncertain data and new algorithms 
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were developed specifically for processing this type of data. Examples include (but are not limited 

to): FOPTICS [33], U-DBSCAN [34], and U-AHC [35]. 

The algorithms are designed to work for a specific representation of uncertainty. In the literature, 

uncertainty is represented in many different ways. The most popular representation systems are 

[37]: 

 Existential uncertainty over tuples: the existence of each tuple in the input date is considered to 

be uncertain. The uncertainty can be specified using a ‘simple’ probability (implying tuple 

independence) or using more sophisticated notation with support for correlations (e.g. pc-

tables). 

 Probabilistic or-set tables: each tuple contains a discrete probability distribution over different 

possible values. 

 Continuous PDF: values are represented using some continuous probability density function (e.g. 

a Gaussian distribution). 

Although research in probabilistic databases often considers pc-tables (correlated existential 

uncertainty), the literature does not consider correlations in the existence of tuples. We introduce a 

centroid-based clustering technique for correlated uncertain data in Section 3.3. 

2.4 Decision Trees  

Decision trees are useful data mining tools designed to face classification problems. They posess a 

great versatility and they are adequate to be applied to very diverse different real applications. Their 

key advantage radicates on the easy interpretability of the results, they can extract human readable 

information about the underlying process.  

In the power system domain they have been applied since the late 80s.  Wehenkel [27] showed their 

applicability in electric power system for transient stability assessment of power systems. Swarup et 

al. [29] show in 1994 their good performance for security assessment. The 

general decision tree methodology was applied for predicting the robustness of a power system in 

the occurrence of severe disturbances, and for discovering appropriate control actions. Decision  

trees   were  found  suitable  for  classification  and  identification  of  the  operating  states: They 

were  effective in combining real-time possibilities, accuracy and  interpretability  of  the  results and   

robust  since the  trees  showed  to  adjust  well  to  learning  data. 

Teeuwsen et al. [28] in 2004 reported the use of decision tree for oscillatory stability assessment. 

The decision trees were implemented both as classifier for stability or as predictor for the system 

damping. Decision trees showed high accuracy , were robust to noise and could be used with only a 

small number of input features, they were constructed in a short period of time and used on-line 

since the tree evaluation did not require any time-consuming computation. 

Zhiyong et Weilin [30] in 2009 applied decision trees for on-line status appraisal of a realistic Chinese 

power grid model. Using a knowledge database covering all possible pre-fault operating conditions, 

decision rules in the form of hierarchical trees were developed for on-line assessment. 

Furthermore, Phasor Measurement Units (PMU) were taken into consideration to improve 



FP7 – 248135 10 
  

decision tree’s performance. The results demonstrate that the proposed that decision trees were 

able to identify crucial security indicators and gave reliable security predictions. Their main 

advantages were high processing speed and the easy interpretability of the results. This method 

offered a twofold knowledge to system operator: first to appraise system’s capability to withstand 

major disturbances, and second to suggest remedial actions to enhance this capability.  

Lobato et al. [26] showed in 2006 the great versatility of decision trees showing their adequacy to be 

applied to very diverse different probabilistic real applications such as: prediction of stochastic 

residual demand curves in the Spanish electricity market, to estimate the daily load pattern of units 

and to predict the values of reactors and capacitors of the Spanish power system in a short-term 

time scope. Ma et al. [31] in 2010 report on the use of decision trees for detecting and identifying 

various transient dynamic events using the characteristic ellipsoid method. The goal was to 

determine fault types, fault locations and clearance times in the system. The results demonstrated 

that the proposed approach was capable to detect the fault type, location, and clearance time in up 

to 99%. Sun et al. [32] in 2011 presented a method for detecting power system islanding 

contingencies using both the system’s topological structure and real-time system dynamic state 

variables. An islanding severity index concept was given for ranking the severity of the islanding 

cases. A decision tree algorithm was used to analyze the distinction between islanding contingencies 

and other operating conditions. For a full scale tree an average predication success of 98% was 

achieved. Simulation results demonstrated that decision tree algorithm was effective in the islanding 

judgment for large scare power system models. Furthermore, the important variables and primary 

splitters could help in deciding the phase measurement unit location.  
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3 Data Mining Applications 

3.1 PD Analysis in Underground Cables 

3.1.1 Introduction 

Partial discharge (PD) is a localized failure of a small portion of a solid or fluid electrical insulation 

system under high voltage stress, which does not bridge the space between two conductors. PD is 

considered to be the main cause of long term degradation of electrical insulation. Off-line PD test is 

common practice for checking the integrity of the insulation of the assets. During the last decade, 

on-line PD monitoring techniques have received much attention both in academic and industry. 

According to [41] the reasons are twofold. As mentioned before, most distribution network 

operators (DNOs) are facing the problem of aging assets. While many assets are now approaching 

the end of their original life expectancy, periodic checking is no longer reliable enough for safe 

operation of the assets. Furthermore, on-line condition monitoring brings more efficient utilization 

of assets by deferring unnecessary network reinforcement. Through on-line PD monitoring systems, 

PD can be detected and recorded to form a comprehensive PD database which can be used for 

further analysis. However, analysis and interpretation of PD data remains an open research topic. 

3.1.2 PD Analysis Framework 

Recently, there has been an increasing effort to apply unsupervised clustering algorithms for the 

separation process of PD signals due to multiple sources and noise occurring in industrial 

environment, to name but few [4,5,8,9,10]. The separation process has been approached under the 

assumption that the same source generates signals having similar pulse shapes while different 

sources are characterized by different waveforms. The clustering process main concern is to 

automatically separate the contribution of the different sources of recorded practical PD activity.  

This work aims to provide a robust data mining framework for partial discharge (PD) pattern 

recognition, specifically to classify the PD signals based on their shapes.  As shown in Fig. 1, we 

propose a clustering framework which integrates cluster evaluation techniques at multiple stages 

along the work-flow of the separation process. 

 

Figure 1: Framework of unsupervised learning of PD data 
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The framework contains feature extraction (FE), feature selection (FS) descried in Section 3.1.2 and 

unsupervised clustering analysis and clustering result validation described in Section 3.1.3. In the 

process of FE, Principal Component Analysis (PCA) is shown to be the suitable dimension reduction 

technique by extracting the majority of the variation in the original data set.  We show that singular 

value decomposition (SVD) can provide additional insight to understand the results of PCA which are 

often difficult to interpret. By comparing the patterns of the PD pulses and the Normalized 

Autocorrelation Functions (NACFs) of the pulses after applying SPCA, the PD pulses are chosen to be 

the features for cluster analysis. In the process of cluster analysis, the need for cluster validation in 

unsupervised learning is discussed.  

For our experiments we use UK Power Networks (UKPN) Advanced Substation Monitoring (ASM). 

ASM is an on-line PD monitoring system developed by IPEC Ltd. ASM acquires PD signals from the 

distributed PD sensors via the multiplexers. The analogue signals are processed and digitized by 

IPEC’s purpose built signal conditioning and acquisition electronics. An integrated PC then analyses 

the digitized signals applying sophisticated noise reduction. In order to reliably detect the onset of 

PD in noisy industrial environments and accurately measure its intensity, very sophisticated signal 

processing is required. The PD segment refers to a 2000-point section of the unprocessed sampled 

data including the detected PD signal. These recorded PD signals have been aligned by their peaks 

where the 2000 points represents a 20μs sampling period with 4μs of signal before the PD peak and 

16μs after the PD peak. These PD segment data are the raw features used for analysis throughout 

this Section. 

3.1.3 Feature Extraction and Selection 

Data dimensionality reduction is an important step in pattern recognition which aims to map high-

dimensional patterns into low-dimensional ones. There are three main reasons that dimension 

reduction is important. First, improving the prediction performance of the analysis process, as 

machine learning algorithms can focus on the relevant information. Second, provide a faster and 

more cost-effective learning machine by reducing the size of data to be processed, in order to 

eliminate features or attributes, which are irrelevant or redundant for the task at hand. Finally, 

provide a better understanding of the underlying process that generated the data. Expressing the 

data mining model with fewer features allows better visualization and interpretation of data. The 

dimension reduction techniques are generally classified into two groups: feature extraction (FE) and 

feature selection (FS). FE techniques extract a set of new features from the original attributes 

through some functional mapping. FS is a process that selects a subset of original attributes. 

3.1.2.1 Feature Extraction Using PCA 

The goal of PCA is to find an orthogonal linear transformation to project the data into a set of 

uncorrelated variables, i.e., the principle components (PCs). The PCs are arranged in order so that 

the first few contain the majority of the variation in the original data set. Let x=[x1,x2,…,xm]T be a 

column vector of random variables. The covariance matrix of x is denoted by Σ. Mathematically the 

problem of finding the first PC coefficient a1 for x can be formulated as  

)1(},max{arg 111||||1 1
aaa T

a    



FP7 – 248135 13 
  

where a1=[a11, a12,…,a1m]T is a vector with the same number of dimensions as x. The function a1
Tx is 

defined as PC. Having found a1, the second PC coefficient a2 can be defined as the linear 

transformation having maximum variance where a2
Tx is subjected to cov(a1

Tx, a2
Tx)=0, i.e., a2

Tx is 

uncorrelated to a1
Tx. Assume the first k-1 PCs have been found. The kth PC coefficient ak can be 

defined as 

0),...,,cov(

)2(..

maxarg

121

1||||








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ts
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Where k=2,…,m. It has been shown that (1) and (2) can be solved using the technique of Lagrange 

multipliers. The solutions are given in the following theorem. The proof can be found in [6], and 

therefore is omitted. 

Theorem 3.1 (Principle Components)  Let Σ be the covariance matrix of x.  Assume the eigenvalues 

of Σ are distinct. For all k=2,…,m, the following statements hold. The vector of coefficients ak
T for the 

kth PC is an eigenvector of Σ corresponding to the kth largest eigenvalue λk.  

 The variance of the kth PC is λk.  

 From Theorem 3.1 we can see that solving the maximization problems in (1) and (2) involves 

eigen-decomposition of the covariance matrix. In the next section, we will discuss using the 

technique of SVD to perform PCA. 

3.1.2.2 SPCA 

Consider a row vector x=[x1,x2,…,xm]T consisting of m sampling points taken from a snap shot of PD 

signal. Suppose there are n such snapshots. We can form a m x n sample matrix X=[xT
1,x

T
2,…,xT

n] 

where the ith sample is xi=[xi1,xi2,…,xim]T i=1,2,…,n. Here m represents the number of dimension and n 

is the number of observations. As mentioned in section 3.1.1, these PD signal snap shots have been 

aligned by their peaks. PCA is well known to be scale dependent. Before proceeding to the 

procedure of PCA, data need to be normalized. In this work we normalize the data by subtracting off 

mean for each dimension. Discussions of other normalization methods can be found in [14]. With a 

slight abuse of notation, we use X to denote the normalized matrix where Xij=xij- μj and μj is the mean 

on jth dimension. The PCs defined in section 3.2 can be rewritten in matrix form, 

)3(.XAP T  

The matrix Amxm=[a1,a2,….,am] is the PC coefficient matrix. Thus, the entries of P can be obtained as 

Pij=ai
Txj, i=1,2,…,m, j=1,2,…,n. Thus ai

Tx is defined as the ith PC and ai
Txj is the PC score for the jth 

observation on the ith PC. As given in Theorem 3.1, the vector ak
T is the eigenvector of the covariance 

matrix ΣX for the normalized samples [xT
1,x

T
2,…,xT

n] corresponding to the kth largest eigenvalue. It can 

be shown that the covariance matrix ΣX=(1/n)XXT when the samples have zero means. Based on 

matrix theory [8], a matrix Ynxm can be decomposed using SVD into the form 

)4(TUSVY   
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where U and V are n x n and m x m orthonormal matrices and S is an n x m diagonal matrix. On the 
leading diagonal of S are the non-negative singular values (SVs) σj, j=1,2,…,min(n,m), arranged in 
descending order. The SVs of Y are the square roots of the eigenvalue of YTY. The columns of U and V 
are orthonormal eigenvectors of YYT and YTY respectively. Compare (3) and (4), we can see PCA and 

SVD are closely related. Define matrix Y as T

n
XY 1 . The equalities 

)5()()( 111 T

n

T

n

TT

n

Y XXXXYY   

show YTY equals to the covariance matrix ΣX. Thus the columns of V are orthonormal eigenvectors of 

YTY if we apply SVD to the matrix Y. In other words, the columns of V are the PC coefficients of X 

since YTY = ΣX. 

In order to perform dimension reduction, a decision must be made on the number of PCs to be 

retained to summaries the data. The rules of choosing lk, the number of PCs, are mostly ad hoc rules-

of-thumbs in literature. In this paper, we discuss the choice of lk based on SVs. The reasons are 

twofold. First, SVs and variances are related. In Theorem 3.1 the variance of the kth PC is shown to be 

λk. Hence, the variances are simply σk
2 since σk

2= λk. Secondly, studying the effects of dimension 

reduction based on SVs can bring additional insights into PCA as an FE technique. 

In the field of biomedical signal processing, the SVD technique has been applied successfully in noise 

filtering as discussed in [7]. The subspace containing the signal information is of a lower rank than 

the original matrix. Small eigenvalues means less energy for the corresponding eigenvectors. The 

subspace containing the first k largest eigenvalue is considered to be the signal space and the 

remaining subspace generally contains noise. Hence, SVD can be used to filter noise in signals. The 

reduced SVD is of the form 

)6(
~ T

kkk VSUY   

Uk and Vk are n x k and m x k matrices computed based on the k largest singular values. Sk is a k x k 

diagonal matrix with k singular values on the diagonal. Y
~

 is the data matrix after SVD filtering. 

With regard to choosing the number of truncation rank k, we will apply a simple test on the second-

order rate of change of σj, j=1,2,…,min(n,m),. Consider the vector σ=[σ1, σ2, …, σmin(m,n)] consisting of 

all singular values of matrix Y, where min(n,m)>2. The vector of the second-order rate of change is 

Δσ=[Δσ1, Δσ2, …, Δσmin(m,n)-2]  where Δσi=|( σi- σi+1)-( σi+1- σI+2)|. The selection rule is: If Δσi is the 

unique maximum of Δσ, the truncation rank k is chosen to be k = i + 2. For the case of multiple 

maximum, i is chosen to be the highest subscript of the multiple maximum points. All singular values 

after this point will be discarded. 

The results of applying SVD for PD signal filtering are shown in Fig. 2-. In this example, we have 

chosen 150 PD pulses for analysis. These pulse snapshots are taken from different months over a 

one year period. Fig. 2 shows a subset of the chosen PD pulses which are contaminated by noise. Fig. 

3 shows the eigenspectrum of the SVD decomposition. Based on the method mentioned above, the 

`knee' of the curve is at the 5th SV. Fig. 4 shows the filtered signals reconstructed using the first 5 SVs. 

The effects of different SV components to the reconstructed pulses are shown in Fig. 5-7. The 9 plots 

in Fig. 5 are superimposed plots of the reconstructed pulses based on the 1st, 2nd, …, 9th SV. 

The first plot shows that the pulses reconstructed from the largest SV give the largest 



FP7 – 248135 15 
  

magnitudes. The first 5 plots show different patterns while the patterns of the 6th-9th plots are quite 

consistent. This shows it is appropriate to choose k=5 as the truncation rank. In fact, Fig. 7 shows 

that 5th is the lowest number of SVs where the cumulative variance is more than 80%. In general, 

having a 80% cumulative variance is considered to be good enough to summaries the data. Fig. 6 

shows the reconstructed pulses based on the last 4 SVs. It clearly shows the characteristics of noise. 

For example, the patterns of these plots are very similar and the magnitudes of these components 

are very small. 

 

Figure  2: PD signals contaminated by noises. 

 

Figure  3: Eigenspectrum of SVD decomposition. 

     

 

Figure  4: PD signals after SVD filtering. 
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Figure 5: Reconstructed PD pulses based on the first 9 SVs. 

 

Figure  6: Reconstructed PD pulses based on the last  SVs. 

 

Figure  7: Cumulative variance against the number of SVs. 

In this example, we have chosen one-year worth of data for analysis. We first apply SPCA to perform 

FE on the PD pulses and NACFs. The scatter plots of the first and second principle components for 

both cases are shown in Fig. 8 and Fig. 9. As discussed in Section 3.1.2.2, the first few PCs summaries 

the majority of variation in the data. After experimenting with 1-3 PCs, we choose to show the plots 

of the first two PCs as they give very clear and indicative patterns. In Fig. 8, we can see there are 

three well-separated clusters. However, the pattern in Fig. 9 is less clear. If unsupervised clustering is 
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chosen as the next step for pattern recognition, clusters result from Fig. 7 will be expected to have 

much better quality than the clusters found from Fig. 8. In other words, for clustering purpose, the 

pulse data are more suitable features than the NACF.  

 

Figure  8: Principle components of PD raw data 

 

Figure  9: Principle components of NACF 

3.1.4 Unsupervised Cluster Analysis 

A clustering algorithm is based on a criterion for assessing the quality of a given partitioning. As 

discussed in Section 2.2, it is important to evaluate the quality of the clustering algorithm results 

using appropriate criteria and techniques. Hence we propose a clustering framework that integrates 

cluster validation techniques at multiple stages along the work-flow of the separation process of PD 

signals due to multiple sources. Cluster validation techniques give an indication of the quality of the 

resulting partitioning, and can be considered as a tool at the disposal of the domain experts in order 

to evaluate the clustering results. Moreover, by integrating cluster validation in our framework we 

automatically conduct a sensitivity analysis and investigate two key challenges in unsupervised 

cluster analysis. The first challenge is to estimate the parameters values of an arbitrary algorithm (i.e. 

the number of clusters). The second challenge is to investigate the variation in the results when 

using different clustering algorithms. As a result, we can automatically and systematically 

choose the cluster algorithm and to estimate the number of clusters for our separation 
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process of PD signals, and in turn, obtain an efficient diagnosis of PD activity. The general approach 

is to evaluate the quality of the results from each algorithm and select the algorithm that generated 

the best partition according to validation method. The evaluation procedure proceeds with the 

following steps:   

1.  Execute: Each algorithm is executed several times to improve confidence.  

2.  Choose: The algorithm that obtained the best index results will be chosen.  

An additional related problem is to estimate the number of clusters that are most appropriate for 

the data set. Here the basic idea is to evaluate the clustering structure by comparing it to other 

clustering schemes, resulting by the same algorithm but with different number of clusters. The 

general framework of estimating the number of clusters is also based on internal validity index. The 

evaluation procedure proceeds with the following steps:   

1.  Execute: For each possible value of the number of clusters, which are determined a-priori, we 

execute the algorithm several times in order to improve confidence. 

2.  Choose: We choose the algorithm parameters values that obtained the best index results. 

Next, we present a comparative experiment of PD separation process using our clustering 

framework. For our experimental work, we obtained 3000 pulses from UKPN ASM and applied the 

SVD-guided PCA feature extraction method. As before, the goal is two fold: to determine the most 

appropriate unsupervised clustering method and to estimate the number of clusters for the data set. 

That is, by applying the validation measures, we calculate the scores along with the corresponding 

cluster method and number of clusters, and in turn, choose the configuration that obtained the best 

results. For our study, we compared between hierarchical and partitioning algorithms, two 

commonly discussed clustering approaches. More specifically, we compared between the well-

known k-means algorithm and agglomerative hierarchical clustering algorithm, in which we apply 

three commonly used linkage criteria namely, complete, single and centroid. With reference to 

validity methods, three indexes has been considered for this application due to there ability to 

investigate the variation in the results when using different clustering algorithms and estimate the 

number of clusters that are most appropriate for the data set. As before, the idea, here, is to 

execute each algorithm a several times for different number of clusters each time. Thereafter, we 

plot the respective graphs of the validity indexes for the resulting clustering and search for the 

optimal index value. 

 

The first index is the Silhouette [17], which is the average of the Silhouette value of each observation. 

The Silhouette value measures the degree of confidence in the clustering assignment of a particular 

observation, with well-clustered observations having values near 1 and poorly clustered 

observations having values near -1. The Silhouette value for observation i is defined as follows: 

)}(),(max{

)()(
)(

iaib

iaib
iS


  

where ai is the average distance between i and all other observations in the same cluster and bi is 

the average distance between i and the observations in the ``nearest neighboring cluster". 

The Silhouette average thus lies in the interval [-1,1], and should be maximized. Fig. 10 

summarizes the result of the Silhouette index, for different clustering schemes as mentioned 
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above of our PD signals data set. The graph indicates that estimate number of clusters is 2 for both 

k-means and for variations of linkage criterion of hierarchical clustering, and it is clear that 

hierarchical clustering outperforms k-means clustering results. 

 
Figure  10: Silhouette Average 

   

The second, is Dunn index, which based on the idea of identifying the cluster sets that are compact 

and well separated. The Dunn index is the ratio of the smallest distance between observations not in 

the same cluster to the largest intra-cluster distance. It is computed as follows: 
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Where d(ci,cj) denotes the distance between clusters ci, and cj (inter-cluster distance); and diam(ci) is 

the diameter of cluster ci (intra-cluster distance), which is the maximum distance between 

observations in cluster. The Dunn index has a value between zero and 1, and should be maximized. 

Figure 11 summarizes the result of the Dunn index, for different clustering schemes as mentioned 

above of our PD signals data set. The graph indicates that estimate number of clusters is 2 for both 

k-means and for variations of linkage criterion of hierarchical clustering, which reinforce our 

previous result. Moreover, it is clear that the single linkage criterion obtains the best results. The 

third, is Davies-Bouldin index, which is a function of the ratio of the sum of within-cluster scatter to 

between-cluster separation given by  
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where σi denotes the average distance of all objects from the cluster to their cluster center, and 

d(ci,cj) denotes the distance between clusters centers. Hence the ratio is small if the clusters are 

compact and far from each other. Consequently, Davies-Bouldin index will have a small value for a 

good clustering. Fig. 12 summarizes the result of the Davies-Bouldin Index, for different 

clustering schemes as mentioned above of our PD signals data set. The graph indicates that 



FP7 – 248135 20 
  

estimate number of clusters is 2 for both k-means and for variations of linkage criterion of 

hierarchical clustering, which reinforce our previous results. However, it is clear that the single 

linkage criterion obtains the worst results.  

 
Figure  11: Dunn Index  

 
Figure  12: Davies-Bouldin Index 

 

3.2 Correlation of Weather and Fault Data  

3.2.1 Introduction 

Weather is one of the major factors affecting power distribution systems. On one hand weather 

conditions affects the reliability of power distribution systems on the other, energy consumption is 

highly dependent on the weather conditions, specially the temperature. Power quality studies have 

focused on the source-identification of voltage disturbances occurring in distribution networks [19].  

The ability to model weather’s impact on overhead distribution lines will allow utilities to take 

actions and prevent or reduce outages. A decision support system that predicts the probability of 

failure based on the current weather conditions in each area will allow them to make the right 

decisions to plan maintenance teams to reduce the impact or consequences of the failures. 

 

Power delivery companies are paying more attention nowadays to reliability of electric service due 

to increased expectations from customers and regulators. Distribution Network Operators 

(DNOs) measure their system performance based on reliability indexes, such as CAIDI - 
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Customer Average Interruption Duration Index or SAISI - System Average Interruption Frequency 

Index which measures average outage duration for each customer served. In both cases the duration 

of the failures plays an important role.  

 

Data mining algorithms can be used to describe the correlation between faults and the weather 

conditions. Characteristic parameters of the weather conditions causing certain faults can be 

extracted from the knowledge obtained by these techniques and allow a better maintenance plan to 

reduce the consequences of the failures or even prevent them. Thus, by predicting potential failures 

based on the nature of the failures (weather), failure duration could be reduced and improve system 

performance and therefore DNOs’ reliability indexes. 

In the following section a introduction to decision trees, the basis of the algorithm developed, is 

presented. 

3.2.2 Decision Trees 

Decision trees are useful data mining tools designed to face classification problems. They possess a 

great versatility and they are adequate to be applied to very diverse different real applications. Their 

key advantage radicates on the easy interpretability of the results and the supply of probability 

values without assuming normal distributions. 

 

A decision tree represents a function that takes as input a vector of attribute values and returns a 

"decision"—a single output value. The input and output values can be discrete or continuous. A 

decision tree reaches its decision by performing a sequence of tests. Each internal node in the tree 

corresponds to a test of the value of one of the input attributes, and the branches from the node are 

labeled with the possible values of the attribute. Each leaf node in the tree specifies a value to be 

returned by the function. The decision tree representation is natural for humans; indeed, many 

"How To" manuals (e.g., for car repair) are written entirely as a single decision tree stretching over 

hundreds of pages. 

A Boolean decision tree is logically equivalent to the assertion that the goal attribute is true if and 

only if the input attributes satisfy one of the paths leading to a leaf with value true. Writing this out 

in propositional logic, we have Goal (Path1 V Path2 V ...) , where each Path is a conjunction of 

attribute-value tests required to follow that path. For a wide variety of problems, the decision tree 

format yields a nice, concise result. 

 

The decision tree learning algorithm adopts a greedy divide-and-conquer strategy: always test the 

most important attribute first. This test divides the problem up into smaller subproblems that can 

then be solved recursively. "Most important attribute" refers to making the most difference to the 

classification of an example. That way, the correct classification will be achieved with a small number 

of tests, meaning that all paths in the tree will be short and the tree as a whole will be shallow. 

 

Note that the set of examples is crucial for constructing the tree, but nowhere do the examples 

appear in the tree itself. A tree consists of just tests on attributes in the interior nodes, values of 

attributes on the branches, and output values on the leaf nodes. 
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Decision tree induction is one of the simplest and yet most successful forms of machine learning. 

The decision-tree learning algorithm splits the example input set into subsets based on an attribute 

value test. This process is repeated on each derived subset in a recursive manner called recursive 

partitioning. The recursion is completed when the subset at a node all has the same value of the 

target variable, or when splitting no longer adds value to the predictions.  

The greedy search used in decision tree learning is designed to approximately minimize the depth of 

the final tree. The idea is to pick the attribute that goes as far as possible toward providing an exact 

classification of the examples. 

For decision trees, a technique called decision tree pruning combats overfitting. Pruning works by 

eliminating nodes that are not clearly relevant. The pruning starts with a full tree, then it looks at a 

test node that has only leaf nodes as descendants, if the test appears to be irrelevant—detecting 

only noise in the data—then the test is eliminated, replacing it with a leaf node. The process is 

repeated considering each test with only leaf descendants, until each one has either been pruned or 

accepted as is. 

3.2.3 Feature Extraction Using Decision Trees 

As pointed out before the decision tree learning algorithm adopts a greedy divide-and-conquer 

strategy by always testing the most important attribute first. This means that the first levels of the 

tree contained the most relevant attributes for the goal classification. Therefore, decision trees can 

not only be applied for classification but also can be used for the feature extraction and selection 

task. The relevant attributes can be selected by taking the first attributes used by the decision tree, 

since the most important attributes, those making the most difference to the classification, are 

always at the top of the decision tree. 

3.2.4 Random Forest 

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Recursive_partitioning
http://en.wikipedia.org/wiki/Recursive_partitioning
http://en.wikipedia.org/wiki/Recursion
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Significant improvements in classification accuracy have resulted from growing an ensemble of trees 

and letting them vote for the most popular class. In order to grow these ensembles, often random 

vectors are generated that govern the growth of each tree in the ensemble.  

 

Random forests are a combination of tree predictors such that each tree depends on the values of a 

random vector sampled independently and with the same distribution for all trees in the forest. The 

generalization error for forests converges to a limit as the number of trees in the forest becomes 

large. The generalization error of a forest of tree classifiers depends on the strength of the individual 

trees in the forest and the correlation between them.  

Since random forest is an ensemble classifier based on building many decision trees, the 

classification output is based on the vote of the individual trees. The random forest learning 

algorithm strategy can be described as follows:  to classify a new object from an input vector, the 

input vector goes down each of the trees in the forest. Each tree gives a classification, and the tree 

"votes" for that class. The forest chooses the classification having the most votes (over all the trees 

in the forest). 

Random forest is reported to run efficiently on large datasets giving high accuracy rates. 

Furthermore, it gives estimates of what variables are important in the classification and can even 

show variable interactions. Therefore it performs naturally a feature extraction/selection process. 

3.2.5 Proposed Algorithm Inspired by Random Forest 

One of the major problems to adopt expert systems based on artificial intelligence technologies is 

the lack of control and understanding about the decision that the system is performing. These 

systems they are usually seen as black boxes which take decision “magically”. Thus, critical 

applications forbid the use of such systems since it can not be analyze the result of a decision 

automatically made by the system. Specially when the system makes a wrong decision, it is often 

difficult to describe why the system did a bad choice and try correct the behavior.  However, there 

are systems which are descriptive, which means that they can actually justify their decision and the 

system can be tuned or adapt to include expert knowledge to avoid bad choices.  Decision trees are 

descriptive systems, since their representation is very natural for humans and it is straightforward to 

derive rules which can be then use to justify the choices made the classification process. 

The algorithm proposed is inspired on random forest. It creates several trees based on the training 

set available, like the random forest algorithm the training set for each tree will be obtained by 

random sampling with replacement the original training set. The trees grown, unlike random forest, 

might be pruned to obtain a compact model representation of the knowledge. Once the trees are 

obtained, there is a transformation step to create the knowledge representation based on rules. The 

final goal is to be able to transform and fusion the knowledge of the different trees built in the form 

of IF-THEN rules. For every tree the IF-THEN rules are created, and since all trees are built based on 

the same training set, but with different random sampling, some trees could potentially lead to 

similar rules. Thus, a unification step is needed in order to remove potential repeated rules. After 

that the rules are ranked based on two parameters called confidence level and coverage.  

Confidence level refers to the performance obtained on a cross-validation evaluation of the 

http://en.wikipedia.org/wiki/Ensemble_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Decision_tree_learning
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rule, and coverage refers to the percentage of examples (input instances) that they covered. Note 

that this is not the validation step, since the cross-validation is performed previously on the resulting 

trees, but a way to select the most relevant rules for the description of the knowledge acquired by 

the tree. Depending on the number of attributes available on the input data a similar strategy to 

random forest can be used, where a subset of the original attributes is selected randomly for 

selecting the best split at each node. 

The following learning process can be summarized as follows: 

 Creation of decision trees: First a tree with all attributes and data will be built. The level of 

complexity (cp) will be set to a very low value, i.e 0.0001 (this will create a very complex tree 

which will provide several rules for the target descriptive model). Depending on the number 

of attributes, a set of smaller trees might be built, following the strategy (inspired in the 

random forest): First a value m which is m < M (M is the number of attributes available on 

the data) is selected. This is the minimum number of attributes that will be used to generate 

trees.  Then a value n will be selected with n<N (N is the number of data instances) to build 

the tree with different training sets.  

 Knowledge representation step to obtain IF-THEN rules.  

 Unification step of the IF-THEN rules: the trees obtained previously will have different 

inputs instances and the performance and coverage obtained for those will depend on the 

training set (this could yield to the same rules as other tree but with different performance 

and coverage, if the same rule has different values for performance and coverage, the 

average will be taken for the final rule)  

 Rules Ranking and selection: Based on coverage and confidence. A minimum of confidence 

and coverage might be selected and only rules above both of these thresholds will be taken. 

Feature extraction is also performed inside the proposed algorithm. The algorithm builds several 

trees, the variables used in each node for the split are the relevant features for the data mining task. 

Moreover, since the different trees are converted to IF-THEN rules and they are ranked based on the 

confidence level and the coverage, and therefore features can be ranked as well based on the 

attributes used to the rules. 

The algorithm is implemented in a three-level approach: the first level generates in parallel different 

knowledge representations based on decision trees.  The result of this first level is a group of models 

containing the knowledge derived. The second level gets as input the models obtained in the first 

level.  The process on this second level induces IF-THEN rules based on the initial models and 

processed them to compute a new knowledge representation model based on the coverage and 

level of confidence of the rules derived. At the third level the model obtained in the previous step is 

used to perform the classification task. 

The expected architecture to run in the HPC platform relies on the fact that communication between 

the different levels must be warranty. The first levels can be seen as N different pipelines which all 

get the input data. The output information of each pipeline is sent to the following level. The second 

level can be seen as a pipeline that waits to get results of the first N pipelines. The system can 

either wait to get all input from the N previous pipelines or can start processing even if some 

previous pipelines are not yet finished, but in both cases the second level needs to get all 
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inputs from the first level before the end of the processing. Once the second level has output its 

model, the third level can start processing it and update the classification results. 

3.2.6 Experiments 

The following paragraphs describe the first analysis performed using decision trees and the 

algorithm proposed in different set of data from the HiPERDNO consortium. 

3.2.2.1 UF Data Analysis:  Overhead lines condition monitoring based on weather conditions 

Weather is one of the major factors affecting power distribution systems. One good example of the 

problems caused by bad weather conditions are overhead lines faults, since they are mainly caused 

by atmospheric conditions 

DNOs keep a log of the failures suffered by their networks and based on this information they 

compute several reliability indexes. Since overhead lines suffered from faults mainly caused by 

atmospheric conditions, by monitoring the current weather conditions that the line is experimenting 

can help to predict the likelihood that the line is going to experiment a fault based on historical 

information of weather conditions that in the past caused failure. 

A decision support system that studies faults caused by atmospheric conditions (bad 

weather/storms/lightings) can be implemented to define an index for characterization of 

storms/weather conditions which allows quantifying the impact of storms/weather condition. Such 

index will allow comparing different storms/weather conditions and therefore predicting their 

impact. The comparison can be performed based on historical information about weather conditions 

and the faults occurred during these situations. 

The proposed algorithm in the previous section can generate a descriptive correlation between 

geographical weather conditions and the probability of a fault in the distribution network. It focuses 

on using historical fault data, where faults where caused by some atmospheric conditions and 

historical meteorological information such as rain level, wind force and lightnings per area. The IF-

THEN rules model obtained can be applied to current meteorological conditions in different areas to 

give a probability of having a fault in a certain area based on similar meteorological conditions that 

in the past caused an atmospheric fault. 

UF Weather - Fault Data  

The following data has been provided by Union Fenosa. The data consists in two different sets:  

 Data regarding faults in the distribution network 

 Data about the meteorological conditions 

 

Both sources contain information of 3 different years: 2008, 2009, and 2010. 

Faults Data 

The data containing the faults is divided to Medium voltage (MV) and High voltage (HV) and have the 

following information (some of the attributes are only available for MV or HV): 

 ID of fault 
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 Type of fault 

 Cause 

 If the fault is solved by a reclosing and therefore it is not relevant for the TIEPI index. 

 Associated to a market lost 

 Affected facilities 

 Detection date 

 Detection time 

 Affected area 

 Voltage level 

 Resolution date 

 Resolution time 

 Substation  

 Working day 

 Duration 

 Power 

 Contracted power multiplied by the duration of the fault 

 TIEPI: Index, similar to  SAIDI but related to contracted power and not to number of 

customers 

  Number of customers affected 

 

Meteorological data 

The meteorological data correspond to different provinces in Spain. The available fields are: 

 Date 

 Number of lightnings/10000km2 (source: UK Metoffice) 

 Number of lightnings/10000km2 (source: AEMET) 

 Rain in mm 

 Maximum gust of wind percentile 50  (km/h) 

 Maximum gust of wind percentile 50 (km/h) 

 Dominant wind percentile (50 km/h)  

 Dominant wind percentile (90 km/h) 

 

UF Weather - Fault Data Application 

The application’s goal is to define an index for characterization of weather conditions based on the 

probability of causing a fault in the power distribution system. Such index will allow comparing 

different weather conditions and therefore predicting their impact. The comparison can be 

performed based on historical information about weather conditions and the faults occurred during 

these situations. The system will learn the weather conditions that in the past caused a fault in the 

system, thus historical examples of faults which were observed to be caused by weather conditions 

is the basic input for the learning step of the system. The following diagram depicts the overall 

system. The two source of information are the historical meteorological data and the logs from the 

faults detected on the system. From these two data sources the system will extract the features and 

labels to perform the supervised learning and will create in the training phase a model that 

will lead to a knowledge representation based on IF-THEN rules. This knowledge 
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representation will then be used to compare to current meteorological data or even metrological 

forecasts to the data mining model and the system will be able to classify areas according to the 

probability of having atmospheric faults. This will allow the planification of the maintenance teams 

in case the faults appears. 

 
 

 

Data Preprocessing 

The original data from UF was two disjoint sets of data. A preprocessing step was needed in order to 

work with all input data. The relation between both data sets was made by means of the date. For 

each fault detected on the system the corresponding weather conditions from the meteorological 

data was found and match to the faults. The goal was to describe the weather conditions on the very 

moment of the fault. 

 

Data Mining Model Creation 

The analysis was performed initially using decision trees to study different parameter tuning and 

afterwards the proposed algorithm was used. 

Decision Tree Analysis 

The initial analysis was performed using decision trees on the meteorological data using as class for 

this supervised learning a new attribute that distinguish between atmospheric cause and other type 

causes. Faults labeled as other were the union of all faults except the atmospheric ones.  

The first studies were performed using most of the data available. The data was strongly unbalanced, 

that means that there were far more examples of faults that were not caused by atmospheric 

conditions. Some of the first decision trees built were based on more than 3000 faults, where 

only less than 14% correspond to atmospheric faults. Due to the strong difference between 
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the amounts of instances from non-atmospheric faults, the results obtained were very poor and thus 

their models could not be applied for the detection of the atmospheric faults. To guarantee a 

balance in the data a subset of the original data was selected in order to have a similar amount of 

atmospheric and non atmospheric faults (485 faults were labeled as atmospheric in the original 

data). It was considered only information regarding meteorological conditions extracted from UF 

database, no extra data was added. The studied data contained: 

 458 atmospheric faults (only from the Galician region) 

 535 other faults (descargo) 

Total faults:  993 

Different experiments were performed using the J48 algorithm tuning the pruning level, which 

allows to reduce the size of the tree and thus to get a more compact knowledge representation. The 

best performance obtained with a very compact representation (the evaluation was 10-fold 

stratified cross-validation) was obtained with the following model: 

J48 pruned tree 

------------------ 

gust_p90 <= 87 

|   rays_uk <= 5: Other (500.0/23.0) 

|   rays_uk > 5 

|   |   rays_uk <= 205 

|   |   |   rain <= 13: Other (45.0/15.0) 

|   |   |   rain > 13: Atmospheric (30.0/4.0) -> 6% atmosfericas 0,7% Other 

|   |   rays_uk > 205: Atmospheric (130.0/7.0) -> 28,38% atmosfericas 1,3% descargo(Other) 

gust_p90 > 87: Atmospheric (288.0/17.0) -> 68% atmosfericas 0,03% descargo(Other)  

 

Number of Leaves  :  5 

Size of the tree :  9 

 

=== Stratified cross-validation === 

Correctly Classified Instances         926               93.2528 % 

Incorrectly Classified Instances        67                6.7472 % 

Kappa statistic                          0.8641 

Mean absolute error                      0.1167 

Root mean squared error                  0.2434 

Relative absolute error                 23.4781 % 

Root relative squared error             48.8339 % 

Total Number of Instances              993      

=== Detailed Accuracy By Class === 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.921     0.058      0.932     0.921     0.926      0.934    Atmospheric 

                 0.942     0.079      0.933     0.942     0.938      0.934    Other  

Weighted Avg.    0.933     0.069      0.933     0.933     0.932      0.934 

 

=== Confusion Matrix === 
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   a   b   <-- classified as 

 422  36 |   a = Atmospheric 

  31 504 |   b = Other 

 

From this decision tree a set of rules can be derived that will give us an idea about the weather 

conditions that are usually associated with atmospheric faults, the highlighted lines of the trees 

represent the information to create the IF-THEN rules. 

 

gust_p90 <= 87 

|   rays_uk <= 5: Other (500.0/23.0) 

|   rays_uk > 5 

|   |   rays_uk <= 205 

|   |   |   rain <= 13: Other (45.0/15.0) 

|   |   |   rain > 13: Atmospheric (30.0/4.0)  

|   |   rays_uk > 205: Atmospheric (130.0/7.0) -> 28,38% atmosfericas 1,3% descargo(Other) 

gust_p90 > 87: Atmospheric (288.0/17.0) -> 68% atmosfericas 0,03% descargo(Other)  

 

Knowledge Representation 

From the decision tree model obtained some rules are derived to represent the knowledge obtained 

in a more straightforward way.  The goal is to obtain a synthesis of the knowledge obtain in the 

model based on the coverage of the atmospheric faults and the level of confidence of the 

classification. These two attributes are considered to be the most relevant ones to decide on the 

importance of each rule. 

The derived rules are: 

Rule1:  IF the 90percentil of wind gust is above 87 THEN Atmospheric 

Rule 2: (IF the 90percentil of wind gust is less than 87) AND  ( IF the  level of lighthings(UK) is 

above 205) THEN Atmospheric 

Rule 3: ( IF the 90percentil of wind gust is less than 87) AND  (IF rays_uk is between 5 and 205)  

AND  (IF rain is above 13) THEN Atmospheric 

 

The levels of coverage and confidence are shown in the following table: 

 

 Rule 1 Rule 2 Rule 3 

Level of confidence 94.10% 94.61% 86.67% 

Coverage (atmospheric) 59.17% 33.41% 5.67% 

 

These rules can give an idea of the weather conditions that can bring an atmospheric fault. The level 

of coverage of only these 3 rules reaches around 98,25% of all the atmospheric faults detected. 

 

The selection of the non-atmospheric fault was done by means of selecting another cause with a 

similar number of faults, this was a biased selection and therefore a new subset selection was 

needed in order to have a more representative selection of the non-atmospheric faults. Thus 

a stratified sampling of the non-atmospheric faults data was performed in order to get a more 
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reliable solution for atmospheric faults. All atmospheric faults were selected and a subset of the 

remaining faults based on their probability of appearance (stratified sampled) were selected. 

 

The following table shows the number of instances for each type of fault labeled by Union Fenosa. 

 

Cause Count Percentage 

Own transmission 1 0,03% 

Strike 3 0,09% 

External transmission 4 0,12% 

Generation 13 0,39% 

Accidental or intentional 14 0,42% 

Other DNO 31 0,92% 

External Agent 35 1,04% 

Intern 111 3,29% 

U unknown 398 11,81% 

Atmospheric 465 13,79% 

Descargo 546 16,20% 

Particular facility 625 18,54% 

REE transmission 1125 33,37% 

Total 3371 100,00% 

 

 

The data studied was: 

 465 atmospheric faults 

 461 other faults (stratified sampled from all possible faults) 

Total faults: 926 

The decision tree obtained using the J48 was the following: 

 

J48 pruned tree 

-------------------- 

 

gust_p50 <= 77 

|   rays_uk <= 70 

|   |   gust_p90 <= 67: OTHER (363.0/24.0) 

|   |   gust_p90 > 67 

|   |   |   wind_p50 <= 26: Atmospheric (72.0/26.0) 

|   |   |   wind_p50 > 26: OTHER (82.0/28.0) 

|   rays_uk > 70: Atmospheric (164.0/22.0) 

gust_p50 > 77: Atmospheric (245.0/20.0) 

 

Number of Leaves  :  5 

 

Size of the tree :  9 
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Time taken to build model: 0.01 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         781               84.3413 % 

Incorrectly Classified Instances       145               15.6587 % 

Kappa statistic                          0.6868 

Mean absolute error                      0.2295 

Root mean squared error                  0.3471 

Relative absolute error                 45.9058 % 

Root relative squared error             69.4143 % 

Total Number of Instances              926      

 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.82      0.133      0.859     0.82      0.839      0.894    OTHER 

                 0.867     0.18       0.829     0.867     0.848      0.894    Atmospheric 

Weighted Avg.    0.843     0.157      0.844     0.843     0.843      0.894 

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 378  83 |   a = OTHER 

  62 403 |   b = Atmospheric 

 

The results obtained in this case show reliable results for the detection of atmospheric faults. 

 

Knowledge Representation 

From the decision tree model the following rules are derived as a synthesis of the knowledge obtain 

in the model based on the coverage of the atmospheric faults and the level of confidence of the 

classification.  

The derived rules are: 

Rule1:  IF the 50percentil of wind gust is above 77 THEN Atmospheric 

Rule 2: (IF the  level of lighthings(UK) is above 70) THEN Atmospheric 

 

The levels of coverage and confidence are shown in the following table: 

 

 Rule 1 Rule 2 

Level of confidence 91.84% 86.59% 

Coverage (atmospheric) 48.39% 30.54% 
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There is a third rule that can be derived from the J48 model, but the coverage it is less than 1 % and 

the level of confidence is less than 75%. In this case this rule is not considered. 

 

Rule 3: ( IF the 90percentil of wind gust is more than 67) AND  (IF  50 percentile of wind is less 

than 26)  THEN Atmospheric 

 

 

 Rule 3 

Level of confidence 63.88% 

Coverage (atmospheric) <1% 

 

It is important therefore to set thresholds for both the coverage and the level of confidence. 

 

Alternating decision tree analysis 

An alternating decision tree (ADTree) is a machine learning method for classification that 

generalizes decision trees introducing connections to boosting.  An alternating decision tree consists 

of decision nodes and prediction nodes. Decision nodes specify a predicate condition. Prediction 

nodes contain a single number. ADTrees always have prediction nodes as both root and leaves. An 

instance is classified by an ADTree by following all paths for which all decision nodes are true and 

summing any prediction nodes that are traversed.  

This is different from decision trees in which an instance follows only one path through the tree. 

 

A study using alternating decision trees was performed to see if this variant of the concept of 

decision tree could improve the results obtained so far. The data used for this study is the same as 

the previous study: 

 465 atmospheric faults 

 461 other faults (stratified sampled from all possible faults) 

Total faults: 926 

 

The results obtained using alternating decision tree was the following: 

 

Alternating decision tree 

-------------------------------- 

: 0.004 

|  (1)gust_p50 < 77.5: -0.308 

|  (1)gust_p50 >= 77.5: 1.184 

|  (2)rays_uk < 32: -0.376 

|  (2)rays_uk >= 32: 1.099 

 

Legend: -ve = OTHER, +ve = Atmospheric 

Tree size (total number of nodes): 7 

Leaves (number of predictor nodes): 5 

 

Time taken to build model: 0.01 seconds 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Boosting
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=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         774               83.5853 % 

Incorrectly Classified Instances       152               16.4147 % 

Kappa statistic                          0.6717 

Mean absolute error                      0.36   

Root mean squared error                  0.3902 

Relative absolute error                 71.9942 % 

Root relative squared error             78.0354 % 

Total Number of Instances              926      

 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.833     0.161      0.837     0.833     0.835      0.863    OTHER 

                 0.839     0.167      0.835     0.839     0.837      0.863    Atmospheric 

Weighted Avg.    0.836     0.164      0.836     0.836     0.836      0.863 

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 384  77 |   a = OTHER 

  75 390 |   b = Atmospheric 

 

In this case we obtained a lower precision in detecting the atmospheric faults compare to the J48 

algorithm.  We do not go further in this study since different configurations have been tested and all 

models obtained gave lower performances than the obtained with J48. Furthermore our goal is to 

represent the knowledge obtained in the form of IF-THEN rules (human readable format), and this 

technique not only offers lower performance for the data studied but also brings more complexity 

since as pointed out before the main different between alternating decision trees and decision trees 

is that an instance follows only one path through the tree for a decision tree and several for 

alternating decision tree, making more complex the transformation to a IF-THEN rules knowledge 

representation. 

Knowledge representation: Algorithm proposed 

As introduced before the learning process of the algorithm proposed can be summarize as follows: 

 Creation of decision trees: This was explained in the previous paragraphs with the studies 

performed with J48. The current prototype of the algorithm is implemented in R language 

and the rpart library of R is used during the process of creation of the decision trees. 

 Knowledge representation step to obtain IF-THEN rules.   

 Unification step of the IF-THEN rules  



FP7 – 248135 34 
  

 Rules Ranking and selection: based on level of confidence and coverage. 

The following table shows an example of the knowledge representation obtained by running  the 

implemented algorithm by selecting only rules which offer a level of confidence above 80% and 

covers more than 10% of the atmospheric faults. 

covered confidence Rules 

48,5411141 100 IF  gust_p90 >= 90  AND  rain < 23.5  AND  gust_p50 >= 78.5  THEN Atmospheric 

48,2288828 93,15789474 IF  gust_p90 >= 90  AND  gust_p50 >= 77.5  THEN Atmospheric 

46,8319559 100 IF  gust_p50 >= 78.5  AND  rain < 23.5  THEN Atmospheric 

45,5913978 100 IF  gust_p90 >= 90  AND  rain < 23.5  AND  gust_p50 >= 77.5  THEN Atmospheric 

23,8709677 97,36842105 IF  gust_p90 < 44.5  AND  rays_uk >= 190  THEN Atmospheric 

22,0385675 98,7654321 IF  gust_p50 < 67.5  AND  rays_uk >= 190.5  AND  gust_p90 < 44.5  THEN Atmospheric 

19,346049 98,61111111 IF  gust_p90 < 44.5  AND  3229 >  rays_uk >= 72.5  THEN Atmospheric 

11,8918919 100 IF  gust_p90 < 42.5  AND  rain >= 2.5  AND  gust_p50 >= 31.5  THEN Atmospheric 

 

Index creation 

The final index for the level of criticality of the current weather conditions will be based on the rules 

selected. A weighted sum will be taken based on the coverage and confidence of the rules. Several 

indexes are being tested for the final system. The first index is test as follows: 

 The first index is a very basic one and represents the percentage of the rules that 

evaluates positive to the current meteorological conditions. Therefore it performs a simple 

division between the counts of positive rules and the number of rules of the model.  

 The second index is a weighted index taking into account the level of confidence of 

the rules: rules with higher level weight more than the ones with less. The operation performed 

for this index is the sum of all levels of confidence of the rules that applied for the current 

weather condition divided by the sum of all rules contained in the model. 

 The third index is a weighted index taking into account not only the level of 

confidence but also the coverage. Therefore a rule having higher coverage will have a bigger 

impact on the result. 

 

 

3.2.2.2 EG Data Analysis 

Weather is one of the major factors affecting power distribution systems Not only weather 

conditions affects the reliability of power distribution systems as discussed previously when 

describing the Weather Fault Application but also energy consumption is highly dependent on the 

weather conditions, specially the temperature.  

 

EG is performing certain studies to find information regarding the correlation of the weather 

conditions to the load level in the network to be able to do some predictions regarding this influence. 
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EG Weather - Load Data  

The following data has been provided by EG. The data consists in a set of attributes relating load 

levels in the network with some meteorological conditions. The different information contained in 

the data are: 

 Date 

 Year 

 Month 

 Hour 

 Weekday 

 Season 

 TimeInDay 

 Network Load 

 Temperature 

 Solar irradiance 

 

Weekday and TimeInDay are especially useful attributes since it is known that depending of the type 

of day (Monday, Saturday, Sunday,…) and the time of the day consumption patterns are very 

different. 

 

UF Weather - Fault Data Application 

The goal of the application is to explain the correlations between the load level in the network and 

the type of day and weather conditions.  

The first analysis performed with this data was the creation of simple decision trees to explain the 

dependencies/correlations.  The load level attribute was discredited in 4 levels: 1 –very low, 2- low, 

3–medium, 4-High. The underlying idea was to obtain a first explanation regarding the most 

important variables influencing the load levels in the network. 

 

http://www.google.es/search?hl=es&sa=X&ei=CFkNT7aBMYuG-wanvITOBw&ved=0CBoQvwUoAQ&q=discretized&spell=1
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The first experiments showed that the most important variables were TimeInday, Weekday and the 

temperature (as seen in the previous figure), which are actually known variables to have an 

important dependency on the load of the network.  

Further analysis was performed were bigger decision trees were built to show other dependencies. 

The following figure shows a more complex tree. Notice that the most important variables, the first 

ones to appear on the tree, there are still the ones found before, since decision trees always show 

first splits that are more important. 

 

Knowledge representation: Algorithm proposed 

The implemented algorithm introduced in the previous section was applied to extract the knowledge 

obtained by several decisions trees as IF-THEN rules, which will make easier the interpretation of the 

results. 

Covered confidence Rules 

58.96 81.57 IF TimeInDay = 1  THEN Low Load 

19.10 60.68 IF TimeInDay = 2,3,4  AND Weekday = 1,7  AND temp.LJ.meas >= 12.15  THEN  Low Load 

17.57 61.18 IF TimeInDay = 2,3,4  AND Weekday = 1,7  AND temp.LJ.meas < 12.15  THEN Medium Load 

52.28 65.19 IF  TimeInDay = 2,3,4  AND  Weekday = 2,3,4,5,6  AND  temp.LJ.meas >= 8.05  THEN Medium Load 

54.86 59.11 I IF  TimeInDay = 2,3,4  AND  Weekday = 2,3,4,5,6  AND  temp.LJ.meas < 8.05 THEN High Load 



FP7 – 248135 37 
  

 

For example the first rule establish that during the first hours of the day (from 00:00 – 6:00) the load 

level is low,  since it is the time of the day that most customers are sleeping and therefore their 

consumption is low.  

3.3 Clustering Correlated Uncertain Sensor Data 

3.3.1 Introduction 

Smart Grids heavily rely on sensor data: millions of smart meters (essentially sophisticated sensors) 

are being rolled out into households throughout the European Union to increase our understanding 

of dynamics of power demands [21], whilst the power networks are monitored using sensors on 

switchgear and cables, both in- and outside substations [22], [23]. 

Sensor data is well-known to be uncertain. Large sensor networks are often constructed using cheap 

hardware, which is prone to malfunctioning. In addition, communication channels used to transmit 

sensor data introduce an additional risk factor: some sensor readings are lost, or transmitted 

incorrectly. Ignoring this uncertainty when processing data from such sources can be harmful. Hence, 

analysis and mining of uncertain data is one of the components of the HiPerDNO project. 

Additionally, uncertain data often contains strong correlations. For example: two readings of the 

same sensor are heavily correlated, as are readings from different closely located sensors. Also, 

features are strongly correlated, e.g. increasing power consumption will often lead to an increasing 

temperature. 

In the first year of HiPerDNO, we investigated the correlation between load and partial discharge, 

which led to a classification algorithm for the early detection of suspicious partial discharge activity 

[24]. In the past year, we worked on a more generic data mining technique: clustering correlated 

uncertain data. This report contains a high-level description of this approach, referencing sections, 

expressions and figures from a paper submission (currently under review) titled “Clustering 

Correlated Uncertain Data”, which has been included as Appendix A. 

3.3.2 Quantifying Uncertainty 

Although it is clear that data from sensors in Smart Grids should be considered “uncertain” and 

processed as such using techniques for data processing that have been proposed during the last 

decade, quantifying the uncertainty and the correlations in play has not been investigated in very 

much detail. 

In our paper submission, we introduce an approach to quantifying uncertainty which is geared 

towards a setting in which multiple sensors are located reasonably close to each other (monitoring 

the same or similar hardware), for example multiple temperature sensors. Each sensor is assumed to 

function correctly with a probability, represented by a Boolean probabilistic random variable which 

can be used in a propositional formula (as illustrated in Figure 1, Appendix A). Each measurement is 

compared to the values reported by the other sensors. If two sensors agree (i.e., report similar 

values), the measurement values are aggregated into a single data point, annotated by a 

disjunction of the respective sensor variables. The disjunction represents the event: “at least 
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one of the sensors is functioning properly”. Alternatively, if two (or more) sensors disagree, the two 

values are included as separate data points, annotated by a conjunction of a variable together with 

negated variables of the sensors that are conflicting. The conjunction represents the event “this 

sensor is working and the others are malfunctioning”. Arguably, if a sensor is functioning properly at 

time t, we can assume it will still report accurate measurements at time t+1. We can store the 

expressions (in the domain of propositional calculus) alongside the data using so-called “pc-tables” 

(probabilistic conditioned tables). 

In our experiments (Section 6, Appendix A), we used both data generated using random Gaussian 

distributions and sensor data from smart meters, generated using occupancy models from project 

work package 1.4 (also see Richardson et al. [38]). 

As expressed, the approach to quantifying uncertainty and correlations described above is specific to 

a specific configuration of sensor networks. In order to be able to assess the uncertainty and 

correlations in data in a more generic setting, we are currently investigating the possibility to 

leverage Markov Logic Networks [25]. This approach is well-established in the field of artificial 

intelligence and multiple algorithms exist to construct Markov Logic Networks (learn correlations), 

and to infer the probabilities inside such networks. 

Note that [24] contains an approach to quantifying uncertainty and correlations in streams of load 

and partial discharge data. 

3.3.3 The φ k-medoids Algorithm 

In Appendix A, we introduce the φk-medoids algorithm, which is based on the widely-used k-

medoids algorithm. The k-medoids algorithm endeavours to find k clusters in the input data, using 

only a dissimilarity (or distance) function d(oa,ob) defined over all pairs of data points. Each of the k 

clusters is represented by its medoid: the data point which has the minimum total distance to all 

other data points in the cluster. The algorithm consists of three phases: 

1.Initialisation phase: initial cluster medoids are chosen (randomly, or using a heuristic). These 

medoids are not necessarily close to the centres of the clusters the algorithm eventually finds. 

2.Assignment phase: all data points are assigned to the closest medoid. 

3.Update phase: based on the assignment of data points, the new cluster medoids are determined. 

 

After the initialisation, the algorithm repeats the assignment and update phases until either (1) 

convergence or (2) the preset maximum number of iterations has been reached. The traditional k-

medoids algorithm is unable to deal with existential uncertainty: it assumes that all data points exist 

with full certainty. 

Traditional algorithms (like k-medoids) can be run on probabilistic databases by instantiating the 

exponentially many (in terms of the number of data points) possible worlds and running the 

algorithm on each and every single world. A probability is attached to each possible world, based on 

the subset of tuples from the probabilistic database D it contains. This probability can be used to 

weigh the algorithm results into an aggregated, probabilistic result. Note that in a pc-tables setting, 
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the number of possible world is exponential in the total number of variables. Furthermore, the 

existence of tuples in each world depends on the total valuation of variables (and hence, depends on 

correlations). 

The φk-medoids algorithm does not explicitly enumerate the exponentially many possible worlds in 

the probabilistic database, but yields the same probabilistic result. The input of the algorithm is a 

probabilistic database based on pc-tables, and it will produce a probabilistic result using the same 

pc-tables. Hence, our approach is closed under these semantics, and the output can be used for 

further processing in probabilistic databases. Alternatively, one can perform sensitivity analysis on 

the probabilistic clustering result. 

Instead of assigning objects to clusters and selecting cluster medoids in a deterministic way, the φk-

medoids algorithm constructs probabilistic events that describe the assignment of objects to clusters 

and the selection of new medoids. In each iteration, two n x k matrices are constructed containing 

expressions that represent these two types of probabilistic events: 

 φ[oi  Cj] : represents the event that data point oi is assigned to cluster Cj 

 φ[cj = oi] : represents the event that data point oi is chosen as cluster medoid of Cj 

 

These events are represented using expressions of propositional logic. However, in order to be able 

to construct expressions φ[cj = oi] (which depend on the minimum distance sum of uncertain 

objects), we had to apply propositional logic on the  semimodule generated by the variables 

used in the input pc-table. More details on the use of the  semimodule can be found in 

Appendix A. 

The output of the algorithm consists of two n x k matrices with expressions constructed during the 

last iteration of the algorithm. These matrices represent the assignment of objects to clusters (which 

can be seen as a per-object discrete probability distribution over all clusters) and the selection of 

cluster medoids (per-cluster discrete probability distribution over objects). This output can be used 

in many ways, which are discussed in great detail in Appendix A. In our work, we introduce the 

“pairwise similarity” measure s(oa,ob) of two data points, using the expressions in the matrix φ[oi  

Cj]. The pairwise similarity can be expressed using a propositional formula which is the disjunction of 

all possible events in which the two objects oa,ob are assigned to the same cluster.   

The expressions that represent the events (including the pairwise similarity measure) can be 

compiled into probabilities using an extended version of Shannon's expansion, the details of which 

can be found in Appendix A. 

3.3.4 Experiments 

The φk-medoids algorithm is the first algorithm with full support for correlations in the existential 

uncertainty in the input data. Data points that are negatively correlated have a small (or zero, in case 

of mutually exclusive objects) probability of being assigned to the same cluster, whereas data points 

that are positively correlated are more likely to end up in the same cluster. Unfortunately, there are 

– to the best of our knowledge – no other approaches which deal with uncertainty in this way. 

This means evaluation of our algorithm (both in terms of time performance and 
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quality/accuracy) is not straightforward. Other clustering algorithms for uncertain data assume 

independence over the input tuples. Comparing to such algorithms is impossible, as the goal of both 

types of algorithms is fundamentally different:  

 φk-medoids is designed to adhere to the possible world semantics and will hence endeavour not 

to put two negatively correlated objects (however close they are to each other in the feature space) 

in the same cluster. 

Any other clustering algorithm will only consider the dissimilarity function d(oa,ob) and will ignore 

correlations. 

 

Comparing the output of φk-medoids to any other clustering algorithm for uncertain data would 

yield a significant disadvantage for either one of the algorithms (depending on how the clustering 

result is evaluated). If the evaluation method does not take correlations into account, φk-medoids 

will be penalised for not putting two closely located, but negatively correlated data points into the 

same cluster. On the other hand, if the evaluation method does take correlations into account, this 

will be a disadvantage for the algorithm that is oblivious with respect to correlations: it will be 

penalised for putting two negatively correlated objects in the same cluster. 

We have, however, compared φk-medoids to a naïve approach which respects correlations by 

explicitly enumerating all possible worlds. The results of this experiment are documented in 

Appendix A. 
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4 DM Platform 

Future electricity distribution network operators (DNO) with mass deployment of network 

equipment sensors will generate vast amounts of data, which requires analysis in order to turn the 

data into actionable information. To meet these challenges DNOs can benefit from the use of 

techniques recently developed to cost-effectively solve large scale computational problems in areas 

such as Biology, Finance and Web Services. In such systems, increased access to ubiquitous sensing 

and the web has resulted in an explosion in the size of data mining and machine learning tasks, 

which in turn, driven the growing demand for scalable implementations of machine learning 

algorithms on very large datasets (ranging from 100s of GBs to TBs of data).  

In the meantime, physical and economic limitations have forced computer architecture towards 

parallelism and away from exponential frequency scaling.  In general, parallel computing - often 

called distributed computers - deals with hardware and software for computation in which many 

calculations are carried out simultaneously. There are different types of existing architectures and 

technologies for parallel computing but in this report we focus on commodity computing cluster. A 

computer cluster is a group of shared individual computers, linked by high-speed communications in 

a local area network, and incorporating system software which provides an integrated parallel 

processing environment for applications with the capability to divide processing among the nodes in 

the cluster.   

In order to benefit from current and future trends in parallel computing there are several attempts 

at building scalable distributed data mining platforms on top of commodity computing clusters. 

More concretely, a scalable data mining platform is a parallel computing application that includes a 

collection of fundamentals algorithms in machine learning. That is the algorithm's computation is 

distributed on large set of cluster's nodes rather than processed on a single core machine. Scalable 

data mining platforms are a key ingredient in the development process of large scale data mining 

applications. Such software platforms includes a collection of fundamentals algorithms in machine 

learning (e.g. clustering, classification, dimension reduction, regression analysis and pattern mining), 

which are implemented in a parallel programming paradigm in order to run on top of commodity 

computing clusters. As a result, these scalable data mining platforms are indispensable to the data 

miner as they aim to assist building large-scale intelligent systems easier and faster.  

Currently, scalable data mining platforms are expensive and selection of the wrong platform can be 

costly in many ways. The cost of selecting an improper scalable data mining platform for a particular 

application is even more costly in terms of personnel resources, development time, and the 

potential for acting on spurious results. Moreover, evaluating scalable data mining platforms is not 

simply a matter of selecting the best tool for all purposes. Instead a DNO must consider the 

platforms with respect to their particular environment, and analysis needs.  

To better understand and to evaluate the different scalable data mining platforms that are available, 

we adopted three major categories of criteria for evaluating scalable data mining platforms: 

functionality, usability, scalability and performance. For a complete and elaborate review on scalable 

data mining platforms the reader is referred to the HiPerDNO deliverable 1.3.2, which compares two 
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leading public and open source scalable data mining platforms coming from two different 

approaches using the above well established categories for evaluating scalable data mining software 

within a smart gird environment. 

In deliverable 3.1.1 we address compatibility issues of the HPC platform suggested in HiPerDNO 

deliverable 1.2.1 and 1.2.2 to the data mining platforms introduced in HiPerDNO deliverable 1.3.2.  

In general terms, it should be noted here that all candidate data mining platforms suggested 

HiPerDNO deliverable 1.3.2 are open source scalable data mining platforms, which are developed 

under public license. Therefore, deploying them on top of HPC platform will not incur additional cost 

to the DNOs. However, given the additional security requirements adopted after project 1st year 

review and the restriction to available schedulers in PelicanHPC it seems that Parallel GNU R is the 

most suitable for the HiPerDNO project. With reference to resource tool manager (a.k.a. scheduler), 

Parallel GNU R jobs can be easily scheduled with various commodity HPC scheduler, therefore, it 

should be straight forward to manage Parallel GNU R jobs on HiPerDNO computational platform.  

GNU R is ideally suited to the many challenging tasks associated with data mining. In fact, according 

to Rexer's Annual Data Miner Survey in 2010, GNU R has become the data mining tool used by more 

data miners (43%) than any other. Furthermore, the GNU R platform has become a de facto 

standard among statisticians for developing statistical software, and is widely used for statistical 

software development and data analysis. Not surprisingly, GNU R is already adopted in utilities 

companies for their analysis needs. For example, IPEC and National Grid in the UK both use R 

platform for their data analysis process. Taking all of this into account, it seems that GNU R perfectly 

fits the needs and requirements of the HiPerDNO project. 
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5 Discussion and Conclusion 

Data mining techniques have been successfully applied in power systems in several areas such as 

security assessment, fault detection, power system control, load forecasting, load profiling. In this 

report, we introduced new practical machine learning applications designed to tackle real problems 

that DNOs face in their operations. Our objective is to demonstrate that data collected by power 

companies can be used to create statistical models for proactive maintenance, to exemplify how this 

can be accomplished through state-of-the–art data mining techniques, and show how DNOs can be 

most effective in building and developing predictions and decision support applications.  

We introduced a data mining framework for automatic pulse separation, including FE, FS, 

unsupervised clustering analysis and clustering result validation. In the process of FE, PCA has been 

shown to be the suitable dimension reduction technique by extracting the majority of the variation 

in the original data set. In addition, we explained the relation between PCA and SVD explicitly and 

the filtering effects of SVD on the data. A simple test on the second-order rate of change of the 

singular values was used to decide the number of PCs needed for a sufficient summary of the data. 

In the process of FS, we show NACF, the previously suggested pulse shape feature, and the raw pulse 

data show different patterns in the similarity matrix. After applying FE technique on both data sets, 

the clusters found from the raw data have much better quality, i.e., the clusters are more compact 

and well separated. Hence, we have chosen the raw data as the feature for cluster analysis. In the 

process of cluster analysis, we have stressed the need for cluster validation in order to discover the 

most appropriate unsupervised clustering method and to estimate the number of clusters for the 

separation process PD signals. Experimental results have shown that using several indexes gives 

greater confidence in choosing the appropriate unsupervised clustering and determining the correct 

number of clusters. 

We developed a condition monitoring application of overhead lines based on weather conditions 

using decision tree analysis. In general terms, decision trees are data mining tools designed to face 

classification problems which have proven to be very useful in several power systems applications 

[39]. They possess a great versatility and they are adequate to be applied to very diverse different 

real applications. Their key advantage radicates on the easy interpretability of the results, they can 

extract human readable information about the underlying process. In power systems decision  trees  

have been found  suitable  for diverse classification tasks where they were proven to be effective in 

combining real-time possibilities, accuracy, robustness to noise and  interpretability  of  the  results. 

Furthermore decision trees showed high accuracies also with a small number of input features. They 

can be constructed in a short period of time and use on-line since the tree evaluation does not 

require any time-consuming computation. Based on decision trees an algorithm for knowledge 

representation has been implemented, which extract the knowledge learnt by several decision trees 

in the form of IF-THEN rules which can be easily interpretated by domain experts. This new 

algorithm has been applied for two different task: correlation between weather conditions and 

faults in the distribution network and relation between network load levels and day and weather 

conditions. In both applications the algorithm is a powerful tool to automatically detect the main 

variables involved in the problem and offer a descriptive explanation which can be contrasted with 

expert knowledge. Furthermore, it can be used to automatically warn about possible 

situations that in the past led to faults or to high loads in the distribution network. For 

example in the case of Union Fenosa faults and weather data, if the current weather 
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conditions are similar to weather conditions that led in the past to faults maintenance teams can be 

warned and prepared in case a contingency occurs. In the case of EG data, if the current day and 

weather conditions are similar to the ones that caused in the past very high load levels in the 

distribution network, the system can be warned about a possible higher load in the network.  

Last, our work on clustering uncertain data with arbitrary correlations can be used to increase the 

accuracy of the clustering result, in case sensors in the energy distribution network (or the 

transmission channels used to transfer sensor data) fail. Using our newly designed φk-medoids 

algorithm, it is also possible to perform efficient retrospective corrections and sensitivity analysis 

using newly available data on the (mal)functioning of sensors.  Although it has become clear that 

uncertainty introduces a non-trivial extra layer of complexity, we endeavour to use the HPC platform 

to speed up the data mining process. Also, alternative clustering techniques (and in general: 

alternative data mining techniques) will be investigated to see whether these can be adapted for 

efficient use in a probabilistic setting. 
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