Fiemser

FIEMSER
Friendly Intelligent Energy Management System for

Existing Residential Buildings

Grant agreement no.: 248605 R
D9 — Interface modules

Editor: Marc BOURDEAU CSTB

Contributor(s): Borja TELLADO TECNALIA
Mauro DRAGONE ucb
Toon Van CRAENENDONCK PCL
Vincent GAY THALES
Marc BOURDEAU CSTB
Alexis BOISSONNAT CSTB

Issue Date 30 September 2011

Deliverable Number | D9

WP

WP5: System Integration

Status

ODraft OWorking CDReleased MDelivered to EC CDApproved by EC

Dissemination level

X

PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

© Copyright FIEMSER Project 2010 - All Rights Reserved

Interface modules

FIEMSER: GA no.: 248605

D9

Document history

V Date Author

Description

1.0 : 26/09/2011 : M. Bourdeau

Deliverable for internal review by the Project

Coordinator

1.1 1 30/09/2011 @ M. Bourdeau

Final version to be delivered to the EC

Disclaimer

The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its

sole risk and liability.

The document reflects only the author’s views and the Community is not liable for any use
that may be made of the information contained therein.

30/09/2011

Page 2

Interface modules FIEMSER: GA no.: 248605
D9

Summary

This deliverable, produced at month 18 of the project, results from the work achieved in task
T5.1 “Interfaces development” which is the first task of WP5 dealing with system integration.

The main goal of this Work Package is the integration of the main components of the
FIEMSER system (Monitoring & Control System Manager, Intelligent Control System, User
Interface, and FIEMSER Data Base). It is in charge of updating the specification of the
communication between components drafted in D4 (System Architecture), developing the
interfaces that allow their integration, designing testing protocols and validating the
integration.

The main objective of task T5.1 is to refine the design of the architecture developed in task
T1.3, and specify the interfaces between components, by considering the latest development
of the FIEMSER components achieved in WP2, WP3 and WP4.

The work addressed in this task consisted in:
¢ Refine the FIEMSER network topology in case of a multi-dwelling building

e Detail the communication mechanisms within the FIEMSER system (Web Service-
based synchronous communication, and OSGi-based asynchronous communication of
events)

e Describe the interactions between FIEMSER components, in terms of required and
provided services, as well as published and subscribed events.

The specifications resulting from this task T5.1 will be directly used by the following
activities of WP5 devoted to the development of the interfaces to achieve the system
integration.

30/09/2011 Page 3

Interface modules FIEMSER: GA no.: 248605

D9
Contents

SUMMARY L.ttt ettt et e e b et e e bt e e e b e e nab e e e ar b e e e rae e nes 3
ABBREVIATIONS ...ttt et e et e e s e e e st e e e snaeeenneeeans 5
FIGURES ...ttt e et e s bt e e sb e e e b e e s bae e s be e e nnbeeenrbaeans 7
TABLESo e e et e e nareeanaeeenes 8
L INTRODUGCTION ...ttt sttt nbn e be e be e e b e e snbeeennaeas 9
1.1 DELIVERABLE CONTENT tttuttttittttesttteastttesssseessssesssssesssssesssssessssesssssssssssesssssesssssssssssessssnes 9
1.2 RELATION TO OTHER TASKS...c.uttteittteesttreastteeastteeassseesssseessssesssssssssssesssssesssesesssssesssssessenes 9
2. UPDATE OF ARCHITECTURAL APPROACH.......cccoi e 11
2.1 NETWORK TOPOLOGY ...uveeeiuteeeiutreaitteeassesesstseessesesssesasssssassssesssssssssssssnsssssnsssssnssessssesnnes 11
2.2 SYSTEM ARCHITECTURE & COMMUNICATION BETWEEN COMPONENTS ...c.vvvviiveeniinnennen 12
2.2.1 SOA, WED SEIVICES, OSGl..uureiiiiiiiiieeiiiiiiie et e ettt e e e s st se et teessssse e rteetessssssrrareeeeesssasines 12
2.2.1.1 Service-Oriented ArchiteCture (SOA).....coiiiiiiiieetre e 12
2.2. 1.2 WEBD SBIVICES ...ttt ettt st e e bt et e et e st e s be e s be e aeesbesaeesbeesbeebeebeenbeeneesreen 13
2.2.1.3 OSGi oottt bbb 14
2.2.2 Principles of communication between FIEMSER COMPONENTS.........cccovvviiinencnieiiciains 14
2.2.2.1 WS-based synchronous COMMUNICATIONcccveiiriiieieie et sae et sne 14
2.2.2.2 OSGi-based asynchronous CoOMMUNICALIONoververieiennieeeereee s enees 15
2.2.3 XML schema for http/REST COMMUNICALION.cccciiviiiiiiieiieeie e 16
2.2.4 Modelling of events / EVENES APL.........coiiioice et 18
3. INTERACTIONS BETWEEN COMPONENTSoooiiiii e 22
3.1 BMCN (BUILDING MONITORING & CONTROL NETWORK)......ccuviuiriieieienieniesieniesienneans 23
3.2 1CS (INTELLIGENT CONTROL SYSTEM)...ctteitiitieitieiesiesteesesseessaessesseessaessesseessaesssssessns 23
3.3 UI CSS (USER INTERFACE CORE SERVICES SERVER)cviviiieniiniiniieieiesie e s siesnens 28
3.3.1 For the Facility Manager Ulcccooiiiiiiiiieeeiseses e 29
3.3.2 FOr the ENC-USEN Ul......ccuoiiiiie ittt ettt e e 32
A DATA BASE ..ottt ettt e e e e naa e nes 37
4. DEVELOPMENT ENVIRONMENT ..o 38
5. CONCLUSION ...ttt e st e s nbb e st e e e snbe e e snbeeennneeen 39
ACKNOWLEDGEMENTSottt nnne s 40
REFERENGCES ... oottt et nnne s 41

30/09/2011 Page 4

Interface modules FIEMSER: GA no.: 248605

D9
Abbreviations
API Application Programming Interface
BMCN Building Monitoring and Control Network
CORBA Common Object Request Broker Architecture
CRUD Create/Read/Update/Delete
CXF Apache CXF is an open source services framework
DB Data Base
D-OSGi Distributed OSGi
FIEMSER Friendly Intelligent Energy Management System for Existing Residential
Buildings
H&S Hardware & Software
HTTP HyperText Transfer Protocol
ICS Intelligent Control System
IP Internet Protocol
JSON JavaScript Object Notation
LAN Local Area Network
oBIX open Building Information eXchange
OSGi Open Service Gateway initiative
REST REpresentational State Transfer
R-OSGi Remote OSGi
RPC Remote Procedure Call
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol (originally)

30/09/2011 Page 5

Interface modules

FIEMSER: GA no.: 248605
D9

SVN Apache Subversion

Ul CSS User Interface Core Services Server
UML Unified Modelling Language

URI Uniform Resource Identifier

wW3C World Wide Web Consortium
WLAN Wireless Local Area Network

WS Web Service

WSDL Web Service Definition Language
XML eXtended Markup Language
YAML YAML Ain't Markup Language
30/09/2011 Page 6

Interface modules FIEMSER: GA no.: 248605

D9
Figures

FIGURE 1 - INTERDEPENDENCIES AMONG WORK PACKAGEScceiititiiieitieiieesiessiesstesssessssessssessssessssesssnessssesssnes 9
FIGURE 2 - INTERDEPENDENCIES AMONG WPS5 TASKSuviiiiiiiiieiiee st siee st siessibe e stee e stasssvassntaasnseesnsaesnnenans 10
FIGURE 3 - FIEMSER NETWORK TOPOLOGY ...uvtiittieitiesitieiueesseessessssesssesssseesssessssessnsesssssssnsesssessssessssessnsessnsesans 12
FIGURE 4 - EVENT COMMUNICATION ARCHITECTURE ..e.uviiitteiiiieiteesittessteesssessstesssseessessssessssessssesssssssssessnsessssesans 14
FIGURE 5 - EVENT COMMUNICATION BETWEEN “REMOTE” OR “DISTRIBUTED” OSGI PLATFORMSccovviiivenivnnns 15
FIGURE 6 - EXAMPLE OF HTTP/REST COMMUNICATION WITH THE FIEMSER DATABASEcccvivieieiciesresiesieaneas 17

FIGURE 7 - COMMON XML SCHEMA FOR HTTP/REST COMMUNICATION IN FIEMSER (TEMPORARY VERSION)... 18

FIGURE 8 - BACKUS-NAUR FORM FOR THE BMCN EVENT'S TOPIC.....uuuiiiitiieeitieeeeeeeeessreeeestveeesssaesessnseeesssseseanns 19

30/09/2011 Page 7

Interface modules FIEMSER: GA no.: 248605

D9

Tables
TABLE 1 - BMCN'S EVENT DESCRIPTION ..iiiiiiiiiiuttiiiieeeisiiiieiieeesssssbbssssssssssissbssssssssssssssssssssssssssssssssssessssssssssssesss 20
TABLE 2 - CHOSEN PLATFORMS / FRAMEWORKS FOR FIEMSER COMPONENTScvviiiiiiiie ettt 38

30/09/2011 Page 8

Interface modules FIEMSER: GA no.: 248605
D9

1. Introduction

1.1 Deliverable content

This deliverable, produced at month 18 of the project, results from the work achieved in task
T5.1 “Interfaces development” which is the first task of WP5 dealing with system integration.

The main goal of this Work Package is the integration of the main components of the
FIEMSER system (Monitoring & Control System Manager, Intelligent Control System, User
Interface, and FIEMSER Data Base). It is in charge of updating the specification of the
communication between components drafted in D4 (System Architecture), developing the
interfaces that allow their integration, designing testing protocols and validating the
integration.

The main objective of task T5.1 is to refine the design of the architecture developed in task
T1.3 (WP1), and specify the interfaces between components, by considering the latest
development of the FIEMSER components achieved in WP2, WP3 and WP4 (see below
“relation to other tasks”). This is a key task because a successful integration between system
components requires a detailed definition of the various communication mechanisms and
associated rules (protocol, syntax...). Besides, it also requires a common understanding of the
semantic information passed between system components. This is achieved thanks to the
FIEMSER Data Model shared between all modules.

Due to the work progress between the delivery of D4 (System Architecture) and D5
(FIEMSER Data Model), and this deliverable, substantial changes have been made in the
FIEMSER Data Model, at level of both object properties and associated methods. These
changes have been reported in the UML description of the Data Model, which is an internal
project resource shared between partners, also used for the generation of Java objects.

Additionally, a common project structure has been fixed in order to avoid integration
problems between software components that are developed by different partners.

1.2 Relation to other tasks

The interaction of WP5 with the rest of work packages is summarized by the following figure:

WP2
P Monitoring & |—
Operation Tool

WP1 WP3 WP5 WP6
FIEMSER [—ip| Intelligent (—9»| System |——pp| FIEMSER
Specification Control System Integration Validation
WP4

P»| Multimodal [~
User Interface

Figure 1 - Interdependencies among work packages

30/09/2011 Page 9

Interface modules FIEMSER: GA no.: 248605
D9

WP1 defined the FIEMSER technical specification, which is used as input by WP2, WP3 and
WP4, which run in parallel and develop the main components of the FIEMSER system: the
monitoring & operation network and the data base (WP2), the intelligent control system
(WP3) and the multimodal GUI (WP4).

The results of these parallel work packages are integrated in WP5 to provide the FIEMSER
system that will be validated in WP6.

This deliverable (D9) is the first one to be produced by WP5 and takes as main inputs two
deliverables that were developed in WP1 (D4 - System Architecture and D5 - FIEMSER data
model) and the interaction with WP2, WP3 and WP4 development activities.

“D4 - System Architecture” defines the overall FIEMSER reference architecture, specifies
the interface of the GUI with the rest of FIEMSER modules and defines system development
and operation environment (operating system, programming languages, etc.) and “D5 -
FIEMSER Data Model” complements it with the detailed definition of FIEMSER data
model.

WP2, WP3 and WP4 development activities provide a more detailed analysis about the
implementation and APIs of each FIEMSER module.

D9 deliverable is the main output of “Task 5.1 - Interfaces development” and will fix the
FIEMSER module interfaces. This deliverable will be the main input, together with the
FIEMSER modules implementation, to “Task 5.2 - Pair integration and testing of
components”. The following figure shows the interdependencies among WP5 tasks:

T5.2
T5.1 Pair integration and T5.3
Interfaces development — testing of —p| Complete system
components integration

Figure 2 - Interdependencies among WP5 tasks

30/09/2011 Page 10

Interface modules FIEMSER: GA no.: 248605
D9

2. Update of architectural approach

2.1 Network topology

In WP1, two scenarios were defined: “Isolated Home Scenario” and “Multiple Dwelling
Scenario”. In Task 5.1 we have selected the “Multiple Dwelling Scenario” as the reference
one because it includes and extends the “Isolated Home Scenario” requirements. In this
scenario, we anticipate that a FIEMSER system is deployed within a building for the energy
monitoring and management of several apartments. In such a scenario, we depict hereafter the
main FIEMSER components which are deployed, as well as the communication channels
between them:

e FIEMSER components (H&S)

o 1 BMCN per dwelling: the Building Monitoring and Control Network
(BMCN) consists of a Box which bridges between the multiple sensors and
actuators deployed in the dwelling on the one hand, and the FIEMSER server
on the other hand.

o0 1 centralized Database, ICS and Ul CSS which are embedded on a single
server machine

Note: the FIEMSER Server can be located in the building and connected on a
private IP LAN with all Boxes. An alternative is that the FIEMSER Server is in
charge of multiple dwellings situated in multiple buildings. In that case, the
FIEMSER Server is located in a backbone infrastructure and connects through
the WLAN/Internet and a Proxy to the Boxes located in each of the buildings.

e Communication channels

o Between Box and FIEMSER Server: this is done through
synchronous/asynchronous communications over the IP/Ethernet LAN, using
respectively HTTP-REST or OSGi event interfaces.

o0 Between Box and Sensors/Actuators: this is done through embedded drivers
for each of the underlying communication protocols, e.g., KNX, Modbus,
Zigbee, or any third-party protocol.

o Internally within FIEMSER Server between ICS, CSS, and DB: this is done
through synchronous/asynchronous communications using respectively HTTP-
REST or OSGi event interfaces.

30/09/2011 Page 11

Interface modules FIEMSER: GA no.: 248605
D9

FIEMSER Server Weather Forecast
Database, CoreService, ICS °

HTTP/REST| OSGieventhus

fJ

HTTP/REST HTTP/RESVI HTTP/REST HTTP/REST
05Gl event bus OSGleventbus
o e WA
Q | PDA Desktop DigitalTV Digital TV Desktop

Dwelling#101 Dwelling#102

Figure 3 - FIEMSER network topology

2.2 System architecture & Communication between components
2.2.1 SOA, Web Services, OSGi
2.2.1.1 Service-Oriented Architecture (SOA)

As stated in deliverable D4 “FIEMSER System Architecture”, the FIEMSER system relies on
the Service-Oriented Architecture (SOA) paradigm with the definition of modular service
interfaces. Service Oriented Architecture (SOA) is a distributed computing paradigm in which
business functionality is provided by autonomous systems called services, which are exposed
in a network infrastructure through well-defined interfaces. This allows building complex yet
flexible systems as well as reusing application logic through the composition of services. The
key advantage of a SOA approach is to offer modularity, isolation, flexibility, loose-coupling,
and interoperability, among a large-scale of heterogeneous networked devices.

SOA is a concept which is not tied to a particular technology. However, Web Services are
currently the preferred communication method to deliver interoperable SOA. This is why we
chose this technology for FIEMSER.

Additionally, we also chose the OSGi framework as an integration platform, since it is well
adapted to embedded and mobile devices (see below). Besides, OSGi contributes to our
global SOA approach in the sense that it uses a modular and service-oriented model.

30/09/2011 Page 12

Interface modules FIEMSER: GA no.: 248605
D9

2.2.1.2 Web Services

Web services constitute application programming interfaces (API) or Web APIs that are
accessed via Hypertext Transfer Protocol (HTTP) and executed on a remote system hosting
the requested services.

Web Services can be used in different ways. Three main types of Web Services are generally
considered, based on respectively: XML-RPC, SOAP, and REST.

1. XML-RPC and SOAP

These two protocols can be grouped since they follow the same architectural “philosophy”.

XML-RPC is a remote procedure call (RPC) protocol which uses XML to encode its calls and
HTTP as a transport mechanism.

SOAP (originally Simple Object Access Protocol) is the traditional, standards-based approach
for developing Web Services. It specifies a protocol (over HTTP) for exchanging structured
information (XML-based messages) in the implementation of Web Services.

The principle of both protocols is to call remote business methods by using application-
specific vocabulary, which tends to say that there are not generic protocols. In SOAP, these
methods are defined in the WSDL (Web Services Description Language) contract.

2. REST

In reaction to the more heavy-weight SOAP-based standards, modern Web Services are
moving from SOAP-based services towards Representational State Transfer (REST) based
communications.

REST is not a protocol but an architecture style for designing networked applications. The
idea is that, rather than using complex mechanisms such as CORBA, RPC or SOAP to
connect between machines, simple HTTP is used to make calls between machines (point-to-
point communication). Contrary to SOAP, which follows a method-oriented model, REST is
resource-oriented. The focus is on interacting with resources, rather than messages or
operations.

A RESTful Web Service is a simple Web Service implemented using HTTP and the
principles of REST. It is a collection of resources, with three defined aspects:

e The base URI for the Web Service, such as http://example.com/resources/

e The internet media type of the data supported by the web service. This is often JSON,
XML or YAML but can be any other valid internet media type.

e The set of operations supported by the Web Service. RESTful applications use simple
HTTP requests to post data (create and/or update), read data (e.g., make queries), and
delete data (CRUD=Create/Read/Update/Delete).

30/09/2011 Page 13

Interface modules FIEMSER: GA no.: 248605
D9

So, unlike SOAP-based Web Services, RESTful Web Services do not require WSDL service-
API definitions.

2.2.1.3 OSGi

As presented in deliverable D4, the FIEMSER platform is based on the OSGi (Open Services
Gateway initiative) framework. Applications are modularized in the form of bundles that can
be remotely installed, started, stopped, updated and uninstalled without requiring a reboot.
These bundles are developed by using the JAVA language.

The OSGi Alliance has specified many services. Amongst them, one of particular interest for
FIEMSER is the Event Admin Service, which provides an inter-bundle communication
mechanism based on a publish-and-subscribe model to handle events.

Cvert Cvent
PLhblisher Subscrber

e

Figure 4 - Event Communication Architecture

2.2.2 Principles of communication between FIEMSER components

To support use cases, two types of communication between FIEMSER components should be
considered:

e Synchronous communication: this will be achieved through a Web Services layer
developed for each main FIEMSER component.

e Asynchronous communication: this will be achieved through OSGi publish/subscribe
mechanism allowing notification of events to other components.

2.2.2.1 WS-based synchronous communication

For WS-based synchronous communication, any of the above-mentioned architectures can be
chosen for each FIEMSER module. However, the REST architecture will be preferably
implemented because it is a lighter and more extensible solution. No WSDL-like description
of the services is required for REST. What is needed is to define the XML schema used for
exchanging data (see “2.2.3 XML schema for http/REST communication”).

30/09/2011 Page 14

Interface modules FIEMSER: GA no.: 248605
D9

2.2.2.2 OSGi-based asynchronous communication

For asynchronous communication, the following schema illustrates how OSGi events
publish/subscribe mechanism will be implemented for FIEMSER. Since the FIEMSER
architecture is distributed on several computers (boxes + main server), we need some means
to pass events between remote OSGi platforms. This will be achieved through the distributed
OSGi extension R-OSGi'.

Server Box

| Web Services |

OSGi EventHandlers Bridge OS&Gi

between
Event Event Buses Event
Bus | | | | Bus
AVAVAN
J I
o I I
Events

S&A bundles

Figure 5 - Event communication between “remote™ or “distributed”” OSGi platforms

R-OSGi provides a transparent way to access services on remote OSGi platforms. All that a
service provider framework has to do is registering a service for remote access. Subsequently,
other peers can connect to the service provider peer and get access to the service. Remote
services are accessed in an entirely transparent way. For every remote service, a local proxy
bundle is generated that registers the same service. Local service clients can hence access the
remote service in the same way and without regarding distribution.

Additionally, R-OSGi provides a bridge that allows seamless communication of events
between distant computers. As a consequence, all events that are published on one machine
are seen on the remote one as if they have been produced locally. On each box side (BMCN
module), OSGi bundles will be in charge of publishing the events that occur on the network
(e.g. a light is switched on). These events will be automatically notified on the Event Bus of
the remote OSGi framework (server side). Application-specific bundles (Event Handlers) will
be in charge of calling the relevant web services in response to the events which they would

! The other distributed extension of OSGi, D-OSGi, specifically targets Web Services and poses a much bigger
overhead - 10MB - compared to R-OSGi Apache CXF implementation, which is 230 KB. R-OSGi can be
deployed in minimal OSGi implementations, such as Concierge, targeting computationally constrained devices.

30/09/2011 Page 15

Interface modules FIEMSER: GA no.: 248605
D9

have subscribed to. There will be typically one Event Handler per FIEMSER component (i.e.
one for the Data Base, one for the ICS, and another one for the Ul CSS).

Even though R-OSGi is a sophisticated middleware for OSGi frameworks, it uses a very
efficient network protocol and has a small footprint. This makes it ideal for small and
embedded devices with limited memory and network bandwidth. The service runs on every
OSGi-compliant environment. R-OSGi has been tested with Eclipse Equinox, Knopflerfish,
and Oscar / Apache Felix.

2.2.3 XML schema for http/REST communication

We chose to use the XML language for the description of resources data returned by the
RESTful Web Services developed in FIEMSER (see “2.2.1.2 Web Services”).

In order to ensure an easy use of these Web Services, and allow the processing (parsing) of
the returned XML streams, it is needed to define an XML schema? for each HTTP/Rest call.
In fact, since many calls are similar in the sense that the returned information embeds more or
less the same structure of data, it is possible to define a common XML schema to address,
even not all communications with Web Services, at least a good part of them. Only the most
complex Web Services would then request the definition of specific XML schemas.

The following figure gives an example of http/REST communication between a FIEMSER
component (e.g. the ICS) and the FIEMSER Database. In this example, the user (represented
by the ICS module) wants to get the details of the building corresponding to the id *123’.

2 XML Schema as a recommendation published by the W3C in May 2001 is a language for describing XML
document formatthat defines the structure andthe content typeof an XML document. This
definition can include checking the validity of this document.

30/09/2011 Page 16

Interface modules FIEMSER: GA no.: 248605

D9
The client sends a request to the FIEMSER Database server: -
hitp:/iwww fiemser eu/db/building/view/123
(]
The server
sends backthe
building details in
<7uml wversion="1.0" encoding="I30-8853-1"7> e----7 XML format. This
<fiemser xmlns="http: w3schools. com” XML stream is
xmlins :xsi="http w . w3.or g/ /2001 MMLSchema-1nstance” .
x=s1:schemalocat ion="http://wew.f1enser. eu/db/db. xsd" > defined b}‘ a
XML schema
=modelObject className=‘Building’ id=‘123'»]
<properties= "> Referenceto
<property name=‘idGBXm]'=1254EC=/ proper ty= the XML
«</propertiess
schema

<references=
«<reference className=‘BuildingPartition' id="456"'/»
</references=

</modelObject=
< /Fiemser =

Example of xmi file
Figure 6 - Example of http/REST communication with the FIEMSER database
A provisory version of the common XML Schema is given hereafter. This schema will have

to be validated against the set of Web Services to be provided by the FIEMSER components,
and the Database in the first place.

<?xml version="1.0"?>

<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.w3schools.com”
xmlns="http://www.w3schools.com">

<xs:element name="fiemser">
<xs:complexType>
<xs:sequence>

<!-- Define ModelObject (top level) -->

<xs:element name="modelObject">
<xs:attribute name="className" type="xs:string" use="required"/>
<xs:attribute name="id" type="xs:integer" use="required"/>

<I-- ModelObject contains some basics properties-->
<xs:element name="properties">
<xs:sequence>

30/09/2011 Page 17

Interface modules FIEMSER: GA no.: 248605
D9

<xs:element name="property">
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:element>
</xs:sequence>
</xs:element>

<!I-- And reference some complexes objects -->
<xs:element name="references">
<xs:sequence>
<xs:element name="reference">
<xs:attribute name="className" type="xs:string" use="required"/>
<xs:attribute name="id" type="xs:integer" use="required"/>
</xs:element>
</xs:sequence>
</xs:element>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

<fxs:schema>

Figure 7 - Common XML Schema for http/REST communication in FIEMSER
(temporary version)

2.2.4 Modelling of events / Events API

The BMCN will use the Event Admin OSGi service to broadcast the events generated by any
sensor and actuator network administered by the BMCN.

The Event Admin service provides an inter-bundle communication mechanism based on an
event publish and subscribe model. An Event object has a topic, defining the type of the
event, and a set of properties associated to the event. The topic is intended to serve as a first-
level filter for determining which handlers should receive the event and also optimize the
dispatching of the events to the handlers. Topics are arranged in a hierarchical namespace.
Each level is defined by a token and levels are separated by slashes. Topics should be
designed to become more specific when going from left to right.

Event handlers must be registered as services with the OSGi framework under the object class
org.osgi.service.event.EventHandler. Event handlers should be registered with a property
(constant from the EventConstants class) EVENT_TOPIC. Handlers can provide a prefix
(which can terminate with the wildcard token ("*’\u002A) to specify to which topics or sub-
group of topics they want to subscribe. Each Event Handler is notified for any event which
belongs to the topics the handler has expressed an interest in. In addition, event handlers can

30/09/2011 Page 18

Interface modules FIEMSER: GA no.: 248605
D9

be registered with a service property named EVENT_FILTER. The value of this property
must be a string containing a LDAP filter. Any of the event's properties can be used in the
filter expression. For example, the filter '(&(temperature<18)(temperature>=22))" filters all
temperature updates where the temperature is less than 18 degrees and more than or equal 22.

Figure 6 represents the description in Backus-Naur® form of the topics used by the BMCN to
implement the notification service specified in D4. The first token of the topic ("Fiemser") is
used to identify all the events on the OSGi bus addressed to FIEMSER components. Other
values may be reserved in the future to handle non-application events, for instance, used for
debugging and testing purpose. The second token identifies the instance of the BMCN (in the
case of a multi-dwelling scenario there will be multiple instances connected to the R-OSGi).
The third token specifies the nature of the events, i.e. if the event is an update on the status of
a device, the characteristics of a newly installed device, or a data update. The remaining
tokens in the topic helps addressing the source of the event at increasing levels of resolution,
respectively (i) all the devices connected to the BMCN, (ii) a specific building area, (iii) the
devices of a specific type, (iv) one specific device. Ctrl Devices may include both sensors and
actuators.

<Topic> ::="/" "fiemser" "/" <BMCNID> "/" <EventType> "/" <Address>

<EventType> := "status" | "discovery" | "data" | "behaviour"

<Address> := ("*" | <BuildingLevelAddress>)

<BuildingLevelAddress> := <BuildingArealD> "/" (* | <CtrIDeviceTypelLevelAddress>)
<CtrIDeviceTypeLevelAddress > := <CtrIDeviceTypelD> "/"(*|<CtrIDeviceLevelAddress>)
<CtrIDevicelLevelAddress > := <CtrlDevicelD>

<CtrIDeviceTypelD> := <ActuatorType> | <SensorType>

<ActuatorType> := "Switch" | "Dim" | "HVAC" | "Thermostat" ...

<SensorType> := "Humidity" | "Temperature” | "Light | "Energy" |

<BMCNID> := Numeric {1..numbers of BMCN}
<BuildingArealD> := <Text>
<CtrIDevicelD> := <Text>

Figure 8 - Backus-Naur form for the BMCN event's topic

Examples:
The following are some examples of BMCN event topics.

1) Topic = /fiemser/bmcnl/*, to subscribe to all type of notifications originated by the
BMCN in the first apartment.

* A notation technique for context-free grammars, often used to describe the syntax of languages used in
computing, see http://en.wikipedia.org/wiki/Backus-Naur_Form.html .

30/09/2011 Page 19

Interface modules FIEMSER: GA no.: 248605

D9

2)

3)

4)

5)

6)

Topic = /fiemser/bmcn2/status/*, to subscribe to all status update events originated by the
bmcn in the second apartment.

Topic = /fiemser/bmcnl/discovery/kitchen/*, to subscribe to all discovery updates
originated from the kitchen of the first apartment.

Topic = /fiemser/bmcnl/data/kitchen/temperature/* to receive all the temperature updates
from any temperature sensor installed in the kitchen of the first apartment®.

Topic = /fiemser/bmcn1/status/kitchen/temperature/TOvenl, to subscribe to all the status
update events originated by a thermometer installed near the oven in kitchen of the first
apartment.

Topic = [fiemser/bmcnl/behaviour/kitchen/*, to subscribe to all the behaviour
notification originated from the kitchen of the first apartment.

Table 1 lists the properties used to describe each event for all event types supported by the
FIEMSER's BMCN components. The second column lists all the properties associated to each
event and describes their possible values with a Backus-Naur formula. In addition, each event
object contains an Address property specifying a building level address used to identify the
source of the event.

Table 1 - BMCN's Event Description

Event Types Description and Properties

Status Raised every time the status of an existing device changes

Address::= <BuildingLevel Address>//specifies building area and device
Status::= "DISABLED" | "TACTIVE" | "FAILURE"

ErrorCode::= <Numeric>

Discovery Raised when a new device is connected to the BMCN for the first time
Address::==<BuildingLevel Address>//specifies building area and device
+ device dependent properties (e.g. unit of measure, accuracy,
measurement range, etc.)

Data Raised whenever a device generated new sensor data
Address:==<BuildingLevel Address>//specifies building area and device
Value ::= <Numeric>

Behaviour Raised when the value (e.g. on/off) of an existing device changes after
the user has triggered the activation of a behaviour specified at the
BMCN level.

Address:==<BuildingLevel Address>//specifies building area and device
affected by the behaviour

Status::="NEW" | "ACCEPTED" | "REJECTED" // specifies if this is a

* A client would need to subscribe to this topic with the LDAP filter '(temperature<18) ' to be notified only when
the temperature drops below 18 degree Celsius.

30/09/2011 Page 20

Interface modules FIEMSER: GA no.: 248605

D9

new activation of a behaviour, or if it is subsequent notification of user
acceptance/rejection of the ICS's override.

Value ::= <Numeric> // specifies the new value set for the device
InstanceBehaviourID ::= <Numeric> // the id of the behaviour instance.

It can be used to provide a configuration to override the one that was
automatically set by behaviour

30/09/2011 Page 21

Interface modules FIEMSER: GA no.: 248605
D9

3. Interactions between components

This section describes, for each FIEMSER component:

o Interfaces/Services (required and/or provided by this component), with reference to
UML methods and associated http/REST calls. Including a short definition.

e Events (published or subscribed). Including a short definition. In case of subscribed
events, also including the http/REST call used in the Event Handler to process the
event.

Following templates are used to report this information.

Provided services

UML method http/REST call

Required services

Targeted component E.g. Database

UML method http/REST call

Published events

Event message

Subscribed events

Event message http/REST call

30/09/2011 Page 22

Interface modules

FIEMSER: GA no.: 248605
D9

3.1 BMCN (Building Monitoring & Control Network)

Besides the event services described in Section 2.2.4, the BMCN provides the following

service via both R-OSGi and HTTP/REST.

Provided Services

UML method

HTTP/REST call

Configure (in:String, in:String, in:Configurationinfo)

Definition: Configures a given device, following a Configurationinfo
structure that describes the required configuration.

1#1: deviceld
1#2: behaviourlnstanceld
I#3: ConfigurationInfo object

If the behaviourinstanceld is -1, this request is a standard request.

If the behaviourinstanceld is > 0, this request is used to override what
was set automatically by the BMCN after a behaviour was triggered by
the user. Upon reception of this request, the BMCN will ask the user if
he/she wants to accept/reject the override. In the case of acceptance,
the BMCM will cancel the effect of the behaviour and set the
configuration specified in the override request. In case of rejection, the
BMCN will ignore the override request. In both cases,
acceptance/rejection will be notified via the Event service described in
Section 2.2.4.

http://www.fiemser.eu/bmcnX/configu
ration?deviceld=123&behaviourlnstan
celd=123&configurationType=...&par
ameterl=...

3.2 ICS (Intelligent Control System)

The ICS module as well as other modules of the FIEMSER platform exposes two kinds of
interfaces: WS (Web Service) interface and OSGi events interface.

e WS interface: The ICS WS interface is developed using Jetty embedded web

application server.

The approach of using a embedded server inside the ICS module allows to follow a
loosely coupled approach during the FIEMSER platform development. For WS
architecture different approaches have been studied but the HTTP REST approach has
been chosen. The choice of HTTP REST as WS development approach has been

supported by two main reasons.

1. Simple to develop and upgrade: Based on a standardized way of service
declaration (URI naming) and information exchange methods, operations
are implicitly defined in the calls, makes easy to upgrade software

platforms.

30/09/2011

Page 23

Interface modules FIEMSER: GA no.: 248605
D9

2. Performance: Due to its low resource requirement is especially valid for
environments in with light components are required. It also facilitates very
low coupled architectures.

e OSGi interface: The OSGi interface acts as gateway between the ICS module and the
R-OSGi framework. The OSGi interface, developed as a bundle, mainly has the role
of forwarding S&A module events to the ICS module. In addition, it also implements
the mechanism of publishing commands targeting the S&A module.

Next tables describe the functions that compose the above introduced interfaces.

Provided Web Services

UML method HTTP/REST call

setDeviceValue (in:String)

Definition: Used to update the ICS values with the published device
Events. It can be used by different components to update ICS runtime
values.

http://www.fiemser.eu/ics/eventinfo?
idEventSource="XX’&date="yyyy-
mm-ddT24hh:mm:ss’&value="XX’

Required Web Services

Targeted component ‘ CSS
UML method HTTP/REST call

notifyNewAdvice (in:String, in:Advice)
Definition: Used to inform the end-user of a new advice.
http://www.fiemser.eu/css/notify_adv

I#1: User Id ice?userlD=123&advice=Advice
I#2: Advice object
O: none
Targeted component Database ‘
UML Method HTTP/REST call

getBuilding ()

Definition: This function retrieves the required information to build
the “Building” object. Building is the main information container
object. It has the description of the building environment where the
FIEMSER platform will be deployed

http://www.fiemser.eu/db/building/vie
w/123

getBuildingProgrammedSchedule (in:String, in:Date,
out:BuildingPartitionSchedule)
Definition: For certain building partition id retrieves and reference

date returns its building partition schedule. http://www.fiemser.eu/db/buildingPro

grammedSchedule/view?buildingParti

I#1: Building partition id. tionld=123&date=20110101

I#2: Date to be used for schedule fetching
O: BuildingPartitionSchedule object

30/09/2011 Page 24

Interface modules

FIEMSER: GA no.: 248605
D9

getScheduleByType (in:String, in:Date, out:List<Schedule>)
Definition: For certain device type and date it retrieves their Schedule
list.

I#1: Device type for which the schedule is wanted
I#2: Date to be used for schedule fetching
O: List of Schedule objects that belong to that type of devices

http://www.fiemser.eu/db/schedule/list
?typeld=123&date=20110101

getBuildingZones(in:String, out:List<BuildingZone>)
Definition: For certain building id retrieves its BuildingZones

I#1: Building partition id.
O: List of BuildingZone objects that belong to the specified building
partition

http://www.fiemser.eu/db/buildingZon
e/list?buildingld=123

getBuildingSpaces (in:String out:List<BuildingSpace>)
Definition: For certain building id its spaces are retrieved

I#1: Building zone id.
O: List of BuildingSpace objects that belong to the specified building
zone

http://www.fiemser.eu/db/buildingSpa
ce/list?buildingZoneld=123

getDeviceL.ist (in:String, out:List<Device>)
Definition: Function used to fetch the device list associated to certain
building space.

I#1: Building space id.
O: List of Device objects that belong to the specified building space

http://www.fiemser.eu/db/device/list?
buildingSpaceld=123

getDeviceListByType (in:String, in:String, out:List<Device>)
Definition: This function is used to retrieve Device list that belong to a
certain building space and also to a certain device type

I#1: Building space id.
I#2: Device type identification.
O: List of Device objects that belong to the specified building space

http://www.fiemser.eu/db/device/list?t
ypeld=123&buildingSpace=123

getHomeUsageProfile (in:String, in:Date out: HomeUsageProfile)
Definition: This function retrieves the HomeUsageProfile associated
to certain building g partition id and date.

I#1: Building partition identification.

I#2: Date used as reference to fetch the HomeUsageProfile.

O: HomeUsageProfile object that belongs to the specified building
partition and date.

http://www.fiemser.eu/db/homeUsage
Profile/view?buildingPartitionld=123
&date=20110101

getZoneUsageProfile (in:String, out:List<ZoneUsageProfile>)
Definition: Function that for a certain home usage profile id retrieves
its ZoneUsageProlile list.

I#1: Home usage profile identification.
O: List of ZoneUsageProfile objects that belong to the specified
HomeUsageProfile.

http://www.fiemser.eu/db/zoneUsageP
rofile/list?homeUsageld=123

getApplianceUsage (in:String, in:String, out: ApplianceUsage)
Definition: Function that having as inputs the scene id and the
appliance id retrieves its usage

I#1: Scene identification.

I#2: Appliance identification

O: ApplianceUsage object that belongs to the specified scene and
appliance

http://www.fiemser.eu/db/applianceUs
age/view?sceneld=123&applianceld=
123

30/09/2011

Page 25

Interface modules

FIEMSER: GA no.: 248605
D9

getComfortSettings (in:String, out:ComfortSettings) Definition:
Function that of a scene id gets its associated comfort settings

I#1: Scene identification.
O: ComfortSettings object that belongs to the specified scene and
appliance

http://www.fiemser.eu/db/comfortSetti
ngs/view?sceneld=123

getControlRules (in:String, out:ControlRule)
Definition: For certain building partition id retrieves its control rules

I#1: Building partition identification.
0O: ControlRule object that belongs to the specified building partition

http://www.fiemser.eu/db/controlRule/
view?buildingPartitionld=123

getUserInformation (in:string out: List<User>)
Definition: Function that for a certain BuildingPartition retrieves the
Users associated to it

I#1: Building partition identification.
O: List of User objects linked to certain building partition. In addition
user roles and granted privileges are also retrieved

http://www.fiemser.eu/db/permissions
Mlist?buildingPartitionld=123

getDatalog (in:String, in:Date, out:Datal.og)
Definition: Function that for certain device id and date retrieves its
Datalog

I#1: Device identification.
I#2: Date used to fetch device DatalL.og information
0O: Datalog object that belongs to the specified device and date

http://www.fiemser.eu/db/dataLogs/lis
t?deviceld=123&date=20110101

getOperationMode (in:String, out:OperationMode)
Definition: Function that for certain device id gets its OperationMode

I#1: Device identification.
O: OperationMode object that belongs to the specified device

http://www.fiemser.eu/db/operationM
ode/view?deviceld=123

getWeatherForecast (in:Date, out:WeatherForecast)

Definition: Function that for certain date retrieves its weather forecast.
If the date is the current day the weather forecast returned will be the
available last update.

I#1: Date to use as reference to fetch the weather forecast
0O: WeatherForecast object that belongs to that date

http://www.fiemser.eu/db/weatherFore
cast/view?date=20110101

getScenes (in: String, out:List<Scene>)
Definition: Function that retrieves the scenes related to the specified
building zone.

I#1: Building zone identification
O: List of Scene objects that apply to the specified building zone

http://www.fiemser.eu/db/scene/list?b
uildingZoneld=123

getDayAheadPrices (in:Date, out:DayAheadPrices)

Definition: Function that for a specified date retrieves the applicable
energy prices.

I#1: Date used as reference to fetch the energy prices. If the current
date is used the prices applicable for day are returned

O: DayAheadPrices related to the used date.

http://www.fiemser.eu/db/dayAheadPr
ces/view?date=20110101

getHomeL oads (in:String, out:List<HomeL oad>)
Definition: Function that for a specified building space retrieves its
home load list.

I#1: Building space identification
O: List of HomeL oad objects associated to a building space

http://www.fiemser.eu/db/homeLoad/Il
ist?buildingSpaceld=123

30/09/2011

Page 26

Interface modules

FIEMSER: GA no.: 248605
D9

getDeviceByld (in:String, out:Device)
Definition: Function that retrieves the Device object related to a
certain device id.

I#1: Device identification
O: Device object related to the specified device identification

http://www.fiemser.eu/db/device/view
/123

getBuildingPartitions (in:String, out:List<BuildingPartition>)
Definition: Retrieves the Building partitions of the specified Building

I#1: ID building
O: List of Building partitions (objects) linked to the specified building

http://www.fiemser.eu/db/buildingPart
ition/list?buildingld=123

getAllHomeUsageProfiles (in:String,
out:List<HomeUsageProfile>)

Definition: Retrieves the set of Home usage profiles defined for the
specified Building partition

I#1: Building partition 1d
O: List of HomeUsageProfiles linked to the specified Building
partition

http://www.fiemser.eu/db/homeUsage
Profile/list?buildingPartitionld=123

getLoadsforScene (in:String, out: ApplianceUsage)
Definition: Based on certain scene identification its ApplianceUsage is
retrieved; this object stores the load usage.

I#1: Scene Id
O: ApplianceUsage object that stores the loads usage.

http://www.fiemser.eu/db/view/Scene/
123

storeSchedule (in:String, in:ResourceSchedule)

Definition: This function is used to store in the DB the calculated
resource schedule for certain device or resource. For example this
function will be used to store the output of the E+ related with the
renewable energy generation sources schedule.

I#1: Building partition Id
1#2: ResourceSchedule structure to be formatted and sent to the DB

http://www.fiemser.eu/db/schedule/ne
w?buildingPartitionld=123&resourceS
cheduleld=123

addAdvice (in:Advice)
Definition: creates a new advice to be stored

1#1: Advice
O: none

http://www.fiemser.eu/db/advice/add?
advice=Advice

30/09/2011

Page 27

Interface modules

FIEMSER: GA no.: 248605
D9

Published events

Event message

Topic=
[fiemser/<Address>/data/<BuildingArealD>/Actuator
Type/<CtrlDevicelD>

This topic is used by the ICS when it is necessary to
send a order or command to one or certain devices.

Subscribed events

Event message

http/REST call

Topic = /fiemser/bmcnX/discovery/*

The ICS uses this topic to subscribe to events related
with new device connections. This information will be
used by the ICS to fetch the database looking for
device specific data such as ConsumptionProfile, new
scene configurations, etc.

Associated http/REST call to ICS will create a new
device in the internal ICS memory space. This new
device will read its configuration or running
parameter from the DB.

Topic=/fiemser/bmcnX/behaviour/*

Using this topic the ICS subscribes to all the behaviour
status changes that may happen in any of the
apartments (BuildingPartition)

Other magnitudes as temperature or energy meter
values will be periodically polled from the DB.

Associated http/REST call to ICS will trigger
processes focused on finding a better, more energy
efficient, building configurations. In response the ICS
will notify building actuators reconfiguration options.
This topic will be also used to inform to the ICS that
the suggested action has been rejected, or not, by the
“Behaviour” component.

Possible values to be notified by this event are:
Status::==NEW|ACCEPTED|REJECTED

3.3 Ul CSS (User Interface Core Services Server)

In this chapter, we list the interfaces required and provided by the Core Services Server

(CSS).

WS interface: description of the methods provided / required by the Ul CSS

OSGi-based events: description of the events that need to be subscribed by the Ul CSS, and

the methods called for handling these events.

The CSS module as well as other modules of the FIEMSER platform exposes two kinds of
interfaces: WS (Web Service) interface and OSGi events interface.

30/09/2011

Page 28

Interface modules FIEMSER: GA no.: 248605
D9

e WS interface: The ICS WS interface is developed using Jetty embedded web
application server.

e OSGi interface: The OSGi interface acts as gateway between the CSS module and the
R-OSGi framework. The OSGi interface, developed as a bundle, mainly has the role of
forwarding S&A module events to the CSS module. In addition, it also implements the
mechanism of publishing commands targeting the S&A module.

3.3.1 For the Facility Manager Ul

Required services

Related to user definition
The CSS will use methods offered by the Database in order to:

e Get authorized users per building partition
e Get details on a user
e Create/delete new user

Next table describes the interfaces described above.

Targeted component Database

UML Method HTTP/REST call

getUserByPartition (in:String out:List<User>)

Definition: Function that for a certain BuildingPartition retrieves the
Users associated to it http://www.fiemser.eu/db/user/list?bui
IdingPartitionld=123

I#1: Building partition identification.

O: List of User objects linked to certain building partition. In addition
user roles and granted privileges are also retrieved
getUserByUserName (in:String, out:User

Definition: Function that for a certain UserName retrieves the User
Information associated to it

http://www.fiemser.eu/db/user/view?u
serName=John

1#1: User name

O: User object

addUser (in:User)

Definition: Function that registers a new user

http://www.fiemser.eu/db/user/add?us
erName=john&password=xHdJKT&b

I#1: User object uildingPartitionld=123

O: none

setUserByPartition (in:String, in:String)

Definition: Function that registers a user associated to a building
partition

http://www.fiemser.eu/db/buildingPart
ition/edit/123?userName=john

1#1: User name
I#2: Building partition Id

30/09/2011 Page 29

Interface modules

FIEMSER: GA no.: 248605
D9

deleteUser (in:String)
Definition: Function that removes a user from the database

1#1: User name

http://www.fiemser.eu/db/user/delete?
userName=john

Related to configuration

The CSS will use methods offered by the Database in order to:

e Get details on a device
e Get all equipments in one partition room
e Parameter details on an equipment

o Get/edit FIEMSER system parameters of the building or specific apartment

Next table describes the interfaces described above.

Targeted component Database

UML Method

HTTP/REST call

getDevicelnformation (in:String, out:Device)
Definition: Function that for a certain Device retrieves the Device
Information associated (location, type, value, status)

I#1: Device Id
O: Device object

http://www.fiemser.eu/db/device/view
/123

getDeviceByPlace (in:String, out:List<Device>)
Definition: Function that for a certain Building partition retrieves the
Devices associated to it

I#1: Building partition identification.
O: List of Device objects linked to the Building partition

http://www.fiemser.eu/db/device/list?
buildingPartitionld=123

getEventByPlaceAndPeriod (in:String, in:Period,
out:List<Event>)

Definition: Function that returns all the events/measures for each
device within a given building space over a given period of time

I#1: Building Space identification.
I#2: Period of observation
O: List of Events objects

http://www.fiemser.eu/db/event/list?b
uildingSpaceld=123&Period=123

setDeviceConfiguration (in:String, in:ConfigurationInfo)
Definition: Function that sets a specific configuration for a device

I#1: Device Id
I#2: ConfigurationInfo object

http://www.fiemser.eu/db/device/edit/
123?configurationType=...¶meter
1=...

getWeatherForecastAddress (out:String)
Definition: Function that retrieves the weather forecast address

I: none
O: Weather forecast website IP address

http://www.fiemser.eu/db/weatherfore
castservice/view

30/09/2011

Page 30

Interface modules FIEMSER: GA no.: 248605
D9

getDailyEnergyConsumptionReference (in:String, out:Float)
Definition: Function that retrieves the daily energy consumption
reference per apartment (i.e. building partition) http://www.fiemser.eu/db/buildingPart
ition/view/123

I#1: Building partition Id

O: Daily Energy Consumption Reference

Related to operation
The CSS will use methods offered by the Database in order to:

e Get the operational view of the overall building or per apartment

o0 Weather condition, detailed energy consumption, power generation, stored
energy, energy flow

e Get the schedule for the whole building or per apartment
e Get daily performances/advices/control rules/logs in a building partition

Next table describes the interfaces described above.

Targeted component Database

UML Method HTTP/REST call

getWeatherForecast (in:Date)
Definition: Function that returns the weather forecast for the specified
date. If no date, returns by default for the current day.

http://www.fiemser.eu/db/weatherFore

i 2 =
1#1° Date cast/view?date=20110101

O: WeatherForecast object

getSchedule (in:Date, in:String,
out:BuildingProgrammeSchedule)
Definition: Function that returns the calculated home schedule for the

specified date and building partition. http://www.fiemser.eu/db/schedule/vie

w?date=20110101&buildingPartitionl

1#1: Date d=123

I#2: Building partition Id

O: BuildingProgrammeSchedule object
getHomePerformanceForDay (in:Date, in:String,
out:HomeDailyMeasurementLog)

Definition: Function that returns the EE performance for the specified
date and building partition

http://www.fiemser.eu/db/performanc
es/view?date=20110101&buildingPart

1#1: Date itionld=123

I#2: Building partition identification.

0O: HomeDailyMeasurementLog object
getBuildingPerformanceForDay (in:Date,
out:BuildingDailyPerformance)

Definition: Function that returns the EE performance of the whole
building for the specified date

http://www.fiemser.eu/db/
performances/view?date=20110101

I#1: Date
O: BuildingDailyPerformance object

30/09/2011 Page 31

Interface modules

FIEMSER: GA no.: 248605
D9

getControlRules (in:String, out:List<ControlRule>)
Definition: Function that returns the control rules chosen for the
specified home usage profile

I#1: HomeUsageProfile Id
O: List of ControlRule objects

http://www.fiemser.eu/db/controlRule
s/list?homeUsageProfileld=123

getEventsByDeviceAndPeriod (in:String, in:Date, in:Date,
out:List<Event>)

Definition: Function that returns all the events for the specified control
device during the given period

I#1: Device Id

I#2: Start date of the period
I#3: End date of the period
O: List of events

http://www.fiemser.eu/db/events?devi
celd=123&start=20110101&end=201
10101

Provided services

Related to configuration
The CSS will offer a method in order to:

e Push/display alarms on S&As that require maintenance

UML method

HTTP/REST call

notifyMaintenanceAlarm (in:Alarm)
Definition: Used to inform the Facility Manager that an equipment
requires maintenance.

I: Alarm object
O: none

http://www.fiemser.eu/css/notify_main
tenance_alarm?alarm=123

3.3.2 For the End-User Ul

Required services

Related to Home Screen

The CSS will use methods offered by the Database in order to:

e Get weather condition

e Get current energy usage (in Euro or Watt)
e Get daily advice

e Get money saved so far

30/09/2011

Page 32

Interface modules

FIEMSER: GA no.: 248605
D9

Targeted component
UML Method

Database ‘
HTTP/REST call

getCurrentWeather (out:List <Sensor,Value>)
Definition: to display the weather information (temperature and icon
on the home screen)

I1#1: none
O: List of <Sensor, value>

http://www.fiemser.eu/db/weather/vie
w

getHomePerformanceForPeriod (in:Date, in:Date, in:String,
out:List<HomeDailyMeasurementLog>)

Definition: Function that returns the EE performance for the specified
period (e.g. energy usage in euro and/or watt, money saved)

I#1: Init Date

I#2: End Date

I#3: Building Partition Id

O: List of HomeDailyMeasurementLog objects

http://www.fiemser.eu/db/performanc
es/view?date=20110101&buildingPart
itionld=123&format=WattAndEuro

getAdvice (in:String, in:Date, out:List<Advice>)
Definition: function that returns the advices created on the specified
date (e.g. today), including the status of their activation

I#1: User Id
1#2: Date
O: List of Advice object (including their status)

http://www.fiemser.eu/db/advice/view
?userld=123&date=20110101

modifyAdviceStatus (in:String, in:Boolean)
Definition: Function that modifies the status of an advice (accepted,
rejected)

1#1: Advice Id
1#2: Status
O: None

http://www.fiemser.eu/db/advice/edit/
1237status=activate

Related to My House Now screen

The CSS will use methods offered by the Database in order to:

e Get overview of current room temperatures
e Get overview of set-point temperatures

e Specify individual room temperature (set comfort temperature)

e Get overview of appliances in a specific room

30/09/2011

Page 33

Interface modules

FIEMSER: GA no.: 248605
D9

Targeted component
UML Method

Database ‘
HTTP/REST call

getEventByPlaceAndDate (in:String, in:Date, out:List<Events>)
Definition: returns all events (including temperature measurements)
for each device located in this building space for a date (incl. the
current date)

I#1: Building space Id
1#2: Date
O: List of Events

http://www.fiemser.eu/db/event/list?b
uildingSpaceld=123&date=20110101

setControlRule (in:String, in:Boolean)
Definition: used to enforce a control rule (e.g., set a comfort
temperature within a room)

I#1: Control Rule Id
I#2: Boolean (activate, deactivate)
O: none

http://www.fiemser.eu/db/control/edit/
123?instruction=123

getControlRules (in:HomeUsageProfile, out:List<ControlRule>)
Definition: returns all control rules (incl. comfort temperature
instruction) associated to a home usage profile

I#1: HomeUsageProfile Id
O: List of ControlRule objects

http://www.fiemser.eu/db/control/list?
homeUsageProfileld=123

getDevicesByPlace (in:String, out:List<Device>)
Definition: returns all devices present within one building space

I#1: Building space Id
O: List of Device objects (incl. their status)

http://www.fiemser.eu/db/device/list?
buildingSpaceld=123

getBuildingPartitions (in:String, out:List<BuildingPartition>)
Definition: Retrieves the Building partitions of the specified Building,
used to derive the floor map of an apartment (e.g., surface, opening,
etc.).

I#1: ID building
O: List of Building partitions (objects) linked to the specified building

http://www.fiemser.eu/db/buildingPart
ition/list?buildingld=123

Related to Scheduler screen

The CSS will use methods offered by the Database in order to:

e Set day type mode manually for one day or for over a period(i.e., home usage profile)

e Get the list of all day type profiles
e Add new day type
e Modify one part of an existing day type

30/09/2011

Page 34

Interface modules

FIEMSER: GA no.: 248605
D9

Targeted component
UML Method

Database ‘
HTTP/REST call

getAllHomeUsageProfiles (in:String,
out:List<HomeUsageProfile>)

Definition: returns all defined home usage profiles, that is day types,
with associated scenes for each day type, for the specified building
partition

I#1: Building partition identification
O: List of HomeUsageProfile objects

http://www.fiemser.eu/db/homeUsage
Profile/list?buildingPartitionld=123

setHomeUsage (in:String, in: String, in:Date)
Definition: assigns an home usage profile to a specific day or for a
complete period, for a given building partition

I#1: Building partition Id
I#2:Home Usage Profile Id
I#2: Date

O: none

http://www.fiemser.eu/db/calendar/edi
t/123?buildingPartition=123&homeUs
ageProfileld=123&date=20110101

addHomeUsageProfile (in:HomeUsageProfilelD,
in:BuildingPartitionID, in:List<Scene>)

Definition: Function that defines a whole day type mode (that is a
Home Usage Profile)

I#1: Home Usage Profile Id
I#2: Building Partition Id
I#3: List of Scene objects
O: none

http://www.fiemser.eu/db/homeUsage
Profile/add?HomeUsageProfileld=123
&scene=...&scene=...

addScene (in:String, in: Time, in:Time, in: List<ApplianceUsage>,
in:List<ComfortSetting>)

Definition: Function that defines a Scene for a given Home Usage
Profile, that is a subpart of a day type profile for a dwelling, including
the involved appliances, their periods of operation and operating
modes, and the comfort settings

I#1: Home Usage Profile Id

I#2: Init time

I#3: End time

I#4: List of ApplianceUsage objects
I#5: List of ComfortSetting objects

http://www.fiemser.eu/db/homeUsage
Profile/edit/123?scenepropertyl1=...

Related to Advices

The CSS will use methods offered by the Database in order to:

e Get the list of advices
e Modify the status of an advice (accept/reject)

30/09/2011

Page 35

Interface modules

FIEMSER: GA no.: 248605
D9

Targeted component
UML Method

Database ‘
HTTP/REST call

getAdvice (in:String, in:Date, out:List<Advice>)
Definition: function that returns the advices created on the specified
date, including the status of their activation

I#1: User Id
I#2: Date
O: List of Advice objects (including their status)

http://www.fiemser.eu/db/advice/list?
userld=123&date=20110101

modifyAdviceStatus (in:String, in:Boolean)
Definition: Function that modifies the status of an advice (accepted,
rejected)

1#1: Advice Id
1#2: Status
O: None

http://www.fiemser.eu/db/advice/set?a
dviceld=123&status=activate

Related to the Settings screen

The CSS will use methods offered by the Database in order to:

e Get and modify season comfort temperature for each room

Targeted component
UML Method

Database ‘
HTTP/REST call

getComfortSettings (in: String, out:List<ComfortSetting>)
Definition: returns comfort settings for the specified apartment (e.g.,
temperature per each room, per each season)

I#1: Scene Id
O: List of ComfortSetting objects

http://www.fiemser.eu/db/comfortSetti
ng/list?sceneld=123

setComfortSettings (in:String, in:List<ComfortSetting>)
Definition: sets comfort settings for the specified apartment

I#1: Scene Id
I#2: List of ComfortSetting objects

http://www.fiemser.eu/db/scene/edit/1
237settings=...

Provided services

Related to Advices
The CSS will offer a method in order to:

e Push/display advices with time label

Next table describe the functions that compose the above introduced interfaces.

30/09/2011

Page 36

Interface modules

FIEMSER: GA no.: 248605
D9

UML Method

HTTP/REST call

notifyNewAdvice (in:String, in:Advice)
Definition: Used to inform the end-user of a new advice

1#1: User Id
I#2: Advice object
O: none

http://www.fiemser.eu/css/notify_advi
ce?userlD=123&advice=Advice

3.4 Data Base

WS interface

The FIEMSER Data Base is a particular component in the sense that the provided services are
those required by the other FIEMSER components. Therefore these services are already listed
in the previous sections (see required services from targeted component “Database” for the
BMCN, ICS, and Ul CSS components), with their corresponding http/REST calls to the Data

Base Web Services.

0OSGi-based Events Handler

Practically any event occurring in the S&A network needs to be subscribed by the Data Base
component in order to fill in the related information in the Data Base.

The following table summarizes the events subscribed by the Data Base.

Event message

http/REST call

Topic = /fiemser/bmcnX/status/*

This is to subscribe to all status update
events originated from the BMNC in the
apartment number X.

Associated http/REST call to the DB will update device status by
using event properties:

address::=<BuildingLevel Address>
status ::= “DISABLED” | “ACTIVE” | “FAILURE”

Example:
http://www.fiemser.eu/db/device/edit/123?status=DISABLED

Topic = /fiemser/bmcnX/discovery/*

This is to subscribe to all discovery
update events originated from the
BMNC in the apartment number X.

Associated http/REST call to the DB will create a new device (sensor
or actuator) by using event properties:

address::=<BuildingLevel Address>
+ device dependent properties
Example: http://www.fiemser.eu/db/device/new?propl=...

Topic = /fiemser/bmcnX/data/*

This is to subscribe to all data update
events originated from any device of the
BMNC in the apartment number X.

Associated http/REST call to the DB will update device properties
(i.e. values) by using event properties:

address::=<BuildingLevel Address>
value

Example:
http://www.fiemser.eu/db/device/addLog/123?logDate=20110101&l

ogValue=24...

30/09/2011

Page 37

Interface modules FIEMSER: GA no.: 248605
D9

4. Development Environment

Following the SOA architecture, each FIEMSER component may rely on its own application
server to be as much independent as possible. But, for practical implementation reasons, those
components installed on the same computer and developed over the same programming
platform, may obviously share the same application server.

The table below summarizes the platform chosen for each FIEMSER component.

Table 2 - Chosen platforms / frameworks for FIEMSER components

FIEMSER Component Platform / Framework

Data Base Java/JEE (Java Enterprise Edition), Groovy,
Hibernate, Stripes, Canoo
ICS Java, Jetty, OSGi
BMCN (boxes) Java, OSGi, 0X (0BIX server)
Ul Core Services Python, Django

Besides, a common project structure is needed to have an easy access to the resources of each
development. For this purpose, we chose to use the Maven framework which is the current
standard.

Maven is a free software tool for management and production automation of projects written
in Java (and JEE in particular), as well as some other languages. The objective is comparable
to the Unix Make utility: produce software from source, optimizing the tasks performed to
this end and ensuring the efficient production order.

Besides, Maven standardizes the location of the resources in this way:

Project/ The project name

Contains all the project resources provided by the developers

(source code, configuration files, etc.)

main/ Contains the main resources of the project
java/ Java source code of the project (all the .java files)
resources/ Resources of the project

test/ Contains the tests of the project
java/ If tests are written in Java, the Java source codes are there
resources/ Resources used for the tests (and only for the tests)

target/ Contain the executables and all the resources generated by Maven

src/

pom.xml The Maven project description

30/09/2011 Page 38

Interface modules FIEMSER: GA no.: 248605
D9

5. Conclusion

This deliverable is the first one produced from WP5 activities related to the FIEMSER system
integration. It details the communication principles (both synchronous and asynchronous),
and the interfacing between FIEMSER modules in the general context of a SOA approach.
The REST Web Services provided and required by each module are defined consistently with
the modules specification which is done in parallel in WP2, WP3 & WP4. The asynchronous
communication of events between the BMCN (boxes) and the other FIEMSER modules is
also addressed through the modelling of events and the description of events published and/or
subscribed by each module.

Next step in WP5 will consist in the implementation of these interfaces, to allow a progressive
integration of all FIEMSER modules, accompanied by necessary tests between pairs of
components (T5.2) and for the whole system (T5.3).

30/09/2011 Page 39

Interface modules FIEMSER: GA no.: 248605
D9

Acknowledgements

The FIEMSER Consortium would like to acknowledge the financial support of the European
Commission under the IST programme.

30/09/2011 Page 40

Interface modules FIEMSER: GA no.: 248605
D9

References

Previous FIEMSER deliverables:

D4 — System Architecture

D5 - FIEMSER Data Model

D7 — User interface Architectural Design

OSGi Event Admin Service specification:
http://www.dynamicjava.org/articles/osgi-compendium/event-admin-service

RESTful Web services - The basics:
http://www.ibm.com/developerworks/webservices/library/ws-restful/

Maven framework:
http://maven.apache.org/

30/09/2011 Page 41

