
The project has received funding from the European Community (ICT-PSP 4th call)
under Grant Agreement n° 270915.

Deliverable 3.4

Web Services API

Bologna Translation Service Deliverable 3.4

- 2 -

DELIVERABLE
Project Acronym: Bologna

Grant Agreement number: 270915

Project Title: Bologna Translation Service

Deliverable 3.4

Web Services API

Revision: 4

Authors:

 Kim Scholte, CL

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

P Public 

C Confidential, only for members of the consortium and the Commission Services

Bologna Translation Service Deliverable 3.4

- 3 -

REVISION HISTORY AND STATEMENT OF ORIGINALITY

Revision History

Rev. Date Author Organisation Description

1 26 Jan 2012 Kim Scholte CL Initial version

2 2 Feb 2012 Kim Scholte CL Review

3 6 Feb 2012 Heidi Depraetere CL Text edits

4 8 Feb 2012 Joeri Van de Walle CL Final review

Statement of originality:

This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material
and of the work of others has been made through appropriate citation,

quotation or both.

Bologna Translation Service Deliverable 3.4

- 4 -

Executive Summary

This deliverable provides a technical overview of the web services currently available
with the Bologna Translation Service. These web services can be used by users to
implement the Bologna Translation Service into their back-end systems.

Bologna Translation Service Deliverable 3.4

- 5 -

Table of Contents

1. INTRODUCTION ... 6

2. RESTFUL WEB SERVICE .. 6

2.1 INTRODUCTION TO REST .. 6
2.2 INTRODUCTION TO BTS REST .. 7
2.3 CREATING ASYNCHRONOUS REQUESTS ... 8
2.4 QUERY THE STATUS OF A ASYNCHRONOUS REQUEST .. 9
2.5 DOWNLOADING THE TRANSLATION OF A ASYNCHRONOUS REQUEST ... 9
2.6 CANCEL AN ASYNCHRONOUS REQUEST ... 10
2.7 SYNCHRONOUS TRANSLATION REQUESTS .. 10
2.8 CREATING THE “SECRET” ... 11
2.9 CREATING THE “REQUEST TIME” .. 12

Bologna Translation Service Deliverable 3.4

- 6 -

1. Introduction

This deliverable gives an overview of the web services currently available with the Bologna
Translation Service.

Web services are only available for academic users and allow integration of the Bologna
Translation Service into universities’ or departments’ back-end softwares.

2. RESTful Web Service

This topic describes the RESTful (REpresentational State Transfer) web service in its
current status. Two additional deliverables are scheduled at month 18 and 24 which may
include updates to the web service.

2.1 Introduction to REST

RESTful web services make use of the hypertext transfer protocol (http) to manage the
creation and manipulation of objects. For the web service of the Bologna Translation
Service these objects will usually be documents.

In HTTP we have 4 different actions that try to simulate what are known as CRUD (Create,
Read, Update and Delete) actions when working with relational databases. These CRUD
actions are all we need to submit a document and get back the translated version.

HTTP Action CRUD Meaning in REST

GET Read Download or retrieve a certain object or collection of
objects.

E.g. GET /translation/5

or GET /translation/5/status

POST Create Create a new object.

E.g. POST /translation

PUT Update Update a specified object or a collection of objects.

E.g. PUT /translation/5

DELETE Delete Delete the given object or collection of objects.

E.g. DELETE /translation/5

REST actions usually return a JSON1 object when dealing with complex objects or a data
stream when dealing with binary objects. Most programming languages have libraries in
place to handle JSON objects, so they can be easily integrated into the application.

1
 http://en.wikipedia.org/wiki/JSON

http://en.wikipedia.org/wiki/JSON

Bologna Translation Service Deliverable 3.4

- 7 -

2.2 Introduction to BTS REST

The Bologna Translation Service REST web service provides two options for translating
documents:

 Asynchronous: The Bologna Translation Service allows users to make
asynchronous requests. This means that when the document is uploaded a
reference ID, called the asynchronous ID, will be returned and the connection to the
server will be closed immediately. The ID can then be used to check the status of the
request. When a request is reported as finished, the ID can be used to download the
request. The asynchronous method is the recommended option for requesting
translations.

 Synchronous: Small documents that need no post-editing can be sent in a
synchronous way. This means that the document is sent to the server, and a
connection is kept open until the translated document is returned. Most applications,
however, impose a limit on how long a connection can be kept inactive. In case the
translation is not finished before this limit the connection is closed, and the
translation will be lost. When post-editing is required, this limit will certainly be
reached. Therefore, synchronous translations should only be used for small
documents that do not require post-editing.

It is important to understand the following concepts when using the REST web services of
the Bologna Translation Service:

 Username: The username of the user who initiates the web service request. This is
the same as the username used to log in to the BTS Portal. This will typically be the
e-mail address of the user.

 Password: The password as set by the user in the BTS Portal. Note that this is not
the same password as the one used to log in to the BTS Portal. It is the password
set by the user on the web service configuration panel in the portal.

 RequestTime: The request time is the time when the request was created. It will be
used to build the secret (see later), but will also be used as a counter measure
against replay attacks. Only a limited difference between this time and the time on
the server will be allowed, so in case the secret is stolen, it’s only usable for a limited
amount of time. Beside this security measure, an SSL connection is also used to
encrypt the traffic.

 Secret: The secret is built using the request time, the username, and the password

and will be used by the Bologna Translation Service to authenticate the user. A
secret is used instead of a (hashed) password so the user never has to send the
password itself over the wire. A description on how to create the secret follows in a
later chapter.

 AsyncID: The asynchronous ID will be used to uniquely identify a translation

request. It will be returned when sending the document to BTS, and can be used to
check the status of the request or download the final translation.

Bologna Translation Service Deliverable 3.4

- 8 -

 Target and Source Languages: These keywords represent the languages to use

for the request. ISO 639.2 3-letter codes must be used to specify languages. For the
21 languages that have alternative codes for bibliographic or terminology purposes,
use the bibliographic alternative ("B").

 FileType: This represents the file type of the document that is sent for translation.

Possible options are: TXT, HTML, XML, DOCX, PPTX, XLSX, CSV.

 Host: The host name of the server. Will be published when the service is made
publicly available.

In the sections that follow these keywords will be enclosed in curly brackets (“{…}”)
whenever they are used.

2.3 Creating asynchronous requests

Creating an asynchronous translation request can be done by POST-ing the document to

the following URL:

https://{HOST}/translation/{username}/{secret}/{requestTime}/{fileType}/{srcLang}/{trgLang}/{domain}

The data that is posted should be made up of a multi-part message where the document to
translate is stored in a body-part called “content”.

Posting to this URL will return a JSON object that contains the asynchronous id of the
request:

{"asyncId":11,"message":"New document received.","status":"RECEIVED"}

Example:

POST /translation/kim@cl.com/hN...1U=/08-02-2012%2015:58:52%20CET/html/DUT/ENG/Legal HTTP/1.1

Content-Type: multipart/form-data; boundary=Boundary_1_2003560079_1328713133350

MIME-Version: 1.0

User-Agent: Java/1.6.0_22

Host: bts1.bologna-translation.eu:12344

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Transfer-Encoding: chunked

81

--Boundary_1_2003560079_1328713133350

Content-Type: application/octet-stream

Content-Disposition: form-data; name="content"

6c8d

<html>

<head><base

href="http://www.ehsal.net/hubects/ectsfiche.asp?ectsnr=14527&taal=N&mod=1107&stdj=2HZ&acj=2011" />

 <link rel="stylesheet" type="text/css" media="scre

......

 </table>

 </body>

</html>

--Boundary_1_2003560079_1328713133350--

0

Bologna Translation Service Deliverable 3.4

- 9 -

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: application/json

Transfer-Encoding: chunked

Date: Wed, 08 Feb 2012 14:58:54 GMT

45

{"asyncId":11,"message":"New document received.","status":"RECEIVED"}

0

2.4 Query the status of a asynchronous request

To get the status of an asynchronous request, a GET has to be requested on the following

URL:

https://{HOST}/translation/{username}/{secret}/{requestTime}/{asyncId}/status

This will return a JSON object that contains the status of the request. In case processing
the request failed, the reason is included in the status message:

{"asyncId":4,"message":"Language pair not supported.","status":"FAILED"}

{"asyncId":4,"message":"Ready for download.","status":"FINISHED"}

Possible return statuses are:

RECEIVED CANCELLED
TRANSLATING PROCESSING
WAITING_FOR_POSTEDITOR FAILED
FINISHED WAITING_FOR_APPROVAL

Example:

GET /translation/kim@cl.com/KXqs...........U8=/08-02-2012%2017:30:12%20CET/11/status

HTTP/1.1

Content-Type: multipart/form-data

User-Agent: Java/1.6.0_22

Host: bts1.bologna-translation.eu:12344

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: application/json

Transfer-Encoding: chunked

Date: Wed, 08 Feb 2012 16:30:13 GMT

37

{"asyncId":11,"message":"FINISHED","status":"FINISHED"}

0

2.5 Downloading the translation of a asynchronous request

Downloading the translation of an uploaded document can be done in the same way as

checking its status, i.e. by requesting a GET, but needs a different URL:

https://{HOST}/translation/{username}/{secret}/{requestTime}/{asyncId}

This will return the translated document (not a JSON object!). Note that this action should
only be carried out when the request has the “finished” status. Otherwise a JSON object will
be returned, giving its status.

Bologna Translation Service Deliverable 3.4

- 10 -

Example:

GET / translation/kim@clang.com/BkY...AE=/08-02-2012%2017:36:46%20CET/11 HTTP/1.1

Content-Type: multipart/form-data

User-Agent: Java/1.6.0_22

Host: bts1.bologna-translation.eu:12344

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: application/octet-stream

Transfer-Encoding: chunked

Date: Wed, 08 Feb 2012 16:36:47 GMT

<html>

 <head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8

...

</body>

</html>

2.6 Cancel an asynchronous request

A running translation request can be cancelled by calling the DELETE action on URL:

https://{HOST}/translation/{username}/{secret}/{requestTime}/{asyncId}

This will return a JSON object with the result:

{"asyncId":5,"message":"Request was cancelled.","status":"CANCELLED_BY_USER"}

Example:

See 2.4 but use a DELETE action instead of a GET.

2.7 Synchronous translation requests

Small files can also be translated synchronously, by using the following URL:

https://{HOST}/translation/
 sync/{username}/{secret}/{requestTime}/{fileType}/{sourceLanguage}/{targetLanguage}/{domain}

The data that is posted should be made up of a multi-part message where the document to
translate is stored in a body-part called “content”.

This will return the translated file when it is completed (make sure you set the connection
time-out high enough to allow the translation to take up some time). It will not return a
JSON object containing an asynchronous ID.

mailto:translation/kim@clang.com/BkY...AE=/08-02-2012%2017:36:46%20CET/11%20HTTP/1.1

Bologna Translation Service Deliverable 3.4

- 11 -

Example:

POST /sync/kim@cl.com/Xcvhn...Ffw=/08-02-2012%2017:43:45%20CET/html/DUT/ENG/Legal HTTP/1.1
Content-Type: multipart/form-data; boundary=Boundary_1_1290662793_1328719426109

MIME-Version: 1.0

User-Agent: Java/1.6.0_22

Host: bts1.bologna-translation.eu:12344

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Transfer-Encoding: chunked

81

--Boundary_1_1290662793_1328719426109

Content-Type: application/octet-stream

Content-Disposition: form-data; name="content"

6c8d

<html>

 <head>

.....

 </table>

 </body>

</html>

--Boundary_1_1290662793_1328719426109--

0

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: application/octet-stream

Transfer-Encoding: chunked

Date: Wed, 08 Feb 2012 16:45:08 GMT

2000

<html>

 <head><meta http-equiv="Content-Type" conte

...

 </table>

 </body>

</html>

0

2.8 Creating the “secret”

The Secret parameter consists of a string that is used to authenticate the client to the
Bologna Translation Service. It is created by calculating a keyed hash message
authentication code that is a concatenation of the username, a “#”-character, and the
request time (which is also posted in the REST request), and hashing this result with a
SHA-1 hash.

Bologna Translation Service Deliverable 3.4

- 12 -

In Java, for example, this Secret string can be created using generateSecret:

final static private String HMAC_SHA1_ALGORITHM = "HmacSHA1";

public String generateSecret(String username, String timestamp,

String password) {

StringBuilder sb = new StringBuilder(username)

.append("#")

.append(timestamp);

return sign_HmacSha1(sb.toString(), password);

}

protected String sign_HmacSha1(String data, String key) {

SecretKeySpec signingKey= new SecretKeySpec(key.getBytes(),

HMAC_SHA1_ALGORITHM);

Mac mac = Mac.getInstance(HMAC_SHA1_ALGORITHM);

mac.init(signingKey);

byte[] rawHmac = mac.doFinal(data.getBytes());

return Base64.encodeBase64String(rawHmac).trim();

}

2.9 Creating the “Request Time”

The requestTime parameter consists of a string that indicates the time the request is
created. This time must be expressed using the following convention:

dd-MM-yyyy HH:mm:ss z

where dd-MM-yyyy identifies the current day, HH:mm:ss the current time and z the

client’s time zone.

A request time should look like:

20-03-2010 15:22:07 CET

This value has to match the requestTime that is used to calculate the Secret. If not, access
will be denied to the service due to an authorisation error.

In Java, for example, the requestTime string can be created as follows:

final private static SimpleDateFormat DATE_FORMAT =

new SimpleDateFormat("dd-MM-yyyy HH:mm:ss z");

public String generateRequestDate() {

return DATE_FORMAT.format(new Date());

}

