
PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the OpenIoT Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any third party, in

whole or in parts, except with prior written consent of the consortium.

SEVENTH FRAMEWORK PROGRAMME
Specific Targeted Research Project

Call Identifier: FP7–ICT–2011–7

Project Number: 287305

Project Acronym: OpenIoT

Project Title: Open source blueprint for large scale self-organizing
cloud environments for IoT applications

D5.2.1 Privacy and Security Framework a

Document Id: OpenIoT-D521-130905-Draft

File Name: OpenIoT-D521-130905-Draft.docx

Document reference: Deliverable 5.2.1

Version: Draft

Editor: Robert Gwadera

Organisation: EPFL

Date: 2013 / 09 / 10

Document type: Deliverable (Prototype)

Dissemination level: PU (Public)

Copyright 2013 OpenIoT Consortium: NUIG-National University of Ireland Galway, Ireland;
EPFL - Ecole Polytechnique Fédérale de Lausanne, Switzerland; Fraunhofer Institute IOSB,
Germany; AIT - Athens Information Technology, Greece; CSIRO - Commonwealth Scientific
and Industrial Research Organization, Australia; SENSAP Systems S.A., Greece;
AcrossLimits, Malta; UniZ-FER University of Zagreb, Faculty of Electrical Engineering and
Computing, Croatia. Project co-funded by the European Commission within FP7 Program.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 1

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments

V01
Robert

Gwadera
EPFL 26/08/2013 ToC Proposal and Content

V02
Nikos

Kefalakis
AIT 28/08/2013

Technical Review.
Provided comments to be followed.

V03
Robert

Gwadera
EPFL 30/08/13 The prototype described by Mehdi Riahi

V04
Nikos

Kefalakis
AIT 03/09/2013

Technical Review – Second Round
Provided comments

V05
Robert

Gwadera
EPFL 05/09/2013 Final Edits and Comments Addressed

V06
Martin

Serrano
DERI 2013/09/05 Circulation for Approval

V07
Robert

Gwadera
EPFL 2013/09/10 Minor Edits / Typo Amendments

V08
Martin

Serrano
DERI 2013/09/10 Approved

Draft
Martin

Serrano
DERI 2013/09/10 EC Submitted

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 2

TABLE OF CONTENTS

1 INTRODUCTION .. 7

1.1 Scope .. 7
1.2 Audience ... 7
1.3 Methodology .. 7
1.4 Related Documents ... 8
1.5 Structure .. 8

2 SECURE MESSAGING .. 9

2.1 Message digest .. 9
2.2 Private key cryptography .. 9
2.3 Public key cryptography ... 10
2.4 Digital signatures .. 11
2.5 Digital certificates ... 12

2.5.1 Keytool and keystore .. 12
2.5.2 CertPath API .. 13

3 SECURITY PROTOCOLS .. 14
3.1 IEEE802.15.4 ... 14
3.2 IPsec ... 14
3.3 TSL ... 15
3.4 HTTPS .. 17

4 ACCESS CONTROL .. 19
4.1 Fundamental concepts ... 19
4.2 Lattice-Based Access Control Models .. 21

4.2.1 Information flow policy .. 21
4.3 Access control models-based on information flow ... 22

4.3.1 Mandatory access policy .. 23
4.3.2 Confidentiality ... 23
4.3.3 Integrity .. 24
4.3.4 Combined ... 24

5 THE SECURITY ARCHITECTURE IN OPENIOT .. 25
5.1 Overview of the architecture ... 25
5.2 Access matrix ... 26
5.3 Mandatory access rules .. 27
5.4 Security protocol stack ... 27

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 3

6 AUTHORIZATION FRAMEWORK ... 28
6.1 Introduction ... 29
6.2 Roles .. 30
6.3 OAuth Protocol Flow ... 31

6.3.1 Authorization Grant .. 31
6.3.2 Authorization Code ... 31
6.3.3 Implicit .. 33
6.3.4 Resource Owner Password Credentials .. 33
6.3.5 Client Credentials ... 34

6.4 Access Token ... 34
6.5 Refresh Token .. 34
6.6 TLS Version .. 36
6.7 HTTP Redirections ... 36
6.8 Interoperability .. 36
6.9 Security considerations .. 36

6.9.1 Beyond Basic ... 36
6.9.2 Credentials ... 37
6.9.3 Signature and Hash ... 38
6.9.4 Secrets Limitations ... 38
6.9.5 Timestamp and Nonce ... 39
6.9.6 Signature Methods ... 40
6.9.7 Signature Base String .. 40

7 TRUSTWORTHINESS OF SENSOR READINGS ... 41
7.1 Notation .. 41
7.2 Problem definition ... 42
7.3 Overview of the method .. 42
7.4 Algorithm .. 44

8 IMPLEMENTATION IN JAVA .. 45

9 THE PROTOTYPE ... 47
9.1 Trust-Module in the OpenIoT Architecture ... 47
9.2 Trust-Module Implementation ... 48

10 CONCLUSIONS ... 50

11 REFERENCES ... 51

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 4

LIST OF FIGURES

FIGURE 1. SECURITY ARCHITECTURE IN OPENIOT. ... 25

FIGURE 2. ABSTRACT PROTOCOL FLOW. .. 30

FIGURE 3. AUTHORIZATION CODE FLOW. ... 32

FIGURE 4. REFRESHING AN EXPIRED ACCESS TOKEN. .. 35

FIGURE 5. TRUST OF SENSOR STREAM REPRESENTATIONS. .. 43

FIGURE 6. TRUST-MODULE IN OPENIOT. .. 48

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 5

LIST OF TABLES

TABLE 1: AN EXAMPLE ACCESS MATRIX .. 20

TABLE 2: A FRAGMENT OF THE ACCESS MATRIX IN OPENIOT .. 27

TABLE 3: SECURITY CLASSES AND ROLES IN OPENIOT .. 27

TABLE 4: THE SECURITY PROTOCOL STACK IN OPENIOT .. 27

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 6

TERMS AND ACRONYMS

AIT Athens Information Technology
CAS Central Authorization Server
CMC Config/Monitor Console
DERI Digital Enterprise Research Institute
EPFL Ecole Polytechnique Fédérale de Lausanne
EU European Union
FP7 Framework Program 7
ICO Internet Connected Object

IoT Internet of Things
JDK Java Development Kit (version >= 1.4)
LSM Sensor Data Cloud Database

PS Physical sensor

SDUM Service Delivery and Utility Manager
SCH Scheduler
SCH Scheduler
TM Trust Module
VS Virtual sensor

X-GSN Extended Global Sensors Network

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 7

1 INTRODUCTION

1.1 Scope

 This deliverable specifies and implements the OpenIoT security/privacy and
trustworthiness framework. The aim is to ensure that internet-connected objects
contributing to the OpenIoT platform and serving users’ request will provide trusted
data, while the data to be exchanged will be secure (according to the target
security/confidentiality level specified by the user).

This deliverable is the first of a series of two describing the overall privacy and
security functional framework of OpenIoT. It is the first of two releases planned for
August 2013 and August 2014.

1.2 Audience

This privacy and security framework report and prototype deliverable addresses
the following audiences:

• Technical Developers, for sharpening the privacy and security framework
planning and development;

• Business Developers, by taking into account the described privacy and security
components in order to design, implement and fine-tune the framework among
other components of the OpenIoT architecture, semantic infrastructure,
management framework, middleware and proof-of-concept applications in
OpenIoT;

• The European Commission, in order to assess the OpenIoT progress regarding
privacy and security perspectives.

1.3 Methodology

 Security, privacy and trust issues in Internet of Things (IoT) are of fundamental
importance and guaranteeing the highest standards in those respects is necessary to
advance the application of (IoT). First of all, any future large-scale deployment of
OpenIoT will only be possible if it complies with corresponding legal security/privacy
and reliability requirements (e.g., recent related EU regulations on privacy and
security). Clearly, apart from the legal requirements, a lack of proper security/privacy
and trust mechanisms in IoT may lead to disastrous consequences as a result of
hacking OpenIoT-based systems. As examples, consider pacemakers or insulin
pumps that start functioning differently or smart meters, where as a result of hacking
the bills start going up. One of the biggest challenges in designing a proper
security/privacy and trust mechanism in OpenIoT is the fact that most existing IoT
infrastructures consist of separately connected elements, having very differing
security/privacy and reliability standards (e.g., fixed versus mobile devices).

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 8

1.4 Related Documents

It is assumed that the reader is familiar with the OpenIoT technology as described in
the following deliverables:

• D2.2 OpenIoT Platform Requirements and Technical Specifications.

• D2.3 OpenIoT Detailed Architecture and Proof-of-Concept Specifications.

• D3.1.1 Semantic Representations of Internet-Connected Objects a.

• D3.1.2 Semantic Representations of Internet-Connected Objects b.

• D3.2 Semantic Communication Protocols (Object/Object and People/Object).

• D4.1 Service Delivery Environment Formulation Strategies.

• D4.3.1 Core OpenIoT Middleware Platform a

1.5 Structure

This document describes the proposed two main modules: the security/privacy
module and the trustworthiness (trust) module.

The security module consists of the following sub modules: (I) secure protocols for
information exchange (secure messaging) and (II) authentication and authorization.
The challenges in designing the authentication and authorization model for OpenIoT
stems from fact that it has to accommodate differing requirements from the
distributed components of the OpenIoT platform.
The trustworthiness module evaluates trustworthiness of sensor streams based on
streams of neighbouring sensors.

This document presents the first part of the security/privacy and trust specification
(deliverable) and the second part, due in a year, will include more implementation
details.

The content of this document is a follows: Section 2 reviews the theory of secure
messaging, Section 3 reviews applicable security protocols, Section 4 reviews the
theory of access control (authentication and authorization), Section 5 presents the
proposed security module in OpenIoT, Section 6 presents details of the proposed
authorization framework, Section 7 presents the proposed trust module and Section
8 discusses secure implementation in Java. Section 9 presents the prototype.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 9

2 SECURE MESSAGING

 In this section we review the fundamental concepts designed to provide
secure messaging that are crucial in understanding secure protocols discussed in the
following sections. In particular we review the following ones:

ñ Message digests. Coupled with message authentication codes, a technology
that ensures the integrity of your message.

ñ Private key encryption. A technology designed to ensure the confidentiality
of your message.

ñ Public key encryption. A technology that allows two parties to share secret
messages without prior agreement on secret keys.

ñ Digital signatures. A bit pattern that identifies the other party's message as
coming from the appropriate person.

ñ Digital certificates. A technology that adds another level of security to digital
signatures by having the message certified by a third-party authority.

2.1 Message digest

 A message digest is a function that ensures the integrity of a message.
Message digests take a message as input and generate a block of bits, usually
several hundred bits long that represents the fingerprint of the message. A small
change in the message (say, by an interloper or eavesdropper) creates a noticeable
change in the fingerprint.
The message-digest function is a one-way function. It is a simple matter to generate
the fingerprint from the message, but quite difficult to generate a message that
matches a given fingerprint.
Message digests can be weak or strong. A checksum, which is the XOR of all the
bytes of a message, is an example of a weak message-digest function. It is easy to
modify one byte to generate any desired checksum fingerprint. Most strong functions
use hashing. A 1-bit change in the message leads to a massive change in the
fingerprint (ideally, 50 percent of the fingerprint bits change).
If a key is used as part of the message-digest generation, the algorithm is known as
a message-authentication code.

2.2 Private key cryptography

 Message digests may ensure integrity of a message, but they can't be used to
ensure the confidentiality of a message. For that, we need to use private key
cryptography to exchange private messages.
Consider this scenario: Alice and Bob each have a shared key that only they know
and they agree to use a common cryptographic algorithm, or cipher. In other words,
they keep their key private. When Alice wants to send a message to Bob, she

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 10

encrypts the original message, known as plaintext, to create ciphertext and then
sends the ciphertext to Bob. Bob receives the ciphertext from Alice and decrypts the
ciphertext with his private key to re-create the original plaintext message. If Eve the
eavesdropper is listening in on the communication, she hears only the ciphertext, so
the confidentiality of the message is preserved.
 The JDK supports the following private key algorithms:

ñ DES. DES (Data Encryption Standard) was invented by IBM in the 1970s and
adopted by the U.S. government as a standard. It is a 56-bit block cipher.

ñ TripleDES. This algorithm is used to deal with the growing weakness of a 56-
bit key while leveraging DES technology by running plaintext through the DES
algorithm three times, with two keys, giving an effective key strength of 112
bits. TripleDES is sometimes known as DESede (for encrypt, decrypt, and
encrypt, which are the three phases).

ñ AES. AES (Advanced Encryption Standard) replaces DES as the U.S.
Standard. It is a 128-bit block cipher with key lengths of 128, 192, or 256 bits.

ñ RC2, RC4, and RC5. These are algorithms from a leading encryption security
company, RSA Security.

ñ Blowfish. This algorithm is a block cipher with variable key lengths from 32 to
448 bits (in multiples of 8), and was designed for efficient implementation in
software for microprocessors.

ñ PBE. PBE (Password Based Encryption) can be used in combination with a
variety of message digest and private key algorithms. The Cipher class
manipulates private key algorithms using a key produced by the KeyGenerator
class.

2.3 Public key cryptography

 Private key cryptography suffers from one major drawback: how does the
private key get to Alice and Bob in the first place? If Alice generates it, she has to
send it to Bob, but it is sensitive information so it should be encrypted. However, keys
have not been exchanged to perform the encryption.
Public key cryptography, invented in the 1970s, solves the problem of encrypting
messages between two parties without prior agreement on the key. In public key
cryptography, Alice and Bob not only have different keys, they each have two related
keys. A message encrypted with one key can only be decrypted with the other and
vice-versa. One key is private and must not be shared with anyone. The other key is
public and can be shared with anyone. When Alice wants to send a secure message
to Bob, she encrypts the message using Bob's public key and sends the result to
Bob. Bob uses his private key to decrypt the message. When Bob wants to send a
secure message to Alice, he encrypts the message using Alice's public key and
sends the result to Alice. Alice uses her private key to decrypt the message. Eve can
eavesdrop on both public keys and the encrypted messages, but she cannot decrypt
the messages because she does not have either of the private keys.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 11

The public and private keys are generated as a pair and need longer lengths than the
equivalent-strength private key encryption keys. Typical key lengths for the RSA
algorithm are 1,024 bits. It is not feasible to derive one member of the key pair from
the other.
Public key encryption is slow (100 to 1,000 times slower than private key encryption),
so a hybrid technique is usually used in practice. Public key encryption is used to
distribute a private key, known as a session key, to another party, and then private
key encryption using that private session key is used for the bulk of the message
encryption.
The following two algorithms are used in public key encryption:

ñ RSA. This algorithm is the most popular public key cipher, but it's not
supported in JDK and one needs to use a third-party library like BouncyCastle
to get this support.

ñ Diffie-Hellman. This algorithm is technically known as a key-agreement
algorithm. It cannot be used for encryption, but can be used to allow two
parties to derive a secret key by sharing information over a public channel.
This key can then be used for private key encryption.

2.4 Digital signatures

 In this section, we examine digital signatures, the first level of determining the
identification of parties that exchange messages.
Clearly, the public key message exchange described has the following problem. How
can Bob prove that the message really came from Alice? Eve could have substituted
her public key for Alice's, and then Bob would be exchanging messages with Eve
thinking she was Alice. This is known as a Man-in-the-Middle attack.
We can solve this problem by using a digital signature, i.e., a bit pattern that proves
that a message came from a given party.
One way of implementing a digital signature is using the reverse of the public key
process. Instead of encrypting with a public key and decrypting with a private key, the
private key is used by a sender to sign a message and the recipient uses the
sender's public key to decrypt the message. Because only the sender knows the
private key, the recipient can be sure that the message really came from the sender.
In actuality, the message digest, not the entire message, is the bit stream that is
signed by the private key. So, if Alice wants to send Bob a signed message, she
generates the message digest of the message and signs it with her private key. She
sends the message (in the clear) and the signed message digest to Bob. Bob
decrypts the signed message digest with Alice's public key and computes the
message digest from the cleartext message and checks that the two digests match. If
they do, Bob can be sure the message came from Alice.
Note that digital signatures do not provide encryption of the message, so encryption
techniques must be used in conjunction with signatures if confidentiality is also
needed. We can use the RSA algorithm for both digital signatures and encryption. A
U.S. standard called DSA (Digital Signature Algorithm) can be used for digital
signatures, but not for encryption.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 12

 The JDK supports the following digital signature algorithms:
ñ MD2/RSA.
ñ MD5/RSA.
ñ SHA1/DSA.
ñ SHA1/RSA.

2.5 Digital certificates

 In this section, we discuss digital certificates, i.e., the second level to
determining the identity of a message originator. We look at certificate authorities and
the role they play. We examine key and certificate repositories and management
tools (keytool and keystore) and discuss the CertPath API, a set of functions
designed for building and validating certification paths.
Clearly, there is a problem with the digital signature scheme. It proves that a given
party sent a message, but how do we know for sure that the sender really is who she
says she is? What if someone claims to be Alice and signs a message, but is actually
Amanda? We can improve our security by using digital certificates which package an
identity along with a public key and are digitally signed by a third party called a
certificate authority or CA.
A certificate authority is an organization that verifies the identity, in the real-world
physical sense, of a party and signs that party's public key and identity with the CA
private key. A message recipient can obtain the sender's digital certificate and verify
(or decrypt) it with the CA's public key. This proves that the certificate is valid and
allows the recipient to extract the sender's public key to verify his signature or send
him an encrypted message. Browsers and the JDK itself come with built-in
certificates and their public keys from several CAs. The JDK supports the X.509
Digital Certificate Standard.

2.5.1 Keytool and keystore

 The Java platform uses a keystore as a repository for keys and certificates.
Physically, the keystore is a file (there is an option to make it an encrypted one) with
a default name of keystore. Keys and certificates can have names, called aliases,
and each alias can be protected by a unique password. The keystore itself is also
protected by a password; you can choose to have each alias password match the
master keystore password.
The Java platform uses the keytool to manipulate the keystore. This tool offers many
options including generating a public key pair and corresponding certificate, and
viewing the result by querying the keystore.
The keytool can be used to export a key into a file, in X.509 format, that can be
signed by a certificate authority and then re-imported into the keystore. There is also
a special keystore that is used to hold the certificate authority (or any other trusted)
certificates, which in turn contains the public keys for verifying the validity of other
certificates. This keystore is called the truststore. The Java language comes with a

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 13

default truststore in a file called cacerts . If one searches for this filename, he will find
at least two of these files. One can display the contents with the following command
issued from Linux (operating system) command shell:
keytool -list -keystore cacerts

Use a password of "changeit"

2.5.2 CertPath API

 The Certification Path API is a set of functions for building and validating
certification paths or chains. This is done implicitly in protocols like SSL/TLS (see the
description in the corresponding section) and JAR file signature verification, but can
now be done explicitly in applications with this support.
As mentioned in the section on digital certificates, a CA can sign a certificate with its
private key, and if the recipient holds the CA certificate that has the public key
needed for signature verification, it can verify the validity of the signed certificate. In
this case, the chain of certificates is of length two, the anchor of trust (the CA
certificate) and the signed certificate. A self-signed certificate is of length one, the
anchor of trust is the signed certificate itself.
Chains can be of arbitrary length, so in a chain of three, a CA anchor of trust
certificate can sign an intermediate certificate; the owner of this certificate can use its
private key to sign another certificate. The CertPath API can be used to walk the
chain of certificates to verify validity, as well as to construct these chains of trust.
Certificates have expiration dates, but can be compromised before they expire, so
Certificate Revocation Lists (CRL) must be checked to really ensure the integrity of a
signed certificate. These lists are available on the CA Web sites, and can also be
programmatically manipulated with the CertPath API.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 14

3 SECURITY PROTOCOLS

 In this section we review the most important security protocols that are
essential in OpenIoT. We start from the lowest level and follow by higher levels.

3.1 IEEE802.15.4

 IEEE802.15.4 is a standard that specifies the physical layer and media access
control for low-rate wireless personal area networks (LR-WPANs). IEEE 802.15.4
nodes can operate in either secure mode or non-secure mode. Two security modes
are defined in the specification in order to achieve different security objectives:
Access Control List (ACL) and Secure mode. The MAC sublayer offers facilities that
can be harnessed by upper layers to achieve the desired level of security. Higher-
layer processes may specify keys to perform symmetric cryptography to protect the
payload and restrict it to a group of devices or just a point-to-point link; these groups
of devices can be specified in access control lists. Furthermore, MAC computes
freshness checks between successive receptions to ensure that presumably old
frames, or data that is no longer considered valid, does not transcend to higher
layers.
In addition to this secure mode, there is another, insecure MAC mode, which allows
access control lists merely as a means to decide on the acceptance of frames
according to their (presumed) source.

3.2 IPsec

 Internet Protocol Security (IPsec) [1] is a technology protocol suite for
securing Internet Protocol (IP) communications by authenticating and/or encrypting
each IP packet of a communication session. IPsec also includes protocols for
establishing mutual authentication between agents at the beginning of the session
and negotiation of cryptographic keys to be used during the session.
IPsec is an end-to-end security scheme operating in the Internet Layer of the Internet
Protocol Suite. It can be used for protecting data flows between a pair of hosts (host-
to-host), between a pair of security gateways (network-to-network), or between a
security gateway and a host (network-to-host).
Some other Internet security systems in widespread use, such as Secure Sockets
Layer (SSL), Transport Layer Security (TLS) and Secure Shell (SSH), operate in the
upper layers of the TCP/IP model. In the past, the use of TLS/SSL had to be
designed into an application to protect application protocols. In contrast, since day
one, applications did not need to be specifically designed to use IPsec. Hence, IPsec
protects any application traffic across an IP network.
The IPsec suite is an open standard and it uses the following protocols to perform
various functions:

ñ Authentication Headers (AH) provide connectionless integrity and data origin
authentication for IP datagrams and provides protection against replay attacks.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 15

ñ Encapsulating Security Payloads (ESP) provide confidentiality, data-origin
authentication, connectionless integrity, an anti-replay service (a form of partial
sequence integrity), and limited traffic-flow confidentiality.

ñ Security Associations (SA) provide the bundle of algorithms and data that
provide the parameters necessary to operate the AH and/or ESP operations.
The Internet Security Association and Key Management Protocol (ISAKMP)
provides a framework for authentication and key exchange, with actual
authenticated keying material provided either by manual configuration with
pre-shared keys, Internet Key Exchange (IKE and IKEv2), Kerberized Internet
Negotiation of Keys (KINK), or IPSECKEY DNS records.

Cryptographic algorithms defined for use with IPsec include:
ñ HMAC-SHA1 for integrity protection and authenticity.
ñ TripleDES-CBC for confidentiality
ñ AES-CBC for confidentiality.

3.3 TSL

 Transport Layer Security (TSL) [2] and its predecessor, Secure Sockets
Layer (SSL), are cryptographic protocols that provide communication security over
the Internet. They use public-key cryptography for authentication of key exchange,
private-key encryption for confidentiality and message authentication codes for
message integrity. TSL operates in the Application Layer of the IP Protocol Suite.
The TLS protocol allows client-server applications to communicate across a network
in a way designed to prevent eavesdropping and tampering.
Since protocols can operate either with or without TLS (or SSL), it is necessary for
the client to indicate to the server whether it wants to set up a TLS connection or not.
There are two main ways of achieving this; one option is to use a different port
number for TLS connections (for example port 443 for HTTPS). The other is to use
the regular port number and have the client request that the server switch the
connection to TLS using a protocol specific mechanism (for example STARTTLS for
mail and news protocols).
Once the client and server have decided to use TLS, they negotiate a stateful
connection by using a handshaking procedure. During this handshake, the client and
server agree on various parameters used to establish the connection's security:

1. The client sends the server the client's SSL version number, cipher
settings, session-specific data, and other information that the server
needs to communicate with the client using SSL.

2. The server sends the client the server's SSL version number, cipher
settings, session-specific data, and other information that the client
needs to communicate with the server over SSL. The server also sends
its own certificate, and if the client is requesting a server resource that
requires client authentication, the server requests the client's certificate.

3. The client uses the information sent by the server to authenticate the
server. If the server cannot be authenticated, the user is warned of the

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 16

problem and informed that an encrypted and authenticated connection
cannot be established. If the server can be successfully authenticated,
the client proceeds to the next step.

4. Using all data generated in the handshake thus far, the client (with the
cooperation of the server, depending on the cipher in use) creates the
pre-master secret for the session, encrypts it with the server's public
key (obtained from the server's certificate, sent in step 2), and then
sends the encrypted pre-master secret to the server.

5. If the server has requested client authentication (an optional step in the
handshake), the client also signs another piece of data that is unique to
this handshake and known by both the client and server. In this case,
the client sends both the signed data and the client's own certificate to
the server along with the encrypted pre-master secret.

6. If the server has requested client authentication, the server attempts to
authenticate the client. If the client cannot be authenticated, the session
ends. If the client can be successfully authenticated, the server uses its
private key to decrypt the pre-master secret, and then performs a series
of steps (which the client also performs, starting from the same pre-
master secret) to generate the master secret.

7. Both the client and the server use the master secret to generate the
session keys, which are symmetric keys used to encrypt and decrypt
information exchanged during the SSL session and to verify its integrity
(that is, to detect any changes in the data between the time it was sent
and the time it is received over the SSL connection).

8. The client sends a message to the server informing it that future
messages from the client will be encrypted with the session key. It then
sends a separate (encrypted) message indicating that the client portion
of the handshake is finished.

9. The server sends a message to the client informing it that future
messages from the server will be encrypted with the session key. It then
sends a separate (encrypted) message indicating that the server portion
of the handshake is finished.

The SSL handshake is now complete and the session begins. The client and the
server use the session keys to encrypt and decrypt the data they send to each other
and to validate its integrity.
This is the normal operation condition of the secure channel. At any time, due to
internal or external stimulus (either automation or user intervention), either side may
renegotiate the connection, in which case, the process repeats itself.
This concludes the handshake and begins the secured connection, which is
encrypted and decrypted with the key material until the connection closes. If any one
of the above steps fails, the TLS handshake fails and the connection is not created.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 17

In step 3, the client must check a chain of "signatures" from a "root of trust" built into,
or added to, the client. The client must also check that none of these have been
revoked; this is not often implemented correctly, but is a requirement of any public-
key authentication system. If the particular signer beginning this server's chain is
trusted, and all signatures in the chain remain trusted, then the Certificate (thus the
server) is trusted.

3.4 HTTPS

 Hypertext Transfer Protocol Secure (HTTPS) [3] is a communications
protocol for secure communication over a computer network, with especially wide
deployment on the Internet. Technically, it is not a protocol in and of itself but rather it
is the result of simply layering the Hypertext Transfer Protocol (HTTP) on top of the
SSL/TLS protocol, thus adding the security capabilities of SSL/TLS to standard HTTP
communications.
In its popular deployment on the internet, HTTPS provides authentication of the web
site and associated web server that one is communicating with, which protects
against man-in-the-middle attacks. Additionally, it provides bidirectional encryption of
communications between a client and server, which protects against eavesdropping
and tampering with and/or forging the contents of the communication. In practice, this
provides a reasonable guarantee that one is communicating with precisely the web
site that one intended to communicate with (as opposed to an imposter), as well as
ensuring that the contents of communications between the user and site cannot be
read or forged by any third party.
Historically, HTTPS connections were primarily used for payment transactions on the
World Wide Web, e-mail and for sensitive transactions in corporate information
systems. In the late 2000s and early 2010s, HTTPS began to see widespread use for
protecting page authenticity on all types of websites, securing accounts and keeping
user communications, identity and web browsing private.
A site must be completely hosted over HTTPS, without having some of its contents
loaded over HTTP, or the user will be vulnerable to some attacks and surveillance.
For example, having scripts etc. loaded insecurely on an HTTPS page makes the
user vulnerable to attacks. Also having only a certain page that contains sensitive
information (such as a log-in page) of a website loaded over HTTPS, while having
the rest of the website loaded over plain HTTP will expose the user to attacks. On a
site that has sensitive information somewhere on it, every time that site is accessed
with HTTP instead of HTTPS, the user and the session will get exposed. Similarly,
cookies on a site served through HTTPS have to have the secure attribute enabled.
HTTPS is a URI scheme which has identical syntax to the standard HTTP scheme,
aside from its scheme token. However, HTTPS signals the browser to use an added
encryption layer of SSL/TLS to protect the traffic. SSL is especially suited for HTTP
since it can provide some protection even if only one side of the communication is
authenticated. This is the case with HTTP transactions over the Internet, where
typically only the server is authenticated (by the client examining the server's
certificate).

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 18

HTTPS creates a secure channel over an insecure network. This ensures reasonable
protection from eavesdroppers and man-in-the-middle attacks, provided that
adequate cipher suites are used and that the server certificate is verified and trusted.
Because HTTPS piggybacks HTTP entirely on top of TLS, the entirety of the
underlying HTTP protocol can be encrypted. This includes the request URL (which
particular web page was requested), query parameters, headers, and cookies (which
often contain identity information about the user). However, because host (web site)
addresses and port numbers are necessarily part of the underlying TCP/IP protocols,
HTTPS cannot protect their disclosure. In practice this means that even on a
correctly configured web server eavesdroppers can still infer the IP address and port
number of the web server (sometimes even the domain name e.g. www.example.org,
but not the rest of the URL) that one is communicating with as well as the amount
(data transferred) and duration (length of session) of the communication, though not
the content of the communication.
Web browsers know how to trust HTTPS websites based on certificate authorities
that come pre-installed in their software. Certificate authorities (e.g.
VeriSign/Microsoft/etc.) are in this way being trusted by web browser creators to
provide valid certificates. Logically, it follows that a user should trust an HTTPS
connection to a website if and only if all of the following are true:

ñ The user trusts that the browser software correctly implements HTTPS with
correctly pre-installed certificate authorities.

ñ The user trusts the certificate authority to vouch only for legitimate websites.
ñ The website provides a valid certificate, which means it was signed by a

trusted authority.
ñ The certificate correctly identifies the website (e.g., when the browser visits

"https://example.com", the received certificate is proper for "Example Inc." and
not some other entity).

ñ Either the intervening hops on the Internet are trustworthy, or the user trusts
that the protocol's encryption layer (TLS/SSL) is sufficiently secure against
eavesdroppers.

HTTPS is especially important over unencrypted networks (such as WiFi), as anyone
on the same local network can "packet sniff" and discover sensitive information.
Additionally, many free to use and even paid for WLAN networks do packet injection
for serving their own ads on webpages or just for pranks, however this can be
exploited maliciously e.g. by injecting malware and spying on users.
Another example where HTTPS is important is connections over Tor (anonymity
network), as malicious Tor nodes can damage or alter the contents passing through
them in an insecure fashion and inject malware into the connection. This is one
reason why the Electronic Frontier Foundation and Torproject started the
development of HTTPS Everywhere, which is included in the Tor Browser Bundle.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 19

4 ACCESS CONTROL

 In this section we review the access control framework pertaining to OpenIoT.

4.1 Fundamental concepts

Access control is a selective restriction of access to resource and includes the
following components authentication, authorization, access approval and
accountability.
In access control models, the entities that can perform actions in the system are
called subjects, and the entities representing resources to which access may need
to be controlled are called objects. Subjects and objects should both be considered
as software entities, rather than as human users: any human user can only have an
effect on the system via the software entities that they control.
 Authentication is the process of verifying that an identity is bound to the
entity that makes an assertion or claim of identity (i.e., verifying that "you are who you
say you are"). Authenticators are commonly based on “something you know”, such
as a password or a personal identification number (PIN). This assumes that only the
owner of the account knows the password or PIN needed to access the account.
 Authorization is the act of defining access rights for subjects. An
authorization policy specifies the operations that subjects are allowed to execute on
the system.
 Access approval is the function that actually grants or rejects access during
operations. During access approval the system compares the formal representation
of the authorization policy with the access request to determine whether the request
shall be granted or rejected.
 Accountability uses such system components as audit trails (records) and
logs to associate a subject with its actions. The information recorded should be
sufficient to map the subject to a controlling user. Audit trails and logs are important
for detecting security violations and re-creating security incidents
Two most widely recognized access control models are Discretionary Access
Control (DAC) and Mandatory Access Control (MAC).
 Discretionary Access Control (DAC) is a policy determined by the owner of
an object. The owner decides who is allowed to access the object and what
privileges they have. Two important concepts in DAC are:

• File and data ownership: Every object in the system has an owner. In most DAC
systems, each object's initial owner is the subject that caused it to be created.
The access policy for an object is determined by its owner.

• Access rights and permissions: These are the controls that an owner can assign
to other subjects for specific resources.

 Mandatory Access Control (MAC) refers to allowing access to a resource if
and only if rules exist that allow a given user to access the resource. It is difficult to
manage but its use is usually justified when used to protect highly sensitive
information. Examples include certain government and military information.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 20

Management of MAC is often implemented by using sensitivity labels. In such a
system subjects and objects must have labels assigned to them. A subject's
sensitivity label specifies its level of trust. An object's sensitivity label specifies the
level of trust required for access. In order to access a given object, the subject must
have a sensitivity level equal to or higher than the requested object.

Two methods are commonly used for implementing mandatory access control using
sensitivity labels:

• Rule-based access control: This type of control further defines specific
conditions for access to a requested object. A Mandatory Access Control system
implements a simple form of rule-based access control to determine whether
access should be granted or denied by matching:

1. An object's sensitivity label
2. A subject's sensitivity label

• Lattice-based access control: A lattice is used to define the levels of security
that an object may have and that a subject may have access to. The subject is
only allowed to access an object if the security level of the subject is greater than
or equal to that of the object. A lattice model is a mathematical structure that
defines greatest lower-bound (meet) and least upper-bound (join) values for a pair
of elements, such as a subject and an object. For example, if two subjects A and
B need access to an object, the security level is defined as the meet of the levels
of A and B. In another example, if two objects X and Y are combined, they form
another object Z, which is assigned the security level formed by the join of the
levels of X and Y.

 Access Control Matrix or Access Matrix is an abstract, formal security of
protection state in computer systems, that characterize the rights of each subject with
respect to every object in the system. More formally, access matrix is defined as a
set of objects O, that is the set of entities that needs to be protected (e.g., processes,
files, memory pages) and a set of subjects S, that consists of all active entities (e.g.,
users, processes). Further there exists a set of rights R of the form r(s, o), where s in
S, o in O and r(s, o) in R, where a right specifies the kind of access a subject is
allowed to process object. Consider the following example of a matrix where there
exist two subjects (Role1 and Role2) the following objects: asset1, asset2, file and a
device. Table 1 presents an example access matrix.

Table 1: An example access matrix

 asset 1 asset 2 file device

Role1 read, write, execute, own execute read write

Role2 read read, write, execute,
own

 In general, all subjects are objects but the inverse is not true. Thus, the cell for
row s and column o, [s, o], denotes the set of rights of subject s to perform an
operation on object o (e.g., read in [s, o]). Thus, all users in the access matrix are

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 21

represented by their corresponding subjects. The access matrix is a dynamic entity
and its individual cells can be modified by subjects. For example, if subject s is the
owner of object o then s can modify the content of cells corresponding to o. In such a
case the owner of the object has complete discretion regarding the access to the
owned object by other subjects. Such an access control model is called discretionary.
The access matrix is usually sparse and is stored in a system using access control
lists, capabilities, relations or another data structure suitable for efficient sparse
matrix storage.
 An access control list (ACL), with respect to a computer system, is a list of
permissions attached to an object. An ACL specifies which users or system
processes are granted access to objects, as well as what operations are allowed on
given objects. Each entry in a typical ACL specifies a subject and an operation. For
instance, if a file has an ACL that contains (Alice, delete), this would give Alice
permission to delete the file.

4.2 Lattice-Based Access Control Models

In this section we present foundations of lattice-based access control models
given the importance of lattice-based access control systems.
A security of computer system has the following three interdependent objectives:

ñ Confidentiality (or secrecy) related to disclosure of information, i.e.,
preventing users from learning about data of other users.

ñ Integrity, related to modification of information, i.e., preventing a user from
changing data of other users.

ñ Availability related to denial of access to information, i.e., ensuring that
requested data is delivered on time.

Lattice-based access control models were developed to deal with information flow in
computer system. Although developed for the defence sector they can be used in
most cases where information flow is critical. Therefore they are a key component of
computer security.

4.2.1 Information flow policy

 Information flow policies are concerned with the flow of information from one
security class to another. In particular in a computer system this information flaws
from one object to another, where object is defined as a container of information
(e.g., files and directories in an operating system).
Information flow is controlled by assigning every object a security class also called a
security label. If information flows from object x to object y, it implies information flow
from the security class of x to the security class of y. Thus, an information flow from
one class to another concerns the corresponding objects.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 22

An information flow policy can be formally defined as follows:

• SC is the set of security classes

• A ->B is a binary relation on SC called “flows”, where A, B is in SC. Thus, the
information flows from security class A to security class B.

• A + B = C is a binary class combination or join operation, where C is in SC. Thus,
the join operation specifies how to label information obtained by combining
information from two security classes A and B, where C is the resulting class.

• '>=' is the dominance operator, where A >= B (A dominates B) if and only if B->A.
The strict dominates relation > is defined by A > B if A >=B and A <> B. Thus, if
A > B then B->A.
Then the definition of A + B is just the maximum with respect to A and B. Thus, if
information from two security classes is combined the label of the higher of the
two is used for the result.

 As an example consider High-low policy defined as follows: SC={H, L}, the
flow relations is H->H, L->L, L->H and the join is defined as follows: H+H=H, L+H=H,
L+L=L.
 As another example of security classes consider SC={TS: top secret, S:
secret, C: confidential, U: unclassified} and the total (linear) ordering of the security
classes as follows: U->S->C->TS meaning TS >S>C>U and A+B is the maximum
with respect to the dominance relation.

4.3 Access control models-based on information flow

 Recall, that a user is defined as a human being assigned a unique user id in
the system. A subject is a process in the system (a program in execution), where
each subject is associated with a single user. In general a user can have several
subjects concurrently running in the system. Thus, every time a user logs into the
system it does so as a particular subject. (Note that access control models assume
that identification and authentication of users takes place in a secure and correct
manner. Different subjects associated with the same user can obtain different sets of
access rights. For example, top secret user Bob logs in at the secret level. Then Bob
can have subjects running at different levels dominated by the top secret class.
The discretionary access control model is not adequate for enforcing information flow
policies because they provide no constraints on copying information from one object
to another. For an illustration of this property consider the following example.
 EXAMPLE 1. Suppose that Tom, Dick and Harry are users and Tom has a
confidential file Private that he wants Dick to read but does not want Harry to read.
Tom can authorize Dick to read the file by entering read(Dick, Private) in the access
matrix. Dick can easily subvert Tom's intention by creating a new file called Copy-of-
Private and copying the contents of Private into it. As the creator of Copy-of-Private,
Dick has the authority to grant read access for it to any user including Harry. Thus,
Dick can enter read (Harry,Copy-of-Private) in the access matrix. Then Harry can
read Private.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 23

4.3.1 Mandatory access policy

 The key idea of the mandatory access control model that we present in this
section is to augment discretionary access controls with mandatory access controls
to enforce information flow policies.
Thus, we take a two step approach to access control. First a discretionary access
matrix D, whose contents can be modified by subjects is used, where authorization in
D is not sufficient for an operation to be carried out. Second, the operation must be
authorized by the mandatory access control policy over which users have no control.

4.3.2 Confidentiality

 Mandatory access control policy is expressed in terms of security labels
attached to subjects (security classification) and objects (security clearance).
Thus, a user labelled secrete can run the same program such as text editor, as a
subject labelled secret or as a subject labelled unclassified. Even though both
subjects run the same program on behalf of the same user they both obtain different
privileges due to their security labels. The assumption called tranquillity says that the
security labels on subjects and objects cannot be changed.
Let L be the security label (confidentiality) of a given subject or object. Then
mandatory access rules can be expressed as follows:

• Subject s can read an object o only if L(s) >= L(o), meaning L(o) -> L(s), i.e., o
flows to s.

• Subject s can write object o only if L(s) <= L(o), meaning L(s)->L(o), i.e., s flows to
o.

The mandatory checks are only applied if the checks of the discretionary matrix have
been satisfied. If the matrix does not authorize the operation then we do not check
the mandatory controls.
These security requirements apply to humans and programs equally. The write
property is not applied to humans but to programs. Human users are trusted not to
leak information. A secret user can write unclassified document because we assume
that he will put only unclassified information in it.
Programs are not trusted because they can have embedded Trojan Horses. The
write property prohibits a program running at a secrete level from writing to
unclassified objects even if it is permitted to do so by discretionary access control. A
user labelled secret can write to an unclassified object must log as an unclassified
subject.
Now consider how the presented properties impact Example 1. Clearly the read
property will prevent Harry's subjects from being able to directly read the file Private.
The presented write property will ensure that Harry's subjects cannot surreptitiously
read Copy-of-Private because it will either be labelled secret or will not contain any
information from Private.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 24

4.3.3 Integrity

 The presented model can be extended to handle integrity. The concept of
integrity says that low-integrity information should not be allowed to flow to high-
integrity objects. Let W denote the integrity label of a subject or object. A particular
mandatory integrity rules can be expressed as follows:

• Subject s can read an object o only if W(s) <= W(o), meaning W(s) -> W(o), i.e., s
flows to o.

• Subject s can write an object o only if W(s) >= L(o), meaning W(o) -> W(s), i.e., o
flows to s.

4.3.4 Combined

 It is often suggested that the confidentiality and integrity models could be
combined in situations where both confidentiality and integrity are of concern. If a
single label were used for both confidentiality and integrity then a model would
impose conflicting constraints. Therefore, a model with independent confidentiality
and integrity labels is more useful in practice. In such a model each security class
consists of two labels: a confidentiality label L and an integrity label W with
independent controls applied to them. We assume that that in both lattices high
confidentiality and high integrity are at the top.
Example combined confidentiality and integrity mandatory rules can be expressed as
follows:

• Subject s can read an object o only if L(s) => L(o) and W(s) <= W(o)

• Subject s can write an object o only if L(s) <= L(o) and W(s) >= W(o)

This popular combined model has been implemented in several operating system,
database and network products specifically built to meet requirements of the military
sector. Thus this model amount to the simultaneous application of two lattices, with
information flow, occurring in opposite directions (going upward in the confidentiality
lattice and downward in the integrity lattice).

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 25

5 THE SECURITY ARCHITECTURE IN OPENIOT

 In this section we present the proposed security architecture in OpenIoT that
accommodates the specifics/requirements of the OpenIoT platform.

5.1 Overview of the architecture

Clearly, the OpenIoT platform consist of several cooperating distributed standalone
applications (e.g., SDUM, X-GSN, LSM, etc.) that require individual security
(authentication and authorization) services because of differing subjects and objects
that they deal with. Therefore, we propose a central authorization and authentication
server that provides authentication and authorization services for all relevant
OpenIoT applications running on behalf of different subjects.

Figure 1. Security Architecture in OpenIoT.

The main feature of this architecture is that user credentials (username/password)
are only checked and maintained by Central Authorization Server (CAS) and it
authorizes applications running on behalf a user by granting them an access token
with a given time to live. This prevents any circulation of the credentials throughout
OpenIoT components. Furthermore, the architecture has to be open to external
security schemes that are more flexible or secure (or both) than the default security
model. Note that the security and performance are usually orthogonal features and
strong security means lower performance and vice-versa. Therefore, our ultimate
objective is to design a scheme where security can be traded for performance.
Figure 1 presents an overview of the security architecture in the OpenIoT
architecture.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 26

 In particular, CAS architecture considers the following roles:
ñ Resource owner: e.g., an owner of sensor data in LSM that grants access to

the data for Service Delivery and Utility Manager (SDUM).
ñ Resource server: e.g., Sensor Data Cloud Database (LSM).
ñ Client: e.g., SDUM querying LSM on behalf of a resource owner. In general,

Client consists of the distributed set of OpenIoT components, that use the
corresponding token to get access to the data of the corresponding Resource
owner in LSM.

ñ Authorization server: CAS issuing access tokens to a client after successfully
authenticating the resource owner and obtaining authorization.

The Clients that directly authenticate with CAS are:
ñ Request Definition: where a user defines a request (query) and upon

authentication the other clients (e.g., SCH, LSM, Request Presentation) get a
corresponding token to accomplish their tasks.

ñ CMC: where the administrator is authenticated to accomplish his tasks.
ñ X-GSN: where sensor data providers are authenticated to stream the

corresponding data to LSM.

The details of the CAS architecture are presented in Section 6.

5.2 Access matrix

 The utilized access matrix consists of the following subjects and objects. The
roles are as follows:

ñ Administrator: This role gains access to the entire OpenIoT platform. All the
actions of the different modules will be available to administrators.
Administrators will also have access to all available GUIs.

ñ User: The user role is the most common and the most used role of the access
control model. After creating an account, the user will gain access to a specific
list of possible actions. The user will have access to the request definition and
the request presentation GUIs.

The considered objects are as follows:

1. Physical sensor (PS).
2. Virtual sensors (VS).
3. Internet Connected Object (ICO).
4. Services related to the components (e.g., SDUM, SCH and LSM operations).

A fragment of the access matrix as a relation is presented in Table 2.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 27

Table 2: A fragment of the access matrix in OpenIoT

Role Relation r(o)

Administrator setup(VS), setup(PS), setup(LSM), setup(SCH), setup(SDUM),
write(LSM), read(LSM), ..., etc.

User read(VS), read(PS), read(GUI), ..., etc.

5.3 Mandatory access rules

We consider the following security classes
1. TS: top secret
2. C: confidential.

Security classes assignment to roles is presented in Table 3.
Table 3: Security classes and roles in OpenIoT

Role Security class (confidentiality label)

Administrator TS: top secret

User C: confidential

We adapt the confidentiality rules as trust rules from Section 4. 3.

5.4 Security protocol stack

 The security protocol stack in OpenIoT is presented in Table 4, where
The layers refer to corresponding communication between the following components:
Layer 1: sensors and GSN, Layer 2: GSN and LSM and Layer 3: other OpenIoT
components (e.g., LSM and SDUM).

Table 4: The security protocol stack in OpenIoT

 Layer/Link Security/privacy solution

1. Sensor->GSN Ipsec (wired networks), IEEE802.15.4 (wireless networks)

2. GSN->LSM TSL, HTTPS

3. Application
(OpenIoT)

TSL, HTTPS

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 28

Clearly, the OpenIoT platform relies entirely on the TSL/HTTPS protocol to ensure
secure (encrypted) messaging, while IEEE802.15.4, Ipsec guarantees secure sensor
data.

6 AUTHORIZATION FRAMEWORK

 In this section we present our authorization framework that is based on the
OAuth [4,5] framework and provides authorization to OpenIoT modules on behalf of a
user.
We chose OAuth as our authorization framework for the following reasons:

ñ From the point of view of OpenIoT the most important fact about OAuth is that
it describes a method for providing authorization in a distributed environment,
where distributed client applications get access to owner's resources using
time-stamped tokens to avoid transmitting credentials (username, password)
to the client applications.

ñ OAuth is an open standard for authorization, i.e., publicly available, and
developed, approved and maintained via a collaborative and consensus driven
process.

ñ OAuth is more like a framework (not a defined protocol), which leaves a lot of
implementation freedom that we need because of non-standard requirements
in OpenIoT. For example, for some OpenIoT applications involving mobile
phones as sensors it is important to have time stamped and location-restricted
access tokens.

ñ OAuth is the only framework in its genre and is widely used for similar
applications.

Furthermore, OAuth is a result of standardization and combined wisdom of many
well-established industry protocols. It is similar to other protocols currently in use
(Google AuthSub, AOL OpenAuth, Yahoo BBAuth, Flickr API, Amazon Web Services
API, etc). Each protocol provides a proprietary method for exchanging user
credentials for an access token or ticker. OAuth was created by carefully studying
each of these protocols and extracting the best practices and commonality that allow
new implementations as well as a smooth transition for existing services to support
Oauth.
An area, where OAuth is more evolved than some of the other protocols and services
are its direct handling of non-website services. OAuth has built in support for desktop
applications, mobile devices, set-top boxes, and of course websites. Many of the
protocols today use a shared secret hardcoded into software but such an approach
may pose an issue when the service trying to access private data is open source.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 29

6.1 Introduction

 In the traditional client-server authentication model, the client requests an
access-restricted resource (protected resource) on the server by authenticating with
the server using the resource owner's credentials. In order to provide third-party
applications access to restricted resources, the resource owner shares its credentials
with the third party.

 This creates several problems and limitations:

ñ Third-party applications are required to store the resource owner's
credentials for future use, typically a password in clear-text.

ñ Servers are required to support password authentication, despite
the security weaknesses inherent in passwords.

ñ Third-party applications gain overly broad access to the resource
owner's protected resources, leaving resource owners without any
ability to restrict duration or access to a limited subset of resources.

ñ Resource owners cannot revoke access to an individual third party
without revoking access to all third parties, and must do so by
changing the third party's password.

ñ Compromise of any third-party application results in compromise of
the end-user's password and all of the data protected by that
password.

OAuth addresses these issues by introducing an authorization layer and separating
the role of the client from that of the resource owner. In OAuth, the client requests
access to resources controlled by the resource owner and hosted by the resource
server, and is issued a different set of credentials than those of the resource owner.
Instead of using the resource owner's credentials to access protected resources, the
client obtains an access token a string denoting a specific scope, lifetime, and other
access attributes. An authorization server with the approval of the resource owner
issues access tokens to third-party clients. The client uses the access token to
access the protected resources hosted by the resource server.
For example, an end-user (resource owner) can grant a printing service (client)
access to her protected photos stored at a photo-sharing service (resource server),
without sharing her username and password with the printing service. Instead, she
authenticates directly with a server trusted by the photo-sharing service
(authorization server), which issues the printing service delegation-specific
credentials (access token).

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 30

6.2 Roles

 OAuth defines four roles:
1. Resource owner: an entity capable of granting access to a protected

resource. When the resource owner is a person, it is referred to as an end-
user.

2. Resource server: the server hosting the protected resources, capable of
accepting and responding to protected resource requests using access
tokens.

3. Client: an application making protected resource requests on behalf of the
resource owner and with its authorization. The term "client" does not imply any
particular implementation characteristics (e.g., whether the application
executes on a server, a desktop, or other devices).

4. Authorization server: the server issuing access tokens to the client after
successfully authenticating the resource owner and obtaining authorization.

The interaction between the authorization server and resource server is beyond the
scope of this specification. The authorization server may be the same server as the
resource server or a separate entity. A single authorization server may issue access
tokens accepted by multiple resource servers.

Figure 2. Abstract Protocol Flow.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 31

6.3 OAuth Protocol Flow

The abstract OAuth flow illustrated in Illustration 2 describes the interaction

between the four roles and includes the following steps:
A) The client requests authorization from the resource owner. The

authorization request can be made directly to the resource owner
(as shown), or preferably indirectly via the authorization server as an
intermediary.

B) The client receives an authorization grant, which is a credential
representing the resource owner's authorization, expressed using one of
four grant types defined in this specification or using an extension grant
type. The authorization grant type depends on the method used by the
client to request authorization and the types supported by the
authorization server.

C) The client requests an access token by authenticating with the
authorization server and presenting the authorization grant.

D) The authorization server authenticates the client and validates the
authorization grant, and if valid, issues an access token.

E) The client requests the protected resource from the resource server and
authenticates by presenting the access token.

F) The resource server validates the access token, and if valid, serves the
request.

The preferred method for the client to obtain an authorization grant from the resource
owner (depicted in steps (A) and (B)) is to use the authorization server as an
intermediary as in Figure 3.

6.3.1 Authorization Grant

 An authorization grant is a credential representing the resource owner's
authorization (to access its protected resources) used by the client to obtain an
access token. This specification defines four grant types: authorization code, implicit,
resource owner password credentials, and client credentials as well as an
extensibility mechanism for defining additional types.

6.3.2 Authorization Code

 The authorization code is obtained by using an authorization server as an
intermediary between the client and resource owner. Instead of requesting
authorization directly from the resource owner, the client directs the resource owner
to an authorization server, which in turn directs the resource owner back to the client
with the authorization code.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 32

Before directing the resource owner back to the client with the authorization code, the
authorization server authenticates the resource owner and obtains authorization.
Because the resource owner only authenticates with the authorization server, the
resource owner's credentials are never shared with the client.
The authorization code provides a few important security benefits, such as the ability
to authenticate the client, as well as the transmission of the access token directly to
the client without passing it through the resource owner's user-agent and potentially
exposing it to others, including the resource owner.
The authorization code grant type is used to obtain both access tokens and refresh
tokens and is optimized for confidential clients. Since this is a redirection-based flow,
the client must be capable of interacting with the resource owner's user-agent
(typically a web browser) and capable of receiving incoming requests (via redirection)
from the authorization server.

Figure 3. Authorization Code Flow.

The flow illustrated in Illustration 3 includes the following steps:

A) The client initiates the flow by directing the resource owner's user-agent
to the authorization endpoint. The client includes its client identifier,
requested scope, local state, and a redirection URI to which the
authorization server will send the user-agent back once access is granted
(or denied).

B) The authorization server authenticates the resource owner (via the user-
agent) and establishes whether the resource owner grants or denies the
client's access request.

C) Assuming the resource owner grants access, the authorization
server redirects the user-agent back to the client using the
redirection URI provided earlier (in the request or during client
registration). The redirection URI includes an authorization code and any
local state provided by the client earlier.

D) The client requests an access token from the authorization server's token

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 33

endpoint by including the authorization code received in the previous
step. When making the request, the client authenticates with the
authorization server. The client includes the redirection URI used to
obtain the authorization code for verification.

E) The authorization server authenticates the client, validates the
authorization code, and ensures that the redirection URI received
matches the URI used to redirect the client in step C). If valid, the
authorization server responds back with an access token and, optionally,
a refresh token.

6.3.3 Implicit

 The implicit grant is a simplified authorization code flow optimized for clients
implemented in a browser using a scripting language such as JavaScript. In the
implicit flow, instead of issuing the client an authorization code, the client is issued an
access token directly (as the result of the resource owner authorization). The grant
type is implicit, as no intermediate credentials (such as an authorization code) are
issued (and later used to obtain an access token).
When issuing an access token during the implicit grant flow, the authorization
server does not authenticate the client. In some cases, the client identity can be
verified via the redirection URI used to deliver the access token to the client. The
access token may be exposed to the resource owner or other applications with
access to the resource owner's user-agent.
Implicit grants improve the responsiveness and efficiency of some clients (such as a
client implemented as an in-browser application), since it reduces the number of
round trips required to obtain an access token. However, this convenience should be
weighed against the security implications of using implicit grants, especially when the
authorization code grant type is available.

6.3.4 Resource Owner Password Credentials

 The resource owner password credentials (i.e., username and password)
can be used directly as an authorization grant to obtain an access token. The
credentials should only be used when there is a high degree of trust between the
resource owner and the client (e.g., the client is part of the device operating system
or a highly privileged application), and when other authorization grant types are not
available (such as an authorization code).
Even though this grant type requires direct client access to the resource owner
credentials, the resource owner credentials are used for a single request and are
exchanged for an access token. This grant type can eliminate the need for the client
to store the resource owner credentials for future use, by exchanging the
credentials with a long-lived access token or refresh token.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 34

6.3.5 Client Credentials

 The client credentials (or other forms of client authentication) can be used as
an authorization grant when the authorization scope is limited to the protected
resources under the control of the client, or to protected resources previously
arranged with the authorization server. Client credentials are used as an
authorization grant typically when the client is acting on its own behalf (the client is
also the resource owner) or is requesting access to protected resources based on an
authorization previously arranged with the authorization server.

6.4 Access Token

 Access tokens are credentials used to access protected resources. An access
token is a string representing an authorization issued to the client. The string is
usually opaque to the client. Tokens represent specific scopes and durations of
access, granted by the resource owner, and enforced by the resource server and
authorization server.
The token may denote an identifier used to retrieve the authorization information or
may self-contain the authorization information in a verifiable manner (i.e., a token
string consisting of some data and a signature). Additional authentication credentials,
which are beyond the scope of this specification, may be required in order for the
client to use a token.
The access token provides an abstraction layer, replacing different authorization
constructs (e.g., username and password) with a single token understood by the
resource server. This abstraction enables issuing access tokens more restrictive than
the authorization grant used to obtain them, as well as removing the resource
server's need to understand a wide range of authentication methods.
Access tokens can have different formats, structures, and methods of utilization (e.g.,
cryptographic properties) based on the resource server security requirements.

6.5 Refresh Token

 Refresh tokens are credentials used to obtain access tokens. Refresh tokens
are issued to the client by the authorization server and are used to obtain a new
access token when the current access token becomes invalid or expires, or to obtain
additional access tokens with identical or narrower scope (access tokens may have a
shorter lifetime and fewer permissions than authorized by the resource owner).
Issuing a refresh token is optional at the discretion of the authorization server. If the
authorization server issues a refresh token, it is included when issuing an access
token (i.e., step (D) in Illustration 2).
A refresh token is a string representing the authorization granted to the client by the
resource owner. The string is usually opaque to the client. The token denotes an
identifier used to retrieve the authorization information. Unlike access tokens, refresh
tokens are intended for use only with authorization servers and are never sent to
resource servers.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 35

Figure 4. Refreshing an Expired Access Token.

 The flow illustrated in Illustration 4 includes the following steps:

A) The client requests an access token by authenticating with the
authorization server and presenting an authorization grant.

B) The authorization server authenticates the client and validates the
authorization grant, and if valid, issues an access token and a refresh
token.

C) The client makes a protected resource request to the resource
server by presenting the access token.

D) The resource server validates the access token, and if valid, serves the
request.

E) Steps C) and D) repeat until the access token expires. If the client knows
the access token expired, it skips to step G); otherwise, it makes another
protected resource request.

F) Since the access token is invalid, the resource server returns an invalid
token error.

G) The client requests a new access token by authenticating with the
authorization server and presenting the refresh token. The client
authentication requirements are based on the client type and on the
authorization server policies.

H) The authorization server authenticates the client and validates the refresh
token, and if valid, issues a new access token (and, optionally, a new
refresh token).

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 36

6.6 TLS Version

 Whenever Transport Layer Security (TLS) is used by this specification, the
appropriate version (or versions) of TLS will vary over time, based on the widespread
deployment and known security vulnerabilities.
Implementations MAY also support additional transport-layer security mechanisms
that meet their security requirements.

6.7 HTTP Redirections

 This specification makes extensive use of HTTP redirections, in which the
client or the authorization server directs the resource owner's user-agent to another
destination. While the examples in this specification show the use of the HTTP 302
status code, any other method available via the user-agent to accomplish this
redirection is allowed and is considered to be an implementation detail.

6.8 Interoperability

 OAuth 2.0 provides a rich authorization framework with well-defined security
properties. However, as a rich and highly extensible framework with many optional
components, on its own, this specification is likely to produce a wide range of non-
interoperable implementations.
In addition, this specification leaves a few required components partially or fully
undefined (e.g., client registration, authorization server capabilities, endpoint
discovery). Without these components, clients must be manually and specifically
configured against a specific authorization server and resource server in order to
interoperate.
This framework was designed with the clear expectation that future work will define
prescriptive profiles and extensions necessary to achieve full web-scale
interoperability.

6.9 Security considerations

 In this section we consider the security of the OAuth framework.

6.9.1 Beyond Basic

 HTTP defines an authentication scheme called ‘Basic’ which is commonly
used by many sites and APIs. The way ‘Basic’ works is by sending the username and
password in plain text with each request. When not used over HTTPS, ‘Basic’ suffers
from significant security risks. First, it transmits a password unencrypted that allows
anyone listening to capture and reuse those credentials. Second, there is nothing
linking the credentials to the request which means once compromised, they can be
used with any request without limitations. Third, ‘Basic’ does not provide a

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 37

placeholder for delegation credentials and only supports a single username-
password pair. Delegation requires being able to send both the credentials of the
caller (client) and those of the party delegating its access (resource owner). The
OAuth architecture explicitly addresses these three limitations.
The OAuth signature method was primarily designed for insecure communications
mainly non-HTTPS. HTTPS is the recommended solution to prevent a man-in-the-
middle attack (MITM), eavesdropping, and other security risks. However, HTTPS is
often not available. When OAuth is used over HTTPS, it offers a simple method for a
more efficient implementation called PLAINTEXT which offloads most of the security
requirements to the HTTPS layer. It is important to understand that PLAINTEXT
should not be used over an insecure channel. Therefore we focus on the methods
designed to work over an insecure channel: HMAC-SHA1 and RSA-SHA1.

6.9.2 Credentials

 In everyday web transactions, the most common credential used is the
username-password combination. OAuth’s primary goal is to allow delegated access
to private resources. This is done using two sets of credentials: the client identifies
itself using its client identifier and client secret, while the resource owner is identified
by an access token and token secret. Each set can be thought of as a username-
password pair (one for the application and one for the end-user).
However, while the client credentials work much like a username and password, the
user is represented by an access token which is different than their actual username
and password. This allows the server and resource owner greater control and
flexibility in granting client access. For example, the resource owner can revoke an
access token without having to change passwords and break other applications. The
decoupling of the resource owner’s username and password from the access token
is one of the most fundamental aspects of the OAuth architecture.
OAuth includes two type of tokens: temporary credentials and access token. Each
type has a very specific role in the OAuth flow. While mostly an artefact of how the
OAuth specification evolved, the two-token design offers some usability and security
features which made it worthwhile to stay in the specification.
OAuth operates on two channels: a front-channel which is used to engage the
resource owner and request authorization, and a back-channel used by the client to
directly interact with the server.
By limiting the access token to the back-channel, the token itself remains concealed
from the resource owner and its browser. This allows the access token to carry
special meanings and to have a larger size than the front-channel temporary
credentials which are exposed to the resource owner when requesting authorization,
and in some cases needs to be manually entered (mobile device or set-top box).
The request signing workflow treats all tokens the same and the methods are
identical. The two tokens are specific to the authorization workflow, not the signature
workflow which uses the tokens equally. This does not mean the two token types are
interchangeable, just that they provide the same security function when signing
requests.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 38

6.9.3 Signature and Hash

 OAuth uses digital signatures instead of sending the full credentials
(specifically, passwords) with each request. Similar to the way people sign
documents to indicate their agreement with a specific text, digital signatures allow the
recipient to verify that the content of the request has not changed in transit. To do
that, the sender uses a mathematical algorithm to calculate the signature of the
request and includes it with the request.
In turn, the recipient performs the same workflow to calculate the signature of the
request and compares it to the signature value provided. If the two match, the
recipient can be confident that the request has not been modified in transit. The
confidence level depends on the properties of the signature algorithm used (some
are stronger than others). This mechanism requires both sides to use the same
signature algorithm and apply it in the same manner.
A common way to sign digital content is using a hash algorithm. In general, hashing
is the process of taking data (of any size) and condensing it to a much smaller value
(digest) in a fully reproducible (one-way) manner. This means that using the same
hash algorithm on the same data will always produce the same smaller value. Unlike
compression which aims to preserve much of the original uncompressed data,
hashing usually does not allow going from the smaller value back to the original.
By itself, hashing does not verify the identity of the sender, only data integrity. In
order to allow the recipient to verify that the request came from the claimed sender,
the hash algorithm is combined with a shared secret. If both sides agree on some
shared secret known only to them, they can add it to the content being hashed. This
can be done by simply appending the secret to the content, or using a more
sophisticated algorithm with a built-in mechanism for secrets such as HMAC. Either
way, producing and verifying the signature requires access to the shared secret,
which prevents attackers from being able to forge or modify requests.
The benefit of this approach compared to the HTTP ‘Basic’ authorization scheme is
that the actual secret is never sent with the request. The secret is used to sign the
request but it is not part of it, nor can it be extracted (when implemented correctly).
Signatures are a safer way to accomplish the same functionality of sending the
shared secret with the request over an unsecure channel.

6.9.4 Secrets Limitations

 In OAuth, the shared secret depends on the signature method used. In the
PLAINTEXT and HMAC-SHA1 methods, the shared secret is the combination of the
client secret and token secret. In the RSA-SHA1 method, the client private key is
used exclusively to sign requests and serves as the asymmetric shared secret. The
way asymmetric key-pairs work, is that each side (the client and server) uses one
key to sign the request and another key to verify the request.
The keys (private key for the client and public key for the server) must match, and
only the right pair can successful sign and verify the request. The advantage of using
asymmetric shared secrets is that even the server does not have access to the
client’s private key which reduces the likelihood of the secret being leaked.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 39

However, since the RSA-SHA1 method does not use the token secret (it does not
use the client secret either but that is adequately replaced by the client private key),
the private key is the only protection against attacks and if compromised, puts all
tokens at risk. This is not the case with the other methods where one compromised
token secret (or even client secret) does not allow access to other resources
protected by other tokens (and their secrets).
When implementing OAuth, it is critical to understand the limitations of shared
secrets, symmetric or asymmetric. The client secret (or private key) is used to verify
the identity of the client by the server. In case of a web-based client such as web
server, it is relatively easy to keep the client secret (or private key) confidential.
However, when the client is a desktop application, a mobile application, or any other
client-side software such as browser applets (Flash, Java, Silverlight) and scripts
(JavaScript), the client credentials must be included in each copy of the application.
This means the client secret (or private key) must be distributed with the application,
which inheritably compromises them.
This does not prevent using OAuth within such application, but it does limit the
amount of trust the server can have in such public secrets. Since the secrets cannot
be trusted, the server must treat such application as unknown entities and use the
client identity only for activities that do not require any level of trust, such as
collecting statistics about applications. Some servers may opt to ban such application
or offer different protocols or extensions. However, at this point there is no known
solution to this limitation.
It is important to note, that even though the client credentials are leaked in such
application, the resource owner credentials (token and secret) are specific to each
instance of the client which protects their security properties. This of course greatly
depends on the client implementation and how it stores token information on the
client side.

6.9.5 Timestamp and Nonce

 The signature and shared secret provide some level of security but are still
vulnerable to attacks. The signature protects the content of the request from
changing while the shared secret ensures that requests can only be made (and
signed) by an authorized client. What is missing is something to prevent requests
intercepted by an unauthorized party, usually by sniffing the network, from being
reused. This is known as a replay attack.
As long as the shared secrets remain protected, anyone listening in on the network
will not be able to forge new requests as that will require using the shared secret.
They will however, be able to make the same sign request over and over again. If the
intercepted request provides access to sensitive protected data, it can be a
significant security risk.
To prevent compromised requests from being used again (replayed), OAuth uses a
nonce and timestamp. The term nonce means ‘number used once’ and is a unique
and usually random string that is meant to uniquely identify each signed request. By
having a unique identifier for each request, the Service Provider is able to prevent
requests from being used more than once. This means the client generates a unique

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 40

string for each request sent to the server, and the server keeps track of all the
nonces used to prevent them from being used a second time. Since the nonce value
is included in the signature, it cannot be changed by an attacker without knowing the
shared secret.
Using nonces can be very costly for the server as they demand persistent storage of
all nonce values received, ever. To make implementations easier, OAuth adds a
timestamp value to each request which allows the server to only keep nonce values
for a limited time. When a request comes in with a timestamp that is older than the
retained time frame, it is rejected as the server no longer has nonces from that time
period.
It is safe to assume that a request sent after the allowed time limit is a replay attack.
From a security standpoint, the real nonce is the combination of the timestamp value
and nonce string. Only together they provide a perpetual unique value that can never
be used again by an attacker.

6.9.6 Signature Methods

 OAuth defines 3 signature methods used to sign and verify requests:
PLAINTEXT, HMAC-SHA1, and RSA-SHA1. PLAINTEXT is intended to work over
HTTPS and in a similar fashion to how HTTP ‘Basic’ transmits the credentials
unencrypted. Unlike ‘Basic’, PLAINTEXT supports delegation. The other two
methods use the HMAC and RSA signature algorithm combined with the SHA1 hash
method. Since these methods are too complex to explain in this guide, implementers
are encouraged to read other guides specific to them, and not to write their own
implementations, but instead use trusted open source solutions available for most
languages.
When signing requests, it is necessary to specify which signature method has been
used to allow the recipient to reproduce the signature for verification. The decision of
which signature method to use depends on the security requirements of each
application. Each method comes with its set of advantages and limitations.
PLAINTEXT is trivial to use and takes significantly less time to calculate, but can only
be safe over HTTPS or similar secure channels. HMAC-SHA1 offers a simple and
common algorithm that is available on most platforms but not on all legacy devices
and uses a symmetric shared secret. RSA-SHA1 provides enhanced security using
key-pairs but is more complex and requires key generation and a longer learning
curve.

6.9.7 Signature Base String

 As explained above, both sides must perform the signature process in an
identical manner in order to produce the same result. Not only must they both use the
same algorithm and share secret, but also they must sign the same content. This
requires a consistent method for converting HTTP requests into a single string that is
used as the signed content the Signature Base String.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 41

7 TRUSTWORTHINESS OF SENSOR READINGS

 In this section we introduce our algorithm to assessing trustworthiness of
sensor readings. Spatial correlation has a meaning in the context of sensor data in a
variety of monitoring applications, where a key characteristic is that nearby sensor
nodes monitoring an environmental feature typically register similar values [9, 10].
This kind of data redundancy due to the spatial correlation between sensor
observations is the corner-stone of the proposed algorithm for assessing
trustworthiness of sensor readings. Thus, we use the spatial neighbourhood of a
given sensor to compare its values with values of the neighbourhood to assess
trustworthiness of the sensor.
The most related to our work is [7, 8], where a provenance and a game-theoretic
approach for assessing trustworthiness in sensor networks were proposed. However,
they did not consider spatio-temporal correlations between the sensor streams. In
[11] a multi-stream join was proposed for mining spatio-temporal correlations
between multiple streams.

7.1 Notation

We use superscript (i) to refer to the i -th stream. A(i) = {a(i)1 , a(i)2 , . . . ,
a(i)

m(i)} is an alphabet in stream i . S = {s(1), s(2), . . . , s(|I|)} is a multi-stream defined
as a set of input streams each of a possibly different length n(i) resulting from a
different rate of generating symbols s(i)=[s(i)1 , s(i)2 , . . . , s(i)n(i)] is the i -th stream
(i -th attribute sequence). Every stream tuple (stream element) has three attributes:
(I) timestamp s(i) t .timestamp = t , where t � { 1, 2, . . .} ;. (II) stream identifier s(i)
t .stream = i and (III) (relational tuple) denoted s(i) t .value , where s(i)t .value � A(i).
For simplicity we just use s(i)t to refer to s(i)t .value. X(k)t is the random variable
corresponding to the value of the data point of sensor k at time t. N(k)t be the set of
neighbours (neighbourhood) of sensor k at time t. E(N(k)t) and Var(N(k)t) are the
average and the variance of the data points of the neighbours at time t. T (k) = [T(k)
ts , T(k) ts+1, . . . ,T(k) te] is the trust stream of the k-th sensor for the time window
[ts , te], where ts is the start time and te is the end time. T(k) t is the trust score for
sensor k at time t, where T(k)t � [0 , 1].

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 42

7.2 Problem definition

The problem of computing trustworthiness of sensors readings based on spatio-
temporal correlation with neighbours can be defined as follows:
Given:
– an input collection of spatio-temporally correlated (temporary overlapping
neighbouring streams) streams S = {s(1), s(2), . . . , s(|I|)}, where

s(i) = [s(i)t(i)s, s(i)t(i)s +1,. . . , s(i)t(i)e] of possibly of different lengths.

– x(i) and y(i) are the coordinates of sensor stream s(i).
– t(i)s and t(i)e are the start and end timestamp of sensor stream s(i) respectively.
– sensor identifier k.

Task: compute the trust sequence T (k) = [T (k)ts , T (k)ts+1, . . . , T (k)te].

7.3 Overview of the method

 Consider sensor streams s(1) , s(2) , s(3) , s(4) in Illustration 5, and the task of
assessing a corresponding trust stream for sensor s(1) called T(1) based on its
spatio-temporal correlation with neighbouring streams. Thus, the general idea of our
approach, to computing a trust stream for a given sensor node, is to compare its
values with values of its neighbouring sensors. Then the more the streams of the
neighbours are similar the higher the trust of the sensor. Note the neighbouring
streams may not completely cover the time span of s(1) (presence of discontinuities)
that makes the problem more difficult than simply correlating streams.
Thus, our method works as follows: (I) we assess the spatio-temporal correlations
between the streams to form the neighbourhood for each sensor in a time period
where we assume all streams are trustworthy and (II) given the neighbourhood we
assess the trustworthiness of the sensors by comparing them to the centroids of the
neighbourhood.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 43

Figure 5. Trust of Sensor Stream Representations.

 Trust of sensor stream s
(1)

, T
(1)

 computation using spatio-temporal

correlation with neighbouring sensors s
(2)

, s
(3)

, s
(4)

, where every
sensor has different geographic coordinates

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 44

7.4 Algorithm

 We associate a trust score with each data point that provides an indication
about trustworthiness of the data point. The more trustworthy data a source provides
the more trusted is the source. Thus, there is an interdependence between trust
scores of data points and its sensor and vice-versa. Trust scores of data points are
computed by taking into account data point values generated from sensor in a given
neighbourhood of the given sensor. We use value similarity: the more data points
referring to the same real-world event (neighbours) have similar values the higher the
trust score of the data point. Trust score need to be continuously evaluated in the
stream environment.
In particular, to express the trust score of sensor k at time t we use the Z-score as
follows:

Z (X t(k))= √n
(X t(k)− E(Nt

(k)))
(√Var (Nt

(k))) ,
where

E (Nt
(k))= 1

(Nt
(k)) ∑s∈Nt

(k)

s . value

 and

Var(N (k))= 1

((Nt
(k))− 1)

∑
s∈Nt

(k)
(s . value− E (Nt

(k)))2
.

 Then the can be expressed as the p-value

Tt
(k)=P (Z Z (X t(k))) .

Clearly, the trust values have the probability correspondence and are values in the
interval [0, 1].

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 45

8 IMPLEMENTATION IN JAVA

 The Java programming language and environment has many features that
facilitate secure programming:

ñ No pointers, which means that a Java program cannot address arbitrary
memory locations in the address space.

ñ A bytecode verifier, which operates after compilation on the .class files
and checks for security issues before execution. For example, an
attempt to access an array element beyond the array size will be
rejected. Because buffer overflow attacks are responsible for most
system breaches, this is an important security feature.

ñ Fine-grained control over resource access for both applets and
applications. For example, applets can be restricted from reading or
writing to disk space, or can be authorized to read from only a specific
directory. This authorization can be based on who signed the code (see
the concept of code signing) and the http address of the code source.
These settings appear in a java.policy file.

ñ A large number of library functions for all the major cryptographic
building blocks and SSL (the topic of this tutorial) and authentication
and authorization (discussed in the second tutorial in this series). In
addition, numerous third-party libraries are available for additional
algorithms.

 There are a number of programming styles and techniques available to help
ensure a more secure application. Consider the following as two general examples:

ñ Storing/deleting passwords. If a password is stored in a Java String
object, the password will stay in memory until it is either garbage
collected or the process ends. If it is garbage collected, it will still exist
in the free memory heap until the memory space is reused. The longer
the password String stays in memory, the more vulnerable it is to
snooping. Even worse, if real memory runs low, the operating system
might page this password String to the disk's swap space, so it is
vulnerable to disk block snooping. To minimize (but not eliminate) these
exposures, you should store passwords in char arrays and zero them
out after use. (Strings are immutable, so you cannot zero them out.)

ñ Smart serialization. When objects are serialized for storage or
transmission any private fields are, by default, present in the stream.
So, sensitive data is vulnerable to snooping. One can use the transient
keyword to flag an attribute so it is skipped in the streaming.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 46

 The following packages are integrated into JDK:

ñ JCE (Java Cryptography Extension) provides a framework and
implementations for encryption, key generation and key agreement, and
Message Authentication Code (MAC) (a short piece of information used
to authenticate a message and to provide integrity and authenticity
assurances on the message) algorithms. Support for encryption
includes symmetric, asymmetric, block, and stream ciphers.

ñ JSSE (Java Secure Sockets Extension) provides a framework and an
implementation for a Java version of the SSL and TLS protocols and
includes functionality for data encryption, server authentication,
message integrity, and optional client authentication. JSSE provides
functions for the secure passage of data between a client and a server
running any application protocol, such as HTTP, Telnet, or FTP, over
TCP/IP.

ñ JAAS (Java Authentication and Authorization Service) provides a
framework and an API for the authentication and authorization of users.

 We can enhance an already rich set of functions in the current Java language
with third-party libraries.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 47

9 THE PROTOTYPE

In this section we give an overview of the currently implemented prototype focused
on OpenIoT architecture requirements. The documentation for how to use and
configure the prototype can be found on the OpenIoT wiki1. Particularly CAS2 for
authentication and authorization is used. CAS is an open source multi-protocol SSO
solution with a lot of flexibility in configuration. Particularly, it can integrate with
several authentication methods such as Active Directory, JAAS, JDBC, LDAP, and
so on. It can achieve high availability by providing support for storing client
authentication state in distributed storage providers such as BerkleyDB, Ehcache,
JDBC, Memcache, and so on. CAS can be configured to act as an OAuth2.0 server.
Another OAuth provider and client library is Spring Security OAuth. However, we
have opted for using CAS using OAuth wrapper because of its configuration flexibility
and the ease of integration.

9.1 Trust-Module in the OpenIoT Architecture

The architecture of the Trust-Module that accommodates the
specifics/requirements of the given OpenIoT architecture is described in this section.
Thus, given the fact that sensor streams in OpenIoT are by default stored in the
cloud database (LSM) for further processing, implies the following architecture of the
trust module:

ñ Trust-Module is an independent module in OpenIoT.
ñ It obtains the sensor streams from LSM and outputs corresponding trust

streams back to LSM.

There are the following ways of computing the trust stream given available sensor
streams in LSM:

1. On-line (immediate) while storing the sensor streams to LSM. The
disadvantage of this approach is a heavy overloading of the capabilities of the
trust module, LSM and the communication link between them.

2. Off-line on demand: computed if the corresponding query arrives. This
approach has the same disadvantage as the on-line approach, where in this
case it is a blocking operation. The advantage of this approach is that LSM will
not be populated with trust streams that may never be used.

3. Off-line periodically (deferred): computed periodically after the sensor streams
have been stored in LSM.

1 https://github.com/OpenIotOrg/openiot/wiki/Security
2 http://www.jasig.org/cas/

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 48

We adopt the off-line solution combined with caching mechanism to optimize the
computational and storage resources.
Figure 6 presents the view on the integration of the trust module in the OpenIoT
architecture. Clearly, the follow of data is as follows:

ñ X-GSN provides sensor streams to LSM.
ñ The Trust-Module obtains the data from LSM and periodically outputs the

corresponding trust streams back to LSM (stored in a separate entity that
references the corresponding sensor stream).

ñ Trust-Module communicates with SCH and SDUM to process queries. In
particular, SCH may trigger an on-demand computation of a trust stream if this
is necessary for a given query (e.g., the query specifies a minimum trust
threshold for sensor data), while SDUM will monitor the performance of TM
and trigger periodic computation of trust streams.

Figure 6. Trust-Module in OpenIoT.

9.2 Trust-Module Implementation

In the prototype implementation, we have enabled OAuth2.0 server support of CAS
3.5.2 and the client authentication state data, which is stored in tickets, is configured
to be placed in MySQL server. Also, authentication-using JDBC is enabled, which
simply uses a MySQL table to verify username and password information.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 49

On the client side, pac4j3 library is used to provide support for authentication using
OAuth2.0 protocol. This library targets all the protocols that support the following
procedure for authentication and retrieving user profile:

1. From the client application, redirect the user to the "provider" for
authentication (HTTP 302)

2. After successful authentication, redirect back the user from the
"provider" to the client application (HTTP 302) and get the user
credentials

3. With these credentials, get the profile of the authenticated user (direct
call from the client application to the "provider").

OAuth2.0 being one of the protocols that follow the above mechanism is supported
by pac4j.
Web clients, more specifically OpenIoT components, can use Apache Shiro4 library
for authentication and authorization. For enabling authentication through OAuth2.0,
we use buji-pac4j5 library, which is a web multi-protocols for Apache Shiro and
supports CAS server using OAuth wrapper.

In summary, OpenIoT authentication and authorization prototype works as follows:

1. All the clients (e.g., OpenIoT components) first have to be registered in
CAS server specifying their clientID, secret, and sevice URL.

2. Each client authenticates itself through OAuth2.0 providing the required
credentials. After authentication the client obtains a ticket.

3. When a client wants to check the authorization of a user, it
authenticates the user if necessary by redirecting the user to the CAS
server. If the user is authenticated, it must have received a ticket from
the CAS server. The client then contacts the CAS server providing its
own ticket and clientID as well as the user's ticket to fetch the
authorization information of the user.

4. If client A wants to use a service from client B, it has to forward the
granted ticket of the concerning user to client B. Client B will then follow
the same procedure as in the previous step for obtaining authorization
information of the user.

3 https://github.com/leleuj/pac4j
4 http://shiro.apache.org/
5 https://github.com/bujiio/buji-pac4j

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 50

10 CONCLUSIONS

In this document we presented the foundations of the security/privacy and trust
mechanism in OpenIoT. The main feature of the security/privacy architecture is the
use of the Central Authorization Server (CAS) for authorizing applications running on
behalf a user by granting them an access token with a given time to live. This
prevents any circulation of the credentials throughout OpenIoT components.

The main feature of the trust architecture is the use of an independent trust module
that obtains sensors streams from LSM and generates corresponding trust streams
that are stored in LSM.

In the implemented prototype we verified the applicability of the proposed
architectures for the OpenIoT platform.

This document presents the first part of the security/privacy and trust specification
(deliverable). In the second part, due in a year, we plan on refining/improving the
presented architectures, leveraging their flexibility/modularity to accommodate
external IoT infrastructures having differing characteristics (e.g., in term of
security/privacy standards) and providing the final implementation.

D5.2.1 Privacy and Security Framework a

Copyright 2013 OpenIoT Consortium 51

11 REFERENCES

[1] RFC 4303, IP Encapsulating Security Payload (ESP).

[2] RFC 5246, The Transport Layer Security (TLS) Protocol.

[3] RFC 2818, HTTP Over TLS.

[4] RFC 5849, The OAuth 1.0 Protocol.

[5] RFC 6749, The OAuth 2.0 Authorization Framework.

[6] Ravi S. Sandhu, “Lattice-Based Access Control Models”, Journal Computer,
Volume 26, Issue 11, November 1993, Page 9-19.

[7] Hyo-Sankg Lim, Yang-Sae Moon and Elisa Bertino, “Provenance-based
Trustworthiness Assessment in Sensor Networks”, DMSN'10, September 13, 2010,
Singapore.

[8] H.-S. Lim, G. Ghinita, E. Bertino, and M. Kantarcioglu. A game-theoretic approach
for high-assurance of data trustworthiness in sensor networks. In 2012 IEEE 28th
International Conference on Data Engineering, pages 1192–1203, Washington, DC,
USA, 1-5 April 2012.

[9] Y. Ma, Y. Guo, X. Tian, and M. Ghanem. Distributed clustering-based aggregation
algorithm for spatial correlated sensor networks. IEEE Sensors Journal, 11(3):641–
648, 2011.

[10] M. C. Vuran, O. B. Akan, and I. F. Akyildiz. Spatio-temporal correlation: theory
and applications for wireless sensor networks. Computer Networks Journal (Elsevier,
45:245–259, 2004.

[11] R. Gwadera. Multi-stream join answering from mining significant cross-stream
correlations. Frontiers of Computer Science, 6(2):131–142, 2012.

