
PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the OpenIoT Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any

means to any third party, in whole or in parts, except with prior written consent of the consortium

SEVENTH FRAMEWORK PROGRAMME

Specific Targeted Research Project

Call Identifier: FP7–ICT–2011–7

Project Number: 287305
Project Acronym: OpenIoT

Project Title: Open source blueprint for large scale self-organizing
cloud environments for IoT applications

D6.3.1 Proof-of-Concept Validating
Applications a

Document Id: OpenIoT-D631-131226-Draft

File Name: OpenIoT-D631-131226-Draft.pdf

Document reference: Deliverable 6.3.1

Version: Draft

Editor(s): Arkady Zaslavsky

Organisation: CSIRO

Date: 2013 / 12 / 27

Document type: Deliverable (Report, Prototype)

Security: PU (Public)

Copyright  2013 OpenIoT Consortium: NUIG-National University of Ireland Galway, Ireland;
EPFL – Ecole Polytechnique Fédérale de Lausanne, Switzerland; Fraunhofer Institute IOSB,
Germany; AIT – Athens Information Technology, Greece; CSIRO – Commonwealth Scientific
and Industrial Research Organization, Australia; SENSAP Systems S.A., Greece;
AcrossLimits, Malta; UniZ-FER University of Zagreb, Faculty of Electrical Engineering and
Computing, Croatia. Project co-funded by the European Commission within FP7 Program.

Ref. Ares(2014)44419 - 10/01/2014

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 1

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments

V01 Arkady
Zaslavsky CSIRO 2013/11/04 ToC & contributors

V02 Mehdi
Riahi EPFL 2013/11/29 Utility Metrics Specifications

V03

Nikos
Zarokostas,

Panos.
Dimitropoulos

SENSAP 2013/11/29 Input in Section2, Description of
SENSAP’s Manufacturing Use case

V04 Prem Jayaraman
and Ali Salehi CSIRO 2013/12/10 Digital agriculture Phenonet (Section 5)

V05 Arkady
Zaslavsky CSIRO 2013/12/10 Editing sections

V05
Reinhard

Herzog
IOSB 2013/12/12 FH IOSB scenario

V06

Nikos
Zarokostas,

Panos
Dimitropoulos

SENSAP 2013/12/14 Updates to SENSAP’s Manufacturing
Use case

Arkady
Zaslavsky CSIRO 2013/12/15 Editing/adding sections/content

Johan E.
Bengtsson,

Keith
Spiteri

AL 2013/12/19 Completed section 3.2 Silver Angel

V07 Nikos
Zarokostas SENSAP 2013/12/23 Technical Review

V08 Dinko
Oletic UniZ-FER 2013/12/23 Quality review

V09 Arkady
Zaslavsky CSIRO 2013/12/24 Final editing

V10 Martin
Serrano DERI 2013/12/24 Circulated for Approval

V11 Martin
Serrano DERI 2013/12/27 Approved

Draft Martin
Serrano DERI 2013/12/27 EC Submitted

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 2

TABLE OF CONTENTS

GLOSSARY AND TERMINOLOGY .. 8

1 INTRODUCTION .. 10

1.1 SCOPE ... 10
1.2 AUDIENCE ... 10
1.3 SUMMARY ... 11
1.4 STRUCTURE .. 11

2 OPENIOT ARCHITECTURE AND PLATFORM .. 12

2.1 OVERVIEW OF OPENIOT ARCHITECTURE ... 12
2.1.1 OpenIoT Architecture Proof of Concept .. 14
2.1.2 Data Flow .. 16

2.2 USER/PLATFORM INTERACTION .. 17
2.2.1 Automatic Formation of IoT Service Delivery Environments 18
2.2.2 Storage and Data Management .. 19
2.2.3 Utility Metrics Specifications ... 21

2.2.3.1 Utility Metrics for Physical Sensors and ICOs 21
2.2.3.2 Utility Metrics for Virtual Sensors and ICOs ... 22
2.2.3.3 Accounting and Billing .. 24

2.2.4 Cloud Services HMI (Human Machine Interfaces) 25

3 SMART CITY USE CASES .. 26

3.1 UNIVERSITY SMART CAMPUS ... 26
3.1.1 Description .. 26
3.1.2 Scenario and implementation strategy .. 27
3.1.3 Current Architecture and Data Model ... 28
3.1.4 Current status and demonstration ... 31
3.1.5 Future work ... 35

3.2 SILVER ANGEL .. 36
3.2.1 Description .. 36

3.2.1.1 Smart Meeting .. 37
3.2.1.2 Issue Reporting .. 38
3.2.1.3 Alarms .. 39
3.2.1.4 The Use Case Story of Silver Angel ... 40

3.2.2 Scenario and implementation strategy .. 41
3.2.3 Current status and demonstration – Stage 1 .. 42
3.2.4 Future work ... 46

3.2.4.1 Stakeholder Engagement .. 46
3.2.4.2 Software Development ... 46

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 3

4 INTELLIGENT MANUFACTURING – MATERIALS FLOW AND
MANUFACTURING PERFORMANCE TRACEABILITY .. 50

4.1 DESCRIPTION .. 50
4.2 SCENARIO AND IMPLEMENTATION STRATEGY ... 51

4.2.1 Physical Sensors .. 52
4.2.2 ITK and S-BOX Products .. 52
4.2.3 X-GSN and OpenIoT Linked Sensor Middleware (LSM) 53
4.2.4 KPIs Composition and Visualization ... 56

4.3 CURRENT STATUS AND DEMONSTRATION ... 56
4.4 FUTURE WORK .. 57

5 DIGITAL AGRICULTURE - PHENONET ... 58

5.1 DESCRIPTION .. 58
5.1.1 Current Architecture and Data Model ... 58

5.1.1.1 Architecture .. 58
5.1.1.2 Data Model ... 60

5.2 SCENARIO AND IMPLEMENTATION STRATEGY ... 61
5.2.1 Implementation Strategy ... 61

5.2.1.1 Implementation Scenarios .. 63
5.3 CURRENT STATUS AND DEMONSTRATION – STAGE 1 .. 66

5.3.1 Demonstration ... 66
5.3.2 Current Status ... 68
5.3.3 Current Issues ... 69

5.4 FUTURE WORK .. 69
5.5 SECTION ACKNOWLEDGEMENT ... 69

6 CONCLUSIONS ... 70

7 REFERENCES ... 71

APPENDIX I – SMALL SAMPLE DATASET FOR DIGITAL AGRICULTURE –
PHENONET USE CASE ... 72

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 4

LIST OF FIGURES

FIGURE 1: OPENIOT MAIN CORE COMPONENTS FUNCTIONAL BLOCKS. 12
FIGURE 2: OPENIOT ARCHITECTURE OVERVIEW (FUNCTIONAL VIEW) 14
FIGURE 3: OPENIOT POC MODULES AND ENTITIES ... 15
FIGURE 4: PROOF-OF-CONCEPT ARCHITECTURE .. 17
FIGURE 5: IDE LAYOUT AND MAIN SCREENSHOTS ... 18
FIGURE 6: SEMANTIC CONTEXT OF THINGS .. 26
FIGURE 7: CAMPUS GUIDE IMPLEMENTATION STRATEGY ... 27
FIGURE 8: SMART MEETING ARCHITECTURE OVERVIEW .. 28
FIGURE 9: SMART CAMPUS ONTOLOGY ALIGNMENT CONCEPT .. 29
FIGURE 10: SMART CAMPUS ONTOLOGY ALIGNMENT DETAILS .. 30
FIGURE 11: EXAMPLE QUERY .. 30
FIGURE 12: OUTPUT WITH NEW FEATURE "FORUM" ... 30
FIGURE 13: APP INTERFACE FOR ROOM INFORMATION .. 31
FIGURE 14: DISCUSSION VIA THINGS ... 32
FIGURE 15: DISCUSSION SHARING VIA QR-CODE ... 32
FIGURE 16: STARTING A DISCUSSION FOR A ROOM ... 33
FIGURE 17: APP INTERFACE FOR ROOM SHARING .. 33
FIGURE 18: DISCUSSION SHARING VIA QR-CODE ... 34
FIGURE 19: PUSH-NOTIFICATIONS ... 34
FIGURE 20: USER INTERACTION FOR CROWD SENSING ... 35
FIGURE 21: USER INTERACTION FOR CROWD SENSING ... 35
FIGURE 22: SILVER ANGEL MAIN FUNCTIONALITIES ... 36
FIGURE 23: SMART MEETING USE CASE ... 37
FIGURE 24: SMART MEETING SERVICE DATA FLOW DIAGRAM ... 38
FIGURE 25: ISSUE REPORTING USE CASE ... 38
FIGURE 26: ISSUE REPORTING DATA FLOW DIAGRAM ... 39
FIGURE 27: ALARM USE CASE .. 39
FIGURE 28: ALARM DATA FLOW DIAGRAM ... 40
FIGURE 29: SILVER ANGEL STAGED IMPLEMENTATION ... 42
FIGURE 30: SILVER ANGEL – CALL SCREEN .. 43
FIGURE 31: SILVER ANGEL – MEET SCREEN ... 43
FIGURE 32: SILVER ANGEL – SCHEDULING SCREEN .. 44

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 5

FIGURE 33: SILVER ANGEL – PREFERENCES .. 44
FIGURE 34: SILVER ANGEL – REPORT SCREEN ... 45
FIGURE 35: SILVER ANGEL – POLLEN LEVEL REPORT SCREEN .. 45
FIGURE 36: X-GSN SENSOR METADATA FILE FOR WEATHER STATIONS 47
FIGURE 37: X-GSN VIRTUAL-SENSOR DESCRIPTION FILE (XML) FOR WEATHER STATIONS . 47
FIGURE 38: CANBERRA AVERAGE NOISE DEFINITION .. 48
FIGURE 39: CANBERRA AVERAGE NOISE SPARQL - REQUEST DEFINITION 48
FIGURE 40: CANBERRA AVERAGE NOISE GAUGE - REQUEST PRESENTATION 49
FIGURE 41: SPARQL EXECUTED IN THE SILVER ANGEL APP ... 49
FIGURE 42: SENSAP’S INTEGRA TRACEABILITY KIOSK ... 53
FIGURE 43: SENSAP’S PERFORMANCE CONTROL SYSTEM (COLLECTS INFORMATION FROM

PHYSICAL SENSORS) ... 53
FIGURE 44: MAPPING OF THE CURRENT IMPLEMENTATION OF THE MANUFACTURING USE

CASE TO OPENIOT ARCHITECTURE COMPONENTS (GREEN: AVAILABLE FUNCTIONALITY
BLUE: FUTURE/PLANNED FUNCTIONALITY) .. 57

FIGURE 45: PHENONET ARCHITECTURE ... 59
FIGURE 46: PHENONET DATA MODEL .. 60
FIGURE 47: A TYPICAL FIELD EXPERIMENT MAPPED TO THE PHENONET DATA MODEL 61
FIGURE 48: MAPPING OF PHENONET TO OPENIOT SERVICES ... 63
FIGURE 49: PROPOSED PHENONET IMPLEMENTATION ARCHITECTURE ON OPENIOT 63
FIGURE 50: SOIL MOISTURE SENSOR .. 65
FIGURE 51: OPENIOT-PHENONET IMPLEMENTATION – STAGE 1 SCHEDULE 68

LIST OF TABLES

TABLE 1: DESCRIPTION OF THE PRODUCT QUANTITY RATE PARAMETER OF THE ITK DEVICE
AS A VIRTUAL SENSOR OF THE X-GSN MIDDLEWARE .. 54

TABLE 2: DESCRIPTION OF MACHINE STATE PARAMETER OF THE ITK DEVICE AS A VIRTUAL
SENSOR OF THE X-GSN MIDDLEWARE .. 55

TABLE 3: API SPECIFICATION - OVERVIEW ... 66
TABLE 4: PHENONET API SPECIFICATION- DETAILED .. 67

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 6

TERMS AND ACRONYMS

Term Meaning
6LoWPAN IPv6 over Low power Wireless Personal Area Networks
AAL Ambient Assisted Living
ARM Architecture Reference Model
BPM Business Process Language
BPMN Business Process Modelling Notation
BPWME Business Process Workflow Management Editor
CoAP Constrained Application Protocol
CPI CSIRO Plant Industry
CRUD CReate, Updated, Delete
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering
DoW Description-of-Work
DSO Decision Support Ontology
EPC Electronic Product Code
EPC-ALE Electronic Product Code Application Level Events
EPC-IS Electronic Product Code Information Sharing
ERP Enterprise Resource Planning
GPL General Public Licence
GPS Global Positioning System
GSN Global Sensor Networks
GTIN Global Trade Item Number
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
JSF Java Server Faces
ICO Internet-Connected Objects
ICT Information and Communication Technologies
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IERC Research Cluster for the Internet of Things

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 7

IoT Internet of Things
LGPL Lesser General Public License
MRP Manufacturing Resource Planning
OGC Open Geospatial Consortium
OMG Object Management Group
ONS Object Naming Service
OSS
PDA

Open Source Software
Personal Digital Assistant

PET Privacy Enhancing Technologies
QoS Quality of Service
QR-Code Quick Response Code
RDF Resource Description Format
REST Representational State Transfer
RFID Radio Frequency Identification
SGTIN Serialized Global Identification Number
SLA Service Level Agreement
SME Small Medium Enterprise
SOA Service Oriented Architecture
SOS Sensor Observation Service
SPS Sensor Planning Service
SSN Semantic Sensor Networks

UML Unified Modelling Language
WSN Wireless Sensor Networks
XML eXtensible Markup Language

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 8

GLOSSARY AND TERMINOLOGY

Term Meaning

(OpenIoT)
Architecture

The set of software and middleware components of
the OpenIoT platform, along with the main structuring
principles and inter-relationships driving their
integration in an IoT/cloud platform.

(OpenIoT)
Middleware

System level software (compliant to the OpenIoT
architecture), which facilitates the integration of on-
demand cloud-based IoT services.

(OpenIoT)
Platform

A set of middleware libraries and tools, which enable
the development and deployment of (OpenIoT
compliant) cloud-based IoT services.

(OpenIoT)
Use Case

A domain-specific application serving needs of end
users, which is implemented based on the OpenIoT
platform.

(OpenIoT)
Service An IoT service deployed over the OpenIoT platform.

(OpenIoT)
Scenario

A specific set of interactions between OpenIoT
components serving the needs of an application

(OpenIoT)
Cloud

A set of computing resources enabling the delivery of
IoT services over the network and based on the use of
OpenIoT platform.

Global
Scheduler

A software component that regulates how IoT services
access the different resources managed by the
OpenIoT platform.

Local
Scheduler

A software component that regulates how IoT services
access the local resources managed by an instance of
the sensor middleware (and more specifically the GSN
middleware).

Utility Metrics A set of quantities that are used for the metering of IoT
services.

(OpenIoT)
Service
Delivery

The process of deploying and offering an OpenIoT
service, after selecting the resources that are involved
in the service

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 9

(OpenIoT)
Request

Presentation

The software component that visualises the outcomes
of an OpenIoT service based on the use of
appropriate mashups and mashup libraries.

Sensor
Selection

The process of selecting sensors that can contribute
information to a particular service.

Virtual Sensor
All the physical or virtual items (i.e. services, persons,
sensors, GSN nodes) which provide their information
through a GSN endpoint.

Sensor
Discovery

The process of detecting physical and virtual sensors,
as well as of the services offered by them.

Resource
Discovery

The process of detecting an IoT resource (such as a
sensor, a service or a database).

Utility
Manager

A software component (part of the OpenIoT platform),
which performs metering based on the tracking and
combination of utility metrics.

Sensor
Directory

A software service which stores, organizes and
provides access to information about (physical and
virtual) sensors.

(OpenIoT)
Sensor

Middleware

The part of the OpenIoT middleware platforms that
facilitate access to, collection and filtering of OpenIoT
data streams.

Global Sensor
Networks

(GSN)

An open source sensor middleware platform enabling
the development and deployment of sensor services
with almost zero-programming effort.

Data Streams A stream of digital information stemming from a
physical or virtual sensor.

Data Stream
Engine

A software component enabling the processing of data
streams, as well as the management of the process of
publishing and subscribing to data stream.

Linked Sensor
Data

Set of (Semantic Web) technologies for exposing,
sharing, and connecting sensor data, information, and
knowledge.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 10

1 INTRODUCTION

1.1 Scope

This deliverable is a document describing Proof-of-Concept Validating Applications
(a), Open source implementations of the OpenIoT proof-of-concept applications in e-
Science (Digital Agriculture), Manufacturing/logistics (Intelligent Manufacturing) and
Smart Cities (Campus Guide and Silver Angel). The applications will be released
based on two iterative releases, in-line with the intentions and exploitation modalities
listed in the description of work. It is the first of two releases planned for November,
2013 and the second release is planned for September 2014. Each release will be
using the latest available version of the OpenIoT platform (released as part of
successive versions of deliverable D4.3).

1.2 Audience

The audience of this document is primarily the European Commission, the OpenIoT
consortium, user and developer communities, but also solution providers that would
like to use OpenIoT for developing and deploying IoT services. This document also
acts as a reference for OpenIoT end-users, software developers and anyone
interested in the software developments of the OpenIoT project use cases for
development of applications and services based on OpenIoT open source software
platform as well as for dissemination purposes.
More specifically, the target audience for this deliverable includes:

• OpenIoT project members, notably members of the project that intend to
engage in the deployment and/or use of the OpenIoT open source middleware
framework. For these members the deliverable could serve as a valuable guide
for the installation, deployment, integration and use of the various modules that
comprise the OpenIoT software to develop use cases and implement scenarios
that will be mapped onto OpenIoT software platform.

• The IoT open source community, which should view the present deliverable as
the demonstration of OpenIoT platform middleware for integrating IoT
applications, notably applications that adopt a cloud/utility-based model. Note also
that members of the open source community might also be willing to contribute to
the OpenIoT project. For these members, the deliverable can serve as a basis for
understanding the technical implementation of the components that comprise the
first release of the OpenIoT middleware as well as the diverse scenarios and use
cases that demonstrate the OpenIoT software platform.

• IoT researchers at large, who could find in this deliverable a practical guide and
hints on how to develop domain-specific applications with the OpenIoT software
platform.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 11

• IERC projects and their members, who could find in this deliverable the
practical examples and diverse scenarios how OpenIoT software platform and IoT
at large could be used in a variety of application domains and applications. As
already outlined, the OpenIoT architecture is largely based on the IERC reference
architecture.

• Solution Provider and specifically companies wishing to provide some IoT
solution based on OpenIoT. These companies will benefit from reading concrete
examples of OpenIoT use cases implementations as part of this document.

All the above groups could benefit from reading the report, but also from delving into
details of the released prototype implementation as well as detailed specifications
and details of implemented use cases.

1.3 Summary

This document reports on the first release of Proof-of-Concept Validating
Applications (a), on partner experience and lessons while implementing diverse use
cases on the basis of OpenIoT software platform. The document summarises the
OpenIoT software platform, core middleware and components that are used to
develop OpenIoT use cases and map the use cases scenarios onto OpenIoT
software platform. The implemented use cases include: (a) Smart Cities – Campus
Guide; (b) Smart Cities – Silver Angel; (c) Smart Industries – Intelligent
manufacturing – Materials Flow and Manufacturing Performance Traceability; (d)
Smart Industries – Digital Agriculture – Phenonet. The fifth use case – Smart Cities –
Urban Crowdsourcing for Air Quality Monitoring is reported in a separate deliverable.
All the reported use cases describe how the OpenIoT use cases are/can/will be
mapped to OpenIoT platform services according to 3-stage priorities. They include
description of test data sets, whether they’re already available for public use, or what
are the plans to release them for public use via the OpenIoT Github. The use case
sections also describe experience, issues, difficulties, lessons while developing use
cases on the basis of the OpenIoT software platform.

1.4 Structure

The deliverable is structured as follows: section 2 provides a high level overview of
the OpenIoT software architecture, core middleware components and features;
section 3 describes two Smart Cities use cases – Campus Guide and Silver Angel;
section 4 describes the Intelligent Manufacturing use cases, section 5 describes the
Digital Agriculture – Phenonet use case; and section 6 concludes the deliverable.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 12

2 OPENIOT ARCHITECTURE AND PLATFORM

This section provides a brief overview of OpenIoT software architecture and platform,
including core middleware components, features and modules which are essential for
developing the OpenIoT use cases reported in the subsequent sections. More details
about the OpenIoT platform are available in other deliverables of the project (D4.3,
D4.4).

2.1 Overview of OpenIoT Architecture

The OpenIoT Architecture is comprised by seven main elements as depicted in
Figure 1. The Sensor Middleware, the Cloud Data Storage, the Scheduler in
conjunction with Discovery Services functionality, the Service Delivery and Utility
Manager, the Request Definition, the Request Presentation and the Configuration
and Monitoring. The main core components have been introduced first in previous
project documents (i.e. D2.21, D2.32) and described with more details in terms of
service architecture functional blocks in D4.13. In this section an overview of those
components with accurate refinements in functionality is included.

 OpenIoT Services Control Design Principle

Figure 1: OpenIoT Main Core Components Functional Blocks.

1 D4.1 Service Delivery Environment Formulation Strategies
2 D2.2 OpenIoT Platform Requirements and Technical Specifications
3 D2.3 OpenIoT Detailed Architecture and Proof-of-Concept Specifications

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 13

• The Sensor Middleware (Extended Global Sensor Network, X-GSN) collects
filters and combines data streams from virtual sensors or physical devices. It acts
as a hub between the OpenIoT platform and the physical world. The Sensor
Middleware is deployed on the basis of one or more distributed instances (nodes),
which may belong to different administrative entities. The prototype
implementation of the OpenIoT platform uses the GSN4 sensor middleware that
has been extended and called X-GSN (Extended GSN).

• The Cloud Data Storage (Linked Stream Middleware Light, LSM-Light) enables
the storage of data streams stemming from the sensor middleware thereby acting
as a cloud database. The cloud infrastructure stores also the metadata required
for the operation of the OpenIoT platforms (functional data). In addition to data
streams and metadata, the cloud could also host computational (software)
components of the OpenIoT platform (i.e. Schedules and SD&UM) in order to
benefit from the elasticity, scalability and performance characteristics of the cloud.
The prototype implementation of the OpenIoT platform uses the LSM Middleware,
which has been re-designed with push-pull data functionality and cloud interfaces
for enabling additional cloud-based streaming processing.

• The Scheduler processes all the requests for on-demand deployment of services
and ensures their proper access to the resources (e.g. data streams) that they
require. This component undertakes the following tasks: it discovers the sensors
and the associated data streams that can contribute to service setup; it manages
a service and selects/enables the resources involved in service provision.

• The Service Delivery & Utility Manager performs a dual role. On the one hand,
it combines the data streams as indicated by service workflows within the
OpenIoT system in order to deliver the requested service (with the help of the
SPARQL query provided by the Scheduler). To this end, this component makes
use of the service description and resources identified and reserved by the
Scheduler component. On the other hand, this component acts as a service
metering facility which keeps track of utility metrics for each individual service.
This metering functionality will be accordingly used to drive functionalities such as
accounting, billing and utility-driven resource optimization. Such functionalities are
essential in the scope of a utility (pay-as-you-go) computing paradigm, such as
the one promoted by OpenIoT.

• The Request Definition component enables on-the-fly specification of service
requests to the OpenIoT platform. It comprises a set of services for specifying and
formulating such requests, while also submitting them to the Global Scheduler.
This component may be accompanied by a GUI (Graphical User Interface).

• The Request Presentation component, which is in charge of the visualization of
the outputs of a service that is provided within the OpenIoT platform. This
component selects mash-ups from an appropriate library in order to facilitate
service presentation. It is expected that service integrators
implementing/integrating solutions with the OpenIoT platform are likely to

4 http://sourceforge.net/apps/trac/gsn/

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 14

enhance or even override the functionality of this component on the basis of a
GUI pertaining to their solution.

• The Configuration and Monitoring component, which enables management and
configuration of functionalities over the sensors and the (OpenIoT) services that
are deployed within the OpenIoT platform. It is also supported by a GUI.

2.1.1 OpenIoT Architecture Proof of Concept
The OpenIoT project provides a proof-of-concept (PoC) implementation which
presents a minimal set of components that demonstrates the basic workflows of
OpenIoT architecture services. This implementation is used as the “skeleton” of the
final platform and is available through the OpenIoT open source portal. The
objectives of this implementation are the following:

• To provide the first integrated version of the OpenIoT software to the open
source community.

• To involve the first users from outside the consortium, to get a feedback from
the users/developers regarding the OpenIoT architecture.

• To bootstrap the OpenIoT open source community.
Figure 2 bellow illustrates the high level view of the functional blocks of the main
components of the OpenIoT Architecture, which were listed above.

Figure 2: OpenIoT Architecture Overview (functional view)

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 15

In addition, the first PoC implementation enables the identification of issues,
problems and potential needs for platform redesign that may arise during platform
usage. The PoC implementation requires a minimal set of modules and services,
from the ones described in high level above and in detail in deliverable D2.3
(OpenIoT Detailed Architecture and Proof-of-Concept Specifications), to be
implemented. A high level view of the core modules and the main entities involved
are depicted in Figure 3. The PoC architecture modules respectively provided are:

o Directory Service: The directory service is provided in the form of an RDF
Store (annotated database using RDF format) also called triple store that is
accessed through the LSM-Light module.

o GSN-RDF/SSN integration (X-GSN): The original GSN implementation has
been upgraded to an OpenIoT version, named Extended GSN (X-GSN), which
can announce sensors and semantically annotate received data streams.

o Scheduler: The Scheduler provides a basic implementation of its complete
API (i.e. sensor discovery and application/service management).

o Service Delivery & Utility Manager (SD&UM): The SD&UM provides the
basic implementation of its complete API which mainly interacts with the
“serviceDescription” entity, “virtualSensorsDataStorage” entity and the
Request Presentation UI.

o Request Definition UI: A basic functionality of discovering sensor models and
building service requests is supported. The module which the Request
Definition UI interacts with is the Global Scheduler.

o Request Presentation UI: A basic functionality of requesting of available
services of a specific user, polling for data regarding a specific service and
visualizing them is supported. The module which the Request presentation UI
interacts with is the SD&UM.

Figure 3: OpenIoT PoC Modules and Entities

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 16

The open source implementation of the PoC is available as open source software:
https://github.com/OpenIotOrg/openiot/

2.1.2 Data Flow
Figure 4 below depicts the OpenIoT PoC implementation by providing a complete
example of the platform’s data and service flow from the deployment, configuration
and presentation. The flow can be outlined as follows:

o X-GSN nodes are “announcing” the available virtual sensors to the Directory
Service and start to publish their data in SSN compliant RDF format based on
each X-GSN local configuration (Step 0).

o A User requests from the Scheduler (Step 1) all the available sensor types
that satisfy specific attributes (coordinates and radius) by using the Request
Definition UI from the Directory Service. The request is sent to the Scheduler
service.

o The Scheduler executes (Step 2) a combination of queries (SPARQL) to fulfil
the previously user specified query provided by the previous step.

o The Directory Service retrieves the data and replies back to the Scheduler
(Step 3) with the available sensor types.

o The reply is forwarded to the Request Definition UI from the Scheduler (Step
4) and the retrieved information is provided to the User.

o The User, with the help of Request Definition UI, defines the request by
implementing rules, provided by the tool, over the reported sensor types. This
information, along with execution and service presentation preferences is then
pushed to the Scheduler (Step 5).

o The Scheduler analyses the received information and sends the request (Step
6) to the Directory Service.

o After having configured the request, the User is able to use the Request
Presentation UI for visualising a registered Service’s data.

o With the help of SD&UM the Request Presentation retrieves (Steps 7, 8, 9 and
10) all the registered applications/services related to a specific User.

o Having selected a specific service, the User requests to retrieve the results
related to it. This is done by submitting a “pollForReport” from the Request
Presentation to the SD&UM having the applicationID as input (Step 11).

o The SD&UM requests (SD&UM’s “getService”) from the Directory Service to
retrieve (Step 12) all related information for the specific Service.

o The Directory Service provides this information to the SD&UM (Step 13).
o The SD&UM analyses the retrieved information and forwards the included

SPARQL script (Which has been created by the Request Definition UI (step 5)
and stored by the Scheduler (Step 6)) to the Directory Service SPARQL
interface (Step 14).

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 17

o The result is sent from the Directory Service to the SD&UM (Step 15), in a
SparqlResultsDoc5 format. Then the SD&UM forwards it to the Request
Presentation (Step 16) that also includes information on how these data
should be presented.

Figure 4: Proof-of-Concept Architecture

2.2 User/Platform Interaction

The OpenIoT architecture was designed with user-friendliness in mind. This mainly
involves hiding the complexity to automate and create an environment as pleasant as
possible for all the OpenIoT user interfaces and applications. So the core
environment of user interaction with the rest of OpenIoT platform is the OpenIoT IDE
(Figure 5 below). This environment resides in the higher tier of the OpenIoT
architecture, as seen in Figure 2, and is responsible for the sensors, modules

5 http://www.w3.org/TR/rdf-sparql-XMLres/#defn-srd

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 18

management and enabling the configuration of the OpenIoT service delivery
capabilities. It provides a single point of entry for all the OpenIoT tools and
applications by utilizing Web 2.0 technologies. Currently, the OpenIoT IDE provides
the Core Environment, the Request Definition, the Request Presentation, the RDF
Schema Editor, and the monitoring tools.

Figure 5: IDE Layout and Main Screenshots

2.2.1 Automatic Formation of IoT Service Delivery Environments
The Service Delivery & Utility Manager has a dual functionality. On the one hand (as
a service manager), it is the module enabling data retrieval from the selected sensors
comprising the OpenIoT service. On the other hand, the utility manager maintains
and retrieves information structures regarding service usage and supports metering,
charging and resource management processes.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 19

Global Scheduler (Figure 2 above) formulates the request based on the user inputs
(request definition). It parses each service request and accordingly it interacts with
the rest of the OpenIoT platform through the Cloud Database (DB). In particular, the
Scheduler performs the following functions:

o Sensor and ICO selection. As part of this function the Scheduler queries the
OpenIoT discovery service through the “availableSensors” entity in order to
find the set of sensors (physical or virtual) and ICOs that fulfil the criteria
specified in the scope of service request. Note that the service discovery
functionality is based on the semantic properties of the sensors. The Service
Discovery components will return to the Scheduler a list of sensors (along with
their unique identifiers in the OpenIoT system) that could be used for
delivering the specified service (i.e., a list of sensors fulfilling the criteria set as
part of the service request).

o Virtual Sensor “indirect” activation. Following the selection/identification of
the sensors and ICOs that meet the specified criteria and at the request
formulation time, the Scheduler will inform the virtual sensors (GSN nodes)
about which of them are used by the service being scheduled. This information
is kept in the “sensorServiceRelation” entity and is accessed by the virtual
sensors.

o Request Storing and Activation. The Scheduler is also responsible to
provide information to the Service Delivery & Utility Manager (SD&UM)
regarding the services to be delivered. This is done through the cloud storage
and more specifically the “serviceDeliveryDescription” entity where all the
information related to a specific service is stored.

o Service Status Update. Through a service lifecycle the Scheduler updates its
status at the “serviceStatus” entity. Moreover, it is able to retrieve a service
status to inform the User.

o Access Control. Finally, the Scheduler implements access control
mechanisms with the help of the “user” entity.

2.2.2 Storage and Data Management
Linked Stream Middleware Light (LSM-Light) is a platform that brings together the
live real world sensed data and the Semantic Web. The prototype implementation of
the OpenIoT platform uses the LSM Middleware, which has been re-designed with
push-pull data functionality and cloud interfaces for enabling additional cloud-based
streaming processing. An LSM deployment is available at http://lsm.deri.ie/. It
provides functionalities such as 1) Wrappers for real time data collection and
publishing; 2) A web interface for data annotation and visualization; and 3) A
SPARQL endpoint for querying unified Linked Stream Data and Linked Data. The
first and third functionality are the ones used in the proof-of-concept implementation
in OpenIoT.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 20

In order for LSM-Light to support stream data processing programmatically, a Java
API is provided6. By using this API, a developer can add, delete and update GSN-
generated sensor data into the implemented LSM-Light Server (triple store.
Some of the main OpenIoT architecture’s objectives are the dynamic and on-demand
nature of the collected and combined data streams. In this case, the first challenge
consists in hiding the heterogeneity of the underlying sensor network on one side;
and enabling any kind of device to be included in the dynamically-expansible cloud-
based infrastructure, on the other side. Then, the middleware is required to provide
easily-deployable wrappers that are hardware and software independent. Also, it
must be able to directly access the capabilities exposed by each device in a RESTful
way. This Data Acquisition Layer provides three wrapper types:

o Physical Wrappers that are designed for collecting sensor data from physical
devices;

o Linked Data (LD) Wrappers that expose relational database sensor data into
RDF;

o Mediate Wrappers, which allow for collection of data from other sensor
middleware such as Global Sensor Networks (GSN), Cosm (aka Pachube),
and the sensor gateway/Web services from National Oceanic and
Atmospheric Administration (NOAA)7.

These operations transparently allow users in the upper layers of the architecture, to
lookup, select and discovery resources. The middleware, by directly communicating
with sensing devices, can maintain an up-to-date directory of Internet-connected
Objects that can be queried by users. In order to easily merge the different streams,
data are semantically annotated by using RDF and following the Linked Data
principles. This Linked Data Layer allows access to the Linked Sensor Data created
by the wrappers but linked to the Linking Data cloud.
Data streams can also be queried in those scenarios where live data are most often
required, e.g., emergency scenarios. This Data Access Layer provides two query
processors, a Linked Data query processor and the Continuous Query Evaluation
over Linked Streams (CQELS) engine (Le-Phuoc et al., 2011), and exposes the data
for end users or machine users.
Additional tools that can be used to look up and discover the ICO’s data, are in the
fourth layer, the Application Layer, which offers a SPARQL endpoint, a mashup
composer, a linked sensor explorer, and streaming channels.
In the OpenIoT architecture, GSN serves as sensor middleware to publish sensor
data from all kinds of physical devices via a common Web service interface. LSM sits
on top of it, fetching the data from GSN via HTTP, transforming it into Linked Data,
enriching it with semantic information, and storing the data into an RDF storage
system. Adding sensors (here: adding sources of sensor data provided by GSN) and
acquiring the data is done by LSM via wrappers. In case of data streams from GSN,
wrappers apply data transformation rules to map the data in a given format into RDF.

6 D4.3.1 Core OpenIoT Middleware Platform
7 http://www.noaa.gov

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 21

For example, sensor data in XML can be transformed to RDF using XSLT
transformations8 and the meanings of the sensor readings contained in the XML tags
are annotated with concepts in the ontology via an XSLT transformation rule.

2.2.3 Utility Metrics Specifications
We can classify the various utility metrics into two broad categories, namely utility
metrics for physical sensors, such as energy, bandwidth, data volumes, and metrics
for virtual sensors, which in several cases coincide with those of the physical sensors
(see D4.3.1). In addition to specifying metrics for utility driven functions, we review
also popular algorithms and schemes for metering and accounting, notably schemes
inspired from internet networking. These schemes are transferred and described in
the IoT domain. They include flat-rate schemes, time-based schemes, volume-based
schemes, smart-market schemes and more. Most of them are applicable to several
IoT applications and hence could be implemented as add-ons to the OpenIoT
platform. The implementation of all these schemes is however out of the scope of the
OpenIoT work plan, yet they can serve as a sound basis for contributions by the
open source community.

2.2.3.1 Utility Metrics for Physical Sensors and ICOs
The physical sensors and ICOs are the fundamental (lowest level) data producers in
OpenIoT. We can distinguish the following most important utility metrics for physical
sensors and ICOs.
1. Quality: The quality of sensors and ICOs is the most fundamental metric that

determines the accuracy and sensitivity of the measurements provided by a
sensor and it may also influence energy consumption. In a given sensor network
we may have a mix of high quality expensive sensors and low quality inexpensive
sensors.

2. Energy consumption: Energy consumption is one of the most crucial utility
metrics for sensor systems and more specifically wireless sensor networks
(WSN). In WSN energy consumption is directly associated with the lifetime of the
sensor network and therefore this metric can be used for functions like
accounting, resource optimization and billing. The use of energy consumption in
order to measure utility requires the introduction of an appropriate energy model.
Most of the energy models are usually simply taking for example into account the
(total) number/volume of packets/data sent. Even though the volume of data is
analogous to the energy consumption, other factors (such as the energy spent
when listening for packets and the energy consumption of sensors’
microcontrollers) should be also taken into account. To the extent that OpenIoT
will rely on the measurement of WSN energy as a utility metric, the project’s
platform shall integrate one or more energy models.

8 http://www.w3.org/TR/xslt.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 22

3. Bandwidth: The bandwidth of a physical sensor refers to a bit-rate measure,
representing the available or consumed data communication resources
expressed in bits per second or multiples of it (bit/s, Kbit/s, Mbit/s, Gbit/s, etc.). In
signal processing the word 'bandwidth' is used to refer to analogue signal
bandwidth measured in hertz. The connection is that according to Hartley's, the
digital data rate limit (or channel capacity) of a physical communication link is
proportional to its bandwidth in hertz. Thus, the utility of a sensor can be
measured as an available or consumed bandwidth in the scope of an application.

4. Data volume: The volume of data (amount of data) produced by a physical
sensor can be used as a utility metric. The more data streamed by the sensor, the
more the utilization of the sensor. Hence, the utility of the sensor can be
analogous to the volume of sensor data streamed or consumed in the scope of an
application. Thus, the utility of a sensor can be measured as a delivered data
volume in the scope of an application.

5. Trustworthiness: The trustworthiness of a sensor can be measured as a trust
one can place on a sensor that it will deliver true measurements on time within
the scope of its technical parameters. Thus, the trustworthiness is related to the
quality of a sensor.

For each physical sensor registered in the OpenIoT sensor directory, the OpenIoT
utility manager should keep track of the following five utility parameters: quality (as a
semi-static value), energy consumption, bandwidth (in the scope of an application or
service or time window), data volume (in the scope of an application or service or
time window), and trustworthiness (as a semi-static value correlated with the quality
of the sensor).

2.2.3.2 Utility Metrics for Virtual Sensors and ICOs
In practice, several physical sensors that will be integrated with the OpenIoT sensor
cloud infrastructure will be in the form of virtual sensors. This is also the case since
most of the sensors are likely provided by third-party providers of sensing
infrastructures (instead of the OpenIoT cloud service provider) and integrated
through the GSN middleware. Therefore, OpenIoT will in several cases have to deal
with virtual sensors that announce themselves to the semantic directory service, and
accordingly stream their data to the cloud. Furthermore, it is likely that OpenIoT will
have to deal with virtual sensors, without knowing or controlling the composition of
the physical sensors that contribute to the production and streaming of the virtual
sensor data. For this reason, OpenIoT will have to keep track of the utility of virtual
sensors, which bear several differences associated from physical sensors.
The following parameters can be used to measure the utility of virtual sensors:
1. Data Volume: The volume of data (i.e. number of bytes) streamed by the virtual

sensors can be used as a utility metric. The more data streamed by the virtual
sensor, the more the utilization of the virtual sensor. Hence, the utility of the

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 23

sensor can be analogous to the volume of sensor data streamed or consumed in
the scope of an application.

2. Bandwidth: Directly related to the data volume of a virtual sensor is the
bandwidth (i.e. bytes/sec) consumed/associated with the data volume streamed
by the virtual sensor i.e. the rate of data streaming. Similarly to the previous case
the utility of a sensor can be analogous to the bandwidth consumed (by the virtual
sensor) in the scope of an application.

3. Time of the Usage Session: Virtual sensors can be used in the scope of
application sessions. The time during which a sensor has been used can serve as
a metric for utility calculation. Note however that there are different ways to define
the timing boundaries associated with the usage of a sensor (e.g., according to
the overall application session where the virtual sensor is used, or the actual time
a specific virtual sensor has been occupied). In order to keep track of the time
boundaries the start and finish time associated with the use of a resource or a
service should be recorded.

4. Virtual Sensor Location: The location of a virtual sensor is another prominent
parameter that defines its value (or utility). Different locations can signify different
business values for the same sensor.

5. Virtual Sensor Task: In the scope of business processes, virtual sensors serve
some task (process step). The relative business value of this step can drive the
definition of the utility or the business value of a sensor. Note that the task
associated with a virtual sensor can in several cases be related with the location
of the sensor.

6. Number and type of Physical Sensors used: A virtual sensor utility metric can
be defined and calculated on the basis of the number and types of the physical
sensors that comprise the virtual sensor. In particular, a weighted formula can be
used to define and calculate the utility of the virtual sensors on the basis of one or
more utility metrics associated with the physical sensors that comprise the virtual
sensor. In this way, the utility metrics associated with physical sensors could be
used in order to calculate the utility of the virtual sensor.

7. User Defined Cost: Similar to the case of a physical sensor, a user-defined
cost/utility value could be assigned to the sensor. The assignment of the user-
defined cost could take into account the above criteria and parameters, but also
other criteria defined by the owner, deployer or integrator of the sensors
infrastructure.

The OpenIoT platform should keep track of the above parameters as a means to
enable utility calculation for accounting, billing and resource management purposes.
Resource management concerns primarily the service provider’s perspective, while
billing and accounting concerns also the end-user’s perspective. For the latter, the
utility should be ultimately assigned to the OpenIoT service, typically on the basis of
a combination of the utility metrics for virtual sensors.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 24

2.2.3.3 Accounting and Billing
In terms of billing mechanisms, a number of different schemes can be adopted based
on approaches that have been proposed in literature, notably in the area of charging
for Internet resources and services. Note that such schemes consider one of more
virtual sensors comprising a service, as well as one or more of the virtual sensor
utility metrics outlined above. Some of these approaches are provided below:

• Flat-rate schemes: Flat-rate schemes are the simplest billing schemes and are
calculated on the basis of fixed tariffs for a specified amount of time. Flat-rate
schemes should be based on the assignment of a utility-rate to OpenIoT services,
which are typically provided based on the combination of multiple sensors.

• Time-based schemes: On the basis of these schemes pricing is based on how
long a service is used. In general time-based pricing bills for resources and
services on the basis of the time a service or resource is utilized. The usage time
associated with a resource or a service should be therefore taken into account.
The price can be defined as a function of this time, and more specifically of the
start and finish time. This is directly related to the time usage metric outlined in
the previous section.

• Volume-based schemes: Volume based billing/pricing schemes apply functions
over the volume of data incurred in the usage of the service. OpenIoT services
will typically comprise multiple virtual (and physical sensors) and hence a volume
based scheme will exploit the volume-related utility metrics of multiple sensors.

• SLA (Service Level Agreement) or QoS (Quality of Service) based schemes:
Pricing is usually based on the quality of the service or the service level
agreement associated with the utility services. These can be defined based on
one or more of the defined utility metrics, including specific types of sensors,
specific locations of the sensors, guaranteed volume of the sensors and more.

• Priority-based schemes: Priority schemes have their origins in the Internet,
where services can be labelled and priced according to their priority. In this
respect, priority schemes are relevant to the SLA/QoS based schemes. In
OpenIoT, services can be labelled according to the number and type of sensors
that they use, thereby getting some priority over others. Another alternative could
be based on the SLA between end-users and OpenIoT service provider.

• Schemes based on number, type and location of ICOs: In the scope of
internet-based pricing, there have been proposed schemes that calculate bills on
the basis of the distance (or number of hops) between the service and the user.
As a variation of this scheme, pricing could be based on the number, type and
location of ICOs.

• Smart market based schemes: Such schemes foresee pricing on the basis of an
auction for specific resources (i.e. sensors/ICOs) or services. They can be
implemented on the basis of a dynamic market based regulation of the user-
defined cost parameters associated with the virtual sensors outlined above. The
idea is the more the demand (i.e. number of users/services asking for a sensor)
the higher its price (i.e. user-defined cost/utility).

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 25

In addition to these schemes, several others can be proposed/derived on the basis of
variations and combinations of the above, such as location-based schemes (i.e.
charging according to the locations of the sensors) and content based pricing (i.e.
pricing based on the type and volume of the content delivered to the user.
The schemes outlined above can be used in order to combine the utility of the
various sensors into utility metrics for wider applications or services that comprise
multiple sensors. For example, a volume based scheme can be applied towards
calculating the utility of an IoT service as a weighted sum of the utility metrics of the
various sensors comprising the service.

2.2.4 Cloud Services HMI (Human Machine Interfaces)
The OpenIoT platform comes with a tool (i.e. the request presentation tools) which
enables visual development of IoT services. The tool is implemented as a web
application, which allows end-users and integrators to visually model their OpenIoT-
based services using a node-based WYSIWYG (What You See Is What You Get) UI
(User Interface). In this way this tool enables zero-programming modelling and
development of IoT services.
The request presentation tools models IoT applications and services as graphs. End-
users can therefore access and manage different applications (i.e. graphs) from
within a single account to the web based tool. The graphs consist typically of various
nodes, which represent data sources (i.e. sensor/ICO sources), filtering nodes (which
process and filter sensor data), comparator nodes (which define temporal filters and
processing over the sensor data), as well as sink nodes (which provide mashup for
the visualization of IoT services). Each graph is accordingly expressed as a SPARQL
query/service, which can be later made persistent by the OpenIoT scheduler and
subsequently executed over the OpenIoT infrastructure. The tool offers the possibility
of validating the graph and the resulting SPARQL that corresponds to the IoT
service.
Overall, the request presentation tool provides a powerful HMI for the development of
IoT services. The tool is at the disposal of OpenIoT use case developers and
integrators and can therefore provide a facility for accelerating the development of
IoT services in the scope of the various OpenIoT use cases and scenarios. While the
development of scenarios is certainly possible without using the tool, the request
presentation HMI can be useful in a number of cases such as: (A) Cases where fast
prototyping is needed and (B) Cases where a simple service is (initially) developed
and accordingly enhanced based on programming. In this case, the request
presentation UI can be used to bootstrap the development of the services, while
programming could be employed in following stages.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 26

3 SMART CITY USE CASES

This section describes two Smart Cities use cases: University Smart Campus9 and
Silver Angel.

3.1 University Smart Campus

3.1.1 Description
The University Smart Campus (synonymous with CampusGuide) is an application
framework to support students, teachers and guest of a university. It offers features
like information’s about buildings and rooms, reservations of meetings rooms and
workplaces, and collaboration between people. The novelty in this will be the
contextualization of all aspects within one semantic framework. Each piece of
information will be expressed as an asset in a common ontology and will be
associated with related information elements.
The “proof of concept” use case story of the smart campus is about having a smart
meeting, including situation and environment aware locations with collaboration
situations between people and things (see Figure 6 below).

Figure 6: Semantic Context of Things

The meeting rooms will be equipped with sensors providing live data and
characterizing different working situations, like collaborative or private working
environments. Working materials will be tagged with unique identifiers, providing a

9 Is used interchangeably with the name “CampusGuide”

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 27

URI into a RDF store. Within this RDF store all elements of the use case will be
described as concept instances in a common ontology.
The smart campus application will be a mashup of standard applications to be found
on a mobile device like a smart phone and new features like live data streams and
interactions with and through things. The common ground for the mashup will be
overarching semantic model in the OpenIoT Ontology.
The resulting application will be developed in cooperation with University of Karlsruhe
and will be called KITSmartCampus.

3.1.2 Scenario and implementation strategy
The implementation will be done in cooperation with students of the Karlsruhe
Institute of Technology, the KIT. The development phases therefore needed to be
synchronized between the OpenIoT middleware implementation and the semester
periods. The priorities of the Smart Campus use case in terms of used the OpenIoT
services are distinguished into three categories (see Figure 7 below).

Figure 7: Campus Guide Implementation Strategy

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 28

The most important services with priority 1 are needed in the first implementation
phase. These are the (3) Query Content in order to retrieve the Ontology data which
are the basis for the Smart Campus application. Also the (5) Collect Content services
will be needed at the beginning as it is required for collecting sensor data and
adopting them to the Ontology with the (6) Content Adaptation service.
The second priority contains all services required to implement the configuration and
administration aspects of the use case. These are the (1) End user Request to
implement the data access, the (4) Sensor Configuration to handle a large number of
sensors in a programmatic manner, the (7) Utility Service Feedback to manage the
utilization of the scenario assets, and finally the (8) Service Delivery to get the data.
In the third priority are all interface-related services for the specific utilization
overviews of workplace allocations. These are the (2) Discover Service to select
specific rooms and buildings, the (9) Service Visualization and the (10) Get
Visualization to realise the Status Boards.

3.1.3 Current Architecture and Data Model
The current architecture of the Smart Campus Application is a simple Client-Server
Pattern where the server part is utilizing the OpenIoT middleware.
In the Figure 8 below this is shown as a snapshot of the current architecture. In left
side of the figure the currently called SmartMeetings Application, which is the Android
App, is using the SmartMeetings Backend, which is Server-side application.

Figure 8: Smart Meeting Architecture Overview

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 29

The Smart Campus use case scenario will mainly deal with three different types of
data:

• Live data derived from sensor information (based on the SSN ontology);
• Real world things and electronic assets, describing environment and

workspace elements (based on the DUL ontology);
• Collaboration situations within different events including persons and locations
(based on the SIOC ontology);
All types of data will be semantically interconnected (see Figure 9) according to the
sensor assignment, the arrangement of the involved entities, and the collaboration
situation. In the following drawing shows a mapping of a simple collaboration
situation with some sample entities to the ontology elements.
For example an office door may be described as a “ssn:FeatureOfInterest” with a
sensor for the door lock status, can be observed with an “ssn:ObservationValue”. It
also may associated with an “dul:Event”, like a lecture. This lecture may be visited at
specific dates as “dul:Situation” by several people described by the their
“sioc:UserAccount” which may take part in an adhoc discussion assigned to the
“sioc:Site”. Common lecture material may be associated to the event by adding
“dul:InformationElement” instances.

Figure 9: Smart Campus Ontology Alignment Concept

More specifically these alignments are shown in the Figure 10 below.
The SSN ontology provides a base concept “FeatureOfInterest” where all possible
observations are based on. This will be anchor concept for the discussion feature.
The discussion will be models according to the SIOC ontology and the association to
the FeatureOfInterest will be modelled as an object property “hasForm”. This allows
the linking of everything which is a “feature of interest” within the SSN domain to the
forum in the SIOC ontology which is the container of discussion postings.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 30

The Buildings and Rooms in the Smart Campus Ontology are models as concept
refinement of the “Place” concept from the DUL ontology. Specific Smart Campus
properties will be modelled as sub-classes of the Property concept form the SSN.

Figure 10: Smart Campus Ontology Alignment Details

An example of a query for a room with a linked forum the following SPARQL-query is
shown in the Figure 11 below.

Figure 11: Example query

The result of such a query will be instance of a room with has a link to forum, as
shown in the Figure 12 below.

Figure 12: Output with new feature "Forum"

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 31

3.1.4 Current status and demonstration
The current implementation implements two features:

- Building and Room information with a reservation service;
- Discussion Forums with associations to things;

The first feature (Figure 13) provides the user of the mobile app a search and
navigation interface to all buildings and rooms within the KIT. This information has
being extracted from an existing facility management system of the university and
mapped to the Smart Campus Ontology. Attributes like location and year of
construction are also imported into the ontology.

Figure 13: App Interface for Room Information

The user can select buildings (1) which bring a list of available rooms within the
building (2). In the building screen (2) the user can request navigation support to the
selected building. For that feature is realized as an Android “navigation intend”, which
calls the preferred navigation service of the user.
In the room screen (3) the user may again request navigation to the room and also
ask for a reservation for that room.
The reservation is currently only a placeholder implementation. In the next phase this
will be realized as reservation events which will be implemented as a sensor
observation.
The second feature (Figure 14) of the current Smart Campus implementation is the
smart discussion.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 32

Figure 14: Discussion via Things

A discussion can be created from a specific room or directly from the main screen of
the app. It is also possible to open a discussion by sharing the URI of a discussion by
scanning an NFC-Tag or a QR-Code (Figure 15).

Figure 15: Discussion Sharing via QR-Code

Discussions are created as private elements which must be shared explicitly with
other users (Figure 16).

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 33

Figure 16: Starting a Discussion for a Room

Room information can also be linked into a discussion as shown below in Figure 17.
In that case a URL of a specific room is created and being posted in the discussion.

Figure 17: App Interface for Room Sharing

The discussion itself is realized in a typical chat style, as shown in the figure below.
All postings are chronologically ordered. The own postings are one the left side and
all other postings are on the right side for better orientation. On the bottom line is the
entry field for new postings (Figure 18).

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 34

Figure 18: Discussion Sharing via QR-Code

In order to reduce network traffic and start-up time, only the latest items are loaded.
Older entries are loaded on demand, if the user scrolls up.
New postings can be delivered on a push basis. For that purpose the Google Cloud
Messaging (GCM) service is used. All settings are availed via the Overflow- Menu in
the standard action bar (Figure 19).

Figure 19: Push-Notifications

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 35

The standard action and sound for notifications can be defined in the settings. It is
possible to overwrite this standard setting for specific discussion. The notifications for
new postings are shown with a unique symbol and a preview in the overflow menu.

3.1.5 Future work
Currently in work is a feature to use the sensors within the mobile device to provide
observations which are related to the room where the user just confirmed his
reservation (Figure 20).

Figure 20: User Interaction for Crowd Sensing

The observations are shown as additional attributes of the room (Figure 21).

Figure 21: User Interaction for Crowd Sensing

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 36

The OpenIoT middleware provides a technology for continuous query evaluations
based on a semantic model (Ontology). This method is based on a visual
representation of the semantic query language (SPARQL) and a continuous
reasoning evaluation engine. With this technology it is possible to evaluate a “world
model” containing semantically annotated data about real world things, live sensor
information associated to these things and social networking content for collaboration
support.
The plan is to use these possibilities to enrich the Smart Campus application by
providing semantically evaluated context information to provide a better user
experience.

3.2 Silver Angel

3.2.1 Description
The purpose of Silver Angel (as described in D2.3) is to help ageing citizens live
independently in their own homes, and to facilitate meeting more often with friends
and relatives. There are three main Silver Angel services foreseen as depicted in
Figure 22: Smart Meeting, Issue Reporting and Alarms.

Figure 22: Silver Angel main functionalities

The overall concept is illustrated in a video:
http://www.youtube.com/watch?v=pbdGv9W4CYs
In the context of OpenIoT, Silver Angel uses open data from public administrations
and crowd-sourced issue reports from citizens to find preferred locations for meeting
with friends. Initially the meeting location criteria can be:

• People (few/many/ignored)

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 37

• Noise (low/high/ignored)

• Pollen levels (low or ignored)
However, the intention is to make it easy for city administrators to configure Silver
Angel to use other types of criteria, for example air pollution levels. The idea is to
create OpenIoT Virtual Sensors that deliver updated views of the city situation
according to the user’s meeting preferences. This will provide flexible services in
finding areas that are less busy, noisy or polluted – and not sensitive for persons with
allergies and other health problems.
The people in the city also help out, by anonymously reporting about pollen and
street conditions, and letting their mobiles make available key data from the
microphone and other sensors. OpenIoT brings thousands of sensors and humans
together at city-wide scale, while also being capable of privately serving the personal
needs of ageing citizens.

3.2.1.1 Smart Meeting

Figure 23: Smart Meeting use case

This service has the main goal of finding the best possible locations and times for two
or more users to meet, and then to manage their arrivals.
Finding the meeting place (and time) can depend on various search criteria - such
as, for example, availability, busyness, noisiness, pollen levels - the proof-of-concept
implementation will provide an interactive CityMap that shows the attractiveness for
meeting in various areas of the city, and makes it easy to view the more attractive
places and schedule meeting with friends there.
The arrivals to agreed meetings is managed in the sense that all participants are
made aware of at what time other participants are estimated to arrive, based on their
location and the amount of distance left to reach the designated meeting location.
The diagram below displays the service’s sequence flow.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 38

Figure 24: Smart Meeting service data flow diagram

3.2.1.2 Issue Reporting

Figure 25: Issue Reporting use case

This service allows any user to report issues and be notified of any progress being
made to fix an issue. This service will typically be used for human-reported issues in
a city, but can also be used for automatic issue reporting (see Alarms below). The
user can report any observed issue – for example, pollen levels, risks, problems,
suggestions and points of interest that can help others decide where to meet. It can
also be used for reporting street conditions, traffic accidents, full garbage containers
etc., that immediately show up in a prioritised list for the Issues Coordinator within the
local administration. Reported issues can be searched and analysed by the Issue

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 39

Coordinator, who will decide what issues to either address directly or to dispatch to
someone else.
The diagram below depicts the main sequence flow of Issue Reporting.

Figure 26: Issue Reporting data flow diagram

3.2.1.3 Alarms

Figure 27: Alarm use case

In the Alarms scenario, which is in the context of the home of an ageing person,
equipment, appliances and other objects of interest around the house or mobile
phones can report issues that they have detected. For example, doors can be
sensorised so that they can report when the door is open or closed (or
locked/unlocked), appliances can report whether they are on or off, and rooms can
report when the temperature is above or below a pre-determined threshold.
The diagram below depicts the scenario sequentially.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 40

Figure 28: Alarm data flow diagram

3.2.1.4 The Use Case Story of Silver Angel
Emma is a 65-year old, fairly vital lady. She lives alone, but her daughter and son
with families are living not very far away. Since Emma has developed some motor
problems after a minor stroke, she receives house calls every day from the local care
service. Emma has subscribed to the Silver Angel service which gives her a phone
watching out for her, and makes it easy to call her loved ones and carry out daily
tasks.
Today is a big day for Emma, as she has agreed with her friends Lucia and Maria to
enjoy the city, but they did not yet agree where to go. Since Emma prefers to be in
more quiet areas, she wants to check which parts of the city are less busy. Emma
therefore activates the Silver Angel, where it immediately shows which areas of the
city that are busier with people and noise for the moment. She remembers that Lucia
suffers from pollen allergy, so she also ticks the box to show where pollen is more
intense today. It turns out that Memorial Park looks the nicest. She ticks Lucia and
Maria as participating in this activity, and by doing so they both get notified in their
Silver Angel phones. Since the agreed time is three hours away, all three of them get
on with other activities of their respective days. 15 minutes before the agreed time,
Emma – who likes to arrive early to appointments – is in Memorial Park. Silver Angel
has already started to indicate how far away Lucia and Maria are from the park. –
Lucia will be a little late as usual, Emma mutters to herself, but that is OK, because
she is such a sweet darling.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 41

When Lucia goes home from the park, she passes an area where the trees just
started blossoming. She immediately gets breathing problems and has to use her
inhaler. When she feels OK again, she uses her phone to report the local pollen
problem to the Silver Angel.
The next day, Emma will receive a visit by the physiotherapist Joey. She often
stresses a bit about these visits by non-relatives, because she feels the house must
be in perfect order then, and worries that she might miss him if she goes out to buy
some missing groceries. Silver Angel again comes to the rescue. She verifies that
Joey will arrive exactly on time, and that therefore she can walk down to the corner
bakery to buy some nice muffins for the coffee. When Joey is five minutes away,
Emma’s Silver Angel signals that he will soon be there. Emma greets Joey with a
smile.
During the evening, Emma sits in peace listening to the radio and solves Sudoku
puzzles. When she sat down, Silver Angel notified her that the front door was not
locked, as it should at this time. She goes to lock the door, and can then enjoy the
evening without worrying about having forgotten to close or lock doors and windows.
Emma’s daughter, who frequently calls on her to check that everything is OK, is away
to another city this evening, confident that she would receive an alert for any problem
and that it is easy to check for indications of negative trends in her mother’s life.

3.2.2 Scenario and implementation strategy
Silver Angel is mainly interested in reasonably finely granular information about
person locations, the noise level in those locations, and more sporadic pollen
problem reports (each user report weight decaying fairly quickly, let's say by 80% in
three days), as well as air quality readings in a few strategic locations (and mobile on
some buses).
Figure 29 illustrates a staged implementation of the Silver Angel app.
Initially (2013), existing open data sources will be used (Collect Content and Service
Delivery) while seeking partnership with local administrations for deploying sensors
to generate new valuable open data for city awareness. The Silver Angel app itself
then will do multivariate interpolation in a 2D+time space (thus three dimensions),
and apply suitable thresholds. The user interface will be implemented as a web
application (End User Request and Get Visualisation) that uses pre-configured
OpenIoT data services to deliver updated city attractiveness information according to
the user’s preferences.
In a second stage (spring 2014), Silver Angel Reporting will be added to feed
OpenIoT Virtual Sensors for human-reported pollen levels and dynamic points-of-
interest (Sensor Configuration and Collect Content). The OpenIoT integrated
Development Environment will be used to demonstrate its capabilities to generate
dashboards for Issue Coordinators at local administrations (Service Visualisation).

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 42

Figure 29: Silver Angel staged implementation

In the third stage (autumn 2014), the city administration support will be improved, to
allow easy reconfiguration of the underlying data services for a Silver Angel
deployment, using the OpenIoT Request Editor (End-User Request and Sensor
Configuration). Mobile optimisations using the Publish-Subscribe mechanisms will be
added (Collect Content) and data aggregation will be used for generating triggers
and alarms (Content Adaptation).

3.2.3 Current status and demonstration – Stage 1
The current Silver Angel version is v3.3. It has the basic user interface for Meeting
and Reporting, as well as for easy calling:

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 43

Figure 30: Silver Angel – Call screen

In the Meet screen, a map with suggested nearby meeting locations is shown:

Figure 31: Silver Angel – Meet screen

The current location of the user is used to identify attractive nearby meeting
locations. The location is obtained using the JavaScript position.coords element.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 44

Figure 32: Silver Angel – Scheduling screen

In the Scheduling screen (above), the meeting time is set and the intended
participants are selected. The meeting gets added to the Silver Angel of all
participants, and an email is sent with a vCal file for easy adding to their calendars.
The user can easily select personalised preferences:

Figure 33: Silver Angel – Preferences

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 45

In the Report screen, different issue categories can be reported:

Figure 34: Silver Angel – Report screen

For Pollen Level reporting, a traffic light model is used:

Figure 35: Silver Angel – Pollen Level Report screen

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 46

3.2.4 Future work
The Silver Angel App is a work in progress. The above descriptions are subject to
change.

3.2.4.1 Stakeholder Engagement
Silver Angel relies heavily on the Open Source OpenIoT middleware for enabling
local administrations to add new sensing capabilities that can be used for
suggestions where to meet. The OpenIoT open source Integrated Development
Environment can then be used to easily create dashboards for city administrators to
get an overview of the city characteristics that are most important to its citizens.
It is therefore essential for Silver Angel to engage a local administration for creating a
real demonstrator. The Stage 1 prototype and the air quality sensing by the FER
partner will be used for this purpose, to explore the interest among local
administrations related to AcrossLimits.
For a city to get started with Silver Angel, some ambient sensors will need to be
deployed first to attract interest, and only then will the user base grow to provide
additional data from the sensors in the mobiles.
For Silver Angel, the data needed would appear and more data sources would be
added as follows:

1. Air Pollution - sensors deployed by local administration - we aim to use air
quality sensing from the FER partner (as part of OpenIoT-Enlarged) and are
then going to work with a local administration to deploy a number of them
(Luleå, Sweden are currently carrying out a pre-study on how to provide Open
Data, and air quality sensing is a prime candidate).

2. Noise - from the mobiles carried around by users of the Silver Angel app, and
also from static devices deployed by the local administration – noise detection
will then have to be added to the air quality sensors.

3. People - from the mobiles carried around by users of the Silver Angel app.
4. Pollen - from manual reporting by motivated people using the Silver Angel

app.

3.2.4.2 Software Development
We use an iterative development approach, progressing towards the above
description of the full Silver Angel app, and full use of the OpenIoT middleware.
Below are given detailed implementation notes from trying to use the OpenIoT
middleware in Silver Angel.
Firstly, since the OpenIoT platform itself only provides historic samples of open data,
we need to push own data relevant for Silver Angel into the installed platform. For a
limited period of time, we aim to continuously push open weather and noise data to
the OpenIoT platform for Malta, Brussels, Luleå, Galway, Lausanne, Karlsruhe,
Zagreb and Brisbane. The use of X-GSN for pushing user-entered data about pollen
levels and other data sensed in the mobiles is being explored. We have encountered

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 47

some integration difficulties that are being resolved, and this will be reported in
D6.3.2
To be able to push own data to the OpenIoT platform, it is necessary to create X-
GSN sensor metadata and description files (Figure 36 and Figure 37).

Figure 36: X-GSN sensor metadata file for weather stations

Figure 37: X-GSN virtual-sensor description file (XML) for weather stations

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 48

After successfully registering virtual sensors in the OpenIoT platform (details omitted,
refer to the OpenIoT middleware documentation), SPARQL queries need to be
defined for getting the data streams. The OpenIoT Request Definition tool was used
to get a SPARQL to be used in the Silver Angel app. We tried first to get a data
stream of average noise readings from Canberra as show in Figure 38.

Figure 38: Canberra Average Noise Definition

The Request Definition tool generated a SPARQL query was generated so that it can
be used in Silver Angel code.

Figure 39: Canberra Average Noise SPARQL - Request Definition

We then used the Request Presentation tool for creating a Gauge to continually show
the latest data received (Figure 39).

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 49

Figure 40: Canberra Average Noise Gauge - Request Presentation

Apart from Canberra, we also used Lausanne sensors in a similar way for Request
Definition and Request Presentation.
OpenIoT Request Presentation cannot be used in the Silver Angel app, since it does
not provide the visualisations foreseen (intensity maps). Instead, the Silver Angel app
executes the SPARQL query itself and uses the received data in its Meet screen:

Figure 41: SPARQL executed in the Silver Angel app

The example above shows the source code for executing a SPARQL query and
logging the resulting data on the console. The intensity map widgets needed are
being developed.
Silver Angel continues to evolve towards a prototype using the OpenIoT platform for
Request Definition and Collect Data (for getting data streams within the app) and
Request Presentation (for creating city administration dashboards).

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 50

4 INTELLIGENT MANUFACTURING – MATERIALS FLOW AND
MANUFACTURING PERFORMANCE TRACEABILITY

4.1 Description

Nowadays plant managers install a large number of sensors in order to monitor their
production processes. In particular, mid-sized plants are likely to comprise many
hundreds of sensors of different types and for various purposes. These sensors
generate a great volume of information, while they are associated with an always
increasing rate of information. As a result significant information can be derived from
these sensors regarding manufacturing performance (on the basis of appropriate
KPIs (Key Performance Indicators)). In order to extract this information there is a
need for efficient solutions for capturing, storing and processing sensor data is
required. The monitoring of manufacturing performance could therefore greatly
benefit from a system that would enable plant managers to dynamically select the
information they want, through selecting information (in almost real-time) and using it
to constructing KPIs dynamically. Such as solution would allow the dynamic
construction of KPIs, beyond the fixed sets of KPIs that state-of-the-art
manufacturing performance systems provide. Motivated by this need, the OpenIoT
manufacturing use case provides the means for dynamically selecting sensor
information, as well as for structuring this information on KPIs.
In terms of practical implementation and demonstration, the OpenIoT use case for
intelligent manufacturing comprises a set of applications for monitoring and tracing
the flow of materials in the scope of production processes for the paper and
packaging industry. The applications enable manufacturers to dynamically define and
visualize Key Performance Indicators (KPIs) associated with the manufacturing
processes, by leveraging the semantic capabilities of the OpenIoT platform, and in
particular its capabilities for dynamic discovery of sensors and of sensor data. The
KPIs are defined and computed on the basis of a wide range of data streams, which
are: (A) Collected by physical sensors residing in the shop floor, (B) Transformed into
higher-level virtual sensors that comprise business events compliant to the data
model of the EPC-IS standard, (C) Conveyed to the X-GSN sensor middleware,
which ensures the semantic annotation of the data streams of the virtual sensors and
their subsequent publication to the OpenIoT cloud.
While a large number of KPIs can be devised, the manufacturing use case will be
demonstrated on the basis of a more specific scenario for the paper/packaging
industry, which comprises three operations that might be executed in parallel, namely
printing, die-cutting and gluing/folding. The above operations are executed
sequentially and process each unit (of packages) produced. In this specific scenario,
a set of (virtual) sensor streams are collected and published to the OpenIoT cloud.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 51

The virtual sensors concern the calculation of:

• Operation rate for a specific process (measured in units/hour).

• Utilization metrics of the machines involved in the operation.

• Percentage of the operation that has been completed (in terms of the time
required to complete the operation).

• Operation rate for the total process (measured in units/hour).
Once the information for these parameters is published in the OpenIoT cloud,
manufacturers are able to dynamically discover and synthesise information from the
above virtual sensors with a view to calculating (on-the-fly) KPIs (e.g., operation
rates, utilization rates) for specific processes, while also being able to combine these
metrics in order to calculate the parameters for composite (or even all) processes.
Furthermore, interesting opportunities can arise in case the above virtual sensors are
published to the OpenIoT cloud, not from just one, but rather from many
(packaging/printing) manufacturers running the printing, die-cutting and gluing/folding
processes. Overall, the semantic and dynamic discovery capabilities of the OpenIoT
infrastructure are able to deliver on-the-fly manufacturing intelligence to end-users for
monitoring, maintenance and planning purposes.

4.2 Scenario and implementation strategy

The implementation of the above scenario, involves:

• Sensors: A range of physical sensors, which are used to measure rates, quality
information and traceability information associated with the printing, die-cutting
and gluing/folding processes.

• Traceability Kiosk and S-BOX Products: SENSAP’s ITK product is used to
collect the data from the sensors and to process them in order to produce a set of
virtual sensors (as data streams). The processing is performed by SENSAP’s S-
BOX product, which undertakes to transform the data into EPC-IS events, which
comprise business context associated with the use of the sensors and the ITK in
the scope of specific manufacturing processes (such as cutting, printing, folding
etc.).

• X-GSN middleware: The implementation of the scenario foresees the interfacing
of the EPC-IS data streams (produced within S-BOX) with the X-GSN sensor
middleware. In-line with the OpenIoT architecture, the X-GSN middleware
annotates the data streams in a way that makes them compliant to the OpenIoT
ontology (which is an enhanced version of the W3C SSN ontology).

• OpenIoT LSM Cloud Infrastructure: The information (KPIs) associated with the
manufacturing processes is streamed from the X-GSN middleware to the
OpenIoT LSM cloud. This streaming process is a feature of the OpenIoT
architecture.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 52

• KPIs Composition and Visualization Infrastructure: Using the OpenIoT’s
request definition tool, one can dynamically define IoT services which
(dynamically) calculate KPIs associated with manufacturing processes. The
calculation of the KPIs is based on data available in the LSM cloud.

In following paragraphs we provide more detailed and specific information about
each one of the above components.

4.2.1 Physical Sensors
The implementation of the manufacturing scenario hinges on the collection of
information about the manufacturing process from the shop floor. This collection is
empowered by the following physical sensors:

• An optical sensor for performance sensing, which sensor measures rate and
quantity of produced items.

• A vision (image) sensor for quality control, which performs quality inspection of
the produced items (e.g. checking colour patterns for detecting printing errors).

• RFID/barcode scanner for traceability, i.e. a sensor which collects traceability data
(such as LOT numbers).

More detailed information about the above-listed sensors has been provided in the
scope of deliverable D2.1. The sensors collect information about the materials used
and the machines utilized in the scope of the execution of a production order. As
illustrated in deliverable D2.1 additional information about materials and utilization
can be collected based on optical diffusion sensors, weight sensors and temperature
sensors, which however are not used in the demonstration scenario.
These physical sensors are part of SENSAP’s ITK solution, since they are integral
elements of the ITK component which is described in the following paragraph.

4.2.2 ITK and S-BOX Products
As already outlined the physical sensors outlined above are attached to the
SENSAP™ INTEGRA ITK automation module, which has been designed and
manufactured with an emphasis on the needs of the Printing and Carton-Converting
industry. The ITK collects and processes information from the sensors towards
quality and performance inspection, traceability data acquisition, as well as
monitoring of material-consumption and resource-utilization. It encompasses all
critical manufacturing operations, and auxiliary activities ranging from lamination and
folio-sheeting to gluing/folding and shipping. Each ITK unit is directly connected on
Printing, Die-Cutting, and Gluing/Folding machines, with a view to acquire and
processes live data regarding machine performance, product quality, and raw-
material consumption. An overview of an ITK unit is illustrated in Figure 42.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 53

Figure 42: SENSAP’s Integra Traceability Kiosk

In the scope of OpenIoT, an ITK unit is attached to each one of the machines
performing the printing, die-cutting and gluing/folding operations of the scenario. In
technical terms, the ITK collects sensors information and generates appropriate
EPC-IS (Electronic Product Code Information Sharing) events i.e. events (information
units) compliant to the EPC-IS standard [EPCIS]. EPC-IS events comprise business
context, associated with the printing operations (e.g., such as the business process
executed, the LOT number of the product, state changes to the product) and
therefore have much richer semantics than the raw sensor data. The conversion of
physical sensors data to EPC-IS compliant virtual sensors is controlled through a
Graphical environment called PCS (Performance Control System). The PCS (Figure
43) allows manufacturers and/or integrators to define the EPC-IS virtual sensors on
the basis of combining data from the physical sensors attached to the ITK. This offers
significant flexibility in the definition and configuration of EPC-IS events. As part of
the OpenIoT intelligent manufacturing use case integration, these events are
structured as virtual sensors, which are providing information to the OpenIoT cloud.

Figure 43: SENSAP’s Performance Control System (Collects Information from
Physical Sensors)

4.2.3 X-GSN and OpenIoT Linked Sensor Middleware (LSM)
The X-GSN middleware (i.e. the enhanced version of the GSN middleware that is
contained in the OpenIoT platform) is used to stream (EPC-IS) virtual sensors to the
OpenIoT cloud. To this end, the virtual sensors have been described/annotated as

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 54

GSN Virtual Sensors (i.e. based on the XML file of the Virtual Sensor) (see Table 1
and Table 2 for two examples of virtual sensor descriptions). Accordingly, the X-GSN
middleware converts the data to an OpenIoT compliant (i.e. compliant to the OpenIoT
ontology) RDF format. This data is published to the OpenIoT cloud through the
interface of the X-GSN to the LSM middleware. In this way, the use case takes
advantage of the functionalities of the OpenIoT platform.
Table 1: Description of the Product Quantity Rate parameter of the ITK device as a

Virtual Sensor of the X-GSN middleware
<virtual-sensor name="ITK B ProductQuantity Rate" priority="10">

 <processing-class>

 <class-name>gsn.vsensor.BridgeVirtualSensor</class-name>

 <init-params />

 <output-structure>

 <field name="rate" type="double"/>

 </output-structure>

 </processing-class>

 <description>This sensor calculates the rate of timeseries 'ProductQuantity' of
asset 'ITK-B'. The rate is expressed per 1 HOUR</description>

 <life-cycle pool-size="10" />

 <addressing>

 <predicate key="geographical">SBOX sensor</predicate>

 <predicate key="availableAfter">1386681444455</predicate>

 <predicate key="sensorClass">ITK-B Rate</predicate>

 <predicate key="latitude">37.95980984755405</predicate>

 <predicate key="longitude">23.694021356815032</predicate>

 </addressing>

 <storage history-size="5m" />

 <streams>

 <stream name="sbox105749178">

 <source alias="sboxsource105749178" sampling-rate="1" storage-size="1">

 <address wrapper="sbox">

 <predicate key="host">192.168.0.249</predicate>

 <predicate key="port">6006</predicate>

 <predicate key="rate">30000</predicate>

 <predicate key="sensorUID">105749178</predicate>

 </address>

 <query>SELECT * FROM wrapper</query>

 </source>

 <query>SELECT * FROM sboxsource105749178</query>

 </stream>

 </streams>

</virtual-sensor>

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 55

Table 2: Description of Machine State parameter of the ITK device as a Virtual
Sensor of the X-GSN middleware

<virtual-sensor name="ITK B MachineState" priority="10">

 <processing-class>

 <class-name>gsn.vsensor.BridgeVirtualSensor</class-name>

 <init-params />

 <output-structure>

 <field name="red" type="TinyInt"/>

 <field name="yellow" type="TinyInt"/>

 <field name="green" type="TinyInt"/>

 <field name="blue" type="TinyInt"/>

 <field name="timeInState" type="BigInt"/>

 </output-structure>

 </processing-class>

 <description>This sensor reports the state of asset 'ITK-B' and the time that
the asset remains in current state</description>

 <life-cycle pool-size="10" />

 <addressing>

 <predicate key="geographical">SBOX sensor</predicate>

 <predicate key="availableAfter">1386681444392</predicate>

 <predicate key="sensorClass">ITK-B MachineState</predicate>

 <predicate key="latitude">37.95978902087909</predicate>

 <predicate key="longitude">23.693966310502454</predicate>

 </addressing>

 <storage history-size="5m" />

 <streams>

 <stream name="sbox293270425">

 <source alias="sboxsource293270425" sampling-rate="1" storage-size="1">

 <address wrapper="sbox">

 <predicate key="host">192.168.0.249</predicate>

 <predicate key="port">6006</predicate>

 <predicate key="rate">30000</predicate>

 <predicate key="sensorUID">293270425</predicate>

 </address>

 <query>SELECT * FROM wrapper</query>

 </source>

 <query>SELECT * FROM sboxsource293270425</query>

 </stream>

 </streams>

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 56

4.2.4 KPIs Composition and Visualization
Following the publication of the EPCIS compliant virtual sensors to the OpenIoT LSM
infrastructure, the request definition tool can be used to construct KPIs associated
with materials flows and manufacturing performance. Different (SPQRQL) queries
are constructed based on different graphs towards calculating and visualizing
manufacturing KPIs such as:

• Operation rate for a selected process (measured in units/hour) i.e. printing,
folding, die-cutting. During the definition of the query/service, the target process
can be specified.

• Utilization metrics (%) of one or more of the machines involved in the monitored
manufacturing operations. The target machine or machines is a parameter of the
query.

• The percentage of the operation that has been completed (in terms of the time
required to complete the operation). The operation can be a parameter of the
service that could be specified by the user.

• The calculation of (aggregate) operation rates for the combination of processes
(measured in units/hour). The target processes is a parameter that can be
specified by the user.

Note that the above queries/services are indicative in order to showcase the concept
of dynamic selection, composition and calculation of KPIs. The relevant IoT services
can deliver significant value in case where data from multiple printing plans are
becoming available in the OpenIoT cloud.

4.3 Current status and demonstration

The current status of the use case has completed the steps up to the interfacing of
the virtual sensors to the X-GSN middleware, towards creating and publishing
OpenIoT compliant semantic data sets about the use case. In particular, the virtual
sensors specified and configured through the PCS are currently deployed within the
X-GSN middleware. Furthermore, SENSAP has experimented with the request
definition tools towards creating sample models associated with the calculation of
operation rates for various processes, as well as with the calculation of utilization
metrics. In particular, graphs associated with these metrics have been produced, but
not deployed over the released version of the OpenIoT platform. Note that Figure 44
depicts a high-level mapping of the implemented components of the use case to
OpenIoT’s architecture components. In particular, components with green colour
indicate implemented/supported functionalities as part of the available version of the
use case. On the other hand, components with yellow colour will be
implemented/integrated as part of future releases of the use case implementation.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 57

Figure 44: Mapping of the Current Implementation of the Manufacturing Use Case to

OpenIoT architecture components (Green: Available Functionality Blue:
Future/Planned Functionality)

A video demonstrating the main aspects of use case is available on YouTube at:
http://www.youtube.com/watch?v=yrhyvx0znOY.

4.4 Future work

Towards the next version of the use case, a complete integration with the OpenIoT
platform will be realized. This involves the following steps:

• Completion of the deployment of the OpenIoT platform, i.e. deployment of all its
modules as an infrastructure for the use case.

• Interfacing of the available X-GSN infrastructure (comprising the EPC-IS events
as virtual sensors) to the OpenIoT LSM cloud. This will enable the publication of
manufacturing performance and materials flow traceability data in the cloud.

• Deployment of the models/workflows that have been created with the request
presentation tool, over the OpenIoT infrastructure. This will also lead to
visualization of operational rates and utilization rates to appropriate OpenIoT
mash-ups.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 58

Based on these steps, a first fully fledged demonstration will be completed. Following
the completed of the fully integrated demonstration, we will also investigate and
experiment the enrichment of the manufacturing data in two directions:

• Publication of additional KPIs, such as: (A) Defect rates per operation and/or per
process, (B) State for the individual operations and the whole process (idle,
stopped, in setup, in production), (C) Production rate per product type, (D) Defect
rate per material type.

• Collection and/or simulation of data from more than one plants.
The enrichment of the data outlined above would enable the demonstration of more
interesting scenarios.
SENSAP will attempt to install and deploy the system in a real manufacturing plant
based on liaison collaboration with one of its clients (i.e. a client that has already
deployed ITK systems).

5 DIGITAL AGRICULTURE - PHENONET

5.1 Description

'Phenonet' describes the network of wireless sensor nodes collecting information
over a field of experimental crops. The term “Phenomics” describes the study of how
the genetic makeup of an organism determines its appearance, function, growth and
performance. Plant phenomics is a cross-disciplinary approach, studying the
connection from cell to leaf to whole plant and from crop to canopy (CSIROa 2013).
Analysing the size, growth and performance of plants in a greenhouse or field site
can be time-consuming and laborious. More specifically, when a field site is located
in a remote area, it becomes quite expensive to send people out to the field. The
ability to collect this information from remote locations and send it back to the
laboratory in real time is an invaluable tool for plant scientists (CSIROa 2013,
CSIROb 2013).
CSIRO has developed smart wireless sensors nodes that work autonomously and
independently cooperating with each other to set up an ad hoc network to record
environmental conditions and wirelessly transfer data to a data store.

5.1.1 Current Architecture and Data Model

5.1.1.1 Architecture
The Phenonet project is supported by a production system with commercial quality
grade software and unit tests developed for researchers in CSIRO and government
organizations in Australia. Phenonet platform is currently being used in daily basis
and enjoys high level of uptime and very stable code. The high-level architecture of
Phenonet project is depicted in Figure 45 consists of five stages.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 59

Figure 45: Phenonet Architecture

• Field: The field is an experimental plot comprising different types of crops
varieties. Wireless sensors are installed in the experimental plots that
measure various environmental features such as soil temperature, crop
canopy temperature, humidity, wind speed etc. Using this information, the
crops growth, performance, size, etc. are continuous sensed/computed in real-
time.

• Data Store: Data Storage highlights the need to have all captured data and
information about the data (metadata), to be stored in a safe location. At
storage state, we are targeting both sensor measurements and metadata
information. Examples of metadata information include; sensor types, serial
numbers, MAC address, experimental treatment, crop sowing date, genotype,
replicate number etc. Each sensor stream is identified using a globally unique
identifier (GUID). This layer in current Phenonet relies on python scripts to
upload data into the system.

• Data Analysis: Is the brain behind all the calculations, data modelling, data
cleansing and linear aggregation models used by Phenonet project. This
component directly contacts Data Store layer when it requires data from a
particular stream. Internally, Data Analysis component also performs
extensive caching and applies proprietary algorithms and mechanisms to
ensure a highly responsive interaction with the system is maintained at all
times. Data Analysis component is accessible through HTTP RESTful API.
The response to any request received by this component is in format of JSON
object. This layer is developed in Scala.

• HTML5 Visualization: This component is responsible to generate RESTful
network requests and send them to data analysis component. The response is
then rendered by the frontend and appropriate visualization components. This

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 60

layer is written in CoffeeScript and uses HTML5 for rendering and
visualization.

• End user: Ranges from a plant biologist to a farmer. The system also provides
tools and mechanisms to share data analysis and visualizations with other
group of users.

5.1.1.2 Data Model
The Phenonet data model is depicted in Figure 46.

Figure 46: Phenonet Data Model

In Phenonet, a user is a logical entity (e.g. a project or a research group), which
owns a group of experiments. An experiment has only one owner. Each experiment
is a group of nodes and each node belongs to a single experiment. A node can also
have its location associated with it, such as latitude and longitude values. A node
itself is a group of streams and a stream is a series of timestamp and real number
pairs with a unit of measurement. Metadata can be attached at every hierarchical
layer. In general the following polices are enforced on the data model.

• Any user can have zero or more experiments

• Any experiment can have zero or more nodes

• Any node can have zero or more streams. Each node can also have latitude,
longitude and altitude values.

• Any stream is a set of (timestamp, value) pairs. Each stream has one unit of
measurement.

The mapping of a typical field experiment is illustrated in Figure 47. In this example,
the experiment is an ordered arrangement of 2 m wide by 6 m length plots. The plots
are subdivided into experimental units and are mapped to the node level in
Phenonet. On some of these experimental units, measurements of soil moisture are
made at multiple depths. A measurement of soil moisture at a particular depth is
mapped to the stream level, associated to a node. In summary, the stream maps to
the physical or virtual sensor that monitors a phenomenon while nodes and
experiments are used for grouping at different levels.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 61

Figure 47: A typical field experiment mapped to the Phenonet data model

The metadata associated to each of the levels is critical for providing contextual
information. In the above example, for the experiment level, metadata could include
information such as the year when the experiment was run; the date the experiment
was sown; description about the objectives of the experiment and even descriptions
about the experimental site like e.g. soil type. At the node level the most important
metadata fields are the genotype and the relative location of the experimental unit
within the experimental plot (in most cases for this application a row/column notation
is used). Treatments applied to individual experimental units can also be appended
as metadata at the node level. At the stream level, in this example the depth, the
sensor type and the sensor serial number are the most important metadata fields,
while sensor information like the date of calibration or settings of the sensor can also
be critical.

5.2 Scenario and implementation strategy

5.2.1 Implementation Strategy
In order to show flexibility and application of OpenIoT Middleware, Phenonet project
team would work closely with OpenIoT partner to connect Phenonet project to
OpenIoT and vice versa. This integration practice offers benefits for both parties. In
the case of Phenonet project, it offers various integration points, which can be utilized
to add new sensor types and new types of data analysis tools. In the case OpenIoT,
this integration is yet another proof of concept that commercial grade 3rd party
solution can be ported/migrated to use OpenIoT middleware, and by doing so, 3rd
party software can take advantage of the features offered by the OpenIoT platform
such as semantically rich sensor annotations, sensor discovery etc.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 62

Mapping of prioritized implementation of Phenonet scenario to OpenIoT services is
depicted in

Figure 48. Green colour denotes services which are implemented first, then come
services coloured in yellow and then come services coloured in blue.

As a proof of concept, we see Phenonet architecture to be extended as depicted in
Figure 48. Phenonet will take advantage of the following core services and tools
provided by the OpenIoT platform.

1. xGSN: XGSN will be used as the sensor streaming middleware. xGSN
wrappers will be developed to interface with the Phenonet data store to obtain
real-time access to Phenonet sensor data. xGSN will also be responsible to
annotate incoming sensor data streams from the Data Store/Field.

2. Scheduler and Service Delivery and Utility Manager (SDUM): These core
services will be used to compose and deploy a Phenonet experiment on the
OpenIoT platform. A service composition in OpenIoT will be mapped to
Phenonet experiments that comprise a set of sensors with a particular analytic
operation such as average, sum.

3. Cloud Data Store and Discovery Service (LSM-Lite): The data from existing
data store will be pushed into LSM along with sensor annotations allowing
discovery of sensor data.

4. Request Definition and Presentation: The request definition and
presentation tools will be used to design and deploy an experiment with the
help of the discovery, scheduler and SDUM core services.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 63

Figure 48: Mapping of Phenonet to OpenIoT services
Within the Phenonet-OpenIoT context, an experiment will be composed by the
end-user (a farmer or a scientist) by discovering relevant sensor data required for
the experiment. For example, to compose an experiment as depicted in Figure
49, an end-user will search for soil moisture sensors at different depth and
compose an experiment/service for each of the discovered sensor. The location
of the sensor will map to the node location of existing Phenonet application. The
metadata for a given experiment will be added to the description of the
experiment when composing the experiment using the Request Definition tool.
Similarly, HTML5 visualizations of Phenonet will be replaced with OpenIoT
Request Presentation tools that allow users to visualize the experiment’s
outcomes.

Figure 49: Proposed Phenonet Implementation Architecture on OpenIoT

5.2.1.1 Implementation Scenarios
The dataset that will be used to implement the Phenonet proof-of-concept application
on the OpenIoT platform will be made available to OpenIoT consortium and public at
large. Meanwhile, the sample data set can be found in Appendix 1.
The following section will describe in details the purpose of these experiments, the
types of sensors used in these experiments and their characteristics and the benefits
delivered by these experiments. This information was recorded from plant biologist
conducting the experiments. The experiment under focus is Kirkegaard and Danish.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 64

5.2.1.1.1 Experiment Description

• Kirkegaard and Danish Experiment: Kirkegaard and Danish is an
experiment for evaluating effect of sheep grazing on crop re-growth by looking
at root activity, water use, crop growth rate, and crop yield. In this experiment
soil moisture sensors have been installed at multiple depths from 10 cm to 2 m
below the soil surface. This enables the end-user to track the extraction of
water from the soil by the roots throughout the crop growing season. We can
then obtain an indirect measurement of root activity.

• Experimental Units (Nodes): The naming convention at the node level is as
follows:

o 'Genotype_Column#Row#_Treatment'
§ Genotype - the particular genotype / variety e.g. Revenue.
§ Treatment:

• Grazed: Animals are allowed to eat the plant leaves to
control the plant growth. After sometime, the animals are
moved off the crop allowing the crops to grow

• Ungrazed: In the case of Ungrazed, the focus is the crop,
no animals. no animal to be fed there.

• High N : High in nitrogen
§ Where:

• Column - field coordinate in direction of tractor travel
when sowing the crop. Sometimes described as "how
wide the trial is". Used at the node level.

• Row - field coordinate at right angles to column.
Sometimes described as "how deep the trial goes". AGT
use 'Prange' and commonly have 12x Prange in a trial.
Used at the node level.

o Naming E.g. 'EGA Gregory_C02R03'
§ Genotype = EGA Gregory
§ Column = 02
§ Row = 03

• Sensor Nodes (Streams): GBHeavy is the hardware name of the sensor
used and is depicted in Figure 50. GBHeavy measure the soil water status at
the particular depth of interest. More technical details about this sensor is
available here10:

o Naming E.g.’ GBHeavy100’
§ installed at 100cm depth

10 http://mea.com.au/upload/NEW/PRODUCT_Brochures/B03_Gypsum_Blocks_Web_0_1.pdf

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 65

Figure 50: Soil Moisture Sensor

5.2.1.1.2 Experiment Purpose

The purpose of the experiment is to evaluate the effect of sheep grazing on crop re-
growth by looking at root activity, water use, crop growth rate, and crop yield. The
information about crop growth obtained in real time can effectively help the
researchers to provide estimates on the potential yield of a variety.
The experiment tries to compare trade-offs between grazed and un-grazed setup for
a particular variety of crop. This experiment is supposed to last for 9 months. The
animals come in the first 6 months and after that they are removed from the site. To
compute the root activity and water usage, a soil moisture sensor is deployed.
Sensors at one depth level don’t tell the entire story. We need multiple depths to see
the behaviour of the root system and the water available to the crop at any particular
time.

• Efficiently and effectively manage the water resource: The soil profile
information could be used in a farming production system as follows. If there is
not enough water left in the soil profile, the farmer may decide to move the live
stocks into the site (crop farm). The movement of live stock into the site will
cause the water usage to be reduced as live stock feed on the leaves. This will
delay the use of water use until the vital grain filling period. When soil moisture
is high, the farmer may decide to move the live stocks off the site so that the
plants can consume the water effectively and produce higher yields.

• Efficiently and effectively administer the timing of using fertilizers: The farmer
may also use the soil profile information obtained in real time to arrive at a
decision on when to apply nitrogen to the soil to aid crop growth. Nitrogen is

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 66

applied generally when soil moisture is high, so it supports the growth of the
crop, otherwise nitrogen is wasted.

• Dual Purpose Cropping System: Increase crop yield by efficiently and
effectively utilising the resources (water and fertilizer) while also allowing live
stock to feed on healthy crop leaves enriching live stock growth.

The above setup is not only for experimenting but farmers benefit from it by using the
data to plan nitrogen fertilizer, timing of moving animals (animals/live stock eat leaves
of the plants, which is, but eating the flower which yields the grains is not good) in
and out before they start eating the reproductive part of the plants (called the flower)
and planning water resources.
The key focus of the experiments is to increase crop yield and produce high quality
harvest. Observing and understanding different types of crop performance and
growth under varying conditions like soil, grazed/un-grazed, water and nitrogen
content can greatly help in increasing the quality and quantity of crop yield.

5.3 Current status and demonstration – Stage 1

5.3.1 Demonstration
The OpenIoT-Phenonet implementation (Stage 1) will focus on migrating and
demonstrating the following OpenIoT features for the Phenonet Use case presented
earlier.

1. Sensor Configuration: The sensor configuration task will involve the
following activities
1. Extending the OpenIoT ontology to describe Phenonet Sensors more

specifically the GBHeavy Sensor platform
2. Registering the extended ontology with the cloud store (LSM)
3. Developing a metadata description for the sensor that will be used by

xGSN to push data into cloud store (LSM)

2. Collect Content: The collect content task will involve the development of
xGSN wrappers that will allow xGSN to fetch the data from the Phenonet
data store. The current Phenonet system provides restful API to get raw
and aggregated data streams as follows:
1. Phenonet Data Access API

Table 3: API Specification - Overview

Resource Method Description
/data_download POST Download raw or

aggregated sensor
data

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 67

2. POST /data_download

This request is for downloading raw or aggregated sensor data from
one or more streams. The aggregation level is specified per request.

Table 4: Phenonet API Specification- Detailed

Parameter Required Default Description Format

level No raw Aggregation
level

level is text and can
be set to one of the
following values: raw,
1-minute, 5-minute,
15-minute, 1-hour, 3-
hour, 6-hour, 1-day,
1-month, 1-year

sd No Start Date
(inclusive)

Date in iso format,
e.g., 2012-01-30 for
30th of Jan, 2012

ed No End Date
(inclusive)

Date in iso format,
e.g., 2012-12-20 for
20th of Dec, 2012

st No Start Time
(inclusive)

For Specifying Time
of Day (ToD) in raw,
1-minute, 5-minute,
15-minute, 1-hour
aggregation levels.
For format is 01:01:00
[00-23]:[00-59]:[0-59]

ed No End Time
(inclusive)

For Specifying Time
of Day (ToD) in raw,
1-minute, 5-minute,
15-minute, 1-hour
aggregation levels.
The format is
02:09:59 [00-23]:[00-
59]:[0-59]

sid No stream id(s) sid or
["sid1","sid2","sid3",...]

The xGSN wrapper will consume the restful API and obtain the data for
appropriate streams.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 68

3. Data Discovery
Once data is pushed by xGSN, the data will be discoverable using the
existing OpenIoT tools namely the scheduler and Request Definition
Interface. The Request Definition interface will be used to demonstrate the
discovery of sensor data along with simple proof-of-concept
experiment/service composition.

4. OpenIoT Integrated Platform Setup
The integrated platform setup involves setting up and deploying the
OpenIoT services on a local infrastructure at CSIRO. This task includes
obtaining the latest version of the source from GitHub, compiling and
deploying them without any bugs. This process has been ongoing since
October and CSIRO currently has a successfully running integrated
OpenIoT platform that uses DERI’s LSM cloud store infrastructure.

5.3.2 Current Status
The following components of OpenIoT have been successfully installed, configured
and integrated at CSIRO

1. Scheduler and SDUM
2. LSM-Lite Client (partially working)
3. Connection to LSM on DERI server
4. Request Definition and presentation UI
5. Ide.core UI
6. xGSN (with test wrapper for Netatmo Weather Station)

We are now working on Task 1, 2 and 3 with the OpenIoT second review as the
target date for Stage 1 OpenIoT-Phenonet demonstrations. The Gantt chart in Figure
51 below presents the current and proposed timeframes for proof of concept
demonstration completion.

Figure 51: OpenIoT-Phenonet Implementation – Stage 1 Schedule

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 69

5.3.3 Current Issues
The LSM on DERI has been successfully tested. As of this document writing, the
LSM-Server and LSM-Client version was received on 6th December 2013. Given the
priority of the other three tasks to be completed by January 2014, we will not use a
local LSM server version for the Stage 1 demonstration.
The current OpenIoT platform only allows the creation of sensor types called gsn.
This is a major issue and limitation as sensors like soil moisture, weather, etc. cannot
be discovered. This issue has a reported fix time of 15th December. Depending on
successfully fix and no further issues, we hope we can incorporate this into the Stage
1 demo.

5.4 Future work

The future work with the OpenIoT-Phenonet integration will include implementing and
demonstrating the Phenonet platform over the entire range of OpenIoT tools and
services for the scenarios mentioned in Section 5.2.1.1.
The plan is to implement and demonstrate the Phenonet use case previously
described over the OpenIoT platform. The following services will be demonstrated by
the respective deadlines.

• OpenIoT-Phenonet- Stage 2 Implementation and Demonstration (Deadline
May 2014)

o All features of Stage 1 implementation
o End User Request
o Query Content
o Content Adaptation
o Service Delivery

• OpenIoT-Phenonet- Stage 3 Implementation and Demonstration (Deadline
Nov 2014)

o All features of Stage 2 implementation
o Utility service feedback
o Service Visualization
o Data Presentation
o Utility Metrics
o Security

5.5 Section Acknowledgement

We would like to thank Dr. David Deery, Dr. Jose Jimenez-Berni and their team at
Plant Industry, CSIRO for their contributions to this document.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 70

6 CONCLUSIONS

This deliverable reports on the first release of Proof-of-Concept Validating
Applications (a), on partner experience and lessons while implementing diverse use
cases on the basis of OpenIoT software platform.
The document summarises the OpenIoT software platform, core middleware and
components that are used to develop OpenIoT use cases and map the use cases
scenarios onto OpenIoT software platform.
The implemented use cases include: (a) Smart Cities – Campus Guide; (b) Smart
Cities – Silver Angel; (c) Smart Industries – Intelligent manufacturing – Materials Flow
and Manufacturing Performance Traceability; (d) Smart Industries – Digital
Agriculture – Phenonet. All the reported use cases describe how the OpenIoT use
cases are/can/will be mapped to OpenIoT platform services according to 3-stage
priorities. The use cases include description of test data sets, whether they’re already
available for public use, or what are the plans to release them for public use via the
OpenIoT Github. The availability of such data set will allow the provision of on-line
demos through the OpenIoT open source project, which can be critical for the
development of the OpenIoT developers and contributors community, but also for the
take up of the project as a whole. The use case sections also describe experience,
issues, difficulties, lessons while developing use cases on the basis of the OpenIoT
software platform.
It is worth mentioning that the use cases are at different stages of maturity and have
implemented different sets of services as described in the document. Furthermore,
the three use cases feature different technical approaches and involved diverse
sensors and functionalities. This is to some extend purposeful in order to explore
and validate different aspects and modules of OpenIoT. It is also intended to
showcases that OpenIoT is not an «all or nothing» proposition, given that different
integrators are likely to use appropriate subsets of the OpenIoT functionalities.
However, all the OpenIoT use cases will implement full sets of OpenIoT services and
will fully mapped onto the OpenIoT software platform as planned.

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 71

7 REFERENCES

[EPCIS] EPCglobal, EPC Information Services (EPCIS) Specification (version 1.0.1),
available at: http://www.gs1.org/gsmp/kc/epcglobal/epcis (retrieved November
2013)

[CSIROa] CSIRO, 2013 Phenonet: wireless sensors in agriculture. Available from:
http://www.csiro.au/Outcomes/ICT-and-Services/National-Challenges/Wireless-
sensors-in-agriculture.aspx. Accessed on Dec 2013

[CSIROb] CSIRO, 2013 The High Resolution Plant Phenomics Centre. Available
from: http://www.csiro.au/Outcomes/Food-and-Agriculture/HRPPC/Sensors-in-
the-field.aspx. Accessed on Dec 2013

[Le-Phouc 2011] D. Le-Phuoc, M. Dao-Tran, J.X. Parreira, M. Hauswirth, A native
and adaptive approach for unified processing of linked streams and linked data,
in: ISWC, 2011, pp. 370–388

OpenIoT/2013

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 72

APPENDIX I – SMALL SAMPLE DATASET FOR DIGITAL
AGRICULTURE – PHENONET USE CASE

Timestamp	

Soil	

Moisture	
 -­‐
Value	

12	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐935.33	

12	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐935.33	

12	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐931.13	

12	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐922.86	

12	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐910.78	

12	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐899.08	

12	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐880.38	

12	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐873.16	

12	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐880.38	

12	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐887.74	

12	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐895.26	

12	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐906.84	

11	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐914.76	

11	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐914.76	

11	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐910.78	

11	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐902.94	

11	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐891.49	

11	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐880.38	

11	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐866.08	

11	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐855.72	

11	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐859.14	

11	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐869.6	

11	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐876.75	

11	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐887.74	

10	
 Dec	
 2013	
 -­‐	
 23:00:00	
 0	

10	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐899.08	

10	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐895.26	

10	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐884.04	

10	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐876.75	

10	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐866.08	

10	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐855.72	

10	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐845.66	

10	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐845.66	

10	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐855.72	

10	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐862.59	

10	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐866.08	

09	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐869.6	

09	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐873.16	

09	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐869.6	

09	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐859.14	

09	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐842.37	

09	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐820.17	

09	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐796.47	

09	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐785.22	

09	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐790.8	

09	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐802.24	

09	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐814.09	

09	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐826.37	

08	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐835.88	

08	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐845.66	

08	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐842.37	

08	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐829.51	

08	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐811.08	

08	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐790.8	

08	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐771.69	

08	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐758.71	

08	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐769.05	

08	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐779.74	

08	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐790.8	

08	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐802.24	

07	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐811.08	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 2

07	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐817.11	

07	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐811.08	

07	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐799.34	

07	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐782.47	

07	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐763.84	

07	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐743.81	

07	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐731.91	

07	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐741.39	

07	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐751.17	

07	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐761.26	

07	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐774.35	

06	
 Dec	
 2013	
 -­‐	
 23:00:00	
 0	

06	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐790.8	

06	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐788	

06	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐774.35	

06	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐758.71	

06	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐738.99	

06	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐722.72	

06	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐711.6	

06	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐720.46	

06	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐729.59	

06	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐738.99	

06	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐751.17	

05	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐763.84	

05	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐774.35	

05	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐779.74	

05	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐771.69	

05	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐761.26	

05	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐763.84	

05	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐763.84	

05	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐758.71	

05	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐774.35	

05	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐790.8	

05	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐808.11	

05	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐823.25	

04	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐832.68	

04	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐835.88	

04	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐832.68	

04	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐823.25	

04	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐805.16	

04	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐785.22	

04	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐761.26	

04	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐736.61	

04	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐731.91	

04	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐743.81	

04	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐758.71	

04	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐771.69	

03	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐785.22	

03	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐793.62	

03	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐790.8	

03	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐774.35	

03	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐756.18	

03	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐734.25	

03	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐705.13	

03	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐680.57	

03	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐684.52	

03	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐698.79	

03	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐713.79	

03	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐729.59	

02	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐741.39	

02	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐746.24	

02	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐741.39	

02	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐724.99	

02	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐707.27	

02	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐682.54	

02	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐652.58	

02	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐628.78	

02	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐635.37	

02	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐650.81	

02	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐667.16	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 3

02	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐680.57	

01	
 Dec	
 2013	
 -­‐	
 23:00:00	
 -­‐694.64	

01	
 Dec	
 2013	
 -­‐	
 21:00:00	
 -­‐700.89	

01	
 Dec	
 2013	
 -­‐	
 19:00:00	
 -­‐694.64	

01	
 Dec	
 2013	
 -­‐	
 17:00:00	
 -­‐680.57	

01	
 Dec	
 2013	
 -­‐	
 15:00:00	
 -­‐661.6	

01	
 Dec	
 2013	
 -­‐	
 13:00:00	
 -­‐635.37	

01	
 Dec	
 2013	
 -­‐	
 11:00:00	
 -­‐606.93	

01	
 Dec	
 2013	
 -­‐	
 09:00:00	
 -­‐584.03	

01	
 Dec	
 2013	
 -­‐	
 07:00:00	
 -­‐586.78	

01	
 Dec	
 2013	
 -­‐	
 05:00:00	
 -­‐602.48	

01	
 Dec	
 2013	
 -­‐	
 03:00:00	
 -­‐614.53	

01	
 Dec	
 2013	
 -­‐	
 01:00:00	
 -­‐628.78	

30	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐642.12	

30	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐649.05	

30	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐647.3	

30	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐630.41	

30	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐611.46	

30	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐585.4	

30	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐550.79	

30	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐521.61	

30	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐516.4	

30	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐525.87	

30	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐539.13	

30	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐556.83	

29	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐572	

29	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐586.78	

29	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐590.96	

29	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐577.27	

29	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐548.41	

29	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐521.61	

29	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐507.31	

29	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐511.31	

29	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐525.87	

29	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐539.13	

29	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐548.41	

29	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐555.61	

28	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐563.04	

28	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐573.31	

28	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐579.95	

28	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐574.62	

28	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐553.19	

28	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐525.87	

28	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐490.18	

28	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐462.74	

28	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐464.35	

28	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐476.02	

28	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐489.27	

28	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐506.33	

27	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐523.73	

27	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐533.51	

27	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐531.3	

27	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐512.32	

27	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐489.27	

27	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐462.74	

27	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐434.28	

27	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐411.88	

27	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐413.76	

27	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐423.42	

27	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐432.89	

27	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐442.84	

26	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐452.55	

26	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐461.14	

26	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐464.35	

26	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐451.02	

26	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐432.19	

26	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐411.26	

26	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐388.55	

26	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐371.82	

26	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐372.32	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 4

26	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐378.95	

26	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐386.37	

26	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐394.11	

25	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐401.6	

25	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐407.58	

25	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐408.8	

25	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐400.43	

25	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐388.55	

25	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐374.33	

25	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐356.1	

25	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐342.13	

25	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐342.55	

25	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐348.1	

25	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐353.39	

25	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐359.32	

24	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐364.5	

24	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐368.85	

24	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐368.36	

24	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐359.32	

24	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐348.1	

24	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐333.96	

24	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐319.49	

24	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐310.99	

24	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐313.07	

24	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐316.96	

24	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐320.95	

24	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐325.42	

23	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐329.24	

23	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐332.37	

23	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐331.98	

23	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐326.56	

23	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐316.24	

23	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐303.91	

23	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐292.19	

23	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐285.35	

23	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐287.1	

23	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐289.78	

23	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐292.5	

23	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐294.96	

22	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐297.15	

22	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐298.1	

22	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐296.83	

22	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐291.59	

22	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐283.9	

22	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐275.51	

22	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐270.96	

22	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐271.49	

22	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐273.35	

22	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐275.51	

22	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐277.7	

22	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐279.92	

21	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐282.18	

21	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐283.9	

21	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐284.48	

21	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐281.61	

21	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐275.23	

21	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐270.17	

21	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐268.87	

21	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐269.39	

21	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐270.69	

21	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐272.81	

21	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐274.96	

21	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐277.15	

20	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐278.53	

20	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐278.53	

20	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐278.53	

20	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐274.96	

20	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐269.13	

20	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐262.52	

20	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐257.41	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 5

20	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐256.69	

20	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐258.13	

20	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐259.34	

20	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐260.8	

20	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐262.28	

19	
 Nov	
 2013	
 -­‐	
 23:00:00	
 0	

19	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐264.52	

19	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐264.27	

19	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐261.04	

19	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐256.69	

19	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐252.25	

19	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐248.61	

19	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐247.72	

19	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐248.61	

19	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐249.74	

19	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐250.87	

19	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐252.02	

18	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐252.94	

18	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐253.63	

18	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐253.17	

18	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐251.56	

18	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐248.83	

18	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐246.16	

18	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐243.55	

18	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐242.69	

18	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐243.12	

18	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐243.98	

18	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐244.85	

18	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐245.94	

17	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐246.83	

17	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐247.27	

17	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐247.27	

17	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐245.72	

17	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐243.55	

17	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐241.19	

17	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐238.88	

17	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐237.63	

17	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐237.84	

17	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐238.46	

17	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐239.29	

17	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐240.13	

16	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐240.77	

16	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐241.19	

16	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐241.4	

16	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐240.56	

16	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐239.29	

16	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐238.46	

16	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐237.84	

16	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐238.04	

16	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐238.25	

16	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐238.88	

16	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐239.71	

16	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐240.56	

15	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐241.4	

15	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐242.04	

15	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐242.26	

15	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐241.62	

15	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐239.92	

15	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐237.84	

15	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐235.99	

15	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐235.17	

15	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐235.99	

15	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐236.6	

15	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐237.42	

15	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐238.46	

14	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐239.5	

14	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐240.56	

14	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐241.19	

14	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐240.56	

14	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐239.29	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 6

14	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐238.04	

14	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐236.4	

14	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐235.78	

14	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐236.6	

14	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐237.63	

14	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐238.88	

14	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐239.92	

13	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐241.4	

13	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐242.9	

13	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐243.98	

13	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐244.2	

13	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐243.55	

13	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐242.47	

13	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐241.62	

13	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐240.98	

13	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐242.47	

13	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐244.41	

13	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐246.38	

13	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐248.61	

12	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐251.1	

12	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐253.63	

12	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐255.75	

12	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐256.22	

12	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐252.71	

12	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐248.16	

12	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐242.69	

12	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐242.47	

12	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐244.63	

12	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐246.83	

12	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐249.28	

12	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐252.25	

11	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐254.8	

11	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐258.13	

11	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐261.29	

11	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐264.52	

11	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐268.09	

11	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐272.28	

11	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐276.87	

11	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐281.9	

11	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐287.4	

11	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐294.03	

11	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐326.56	

11	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐333.56	

10	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐341.29	

10	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐350.28	

10	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐360.25	

10	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐371.82	

10	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐382.09	

10	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐389.09	

10	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐388	

10	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐383.15	

10	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐381.03	

10	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐390.2	

10	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐401.02	

10	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐413.76	

09	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐427.42	

09	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐445.78	

09	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐448.76	

09	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐429.45	

09	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐402.78	

09	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐372.82	

09	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐345.08	

09	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐332.37	

09	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐343.81	

09	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐358.85	

09	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐373.32	

09	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐391.86	

08	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐410.64	

08	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐430.82	

08	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐450.26	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 7

08	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐448.76	

08	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐428.09	

08	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐399.26	

08	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐365.46	

08	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐337.58	

08	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐338.4	

08	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐351.61	

08	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐365.94	

08	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐381.56	

07	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐396.38	

07	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐405.17	

07	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐401.02	

07	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐383.68	

07	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐362.12	

07	
 Nov	
 2013	
 -­‐	
 13:00:00	
 0	

07	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐310.3	

07	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐285.35	

07	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐284.19	

07	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐295.27	

07	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐307.24	

07	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐319.49	

06	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐331.58	

06	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐339.63	

06	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐336.77	

06	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐321.69	

06	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐303.25	

06	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐282.47	

06	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐257.89	

06	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐239.08	

06	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐241.4	

06	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐251.33	

06	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐261.29	

06	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐271.49	

05	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐280.2	

05	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐284.77	

05	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐280.77	

05	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐268.35	

05	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐252.71	

05	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐235.78	

05	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐217.02	

05	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐201.44	

05	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐199.73	

05	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐206.69	

05	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐214.05	

05	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐221.32	

04	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐227.68	

04	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐230.2	

04	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐226.54	

04	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐216.31	

04	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐203	

04	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐188.72	

04	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐173.81	

04	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐160.79	

04	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐159.03	

04	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐164.63	

04	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐170.39	

04	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐176.06	

03	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐180.57	

03	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐181.49	

03	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐177.21	

03	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐167.88	

03	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐156.44	

03	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐144.66	

03	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐133.62	

03	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐122.76	

03	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐118.52	

03	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐120.62	

03	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐123.16	

03	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐125.83	

02	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐128.4	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 8

02	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐129.58	

02	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐127.23	

02	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐121.64	

02	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐114.22	

02	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐106.12	

02	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐98.15	

02	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐91.88	

02	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐90.22	

02	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐91.2	

02	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐92.19	

02	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐93.31	

01	
 Nov	
 2013	
 -­‐	
 23:00:00	
 -­‐94.06	

01	
 Nov	
 2013	
 -­‐	
 21:00:00	
 -­‐93.49	

01	
 Nov	
 2013	
 -­‐	
 19:00:00	
 -­‐90.46	

01	
 Nov	
 2013	
 -­‐	
 17:00:00	
 -­‐85.55	

01	
 Nov	
 2013	
 -­‐	
 15:00:00	
 -­‐79.78	

01	
 Nov	
 2013	
 -­‐	
 13:00:00	
 -­‐74.55	

01	
 Nov	
 2013	
 -­‐	
 11:00:00	
 -­‐70.13	

01	
 Nov	
 2013	
 -­‐	
 09:00:00	
 -­‐67.07	

01	
 Nov	
 2013	
 -­‐	
 07:00:00	
 -­‐66.19	

01	
 Nov	
 2013	
 -­‐	
 05:00:00	
 -­‐65.82	

01	
 Nov	
 2013	
 -­‐	
 03:00:00	
 -­‐65.46	

01	
 Nov	
 2013	
 -­‐	
 01:00:00	
 -­‐65.05	

31	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐64.37	

31	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐63.35	

31	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐61.61	

31	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐59.43	

31	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐56.72	

31	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐54.58	

31	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐52.95	

31	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐51.72	

31	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐51.28	

31	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐51.13	

31	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐51.08	

31	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐51.08	

30	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐50.89	

30	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐50.54	

30	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐50.1	

30	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐49.51	

30	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐48.1	

30	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐46.92	

30	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐46	

30	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐45.12	

30	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐44.73	

30	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐44.58	

30	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐44.53	

30	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐44.44	

29	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐44.24	

29	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐43.9	

29	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐42.83	

29	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐42.73	

29	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐42.39	

29	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐42.1	

29	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐41.8	

29	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐42.15	

29	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐41.9	

29	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐41.85	

29	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐41.9	

29	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐42.05	

28	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐42.05	

28	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐42.05	

28	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐42.1	

28	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐42.19	

28	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐42.1	

28	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐42.39	

28	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐42.73	

28	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐42.63	

28	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐42.49	

28	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐42.44	

28	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐42.29	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 9

28	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐42.24	

27	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐42.05	

27	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐42	

27	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐41.85	

27	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐42.1	

27	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐42	

27	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐42.1	

27	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐42.58	

27	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐42.49	

27	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐42.19	

27	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐42.05	

27	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐42.05	

27	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐42	

26	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐41.9	

26	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐41.85	

26	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐41.75	

26	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐42	

26	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐41.85	

26	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐42	

26	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐42.44	

26	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐42.34	

26	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐42.15	

26	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐41.95	

26	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐41.9	

26	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐41.8	

25	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐41.71	

25	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐41.61	

25	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐41.51	

25	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐41.61	

25	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐41.56	

25	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐41.75	

25	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐42.15	

25	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐42.05	

25	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐41.8	

25	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐41.66	

25	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐41.56	

25	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐41.46	

24	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐41.41	

24	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐41.32	

24	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐41.27	

24	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐41.41	

24	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐41.32	

24	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐41.41	

24	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐41.61	

24	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐41.8	

24	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐41.61	

24	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐41.66	

24	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐41.71	

24	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐41.66	

23	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐41.61	

23	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐41.46	

23	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐41.32	

23	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐41.22	

23	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐41.36	

23	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐41.66	

23	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐41.46	

23	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐41.56	

23	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐41.71	

23	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐41.56	

23	
 Oct	
 2013	
 -­‐	
 01:00:00	
 0	

22	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐41.61	

22	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐41.61	

22	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐41.66	

22	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐41.75	

22	
 Oct	
 2013	
 -­‐	
 13:00:00	
 0	

22	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐45.36	

22	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐45.22	

22	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐45.12	

22	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐45.02	

22	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐45.02	

Deliverable 6.3.1 Proof-of-Concept Validating Applications a

Copyright  2013 OpenIoT Consortium 10

22	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐44.83	

21	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐44.88	

21	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐44.73	

21	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐44.63	

21	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐44.73	

21	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐44.92	

21	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐44.97	

21	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐44.88	

21	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐44.73	

21	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐44.29	

21	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐44.14	

21	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐44.14	

21	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐44.05	

20	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐44	

20	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐44	

20	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐44	

20	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐44.44	

20	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐44.14	

20	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐44	

20	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐43.9	

20	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐43.51	

20	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐43.02	

20	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐42.93	

20	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐42.83	

20	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐42.78	

19	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐42.68	

19	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐42.63	

19	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐42.63	

19	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐43.02	

19	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐42.88	

19	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐42.78	

19	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐42.49	

19	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐42.15	

19	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐41.71	

19	
 Oct	
 2013	
 -­‐	
 05:00:00	
 -­‐41.66	

19	
 Oct	
 2013	
 -­‐	
 03:00:00	
 -­‐41.66	

19	
 Oct	
 2013	
 -­‐	
 01:00:00	
 -­‐41.66	

18	
 Oct	
 2013	
 -­‐	
 23:00:00	
 -­‐41.61	

18	
 Oct	
 2013	
 -­‐	
 21:00:00	
 -­‐41.61	

18	
 Oct	
 2013	
 -­‐	
 19:00:00	
 -­‐41.75	

18	
 Oct	
 2013	
 -­‐	
 17:00:00	
 -­‐42.29	

18	
 Oct	
 2013	
 -­‐	
 15:00:00	
 -­‐42.05	

18	
 Oct	
 2013	
 -­‐	
 13:00:00	
 -­‐41.9	

18	
 Oct	
 2013	
 -­‐	
 11:00:00	
 -­‐41.71	

18	
 Oct	
 2013	
 -­‐	
 09:00:00	
 -­‐41.41	

18	
 Oct	
 2013	
 -­‐	
 07:00:00	
 -­‐41.02	

OpenIoT/2013

