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1 Introduction 

1.1 Explanation of the Deliverable 
This deliverable, D2.1, sets out the theoretical foundations for MODUM, and details the 

architectural design of two varying distributed traffic management systems, an agent-based 

and ant-based traffic simulation system. The multi-agent system (MAS for short) uses 

software agents to model individual multi-modal transport segments, such as road segments 

and rail segments. In the multi-agent system, each transport segment is represented by a 

software agent. Given information about the transport network and continuous real-time 

update of traffic situation, the multi-agent system endeavours to optimise the use of transport 

infrastructure to achieve a balance between traffic demands and available capacity. 

However, the ant-like traffic system uses lightweight agents to model the travellers’ 

behaviour. In the ant-like system each vehicle is represented by an ant. The ant-like system 

endeavours to optimise vehicles’ driving behaviour. 

 

The multi-agent system unique and innovative aspects include: 

 Fitting the distributed, dynamic and evolving nature of traffic.  

 Calculating CO2-efficient travel routes in a distributed manner. 

 Representing each physical transport segment by a unique and dedicated agent. 

 Taking into account aggregate properties of transport infrastructure such as traffic 

flow rate and density of a road segment. As such the simulation is not microscopic, 

but instead macroscopic.  

 Calculating (combine) multi-modal travel routes using a bidding algorithm (Section 

3.3).  

 

The ant-based system unique and innovative aspects include: 

 Current and past traffic situation (track and trace). 

 Predicted traffic situation accounting for user intentions. For instance, accounting for 

user intentions allows visualizing to what extent the traffic participants have managed 

to coordinate cooperatively before intervening. 

 On-line searchable solutions space. This allows users to find and evaluate 

alternatives, accounting for the predictions. 

1.2 Purpose and Scope 
Deliverable D2.1 aims to describe the architectural design for two primary traffic 

management systems of MODUM: a multi-agent system and an ant-based system. These 

architectures will be used as the foundation for future implementation and development 

efforts within MODUM, and will form the backbone of MODUM systems. D2.1 focuses on the 

internal structure and behaviour of the two distributed systems. It also reviews relevant 

theories, models, and concepts to inform the design decisions made about the inner 

workings of the two architectures. Moreover D2.1 outlines a future implementation timetable.  

1.3 Structure of Document 
The remainder of this deliverable is structured as follows. Section 2 reviews relevant 

literature concerning, multi-agent systems, ant-based systems, traffic flow models and 
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theories, and traffic management simulations. Section 3 describes the architecture of the 

multi-agent traffic management simulation system, along with its class diagrams, and 

presents initial implementation results and algorithms. Section 4 describes the architecture of 

the ant-based traffic management simulation system, and justifies the architectural decisions 

and choice of implementation language. Each architecture section concludes with an 

implementation plan outlining upcoming development actions along with anticipated 

deadlines. 
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2 Literature Review 
The following section of deliverable 2.1 reviews three main research threads related to the 

field of agent-oriented technologies, ant-based technologies, and traffic control and 

management, primarily: 

 

1. Multi-agent systems 

2. Traffic flow concepts and theories 

3. Agent-based models for traffic management simulations 

2.1 Multi-agent Systems 
This literature review starts by defining the underlying concepts of a multi-agent system, and 

argues for its advantages. The field of multi-agent systems is viewed as a relatively new 

research trend and a promising breakthrough in software development, and is founded on 

top of various mature disciplines mainly artificial intelligence, distributed computing, sociology 

and philosophy (Jennings and Wooldridge, 1998). 

 

In simple terms, multi-agent systems are defined as systems composed of a collection of 

interacting agents within a host environment aimed at solving complex problems that are 

beyond individual systems. It is a requirement for agents to be embedded in an environment 

which facilitates interaction and communication among agents. Multi-agent systems are 

advantageous as they are able to solve computational problems that may be too large for a 

centralised system or to improve system performance and reliability. Other benefits include 

interconnection of multiple legacy systems using agent wrappers and efficient coordination of 

multiple distributed sources of information. Interacting agents could act on behalf of software 

systems as well as humans / human teams. Multi-agent systems provide greater benefits 

when distributed over a network, allowing agents to exploit the capabilities (e.g. 

computational resources) of the environments where they live.  

 

(Woolbridge, 2007) defines an agent as “a computer system situated in some environment, 

and that is capable of autonomous action in this environment in order to meet its delegated 

objectives“. As such, an essential notion of agents is the ability to perform autonomous 

actions without the need to receive orders from its users or without intervention from internal 

or external environments and systems. Typically an agent perceives the environment through 

sensors, reasons the information through its reasoning engine and acts upon the 

environment through actuators. Such an interaction is continuous. The process of mapping 

perceptions to actions to satisfy the goals is called behaviour. This is the typical lifecycle of 

agent behaviour: perceives, decides and acts. In summary, agents exhibit additional 

properties that distinguish them from regular computer systems: 

 

 Reactivity: agents can perceive the status and changes within an environment where 

they exist and react to these changes in a timely manner to fulfil their goals.  

 Proactiveness: in pursuit of their goals and the goals of the environment, agents 

show goal-oriented behaviour.  

 Socialability: agents interact with each other or other non-agent systems to fulfil their 

design goals and the goals of the system. In the agent context, being “sociable” refers 
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to the ability to communicate, cooperate or compete to fulfil own goals or common 

system goals. 

 

Among the most traditional and common ways to model and program the behaviour of an 

agent is the belief-desire-intention (BDI) model (Rao and Georgeff, 1995). Agents developed 

on top of this model possess and implement a number of mental attitudes: a set of beliefs 

representing their knowledge of the world state, a set of desires representing their goals or 

system goals and a set of intentions representing plans for achieving the desires. The BDI 

architecture does have a number of limitations (Michael et al, 1999); for example it does not 

explicitly support learning, it does not specify mechanisms for interactions between agents 

and it does not have an explicit representation of goals. Other alternate models for 

programming the rational behaviour of agents include the Soar model (Laird et al, 1987) and 

Markov decision process-based model (Bellman, 1957). The Soar model is based on 

operators (i.e. commitments) and states where operators are selected based on pre-

conditions and current state of agent. A Markov decision process models the decision 

making process in situations where the outcomes are partially random. In such model agents 

hold a probability distribution of the potential states, and take actions which lead the 

environment to a state with a particular probability. 

 

Agents live in an environment whose characteristics are quite crucial for the success or 

failure of agents. (Russell and Norving, 2003) classified agent environments into the 

following types: 

 

 Accessible / inaccessible: this reflects the ability of the agents to obtain a complete, 

accurate, and up to date state of the environment. With this level of information about 

the environment, agents are expected to make better decisions.  

 Deterministic / non-deterministic: an environment is deterministic if any single 

agents’ action has only one guaranteed result in the environment. In such 

environment there is no element of uncertainty about the outcomes of agents’ 

actions.  

 Static / dynamic: an environment is considered dynamic if it changes beyond agents’ 

control. In contract a static environment remains unchanged without taking into 

account the effect of agents’ actions.  

 Discrete / continuous: an environment is considered discrete if the number of 

actions to be performed by the agents is limited. 

  

In contrast to the object-oriented programming paradigm which uses objects, agent-oriented 

programming emerged at the beginning of the 90s and uses agents and their messaging 

capabilities as its centrepieces to create software (Shoham, 1990). Following Shoham’s 

programming paradigm, various frameworks, platforms and languages emerged to 

implement its features and properties. A complete survey of available agent-based modelling 

and simulation platforms and toolkits, including ABLE, AnyLogic, JADE and MASON, is 

provided by Nikolai and Madey (2009). The authors classified these toolkits based on five 

characteristics: the implementation language used for developing and running the simulation, 

operating system for running the toolkit, licensing policy of the toolkit, intended domain of the 

toolkit and level of user support provided.  

 

Various models have been proposed to facilitate the development of multi-agent systems in a 

systematic manner. (Burmeister, 1996) suggested three different models for building multi-
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agent systems: agent model, cooperation model and organisational model. The agent model 

describes the agents’ architecture and their internal structure using mental notions (i.e. 

beliefs, desires, plans). The cooperation model describes the interaction and cooperation 

aspects of the agents. The organisational model describes the relationships between agents 

and agent types such as inheritance relations and role-based relations. For multi-agent 

systems founded on the belief-desire-intention architecture, Kinny et al. (1996) discussed the 

agent system from two perspectives: an external viewpoint where the system is divided into 

agents and the interactions among these agents through an agent class hierarchy, and an 

internal viewpoint where the system focuses on modelling the agents’ mental notions 

(beliefs, desires and intentions). Other methods and methodologies for building agent-based 

systems, such as the multi-agent scenario based method and agent-oriented methodology 

for enterprise modelling, are thoroughly reviewed by (Iglesias et al, 1998).  

 

Other prominent and widely-recognised agent-oriented methodologies include Gaia which 

consists of an analysis phase and design phase, MaSE (Multiagent Systems Engineering) 

which consists of an analysis stage, design stage, assembling agent classes stage and 

system design stage, Prometheus, which targets non-experts, consists of a system 

specification stage, architectural design stage and detailed stage, Tropos consists of an 

early requirements stage, late requirements stage, architectural design stage, detailed 

design stage and implementation stage. Dam and Winikoff (2004) developed a 60-question 

comparison framework focusing on agency concepts, modelling language and process and 

pragmatics of the methodology to evaluate the aforementioned agent-oriented 

methodologies. 

 

Currently multi-agent systems are widely applied in a multitude of everyday domains 

including commercial, governmental, military, industrial and research fields (Intelligent 

Software Agents, 2010). Real-life examples include the use of multi-agent systems in email 

filters, air traffic control applications and financial management applications. Multi-agent 

systems are also used for simulation and optimisation problems such as traffic management 

and optimisation (Burmeister et al, 1997; Chen and Cheng, 2010), the core topic of MODUM 

project.  

 

A particular class of multi-agent systems are ant algorithms. Ant algorithms use artificial 

stigmergy as a means for coordinating the behaviour of several agents (Theraulaz, 1999). In 

ant colony engineering food foraging behaviour in ant colonies is the source of inspiration for 

the design of the emergent generation of short-term forecasts. 

The main achievement is that individual ants are not exposed to the complexity and 

dynamics of the situation. Instead, the environment is incorporated into the solution and 

allows the overall system to cope with its complexity. None of the ants need a mental map of 

the environment, this in contrast to typical BDI architectures (Holvoet, 2006; Rao and 

Georgeff, 1995). Evaporation and refreshing the pheromone trails allows the system to cope 

with a dynamic environment. 

 

Ant-colony engineering, i.e. Delegate MAS applications (Holvoet, 2006), has proved its value 

in various applications and domains. Also in the traffic routing domain biologically inspired 

algorithms and virtual pheromones are often used (Tatomir, 2009; Ando, 2006). However, 

most approaches either focus on solving the routing problem for one individual vehicle or 

focus solely on the self-organization of traffic by using pheromones to stochastically guide 

vehicles.  
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More similar to the ant-based model proposed in the MODUM project are (Tatomir, 2009; 

Ando, 2006; Claes 2012; Di Caro, 1998). These approaches explicitly use ant coordination in 

order to model travel time and congestion. 

2.2 Traffic Flow Concepts and Theories 
In this section we discuss the widely-recognised traffic flow theories and their fundamental 

concepts as it is quite crucial to understand these before developing any traffic control 

simulation. Theories as such aim to develop an optimal transport network with well-organised 

flow and reduced congestions by considering the movement and interaction between 

vehicles, drivers, and traffic network infrastructure. So the endeavour is to create an efficient 

traffic network which maximises the use of available infrastructure to eliminate traffic jams, 

shorten travel journeys, reduce transport carbon emissions and provide a positive and safe 

commuting experience for commuters.  

 

Traffic happens in space and time, representing a spatiotemporal relationship. A space-time 

diagram, where distance is plotted on the vertical axis and time is plotted on the horizontal 

axis, allows us to graph the flow of vehicles over time. Such a diagram is beneficial for 

depicting and understanding the characteristics of traffic flow for roads over a period of time.  

 

A number of traffic-related variables are often utilised to model traffic simulations and traffic 

flow of vehicles: vehicle speed, vehicle density, and flow rate. These quantities are defined 

as follows (Kerner, 2009; Maerivoet, 2006; Mannering et al, 2005; Lieu, 1999): 

 

 Speed (v): speed of vehicles represents the distance traversed per unit time by the 

vehicle; its unit is expressed in kilometre (or mile) per hour (km-m/h). Due to the 

variable nature of speed of vehicles over time and difficulty to keep track of every 

vehicle on the road network, average speed over a period of time or a period of space 

is calculated and used instead.  

 

v = d / t; 

 

There are two types of speed, time-mean speed and space-mean speed. Time-mean 

speed (also known as spot speed) is calculated by averaging the observed speeds of 

vehicles passing a reference point, whilst space-mean speed is calculated by 

averaging the observed speeds of vehicles over a length of road. Usually space-

mean speed is found to be approximately 2% less than time-mean speed.  

 

 Density (concentration - k): density defines the number of vehicles (n) per unit 

distance (d) at a particular instant; its unit is expressed in vehicles per kilometre (or 

mile) (vehs / km-m).  

 

k = n / d; 

 

 Flow rate (q): traffic flow defines the number of vehicles passing through a reference 

point per unit time; its unit is expressed in vehicles per hour (vehs / h). 

 

q = n / t; 
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Other useful traffic stream properties include time headway (in seconds) which defines the 

time delay between any two successive vehicles as their front bumpers pass a reference 

point, and space headway which defines the distance between any two successive vehicles.  

 

Free-flow traffic: traffic is said to be freely-flowing when there is a positive correlation 

between flow rate (q) and vehicle density (k), until reaching an optimal flow rate alongside a 

critical vehicle density. After this point traffic starts to congest. 

 

Congested traffic: in a traffic congestion case, the speed of vehicles is lower than the 

lowest vehicle speed observed in a free flow condition as a result of increased vehicle 

density. Congested traffic is characterised by three major features: slower speeds, extended 

journey times and increased queuing of vehicles. It is caused when the capacity of traffic 

infrastructure (e.g. roads) at certain points or time is smaller than the volume of traffic (i.e. 

number of vehicles). This is often exacerbated by other factors such as traffic incidents, bad 

weather conditions and road works. Traffic congestion has a number of repercussions such 

as trip delays, difficulty in forecasting travel times, and increased use of fuel and CO2 

emissions.  

 

Simulation models describing traffic flow are categorised into three primary categories, 

microscopic, macroscopic, and mesoscopic (Hoogendoorn and Bovy, 2001; Maerivoet, 

2006). Microscopic models describe the following behaviour of individual vehicles as a 

function of the behaviour of the leading vehicle; it thus models microscopic properties of 

single vehicles. Macroscopic models, however, study and establish a mathematical 

relationship among traffic flow characteristics including vehicle speed, vehicle density and 

flow rate. The easiest of these relationships is the fundamental relationship as propose by 

Greenshields (1935), where: Flow rate = speed * density (q = v * k;). In macroscopic 

models individual vehicles activities, e.g. lane-change, are not explicitly represented. 

Mesoscopic models present an intermediate solution between microscopic and macroscopic 

models, and simulate individual vehicles using aggregate macroscopic relationships. 

Mesoscopic models thus describe traffic flows at medium level of detail.  

 

Several research studies attempted to tune the fundamental relationship function by 

considering the relationship between each pair. Car-following models, or microscopic 

models, study the characteristics of a single vehicle which adapts its behaviour according to 

the leading vehicle in the same lane. In other words, car-following models investigate how 

vehicles follow one another on roads considering their position and velocities. Examples of 

car following models (Brackstone and McDonald, 1999) in the literature include stimulus-

response models (Gazis el al, 1961) where a driver responds to stimuli according to the 

formulae: response = sensitivity * stimulus, safety-distance models (Gipps, 1981) where a 

vehicle can accelerate to its desired speed but should be able to safely stop in case the 

leading vehicle stops suddenly to avoid collision, Newell models (Newell, 2002) where a 

vehicle keeps a minimum distance and time to the leading vehicle, and optimal velocity 

models (Bando, 1994) where the vehicle maintains maximum speed with sufficient distance 

to the leading vehicles and attempts to reach the optimal velocity, where acceleration 

represents the difference between current velocity and optimal velocity. A number of 

researchers evaluated the effectiveness of these models in creating traffic simulations that 

are comparable to complex real traffic data (Olstam and Tapani, 2004; Ranjitkar et al, 2005; 

Zheng et al, 2012). Other car following models are discussed in detail elsewhere 

(Hoogendoorn and Bovy, 2001; Marrivoet, 2006) 
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The first macroscopic traffic flow model was introduced by Lighthill and Whitham (1955) and 

Richards (1956) who proposed that traffic streams are comparable to fluid streams in long 

rivers. It is also known as the LWR model named after the authors who first described it. This 

first order traffic model describes the flow of compressible fluids. (Payne, 1971) modified the 

first order traffic model to overcome its shortcomings and improve modelling performance. 

Other researchers suggested macroscopic models for describing traffic flow based on the 

kinetic theory of gases (Newell, 1995; Bellomo et al, 2002). Models based on kinetic theory 

of gases compare traffic flow to ratified gases flow. Darbha et al. (2008) reviewed and 

critiqued in detail some of these models. 

 

Examples of mesoscopic models include headway distribution models, cluster models, and 

gas-continuum models (Hoogendoorn and Bovy, 2001). Headway distribution models 

describe the distribution of headways of individual vehicles where a headway is the time 

difference between two successive vehicles passing through a reference point. Cluster 

models describe clusters of vehicles which share a particular property using specific aspects 

such as the size of cluster and velocity of a cluster. Gas-continuum models describe the 

dynamic changes of vehicles’ velocity distribution functions in traffic steams. 

2.3 Agent-based Models for Traffic Management 

Simulations 
A number of research works attempted to address traffic management and control by 

creating specialised agent-based traffic simulations and systems. The application of multi-

agent systems to the management and control of traffic is reasonably justified. Naturally 

traffic is distributed geographically, highly dynamic, and autonomous. The facts are simple, 

the world’s population is growing fast and so are the everyday economy and leisure 

activities, all resulting in an overwhelming increase in the use of traffic infrastructures in all of 

its forms, e.g. roads, rail networks, cycle and pedestrian routes. These factors alongside the 

limited operational capacity of traffic segments necessitate a carefully-managed traffic 

network to ensure smooth fluidity and lower levels of carbon emissions. Indeed multi-agent 

systems can be used to plan, manage and optimise traffic by exploiting and integrating 

various sources of traffic information, facilitating collaboration between differing types of 

traffic infrastructure, and enabling autonomous behaviour of traffic subsystems. Agent-based 

simulation models are applied to road, air and rail traffic management (Burmeister et al, 

1997).  

 

Agent-based platforms for road traffic management and control include TRACK-R (Garcia-

Serrano et al, 2003), MAS incident manager (Tomas and Garcia, 2005), and Mobile-C (Chen 

et al, 2009). All of these platforms are FIPA (IEEE Foundation for Intelligent Physical Agents) 

compliant (FIPA, 2002). TRACK-R recommends traffic routes for drivers where each agent is 

responsible about a geographical area. MAS incident manager uses available road traffic 

information to empower a road operator to manage a meteorological incident within non 

urban areas. Mobile-C integrates mobile agent technology with multi-agent systems to 

enhance the ability to detect and handle uncertainties in dynamic and distributed traffic 

environments. Mobile-C supports both stationary and mobile agents.   

 

A number of researchers developed interesting agent applications that try to tackle traffic 

congestion problems, incidents and delays. (Wang, 2005) developed aDAPTS, a three level 
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multi-agent system for real world urban traffic control where agents perform three main tasks: 

organise, coordinate and execute. aDAPTS integrates the concept of mobile agent 

technology to empower agents to migrate between traffic centres and devices. (Roozemond, 

1999) created a reactive agent based system which adapts to changing conditions in the 

traffic environment according to internal rules. This agent-based system consists of 

intersection traffic signalling agents, road segment agents and authority agents. (Weyns et 

al, 2007) created a delegate multi-agent system for anticipatory vehicle routing to avoid 

congestion problems where agents, representing single vehicles, explore alternative routes 

and declare their intentions in the network. (Srinivasan and Chory, 2006) proposed a multi-

agent system for controlling traffic signals, where each agent is responsible about a single 

traffic signal of an intersection in the traffic network. Agents belonging to the same proximal 

zone cooperate to make a group decision.  

 

In respect to agent-based traffic modelling and simulations, traffic entities (e.g. vehicles, 

signal lights, road segments etc) are modelled as agents which cooperate with each other to 

optimise traffic or overcome traffic problems such as congestions and route guidance. 

(Burmeister et al, 1997) suggested a five-module architecture for modelling a driver’s 

behaviour in traffic simulations: sensor modules for sensing the environment, actuators 

modules for executing the behaviour, motivation modules for modelling agents goals and 

preferences, communication modules for communication between agents, and cognition 

modules for controlling agents activities. (Bazzan et al , 1999) suggested modelling drivers’ 

mental attitudes using the BDI (beliefs-desires-intentions) architecture. Other research efforts 

to model driver behaviour include using BDI agents and agent-based framework to evaluate 

driving decision making behaviour (Rossetti et al, 2000), using results of a driving behaviour 

survey of congested areas (Dai, 2002), and using a two-layer architecture to investigate the 

influence of traffic updates on traffic systems and drivers’ reactions (Wahle et al, 2002). 

(Meignan et al, 2007) developed a multi-agent traffic simulation, consisting of buses, 

travellers, and road traffic, for visualising and evaluating bus networks. (Kukla et al, 2001) 

described a microscopic model, PEDFLOW, which models the flow and movement of 

pedestrians in urban environments. Further agent-based systems and traffic simulation 

models are discussed in detail by (Chen and Cheng, 2010). 

 

(Gibaud et al, 2011) proposed a fully-distributed self-organised approach for improving traffic 

flows to overcome the limitations of existing centralised and semi-distributed approaches that 

use a traffic information centre to measure, aggregate and diffuse traffic updates. The 

‘FORESEE’ approach facilitates communication between vehicles which contain agents, 

each acting as a driving assistant to estimate the condition of surrounding traffic. Traffic 

information between agents is exchanged using wireless communication, and is used to 

optimise routes according to personal preferences, thus enabling each agent to acquire a 

view of traffic situation. The model employs a redundant information-reducing strategy to 

minimise the use of the communication medium without worsening the quality of traffic. 

 

(Artimy 2007) identified traffic jams by estimating local traffic density relying only on the 

vehicle’s mobility pattern. The algorithm for detecting traffic slow-downs uses the speed of 

vehicles-density relationship, is location-independent and does not require exchange of 

information between vehicles or with a central traffic information system. Instead, each 

vehicle uses fractions of stopped time to recognise free-flow and congested traffic situations 

surrounding the vehicle. 
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3 MODUM Agent-based Traffic Management Model  

3.1 Multi-Agent System Architecture 
The goal of our multi-agent system is to model the transport infrastructure and optimise its 

use for a more efficient traffic flow, minimised congestion and less CO2 emissions. By 

transport infrastructure we particularly refer to road segments, rail segments, bus routes, 

cycle paths and pedestrian routes. Our architecture makes the assumption that each road or 

route is composed of multiple adjacent segments, each of which is represented by a single 

transport agent. For instance, a road agent would represent a segment of a road and reflect 

the properties of this segment (e.g. length, flow rate, density ... etc).  As such our definition 

strictly excludes dealing with intersections, roundabout and traffic signals directly. Therefore 

our multi-agent system does not simulate these as physical entities as the case for 

segments, but rather treat them as properties that contribute to defining attributes of 

transport segments. For instance traffic signals within a road segment regulate traffic and 

control traffic flow rate for that segment. In a similar manner, intersections and roundabouts 

control traffic flow rate to relevant segments.  

 

We rely on static properties of traffic network segments, such as length and capacity, 

coupled with dynamic traffic updates obtained from live traffic sensors, such as flow rate and 

average speed, to optimise traffic streams. In addition we take into account user preferences 

and choice, such as locations of travel and time of travel, to propose personalised travel 

routes. Another advantage brought by our multi-agent system is its ability to combine multi-

modal traffic information to recommend a multimodal route which combines various means of 

transport. It is worthwhile to point out that this first traffic management simulation does not 

aim to model and optimise dynamic driving behaviour. Instead this will be handled by the ant-

based traffic management system as discussed in Section 4. 

 

Our multi-agent system is composed of two primary units: 

An environment: acts as the host for the agents where communication and interaction 

occur. The environment facilitates message exchanges between the differing types of 

agents, negotiates and resolves conflicts among environment agents. 

Agents: there exist three main types of agents in the environment as follows: 

 Transport (infrastructure) agents 

 User agent 

 Sensor agent 

 

Transport agents: this type of agents represent segments of the transport network and 

include: 

 Road agents: represent segments of the road, where a segment is the distance 

between any two adjacent road intersections. It is important to note here that some 

segments of the road might have restrictions on the time of use as in the case of bus 

routes which are part of the road network but may be used by cars, e.g. after 7 pm or 

during weekends. 

 Bus agents: represent segments of the road which can be used for bus movement, 

where a segment is the distance between any two adjacent bus stops. 

 Rail agents: represent segments of the rail way, where a segment is the distance 

between any two adjacent rail stations. 
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 Bicycle agents: represent segments of the cycling route and road network where 

cycling is allowed, where a segment is the distance between any two adjacent cycle 

intersections. 

 Pedestrian agents: represent segments of the pedestrian path where a segment is 

the distance between any two adjacent path intersections. 

 

A road agent represents a segment of the road network as depicted in Figure 1. Properties of 

such a road segment include static infrastructure information: a segment ID, length of 

segment, number of lanes, segment capacity and dynamic traffic data: average speed of 

cars, density and traffic flow. In the road network there maybe some road segments which 

contain lanes dedicated for buses. During times restricting road use to buses only, 

designated lanes can be marked as ‘unavailable’. 

  

Figure 1 Road Segment 

 
 

A bus agent represents the distance between two successive bus stops which is part of the 

road network. Thus a bus agent may inherit some properties of the road segments it overlaps 

with. Depending on the length, a bus segment could overlap with more than 1 road segment. 

It will have properties such as: segment ID, density, length of bus segment, average speed of 

bus, and flow rate. In addition a bus segment will hold additional information in the form of 

buses passing through it, current capacity and load of buses, and the timetable for these 

buses. 

 

A rail agent models the distance between two adjacent rail stations and will maintain 

information about segment ID, length of segment, and current capacity. Other properties 

such as average speed and traffic flow are not relevant to the rail agent. 

 

In respect to bicycle routes and pedestrian paths, the designated agents will essentially 

model static transport information such as ID and length. Dynamic traffic stream properties 

such as average speed and traffic flow are not relevant to these types of agents.   

 

Since MODUM aims to propose multi-modal route guidance to travellers to reduce journey 

times and CO2 emissions, different transport maps (e.g. road map, rail map, bus map, 

cycling map) will need to be linked together to exploit the advantages offered by each 

network and distribute the transport demands and requests. This information can be 

encapsulated in the belief set of each agent where a road agent, for instance, should know 

which (e.g. agent ID) and how many bus stops (i.e. bus agents) it overlaps with in the 
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transport network, rail stations (i.e. rail agents) and so on. The knowledge within the belief 

set empowers our multi-agent system to propose route guidance combining various modes 

of transport.  

 

Each transport agent is unique and represents only one segment of the transport network. A 

transport agent holds some knowledge about itself (as shown in Figure 1), its neighbouring 

network agents regardless of their type, and external environment (e.g. IDs, real-time traffic 

information). Figure 2 depicts the sources of transport information that constitute the belief 

set of each transport agent. Information about self, neighbouring transport agents, and real-

time traffic news are collected by the sensor agent. Whilst the transport agent holds a 

microscopic view of the traffic situation, the sensor agent holds a holistic view of the traffic 

situation. In this respect each transport agent is concerned about acquiring information that 

relates to identity or adjacent neighbours as depicted in Figure 2. 

 

Figure 2 Transport Agent Belief Set 

 
 

User agent: the primary function of this agent is to coordinate and manage the interaction 

between MODUM app users and the MODUM traffic management system. In this respect it 

captures user requests and preferences as text input, communicates such information to the 

transport agents and environment, and returns combined travel routes to the user. The best 

route in our case is the most CO2 efficient travel route and could combine different modes of 

transport. This route is then visualised in a suitable form on the user’s Android-based device.  

 

Figure 3 User Agent Belief Set 
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Sensor agent: the primary function of this agent is to sense the environment for static 

information and dynamic traffic updates. Static information describes static properties of 

transport network such as the length of segments, number of lanes, capacity and timetable, 

whilst dynamic traffic updates describe real-time traffic data such as flow rate, density and 

vehicle average speed. The sensor agent reads map information once at the beginning of the 

simulation and checks for traffic updates on a regular basis, e.g. every 2 minutes. Such 

interval will be calibrated and experimented with during the traffic management simulation to 

reflect the true status of traffic. Map information and traffic updates are directly obtained from 

the traffic model simulation of WP3 as depicted in Figure 4. 

 

Figure 4 Sensor Agent Belief Set 

 
 

In the context of our MODUM project, it is vital for the MAS architecture to hold a symbolic 

representation of the transport map (e.g. information about segments and neighbours) to 

enable planning and to respond to changes and stimuli (e.g. traffic flow) without complex 

reasoning. These characteristics make our architecture hybrid (Wooldridge, 2009): 

deliberative and reactive. 

 

We propose a three-layer architecture for our multi-agent traffic management system: a 

coordination, simulation and sensing layer (Figure 5). The coordination layer contains a user 

agent that coordinates user requests and delivers route guidance to users of MODUM app. 

The simulation layer contains transport agents which model and simulate the different modes 

of transport network infrastructure and try to optimise its use by achieving a balance between 

its capacity and current traffic demands. When calculating combined travel routes various 

types of infrastructure agents will need to communicate to each other. The sensing layer 

contains a sensor agent which updates the transport agents with information related to 

transport maps and real-time traffic data.   
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Figure 5 A three-layer architecture for MODUM multi-agent system 

 
 

The three layers are contained within an agent environment where the agents co-exist. The 

agent environment controls all types of agents, facilitates communication between the three 

layers and between agents of the same type (e.g. road agents and bus agents), and resolves 

any conflicts among agents. 

 

Applying the BDI (belief-desire-intention) model to our MAS architecture, we list the agent 

types and for each we define their goals, beliefs and capabilities. The goals signify the high 

level motivations of each agent, beliefs the knowledge each agent maintains about the state 

of the world, capability the functions each agent is capable of executing.  

 

Table 1 Goals, Beliefs, and Capabilities of MAS 

Agent 

Type  

Goal (s) / Desire (s)  Belief (s)  Capabilities  

Sensor  -Read static map data 

-Retrieve traffic 

updates  

-Map information 

-Updates (timetables, 

traffic flow, CO2 emission)  

 

-Read maps 

-Collect traffic updates  

User  -Interact with user 

-Capture user request 

-Delivers most efficient 

travel route 

-Source and destination 

-Travel time 

-User preferences (e.g. 

driving ability, age, 

ownership of car) 

 

-Capture user queries  

-Notify user of travel 

route  

Transport  -Generate 

representations of 

maps and simulate the 

infrastructure 

-Transport map segments 

-Neighbours 

-Traffic updates 

-Execute plan 

-Communicate with 

other transport agents 

-Cooperate with other 

agents 

-Update beliefs  
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3.2 UML Diagrams 

3.2.1 Class Diagrams 

We use the unified modelling language (UML) (Larman, 2004) to describe the inner structure 

and behaviour of our multi-agent system by featuring its classes, attributes, methods and 

relationships between the classes. In summary the multi-agent system contains 6 main 

classes:  Agent Environment, User Agent, Sensor Agent, Transport Agent Interface (and 

implementation classes), Calculate Routes, Message. 

 

Agent Environment class: this class hosts all types of agents, facilitates communication 

and manages the lifecycle of the multi-agent system. It has one user agent, one sensor 

agent and (1 to many) transport agents depending on the transport network being simulated.  

 

Figure 6 Agent Environment Class 

 
 

User Agent class: this class enables retrieving user requests (e.g. source and destination) 

and commuting preferences, and notifying users of most efficient routes. This class interacts 

directly with the user profile class to coordinate user communication, in the form of requests 

and responses, with the environment.    

 
Figure 7 User Agent and User Profile Classes 
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User Profile class: this class enables creating user profiles for each user of MODUM multi-

agent system. Each user profile has an ID and encapsulates information about its user along 

with commuting preferences.  

 

Sensor Agent class: this class enables reading transport map information and continuously 

retrieving traffic updates from road, bus, rail, cycle and pedestrian infrastructures.  

 

Figure 8 Sensor Agent Class 

 
 

Transport Agent Interface class: this is the interface for specifying the common attributes 

and methods of the transport agents to be implemented. The agent environment will have 1 

to many of these transport agents.  

 

Figure 9 Transport Agent Interface 
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Transport Agent classes (Road Agent, Bus Agent Rail Agent, Bicycle Agent, 

Pedestrian Agent): these classes implement the Transport Agent Interface class and define 

the behaviour of the transport agents. Transport agents talk to each other using messages.  

 

Figure 10 Transport Agent Classes 

 
 

Message class: this class enables transport agents to communicate among each other, 

where each message has a sender, a number of recipients, and a message (i.e. cost in our 

case). Each transport agent can send 0 or more messages to other agents.  

 

Figure 11 Message Class 

 
Calculate Route class: this class implements three algorithms. First the Dijkstra algorithm to 

calculate the shortest route between a source segment and a target segment. Dijkstra 

algorithm is a special case of the A* graph search algorithm where the heuristic always 

returns zero. This class will also implement the A* pathfinding algorithm (Hart, Nilsson and 

Raphael, 1968) to achieve better performance and accuracy. Both of these algorithms, 

Dijkstra and A*, will be implemented in a distributed manner. In addition to these algorithms, 

this class will implement a bidding algorithm which given various multi-modal routes from a 

given source to a destination will negotiate a combined cheapest travel route (see section 

3.3). The agent environment instructs this class to calculate travel routes. 
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Figure 12 Calculate Route Class 

 

3.2.2 Sequence Diagram  

The sequence diagram describes the sequence of operations and actions of our multi-agent 

system, how they interact with each other, and in what order. The procedure starts with a 

user agent capturing a user request on behalf of an Android device end user (e.g. find me 

the most efficient travel route from a start point X to a destination point Y). This request is 

then transferred to the environment which sends a request to the sensor agent to fetch map 

information and current traffic updates from the traffic simulation model (WP3). The 

environment uses the latest map and traffic updates to initiate and populate all transport 

agents. The transport agents then communicate together in a round robin manner to update 

each other of their new cost. Once the message exchange process has concluded, the 

environment initiates a module to calculate the most CO2 efficient route. This route is then 

communicated to the user agent which sends it to the designated end user. The operations 

and message sequence diagram is depicted in Figure 13.  

 

Figure 13 MAS Sequence Diagram 

 

3.3 Algorithms 
The MODUM multi-agent system endeavours to reduce CO2 emissions of urban transport 

vehicles, primarily cars by reducing their idling times and journey times, and minimising their 

use in favour of other sustainable forms of transport covering the same intended journeys. 

This will ultimately improve the overall commuting experience and commuter perception 

toward sustainable transport. To this end our multi-agent system will simulate the transport 

infrastructure, where each transport segment will have a composite cost assigned to it, use 

the available real-time traffic information, and propose the most CO2-efficient multi-modal 

journey route. As such the cost in our context represents CO2 emissions per segment. The 
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algorithms in our multi-agent system will find the path(s), from source segment to target 

segment, with the least total CO2 emissions. 

 

The cost of using a particular segment of the transport, be it road, bus, rail, cycle or 

pedestrian, is determined by a combination of factors such as: 

 

 Type of vehicles flowing in the segment, including engine size and fuel type 

 Length of segment 

 Type of segment (e.g. uphill, downhill, flat) 

 Traffic flow rate (i.e. number of cars per hour - characterising either free traffic flow or 

a congestion) 

 Average vehicle speed 

 Delays on the segment 

 Time of travel (e.g. departure time) 

 Weather condition (e.g. vehicle engines require more energy during winter). 

 

The cost method will take into account as many factors as available from the traffic 

simulation model of WP3 to calculate the CO2 emission levels for each segment. The 

emissions for a segment S, can be conceptualised using the abstract formula: 

 

CO2 Emissions (Segment S) = ∑ Weight (w) * Factor (f) 

 

where the weight for each factor is an experimental decimal value ranging between 0 and 1,  

and will be configured during the simulation. 

 

The multi-agent system will calculate for each transport segment a CO2 cost and update this 

cost continuously as soon as the traffic conditions (e.g. average speed vehicle, flow rate, and 

delays) change. Messages are then exchanged between neighbouring transport agents to 

update each other with their new CO2 cost. Now that the CO2 cost for each segment is 

calculated, the multi-agent system can search for CO2 efficient routes as per user travel 

requests and preferences. 

 

The primary algorithm used to find the shortest route is the Dijkstra Algorithm (Dijkstra, 

1959). The innovative aspect MODUM brings about would be to implement this algorithm in a 

distributed manner to provide route guidance to commuters. This graph search algorithm 

allows finding the shortest path from a given start node to a finish node within a graph 

containing nodes, edges and assigned weights. The concept of the algorithm is rather trivial 

yet very efficient; it starts from the source node, explores the neighbours and finds the path 

that has the cheapest cost between each node and its neighbouring nodes. Applying this 

algorithm to the context of MODUM is straightforward, where simply nodes represent 

transport segments and CO2 emission represent assigned weights to using a particular 

segment. The algorithm then searches the graph to find the shortest route between any two 

segments.  

 

The algorithm works in the subsequent logical manner: 

 

1. Start the search from the initial (or source) segment, set its cost to zero, and make it 

the current segment 
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2. Mark all transport segments as unvisited except the initial segment, and add them to 

a set of unvisited segments 

3. For the current segment, visit all of its unvisited neighbouring segments and calculate 

the accumulative cost (where new accumulative cost to neighbour = accumulative 

cost of current segment + cost of unvisited segment) 

a. If the new accumulative cost to neighbour is less than a previously-recorded 

accumulative cost to the neighbour then override that the accumulative cost 

4. After visiting all neighbouring segments, mark current segment as visited and remove 

it from the set of unvisited segments 

5. If the current segment is the target segment, then stop the algorithm. Trace back to 

print the shortest path.  

6. Set the unvisited segment with the smallest cost from the unvisited set as the current 

segment, and repeat step 3 

 

In later stages, we will also implement the A* algorithm (Hart, Nilsson and Raphael, 1968) 

which is well known for its accuracy and performance. Comparing the Dijkstra algorithm and 

A* algorithm in the context of MODUM, were real-time travel guidance is required, would 

yield interesting findings. Performance comparison between these two algorithms will be 

detailed in deliverable D2.2. 

 

In addition to using CO2 emissions as the cost for each segment, another innovative aspect 

in our multi-agent system lies within a bidding algorithm which, given the cost of concurrent 

multi-modal transport segments (e.g. road, rail and bus segments), will negotiate the optimal 

travel route for the commuter. In this respects, transport segments, thus agents, will compete 

by lowering their respective cost to be part of the travel route. To clarify the concept of the 

bidding algorithm we will give an example. 

 

Given an urban transport network (Figure 14), there exist three main multi-modal routes 

between a source segment (s) and a destination segment (d): a car, bus and a rail route. The 

commuter can also combine, for instance, the use of car and bus as indicated by the dotted 

line connecting the car route and bus route. So in that sense the commuter can switch from 

using a car to a bus or vice versa at the connected transport segments as they belong to the 

same geographical location within the transport map. Herein we assume that the commuter 

has access to three modes of transport. Using any of the potential travel routes (car, bus, rail 

route or combined) comes at a cost (i.e. CO2 emissions). The bidding algorithm comes in 

handy in situations where there exists more than one possible multi-modal route leading to a 

particular destination. It aims to leverage and minimise the cost of travelling from a given 

source to a given destination by studying the offers provided by different transport agents. In 

the diagram below, it studies the cost of going from S to D by all transport agents and 

chooses the cheapest bids. For example, the bus agents could bid to take the commuter 

from the source segment to bus segment 2 cheaper than what the car agents offer to take to 

car segment 1, where car segment 1 and bus segment 2 belong geographically to the same 

network segment. The bidding algorithm will then study the offer provided by car agents to 

take to car segment 2 against the offer provided by bus agents to take to bus segment 3, and 

choose the cheapest. The bidding algorithm continues the search and studies the offers until 

the cheapest combined multi-modal travel route emerges. For practicality reasons, the 

algorithm will take into account commuter preferences and restrictions, such as the inability 

to drive in which case it will not consider offers provided by car agents.    
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Figure 14 Bidding Example 

 

3.4 Implementation and Initial Results 
We are using Java version (JDK 1.7.0.04) to implement the agents of the system, the 

communication between the agents, and the calculation of the shortest travel route. For our 

first prototype we decided not to use any agent simulation framework or toolkit, such as 

JADE, for doing so would bring extra functionalities and features that would not be beneficial 

for our multi-agent system but would instead decrease the efficiency and performance of the 

traffic management simulation. Using solely Java as the implementation language brings 

about two main advantages: 

 

 Enables tracking the behaviour of every single agent where the execution of agents is 

implemented in a round robin manner; thus enabling us to know what  every agent is 

doing in the system at any particular point. 

 Enhances performances and eliminates the need to burden the multi-agent system 

with unnecessary functionalities. 

 

For the initial MAS prototype, the following agent classes have been created and 

implemented: 

 

 Interface agent class describing behaviour of transport agents 

 Transport agent classes describing the types and behaviour of agents 

 Communication classes to manage message exchanges between agents 

 Other classes, e.g. for calculating the shortest travel route using the Dijkstra algorithm 

 

As an initial step the first version of the multi-agent system was tested using two scenarios: a 

small scenario comprising five road segments and a realistic scenario comprising 28 road 

segments.  

 

Example One 

This small example includes 5 road segments where each segment is represented via a 

unique road agent with an ID (i.e. integer). The result is a small multi-agent system 

consisting of 6 road agents exchanging information about their cost, where cost is simply a 

function of accumulated length. As described earlier, each road agent holds information 

about itself (e.g. segment ID, length, number of lanes) and about the neighbouring agents 

(e.g. type of neighbours, their IDs and cost). The left diagram (of Figure 15) shows a 

potential road structure, whilst the right diagram (of Figure 15) shows an inferred road graph 

constructed by the MAS to search for the shortest travel route. The nodes in the road graph 
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represent the road segments with the assigned values representing the length of each 

segment. These values also represent the cost of using a particular road segment.  

  

Figure 15 A Small Test Scenario 

                                   
Example Two 

This more realistic scenario represents a road area from the Manchester (UK) map and 

consists of 28 interconnected road segments. Each road segment is assumed to contain two 

lanes for driving in both directions. Each road agent represents only one segment and has at 

least three neighbouring road agents connected to it. At the moment, the cost of using one 

particular travel route is a function of accumulated lengths of the connected road segments 

leading to the destination segment. In the next prototype versions we will enhance the cost to 

include other properties such as CO2 emissions, delays and traffic flow. Any one road agent 

has the following attributes: 

 ID 

 Name of segment (e.g. road name) 

 Role (e.g. road agent, rail agent, etc) 

 Neighbours 

 Length 

 Cost 

 Number of Lanes 

 Outbox Messages 

 Inbox Messages 

 

Figure 16 A Realistic Test Scenario 
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In both scenarios, the multi-agent system was able to successfully simulate the road 

infrastracture and calculate the shortest travel route between any two segments (a start 

segment, a finish segment) using the Dijkstra algorithm. The output is a set of strings 

representing the IDs of the cheapest travel route from a given source segment to a 

destination segment. 

3.5 Future Implementation Plan 
For the next versions of our MAS prototype we detail the implementation steps, features to 

be added to the multi-agent system and appropriate delivery dates. 

 

Table 2 Future Implementation Actions for MODUM Multi-Agent System 

Implementation Action  Date  

-Populate MAS with WP3 simulation map data  15/11/12  

-Random generation of user requests (e.g. sources and destinations) 20/11/12  

-Dynamic traffic updates (update requests and responses) from 

traffic model simulation (WP3) to MAS  

30/11/12  

-Enhancement to the cost function by including historical CO2 

emissions, traffic flows and delays for transport segments 

30/11/12  

-Implement rest of infrastructure - bus maps, rail maps. Each agent 

will maintain one timetable for the buses / trams that go through it. 

This will be stored in the belief set of the agent.  A typical time table 

will contain information about service arrival times and providers’ 

names.  

20/12/12  

-Implement rest of infrastructure- bicycle maps, pedestrian maps  20/01/13  

-Reasoning engine and bidding algorithm  10/02/13  

-Reading actual user requests and preferences from a web server  20/02/13 

-Generation of multi-modal route guidance 15/03/13 

-Optimisation of multi-modal route guidance taking into account user 

preferences and constraints 

30/03/13 
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4 MODUM Ant-based Traffic Management Model 
The ant-based traffic management model provides a traffic coordination infrastructure. The 

infrastructure supports multi-modal traffic and goes beyond an ICT infrastructure, offering 

communication and computation services, and traffic coordination related services. 

Simultaneously, it does not impose specific choice mechanisms on the user. The model 

provides an infrastructure on which those choices can be executed. This system visualizes 

(i.e. makes observable by humans and software processes): 

 Current and past traffic situation (track and trace). 

 Predicted traffic situation accounting for user intentions. For instance, accounting for 

user intentions allows visualizing to what extent the traffic participants have managed 

to coordinate cooperatively before intervening. 

 On-line searchable solutions space. This allows users to find and evaluate 

alternatives, accounting for the predictions. 

 

The ant-based traffic management model generates traffic predictions given: 

 A high penetration/participation (think of mobile phone) 

 Travellers self-prescribe their routing and their timing 

In contrast to many state-of-the-art models, this model aims to coordinate the traffic flow in 

real-time, i.e. an online model. Users are not known upfront and appear on the traffic 

management system as they plan a trip. Real-time traffic conditions are taken into account, 

e.g. car accident, weather conditions, etc. 

 

The solution is centred on a high participation mode and subsequently expands the 

applicability range of its systems and mechanisms later (e.g. for lower 

penetration/participation). 

4.1 Architecture 
The developed architecture focuses on the distributed nature of traffic systems and the real-

time operation mode. 

A traffic system comprises a set of autonomous entities. All entities have to some extend a 

degree of freedom; 

1. Car drivers have the freedom to select their personal route and timing 

2. Traffic infrastructure cannot be centralised entirely. 

Still it is opportune to coordinate these “selfish” users. This is mainly done by providing 

information and incentives.  

 

Two main architectural assets enable the distributed real-time coordination, the PROSA++ 

architecture and the delegate MAS pattern. Finally the application architecture refers to the 

structure of the application itself. 

4.1.1 PROSA++ 

The ant-based traffic management application uses a holonic architecture (Koestler, 1989; 

Babiceanu, 2006; McFarlane, 2000). A holonic architecture is a multi-leveled hierarchy of 

semi-autonomous subwholes, branching into sub-wholes of a lower order. Sub-wholes on 

any level of the hierarchy are referred to as holons (Koestler, 1989). In the context of traffic, a 
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holon is defined as an autonomous and cooperative building block of a traffic control system 

for informing and guiding traffic entities. 

 

The holonic architecture used in this management model is adopted from a well-studied and 

widely used architecture in manufacturing control systems, PROSA (Van Brussel, 1998). The 

PROSA architecture was originally developed in the manufacturing domain. It has also been 

applied in other application domains (railway systems (De Swert, 2006), logistic systems 

(Van belle, 2011), robotic systems (Philips, 2011), and others (Van Belle, 2012)). This 

architecture is further elaborated towards PROSA++ which appeared to be well suited for 

traffic control systems. 

 

The PROSA++ reference architecture 

The PROSA++ architecture identifies four types of holons as indicated in Figure 17. We can 

distinguish products and resources. Products relate to any activity in the world of interest, in 

this case traffic users. Resources relate to the enabling entities in the world of interest, in this 

case the traffic infrastructure, e.g., links, nodes, railway company, etc 

Note that due to the origin of PROSA++ (manufacturing), the terminology product and 

resource may seem confusing. Nevertheless, the concepts remain valid and have been 

proven outside the manufacturing domain (Van Belle, 2012). 

 

The ResourceInstance holon reflects a specific part of the traffic infrastructure. This holon 

contains information about the physical entity, the present state, future states and what-if 

functionality.  

We consider two classes:  

 Route infrastructure; nodes and links 

 Multi-modal transport e.g. tram, bus.  

The class, route or multi-modal transport is encapsulated into the ResourceInstance holon. 

The same interface is used to the remaining system. Preferences to use one or another 

ResourceInstance holon are expressed in terms of capability (e.g. amount of luggage), 

availability and trust (reputation from one user towards a ResourceInstance holon). 

 

A ResourceType holon holds policies regarding a specific resource entity or a group of 

resources. Examples of these policies are: max/min speed on a link, bus lanes,… The 

policies are communicated to the ResourceInstance in order to ensure a correct and desired 

behaviour on the traffic network entity. 

 

The ProductInstance holon corresponds to a request for a trip in the traffic network, 

originating from a traffic user. This holon is responsible for planning and guiding the assigned 

trip correctly and on time. The ProductInstance holon searches and evaluates candidate 

routes and potential multi-modal alternatives. A selection of the candidates is presented to 

the user while the final selection – the intention – is the responsibility of the user. The 

ProductInstance holon reflects this decision to the other holons. 

 

ProductType holons hold all policies regarding a traffic user or a group of users. These 

policies can be various, some examples: 

 Preferences regarding multi-modal transport, availability of car, … 

 Preferences regarding distance 

 Preferences regarding route types (e.g. scenic route), stops allowed / preferred 
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These policies are exchanged with the ProductInstance holon to guide the search for good 

journeys. 

 

Figure 17 PROSA++ 

 
 

Motivation 

Using a holonic architecture requires an identification of the different types of holons. 

Responsibilities need to be assigned to each holon type. Also relationships between the 

holons need to be defined clearly. PROSA++ is a reference architecture for holonic 

architectures that reduces the impact of changes in decision making by separating concerns. 

The reference architecture allows to (Verstraete, 2008; Van Brussel, 1998): 

 Separate the “resource” (traffic infrastructure) aspects from the “product” (trip 

planning and driving to its destination) specific aspects. Typical for traffic control is 

the difference in goal between the “selfish” traffic user and the traffic infrastructure as 

system-wide optimiser. 

 Separate the necessary modules, which are generic, from the optional modules, 

which can be domain specific. ProductType, ProductInstance, ResourceType and 

ResourceInstance all hide the specific technical details from each other.  

 Separate the structural aspects of the architecture from the algorithmic aspects. 

Existing scheduling and planning algorithms can be integrated without affecting the 

basic architecture. 

4.1.2 Delegate MAS 

Delegate MAS is an architectural pattern that allows an agent to delegate a responsibility to a 

swarm of lightweight agents to support this agent in fulfilling its functions (Holvoet, 2007; 

Verstraete, 2008). The issuing agent can delegate multiple responsibilities, each of them 

applying the delegate MAS pattern. The agent may use a combination of delegate multi-

agent systems to handle a single responsibility. The delegate MAS may also provide 

services to other agents. 

 

The “Delegate MAS” pattern translates insights from the food foraging behaviour in ant 

colonies into the software design (Valckenaers, 2005). 

 

 Refresh-and-evaporate: ants deposit pheromone trails that evaporate unless 

refreshed by ants walking along such a trail. This translates into: “All information in 

the traffic management system that is subject to real-world dynamics has a finite 

lifespan.” For instance, trip reservations need to be reconfirmed regularly or they are 

discarded by the resource (e.g. parking space) concerned.  
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 The environment contributes to the solution: ants deposit their pheromone trails on 

the real-world environment, allowing them to cope with almost any geometrical 

complexity by means of a single simple procedure. Translating this mechanism, an 

Environment is created that mirrors the world-of-interest in software (physical traffic 

infrastructure), and the environment components will be made intelligent/cognitive as 

needed or opportune.  

 Swarming: from simple ant behaviours emerges a sophisticated well-performing 

behaviour for the colony overall. However, the colony needs numerous cheap ants to 

achieve this. In the model, traffic users create swarms of lightweight agents – called 

ant agents – that travel virtually across the environment. Because they are virtual 

entities, ant agents are cheap and can be numerous. These swarms, performing 

services on behalf of agents, are called a delegate MAS (Holvoet, 2007). 

 Computational efficiency: our ant-like design has a low-polynomial computational 

complexity in function of the effort needed for the primitive actions of virtual travel 

through the environment. 

 

Delegate MAS architectural pattern 

An architectural pattern is a description of element and relation types together with a set of 

constraints on how they may be used. 

The delegate MAS pattern consists out of three elements: the agent, the ant and the 

environment (Figure 18). 

 

Environment: the environment is a software representation of the world of interest. The 

environment contains a directed graph, which may change over time. The nodes in the graph 

represent a location in the world of interest and the edges represent the connections 

between different locations. An agent is located on a node in this graph. 

The environment contains a pheromone infrastructure. Ants deposit, observe and modify 

pheromones in the pheromone infrastructure. 

 

Agent: an agent delegates a responsibility to a swarm of lightweight agents. This delegation 

involves two main responsibilities: maintaining the swarm of ants and interpreting the results 

made available by the ants in the environment. 

 The agent is responsible for maintaining the swarm of ants. This responsibility 

involves maintaining the population size and the diversity of the swarm. An individual 

ant is not aware of these swarm properties. 

 Interpreting the results involves fetching the pheromones on the node on which the 

agent is located and interpreting these pheromones. The interpretation depends on 

the responsibility that is delegated by the agent. Note that delegation is not the same 

as total dependency. The swarm of ants supports the agent by providing a service. If 

this service is not delivered properly, the agent should do a best effort to cope on its 

own. 

 

Ant: an ant is responsible for executing a task that serves a responsibility of the issuing 

agent. For instance, the ant explores one possible solution; the ant follows one possible path 

to find food, etc.  

 

The ant is created and initialised from the agent and travels autonomously. Each ant has its 

own lifecycle and may only perform a bounded computational effort within its bounded 

lifetime and has a bounded footprint (memory). 
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Figure 18 Delegate MAS 

 
 

Motivation 
Traffic is characterised by its distributed and dynamic nature. An agent needs to be capable 

of making decisions that are adapted to the events happening in the environment, i.e. the 

traffic network. The delegate MAS pattern allows an agent to exploit the detailed and up-to-

date information in this environment to adapt his intentions to these events.  

4.1.3 Application architecture 

The application architecture shows the global structure of the application. It consists out of 

three layers, an agent layer, an environment layer and dispatching layer. The application 

architecture also indicates the relationship between the PROSA++ architecture and the 

Delegate MAS pattern.  

 

Holon = Agent + IBeing 

In summary, a holon is composed out of two software components: an agent and an 

intelligent being (IBeing). The intelligent being only reflects the corresponding entity while an 

agent has the responsibility to take decisions on behalf of the corresponding entity. A typical 

example of an intelligent being in the traffic domain are the models representing the flow 

behaviour of a link depending on the arriving flow.  

A holon resides both in the “Agents” module as well in the “Environment” module, i.e. the 

agent component of a holon resides in the “agents” module while the IBeing resides in the 

“environment” The information flow between the Agents and the IBeings is channelled 

through an execution module, ensuring the correct execution of a scenario (ants updating 

their state) and information interpretation. 

 

Dispatching 

The dispatching module is the communication channel between the world of interest and the 

ant-based application. 
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Figure 19 Application Architecture 

 
 

4.2 Software entity models 
The ant-based traffic management model uses local models to make a short-term forecast of 

the traffic situation. These models represent one particular entity in the traffic system. As 

mentioned before: two entity types are considered: 

 Resources: resource are entities which are part of the traffic network, e.g. links, 

nodes, public transport organisations, etc 

 Products/activities: activities are entities making use of the traffic network, e.g. a 

person driving to his/her destination 

 

The representation of congestion and congestion dynamics is essential to ensure the 

generation of a trustworthy short-term forecast. First-order traffic flow theory (as described in 

section 2.2) is universally acknowledged to represent traffic propagation and congestion 

dynamics. Figure 20 shows the models adopted from the 1st order order traffic flow theory 

The sub-models are used independently in order to model local travel behaviour on nodes 

and links.  

 

The selection of the first-order traffic flow theory is a balance between on the one hand  

simple - less realistic - approaches such as travel time functions, vertical or horizontal 

queuing (Corthout, 2012; Nie and Zhang, 2005; Mun, 2007) and on the other hand second-

order traffic flow theory. 

 

Second-order traffic flow theory - first introduced by (Payne, 1971) - differs from first-order 

theory in that the fundamental relationship is considered to be not a stationary, but only an 

equilibrium relation. Additional traffic phenomena such as acceleration and deceleration and 

traffic instabilities (e.g. in the form of stop-and-go waves) can be modelled, which are not 

included in first-order models. 

 

Second-order traffic theory is not relevant for two reasons: 
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 In this particular application, a real-time application, the equilibrium is not static. As 

trip requests appear and traffic conditions change, the equilibrium is invalidated and a 

new equilibrium should be calculated. Consequently, the error due to the 

uncertainties tends to be higher than the gain in model precision. 

 The ant-based approach requires computational efficient local models, to enable the 

desired properties of an ant-based application. 

 

Figure 20 DNL Model 

 

4.2.1 Fixed-point Formulation 

From a computational perspective, some first-order traffic flow models are forced to operate 

at very small time steps. These small time steps increase the overall computation time 

tremendously. However, this criticism does not carry over to numerical schemes following the 

variational formulation of kinematic waves (Daganzo, 2005), or the fixed-point formulation 

(Gentile et al., 2007), both of which avoid this constraint. 

 

In numerical analysis, fixed-point iteration is a method of computing fixed points ( F(x) = x ) of 

iterated functions. More specifically, given a function defined on the real numbers with real 

values and given a point in the domain, the fixed point iteration is F(xi) = xi+1 where i = 0, 1, 

2,… which gives rise to the sequence x0, x1, x2,… The sequence is expected to converge.  

 

The fixed-point formulation of Gentile et al. (2007), as illustrated in Figure 21, operates on a 

function redistributing the link flows. This function both 

 Propagates flow through the network according to the previous calculated link travel 

times. 

 Checks flow constraints over the network and redistributes traffic flow accordingly. 

New travel times are calculated if the traffic flow is redistributed.  

This iterative procedure is executed until equilibrium is reached, i.e. traffic flow does not 

change anymore. 
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Figure 21 Fixed Point Formulation 

 

4.3 Process views 
This section gives a detailed overview of the different processes and their relations. We have 

chosen to use the IDEF0 notation (Ross, 1985). IDEF0 was derived from a well-established 

graphical language, the Structured Analysis and Design Technique (Ross, 1985). IDEF0, 

integrated definition for function modelling, is a method designed to model the decisions, 

actions, and activities of an organization or system.  

 

IDEF0 

Figure 22 shows some basic building blocks of IDEF01. The “function” is an activity, process, 

or transformation (modelled by an IDEF0 box). The function is described by their inputs, 

outputs, controls, and mechanisms (ICOMs). The place of the arrows has a dedicated 

meaning, as indicated in Figure 22. 

 

Figure 22 IDEF0 notation 

 

4.3.1 Application process 

The application process gives an overview of the high level processes active in the 

application and their relations.  

                                                
1
 For further reading please refer to http://www.idef.com/IDEF0.htm 

http://www.idef.com/IDEF0.htm


 

D2.1 Low-Carbon Traffic Management Models page 34 

Creation 

Both OrderInstances and ResourceInstances are created from a proxy who provides the link 

between the ant-based application and the world of interest (WoI). The necessary data is 

provided (e.g. information about link properties) but is also update regularly.  

 

The advice from the Order- and ResourceType is modelled as a mechanism for respectively 

the OrderInstance and the ResourceInstance.  

 

Ants are created at regular times. The ant-based traffic management model makes use of 

three ants:  

1. Explorer ants: each explorer ant is representing one specific trip. The explorer has the 

responsibility to search for desirable journeys, both on the traffic network as well as 

multi-modal alternatives. 

2. Intention ants: The intention ants do propagate a declared intention. It can be 

compared to the “Network flow propagation model” of the fixed-point formulation 

(Figure 23).  

3. Flow intention ants: Flow intention ants represent an aggregate of several vehicles. It 

travels up-or downstream and ensures all constraints on adjoining links or nodes. 

This corresponds to the “network performance model” in the fixed-point formulation 

(Figure 23). 

Note that the OrderInstance initiates (calls) ExplorerAnts and IntentionAnts while the 

ResourceInstance initiates FlowIntentionAnts. 

 

Feedback 

There are several feedback loops in this schema:  

 The ExploreAnt notifies the OrderInstance about a feasible journey 

 The OrderInstance provides the user with a selection of candidate journeys. A 

selection is made by the OrderInstance 

 The FlowIntentionAnt provides feedback to the ResourceInstances about their out- 

and incoming flow 

 

Equilibrium 

Given the dynamic situation it is not feasible to search a static equilibrium. Nevertheless 

ResourceInstances should tend to a new equilibrium each time the situation is changed. 

Therefore each ResourceInstance individually keeps track of a (in)stability measure for their 

incoming and outgoing cumulative flow.  

 

Depending on this measure, the ResourceInstance generates at higher or lower frequency 

FlowIntentionAnts. Also, a FlowIntentionAnt is aware of this measure and determines 

whether to stop propagating or not.  
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Figure 23 Application Process of IDEF0 

 
 

4.3.2 Order Instance/Type process 

This view shows a detailed view of the OrderInstance process. The OrderInstance is mainly 

a manager, initiating explorers, intentions and providing users with the necessary data. 

 

Figure 24 Order Instance Process 
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4.3.3 Resource Instance/Type process 

This view shows a detailed view of the OrderInstance process.  

Short-term forecast 

The short-term forecast, i.e. the expected flow, is generated by means of the current state 

and 1st order traffic flow models.   

 Using the current state as start point gives an automatic recalibration when the reality 

deviates from the last know short-term forecast. 

 The intelligent being of the resource instance models the local traffic flow behaviour 

according to the relevant 1st order traffic flow models. 

 
Figure 25 Resource Instance Process 

 

4.3.4 Explorer process / Intention process 

Figure 26 shows the explorer and intention process in detail. There are two main differences 

between the explorer and intention process: 

 The explorer process makes use of the link choice model to determine the next 

link/node while the intention process follows the last known intended journey. 

 While the explorer process only executes a scenario (does not change the short-term 

forecast), the intention process proclaims the intention. 
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Figure 26 Explorer Process and Intention Process 

 

4.3.5 Flow Intention process 

The flow intention process has a similar structure as the other ants but do represent multiple 

vehicles. As mentioned above, the flow intention process adjusts the cumulative flows in 

order to comply with all constraints. 

 
Figure 27 Intention Process 
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4.4 Algorithms and Implementation 

4.4.1 Erlang 

In the search for a language and multi-agent framework, erlang (ERicson LANGuage; 

www.erlang.org) is selected as being a language with the necessary multi-agent framework 

functionalities. “Erlang/OTP”–developed by Ericsson AB and known to be very robust– is 

industry-hardened. More specifically, we have been experiencing the following interesting 

properties. 

 

Actor model 

Erlang provides massively parallel and distributed processing. Every process of the Erlang 

virtual machine is an actor.   

 Each actor executes independently and communicates only with one-way messages 

 Actors can create other actors 

 When an actor finishes its computation, it disappears 

Erlang has no shared memory between processes. Data exchange is straightforward as the 

locality of the data is ensured. 

 

Note that Erlang processes run inside one or more virtual machines on one or more nodes of 

a network, so they do not map to OS processes. 

 

Integration 

Erlang provides easy integration with other systems through services (including legacy 

systems). Its baseline, OTP – thanks to its industrial roots and especially its telecoms origin – 

offers a rich set of libraries and middleware to connect with external systems.  

 

Run-time configuration 

Erlang provides the mechanisms to make software systems reconfigurable at run-time. 

Replacement of software processes and modules while the systems remains on-line and 

functioning is supported. 

 

Pattern matching 

Pattern matching enables the software modules and processes to interact flexibly when they 

recognise the structure of the information that is exchanged and trigger the associated 

actions. 

 

Other properties 

 Pragmatic; Academia - researching programming languages - typically consider it to 

be (too) pragmatic 

 Lean and mean (small, can be learned in little time) 

 High service availability (99.999% upwards) 

 Distributed applications (high-performance computing, Cloud-based) 

 Stability of the virtual machine (BEAM is better than Java VM) 

 Soft real-time 

 Linkable to C-code and Java Code 

 Open source 
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4.5 Future Implementation Plan 
For the ant-based prototype development we detail the implementation steps and 

appropriate delivery dates. 

 

Implementation Action  Date  

PROSA++ and Delegate MAS Infrastructure  15/12/12 

Random generation of user requests (e.g. sources and destinations) 15/01/13  

Populate MAS with WP3 simulation map data 15/01/13  

Dynamic traffic updates (update requests and responses) from traffic 

model simulation (WP3) to MAS 

15/01/13 

Implement multi-modal resource holons 

 Tram / bus alternatives 

 bicycle maps, pedestrian maps 

30/01/13 

Reading actual user requests and preferences from a web server  28/02/13 

Optimisation of multi-modal route guidance taking into account user 

preferences and constraints 

30/03/13 
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5 Conclusion 
Deliverable D2.1 describes the architectural outline and inner workings of two distinct traffic 

control and management simulations both competing to tackle the CO2 emission problem 

within MODUM: an agent-based system and an ant-based system. The first system models 

transport segments and aims to optimise their use whilst the second system models vehicles 

and aims to optimise their driving behaviour. Each model offers a unique distrusted solution 

to search for the most CO2-efficient travel routes between a travel source and a travel 

destination within a transport network.  

 

Despite their differences, the two traffic management models can be complementary indeed 

within the context of MODUM where the multi-agent system can be used to calculate a best 

travel route which is then used to guide the search of the ant-based system. Essentially ants 

will use the solution of the multi-agent system as a starting point to explore the traffic network 

and optimise the solution further if possible. The synergy between the two models will be 

explained in detail in deliverable D5.1 of WP5. 
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