Secure Provisioning of Cloud Services
based on SLA Management

SPECS Project - Deliverable 1.3

Module Interaction Protocols

Version no. 1.1
15 February 2016

e —— 7 -
SEVENTH FRAMEWORK
PROGRAMME

The activities reported in this deliverable are partially supported
by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

Deliverable information

Deliverable no.:

D1.3

Deliverable title:

Module Interaction Protocols

Deliverable nature: Report
Dissemination level: Public
Contractual delivery: 15 February 2016
Actual delivery date: 15 February 2016

Author(s): Massimiliano Rak, Alessandra De Benedictis (CeRICT)

Contributors: Jolanda Modic (XLAB), Silviu Panica (IeAT), Adrian Spataru
(IeAT), Madalina Erascu (IeAT), Ruben Trapero (TUDA), Alain
Pannetrait (CSA)

Reviewers: Umberto Villano (CeRICT), Silvio La Porta (EMC)

Contributors version 1.1:

Jolanda Modic (XLAB), Silviu Panica (IeAT), Adrian Spataru
(IeAT), Madalina Erascu (IeAT), Ruben Trapero (TUDA), Alain
Pannetrait (CSA)

Reviewers version 1.1:

Umberto Villano (CeRICT), Silvio La Porta (EMC)

Task contributing to the
deliverable:

T1.3

Total number of pages:

43

Annexes

7

SPECS Project - Deliverable 1.3 2

Secure Provisioning of Cloud Services based on SLA Management

Executive summary

This deliverable is aimed at illustrating the interaction protocols designed to ensure the
communication among the SPECS Framework’s main modules (i.e., the SLA Platform, the
Negotiation module, the Enforcement module and the Monitoring module) during the
different phases of the SLA life-cycle.

As pointed out in D1.1.3, the main SPECS modules expose proper REST APIs, used for inter-
modules communication. In this deliverable, the complete documentation of such APIs is
provided along with the whole SPECS data flow, which defines the content and the format of
the information shared among modules in order to accomplish the tasks related to SLA
negotiation, enforcement and monitoring.

To summarize, this deliverable presents:

* The SLA API, the Services API and the Interoperability API, provided by the SLA
Manager, the Service Manager and the Interoperability layer of the SLA Platform,
respectively;

* The Negotiation AP], offered by the SLO Manager of the Negotiation module;

* The Enforcement API, offered by the Planning, Implementation, Diagnosis and RDS
components of the Enforcement module;

* The Monitoring API offered by the Monitoring module and the Monitoring Public AP]I,
also offered by the Monitoring module but based on the CSA’s Cloud Trust Protocol;

* The Log API, belonging to the SPECS Vertical layer (cf. D1.1.3) and offered by the
Auditing component of the Enforcement module.

In addition to these APIs, two further APIs belonging to the Vertical layer must be considered,
namely the User Manager API, the Credentials API and the Security Tokens API. The User
Manager AP], offered by the User Manager component of the Vertical layer, will be discussed
in D4.3.3, while Credentials API and Security Tokens API will be presented in D4.4.2.

SPECS Project - Deliverable 1.3 3

Secure Provisioning of Cloud Services based on SLA Management

Table of contents

Deliverable INFOTMATION ... ses s ss s s bbb bR bbb 2
EXECULIVE SUIMIMIATY ..rvueurersessesssessesssesssessesssesssssssssesssessssssesssessesssesssssssssssssssssessssssessssssessssssassssssss s s sssse s sssasens 3
TaADIE Of COMEENTS....euiereeeeecteeet e s bbb RS ne bbbt 4
DTG Q0 i Ko P 5
INAEX OF TADIES oottt bbb 6
3R 00 0 Yo L ot [) o 10U TP 7
2. Relationship with other deliVerables....... s 8
1 JR ' [T6 101 (=30 4 U 1= o Ut o) o - PP 9
3.1, SPECS data fIOW oeeeececeesseessesssesssssssssssssssssessssssssess s sesssssssssssssssssss s s sssssssessssssssesssassssssaees 9
IS J07Z0IN) YN0 \\[<7 = {0 o - L6 o) ¢ L 11
70 TR DV £ 00 o] (33 =) oL U U0 o TP 15
2R SN YN0 (o) 4L L) g ¢V 18
3.5, SLA ReMEAIATION c.curiererirseesesseessesssssssssssssssssssssssess s sess s sssess s sss s ss s ssss s sssssssessssssas 19
IS CTRINY V2N 2U=3 o U<T =0 o - U (0) o 23
4. MOAUIE APIS ettt st 29
A1, SLA APL ettt s bbb RS R R 29
4.2, SEIVICES AP s 30
4.3, INteroperability AP ... 30
4.4, Negotiation AP ... —————— 31
4.5, ENfOrCEMENT APT ..ottt st 32
T ST 7o = 5 L < (TP 34
4.7. MONITOTING AP .. ————— 34
4.8. MONItoring PUDIIC AP ... s sess s sssssssssssssssssssssssssssssssnas 35
5. APl definition GUIAELINES ... s s asesaens 37
5.1. ResSponse COde GUIAELINESumieeesirersesssesssesssesssssssssssssssssssssssssssssssessssssssssssesssssssssssssssees 37
ST Y U=Ta FE= 0 4 0 TIE] U o) oY) o O PPN 38
5.3. Resource [dentification (URI)coememmineessens 39
T S 000 1 U=Tox m (o) 3OO 39
LT 0703 s Tod 11 13 (0] -3 OO STOPOPON 41
N (=3 (= 1 Vol OO OPON 42
ANNEX A = SLA APt 43
ANNEX B = SEIVICES APl 43
Annex C — INteroperability AP ... sesssssssssssssssssasees 43
Annex D — Negotiation AP ... 43
ANNEX E — ENfOTCEMENT AP ...ttt sssessssss st ssss s sssssss s sssans 43
ANNEX F = LOZ APt 43
Annex G = Monitoring APl ————— 43

SPECS Project - Deliverable 1.3 4

Secure Provisioning of Cloud Services based on SLA Management

Index of figures

Figure 1. Relationship with other deliverables ... 8
Figure 2. SPECS data flOW ... sesssesssssssssssssssssssssssssssssssssssessssssssssssssssessssssasssans 9
Figure 3. SLA Negotiation phase: OVEIVIEWeeesssessesssns 12
Figure 4. SLA Negotiation phase: supply chain building ... 14
Figure 5. SLA Implementation phase: building the plan ... 16
Figure 6. SLA Implementation phase: implementing the plan......... 17
Figure 7. MONItOring Phase: OVEIVIEW.....o e ssssssssessas 18
Figure 8. Remediation phase: diag@noSiS PrOCESS ... ssssssssssssesssssssssssssns 20
Figure 9. Remediation phase: building a remediation plan ... 21
Figure 10. Remediation phase: implementing the remediation plan ... 22
Figure 11. Re-negotiation phase: re-negotiation started by the EU.......ccccconncnennennienneenecneenns 25
Figure 12. Re-negotiation phase: re-negotiation after an alert/violationomenneeneeeseenns 26
Figure 13. Re-negotiation: updating the implementation plan ... 27
Figure 14. Termination Of an SLA ... ssssssssssssssssssss s ssssssssssssssssssas 28
Figure 15. The "CTP Public API" versus the "CTP back office API".......cneinenneenseeseeseesseenns 35

SPECS Project - Deliverable 1.3 5

Secure Provisioning of Cloud Services based on SLA Management

Index of tables

Table 1. HTTP shared error codes

Table 2. Collections data models

SPECS Project - Deliverable 1.3

Secure Provisioning of Cloud Services based on SLA Management

1. Introduction

This document aims to illustrate in detail the interactions among the SPECS framework’s main
modules (Negotiation, Enforcement, Monitoring and SLA Platform) during the SLA life cycle
and to provide a complete documentation of the SPECS REST APIs supporting these
interactions. Hence, the objective of this document is to provide a technical reference for the
developers.

The remainder of this document is structured as follows:

Section 2 highlights the relationships with other deliverables before going into the
details of the API specification;
Section 3 illustrates the SPECS data flow and presents a detailed description of the
behaviour and interactions of the core modules and of the SLA Platform during the five
SLA’s life cycle phases of Negotiation, Implementation, Monitoring, Remediation and
Renegotiation;
Section 4 reports an overview of the SPECS REST API with the aim of introducing the
main functionalities provided by the specific calls to support the interactions shown in
Section 3. In particular, the following APIs are introduced:

o the SLA API (Section 4.1),
the Services API (Section 4.2),
the Interoperability API (Section 4.3),
the Negotiation API (Section 4.4),
the Enforcement API (Section 4.5),
Log API (Section 4.6),
Monitoring API (Section 4.7),

o Monitoring Public API (Section 4.8).
Section 5 reports the guidelines that have been followed by the SPECS Consortium
partners when developing APIs, including the identification of resources, the
specification of exchanged messages and a well-defined guidance on the use of
response codes. Note that such guidelines are based on common conventions, best
practices and standards for the development of REST APIs.

O O O O O O

The complete specification of the SPECS REST APIs is provided in the Annexes A, B, C, D, E, F
and G to this deliverable. For each API, we report the covered requirements, the involved
resources, the detailed API calls and the adopted data models.

SPECS Project - Deliverable 1.3 7

Secure Provisioning of Cloud Services based on SLA Management

2. Relationship with other deliverables
This deliverable presents the activities conducted in Task 1.3, “Design of Module Interactions
Protocols”, and is based on the results achieved within WP1, WP2, WP3, and WP4 related to

the design of the SLA Platform, the Negotiation module, the Enforcement module and the
Monitoring module.

D221 D3.3 D4.2.2
D12
- S A D1.4.1
D2.1.2 o
D15.1
D3.2
D4.1.2
D1.1.1 D1.1.2 D1.1.3

Figure 1. Relationship with other deliverables

Figure 1 shows the relationship between this deliverable and the others. As illustrated, the
interaction protocols’ definition is essentially based on the analysis of the behaviour of the
involved modules as resulting from the requirements elicited in D1.2 (Platform
requirements), D2.1.2 (Negotiation requirements), D3.2 (Monitoring requirements) and
D4.1.2 (Enforcement requirements). Furthermore, it also depends on the design activities
conducted within work packages from WP1 to WP4 (cf. D1.1.1, D1.1.2, D1.1.3, D2.2.1, D3.3,
D4.2.2), which recognized relevant components belonging to each module and identified the
offered high-level APIs, detailed in this deliverable.

D1.3 will constitute an input for deliverable D1.4.1, which will finalize the API specification
and will also present a detailed list of the core services. Finally, D1.3 is an input for deliverable
D1.5.1, which is aimed at the definition of integration scenarios.

SPECS Project - Deliverable 1.3 8

Secure Provisioning of Cloud Services based on SLA Management

3. Module Interactions

In this section, we recall the behaviour of the Negotiation, Enforcement and Monitoring
modules and of the SLA Platform during the main phases of the SLA life cycle. In particular, in
Section 3.1 we illustrate the SPECS data flow, which shows the information generated and
processed in each of the SLA life cycle phases and outlines the main relationships existing
among this data.

In Sections from 3.2 to 3.6, we detail such flow by presenting all the interactions among
involved modules and components in each phase in form of sequence diagrams. In the
diagrams, we also report the actual API calls involved in such interactions for completeness’s
sake. As mentioned in the Introduction, the complete documentation of APIs is provided in the
Annexes to this document, to which the interest reader is redirected.

Further implementation details on internal negotiation, enforcement, and monitoring
processes are available in dedicated deliverables (in D2.3.3 for negotiation, in D3.4.2 for
monitoring, and in D4.3.2 for enforcement).

3.1. SPECS data flow

The whole SPECS data flow is depicted in Figure 2. It shows the main information involved in
the different SLA life cycle phases and the components responsible for their generation and
processing. All adopted data models, represented in XML and/or JSON format, will be
discussed in the API documentation reported in the Annexes.

ImplementedPlan
(plan.json)

SLA Offer Plan Monipoli Notifications T Remediation Plan

" g T activity BN D
EU (wsag.xml) (plan.json) (monipoli.xml) (notification.json) (remactivity.json) (remediation.json)

Negotiation Planning Implementation Monitoring Remediation Remediation Remediation
Diagnosis Planning Implementation
SLA Template Mechanisms Current Events Historical Events Remediation Plan
(wsag.xml) (mechanism.json) (events.json) (events.json) (remediation.json)
SLO Service Monitoring Event Service
Manager Manager Systems Archiver Manager

Figure 2. SPECS data flow

As shown in Figure 2, the SLA Negotiation phase relies upon an SLA Template, specified in a
format compliant with WS-Agreement and produced by the SPECS Owner based on what it is
willing to offer. SLA Templates are managed by the SLO Manager of the Negotiation module,
and are used to build SLA Offers according to requirements specified by the End-user (EU).
After Negotiation, the resulting SLA Offer (i.e., the signed SLA) enters the SLA Implementation
phase. Here, the Planning component builds an implementation plan for the proper
deployment, activation and configuration of security mechanisms and related monitoring
systems (maintained by the Service Manager) needed to actuate the signed SLA. Afterward,
the Implementation component implements the plan by acquiring and configuring needed
resources.

SPECS Project - Deliverable 1.3 9

Secure Provisioning of Cloud Services based on SLA Management

The final step of the SLA Implementation consists in updating the Monitoring Policy
(monipoli), which is used to actually monitor the state of the SLA in the Monitoring phase.
During the Monitoring phase, events generated by the deployed monitoring systems are
collected and analysed. In case of suspicious behaviour, proper notifications are generated
and sent to the Diagnosis component. These event notifications are analysed, together with
the historical events stored by the Event Archiver, to check whether an alert or a violation
occurred. In case of an alert or a violation, the actual Remediation phase takes place, where a
remediation plan must be built and implemented according to the security mechanisms’
metadata provided by the Service Manager for the mechanisms deployed in the SLA
implementation phase.

The described process is detailed in the following sections, where we illustrate all the
interactions among SPECS modules during the different SLA life cycle phases: as previously
said, the interactions are presented through a set of detailed sequence diagrams that show all
needed method invocations, corresponding to the REST API calls reported in the Annexes to
this document.

SPECS Project - Deliverable 1.3 10

Secure Provisioning of Cloud Services based on SLA Management

3.2. SLA Negotiation

The SLA Negotiation phase is illustrated in the diagram in Figure 3. Note that, for each
depicted invocation, we also reported the corresponding API call for completeness’ sake: the
reader is referred to the Annexes for a complete description of APIs.

As shown in figure, an End-user (EU) accesses the SPECS Application to start negotiation and
is returned with a set of service offers, each based on one of the available SLA Templates,
which are provided by the Negotiation module (to be precise, by the SLO Manager
component). An SLA Template refers to a particular service (e.g. secure web container, secure
storage) and contains: (i) the available cloud resources (i.e., providers, zones, types and
maximum acquirable number of virtual machines), (ii) the capabilities the SPECS Owner is
willing to offer with the service, (iii) the related security metrics and (iv) a set of default SLOs.
SLA Templates are built by the SPECS Owner and maintained by the SLO Manager of the
Negotiation module, which provides them to the SPECS Application.

The End-user, through the SPECS’ Application interface, selects one of the service offers: the
corresponding SLA Template is retrieved from the Negotiation module and an SLA is created
for the End-user in the pending state. The SLA Template is used by the SPECS Application to
show to the End-user all available security features: the End-user selects the capabilities
he/she is interested in and specifies the related requested controls, selects the desired
metrics and sets related SLOs.

The End-user’s choices are forwarded by the SPECS Application to the Negotiation module,
which starts a process that will end with the building of a set of compliant SLA Offers,
returned to the SPECS Application. In particular:

1. a set of valid supply chains, representing different allocation combinations of
mechanisms’ components over needed resources that are required to fulfil the End-
user’s requests, is built with the help of Enforcement module (see Figure 4 for details);

2. for each supply chain, an SLA Offer is created;

3. for each SLA Offer, a new SLA is created in the SLA Platform;

4. created SLA Offers are ranked (through the Security Reasoner services) and then
returned to the SPECS Application.

Ranked SLA Offers are first validated by the SPECS Application (the CSP’s signature is
verified) and then presented to the End-user.

The End-user selects the SLA Offer he/she prefers: such Offer is used to update the SLA
created for the End-user in the SLA Platform at the beginning of negotiation. All other SLA
Offers are removed from the SLA Platform, and corresponding supply chains are also deleted
in the Enforcement module.

The selected SLA Offer, formally accepted by the End-user (SLA signature), is ready to be
implemented, according to the process described in Section 3.3.

SPECS Project - Deliverable 1.3 11

Secure Provisioning of Cloud Services based on SLA Management

Figure 3. SLA Negotiation phase: overview

SPECS Project - Deliverable 1.3

EU SPECS Application Negotiation SLA Enforcement
module Platform module
I T T T T
| | | | |
M | | | |
. - | | | |
1;startnagoliation ’l 2: retrieve SLA Templates for all services | | |
(GE Tisla-negotiation/sla-templates) ! : :
| |
3: return a collection of SLA : :
Templates | |
4: offer services S R e e e | |
e ———— | |
T | | |
Ssubmit chosen service g 6: retrieve SLA Template for the chosen service : : :
(GETisla-negotiation/sla-templatesi{t-id}) - | | |
7: create SLA (POSTickud-slaslas) ! :
|
. |
9: return SLA Template é———————f'—mlum—SEA—ID— ——————— |
10: offer capabilities e e T :
F b | | i
|
. i iliti | | | |
11: submit chosen capabilities ’J. | | |
| | |
| | |
12: offer security controls : : :
T | | I
13: submit chosen controls i | i i
.l | | |
| | |
| | |
14: offer security metrics : : :
1 | | |
For details on building
15: submit chosen metrics : 16: build a custom SLA Template : supply chains see : :
T L (POSTisla-negotiation/sla-templatesi(t-idyslaoffers) | dedicated diagram. | |
| | |
: 17: buikd supply chains : :
| | |
| | |
: loop for each supply chain] : :
l 18: get supply chain : :
| (GETisla-enforcement/supply-chains/{sc-id}) | |
| T
l 19: return supply chain (sc.json) :
. e I
| + t
| | |
: :\ 20: build SLA Offers : :
| | |
| | |
: loop for each SLA Offer) : :
| | |
: 21: create SLA (PUT/coud-sla/slas/{sla-id}) | :
| |
| 22: return SLA Offer 1D |
I e e e I
| |
| 4 |
24: return ranked ; 23 tak. SLA Orfers	
SLA Offers (SLA IDs	
&= e) ERERSE PR	
v	
l 25: verify SLA Offers : : :	
CSP signature	
26: return ranked SLA Offers (9)	

27: submit chosen signed : : :	
e 28: submit chosen SLA Ofler	29: update SLA with the chosen SLA Offer :
/] i /sla- i J .	
i _ (PUT/sla-negotiation/sla-templates/{t	d)fslaoffcrscurrent)LI (PUT/cloud-slai{tid))
	if all SLAs are rejected,
: associated Offers and ’[I'_I :	
Supply Chains are deleted. 30: delete rejected supply chains	
: (DELETE/sla-enforcement/supply-chains/{sc-id}) : !	
A	q!!
31: delete rejected SLAs	
: (DELETE/doud-sla/slas/{sla-id}))	:
32: return result Hj	
D ! !	
33: implement signed SLA	
viti	
(POST/sla-enforcement/plan-activities) H H	
L	

®

12

Secure Provisioning of Cloud Services based on SLA Management

The process of supply chain building is illustrated in Figure 4. The Negotiation module (the
Supply Chain Manager component) parses the SLA Template and extracts security metrics
from the SLOs specified by the End-user.

For each specified metric, the associated security mechanisms are retrieved from the SLA
Platform (from the Service Manager component). Given all these mechanisms, the Negotiation
module identifies all different subsets of them that are able to fulfil End-user’s requests.

For each set of mechanisms, the Negotiation module launches the process of supply chain
building on the Enforcement module, which

1. keeps track of the supply chain activity by storing all the information relevant to the
supply chain building process (SLA Template ID, available cloud resources, security
mechanisms, security capabilities and SLOs);

2. retrieves mechanisms’ metadata, including the list of software components that
implement the mechanisms, and all deployment constraints that have been declared by
the mechanisms’ developers;

3. builds a set of valid (i.e., feasible) supply chains (cf. deliverable D4.3.2 for a detailed
discussion of the process) and returns them to the Negotiation module.

SPECS Project - Deliverable 1.3 13

Secure Provisioning of Cloud Services based on SLA Management

Negotiation Enforcement SLA
module module Platform
|
|
L

1: parse SLA Template

loop for each metric)

2: get mechanisms (GET/cloud-sla/security-mechanisms,
query string: metric-id)

3: return mechanisms (JSON, collection structure)

4: build sets of mechanisms

————— e

1 By Visual Paradig) inity Ed

1
|
|
|
|
|
Il
loop for each set of mechanisms] |
|
5: build valid supply chains |
(POST/sla-enforcement/sc-activities) :
> |
I 6: store supply chain activity (status=created) :
7: return supply chain activity ID |
e —— I
|
8: start building supply chains |
:l |
|
loop for each mechanism) :
9: get mechanism’s metadata :
(GE T/cloud-sla/security-mechanisms/{mechanism-id}/metadata) |
10: return mechanism’s metadata (JSON)

e
|
|
; I 11: build supply chains :
|
13: check supply chain activity status I 12: update supply chain activity with supply :
(GE Tisla-enforcement/sc-activitie si/{sca-id}/status) chains’ IDs (status=completed) |
» |
|
14: return supply chain activity status |
- |
|
15: get list of built supply chains |
(GE Tisla-enforcement/sc-activitie s/{sca-id}/sc-list) ’ :
|
16: return list of built supply chains IDs |
<—————————————————————————— |
|
1
|
|

L
|
|
|

Figure 4. SLA Negotiation phase: supply chain building

SPECS Project - Deliverable 1.3 14

Secure Provisioning of Cloud Services based on SLA Management

3.3. SLA Implementation

SLA Implementation consists in deploying, activating and configuring security mechanisms
and associated monitoring systems according to the supply chain that was built during
negotiation. The Implementation phase is split into a planning step and the actual
implementation step, orchestrated by respective components of the Enforcement module.

As shown in Figure 5, after the SLA signature, the SPECS Application invokes the Enforcement
module to implement the SLA: it keeps track of the planning activity and:
1. retrieves the SLA to implement from the SLA Platform;
2. identifies the corresponding supply chain, containing information on the resources to
acquire and on the allocation of components on these resources;
3. extracts the information about the resources and about SLOs from the SLA and
retrieves the mechanisms to deploy;
4. builds the implementation plan for the supply chain and stores the plan;
5. implements the plan.

The plan is implemented by the Implementation component of the Enforcement module.
Details about the actual Implementation are given in Figure 6. As shown, the Implementation
component keeps track of the implementation activity and:
1. retrieves the implementation plan;
2. parses the implementation plan and, for each cloud resource in the plan, it configures
the resource with a proper recipe;

After implementation, as shown in Figure 5, the Enforcement module updates the Monitoring
Policy (monipoli) in the Monitoring module: the SLA enters the observed state.

Finally, note that, during the whole process, all component activations and deactivations as
well as service activations are logged by the Auditing component.

SPECS Project - Deliverable 1.3 15

Secure Provisioning of Cloud Services based on SLA Management

Enforcement module |

| Implementation | | Chef Server | | Moni

| 1: implement signed SLA
! (POST/sla-e nforcement/plan-activities) !

2: store planning activity
3: return planning activity ID

4: log component activation
(POST/sla-auditing/comp-activities)

5: retrieve SLA (GET/cloud-sla/slas/(sla-id})

©: return SLA (XML)

7: identify associated supply chain

e e —

—————em e — | ————————

loop for each mechanism in supply mam)

8: get mechanisms

(GET/cloud-sk urity-m 1s/{mechanism-id})

9: return mechanism (JSON)

K ———————————— — — — — — ———

-

i 10: build implementation plan

11: store implementation plan

12: implement plan
(POST/sla-enforcement/impl-activities)

y

13: log component deactivation
(POST/sla-auditing/comp-activities)

14: update planning activity

(PUT/sla-enforcementiplan-activities/{pa-id})

15: prepare monipoli input

16: update monipoli (PUT/sla-monitoring/monipoli)

L

—_—tee - ——————

Figure 5. SLA Implementation phase: building the plan

SPECS Project - Deliverable 1.3

16

Secure Provisioning of Cloud Services based on SLA Management

Enforcement module]

Planning

Implementation

Chef Server

Target

1: implement plan
(POST/sla-enforcement/impl-activities)

I
|
.

i 2: store implementation activity

3: return impleme ntation activity ID

4: log component deactivation
(POST/sla-auditing/comp-activities)

5: log component activation
(POST/sla-auditing/comp-activities)

6: get implementation plan

7: return implementation plan (JSON)

i 8: parse implementation plan

loop for each cloud resource]

9: configure with recipe (e.g.,
bootstrap, install recipes)

10: update implementation plan

11: log activated services
(POST/sla-auditing/serv-activities)

L 20

12: update planning activity

PUT/sla-e nforcement/plan-activities/(pa-id
(v tpa-id}) 13: update SLA state

———————

(PUT/cloud-sla/slas/{sla-id}/state)

14: log component deactivation
(POST/sla-auditing/comp-activities)

SLA
Platform
:
|
|
|
|
|
|
|
|
|
|
T
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
1
|
|
|
|

.

Figure 6. SLA Implementation phase: implementing the plan

SPECS Project - Deliverable 1.3

17

Secure Provisioning of Cloud Services based on SLA Management

3.4. SLA Monitoring

As previously discussed, after the SLA is signed, it is passed from the Negotiation module to
the Enforcement module. The Enforcement module extracts from the SLA all the information
needed to implement it and the information required to configure the related monitoring
components. For every new signed SLA, the Enforcement module will configure the required
monitoring components (deployed on acquired resources) with new rules, and will update
the Monitoring Policy (element of the Monitoring module) to be adapted to the new SLA to
monitor. Therefore, the monitoring process consists of applying a set of rules and filters that
depend on the SLA content.

As shown in Figure 7, proper Monitoring Adapters (belonging to the Enforcement module and
deployed on the target services’ resources) keep collecting raw monitoring information from
the target services and push related events to the Monitoring module. The information
collected by adapters is relevant for the SLA to monitor and defined by the Enforcement
module at configuration time.

As depicted, events are processed and aggregated within the Monitoring module. Moreover,
all events (both raw and aggregated ones) are logged (in the Event Archiver) for further
processing (e.g., during the Diagnosis phase), and they are continuously analysed against the
current Monitoring Policy. In case the policy is not respected, the Monitoring module notifies
the detected suspicious monitoring events to the Enforcement module for their classification
and handling.

11: export eyent

(POST/sla-monitori ngn‘lhon‘:'cx porter)

13: notify monitoring event
(POST/sla-enforcement/notifications)

Enforcement module Monitoring medule
Monitoring Diagnosis Event Hub Event Event Monitoring SLO Metric
Adapter Aggregator Archiver Policy Filter Exporter

T T T T T T

| | | | | | |

: 1: push ebents : : : : :

| (POSTisla-monitoring/pvents/{stream-id}) _ 2: log events | | | |

[r| : (POST/sla-monitoring/archive/monitorin gdI vents) o : : :

: : 7 3: get events : DI : :

| | {GE T/sla-monitoring/stream/{stream-id)consyme) | | |

| | | | |

| | | | |

| | 4: events | | |

| | e e — — 5: process | | |

: : . monitoring ! ! !

' I 6: push aggregated events data : : :

| | POST/sla-monitoring/eve nts/{stream-id}) | | |

| | | | |

: : 7: log aggregated events : : :

| | POST/sla-monitoring/archive/monitoring/evgnts) 2 | | |

| | t | |

| | e | 'LJ | |

| | | 8: get events | | |

| | - (GE T/sla-monitoring/stream/{stream-idycotsume) | |

| | 1 I 10: evaluate |

: : 9: events : with monipoli & :

| E 0 e s s e e e e S e e e e e e e e e e e e e make decision |

| | |

| | |

| | |

| |

| |

| |

| |

| |

| |

| |

| |

|

|

|

—_— e ——

—_—t e

12: transform
event
¢

|
Figure 7. Monitoring phase: overview

SPECS Project - Deliverable 1.3 18

Secure Provisioning of Cloud Services based on SLA Management

3.5. SLA Remediation

Each monitoring event that can potentially report violation of some SLA has to be carefully
analysed. The SLA remediation phase consists in the analysis of the monitoring events
(performed by the Diagnosis component) and in the possible activation of
redressing/remediation activities (performed by the Remediation Decision System
component).

As shown in Figure 8, when the Enforcement module (through the Diagnosis component)
receives monitoring events from the Monitoring module, it tracks the diagnosis activity and
retrieves the affected SLA from the SLA Platform in order to start the analysis. From the SLA,
the Enforcement module component retrieves all information about the planning activity
related to the SLA and the implementation plan. Afterwards, the Enforcement module
identifies affected SLOs and performs the following steps:

1. Classification: it determines whether the monitoring event represents an alert, a
violation, or a false positive. The SLA state is updated accordingly;

2. Analysis: when false positives are discarded, it evaluates the effect that the
alert/violation has on the SLA by calculating the risk/severity level of the
alert/violation. This is done on the basis of impact that the alert/violation has on each
affected SLO defined in the SLA. The results of the analysis are stored in the Auditing
component;

3. Prioritization: according to the risk/severity level of an alert/violation, the affected
SLA is put in a priority queue which guarantees that the violated SLAs with the highest
risk/severity level are remediated first.

Before each alerted/violated SLA is pushed to the RDS component to find the best
remediation action, the Enforcement module has to verify if the conditions of the
alert/violations still persist, i.e., it has to check the measurement results related to the
affected SLOs. For this purpose, the Enforcement module communicates with the Monitoring
module.

In case the alert/violation of an SLA persist, the actual remediation takes place. As shown in
Figure 9, the Enforcement module (through the Remediation Decision System component)
tracks the remediation activity and

1. updates the SLA state from Alerted/Violated to proactive redressing/remediating;

2. retrieves the associated implementation plan;

3. determines which mechanisms were affected and, for each affected mechanism,

extracts the associated remediation plan, stored in the SLA Platform;
4. builds an SLA remediation plan.

The remediation plan is implemented by the Implementation component of the Enforcement
module (details are reported in Figure 10). If the remediation is successful, the state of the
SLA is updated from proactive redressing/remediating to Observed. If none of the available
reactions is able to recover from an alert/violation, the End-user is notified about the
conditions of the event. Communication with the End-user is carried out through the SPECS
Application.

SPECS Project - Deliverable 1.3 19

Secure Provisioning of Cloud Services based on SLA Management

Enforcement module |
Monitoring Diagnosis Planning RDS Chef Server SLA Auditing
module Platform
I 1 T I T T T
T T T T | |
| 1: notify monitoring event | | | | | |
! (POST/sla-enforcement/notifications) '_ | | | | |
n > | I | | |
: 2: buikd diagnosis activity : : : : :
l 3: log component activation : : : : :
| (POST/sla-auditing/comp-activities) | | | | |
| T 1 1 T >[;]
: 4: retrieve SLA : : : : I
i (GE Ticloud-sla/slas/(slaid}) | i | |
| | | | |
I L SrewmSLACM) A L A :
| | | | |
: 6: identify planning activity : : : : :
| (GETisla-enforcement/plan-activities, | | | | |
: query string: sla<d) | : : : :
| | | | |
| 7: return planning activity ID (pa-id | | | |
I - — e planning 2y R fpad)_____ I | | |
| | | | |
| 8: identify ID of the active implementation plan | | | | |
: (GE Tisla-enforcement/pl i /{pa-id}/active) ! I : : :
| | | | |
: : return active plan ID (p-id) : : : :
I S e I | | |
| | | | |
: 10: get implementation plan ! | | : :
i 5				
e —— 1: return implementation plan USON) b A				
)				
12: classify and analyze event				
: 13: update SLA state : : : : :				
(PUT/cloud-sla/slas/{sla-id}/state)				
t t t bc]				
: 14: put in priority queue : : : : :				
15: log event information				
: (POST/sla-auditing/diag-mon-events) ! ! ! !				
				g
loop for each event in the priority queue J : } : : :				
16: get top element from				
the priority queue				
loop for each affected SLO) : : : : :				
17: get measurement results				
(GE Timonitoring/events,				
! query string: measurement ID) : : : : :				
18: return measurement results > : : : : :				
1				
19: verify SLA state				
: 20: activate remediation : : : : :				
(POST/sla-enforcement/rem-activities)				
21: return remediation activity ID (ra-id				
<________________ty__[__)______	———————			
22: check status of remediation activity				
: (GET/sla-enforcement/rem-activitie s/{ra-id) state) : ! : : :				
23: return remediation activity status				
K ———— —_——————				
t t t				
o				
24: log component deactivation				
™ itinal _activiti				
(POST/sla-auditing/comp-activities) \ i	1			
				’
		dw I y Edl		

Figure 8. Remediation phase: diagnosis process

SPECS Project - Deliverable 1.3

20

Secure Provisioning of Cloud Services based on SLA Management

Enforcement module

Planning Implementation Chef Server SPECS SLA Platform Auditing
Application

1: activate remediation
| (POSTisla-enforcement/rem-activities)

2: store remediation activity
3: return remediation activity ID

4: log component activation
(POST/sla-auditing/comp-activities)

5: update SLA state
(PUT/cloud-sla/slas/{sla-id}/state)

T
|
|
|
|
|
|
|
|
|
il
|
|
|
1
|
6: get implementation plan :

y

7: return implementation plan (JSON)

8: identify affected capabilities

loop for each affected capability]

9: get hani: (GET/cloud-sla/ ity s,
query string: capability-id)

10: return mechanisms (JSON, collection structure)

13: identify affected mechanisms

loop for each affected mechanism)

14: get mechanisms
(GETicloud-sla/ y isms/| h d))

15: return mechanism (JSON)

186: extract remediation plan

|
|
|
|
T
|
i 17. build SLA remediation plan |
|
|
|
|
|
|

18: implement remediation plan
(POST/sla-enforcement/rem-plans)

19: return ID (rp-d)

K ——————— ———————]

|
20: check status the remediation plan :
(GETsl rent/rem-plans/{rp-id}/result) |
|

|

-——1

- 21: return result of the remediation plan L

result = observe)

22: update SLA state
(PUT/cloud-sla/slas/{sla-id}/state)

23: log notification to EU
(POST/sla-auditing/eu-notifications)

result = notify)

24: notify EU

25: log component deactivation
(POST/sla-auditing/comp-activities)

]_

- . 4 Yy

| |
Figure 9. Remediation phase: building a remediation plan

SPECS Project - Deliverable 1.3 21

Secure Provisioning of Cloud Services based on SLA Management

Figure 10 shows the implementation of the remediation plan. The Implementation component
stores the remediation plan and, for each action in the plan, properly reconfigures resources.
After each reconfiguration, it updates the implementation plan with latest changes and
verifies, by means of measurements collected on the new configuration and provided by the
Event Archiver of the Monitoring module, if the remediation action was successful. As
mentioned before, if remediation fails, the End-user is notified.

Enforcement module

Implementation Chef Server Planning Monitoring
module

‘ Auditing | Target

| |
I 1: implement remediation plan |
: (POST/sla-enforcement/rem-plans) :

I

|

|

|

|

|

:\ 2: store remediation plan :
|

< |
|

|

t

|

|

Il

3: return ID (rp-id)

4: log component activation

T
|
|
|
|
|
|
|
|
|
|
(POST/sla-auditing/comp-activities) !

5: get implementation plan

6: return implementation plan (JSON)
e — — ——
7: update Chef Client iteration timeout

loop for each action in remediation plan

8: reconfigure with recipe (e.g., install recipes)

9: update implementation plan

10: get measurement results (GET/monitoring/events,
query string: SLA ID, measurement ID, time interval)

S S ———

12: get planning activity ID
(GETi/sla-enforcement/plan-activities, query string: SLA ID)

|
T
|
|
|
T
|
13: return planning activity I1D (pa-id) |
e -
|
|
|
t
|
|
|
|
|
|
t
|
|

14: update planning activity
(PUT/sla-e nforcement/plan-activities/{pa-id})

15: log remediation result
(POST/sla-auditing/rem-results)

16: log component deactivation
(POST/sla-auditing/comp-activities)

.

|

@

Yy b

T
|
|
|
|
|
|
|
|
|
|
|
|
| |
| |
| |
| |
| |
t t
| |
| |

Figure 10. Remediation phase: implementing the remediation plan

SPECS Project - Deliverable 1.3 22

Secure Provisioning of Cloud Services based on SLA Management

3.6. SLA Renegotiation

SLAs are subject to renegotiations. These changes can occur due to the fact the some of the
services, SLOs, or SLO values are no longer available (i.e., due to unresolved SLA violations),
or they can be related to changes required by any of the parties involved in the service
provisioning.

It is worth noticing that the SLA signed between the SPECS Owner and the End-user is treated
as an atomic contract: any change produced in any part of it, no matter how small it is, leads
to the generation, renegotiation and signing of a new SLA.

Re-negotiation of an SLA can be triggered by either the End-user or the SPECS Enforcement
module. The first case may occur when the EU wants to remove or add a new capability or an
SLO to a running service or he/she wants to modify some specific value of some SLO (for
example, the EU wants to change the encryption algorithm or wants to increase the frequency
of the periodic backups). The second case, namely re-negotiation triggered by SPECS, may
occur in presence of an unresolved violation or alert.

In both cases, the service being delivered is subject to changes (including termination) and
may imply the update of the related supply chain.

Figure 11 illustrates the interactions in case of a re-negotiation triggered by the End-user. As
shown, the End-user starts the re-negotiation process by accessing the SPECS Application. The
SPECS Application retrieves the End-user’s SLA from the SLA Platform, updates its state to re-
negotiating and gets the related SLA Template from the Negotiation module. The SLA
Template is updated with contents of the End-user’s signed SLA (previously agreed
capabilities, controls, and SLO values are set as default offers). At this point, the End-user can
express his/her requirements as done during the Negotiation phase, by selecting desired
capabilities, controls and SLOs.

A new set of supply chains is generated (note that they may overlap with the old supply chain
associated with the SLA), which is used by the Negotiation module to build new SLA Offers,
ranked and submitted to the End-user. If the End-user accepts one of these Offers, the old SLA
is replaced with the new one.

Figure 12 shows what happens when re-negotiation is triggered after an alert or a violation
by the CSP/SPECS Enforcement. The behaviour is very similar to the one just described for re-
negotiation triggered by the End-user, except that the Application first updates the SLA
Template according to needed changes (unavailability of certain SLO values, SLOs, or
capabilities) and then notifies the End-user to let him/her start the re-negotiation.

Once the new SLA has been created, it has to be implemented. The steps performed to
implement a re-negotiated SLA are shown in Figure 13. The Planning component updates the
planning activity and retrieves the associated supply chain and implementation plan. The new
SLA and the new supply chain are checked against the old implementation plan, in order to
build a reaction plan that includes all needed actions to take to fulfil the new SLA. Basically,
the re-negotiation is treated as an alert or a violation event: fake violation events are
generated and handled as shown previously for remediation. For example, if for the re-
negotiated SLA we need to acquire a new VM, we generate a violation that states
unavailability of a VM. Such violation is remediated by acquiring a new VM. If, for example, an
EU re-negotiated higher frequency of backups, we generate a violation stating that backup
frequency is too low, and such violation is remediated by reconfiguring the frequency.

SPECS Project - Deliverable 1.3 23

Secure Provisioning of Cloud Services based on SLA Management

If remediation fails, then it means that the implementation of the re-negotiated SLA did not
succeed. The End-user is hence notified.

SLA Termination can be seen as a particular type of re-negotiation. As shown in Figure 14, the
SLA Application triggers the update of the implementation plan (either after a termination
request from the End-user or after a violation), and a new plan is built which includes all
recipes to terminate active services. Even in this case, fake violation events are generated that
lead to the execution of remediation actions consisting in the termination of all services
related to an SLA.

SPECS Project - Deliverable 1.3 24

Secure Provisioning of Cloud Services based on SLA Management

i 16: build supply chains

loop for each supply chain)

17: get supply chain

Ijl | o | | -
T T
| | | |
M | | |
1: start renegotiation : : :
| |
2: retrieve SLA (GET/cloud-sla/slas/(sla-id}) | !
T
|
3: return SLA (XML) |
e B m———————= J
| | |
4: retrieve SLA Template for the curent service | | |
(GET/sla-negotiation/sla-templates/{t-id}) = : : :
5: create SLA (POSTicloud-sla/slas) | |
T
|
7: return SLA Template <________6._re_t|£n_SEA;|E ————————— : —————————
<_ __________________________ |
| |
| |
i 8: customize SLA Template | |
9: offer capabilities : :
I —— L | |
| | |
10: submit chosen capabilities | : :
| |
| |
e 11: offer security controls | |
------------------ L | |
| | |
12: submit chosen controls : : :
| |
| |
" 13: offer security metrics : :
T | |
14: submit chosen metrics | 15: build a custom SLA Template | |
L (POST/sla-negotiation/sla-templates/(t-idyslaoffers) : :
|
|
|
|
T
|
|
|
|

(GET/sla-enforcement/supply-chains/{sc-id})

18: return supply chain (sc.json)

ke———— — — =

19: compare new supply chains
to the old one

loop for each supply chain]

21: create SLA (PUT/cloud-sla/slas/{sla-id})

22: return SLA Offer ID

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
| 20: build SLA offers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

31: delete rejected SLAs

32: return result (DELETE/cloud-sla/slas/(sla-id})

ke——— - - -

33: update implementation plan
(POST/sla-enforcement/reconfigs)

|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
K ———— e — ———————
|
| 1
| |
| |
24: return ranked ; 23: rank SLA Offers : :
SLA Offers (SLA IDs) | |
(€= | I
T | |
25: verify SLA Offers (CSP signature) : : :
26: return ranked SLA Offers | | |
__________________ | | I
27: submit chosen signed SLA Offer 28: submit chosen SLA Offer : : :
(PUTisla-negotiation/sla-templates/{t-idysiaoffersicument) | 29: update SLA Template with the chosen \ |
If all SLAS are rejected, SLA Offer (PUT/cloud-sla/{t-id}) |
associated new Offers and ‘)) 0
new Supply Chains are DELEI'3I§'- d‘: k"? ”"Jmcdus”pplly ‘2‘]’“'_“5! y | |
deleted. (sla-enforcement/supply-chains/{sc-id}) ol :
|
|
-
|
|
|
|
|
|
|

should be "reconfigure”.

Label in reconfiguration.json ILI

Figure 11. Re-negotiation phase: re-negotiation started by the EU

SPECS Project - Deliverable 1.3

25

Secure Provisioning of Cloud Services based on SLA Management

Enforcement module]

SPECS Project - Deliverable 1.3

Label in reconfigurati
should be “reconfigu

RDS Planning
T T T
l l 1: notify EU :
0 I |
| | 4
| | |
| | |
| | -+
| | | | &
I I 4: retrieve SLA Template for the cumrent service : : :
| | (GETisla-negotiation/sla-templates/{t-id}) | g | |
: : ! 5: create SLA (POSTicloud-sla/slas) !
| | |
| | | 6: return SLA ID
| | 7: return SLA Template | ==
I I (E————— T Fo—————= w
		8: customize SLA Template		
: : 9: update SLA Template (PUT/cloud-sla/{t-id}) ! = ! :				
I I	gt			
: : 10: notify EU .!. : :				
! ! 11: start renegotiation				
i i e~ leadeneeonaten i				
	12: retrieve associated SLA Template			
: : (GETisla-negotiation/sla-templates/(t-id}) = : :				
: : < 13: return SLA Template :				
: : 14: offer capabilities : :				
	15: submit chosen capabilities			
	e————————————————— — — — — —]			
: : 16: offer security controls : :				
I	e _\T:submitchosenconvos _______			
: : 18: offer security metrics : :				
	19: submit chosen metrics			
i i S e e L i i				
: : 20: build a custom SLA Template : : :				
	(POST/sl tiation/sla-templates/{t-idyslaoffers)			
	t			
: : : 21: buikd supply chains :				
: loop for each supply chain) i :				
:	22: get supply chain : :			
!	g (GETisk supply-chains/{sc-id}) : :			
23: return supply chain (sc.json)				
N 1 ittt n-—"7""""—""—"—""""""""—""- T >				
		24: compare new supply chains		
: : : to the old one :				
		25: build SLA offers		
		2		
: : : loop for each supply chain) i				
: : : 26: create SLA Offer :				
		(PUT/cloud-sla/slas/{sla-id})		
		27: return SLA Offer 1D		
		€ ————————		
		4		
		28: rank SLA Offers		
: : 29: return ranked SLA Offers (SLA IDs) 1'_ :				
	5y [
		T		
	30: verify SLA Offers (CSP signature) I	I		
	E			
I I 31: send ranked SLA Offers ‘: : :				
	32: submit chosen signed SLA Offer			
I I E—————				
I I 33: submit chosen SLA Offer : : :				
	(PUT/sl tia tion/s pl {t-id'sl current)		34:update SLA Template with the chosen	
! t SLA Offer (PUT/cloud-sla/{t-id}))				
I I 35: delete rejected supply chains : >i;				
DA (DELETE/sla supply-chains/{sc-id}) ! 36: delete rejected SLAs !				
I ™	(DELETE/cloud-sla/slas/(sla-id}) ‘:			
	37: return result	L}		
	38: update implementation plan [E—————			
I : (POSTisla-enforcementireconfigs) : T :				
-				
T				

i By sal Paradig unity Edi

Figure 12. Re-negotiation phase: re-negotiation after an alert/violation

26

Secure Provisioning of Cloud Services based on SLA Management

Enforcement module]

Figure 13. Re-negotiation: updating the implementation plan

SPECS Project - Deliverable 1.3

SPECS Planning Implementation Chef Server SLA Platform Auditing
Application
I I [I T I
: 1: update implementation plan : : : : :
| (POST/sla-enforcement/reconfigs) | | | | |
0 L I | | I
	2: store reconfiguration			
: 3: log component activation : : : :				
(POST/sla-auditing/comp-activities)				
t t 1 ’[‘;]				
4: retrieve SLA (GET/cloud-sla/slas/(sla-id})				
T T				
l P SremSLAQGMY) b b l				
: 6 identify associated supply chain : : : :				
: 7: retrieve implementation plan with SLA ID : ! : :				
8: return implementation plan (JSON)				
I - E e -	I			
: 9: compare new SLA and new supply chain : : : :				
with old implemenatation plan				
:	10: build a reaction plan : : : :			
l 1 1 1 1				
loop for each action in reaction plan]	I			
11: get mechanisms				
: (GETicloud-sla/security-mechanisms, : : ! :				
query string: capability-id or metric-id)				
t t				
12: return mechanism (JSON)				
I e e mm———————= to————————- I				
! :	; . I I			
13: buikd SLA remediation plan				
) o				
14: implement remediation plan 1				
: (POST/sla-enforcement/rem-plans) : : :				
15: return ID (rp-id				
K ——————— — —— (_D*_)— ————————				
-				
: 16: check status the remediation plan J'_ : : :				
(GETisla-enforcement/rem-plans/{rp-id}/result)				
17: return result of the remediation plan				
I -		I		
T				
t T T T				
18: update SLA state				
: (PUT/cloud-sla/slas/{sla-id}/state) : [:				
19: log component deactivation				
: (POST/sla-auditing/comp-activities) : 1 !				
L				
		q		
	I 1			

27

Secure Provisioning of Cloud Services based on SLA Management

Enforcement module]

SPECS Planning Implementation Chef Server SLA Platform
Application

I 1 1 1 T
1: update implementation plan : : : :
(POST/sla-e nforcement/reconfigs) ’L : : :
| | |
i 2: store reconfiguration | | |
| | |
3: log component activation : : :
(POST/sla-auditing/comp-activities) | | |
T T T
| | |
4: get implementation plan | | |
t |
5 rolun mplementation pan USON) ___ | ____ :
| |
| |
6: buikd a reaction plan : : :
| | |
| | |
loop for each action in reaction plan) : : :
7: get mechanisms : : :
(GETicloud-sla/security-mechanisms, | | |
query string: capability-id or metric-id) ! ! |

| |

8: return mechanism (JSON) | |

K po——————= A————————=

I
[
|
I
I
I
I
|
I
I
I
|
I
I
I
I
|
I
I
I
|
I
I
I
I
|
I
I
I
|
I
I
I

i 9: build SLA remediation plan

10: implement remediation plan
(POST/sla-enforcement/rem-plans)

11: return ID (rp4d)

< _______________________

12: check status the remediation plan

(GETisla-enforcement/rem-plans/{rp-id}/result) |

13: return result of the remediation plan

e — — — — — — ——

14: update SLA state
(PUT/cloud-sla/slas/{sla-id}/state)

15: log component deactivation
(POST/sla-auditing/comp-activities)

Figure 14. Termination of an SLA

SPECS Project - Deliverable 1.3

28

Secure Provisioning of Cloud Services based on SLA Management

4. Module APIs

In order to identify the interaction protocols and to define the related detailed APIs, we
analysed the framework’s design reported in D1.1.2 and identified all modules’ interfaces
reported in the UML component diagrams drawn for each module in that deliverable. We
analysed the exposed interfaces to elicit all resources and API calls needed to enable the
communication among the modules according to the identified behaviour and to the
requirements elicited in the previous deliverables.

This process resulted in the definition of a set of REST APIs, developed separately by the
partners in compliance with precise guidelines, reported in Section 5.

In this section, we provide an overview of the APIs offered by the SPECS core modules and by
the SPECS SLA Platform, and needed for their interoperation.

In particular, we illustrate the SLA, Services and Interoperability APIs offered by the Platform
and the APIs for negotiation, monitoring and enforcement. Furthermore, the Log APIs and the
public API for monitoring belonging to the Cloud Trust Protocol (CTP) are presented.

The complete API documentation is reported in the Annexes to this document.

4.1. SLA API

The SLA API, whose complete documentation is available in the Annex A, is offered by the SLA
Manager component of the SLA Platform, and it is aimed at managing all the SLA life-cycle, by
providing functionalities for:

1. Creating new SLAs. When the negotiation process starts, the SPECS Application
retrieves available SLA Templates from the SLO Manager and shows to the End-user
available offers. Meantime, a new SLA is created by the SLA Manager for the End-user:
the SLA is created in the pending state, and will be assigned the negotiating state if no
errors occur.

2. Deleting SLAs. If errors occur during the negotiation process, an SLA that has not been
signed yet can be deleted.

3. Updating existing SLAs. When an SLA is in the negotiating or re-negotiating state, it
can be updated to reflect ongoing changes. In particular, at the end of the negotiation
process, the SLA is updated with the content of the SLA Offer selected by the End-user.

4. Accessing and retrieving stored SLAs. Accessing and retrieving stored SLAs is
needed during all phases of the SLA life-cycle.

5. Accessing and updating the state of a stored SLA. The state of an SLA is updated
during the different phases according to the state diagram reported in D1.1.1.

6. Adding and updating annotations to a stored SLA. In order to enable an easy
processing of SLAs, it may be needed to annotate them with additional information.

SPECS Project - Deliverable 1.3 29

Secure Provisioning of Cloud Services based on SLA Management

4.2. Services API

The Services API, whose complete documentation is available in the Annex B, is offered by the
Service Manager and the Metric Catalogue Manager components of the SLA Platform. It offers
functionalities for:

1.

Adding new security mechanisms. At development phase, a developer can create
new security mechanisms and add them to the pool of available security mechanisms
to offer through the SPECS Enforcement module. Note that security mechanisms
include not only the actual mechanisms that enable to offer security capabilities, but
also the related monitoring systems, used to monitor metrics associated with such
security capabilities. A mechanism is represented, at the Service Manager, in terms of
the covered capabilities, the enforced and monitored metrics, and a set of metadata.
Metadata includes the list of software components implementing the mechanism, along
with related deployment information and constraints.

Updating/deleting a security mechanism. At development phase, a developer can
update a security mechanism by updating the related information stored at the Service
Manager. Similarly, the developer can delete an existing mechanism.

Retrieving available security mechanisms. During the process of supply chains
building, the Supply Chain Manager retrieves, from the Service Manager, the set of
mechanisms associated with the metrics selected by the End-user during negotiation.
The information

Adding/updating/deleting mechanisms’ metadata. At development time, a
developer can add/update/delete metadata associated with a security mechanism.
Retrieving mechanisms’ metadata. During the process of supply chains building,
metadata of selected mechanisms is retrieved and used to prepare the inputs to the
Planning component’s analytical solver. As mentioned before (see Section 3.1), the
solver process is aimed at finding a solution to the planning problem, consisting in
identifying the best allocation of needed software components (belonging to
mechanisms) to available resources, while respecting deployment constraints set by
the mechanisms’ developers.

Adding/updating/deleting security capabilities. At development time, new
capabilities can be added to those managed by the SPECS framework. They are
expressed in terms of sets of security controls, as defined by NIST in [3]. We support
both NIST security controls and CSA’s CCM controls.

Retrieving security capabilities. At development time, existing capabilities are
retrieved by the SPECS owner to build SLA Templates.

Adding/updating/deleting security metrics. At development time, a security expert
can add new security metrics to the Metrics Catalogue. At current state, we support the
RATAX standard for metrics representation [3]. Security metrics can be updated or
deleted.

Retrieving security metrics. At development time, existing metrics are retrieved by
the SPECS owner to build SLA Templates.

4.3. Interoperability API

The Interoperability API, whose complete documentation is available in the Annex C, is
offered by the Interoperability layer and offers functionalities for enabling a transparent
communication among different modules. In practice, it acts as a gateway by intercepting all
REST calls and by redirecting them to the right component. This is accomplished by defining a

SPECS Project - Deliverable 1.3 30

Secure Provisioning of Cloud Services based on SLA Management

proper virtual interface that associates a set of REST calls to a specific end point (i.e., a
concrete URL address).

4.4. Negotiation API

The Negotiation API, whose complete documentation is available in Annex D, is offered by the
SLO Manager component of the Negotiation module. It is the only component of the
Negotiation module which is accessible to the other modules and components. Its main role is
to offer to the SPECS Application an SLA Template representing the available offers, which
will be used as a guideline for negotiation and which will be adopted as a basis to construct
SLA Offers.

The Negotiation API provides the functionalities for

1.

Retrieving/updating/deleting Service Description Terms. When
negotiation/renegotiation starts, the SPECS Application must offer to the End-user the
capabilities, controls and metrics associated to the offered security mechanisms. This
information is stored internally in the SDT associated to a SLA Template. It is possible
that certain information in the SDT is modified (certain supported controls or metrics
change, some capabilities are not offered anymore, etc.), case in which the STD is
updated or deleted.

Retrieving/updating/deleting Service Level Objectives. The SDT does not contain
information related to the SLOs related to some metric. Methods related to SLOs allow
manipulating SLOs.

Creating new SLA Templates. In order to set-up the SPECS Application, the SPECS
Owner builds one or more SLA Templates, specifying all available capabilities, controls,
metrics and SLOs in order to give the End-user the opportunity to construct
himself/herself dynamically the SLA Offer during negotiation.
Retrieving/updating/deleting SLA Templates. The negotiation/renegotiation
process is based on a SLA Template containing all the security features that can be
offered. If some of the attributes of a SLA Template change (default SLOs for a metric
change, some capabilities are not offered anymore) the SLA Template could be
updated. In case the SLA Template is not updated but a new SLA Template is created, it
might be the case that after some time the old SLA Template is not useful anymore and
can be deleted.

Retrieving/updating/deleting SLA Offers. After the End-user specifies his/her
security requirements, their fulfilment is checked by the Supply Chain Manager
component and ranked based on their security level by the Security Reasoner,
obtaining in the end a list of SLA Offers from which one will be chosen by the end-user
to be signed. The remaining SLA Offers are deleted from the SLA Platform, where they
are stored.

SPECS Project - Deliverable 1.3 31

Secure Provisioning of Cloud Services based on SLA Management

4.5. Enforcement API

The Enforcement API, whose complete documentation is available in the Annex E, is offered
by all core components of the Enforcement module (i.e., Planning, Implementation, Diagnosis,
RDS) and offers functionalities for

1.

10.

Creating/retrieving a Supply Chain Activity. In SLA negotiation phase at least one
implementable supply chain for an SLA Template has to be generated. When all
security parameters are chosen by the EU, the Negotiation module triggers generation
of supply chains. All information related to the generation are stored and maintained
by a Supply Chain Activity. This includes available resources, chosen capabilities, SLOs,
and IDs of generated supply chains.

Retrieving the status of a Supply Chain Activity. When the Supply Chain Activity for
an SLA Template is generated, its status is set to Created. While supply chains are being
built, the status is set to Running. When all possible supply chains for an SLA template
are built, the status is updated to Completed.

Retrieving the list of Supply Chains generated for the Supply Chain Activity. When
the status of a Supply Chain Activity is Completed, the Negotiation module can retrieve
a list of IDs of all associated supply chains.

Retrieving/deleting Supply Chains. Retrieving supply chains is needed during the
SLA negotiation and SLA implementation phases.

Creating/retrieving a Planning Activity. In order to implement a signed SLA, the
implementation plan has to be generated first. After SLA negotiation phase the
Planning component is invoked to build an implementation plan according to the
signed SLA. In the SLA remediation process some updates to the existing active
implementation plan are needed (actually, plans are not updated; for every change a
new plan is created which replaces the old one). Similarly, after SLA renegotiation
phase, if after renegotiation the original SLA is still valid, but some changes in
configuration of services are needed, a new plan is created which replaces the original
one. All information needed for the initial generation of the implementation plan, a list
of IDs and a number of all generated implementation plans for an SLA, and the ID of the
last active implementation plan are stored in a Planning Activity.

Retrieving the status of a Planning Activity. When the Negotiation module invokes
the Planning to generate an implementation plan, a Planning Activity is created with
the status Created. When the plan generation starts, the status evolves to Building.
After the plan has been built and its implementation is in progress, the status is
updated to Implementing. When the plan has been successfully implemented, the
status if associated Planning Activity evolves to Active.

Retrieving the number of and a list of implementation plans associated to a
Planning Activity. When the status of the Planning Activity is Active, the number and
the list of IDs of associated implementation plans can be retrieved.

Retrieving the ID of the last active implementation plan associated to a Planning
Activity. When the status of the Planning Activity is Active, the ID of the last active
associated implementation plan can be retrieved.

Creating/retrieving an Implementation Activity. In the SLA Implementation
process the Planning invokes Implementation component to implement a plan
associated to an SLA. All information related to all implementation plans associated to
an SLA is stored in an Implementation Activity.

Retrieving the status of an Implementation Activity. When Implementation
component is invoked to implement an initial implementation plan for a signed SLA, an
Implementation Activity is created with status Created. During the implementation

SPECS Project - Deliverable 1.3 32

Secure Provisioning of Cloud Services based on SLA Management

process the status evolves to Implementing. When all services are up and running, the
status is updated to Complete.

11.Retrieving an Implementation Plan. In SLA remediation phase and SLA
implementation phase after remediation/renegotiation, access to the existing
implementation plans for an SLA is needed. Implementation plans are maintained by
the Chef Server.

12.Adding/retrieving a Notification. When the Monitoring module detects an event that
might result in an alert or a violation, the occurrence is notified to the Diagnosis
module. A Notification includes all information about the event and the infrastructure
where the event has been detected.

13.Creating/retrieving a Diagnosis Activity. When the Monitoring module notifies the
Diagnosis about a possible alert/violation, the Diagnosis component creates a
Diagnosis Activity which gathers all information about the notified event and the
results of the analysis.

14.Retrieving the status of a Diagnosis Activity. When a Diagnosis Activity is created,
the status is set to Received. When the affected SLA has been identified, the status
evolves to SLAidentified. After the analysis and classification process the status is
updated to Classified.

15.Retrieving the ID of the SLA associated to a Diagnosis Activity. The access to the
information about the SLA affected by a detected monitoring event might be needed.

16.Retrieving a classification of an event associated to a Diagnosis Activity. The
access to the information about the classification of a detected monitoring event might
be needed. Each event can be classified as a false positive, an alert or a violation.

17.Creating/retrieving a Remediation Activity. After a monitoring event has been
classified as an alert or a violation, the RDS component has to prepare and implement a
remediation plan. All information about the remediation process associated to an
event/SLA is stored in Remediation Activity and maintained by the RDS component.

18.Retrieving the status of a Remediation Activity. Each Remediation Activity is
created with status Created. During the remediation process the status evolves to
Remediating. After remediation process is complete the status is updated to Complete.

19.Creating/retrieving a Remediation Plan. When the RDS prepares a remediation plan
to mitigate the risk of having a violation or recovering from a violation, it is sent to the
Implementation component which has to implement it.

20.Retrieving the result of a Remediation Plan. When the Implementation component
receives a Remediation plan, the SLA remediation process starts. The process can
either end with a successful mitigation/recovery (in this case the result is Observe) or
we run out of possible actions to remediate the alert/violation. In this case the result is
Notify which implies that the EU has to be notified about the occurrence and the
consequences.

21.Adding/retrieving a Reconfiguration. In order to reconfigure running services after
SLA renegotiation, a reconfiguration is triggered by the SPECS Application. In this case
Reconfiguration (which consist of an SLA ID and a label) is labelled by Reconfigure. If
an EU requests termination of an SLA before its expiration date (or decides to
terminate an SLA after an alert/violation), the Reconfiguration is labelled by
Terminate. In both cases the Planning component prepares a plan to
reconfigure/terminate services and passes it to the Implementation component.

SPECS Project - Deliverable 1.3 33

Secure Provisioning of Cloud Services based on SLA Management

4.6. Log API

The Log API, whose complete documentation is available in the Annex F, is offered by the
Auditing component (Enforcement module) and offers functionalities for

1.

Logging activations/deactivations of components. After the signature of an SLA
each activation/deactivation of components due to implementation or remediation
activities for a signed SLA is logged for auditing purposes.

Logging activation/deactivation of services. In SLA implementation phase (either
after SLA signature or SLA remediation/renegotiation) all activated/deactivated
services are logged.

Logging diagnosed monitoring events. For each detected alert or violation, all the
information gathered in the diagnosis process is logged. This includes affected SLOs
and associated metrics, infrastructure on which the event occurred and the root cause,
and the impact of the event on the affected SLA.

Logging remediation results. After the SLA remediation process the results of actions
performed to mitigate the risk of a violation or to recover from a violation are logged.
Logging notifications sent to the EU. Each alert and violation that cannot be resolved
automatically is notified to the EU. In this case all information related to the detected
event and performed remediation actions are logged.

4.7. Monitoring API

The monitoring API, whose complete documentation is available in the Annex G, is offered by
a set of components that ensure the entire life cycle of the monitoring flow where specialized
components, called monitoring adapters, are sending monitoring raw data to a centralized
communication router, called the event hub. The event hub will distribute the monitoring data
to different monitoring core components (event aggregator, event archiver and monitoring
policy filter) that are able to process the information and act according to the monitoring flow.
The Monitoring API offers functionalities for:

1.

2.

Collecting, publishing and routing the monitoring data. Raw monitoring data is
collected from the target services and sent to a monitoring router (the event hub),
which publish the raw data for other specialized SPECS components to consume it. The
processed raw monitoring data, called monitoring events, are also resent through the
router to the designated consumers.

Archiving the monitoring data and events. All the monitoring information (raw
data or events) are sent automatically the to event archiver for storing the data for
later use.

Evaluation, aggregation and decision-making. The monitored data is sent to a
specialized filter that, based on some customizable monitoring rules, is able to identify
the event and to evaluate it. Multiple similar events are aggregated within a time frame
based on aggregation rules. If the aggregation value breaks a threshold the decision
making mechanism will trigger the corresponding component about the abnormal
situation that needs to be diagnosticated (the case of a possible alert or violation).
Format conversion. In case of triggers the monitoring event format it translated into a
metric compatible format and sent to the corresponding component for diagnosis.

SPECS Project - Deliverable 1.3 34

Secure Provisioning of Cloud Services based on SLA Management

4.8. Monitoring Public API

The SPECS platform will offer a public API to enable cloud customers to monitor the current
security level of their cloud service. Customers will be able to get information about the
current measurement of the security attributes of their cloud services, based on the same
attributes that appear in the SLOs that are specified in the SLAs negotiated with the SPECS
platform. To take an analogy with a thermometer, the monitoring service will allow the
customer to consult the current temperature measured by the device, independently of the
fact that the temperature may be considered good or bad (i.e. whether the temperature is
within the margins defined in the SLO or not).

The API that customers will use to access monitoring data is CSA’s Cloud Trust Protocol. This
API is fully specified in an external document [4] and is therefore not repeated here in
contrast with other API described previously. We call this the “CTP Public API".

The “CTP Public API” will be implemented by a CTP server that will act as an interface
between the SPECS platform and the customer. In order to be able to present information to
the customer with the “CTP Public API”, the information produced by the SPECS platform
must be translated and imported into the CTP server. In order to be able to import data in the
CTP server, a new additional API has been developed for CTP in the context of SPECS: the CTP
back office API. Whereas the “CTP Public API” enables customers to read information from a
CTP server, the “CTP back office API” enables authorized users to write information to a CTP
server. As such, the “CTP back office API” allows not only to update measurement results
related to a security attribute but also to populate the CTP Server with descriptions of
services, metrics, assets, attributes and measurements.

The following figure summarizes the positioning of each API in the context of providing a
monitoring API to the customer.

\.

SPECS
PLATFOM

y,

<€

o

>

CTP "back office" API

.

CTP
SERVER

J

<€

(2]

>

CTP "public" API

s

.

CTP
CLIENT

2

y,

Figure 15. The "CTP Public API" versus the "CTP back office API".

While the “CTP back office API” will be detailed in Deliverable D3.4, we provide a high level
view of the integration functionalities that will be implemented in order to provide a
monitoring API to cloud customers.

1. Adding customers: When a new customer is added to the SPECS platform, it must contact
the CTP server to execute the following actions:
a) Create a “view” in CTP.
b) Create an “access token” that is authorized to access the view in step (1.a).
c) Return the created “key” from the access token: the customer can then use this key to
authenticate with the CTP server.

SPECS Project - Deliverable 1.3 35

Secure Provisioning of Cloud Services based on SLA Management

2. Adding an SLA for a customer: SLAs negotiated in SPECS follow an extension of the WS-
Agreement format (WSLA). These WSLAs should! be mapped to the CTP data model as
follows:

a) A WSLA metric is mapped to CTP metric.

b) A WSLA Service is mapped to a CTP “service-unit”.

c) A default “asset” is created within the service-unit in CTP. CTP takes a more granular
approach than SPECS and allows to define SLO and measurements that do not apply to
a service as a whole but only to an asset within the service, so in SPECS we need to
create a dummy asset that is equivalent to the service as a whole.

d) WSLA variables that are defined within WSLA service properties are mapped to CTP
attributes. These attributes are attached to the asset created in step (2.c).

e) WSLA SLO are translated into measurements, where
i) The SLO “metric-name” becomes the CTP measurement name.
ii) The SLO “expression” becomes a measurement objective.
iii) The create measurement is attached to the attribute created in step (2.d).

3. Updating the measurements of security attributes: When new relevant monitoring
data is available from the SPECS event hub, it is used to update the CTP measurement
results.

a) Identifiers contained within the event data are used to identify the relevant
corresponding measurement that needs to be updated in CTP.
b) The measurement results are then updated in CTP.

4. Deleting customers and/or SLAs: When an SLA or a customer is removed from SPECS, it
must be reflected in the CTP server:

a) Removing an SLA means removing the corresponding “service unit” created in step
(2.b). All other dependent resources are automatically deleted by CTP (e.g. assets,
attributes, etc.).

b) Removing a customer means removing a view and a token (those created in step .

1 Based on the current structure of SLAs in SPECS and subject to future changes and clarifications.

SPECS Project - Deliverable 1.3 36

Secure Provisioning of Cloud Services based on SLA Management

5. API definition guidelines

In this section, we report the guidelines followed when developing SPECS’ REST APIs. In
particular, we discuss the conventions we adopted related to the use of HTTP response codes,
the different mediatypes our APIs support, and the way resources are identified.

REST is an architecture style for designing networked applications that relies on a stateless,
client-server, cacheable communication protocol. In most cases, REST is based on HTTP (i.e.,
HTTP methods are used to retrieve and send web content from/to remote servers) even if it is
not bound to any protocol in particular. Recently, REST has gained widespread acceptance
across the World Wide Web as a simpler alternative to SOAP and WSDL-based web services.

In his “Maturity Model” [1], Richardson classifies the APIs for services on the web (i.e., for
software services built on top of the HTTP protocol) in three incremental maturity levels,
according to the support offered for URIs, HTTP methods and for hypermedia respectively.
The levels are defined as follows:
* Level 0: no support, there is only one endpoint, namely RPC over HTTP (WS-*, XML-
RPC, ..);
* Level 1: support for resources (multiple endpoints), referenced through URIs;
* Level 2: support for HTTP methods: requests to endpoints shall follow the HTTP
rules/semantic, i.e. they shall use standard methods (GET,POST,PUT,DELETE...);
* Level 3: support for RESTFul APIs, being self-descriptive in that a client can explore
them by only knowing the basic interactions and how to interpret the responses.

According to Martin Fowler [2], Level 1 tackles the question of handling complexity by using
divide and conquer, breaking a large service endpoint down into multiple resources. Level 2
introduces a standard set of verbs so that we handle similar situations in the same way,
removing unnecessary variation. Level 3 introduces discoverability, providing a way of
making a protocol more self-documenting.

SPECS’ APIs sit at Level 2, but the support Level 3 is already planned in future versions.

5.1. Response Code Guidelines

In order to ensure a homogenous behaviour, some basic conventions about the use of
response codes for all SPECS APIs are defined. The conventions are the following:

* When not specified differently, the response code for successful requests is always
“200 OK”, while the response entity body shall be specified into the API
documentation.

* The 404 and 400 error codes are specified for all calls.

* If not otherwise specified in the APl documentation, the response body in case of a
client (4xx) or server (5xx) error code is empty.

The following response codes have fixed and shared semantics. They shall be supported by all
implementations.

SPECS Project - Deliverable 1.3 37

Secure Provisioning of Cloud Services based on SLA Management

Response Code

Meaning

200 OK The request has succeeded.

400 Bad Request The request issued by client is malformed. This may imply a
syntax error in the request headers or in the request entity body,
or it may be due to a request entity body that contains a different
mediatype compared to the one declared into “Content-Type”
header.

404 Not Found Resource not found.

405 Method Not The server is refusing to service the request because the method

Allowed is not applicable for the requested resource.

406 Not Acceptable The resource identified by the request cannot be represented by
the mediatype specified into the “Accept” header by the client.

415 Unsupported The server is refusing to service the request because the

Media Type mediatype of the request entity body, specified into “Content-
Type” header, is not accepted for the requested pair
resource/method.

500 Internal Server

A server-side error that prevents from fulfilling the request

Error occurred. The client may retry the request later, with no

guarantees that it will succeed.

503 Service A server-side temporary error occurred. Implementation should
Unavailable set a “Retry-After” header, while clients can retry the request after
the specified time interval has elapsed.
Table 1. HTTP shared error codes
5.2. Mediatype support

The client should negotiate resources’ representation, where applicable. The admissible
media types are the following:

* text/plain (mostly for URL, simple strings, etc.)

* application/json (default)

* application/xml (optional)

The expected media type of both request and response body of an API call must be specified
in the API documentation. Moreover, if a resource supports multiple representations, this
must be declared in the API documentation, too. The JSON mediatype is used by default for
the communication among internal components, while an XML description for those
resources that can be accessed directly by users is also provided.

In case an application/json or an application/xml media type is involved, the corresponding
data model (namely, the related JSON or XML schema) must be specified in the API
documentation.

All data models are publicly available in a web repository, and the links to related schemas are
reported in the bibliography section.

SPECS Project - Deliverable 1.3 38

Secure Provisioning of Cloud Services based on SLA Management

5.3. Resource Identification (URI)

Resource URIs must be used in a consistent way:
* Each URI identifies only one resource;
* Aresource can be identified by more than one URI.
For instance, “GET /triggers/” identifies all the triggers defined into system, while
“/resources/r_X/triggers” identifies all triggers for resource “r_X".

* A“query string” can be specified (mostly with GET methods) in order to filter results of
an API call.

The APIs documentation shall follow the subsequent conventions:

* each resource is identified by an URI composed of a base-path and a resource identifier
(e.g., /cloud-sla/slas identifies a resource, belonging to the cloud-sla base-path,
representing the set of stored SLAs),

e parts of URLs surrounded by curly braces identify a variable string (e.g., /cloud-
sla/slas/{sla-id} identifies the SLA with id sla-id).

5.4. Collections

Resources can be grouped into collections. Each collection contains an unordered set of
resources belonging to one specific type and identified by means of their URIs. Collections
objects are supported in XML/JSON formats and specify the following additional set of
information:

resource The type of resources included in the collection
total The total number of items in the collection that are hosted on the system
members The number of items of the collection involved in the call

2
In Table 2, we report the XML and JSON data models considered for collections, available at
[xml_1] and [json_1] respectively.

XML <?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<xs:element name="collection" type="collectionType"/>

<xs:complexType name="collectionType">
<xs:sequence>
<xs:element name="item" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attribute name="id" type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="resource" type="xs:string" use="required"/>
<xs:attribute name="total" type="xs:integer" use="optional"/>
<xs:attribute name="members" type="xs:integer" use="optional"/>

SPECS Project - Deliverable 1.3 39

Secure Provisioning of Cloud Services based on SLA Management

</xs:complexType>

</xs:schema>

JSON {
"type" . "Object" ,
"properties":{

"resource": {"type":"string"},
"total":{"type":"string"},
"members": {"type":"integer"},
"item list": {

"type": "array",

"items": {

"type":"object",

"properties":{
"id" : {"type" : "String" } ,
"item":{"type":"string"}

Table 2. Collections data models

An example of instantiation of such models is as follows:

Media type: application/xml
<collection resource="annotation" total="100" members=%“10">
<item id="0">http://localhost/slas/67/annotations/1</item>

<item id="9"> http://localhost/slas/67/annotations/87</item>
</collection>

Media type: application/json
{

“resource”: ”“annotation”,
“total”:”100",
“members”=%10",

“item list”: [
{“id”:”0”,“item” :“http://localhost/slas/67/annotations/1”},
“id”:”79”, “item”:“http://localhost/slas/67/annotations/87"”}

The request URI for collections can include a query string, in order to limit the scope of the
collection itself. An example is given in the following table.

<base Returns a collection with items=<total items>
URL>/collection_resource?
items=<total_ items>

<base URL>/ | Returns a collection with at most <length> items where the
collection_resource?page= page parameter specifies the first item to retrieve.
<value>&length=<value>

The well formed request for a collection always returns a HTTP 200 code. The collection
object may be empty (i.e., “items=0"), in case of:

* an empty collection;

* aquery string that results in an out of range error.

In case of a syntactically malformed query strings, a HTTP 400 code will be returned.

SPECS Project - Deliverable 1.3 40

Secure Provisioning of Cloud Services based on SLA Management

6. Conclusions

In this deliverable, the interaction protocols among the SPECS main modules have been
presented. In particular, we analysed more in details the behaviour of the main SPECS
modules during the phases of the SLA life cycle and elicited the functionalities needed to
accomplish related tasks. Such functionalities were used to design the REST APIs exposed by
each module, whose documentation has been reported in separated Annexes to this
document. The REST APIs have been developed by following precise guidelines, which have
been illustrated in the deliverable, too. Moreover, the APl documentation includes the
specification of all data models used by REST calls.

SPECS Project - Deliverable 1.3 41

Secure Provisioning of Cloud Services based on SLA Management

7. References

[1]]J. Webber, S. Parastatidis, and I. Robinson, REST in Practice, Hypermedia and Systems
Architecture. O'REILLY, 2010.

[2] M. Fowler, “Richardson maturity model: steps toward the glory of REST,” 2010. [Online].
Available: http://martinfowler.com/articles/richardsonMaturityModel.html

[3] NIST, “NIST Special Publication 500-307 Draft: Cloud Computing Service Metrics
Description,” 2015.

[4]Cloud Security Alliance, “Cloud Trust Protocol”, draft version 3.1, A. Pannetrat editor, July
2015.

[xml_1] http://www.specs-project.eu/resources/schemas/xml/collections.xsd

[json_1] http://www.specs-project.eu/resources/schemas/json/collections.json

SPECS Project - Deliverable 1.3 42

Secure Provisioning of Cloud Services based on SLA Management

Annex A — SLA API

Annex B — Services API

Annex C — Interoperability API
Annex D — Negotiation API
Annex E — Enforcement API
Annex F — Log API

Annex G — Monitoring API

SPECS Project - Deliverable 1.3

43

