

Secure Provisioning of Cloud Services

based on SLA Management

SPECS Project - Deliverable 5.2.1

Evaluation and lessons learnt from

scenario on “Real-time monitoring,

reporting and response to security

incidents related to a CSP”

Version no. 1.1

19 July 2016

The activities reported in this deliverable are partially supported

by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

2

Deliverable information

Deliverable no.: D5.2.1

Deliverable title: Evaluation and lessons learnt from scenario on “Real-time

monitoring, reporting and response to security incidents related to a

CSP”

Deliverable nature: Report

Dissemination level: Public

Contractual delivery: 19 July 2016

Actual delivery date: 19 July 2016

Author(s): Jolanda Modic (XLAB)

Contributors: Miha Stopar (XLAB)

Reviewers: Ruben Trapero (TUDA), Jesus Luna (CSA), Massimiliano Rak

(CeRICT)

Task contributing to the

deliverable:

T5.2

Total number of pages: 48

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

3

Executive summary

The focus of this task is to develop a pilot application, using a real service in a production
environment, with which we set up a negotiated cloud service, monitor it, and respond to
Cloud Service Provider (CSP) related security incidents. In particular, the goal is to develop an
application that validates the Secure Storage user story using the real world provider Koofr1.

Both documents of the task T5.2 (namely D5.2.1 and D5.2.2) present development of the
Secure Storage application which integrates (i) the SPECS framework enabling all phases of
the SLA life cycle, (ii) a set of security mechanisms offering negotiable security features, and
(iii) Koofr providing the cloud storage. Through the proof of concept application, the End-
users can negotiate and monitor a cloud storage service, enhanced with specific security
features:

 Client-side encryption enforcing confidentiality and integrity;
 Detection and proof of violations related to write-serializability (i.e., consistency among

up-dates) and read-freshness (i.e., assurance that the requested data is always fresh as
of the last update);

 Backup of stored data.

In particular, this document presents:

 Secure Storage application: We summarize the functionalities offered with the Secure
Storage application by discussing the Secure Storage user story and associated
validation scenarios.

 Application development process: We introduce all artifacts needed for the
development of the Secure Storage application. Namely, we define the cloud service
provisioned by the application, the security mechanisms required to enforce and
monitor the defined cloud service, and security metrics with which End-users
negotiate specific configurations of the defined cloud service. Lastly, we present the
SLA Template that specifies all described attributes and enables automated
negotiation, enforcement, and monitoring of the secure storage service.

 Architecture: We present the design of the Secure Storage application, outlining the
role of Koofr and the role of the SPECS framework. We present security mechanisms
developed for the Secure Storage application in detail, outlining the offered security
features, the way we monitor them, and elaborating on the root cause analysis and
remediation actions for security incidents that affect these features.

The technical aspects of the Secure Storage application (i.e., installation, usage, testing) are

presented in the final deliverable D5.2.2.

1 http://koofr.eu/

http://koofr.eu/

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

4

Table of contents

Deliverable information .. 2

Executive summary ... 3
Table of contents .. 4

Index of figures ... 5

Index of tables ... 6

1. Introduction .. 7

2. Relationship with other deliverables ... 8

3. SPECS Secure Storage application description ... 9

3.1. User story: Secure Storage .. 9

3.2. Validation scenarios ... 9

3.2.1. SST.1 Secure_Storage_Selection ... 10

3.2.2. SST.2 Secure_Storage_Brokering_with_Client_Crypto ... 12

3.2.3. SST.3 Secure_Storage_with_Defined_CSP ... 14

3.2.4. SST.4 Secure_Storage_Brokering_with_Client_Crypto_Alert 16

3.2.5. SST.5 Secure_Storage_Brokering_with_Client_Crypto_Violation............................... 19

4. Application development process.. 23

4.1. Cloud service definition .. 24

4.2. Security mechanisms preparation ... 24

4.3. SLA Template preparation .. 24

5. Architecture .. 26

5.1. Koofr... 26

5.2. Integration with SPECS framework ... 27

5.2.1. DBB and E2EE security mechanisms ... 28

5.2.2. The Auditor .. 29

5.2.3. The Monitoring Adapter ... 35

5.2.4. Reaction to security incidents and system failures .. 36

6. Conclusions ... 40

7. Bibliography ... 42

Appendix 1. The Secure Storage SLA Template .. 43

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

5

Index of figures

Figure 1. Relationships with other deliverables .. 8

Figure 2. Application development process .. 23

Figure 3. The role of Koofr in the SPECS Secure Storage application .. 26

Figure 4. The role of the SPECS framework in the SPECS Secure Storage application 27

Figure 5. Architecture of the DBB and E2EE mechanisms ... 29

Figure 6. Put attestations .. 30

Figure 7. Get attestations .. 30

Figure 8. Structure of attestations ... 31

Figure 9. Auditing process .. 33

Figure 10. Uploading the new Client component .. 36

Figure 11. Remediation in case of (Main or Backup) Server failures .. 37

Figure 12. Remediation in case of (Main or Backup) DB failures .. 37

Figure 13. Moving Main DB .. 38

Figure 14. Setting up new Main Servers .. 38

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

6

Index of tables

Table 1. Capabilities, controls, and metrics offered through the Secure Storage application.... 25

Table 2. Objectives and results of task T5.2 ... 40

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

7

1. Introduction

Cloud Service Providers (CSPs) offer their services through Service Level Agreements (SLAs)
and the importance of SLAs is undisputed. However, most of these SLAs are relatively plain
and usually cover at most availability and support. While having these properties specified in
SLAs is important, there is a variety of security incidents that can occur and are not covered
by these guarantees (CSPs do not offer advanced security metrics/SLOs with which they
would be committed to monitor them). For example, imagine the scenario where for some
reason the End-user’s (End-user’s) data on the cloud gets corrupted. In this case, the service is
still available, the support is available, too, but most probably the CSP does not have a
mechanism to restore the corrupted file. Moreover, it is very likely that the data corruption
would only be detected by the End-user when trying to access the file for the next time (which
might be months after the corruption date). Thus, there is a need to introduce new security
properties in SLAs and develop new mechanisms to enforce and monitor them.

In this document, which is describing the Secure Storage application, we focus on security
properties that are most critical in the cloud storage domain, i.e., confidentiality, integrity,
write-serializability (i.e., consistency among up-dates), and read-freshness (i.e., assurance that
the requested data is always fresh as of the last update). Apart from providing these
guarantees to an End-user, there is also a need to continuously monitor the system and to
automatically react in case of detected violations in order to assure that the CSP’s committed
SLOs are fulfilled. (Note that in SPECS we only monitor what we guarantee in SLAs. Thus
every detected system failure or security incident is associated to a violation of at least one
signed SLA.)

To this end, the application developed for the purpose of offering secure storage service
integrates (i) two security mechanisms that are able to enforce and monitor the above
mentioned security properties (negotiated through SLAs), and (ii) the SPECS framework
which enables the automated management of SLAs. Moreover, the integrated security
mechanisms form a proof-based system which (apart from having the functionality to detect
SLA violations when they occur, notifying them to the CSC immediately, and remediating
them) enables the End-user to prove a violation of some commitment to the CSP, and to enable
the CSP to disprove any potential false accusations from the End-user.

In order to empirically validate the outcomes of this task and to test application’s
functionalities (monitoring, detection, and remediation of synthetic incidents) in near real-
time, we use cloud storage service provided by Koofr.

The remainder of this document is structured as follows. In Section 2 we present other
deliverables of the project that provided an input for this task. The user story and associated
validation scenarios, which served as a base for developing the Secure Storage application, are
discussed in Section 3. The process of developing the application is described in Section 4, and
the architecture of the developed application, the role of Koofr, the role of the SPECS
framework, and details about involved security mechanisms are presented in Section 5. The
document concludes with Section 6, which summarizes the results and reports about the
value of the developed application.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

8

2. Relationship with other deliverables

Development of the Secure Storage application relies on the results of many other tasks of the
project. The starting points are deliverables of the task T5.1. Deliverables D5.1.1 and D5.1.2
report the Secure Storage user story and associated validation scenarios, respectively. The
application is developed according to the guidelines presented in deliverable D5.1.3.

Deliverables D1.1.3 and D1.3 provide an overview of the framework’s architecture and
interactions among its components, respectively, and deliverable D1.5.1 offers an insight into
the integration process of the SPECS framework and validation applications.

The details about SPECS core modules, which orchestrate the SLA life cycle, are taken from
deliverables D2.3.3 (SLA negotiation), D3.4.1 (SLA monitoring), and D4.3.3 (SLA
enforcement). Deliverable D4.3.2 provides information about the initial version of security
mechanisms integrated with the application.

The results presented in this document provide an input for the complementing deliverable
D5.2.2, which presents the technical details of the Secure Storage application, and the
deliverable D4.3.3, which describes the final version of the security mechanisms developed
for the Secure Storage user story.

Note that in deliverables D5.2.1 and D5.2.2 we present the implementation details associated
to the security mechanisms integrated with the Secure Storage application, whereas in
deliverables D4.3.2 and D4.3.3 we present their general usage in terms of the SLA life cycle
(which metrics mechanisms enforce, how they monitor them, what are the remediation
actions in case of their violation, etc.). Hence the bidirectional relationship between
deliverables of tasks T4.3 and T5.2.

The security mechanisms developed under task T5.2 also provide feedback to the business
validation in WP6 (deliverable D6.2.3).

The discussed relationships are depicted in Figure 1.

Figure 1. Relationships with other deliverables

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

9

3. SPECS Secure Storage application description

The Secure Storage application is one of the validation applications introduced in deliverable
D5.1.2, realizing the Secure Storage user story defined in deliverable D5.1.1. The application
offers cloud storage enhanced with specific security features to customers through SLAs, and
is a part of the SPECS solution portfolio (see D6.2.2 and D6.2.3). As we will discuss in Section
5, we use a real-world cloud storage provider Koofr [7] and the security mechanisms
integrated into the application have been developed according to requirements expressed by
the Koofr team. The application expands and improves the cloud storage service offered by
Koofr by enforcing the client-side encryption and enabling the monitoring of some advanced
security properties (integrity, write-serializability, read-freshness).

In the following subsections we present the user story and validation scenarios for the
application.

3.1. User story: Secure Storage

The Secure Storage user story (denoted as SST) describes a non-expert End-user, who wants
to store data with a remote cloud provider. The End-user wants confidentiality guarantees,
such that a provider itself cannot access the stored data.

On top of the required confidentiality guarantees, the Secure Storage service developed in
SPECS ensures the following:

 Cloud storage with backup guaranteeing business continuity through means of disaster
recovery;

 End-2-end encryption enforcing confidentiality and integrity of the stored data.
 Detection and proof of violations related to write-serializability (i.e., consistency among

updates);
 Detection and proof of violations related to read-freshness (i.e., requested data always

being fresh as of the last update).
Note that, apart from the cloud storage, Koofr does not natively provide other features
mentioned above.

For further details about the Secure Storage user story see D5.1.1 and Annex B of D1.2.

3.2. Validation scenarios

This section reports validation scenarios specified according to the Secure Storage user story.
Initially, validation scenarios were defined in deliverable D5.1.1. Due to refinements in
implementation and integration activities, validation scenarios were refined in the second
year of the project and reported in deliverable D5.1.2.

There are five validation scenarios associated to the Secure Storage user story:

 SST.1: An End-user aims at acquiring cloud storage with an external provider. The
validation scenario presents the SLA negotiation phase during which the End-user
negotiates security features of the secure storage service.

 SST.2: An End-user aims at acquiring cloud storage with an external provider,
requiring the client-side encryption functionality. The validation scenario presents the
SLA negotiation phase during which the End-user negotiates security features of the
secure storage service. Moreover, the scenario also includes the SLA implementation

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

10

and SLA monitoring phases, which comprise of deploying and configuring mechanisms
able to enforce and monitor the negotiated service.

 SST.3: An End-user aims at acquiring cloud storage with a known cloud provider (for
which the End-user provides credentials), requiring the client-side encryption
functionality. The validation scenario presents the SLA negotiation phase during which
the End-user negotiates security features of the secure storage service. Moreover, the
scenario also includes the SLA implementation and SLA monitoring phases, which
comprise of deploying and configuring mechanisms able to enforce and monitor the
negotiated service.

 SST.4: This validation scenario extends validation scenario SST.2, where an SLA alert is
raised due to unavailability of one of the servers. The scenario also includes a
successful remediation.

 SST.5: This validation scenario extends validation scenario SST.2, where an SLA
violation is raised due to unavailability of one of the servers. The scenario also includes
a notification to the End-user and an unsuccessful remediation.

In the following table we present the impact of the Secure Storage application on the
execution KPIs (defined in deliverable D5.1.1). For each key concern defined in deliverable
D5.1.1 we report the percentage of its coverage by the Secure Storage validation scenarios.

Key
concern ID Key concern

Secure Storage
application

All SPECS
applications

ECU User 20% 66.7%
ECTS Target services 28.6% 100%
ECIC Invocation chain 66.7% 100%

ECSLA SLA life cycle 50% 78.9%
ECSS SPECS services 43.7%2 100%
Table 1. Impact of the Secure Storage application on execution KPIs

In the remainder of this section we report the described validation scenarios in whole. Note
that although the defined validation scenarios do not cover all possible combinations of the
cloud service provided through the application, nor do they cover all possible cyber incidents.
However, these validation scenarios provide a base for the integration activities. Based on the
defined validation scenarios we define a set of integration scenarios with which we verify
correctness of implementation/integration of involved artifacts. The unit and the integration
tests executed for the mechanisms, core components, and the application itself cover as much
code and situations, that we can conclude that even combinations of the cloud service and
associated security incidents/system failure that are not covered by the defined validation
scenarios below would be managed correctly.

3.2.1. SST.1 Secure_Storage_Selection

General Information

ID SST.1 - Secure_Storage_Selection

Version 2.0

User Story STO Secure Storage

2 There are 128 requirements associated to the validation scenarios of the Secure Storage user story out of 293
all requirements for the SPECS framework.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

11

Invocation Chain IM1-P, IM3 Interaction Model 1- SPECS acting the role of Partner

Scenario Steps

General Description

The End-user aims at acquiring a secure storage service from a cloud provider,
which fulfils specific security-related requirements. To achieve this service, the End-
user negotiates the desired features with SPECS.
In this validation scenario, the desired features are entirely implemented by an
external CSP, while SPECS only provides the End-user with the functionalities to
search, rank and select a service, which is compliant to her/his requirements.
Moreover, in this scenario, SPECS supports the End-user in signing an SLA with the
selected provider.

Steps

1

Phase SLA Negotiation

Actor End-user, SPECS application, SPECS Negotiation module

Preconditions
The End-user has very basic security knowledge; she/he is able to express
qualitatively requirements at a high-level of abstraction.

Trigger

Actions

The End-user accesses the SPECS application interface. The negotiation request is
forwarded to the SPECS Negotiation module, which retrieves the list of available
SLA templates representing the available security services and the related security
capabilities, controls and metrics. The services are returned to the End-user.

Postconditions

2

Phase SLA Negotiation

Actor End-user, SPECS application

Preconditions

Trigger

Actions

The End-user selects, among the available service offers, the desired one, i.e. the
Database and Backup. The End-user specifies the desired security features by
selecting the capabilities she/he is interested in and specifying the related security
controls. She/he also specifies the desired metrics and sets the related SLOs.

Postconditions A supply chain compliant to the End-user requirements is built.

3

Phase SLA Negotiation

Actor SPECS application, SPECS Negotiation module, SPECS Enforcement module

Preconditions
A secure storage service that fulfils the specific security requirements is known to
SPECS.

Trigger

Actions

The End-user’s choices are forwarded by the SPECS application to the SPECS
Negotiation module, which searches for valid supply chains. In particular, the list of
supply chains is built with the help of the SPECS Enforcement module.
For each valid supply chain, an SLA Offer is created. The set of SLA Offers are hence
ranked and returned to the SPECS application. The CSPs also add the cost of each
service offer.

Postconditions

4

Phase SLA Negotiation

Actor End-user, SPECS application, SLA Platform

Preconditions The End-user shall be logged on SPECS.

Trigger

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

12

Actions

The SPECS application validates the SLA Offers, which are then presented to the
End-user. The service offer is associated with an SLA published by an external CSP.
The End-user either:
1. Accepts and signs the SLA offered by the external CSP;
2. Does not select any SLA Offer from the list and repeats the whole process from

step 1 (possibly specifying a different set of requirements);
3. Does not select any SLA Offer from the list and exits the application.

Postconditions
In case 1 - the signed SLA is stored by SPECS. The End-user is enabled to invoke the
desired service on the external CSP with the configuration information included in
the SLA.

Graphical Model
Not reported to avoid replication of information. See D1.3 for detailed interactions

between SPECS modules.

Coverage Information

Users U_1 (CSC:User)

Target services TS_3 (Data Storage as a Service)

SPECS services See Appendix B of D5.1.2

SLA SLA_1, SLA_3, SLA_4, SLA_5

3.2.2. SST.2 Secure_Storage_Brokering_with_Client_Crypto

General Information

ID SST.2 - Secure_Storage_Brokering_with_Client_Crypto

Version 2.0

User Story STO Secure Storage

Invocation Chain IM1-CSP, IM3 Interaction Model 1- SPECS acting the role of CSP

Scenario Steps

General Description

The End-user aims at acquiring a secure storage service from a remote cloud
provider, which fulfils specific security-related requirements. Specifically, the End-
user needs the two capabilities of Database-as-a-Service and End-2-End Encryption
in order to detect and prove security-related violations and to locally encrypt
her/his data.
To achieve this service, the End-user negotiates the desired features with SPECS and
signs an SLA including all service terms and guarantees.
SPECS acquires the Database-as-a-Service on behalf of the End-user (registered on
SPECS) and provides her/him with end-2-end encryption security mechanism. In
this scenario, SPECS also provides monitoring functionalities.

Steps

1

Phase SLA Negotiation

Actor End-user, SPECS application, SPECS Negotiation module

Preconditions
The End-user has very basic security knowledge; she/he is able to express
qualitatively requirements at a high-level of abstraction.

Trigger

Actions

The End-user accesses the SPECS application interface. The negotiation request is
forwarded to the SPECS Negotiation module, which retrieves the list of available
SLA templates representing the available security services and the related security
capabilities, controls and metrics. The services are returned to the End-user.

Postconditions

2

Phase SLA Negotiation

Actor End-user, SPECS application

Preconditions

Trigger

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

13

Actions

The End-user selects, among the available service offers, the desired one, i.e. the
Database and Backup with End-2-End Encryption. The End-user specifies the
desired security features by selecting the capabilities she/he is interested in and by
specifying the related security controls. She/he also specifies the desired metrics
and sets the related SLOs. Precisely, the End-user specifies, between others, the need
of having a client-side encryption mechanism.

Postconditions A supply chain compliant to the End-user requirements is built.

3

Phase SLA Negotiation

Actor SPECS application, SPECS Negotiation module, SPECS Enforcement module

Preconditions

A secure storage service, which fulfils the specific security requirements is not
known to SPECS.
An external CSP offering the Database-as-a-Service compliant with the related End-
user’s requirements is known to SPECS, and the end-2-end encryption is offered as
SPECS security mechanism.

Trigger

Actions

The End-user’s choices are forwarded by the SPECS application to the SPECS
Negotiation module, which searches for valid supply chains. In particular, the list of
supply chains is built with the help of the SPECS Enforcement module. In this step,
an external CSP offering the Database-as-a-Service is identified while the
Encryption Package, able to support the client-side encryption, is added as a SPECS
Enforcement service.
For each valid supply chain, an SLA Offer is created. The set of SLA Offers are hence
ranked and returned to the SPECS application.

Postconditions

4

Phase SLA Negotiation

Actor End-user, SPECS application, SLA Platform

Preconditions The End-user shall be logged on SPECS.

Trigger

Actions

The SPECS application validates the SLA Offers which are then presented to the
End-user. The End-user selects the SLA Offer in which the Database-as-a-Service is
offered by an external CSP while the client-side encryption is offered as a SPECS
security mechanism. The selected SLA Offer is used to update and sign the SLA in the
SLA Platform.

Postconditions
The SLA, containing all information needed for SLA implementation, has been
signed.

5

Phase SLA Implementation

Actor SPECS application, SPECS Enforcement module, SLA Platform

Preconditions A valid signed SLA containing all service terms and service guarantees is available
in the SLA Platform.

Trigger

Actions The SPECS application invokes the SPECS Enforcement module which retrieves the
SLA to implement from the SLA Platform and prepares a plan to implement the
signed SLA: it analyses the SLA, deduces alert thresholds, chooses the security and
monitoring mechanisms to activate and determines all related software to install,
as well as their configurations.

Postconditions

6

Phase SLA Implementation

Actor SPECS Enforcement module

Preconditions A plan has been built to implement a signed SLA.

Trigger

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

14

Actions

The SPECS Enforcement module implements the plan, by configuring and deploying
all the components in order to respect the features granted in the SLA. The SPECS
Enforcement module deploys and configures monitoring agents and activates all
the components and services.

Postconditions

7

Phase SLA Implementation

Actor SPECS Enforcement module, SPECS Monitoring Module

Preconditions
All components and services needed for SLA implementation have been correctly
configured and activated.

Trigger

Actions
The SPECS Enforcement module configures the Monitoring module with a
monitoring policy by setting proper alert/violation thresholds for specific metrics.

Postconditions

8

Phase SLA Monitoring

Actor SPECS Monitoring module

Preconditions

Trigger

Actions
SPECS keeps collecting information about the provided service and evaluates them
against the current monitoring policy.

Postconditions

Graphical Model
Not reported to avoid replication of information. See D1.3 for detailed interactions

between SPECS modules.

Coverage Information

Users U_1 (CSC:User)

Target services TS_3 (Data Storage as a Service), TS_7 (Software as a Service)

SPECS services See Appendix B of D5.1.2

SLA SLA_1, SLA_3, SLA_6, SLA_7

3.2.3. SST.3 Secure_Storage_with_Defined_CSP

General Information

ID SST.3 - Secure_Storage_with_Defined_CSP

Version 2.0

User Story STO Secure Storage

Invocation Chain IM1-CSP, IM3 Interaction Model 1- SPECS acting the role of CSP

Scenario Steps

General Description

The End-user aims at storing encrypted data on a known remote cloud provider
which offers a Database-as-a-service. The End-user asks SPECS for End-2-End
Encryption capability, needed to locally encrypt her/his data.
To achieve this service, the End-user also gives SPECS her/his credentials on the
chosen provider; SPECS manages these credentials and uses them to log into the
chosen provider and store User’s data.
In this scenario, SPECS also provides monitoring functionalities.

Steps

1

Phase SLA Negotiation

Actor End-user, SPECS application, SPECS Negotiation module

Preconditions
The End-user has very basic security knowledge; she/he is able to express
qualitatively requirements at a high-level of abstraction.

Trigger

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

15

Actions

The End-user accesses the SPECS application interface. The negotiation request is
forwarded to the SPECS Negotiation module, which retrieves the list of available
SLA templates representing the available security services and the related security
capabilities, controls and metrics. The services are returned to the End-user.

Postconditions

2

Phase SLA Negotiation

Actor End-user, SPECS application

Preconditions
The external CSP offering the Database-as-a-Service chosen by the End-user is
known to SPECS, and the end-2-end encryption is offered as SPECS security
mechanism.

Trigger

Actions

The End-user selects, among the available service offers, the desired one, i.e. the
Database and Backup with End-2-End Encryption. The End-user specifies the
desired security features by selecting the capabilities she/he is interested in and by
specifying the related security controls. She/he also specifies the desired metrics
and sets the related SLOs. Precisely, the End-user specifies, between others, the
needs of using a specific CSP as Database-as-a-Service provider and having a client-
side encryption mechanism.

Postconditions A supply chain compliant to the End-user requirements is built.

3

Phase SLA Negotiation

Actor SPECS application, SPECS Negotiation module, SPECS Enforcement module

Preconditions

Trigger

Actions

The End-user’s choices are forwarded by the SPECS application to the SPECS
Negotiation module, which searches for valid supply chains. In particular, the list of
supply chains is built with the help of the SPECS Enforcement module. In this step,
the specific CSP defined by the End-user is identified while the Encryption Package,
able to support the client-side encryption, is added as a SPECS Enforcement service.
For each valid supply chain, an SLA Offer is created. The set of SLA Offers are hence
ranked and returned to the SPECS application.

Postconditions

4

Phase SLA Negotiation

Actor End-user, SPECS application, SLA Platform

Preconditions The End-user shall be logged on SPECS.

Trigger

Actions

The SPECS application validates the SLA Offers, which are then presented to the
End-user. The End-user selects the SLA Offer in which the Database-as-a-Service is
offered by an external CSP while the client-side encryption is offered as a SPECS
security mechanism. The selected SLA Offer is used to update and sign the SLA in the
SLA Platform.

Postconditions
The SLA, containing all information needed for SLA implementation, has been
signed.

5

Phase SLA Implementation

Actor SPECS application, SPECS Enforcement module, SLA Platform

Preconditions A valid signed SLA containing all service terms and service guarantees is available
in the SLA Platform.

Trigger

Actions The SPECS application invokes the SPECS Enforcement module which retrieves the
SLA to implement from the SLA Platform and prepares a plan to implement the
signed SLA: it analyses the SLA, deduces alert thresholds, chooses the security and
monitoring mechanisms to activate and determines all related software to install as
well as their configurations.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

16

6

Phase SLA Implementation

Actor SPECS Enforcement module

Preconditions
A plan has been built to implement a signed SLA.
The credentials of the End-user on the external CSP have been acquired.

Trigger

Actions

The SPECS Enforcement module implements the plan, by configuring and deploying
all the components in order to respect the features granted in the SLA. The SPECS
Enforcement module acquires the storage service with the credentials of the End-
user on the external CSP and deploys and configures monitoring agents. The SPECS
Enforcement module activates all the components and services.

Postconditions

7

Phase SLA Implementation

Actor SPECS Enforcement module, SPECS Monitoring Module

Preconditions
All components and services needed for SLA implementation have been correctly
configured and activated.

Trigger

Actions
The SPECS Enforcement module configures the Monitoring module with a
monitoring policy by setting proper alert/violation thresholds for specific metrics.

Postconditions

8

Phase SLA Monitoring

Actor SPECS Monitoring module

Preconditions

Trigger

Actions
SPECS keeps collecting information about the provided service and evaluates them
against the current monitoring policy.

Postconditions

Graphical Model
Not reported to avoid replication of information. See D1.3 for detailed interactions

between SPECS modules.

Coverage Information

Users U_1 (CSC:User)

Target services TS_3 (Data Storage as a Service), TS_7 (Software as a Service)

SPECS services See Appendix B of D5.1.2

SLA SLA_1, SLA_3, SLA_6, SLA_7

3.2.4. SST.4 Secure_Storage_Brokering_with_Client_Crypto_Alert

General Information

ID SST.4 - Secure_Storage_Brokering_with_Client_Crypto_alert

Version 2.0

User Story STO Secure Storage

Invocation Chain IM1-CSP, IM3 Interaction Model 1- SPECS acting the role of CSP

Scenario Steps

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

17

General Description

The End-user aims at acquiring a secure storage service from a remote cloud
provider, which fulfils specific security-related requirements. Specifically, the End-
user needs the two capabilities of Database-as-a-Service and End-2-End Encryption
in order to detect and prove security-related violations and to locally encrypt
her/his data.
To achieve this service, the End-user negotiates the desired features with SPECS and
signs an SLA including all service terms and guarantees.
SPECS acquires the Database-as-a-Service on behalf of the End-user (registered on
SPECS) and provides her/him with end-2-end encryption security mechanism. In
this scenario, SPECS also provides monitoring functionalities.
In this scenario, an alert is raised since the Encryption Server component is
detected to be down and, since no data are sent from the End-user during the down
time, no violation occurs.

Steps

1

Phase SLA Negotiation

Actor End-user, SPECS application, SPECS Negotiation module

Preconditions
The End-user has very basic security knowledge; she/he is able to express
qualitatively requirements at a high-level of abstraction.

Trigger

Actions

The End-user accesses the SPECS application interface. The negotiation request is
forwarded to the SPECS Negotiation module, which retrieves the list of available
SLA templates representing the available security services and the related security
capabilities, controls and metrics. The services are returned to the End-user.

Postconditions

2

Phase SLA Negotiation

Actor End-user, SPECS application

Preconditions

Trigger

Actions

The End-user selects, among the available service offers, the desired one, i.e. the
Database and Backup with End-2-End Encryption. The End-user specifies the
desired security features by selecting the capabilities she/he is interested in and by
specifying the related security controls. She/he also specifies the desired metrics
and sets the related SLOs. Precisely, the End-user specifies, between others, the need
of having a client-side encryption mechanism.

Postconditions A supply chain compliant to the End-user requirements is built.

3

Phase SLA Negotiation

Actor SPECS application, SPECS Negotiation module, SPECS Enforcement module

Preconditions

A secure storage service that fulfils the specific security requirements is not known
to SPECS.
An external CSP offering the Database-as-a-Service compliant with the related End-
user’s requirements is known to SPECS, and the end-2-end encryption is offered as
SPECS security mechanism.

Trigger

Actions

The End-user’s choices are forwarded by the SPECS application to the SPECS
Negotiation module, which searches for valid supply chains. In particular, the list of
supply chains is built with the help of the SPECS Enforcement module. In this step,
an external CSP offering the Database-as-a-Service is identified while the
Encryption Package, able to support the client-side encryption, is added as a SPECS
Enforcement service.
For each valid supply chain, an SLA Offer is created. The set of SLA Offers are hence
ranked and returned to the SPECS application.

Postconditions

4 Phase SLA Negotiation

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

18

Actor End-user, SPECS application, SLA Platform

Preconditions The End-user shall be logged on SPECS.

Trigger

Actions

The SPECS application validates the SLA Offers, which are then presented to the
End-user. The End-user selects the SLA Offer in which the Database-as-a-Service is
offered by an external CSP while the client-side encryption is offered as a SPECS
security mechanism. The selected SLA Offer is used to update and sign the SLA in the
SLA Platform.

Postconditions
The SLA, containing all information needed for SLA implementation, has been
signed.

5

Phase SLA Implementation

Actor SPECS application, SPECS Enforcement module, SLA Platform

Preconditions A valid signed SLA containing all service terms and service guarantees is available
in the SLA Platform

Trigger

Actions The SPECS application invokes the SPECS Enforcement module which retrieves the
SLA to implement from the SLA Platform and prepares a plan to implement the
signed SLA: it analyses the SLA, deduces alert thresholds, chooses the security and
monitoring mechanisms to activate and determines all related software to install
along with their configurations.

Postconditions

6

Phase SLA Implementation

Actor SPECS Enforcement module

Preconditions A plan has been built to implement a signed SLA.

Trigger

Actions

The SPECS Enforcement module implements the plan, by configuring and deploying
all the components in order to respect the features granted in the SLA. The SPECS
Enforcement module deploys and configures monitoring agents and activates all
the components and services.

Postconditions

7

Phase SLA Implementation

Actor SPECS Enforcement module, SPECS Monitoring Module

Preconditions
All components and services needed for SLA implementation have been correctly
configured and activated.

Trigger

Actions
The SPECS Enforcement module configures the Monitoring module with a
monitoring policy by setting proper alert/violation thresholds for specific metrics.

Postconditions

8

Phase SLA Monitoring

Actor SPECS Monitoring module

Preconditions

Trigger

Actions
SPECS keeps collecting information about the provided service and evaluates them
against the current monitoring policy.

Postconditions

9

Phase SLA Remediation

Actor SPECS Monitoring module, SPECS Enforcement module

Preconditions

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

19

Trigger
The SPECS Monitoring module generates monitoring events due to the deviation of
some metrics from set thresholds (since the the Encryption Server component is
down).

Actions

The SPECS Enforcement module analyses monitoring events and classifies it as an
alert. The root cause of the monitoring event is determined (the Encryption server
component is detected to be down, but no data has been sent from the End-user
during the down time; thus no violation occurs).

Postconditions A report on the alert and on the root cause of the monitoring event is created.

10

Phase SLA Remediation

Actor SPECS Enforcement module

Preconditions

Trigger

Actions
The SPECS Enforcement module reacts by restarting the component before any
encrypted files are sent to the server.

Postconditions The alert is solved.

Graphical Model
Not reported to avoid replication of information. See D1.3 for detailed interactions

between SPECS modules.

Coverage Information

Users U_1 (CSC:User)

Target services TS_3 (Data Storage as a Service), TS_7 (Software as a Service)

SPECS services See Appendix B of D5.1.2

SLA SLA_1, SLA_3, SLA_6, SLA_7, SLA_9, SLA_10, SLA_11

3.2.5. SST.5 Secure_Storage_Brokering_with_Client_Crypto_Violation

General Information

ID SST.5 - Secure_Storage_Brokering_with_Client_Crypto_violation

Version 2.0

User Story STO Secure Storage

Invocation Chain
IM1-CSP,
IM3

Interaction Model 1- SPECS acting the role of CSP

Scenario Steps

General Description

The End-user aims at acquiring a secure storage service from a remote cloud
provider, which fulfils specific security-related requirements. Specifically, the End-
user needs the two capabilities of Database-as-a-Service and End-2-End Encryption
in order to detect and prove security-related violations and to locally encrypt
her/his data.
To achieve this service, the End-user negotiates the desired features with SPECS and
signs an SLA including all service terms and guarantees.
SPECS acquires the Database-as-a-Service on behalf of the End-user (registered on
SPECS) and provides her/him with end-2-end encryption security mechanism. In
this scenario, SPECS also provides monitoring functionalities.
In this scenario, a violation is detected since the Encryption Server component is
detected to be down.

Steps

1

Phase SLA Negotiation

Actor End-user, SPECS application, SPECS Negotiation module

Preconditions
The End-user has very basic security knowledge; she/he is able to express
qualitatively requirements at a high-level of abstraction.

Trigger

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

20

Actions

The End-user accesses the SPECS application interface. The negotiation request is
forwarded to the SPECS Negotiation module, which retrieves the list of available
SLA templates representing the available security services and the related security
capabilities, controls and metrics. The services are returned to the End-user.

Postconditions

2

Phase SLA Negotiation

Actor End-user, SPECS application

Preconditions

Trigger

Actions

The End-user selects, among the available service offers, the desired one, i.e. the
Database and Backup with End-2-End Encryption. The End-user specifies the
desired security features by selecting the capabilities she/he is interested in and by
specifying the related security controls. She/he also specifies the desired metrics
and sets the related SLOs. Precisely, the End-user specifies, between others, the need
of having a client-side encryption mechanism.

Postconditions A supply chain compliant to the End-user requirements is built.

3

Phase SLA Negotiation

Actor SPECS application, SPECS Negotiation module, SPECS Enforcement module

Preconditions

A secure storage service that fulfils the specific security requirements is not known
to SPECS.
An external CSP offering the Database-as-a-Service compliant with the related End-
user’s requirements is known to SPECS, and the end-2-end encryption is offered as
SPECS security mechanism.

Trigger

Actions

The End-user’s choices are forwarded by the SPECS application to the SPECS
Negotiation module, which searches for valid supply chains. In particular, the list of
supply chains is built with the help of the SPECS Enforcement module. In this step,
an external CSP offering the Database-as-a-Service is identified while the
Encryption Package, able to support the client-side encryption, is added as a SPECS
Enforcement service.
For each valid supply chain, an SLA Offer is created. The set of SLA Offers are hence
ranked and returned to the SPECS application.

Postconditions

4

Phase SLA Negotiation

Actor End-user, SPECS application, SLA Platform

Preconditions The End-user shall be logged on SPECS.

Trigger

Actions

The SPECS application validates the SLA Offers which are then presented to the
End-user. The End-user selects the SLA Offer in which the Database-as-a-Service is
offered by an external CSP while the client-side encryption is offered as a SPECS
security mechanism. The selected SLA Offer is used to update and sign the SLA in the
SLA Platform.

Postconditions
The SLA, containing all information needed for SLA implementation, has been
signed.

5

Phase SLA Implementation

Actor SPECS application, SPECS Enforcement module, SLA Platform

Preconditions A valid signed SLA containing all service terms and service guarantees is available
in the SLA Platform.

Trigger

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

21

Actions The SPECS application invokes the SPECS Enforcement module which retrieves the
SLA to implement from the SLA Platform and prepares a plan to implement the
signed SLA: it analyses the SLA, deduces alert thresholds, chooses the security and
monitoring mechanisms to activate and determines all related software to install
along with their configurations.

Postconditions

6

Phase SLA Implementation

Actor SPECS Enforcement module

Preconditions A plan has been built to implement a signed SLA.

Trigger

Actions

The SPECS Enforcement module implements the plan, by configuring and deploying
all the components in order to respect the features granted in the SLA. The SPECS
Enforcement module deploys and configures monitoring agents and activates all
the components and services.

Postconditions

7

Phase SLA Implementation

Actor SPECS Enforcement module, SPECS Monitoring Module

Preconditions
All components and services needed for SLA implementation have been correctly
configured and activated.

Trigger

Actions
The SPECS Enforcement module configures the Monitoring module with a
monitoring policy by setting proper alert/violation thresholds for specific metrics.

Postconditions

8

Phase SLA Monitoring

Actor SPECS Monitoring module

Preconditions

Trigger

Actions
SPECS keeps collecting information about the provided service and evaluates them
against the current monitoring policy.

Postconditions

9

Phase SLA Remediation

Actor End-user, SPECS Monitoring module, SPECS Enforcement module

Preconditions The End-user has sent files to encrypt to the server while it is down

Trigger
The SPECS Monitoring module generates monitoring events due to the deviation of
some metrics from set thresholds (since the Encryption Server component is down).

Actions

The SPECS Enforcement module analyses monitoring events and detects a violation.
The root cause analysis of the monitoring event is determined (the Enforcement
module determines that the SLA violation occurred due to the Encryption Server
component being down).

Postconditions A report on the violation and on the root cause of the monitoring event is created.

10

Phase SLA Remediation

Actor SPECS Enforcement module

Preconditions

Trigger

Actions
SPECS notifies the violation to the End-User through the SPECS Application. The
SPECS Enforcement module searches for alternatives for the End-user by building
new services.

Postconditions The SLA is no more fulfilled.

Graphical Model
Not reported to avoid replication of information. See D1.3 for detailed interactions

between SPECS modules.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

22

Coverage Information

Users U_1 (CSC:User)

Target services TS_3 (Data Storage as a Service), TS_7 (Software as a Service)

SPECS services See Appendix B of D5.1.2

SLA SLA_1, SLA_3, SLA_6, SLA_7, SLA_9, SLA_12

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

23

4. Application development process

In order to develop the Secure Storage application, we took and customized the default SPECS
application [4], which integrates the SPECS core modules and enables all functionalities
needed to negotiate, enforce, and monitor SLAs. Since the default SPECS application already
automates the basic part of the cloud service delivery (namely SLA negotiation, enforcement,
monitoring), the customization consists of defining, developing, and deploying the
mechanisms that are needed to enforce and monitor the features that we want to offer
through the application (confidentiality, integrity, write-serializability, and read-freshness).

The application development process (depicted in Figure 2) starts with the definition of the
cloud service that will be delivered through the application and the definition of the features
that we want to offer for the chosen cloud service. For example, we define the cloud storage
service and define the client-side encryption as one of the features offered with the secure
storage service.

Figure 2. Application development process

In the next step we identify (and, if needed, develop) the mechanisms able to enforce and
monitor the defined cloud service and its features. For the previous example we would need
to identify an existing or develop a new mechanism able to provide the client-side encryption.

In Step 3 we summarize all features that are being offered through the application in an SLA
Template. For the example at hand we would need to provide a formal description of the
secure storage service and all metrics/SLOs that can be negotiated with respect to the client-
side encryption feature. This template serves as the base for the SLA negotiation phase (the
SLA Template provides the information to the Negotiation module about what can be
negotiated and enforced – for details about the negotiation process in SPECS see deliverable
D2.3.3).

The last step of the process comprises the deployment of the developed security mechanisms
and the created SLA Template, to make them available to the developed application. In
practice this means registering any newly developed security mechanisms and associated
Chef3 cookbooks with the SPECS Chef Server (for details see D4.3.2), and registering the
created SLA Template with the SLO Manager4.

In the following subsections we present the details of the first three steps while the last one,
which is not application specific, is discussed in deliverable D5.1.3.

Note that the entire application development process is conducted by following the steps
defined in deliverable D5.1.3.

3 In SPECS, the automated deployment and configuration of resources and services is orchestrated with Chef [6].
For further details on the use of Chef in SPECS see deliverable D4.2.2.
4 Component of the Negotiation module that stores and manages SLA Templates. For details see D2.3.3.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

24

4.1. Cloud service definition

With the application developed in task T5.2, we want to offer secure storage service. In
particular, we want to offer cloud storage, enhanced with the following features:

 Detection and proof of violations related to write-serializability (WS) and read-
freshness (RF);

 End-2-end encryption enforcing confidentiality (CO) and integrity (IN);
 Backup which ensures that in case of violations related to WS, RF, CO, and IN the

corrupted or missing data can (to some extent) be recovered. By “to some extent” we
mean that the database can be restored to the state of the last completed backup. Any
data lost or corrupted between the last completed backup and the occurrence of the
violation cannot be restored.

Offering a cloud storage with no additional security guarantees covers validation scenario
SST.1, whereas implementing all additional security properties offered through the
application covers validation scenarios SST.2, SST.3, SST.4, and SST.5.

In the next section we discuss the mechanisms that are integrated with the application in
order to enforce and monitor the above mentioned security features.

4.2. Security mechanisms preparation

In order to enforce secure storage with backup and with the functionality to detect and prove
violations of WS, RF, and IN, we integrate the Database and Backup (DBB) security
mechanism, introduced in deliverable D4.3.2. The mechanism enforces the capability of
“surviving incidents that compromise the availability and/or integrity of data stored remotely by
providing backup service and the detection of violations associated to write-serializability and
read-freshness”.

In order to enforce CO, we integrate the End-2-End Encryption (E2EE) security
mechanism, introduced in deliverable D4.3.2. The mechanism enforces the capability of
“providing client-side encryption enforcing confidentiality”.

The Chef cookbooks for automated management of both mechanisms are available to the
Secure Storage application online [5].

In the next subsection we present the SLA Template created for the SPECS Secure Storage
service. The template specifies the cloud storage capabilities, controls, and metrics that can be
negotiated through the application.

4.3. SLA Template preparation

As discussed in deliverable D2.3.3, the negotiation process in SPECS is based on the SLA
Template which specifies the service that can be delivered, the capabilities that can be
implemented on top of it, and the security guarantees that can be enforced and monitored for
each capability. In case of the Secure Storage application, the delivered service is Secure
Storage. To enforce features that are discussed in Section 4.1 and enforced by mechanisms
reported in Section 4.2, we define two security capabilities:

 Database and Backup as a Service capability enforced by the DBB security
mechanism.

 End-2-End Encryption capability enforced by the E2EE security mechanism.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

25

For each of these two capabilities we identify a set of security controls (taken from the NIST
[8] and the CSA [9] security control frameworks) and security metrics that they implement.
We report them in the following table.

Note that due to improvements in the implementation, security metrics for E2EE and DBB
have been slightly updated in the last 6 months of the project. The initial definitions are
reported in deliverable D4.3.2.

Security
capability

Database and Backup as a Service

NIST 800-
53r4

 CP-2(4) Contingency plan | Resume all missions / Business functions
 CP-2(6) Contingency plan | Alternate processing / Storage site
 CP-6(1) Alternate storage site | Separation from primary site
 CP-9 Information system backup
 CP-9(6) Information system backup | Redundant secondary system
 CP-10 Information system recovery and reconstitution
 SI-7 Software, firmware, and information integrity
 SI-7(1) Software, firmware, and information integrity | Automated notifications

of integrity violations
 SI-7(5) Software, firmware, and information integrity | Automated response to

integrity violations

CSA CCM
v3.0

 IVS-02 Infrastructure & Virtualization security | Change detection
 BCR-01 Business continuity management & Operational resilience | Business

continuity planning
 BCR-11 Business continuity management & Operational resilience | Policy
 AIS-03 Application & Interface security | Data integrity

Security
metrics

 Write-Serializability (WS): This metric ensures the End-user consistency

among updates of the stored data. In case of WS violations, the End-user will be
notified and the system will be restored to the state of the last completed
backup.

 Read-Freshness (RF): This metric ensures the End-user that the requested

data will always be fresh as of the last update. In case of RF violations, the End-
user will be notified and the system will be restored to the state of the last
completed backup.

 Integrity (IN): This metric ensures the End-user integrity of the stored data.

Security
capability

End-2-End Encryption

NIST 800-
53r4

 SC-12 Cryptographic key establishment and management
 SC-13 Cryptographic protection

CSA CCM
v3.0

 EKM-01 Encryption & Key management | Entitlement
 EKM-03 Encryption & Key management | Sensitive data protection

Security
metrics

 Confidentiality (CO): This metric ensures the End-user confidentiality of the
stored data. Confidentiality is enforced with end-2-end encryption provided by
the Client component. We guarantee that the Client component is audited and
thus (used as is) grants the security of encryption.

Table 2. Capabilities, controls, and metrics offered through the Secure Storage application

The created SLA Template for the Secure Storage application is fully reported in Appendix 1.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

26

5. Architecture

The Secure Storage application demonstrates the use of the SPECS framework and SPECS
security mechanisms in the cloud storage domain. The goal of the task T5.2 is to create
different situations in terms of security incidents associated to the cloud storage paradigm (to
identify possible security incidents for the security properties offered through the application,
as defined by the validation scenarios), and test the behaviour of the SPECS framework and
mechanisms in those situations. Although the defined validation scenarios only cover two
particular security incidents, we implement mechanisms that are able to detect others.

As already mentioned in the introduction of this document, the developed application
integrates (i) the SPECS framework which orchestrates the SLA life cycle, (ii) SPECS security
mechanisms which enhance security level of the cloud storage service by enforcing and
monitoring specific security features, and (iii) a real world CSP, namely Koofr, as the storage
provider. In this section, we further elaborate on the roles and functionalities of these
artifacts.

In the first following subsection, we briefly present Koofr and then we focus on the
architecture of the developed application and functionalities of security mechanisms.

5.1. Koofr

Koofr is a cloud storage provider, enabling management of any data (photos, videos,
documents), on any storage (enables connection of Dropbox, Google Drive, Amazon and
OneDrive accounts), from any device (iOS, Android, Windows Phone, OS X, Windows, Linux,
WebDAV, and more), and on any location. It automatically synchronises the Koofr account
with your computer, automatically backs up data from phone, and enables one search for all
files through all accounts and all devices. For more details see [7] or deliverable D6.2.1.

In SPECS, in particular in task T5.2, Koofr is used as the CSP. More precisely, Koofr is used as
the SPECS Owner which integrates the SPECS framework to enable management of SLAs for
the cloud storage services that are enhanced with security features enforced by SPECS
security mechanisms. As shown in Figure 3, End-users can acquire cloud storage services (by
negotiating services through SLAs) through the SPECS Secure Storage application based on
the SPECS framework that is integrated with the Koofr service.

Figure 3. The role of Koofr in the SPECS Secure Storage application

At the beginning of the project, the requirements for the functionalities offered through the
secure storage application came from Koofr. And since Koofr does not provide any kind of
encryption, one of the main requirements was to integrate a mechanism (E2EE) providing the
client-side encryption. Moreover, by integrating the mechanism to automatically manage

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

27

storage and backup (DBB), we provide with additional negotiable security assurances, namely
detecting, notifying, and remediating violations associated to integrity, write-serializability
and read-freshness. The second mechanism has been developed to cover additional
requirements given by the Koofr team (to support advanced cloud storage properties and
monitor them).

For further information about exploitation activities associated to Koofr, see deliverables
D6.2.2 and D6.2.3.

5.2. Integration with SPECS framework

As already mentioned in Section 4.2, the Secure Storage application integrates two security
mechanisms, namely DBB and E2EE that offer database with backup and client-side
encryption, respectively. In order to enable an automated management of SLAs, the following
core modules of the SPECS framework are used by the Secure Storage application:

 Negotiation module to orchestrate negotiation of security features provided by DBB
and E2EE mechanisms.

 Enforcement module to enforce negotiated service and react in case of any detected
SLA violations.

 Monitoring module to continuously check and observe the status of negotiated SLAs.
 SLA Platform to offer support to the above mentioned modules.

The role of the SPECS framework is depicted in Figure 4. For further details about specific
processes orchestrated by each module see deliverable D1.1.3.

Figure 4. The role of the SPECS framework in the SPECS Secure Storage application

Note that both security mechanisms, namely E2EE and DBB, are standalone security
mechanisms that do not integrate, extend or replace any of the SPECS components. As
discussed in D4.3.3, they provide (enforce and monitor) additional security assurances to
cloud customers in the scope of the secure storage domain, that can be negotiated by End-
users in the SPECS SLA negotiation phase.

Since the task T5.2 is focused on security incidents and their management in the cloud, in the
remainder of this section we focus on details of the DBB and E2EE mechanisms, in particular
on the monitoring of security features they enforce and remediating security incidents
associated to them.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

28

5.2.1. DBB and E2EE security mechanisms

With the E2EE security mechanism we offer to the End-user the functionality to locally
encrypt and decrypt the data stored in the cloud (with the Confidentiality security metric
described in Table 2) which ensures confidentiality. Moreover, with the DBB security
mechanism we guarantee to the End-user that all violations associated to the integrity, write-
serializability and read-freshness of the stored data will be detected, notified, and remediated
(by selecting the Write-Serializability, Read-Freshness, and Integrity security metrics defined
in Table 2).

To enable these functionalities, we deploy the following components of both mechanisms
(introduced in deliverable D4.3.2 and shown in Figure 5) to the acquired cloud resources (in
our case, on resources provided by Koofr):

 Client component operates directly on the End-user’s machine independently from
the SPECS framework and the CSP (the End-user downloads the tool from the web
store once the SLA is signed). The Client provides a web interface for uploading and
downloading files, and for automatically sending attestations to the Auditor
component (attestations are signed messages that accompany each End-user’s request
and each CSP’s response, used to verify fulfilment of WS, RF, and IN commitments;
discussed in Section 5.2.2). If the CO is requested, the Client provides the end-2-end
encryption/decryption of the files being sent/received to/from the CSP. An End-user
can use more than one Client component to access the data.

 Main Server and Backup Server are the main components (application servers)
deployed on the primary storage site and the backup, respectively. On the primary
storage site, the Main Server oversees all configurations, handles all put/get requests,
and orchestrates all associated operations (i.e., writes/reads the data, performs
backups, sends attestations to the Client). The server component on the backup site is
responsible for backups and restorations.

 Main DB and Backup DB are the database servers deployed on the primary storage
site and the backup, respectively.

 Auditor monitors fulfilment of WS, RF, and IN commitments by performing auditing,
i.e., checking if sequences of put/get attestations (received from the Client) form
correct write/read chains.

 Monitoring Adapter monitors databases on both storage sites (i.e., monitors
availability of both servers, availability of both databases, and completeness of
backups/restorations) and verifies the CO commitment by continuously monitoring
that the web store maintains the correct (latest) version of the Client code.

To maximise the level of security, we deploy these components on five different virtual
machines (VMs) as shown in Figure 5. Their configuration depends on the security metrics
chosen by the End-user during the negotiation phase.

During the SLA monitoring phase, the Monitoring Adapter and the Auditor continuously send
the collected monitoring data (called events) to the Monitoring module which determines
whether any of the sent events indicate a possible alert/violation and should therefore be
further analysed by the Enforcement module. Whenever the Enforcement module is notified
about a possible DBB/E2EE alert/violation, the notified event has to be classified, analysed,
and remediated (see deliverable D4.3.2). All WS/RF/IN/CO violations are also notified to End-
users through the application.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

29

Figure 5. Architecture of the DBB and E2EE mechanisms

In the next subsection, we discuss how the Auditor verifies the fulfilment of commitments
related to WS, RF, and IN, and elaborate on how it performs the root cause analysis and
decides on the optimal remediation plan. Later we present the monitoring data collected by
the Monitoring Adapter.

5.2.2. The Auditor

Attestations are the core objects for the auditing process. They are signed messages that
accompany every End-user's request and every CSP's response. The CSP stores End-user's
attestations for potential cases when the End-user would trigger false accusations. Similarly,
the End-user saves all attestations received from the CSP to prove any violations occurred on
the CSP. Additionally, the End-user automatically sends all attestations to the Auditor, which
then checks them in order to verify validity of WS, RF, and IN commitments. Once attestations
are sent to the Auditor, the Client can delete them.

After each epoch (i.e., a predefined fixed period of time) the Auditor checks the chain of
attestations for the current epoch. If any errors are detected, the Auditor notifies the
Enforcement module that an SLA violation might have occurred.

In the diagrams below we demonstrate the use of attestations. As shown in Figure 6, each
time the End-user wants to upload a file to the cloud, the Client performs a put request which
contains the End-user’s data to be stored and a client put attestation. The CSP (i.e., the Main
Server component) stores the data in the Main DB and returns the cloud put attestation. The
Client has to provide the client put attestation in order to authorize the overwriting of a
certain existing data with a new content. The CSP must respond to the request with the cloud
put attestation which affirms that the CSP received the data unchanged and successfully
stored it.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

30

Figure 6. Put attestations

Similarly, as shown in Figure 7, every time the End-user wants to download data from the
cloud, the Client performs a get request which contains the block ID of the desired data. The
CSP (i.e., the Main Server component) returns the requested data along with the cloud get
attestation with which it certifies that the returned data is the right one.

Figure 7. Get attestations

Each attestation is composed of different elements which are hashed and signed. Every
attestation includes the block ID (i.e., identifier that refers to a block on the cloud) and its key
block version number (i.e., an integer for a block that increases by one with every update to the
block). Depending on the actor (Client vs. Main Server) and the request (put vs. get), each
attestation includes additional fields as seen in Figure 8 and described below. All fields are
first concatenated, then a hash is calculated over it, and then the result is signed. For further
technical details see [3] (which introduces the idea of the attestation-based cloud storage
security properties).

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

31

Figure 8. Structure of attestations

The client put attestation additionally contains a new version number (which is the old version
number, retrieved by get request, increased by 1) and a new block hash (hash calculated over
the new data). The CSP then takes the previous chain hash (i.e., a value updated by each put
request using the formula chain hash = hash(attestation data, previous chain hash)) and new
data and calculates the new chain hash. Thus the cloud put attestation contains the same
elements as the client put attestation, but has an additional field for new chain hash.

The cloud get attestation contains (apart from the block ID and key block version number) the
block version number (i.e., version number of the block), the block hash (i.e., hash calculated
over the data at the time when it was stored or at the time when it has to be returned to the
Client – depends on implementation), the chain hash (calculated over the attestation data and
the previous chain hash at the time when it was stored by the CSP in the Main DB), and a
nonce (a random number given by the Client which is used to prevent the CSP from
constructing attestations ahead of time before a certain write happens).

The Client automatically sends all cloud attestations to the Auditor. After each epoch (i.e., a
predefined fixed period of time) the Auditor checks the chain of attestations for the current
epoch. The chain of attestations is correct if for each two consecutive attestations A1 and A2
the chain hash in A2 is equal to the hash of A2’s data and A1’s hash (if the condition
chain_hash(A2) = hash(data(A2), chain_hash(A1)) holds for two consecutive attestations A1
and A2).

The DBB and E2EE security mechanisms in SPECS are based on the CloudProof idea
introduced by Popa et al. in [3]. In the remainder of this section we present the initial idea,
discuss its drawbacks, and introduce the extended and improved version of the CloudProof
system developed in SPECS (for further details see [1]).

The Auditor introduced by Popa et al. is able to detect when End-user's put requests are not
handled consistently by the CSP (violations of WS or illegitimate modifications of a different
nature; however, it does not distinguish between the two). The original Auditor is also able to
detect when the End-user has not received the correct data when executing the get request
(violation of RF). Moreover, the CloudProof’s Auditor can detect violations of IN, but only after
each epoch, when it checks correctness of chains of all attestations (some get request
attestation would not have the same data as the put request attestation for this data and this

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

32

version). We extend the functionalities of the CloudProof by using the fact that the Client can
detect such a violation immediately and can trigger the auditing process at that moment to
verify it (sends a notification to the Auditor). The Client can detect a violation of IN because it
can calculate the hash of the encrypted data and compare it with the value in the attestation
(authenticated encryption should be used which means that decryption handled by the Client
would report an error when the data is changed illegitimately).

An additional limit of the existing CloudProof’s Auditor is that it is unable to determine what
the root cause of violations of WS and RF might be. For example, data can be modified by an
attacker or by a database error. The latter is outlined with the following scenario. When a put
request is executed, the server first calculates the chain hash using the received (encrypted)
data, returns the attestation (containing the calculated chain hash), and then executes the
write operation to the database, which for some reason fails. In this case, the Client would not
notice any problems (the chain hash was calculated correctly), but the data stored in the Main
DB would not be correct. If there would be a subsequent call on this block, the failure would
be noticed (the chain of attestations would be broken), otherwise not. This particular case
might lead into a different scenario if the server would first store the data to the database and
then retrieve it to calculate the chain hash and return the attestation to the Client. This
approach would enable the Client to immediately notice the failure. However, such
implementation might not be preferred by a CSP nor by the End-user as it requires additional
read operation on the database which will slow-down the entire process.

These remarks show that it is quite difficult to determine the events that lead to a violation as
different implementations might cause the failures being detected at slightly different times
(we cannot assume that the implementation is not modified by an attacker at some point in
time).

Distinguishing between root causes of SLA violations is crucial because entirely different
incident responses are required for a system error and an actual attack. While detection of an
attacker requires significant changes, like restoring the service on another virtual machine,
the detection of a database error might require only switching from a primary database to the
backup (followed by a manual inspection of what is wrong with the primary database).

However, it is crucial to be absolutely positive whether the cause of the violation is an
attacker or a system error. Below, we explain in what cases we can be sure whether an
attacker caused a violation. In some cases we have to admit that the cause cannot be (yet)
determined.

It has to be noted that the CloudProof’s Auditor by Popa et al. does not take into account
violations of IN detected by End-users. The Auditor can by itself detect violation of IN, but not
in real-time. The Client can detect in real-time with a get request that a block has been
illegitimately changed, and send a notification to the Auditor immediately. When the Client
sends the get request to the server, the cloud get attestation is returned and contains the
chain hash and the block hash of the requested data. With received chain hash, the Client can
calculate the block hash itself and compare it with the received block hash. If they do not
match, the Client detects a violation of IN.

Moreover, not only IN violations can be detected by the Client, a chain hash incorrectness can
be discovered as well by checking whether the chain hash returned by the server in the put

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

33

request is correct. The Client has a chain hash from the last get request for a block and can
calculate the chain hash that is to be returned by the put request for the block (the chain hash
that is to be contained in the returned cloud put attestation) using the hash of a block and
other block metadata. If the Client’s calculated chain hash and the one returned from the Main
Server are not equal, the Client detected hash incorrectness. Chain hash incorrectness means
a WS violation. It can be detected by the CloudProof’s Auditor only at the end of an epoch.

Since all this information detected by the Client is crucial for sustaining the security level
specified in an SLA, with our approach all confidentiality and integrity violations, and any
detected chain hash incorrectness are immediately notified to the Auditor for further analysis.

In the following we describe an algorithm executed by the Auditor at the end of each epoch
and when (if) the Client detects confidentiality and integrity violations or a chain hash
incorrectness. The auditing process is also depicted in Figure 9 where each end node outlines
metrics that have been affected by the detected violation (in bold), and remediation actions
that have to be taken to recover from it.

Figure 9. Auditing process

When the auditing process starts (either after an end of an epoch or after a notification from
the Client), the Auditor first checks if the chain of attestations (denoted as CA) is correct
(decision “CA correct?”). If the chain is correct, there are no violations that the Auditor is able
to detect. There might have been an old content returned to the End-user at some point which
would mean a violation of the fetch-modify consistency as defined in [10], but this cannot be
detected by the Auditor.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

34

If the chain of attestations is correct, the Auditor still has to consider possible system failures
notified by the Client (decision “Client triggered?”). If the auditing process has not been
triggered by the Client, then there is no violation of any SLA and the monitoring process can
continue (result “[0] Monitor.”). If the auditing process has been triggered by the Client due to
a detected integrity violation, then the result is a violation of IN or WS. As mentioned above,
the Client itself can check correctness of the block hash of the data received with the get

request and correctness of the chain hash for the data sent with the put request. The Auditor
checks whether the Client triggered the process due to inconsistencies with the get (decision
“Auditing after get request?”) or the put request (decision “Auditing after put request?”). If the
process was triggered due to one of these cases, a new Main Server and a new Main DB should
be set up (results “[IN] New Server and new DB.” and “[WS] New Server and new DB.”).
Otherwise there might have been an error with the Auditor, thus the monitoring can continue
and no SLA violations have occurred (result “[0] Monitor.”).

If the chain of attestations is not correct (the right side of the auditing process in Figure 9), the
Auditor has to check for the occurrence of the fork attack (discussed in [10]) where the cloud
maintains two copies of the data and conducting some writes and reads on the original data
and others on its copy. In order to confirm or rule out the fork attack, the Auditor checks
whether each put request has a correct chain of attestations behind it (decision “Put CA
correct?”).

If all put attestations have a correct chain behind them, then at some point the fork attack
occurred which is a violation of WS. This is also a violation of RF since the End-user did not
get the latest changes made by some other End-user. The Auditor can determine with which
request the data has been forked. This information can later be used to set the system back to
the time before the fork attack took place. In this case, a new Main Server and a new Main DB
should be set up and the data should be restored from the backup to the version before the
attack (result “[WS,RF] New Server and new DB.”).

In the case where some put request does not have a correct chain of attestations behind it,
the Auditor has to check whether there exist two get requests for the same block that
received the same version number but different block content (decision “Two get different
block?”).

If such a pair of get requests exists, an attack might have happened. Two different End-users
received different block data accompanied by the same version and block number (violation
of RF). This is with high certainty due to a deliberate attack, thus the Main Server and the
Main DB should be replaced. Note that also IN might be violated in both of these get requests
(decision “IN violated?”). If IN is not violated in either, it means that either keys have been
stolen or some old version of the block (with old hash) has been returned – this has to be
checked and a special warning has to be sent to the Client if keys are stolen (result “[RF] New
Server and new DB.”). If IN is violated in either of the two get requests, this might be due to a
system error (like failure of a disk where database resides between the two requests).
Regardless, it is better to go with a stricter remediation action replacing Main server and Main
DB (result “[RF,IN] New Server and new DB.”).

When such a pair of get requests (for the same block that received the same version but
different block content) does not exist, this means that some put request was not executed

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

35

correctly and this represents a violation of the WS. In this case, the further process depends
on whether the Client detected integrity violation (decision “Client detected IN violation?”).

If the Client triggered the auditing process after detecting a violation of integrity (which the
Auditor now confirms), both the Main Server and the Main DB have to be replaced (result
“[WS,IN] New Server and new DB.”).

On the contrary, if the Client did not detect any issues, the Auditor checks whether the block
metadata (e.g., version number, block number) has been changed in a way that indicates a
deliberate attack (decision “Metadata changed?”).

If some element of the block metadata has been changed, for example, the returned chain hash
is the one with the previous version number and previous block hash, this might indicate a
rollback attack [11]. In this case, a new Main Server and a new Main DB have to be set up
(result “[WS] New Server and new DB.”).

On the contrary, if no metadata has been changed, then there are no indications for an attack.
And since the assumption is that all issues are due to a system error, the Main Server should
be switched to the Backup DB which would then take the role of the Main DB, and a new DB
should be set up which would take the role of the Backup DB (result “[WS] Move DB.”).

Whenever the Auditor detects or confirms a violation of any of the properties IN, WS, and RF,
both CSP and affected End-users are notified about the violated property and the required
remediation action. It is up to the Enforcement module to execute remediation actions and it
is up to the affected End-users to claim compensations for the violation of the SLA. Of course,
not all detected violations affect all End-users. For example, a violation of WS only affects End-
users that have this property guaranteed in their SLA.

In the next section we focus on the monitoring data collected by the Monitoring Adapter. This
information is not directly connected to WS, RF, and IN, but can indicate potential violations
of these properties.

5.2.3. The Monitoring Adapter

In the SLA negotiation phase, End-users have the opportunity to choose which properties
should be enforced and monitored by the CSP. For example, one End-user may want to have
an assurance that IN, CO, WS, and RF will be sustained, whereas some other customer only
wants a guarantee that WS will be respected. Each property may imply an additional service
cost or it may have an effect on performance. Thus it is reasonable that some End-users may
only want a certain feature to be granted and monitored.

Once the SLA is signed, and all components are deployed and configured, the End-user can
start using the acquired service. In order to fulfil all commitments in the undertaken SLA, the
CSP not only considers and manages notifications from the Auditor, but also uses the
Monitoring Adapter, which oversees availability of both servers and both databases.

Monitoring Adapter continuously checks availability or responsiveness of both servers and
databases. If at any moment any of them is unresponsive, the occurrence is notified to the
Enforcement module since this may not only cause delays in the service but also errors that
can affect IN, WS, or RF.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

36

Moreover, if the End-user requests CO property, the Monitoring Adapter checks whether the
Client component at the web store is of the correct version. Since the encryption/decryption
is performed locally on the End-user’s infrastructure, SPECS cannot monitor it and thus
cannot guarantee that the Client correctly encrypts and decrypts data. Confidentiality (in
terms of correctness of encryption/decryption) can be assured by providing the End-user
with the latest and audited version of the Client component. SPECS is not responsible for any
changes made to the Client code (by the End-user or by an attacker) after its installation.

In the next subsection we present remediation actions defined for (potential) SLA violations
notified to the Enforcement module either by the Monitoring Adapter or the Auditor (for the
initial version of remediation activities see D4.3.2).

5.2.4. Reaction to security incidents and system failures

As discussed in Section 5.2.3, the Monitoring Adapter continuously (before an End-user is
provided with the link to the code) checks the Client version at the web store. If at some point
for some reason the web store does not have the latest version of the Client components,
SPECS uploads it (Monitoring Adapter notifies the Enforcement module, which then uploads
the latest version of the Client to the web store). The process is depicted in Figure 10.

Figure 10. Uploading the new Client component

After the Enforcement module is notified about unavailability of any of the (application or
database) servers, it first tries to restart it. If that solves the issue, monitoring continues. If
restarting the unresponsive component does not help, the Enforcement module tries to
deploy another instance of the unresponsive component. When there is a need to deploy a
new database, the Enforcement also triggers backup (of data from the Main DB to the newly
set up Backup DB) or restoration of data (from the Backup DB to the newly set up Main DB). If
any of these steps fail to recover the system to a normal state, this may threaten the success of
future put and get requests (i.e., validity of SLOs related to IN, WS, and RF metrics), thus the
End-users should be notified about the event.

The remediation process in case of server failures (either for Main or Backup Server) is
depicted in Figure 11, while the remediation process in case of database failures (either Main
or Backup DB) is illustrated in Figure 12.

The Enforcement module also has to manage notifications of incidents and failures that are
sent from the Auditor. As seen in Section 5.2.2, the Auditor not only detects violation of secure
storage metrics, but also performs root cause analysis and identifies the optimal remediation

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

37

action. When a notification of a violation is sent to the Enforcement module, the Auditor
reports about which metrics are violated (so that the CSP can determine the damage with
respect to the affected SLAs), what the remediation plan is (to execute it), and which version
of the data is the last correct one (to restore the data to the right version).

Remediation actions considered by the Auditor consist of either switching the Main DB to the
Backup DB and setting up a new DB to take the role of the new Backup (case 1), or setting up a
new pair of Main Server and Main DB components and restoring the data to a certain state
(case 2).

Figure 11. Remediation in case of (Main or Backup) Server failures

Figure 12. Remediation in case of (Main or Backup) DB failures

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

38

In the first case (see Figure 13), the Main Server is connected to the Backup DB which takes
the role of the new Main DB. A new database is set up which takes the role of the Backup DB.
Backup of the entire database is executed immediately.

When there is a need to set up a new Main Server and a new Main DB (case 2; see Figure 14),
all data also have to be restored from the backup DB to a certain version as suggested by the
Auditor.

Figure 13. Moving Main DB

Figure 14. Setting up new Main Servers

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

39

More details about how the Enforcement module automatically executes introduced
remediation actions are provided in deliverable D4.3.3. Technical details about the
implementation of the DBB and E2EE security mechanisms are in deliverable D5.2.2.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

40

6. Conclusions

In this deliverable we presented the development process of the Secure Storage application
and discussed its characteristics:

 We summarized the user story and validation scenarios that define the service and the
functionalities that the developed application offers;

 We described the artifacts that needed to be prepared for the application deployment;
 We illustrated the architecture of the application by presenting the role of the SPECS

framework, by describing the role of the cloud storage provider Koofr, and by
providing a comprehensive description of functionalities of both security mechanisms
integrated with the application.

The described application facilitates some novel approaches to offering security assurances in
the cloud storage domain. Apart from the automated provisioning, negotiating, enforcing, and
monitoring cloud services through SLAs, the true value of the application lies in the ability to
automatically enforce, monitor, and react to violations of confidentiality, integrity, write-
serializability, and read-freshness. The idea to include these properties in SLAs is not new
(see the CloudProof system introduced in [3]). However, the authors of the CloudProof only
detect violations of some security properties, but do not try to determine the root cause. We
go one step further and provide the extension of the mechanism that is able to distinguish
among different types of attacks in case of their violations. Root cause analysis is important
not only because it gives an insight into what is going on in the system, but also because with
that kind of additional information CSPs can choose and apply optimal reactive measures to
recover from the incident. On top of the extension of the CloudProof system, we provide an
improvement associated to the implementation of the encryption/decryption process, which
will be further elaborated in deliverable D5.2.2 (where we also discuss lessons learnt in T5.2).

The following table presents objectives associated to this task and reports the outcomes
which verify the benefits of the results achieved in this task.

Objective Result

 SO5.2: Design and
implement real
applications using
the SPECS platform

 The developed application integrates the SPECS framework to
enable the automated management of cloud storage SLAs. It
facilitates a novel approach to monitoring, notifying, and reacting to
security incidents.

 The developed application integrates two SPECS developed security
mechanisms which can enhance security level of any cloud storage
solution. Moreover, the mechanisms form a so called proof-based
system which not only detects SLA violations but provides their
proofs.

 The developed cloud storage security mechanisms improve the
current state of the art with (i) the ability to identify the root cause
of violations of integrity, write-serializability, and read-freshness,
and (ii) the ability to automatically remediate them [1].

 The developed client-side encryption mechanism improves the
current state of the art with respect to the speed of
encryption/decryption by implementing corrections in certain
crypto libraries (see D5.2.2).

 The developed application is part of the SPECS solution portfolio [2].

Table 3. Objectives and results of task T5.2

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

41

After the end of the project, the plan is to integrate a part of the application (the E2EE and
DBB mechanisms and modules that enable the automated remediation) with Koofr
infrastructure to offer to its users not only better but also more transparent security
assurances. In practice, Koofr will integrate DBB and E2EE mechanisms into their own
infrastructure. The Servers developed in SPECS will be used to store and backup data
uploaded by Koofr users, the Auditor will be used for advanced monitoring of the stored data,
and the Client will be used to offer Koofr users the client-side encryption. These artifacts will
enable Koofr to offer to its users end-to-end encryption and advanced monitoring for
potential security incidents and system failures.

DBB and E2EE mechanisms have been developed so that they can be used as standalone
mechanisms for providing advanced security features, they can be used together with the
complete Secure Storage application supporting automated implementation and remediation,
or they can be used in other contexts (for example, see AAAaaS application introduced in
D5.4), thus ensuring strong appeal with potential users. For more details about exploitability
and marketability of the developed mechanisms, see D6.2.3.

The last deliverable of the task T5.2 (namely D5.2.2) presents all technical details associated
to the development of the Secure Storage application. In particular, deliverable D5.2.2
presents the implementation details of the security mechanisms integrated into the
application and provides installation and usage guides along with the report about the testing
activities associated to the developed application.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

42

7. Bibliography

[1] M. Stopar, J. Modic, D. Petcu, M. Rak, “Towards a Proof-Based SLA Management
Framework – The SPECS Approach”, CLOSER 2016.

[2] SPECS, “End-2-End Encryption”, 2015. Available online, http://www.specs-
project.eu/solutions-portofolio/e2ee/, last accessed in February 2016.

[3] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, L. Zhuang, “Enabling Security in cloud
Storage SLAs with CloudProof”, in Proceedings of the USENIX ATC’11, the USENIX Annual
Technical Conference, pp. 31, 2011.

[4] SPECS, “SPECS Web Container App Description”, 2014. Available online,
https://bitbucket.org/specs-team/specs-app-webcontainer, last accessed in February
2016.

[5] SPECS, “SPECS Chef Repository – Enforcement”, 2015. Available online,
https://bitbucket.org/specs-team/specs-core-enforcement-repository/overview, last
accessed in February 2016.

[6] Chef Software, “Chef”, 2008. Available online, https://www.chef.io/, last accessed in
February 2016.

[7] Koofr d.o.o., “Koofr”, 2015. Available online, http://koofr.eu/, last accessed in February
2016.

[8] NIST National Institute of Standards and Technology, “Security and privacy controls for
federal information systems and organizations”, NIST 800-53v4, 2013. Available online,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf, last
accessed in February 2016.

[9] Cloud Security Alliance, “Cloud Controls Matrix Working Group”, 2015. Available online,
https://cloudsecurityalliance.org/group/cloud-controls-matrix/, last accessed in
February 2016.

[10] J. Li, M. Krohn, D. Mazierès, D. Shasha, “Secure untrusted data repository (SUNDR)”, 2004.
In Proceedings of the OSDI’04, the 6th Conference on Symposium on Operating Systems
Design & Implementation, USENIX, pp. 9, 2004.

[11] J. Feng, Y. Chen, D. Summerville, W. S. Ku, Z. Su, “Enhancing cloud storage security against
roll-back attacks with a new fair multiparty non-repudiation protocol”, 2011. In
Proceedings of the CCNC’11, the IEEE Consumer Communications and Networking
Conference, pp 521–522, 2011.

http://www.specs-project.eu/solutions-portofolio/e2ee/
http://www.specs-project.eu/solutions-portofolio/e2ee/
https://bitbucket.org/specs-team/specs-app-webcontainer
https://bitbucket.org/specs-team/specs-core-enforcement-repository/overview
https://www.chef.io/
http://koofr.eu/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://cloudsecurityalliance.org/group/cloud-controls-matrix/

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

43

Appendix 1. The Secure Storage SLA Template

In the following we report the SLA Template (in XML format) created for the Secure Storage
application (with default values for all associated security metrics). We highlight the
important parts of it in yellow.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<wsag:AgreementOffer

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:specs="http://www.specs-project.eu/resources/schemas/xml/SLAtemplate"

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:nist="http://www.specs-

 project.eu/resources/schemas/xml/control_frameworks/nist"

 xmlns:ccm="http://www.specs-project.eu/resources/schemas/xml/control_frameworks/ccm">

 <wsag:Name>SECURE_STORAGE</wsag:Name>

 <wsag:Context>

 <wsag:AgreementInitiator>specs-customer-2</wsag:AgreementInitiator>

 <wsag:AgreementResponder>$SPECS-APPLICATION</wsag:AgreementResponder>

 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>

 <wsag:ExpirationTime>2016-04-30T06:00:00+03:00</wsag:ExpirationTime>

 <wsag:TemplateName>SECURE_STORAGE</wsag:TemplateName>

 </wsag:Context>

 <wsag:Terms>

 <wsag:All>

 <wsag:ServiceDescriptionTerm

 wsag:Name="Secure Storage"

 wsag:ServiceName="SecureStorage">

 <specs:serviceDescription>

 <specs:serviceResources>

 <specs:resourcesProvider

 id="aws-ec2"

 name="Amazon"

 zone="us-east-1"

 maxAllowedVMs="20"

 description=""

 label="">

 <specs:VM

 appliance="us-east-1/ami-ff0e0696"

 hardware="t1.micro"

 description="open suse 13.1 on amazon EC2"/>

 </specs:resourcesProvider>

 </specs:serviceResources>

 <specs:capabilities>

 <specs:capability

 id="DBB"

 name="Database and Backup as-a-service"

 description="Capability of surviving to incidents that

 compromise the availability and/or integrity of

 data stored remotely by providing backup

 service and the detection of WS and RF

 violations"

 mandatory="false">

 <specs:controlFramework

 id="CCM_v3.0"

 frameworkName="CCM Control framework v3.0">

 <specs:CCMsecurityControl

 id="IVS-02"

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

44

 name="Infrastructure and Virtualization Security –

 Change Detection"

 control_domain="IVS">

 <ccm:description>The provider shall ensure the

 integrity of all virtual machine images at all times.

 Any changes made to virtual machine images must be

 logged and an alert raised regardless of their

 running state (e.g. dormant, off, or running).

 </ccm:description>

 <ccm:importance_weight>MEDIUM</ccm:importance_weight>

 </specs:CCMsecurityControl>

 <specs:CCMsecurityControl

 id="BCR-01"

 name="Business Continuity Mgmt and Op Resilience –

 Business Continuity Planning"

 control_domain="BCR">

 <ccm:description>A consistent unified framework for

 business continuity planning and plan development

 shall be established, documented and adopted to

 ensure all business continuity plans are consistent

 in addressing priorities for testing, maintenance,

 and information security requirements.

 </ccm:description>

 <ccm:importance_weight>MEDIUM</ccm:importance_weight>

 </specs:CCMsecurityControl>

 <specs:CCMsecurityControl

 id="BCR-11"

 name="Business Continuity Mgmt and Op Resilience –

 Retention Policy" control_domain="BCR">

 <ccm:description>Policies and procedures shall be

 established, for defining and adhering to the

 retention period of any critical asset as per

 established policies and procedures, as well as

 applicable legal, statutory, or regulatory compliance

 obligations. Backup and recovery measures shall be

 incorporated as part of business continuity planning

 and tested accordingly for effectiveness.

 </ccm:description>

 <ccm:importance_weight>MEDIUM</ccm:importance_weight>

 </specs:CCMsecurityControl>

 <specs:CCMsecurityControl

 id="AIS-03"

 name="Application and Interface Security - Data

 Integrity" control_domain="AIS">

 <ccm:description>Data input and output integrity

 routines (i.e., reconciliation and edit checks) shall

 be implemented for application interfaces and

 databases to prevent manual or systematic processing

 errors, corruption of data, or misuse.

 </ccm:description>

 <ccm:importance_weight>MEDIUM</ccm:importance_weight>

 </specs:CCMsecurityControl>

 </specs:controlFramework>

 </specs:capability>

 <specs:capability

 id="E2EE"

 name="End-to-end Encryption"

 description="Capability of providing client-side encryption

 enforcing confidentiality."

 mandatory="false">

 <specs:controlFramework

 id="CCM_v3.0"

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

45

 frameworkName="CCM Control framework v3.0">

 <specs:CCMsecurityControl

 id="EKM-01"

 name="Encryption and Key Management - Entitlement"

 control_domain="EKM">

 <ccm:description>Keys must have identifiable owners

 (binding keys to identities) and there shall be key

 management policies.

 </ccm:description>

 <ccm:importance_weight>MEDIUM</ccm:importance_weight>

 </specs:CCMsecurityControl>

 <specs:CCMsecurityControl

 id="EKM-03"

 name="Encryption and Key Management - Sensitive Data

 Protection" control_domain="EKM">

 <ccm:description>Policies and procedures shall be

 established, for the use of encryption protocols for

 protection of sensitive data in storage (e.g., file

 servers, databases, and end-user workstations), data

 in use (memory), and data in transmission (e.g.,

 system interfaces, over public networks, and

 electronic messaging).

 </ccm:description>

 <ccm:importance_weight>MEDIUM</ccm:importance_weight>

 </specs:CCMsecurityControl>

 </specs:controlFramework>

 </specs:capability>

 </specs:capabilities>

 <specs:security_metrics>

 <specs:Metric

 name="Write-Serializability"

 referenceId="write_serializability_M17">

 <specs:MetricDefinition>

 <specs:unit name="">

 <specs:enumUnit>

 <specs:enumItemsType>boolean</specs:enumItemsType>

 <specs:enumItems>

 <specs:enumItem></specs:enumItem>

 <specs:enumItem></specs:enumItem>

 </specs:enumItems>

 </specs:enumUnit>

 </specs:unit>

 <specs:scale>

 <specs:Quantitative>Ratio</specs:Quantitative>

 </specs:scale>

 <specs:expression>The activation of write

 serializability</specs:expression>

 <specs:definition>This metric ensures the EU consistency

 among updates of the stored data. In case of WS

 violations, the EU will be notified and the system will

 be restored to the state of the last completed

 update.</specs:definition>

 <specs:note></specs:note>

 </specs:MetricDefinition>

 </specs:Metric>

 <specs:Metric

 name="Read-Freshness"

 referenceId="read_freshness_M18">

 <specs:MetricDefinition>

 <specs:unit name="">

 <specs:enumUnit>

 <specs:enumItemsType>boolean</specs:enumItemsType>

 <specs:enumItems>

 <specs:enumItem></specs:enumItem>

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

46

 <specs:enumItem></specs:enumItem>

 </specs:enumItems>

 </specs:enumUnit>

 </specs:unit>

 <specs:scale>

 <specs:Quantitative>Ratio</specs:Quantitative>

 </specs:scale>

 <specs:expression>The activation of read

 freshness</specs:expression>

 <specs:definition>This metric ensures the EU that the

 requested data will always be fresh as of the last

 update. In case of RF violations, the EU will be notified

 and the system will be restored to the state of the last

 completed backup.</specs:definition>

 <specs:note></specs:note>

 </specs:MetricDefinition>

 </specs:Metric>

 <specs:Metric

 name="Integrity"

 referenceId="integrity_M25">

 <specs:MetricDefinition>

 <specs:unit name="">

 <specs:enumUnit>

 <specs:enumItemsType>boolean</specs:enumItemsType>

 <specs:enumItems>

 <specs:enumItem></specs:enumItem>

 <specs:enumItem></specs:enumItem>

 </specs:enumItems>

 </specs:enumUnit>

 </specs:unit>

 <specs:scale>

 <specs:Quantitative>Ratio</specs:Quantitative>

 </specs:scale>

 <specs:expression>The activation of

 integrity.</specs:expression>

 <specs:definition>This metric ensures the EU

 integrity of the stored data.</specs:definition>

 <specs:note></specs:note>

 </specs:MetricDefinition>

 </specs:Metric>

 <specs:Metric

 name="Confidentiality"

 referenceId="confidentiality_M19">

 <specs:MetricDefinition>

 <specs:unit name="">

 <specs:enumUnit>

 <specs:enumItemsType>boolean</specs:enumItemsType>

 <specs:enumItems>

 <specs:enumItem></specs:enumItem>

 <specs:enumItem></specs:enumItem>

 </specs:enumItems>

 </specs:enumUnit>

 </specs:unit>

 <specs:scale>

 <specs:Quantitative>Ratio</specs:Quantitative>

 </specs:scale>

 <specs:expression>The existence of

 certification.</specs:expression>

 <specs:definition>This metric ensures the EU

 confidentiality of the stored data. Confidentiality is

 enforced with end-2-end encryption provided by the Client

 component. We guarantee that the Client component is

 audited and thus (used as is) grants security of

 encryption.</specs:definition>

 <specs:note></specs:note>

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

47

 </specs:MetricDefinition>

 </specs:Metric>

 </specs:security_metrics>

 </specs:serviceDescription>

 </wsag:ServiceDescriptionTerm>

 <wsag:ServiceProperties

 wsag:Name="//specs:capability[@id='DBB']"

 wsag:ServiceName="SecureStorage">

 <wsag:VariableSet>

 <wsag:Variable

 wsag:Name="specs_DBB_M17"

 wsag:Metric="write_serializability_M17">

 <wsag:Location>

 //specs:CCMsecurityControl[@id='IVS-02'] |

 //specs:CCMsecurityControl[@id='BCR_01'] |

 //specs:CCMsecurityControl[@id='BCR_11']

 </wsag:Location>

 </wsag:Variable>

 <wsag:Variable

 wsag:Name="specs_DBB_M18"

 wsag:Metric="read_freshness_M18">

 <wsag:Location>

 //specs:CCMsecurityControl[@id='AIS-03'] |

 //specs:CCMsecurityControl[@id='BCR_01'] |

 //specs:CCMsecurityControl[@id='BCR_11']

 </wsag:Location>

 </wsag:Variable>

 <wsag:Variable

 wsag:Name="specs_DBB_M25"

 wsag:Metric="integrity_M25">

 <wsag:Location>

 //specs:CCMsecurityControl[@id='AIS-03']

 </wsag:Location>

 </wsag:Variable>

 </wsag:VariableSet>

 </wsag:ServiceProperties>

 <wsag:ServiceProperties

 wsag:Name="//specs:capability[@id='E2EE']"

 wsag:ServiceName="SecureStorage">

 <wsag:VariableSet>

 <wsag:Variable

 wsag:Name="specs_e2ee_M19"

 wsag:Metric="confidentiality_M19">

 <wsag:Location>

 //specs:CCMsecurityControl[@ccm:id='EKM-01'] |

 //specs:CCMsecurityControl[@ccm:id='EKM-03']

 </wsag:Location>

 </wsag:Variable>

 </wsag:VariableSet>

 </wsag:ServiceProperties>

 <wsag:GuaranteeTerm

 wsag:Name="//specs:capability[@id='DBB']"

 wsag:Obligated="ServiceProvider">

 <wsag:ServiceScope wsag:ServiceName="SecureStorage"/>

 <wsag:QualifyingCondition>false</wsag:QualifyingCondition>

 <wsag:ServiceLevelObjective>

 <wsag:CustomServiceLevel>

 <specs:objectiveList>

 <specs:SLO SLO_ID="DBB_slo1">

 <specs:MetricREF>specs_DBB_M17</specs:MetricREF>

 <specs:SLOexpression>

 <specs:oneOpExpression>

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 5.2.1

48

 <specs:operator>eq</specs:operator>

 <specs:operand>yes</specs:operand>

 </specs:oneOpExpression>

 </specs:SLOexpression>

 <specs:importance_weight>MEDIUM</specs:importance_weight>

 </specs:SLO>

 <specs:SLO SLO_ID="DBB_slo2">

 <specs:MetricREF>specs_DBB_M18</specs:MetricREF>

 <specs:SLOexpression>

 <specs:oneOpExpression>

 <specs:operator>eq</specs:operator>

 <specs:operand>yes</specs:operand>

 </specs:oneOpExpression>

 </specs:SLOexpression>

 <specs:importance_weight>MEDIUM</specs:importance_weight>

 </specs:SLO>

 <specs:SLO SLO_ID="DBB_slo3">

 <specs:MetricREF>specs_DBB_M25</specs:MetricREF>

 <specs:SLOexpression>

 <specs:oneOpExpression>

 <specs:operator>eq</specs:operator>

 <specs:operand>yes</specs:operand>

 </specs:oneOpExpression>

 </specs:SLOexpression>

 <specs:importance_weight>MEDIUM</specs:importance_weight>

 </specs:SLO>

 </specs:objectiveList>

 </wsag:CustomServiceLevel>

 </wsag:ServiceLevelObjective>

 <wsag:BusinessValueList></wsag:BusinessValueList>

 </wsag:GuaranteeTerm>

 <wsag:GuaranteeTerm

 wsag:Name="//specs:capability[@id='E2EE']"

 wsag:Obligated="ServiceProvider">

 <wsag:ServiceScope wsag:ServiceName="SecureStorage"/>

 <wsag:QualifyingCondition>false</wsag:QualifyingCondition>

 <wsag:ServiceLevelObjective>

 <wsag:CustomServiceLevel>

 <specs:objectiveList>

 <specs:SLO SLO_ID="e2ee_slo1">

 <specs:MetricREF>specs_e2ee_M19</specs:MetricREF>

 <specs:SLOexpression>

 <specs:oneOpExpression>

 <specs:operator>eq</specs:operator>

 <specs:operand>yes</specs:operand>

 </specs:oneOpExpression>

 </specs:SLOexpression>

 <specs:importance_weight>MEDIUM</specs:importance_weight>

 </specs:SLO>

 </specs:objectiveList>

 </wsag:CustomServiceLevel>

 </wsag:ServiceLevelObjective>

 <wsag:BusinessValueList></wsag:BusinessValueList>

 </wsag:GuaranteeTerm>

 </wsag:All>

 </wsag:Terms>

</wsag:AgreementOffer>

