

Secure Provisioning of Cloud Services

based on SLA Management

SPECS Project - Deliverable 4.4.2

The Credentials Service Components –

Finalized

Version no. 1.1

31 January 2016

The activities reported in this deliverable are partially supported

by the European Community’s Seventh Framework Programme under grant agreement no. 610795.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

2

Deliverable information

Deliverable no.: D4.4.2

Deliverable title: The Credentials Service Components – Finalized

Deliverable nature: Prototype

Dissemination level: Public

Contractual delivery: 31 October 2015

Actual delivery date: 31 January 2016

Author(s): Silviu Panica (IeAT), Massimiliano Rak (CeRICT), Valentina

Casola (CeRICT)

Contributors: Jolanda Modic (XLAB), Damjan Murn (XLAB), Alessandra De

Benedictis (CeRICT)

Reviewers: Umberto Villano (EMC), Dana Petcu (IeAT)

Task contributing to the

deliverable:

T4.4

Total number of pages: 34

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

3

Executive summary

This deliverable is a second version of the deliverable reporting the status of implementation
of two of the SPECS vertical layers devoted to secure interactions among internal and external
SPECS components. As already reported in the previous version, in SPECS the secure
interaction mechanisms specifically tackle two research challenges encountered when dealing
with cloud application security, namely service-to-service authentication (and in future
possibly also authorization) and credential data management. These challenges, although not
visible to the End-user, are cornerstones of the overall SPECS solution, and they are integral
part of the Vertical Layer services offered by the SLA Platform, as described in D1.1.3 and
D1.4.1.
In particular, the service-to-service authentication is covered by the SPECS Security Tokens
mechanism, and provides a way to embed in the requests (usually into HTTP requests via
headers) the data needed to assess the identity of the calling service, and also required to
apply access policies by the called service. The Security Tokens service component was
already available in the previous version of this deliverable. In this second iteration of the
document we will mainly report documentation about the final API offered, the involved data
model, testing results and new usage examples.
The credential data management is covered by the SPECS Credential Service mechanism,
which provides a REST API that enables the execution of the required security protocol
operations over the credential data, without exposing the raw data to the requester. In the
first year, we implemented a preliminary service and discussed an incremental design to be
developed in the second year, in order to cover all security requirements. In this second
iteration of the document, we will present the improved architecture and all implementation
details that are based on open source solutions provided by the Vault project, whose primary
goal is to provide secure secret storage and API to manage credentials, keys, revocations, and
so on. On the basis of the current implementation, we will also provide a revised validation
scenario for credential management, which substitutes the one reported in D5.1.2 and which
will be used for integration.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

4

Table of contents

Deliverable information .. 2

Executive summary ... 3

Table of contents .. 4

Index of figures ... 5

Index of tables ... 6

1. Introduction .. 7

2. Relationship with other deliverables.. 8

3. The Security Tokens mechanism .. 9

3.1. Behaviour ... 9

3.2. Status of development activities ... 10

3.3. Repository .. 11

3.4. Installation ... 12

3.4.1. Apache Tomcat configuration ... 12

3.4.2. Installing the Security Tokens Service .. 13

3.4.3. Setting up the database ... 13

3.4.4. Configuring the Security Tokens Service ... 13

3.5. Usage .. 14

3.5.1. Obtaining a Security Token ... 14

3.5.2. Decoding and Validating a Security Token .. 15

3.5.2.1. VerificationCertProvider Implementations .. 15

3.5.2.2. RevocationVerifier Implementations.. 16

3.5.3. Security Tokens CLI Shell ... 16

3.5.4. Security Tokens Servlet Filter .. 16

3.6. Testing ... 17

4. The Credential Service mechanism ... 21

4.1. Behaviour ... 21

4.2. Status of development activities ... 24

4.3. Repository .. 26

4.4. Installation ... 26

4.4.1. Installing the Credential Manager ... 26

4.4.2. Installing the Credential Management Application .. 26

4.4.3. Installing a Credential Client on a SPECS component ... 27

4.5. Usage .. 28

4.6. Testing ... 29

5. Conclusions ... 33

6. Bibliography ... 34

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

5

Index of figures

Figure 1. Relationships with other deliverables .. 8

Figure 2: Credential Service Architecture .. 23

Figure 3: Credential Service mechanism use cases ... 24

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

6

Index of tables

Table 1. Security Tokens components and related requirements .. 10

Table 2. Requirements for the Security Tokens mechanism ... 11

Table 3. Security Tokens implementation status .. 11

Table 4. SPECS Components related to the Credential Service mechanism and related
requirements ... 25

Table 5. Requirements for the Security Tokens mechanism ... 25

Table 6. Credential Service implementation status .. 26

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

7

1. Introduction

As stated in the previous version of this deliverable, this document focuses on secure
interaction mechanisms provided by the Vertical Layer and devoted to protecting the internal
communications among SPECS components and the access to external providers. In
particular, the following mechanisms have been introduced:

 the Security Tokens mechanism, implemented by the Security Tokens component of
the Vertical Layer and securing all internal communications among SPECS components
by providing authentication and authorization features, and

 the Credential Service mechanism, implemented by the Credential Service
component of the Vertical Layer and protecting the interactions among SPECS
components and external CSPs by providing a means to securely store and share the
needed access credentials.

The Security Tokens mechanism has been designed and implemented with the aim of
authenticating and authorizing all the HTTP requests issued by SPECS components and
targeted to the invocation of the REST APIs offered by other SPECS components (referred to
as the target components).

The Credential Service mechanism targets the communications between SPECS and the
external CSPs that host the target services by managing the set of credentials needed to access
related resources. The mechanism has been designed to be able to cope with existing security
protocols and, in particular, with existing CSP authentication schemes.

Scenarios, requirements and design of both secure interaction mechanisms are discussed in
deliverables D5.1.2, D4.1.2 and D4.2.2, respectively. In the previous version of this deliverable,
we focused on implementation, installation, and usage of the Security Tokens mechanism and
on the implementation of a preliminary architecture of the Credential Service. In particular,
we provided a complete implementation of the Security Tokens mechanism able to cover the
full list of associated requirements, and we presented the prototype of the initial Credential
Service mechanism. Furthermore, we discussed how to enhance the architecture and the
implementation of the Credential Service, in order to fulfil the uncovered requirements.

Before going into the details of the secure interaction mechanisms, Section 2 discusses the
relationships among this deliverable and the others. Then, we discuss for both mechanisms
the overall status of development (including design validation), the organization of
repositories and the final prototypes in terms of design, implementation, installation, usage,
and testing. This information can be found in Sections 3 and Section 4 for the Security Tokens
and the Credential Service mechanisms, respectively. A complete description of the APIs that
the mechanisms offer, namely the Security Tokens API and the Credential API, is provided in
Annex A and B, respectively. Moreover, Annex B also reports a revised version of the
validation scenario for credential management, which is based on the current implementation
and substitutes the one reported in D5.1.2. This scenario will be used for integration tasks.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

8

2. Relationship with other deliverables

This deliverable reports on the final design and implementation of the secure interaction
mechanisms, namely Security Tokens and Credential Service, whose previous version was
described in D4.4.1. The requirements for these mechanisms were originally discussed in
D4.1.2, while D4.2.2 provided the related preliminary design. Scenarios related to such
mechanisms have been discussed in D5.1.2. As anticipated, we further refined the scenario
related to Credentials Management, included in Annex B. This scenario will be used by
integration Task T1.5.

Figure 1 presents the above-mentioned dependencies.

Figure 1. Relationships with other deliverables

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

9

3. The Security Tokens mechanism

The Security Tokens mechanism, a solution fully developed within the SPECS project, is
responsible for protection of internal interactions among SPECS components. It provides
authentication and authorization of all REST API requests among components of the SPECS
framework, as already described in Section 1.
As defined in deliverables D4.1.2 and D4.2.2, and further elaborated in D4.4.1, the Security
Tokens mechanism provides infrastructure for exchanging authentication/authorization data
and arbitrary attributes in service-to-service interaction. The mechanism is implemented by
the Security Tokens component of the SPECS Vertical Layer and includes the following two
components:

 Security Tokens Service: a RESTful Web service that issues security tokens and
maintains token revocation list;

 Security Tokens Client: a Java library that provides support for obtaining, parsing,
and validating security tokens.

Note that the design of the mechanism has not changed during the second year of the project.

As discussed in D4.4.1, the structure of the Security Tokens mechanism is based on the
following technologies: JSON Web Token [1], JSON Web Encryption [2] and JSON Web
Signature [3]. Further details are provided on the SPECS Security Tokens mechanism’s
Bitbucket Wiki [4].

In the next subsection, we briefly summarize the behaviour of the mechanism, report the
status of development activities, discuss APIs, present organization of repositories for source
code, provide with guidelines for installation and usage, and present the tests executed for
verifying the quality of the code.

3.1. Behaviour

All REST API calls among components of the SPECS framework are authenticated and
authorised with Security Tokens mechanism, as described below.

The SLA Enabling platform deploys a client certificate required for establishing HTTPS
connection on each node (i.e., for each component of the SPECS framework). When setting up
the SPECS framework, a security token is obtained for each SPECS component by sending a
request to the Security Tokens Service component. The request contains the ID of the target
SPECS component. The Security Tokens Service component generates the security token for
the SPECS component, which contains the following information:

 component ID;

 component name;

 component IP address;

 list of services the token is eligible to access.

The token is signed by the SPECS certificate authority. Then the Security Tokens Service
component returns the token to the SPECS component, which stores it in the local token vault.

When one SPECS component makes calls to another component of the SPECS framework, it
attaches the security token to the request. When making REST API calls, the security token is

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

10

put in the HTTP header named X-AUTH-TOKEN. All communication among components is
encrypted by using secure HTTPS protocol.

The target SPECS component that receives a request with a security token, validates the token
and decodes it. Using the information from the token, the authorization engine makes the
access decision based on the predefined policy.

3.2. Status of development activities

The development of the mechanism was concluded at M12, as we already reported in D4.4.1.
The following table presents the coverage of requirements associated to Security Tokens
mechanism.

Requirements for Security
Tokens mechanism

SPECS Component

Security Tokens Client Security Tokens Service
ENF_TOK_R1 X

ENF_TOK_R2 X
ENF_TOK_R3 X
ENF_TOK_R4 X
ENF_TOK_R5 X
ENF_TOK_R6 X
ENF_TOK_R7 X
ENF_TOK_R8 X

Table 1. Security Tokens components and related requirements

There are 8 requirements associated to Security Tokens mechanism and the final prototype
covers all of them. The following table presents a validation of the mechanism’s design in
terms of explaining how each requirement associated to the mechanism has been covered.

REQ_ID Requirement Description

ENF_TOK_R1 Support offline

token validation

Security tokens are digitally signed with the Security

Tokens Service private key. The digital signature can

be validated offline using the Security Tokens

Service certificate and thus ensuring the token's

authenticity and integrity.

ENF_TOK_R2 Send tokens in

HTTP header

Security tokens are designed to be as small as

possible. The token's payload is compressed using

the GZIP algorithm. Typical size of an encoded

token is 500 - 1000 bytes, depending on the payload

size. The HTTP protocol does not define any size

limit for HTTP headers, but the typical size limit on

common web and application servers is 8192 bytes.

ENF_TOK_R3 Obtain security

tokens issued by a

centralized service

The Security Tokens Service is a centralized service

that provides REST API for issuing security tokens,

revoking tokens and retrieving token revocation list.

The security token contains set of claims about the

specified subject. Security-tokens-client is a Java

library, which provides Java API for obtaining

security tokens from the Security Tokens Service.

ENF_TOK_R4 Request, parse and

validate tokens

The Java library security-tokens-client provides Java

API for requesting, decoding and validating security

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

11

tokens. Tokens are validated offline by verifying

their digital signature using the Security Tokens

Service certificate. The security-tokens-client

maintains a local token revocation list and

periodically updates it by downloading the token

revocation list deltas from the Security Tokens

Service.

ENF_TOK_R5 Revoke tokens The Security Tokens Service provides REST API for

revoking security tokens. A token is marked as

revoked in the database, and is added to the token

revocation list from where it is propagated to the

clients. The revoked token remains in the database

till the token expiration date extended by some

safety time interval.

ENF_TOK_R6 Generate token

revocation lists

The Security Tokens Service periodically generates

token revocation list, which contains a list of

revoked but not expired tokens. There are two types

of revocation lists: full revocation list and delta

revocation list. The full revocation list contains all

revoked tokens that are not yet expired at the time of

revocation list creation. The delta revocation list

contains only the tokens that have been revoked

since the last delta list generation.

ENF_TOK_R7 Sign tokens The Security Tokens Service digitally signs tokens

with its private key. The digital signature ensures the

token's authenticity and integrity. The digital

signature can be verified using the Security Tokens

Service certificate (public key).

ENF_TOK_R8 Decode tokens The Java library security-tokens-client provides Java

API for decoding and validating security tokens.

Tokens are decoded by splitting them into three

parts: header, payload and signature. After the token

is validated, the payload is decoded from the Base64

encoding scheme and decompressed.
Table 2. Requirements for the Security Tokens mechanism

The current development status is summarized in Table 3.

Mechanism Artifacts under development Status

Security Tokens

component: security-tokens-service Completed

component: security-tokens-client Completed

component: security-tokens-core Completed
Table 3. Security Tokens implementation status

The prototype of the mechanism is available on the project’s Bitbucket repository [4]. Its
organization is presented in the following subsection.

3.3. Repository

The Security Tokens mechanism is implemented as a Maven-based Java project with three
modules:

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

12

 security-tokens-core
 security-tokens-service
 security-tokens-client

The module security-tokens-core provides common functionality and class definitions that
are shared among all modules. The module security-tokens-service is a Web application that
exposes the Security Tokens API, whose complete documentation is provided in Annex A. The
module security-tokens-client is a Java library that provides functionality for obtaining,
validating and decoding security tokens. The source code of the Security Tokens mechanism
can be found on the project’s BitBucket repository at [5].

3.4. Installation

Since the implementation of the mechanism has not changed in the second year of the project,
the following installation guides are the same as reported in the first iteration of this
deliverable.

The Security Tokens Service is a Java Web application and has to be deployed on the servlet
container. The Security Tokens Client is a Java libray and is intended to be used by other
applications / SPECS components as a dependency, and does not need any installation.

Prerequisites:

 Servlet container or J2EE application server (e.g., Apache Tomcat [6]).
 Relational database (e.g., MySQL Server [7]).

The installation guide is tailored for the Apache Tomcat and MySQL server.

3.4.1. Apache Tomcat configuration

The Security Tokens Service should be accessible only through secure (HTTPS) connection
with client certificate-based authentication. In order to enable it, the Tomcat configuration file
server.xml1 must be edited to set up SSL enabled connector's property clientAuth to true:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

 maxThreads="150" scheme="https" secure="true"

 clientAuth="true" sslProtocol="TLS"

 keystoreFile="/etc/specs/security-tokens-service/sts-server.jks"

 keystorePass="***"

 keyAlias="sts"

 truststoreFile="/etc/specs/security-tokens-service/cacerts.jks"

 truststorePass="***"

 ciphers="SSL_RSA_WITH_RC4_128_SHA" />

The key store file sts-server.jks contains the Security Tokens Service (STS) server certificate.
The trust store file cacerts.jks contains the CA certificate used to validate client certificates.
Both files must be stored into the /etc/specs/security-tokens-service directory.

The certificate can be imported into the key store by using the following commands:

openssl pkcs12 -export -name sts-server -in sts-server.crt -inkey sts-server.key

-out sts-server.p12

1 The default path for Tomcat 7 in Ubuntu is /etc/tomcat7/server.xml.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

13

keytool -importkeystore -destkeystore sts-server.jks -srckeystore sts-server.p12

-srcstoretype pkcs12 -alias sts-server

3.4.2. Installing the Security Tokens Service

In order to install the Security Tokens service, the package security-tokens-service.tar.gz must
be downloaded from the SPECS maven repository2 and extracted in a local folder:

tar xzvf security-token-service.tar.gz

The package contains:

 a configuration file: sts-config.xml
 a database schema: sts-schema.sql
 a WAR file: security-tokens-service.war

The security-tokens-service.war Web application archive must be deployed in the Tomcat
webapps directory (/var/lib/tomcat7/webapps). Then, the configuration file sts-config.xml
must be copied to the /etc/specs/security-tokens-service directory and a database for the
Security tokens service must be created by using the file sts-schema.sql. This last operation is
illustrated in the following section.

3.4.3. Setting up the database

To create the database sts and the user with appropriate privileges on that database, the
following commands must be run in the MySQL shell:

SOURCE sts-schema.sql

CREATE USER 'sts'@'localhost' IDENTIFIED BY 'somepass';

GRANT SELECT, INSERT, UPDATE, DELETE ON sts.* TO 'sts'@'localhost';

The database connection settings are located in the file /var/lib/tomcat7/webapps/WEB-
INF/classes/META-INF/persistence.xml:

<property name="javax.persistence.jdbc.driver" value="com.mysql.jdbc.Driver"/>

<property name="javax.persistence.jdbc.url" value="jdbc:mysql://localhost/sts"/>

<property name="javax.persistence.jdbc.user" value="sts"/>

<property name="javax.persistence.jdbc.password" value="somepass"/>

3.4.4. Configuring the Security Tokens Service

As said, the application configuration file must be copied to /etc/specs/security-tokens-
service/. The file is structured as follows:

<config>

 <signing>

 <signerName>specs-demo</signerName>

 <signingKeyStore>

 <keyStoreFile>/etc/specs/security-tokens-service/sts-

signing.p12</keyStoreFile>

 <keyStorePass>password</keyStorePass>

 <signingCertFingerprint>01:18:BD:FE:5A:AF:DC:64:21:F5:07:93:7C:87:

 50:F6:5E:4C:75:B0</signingCertFingerprint>

2 https://nexus.services.ieat.ro/nexus/content/repositories/specs-snapshots/eu/specs-project/utility/security-
tokens/security-tokens-service

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

14

 <signingPrivateKeyPass>password</signingPrivateKeyPass>

 </signingKeyStore>

 </signing>

</config>

The section signingKeyStore specifies the signing certificate used to sign the security tokens.
To obtain the certificate and to store it into a PKCS12 keystore, the following command must
be executed:

openssl pkcs12 -export -name sts-signing -in sts-signing.crt -inkey sts-

signing.key -out sts-signing.p12

The settings keyStoreFile and keyStorePass in the configuration file contain the file path
and password of the key store file. The setting signingCertFingerprint contains the SHA1
fingerprint of the signing certificate, which can be determined by running the following
command:

keytool -list -keystore sts-signing.p12 -storepass somepass -storetype PKCS12 -v

3.5. Usage

The SPECS Security Tokens mechanism contains a library security-tokens-client that provides
support to SPECS components for using security tokens. There are two use cases:

 Obtaining a security token.
 Decoding and validating a security token and retrieving required information from it.

3.5.1. Obtaining a Security Token

In the first use case, a SPECS component has to obtain a security token to call some other
SPECS service that requires it (to authorize the request, or to get some information from the
token needed to fulfil the request). For example, the Planning component calls the
Implementation component using security tokens. For this use case, the security-tokens-client
library provides class SecurityTokensRetriever with the following API:

public SecurityTokensRetriever(

 String stsAddress,

 String trustStoreFile, String trustStorePass,

 String keyStoreFile, String keyStorePass);

public Token obtainToken(String subject);

The SecurityTokensRetriever is built by using the following parameters:

 stsAddress: address of the STS.

 trustStoreFile, trustStorePass: trust store file path and password. The trust store
contains the Certification Authority (CA) certificate chain (the issuer of the STS server
certificate) or the STS server certificate. The trust store is needed to validate the STS
certificate when establishing the secure connection with the server.

 keyStoreFile, keyStorePass: key store file path and password. The key store contains
the client certificate and private key which are needed to authenticate to the STS.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

15

The method obtainToken accepts the parameter subject. It calls the STS and requests a
security token for the specified subject. The method decodes a received token and returns the
Token object.

3.5.2. Decoding and Validating a Security Token

The second use case happens when a SPECS service receives a security token attached to a
HTTP request (presumably in a HTTP header). The SPECS service has to decode and validate
the token, retrieve some information from the claims, and make an authorization decision. For
this use case, the security-tokens-client library provides the class SecurityTokensValidator
with the following API:

public SecurityTokensValidator(String stsAddress,

 String trustStoreFile, String trustStorePass)

public SecurityTokensValidator(

 VerificationCertProvider verifCertProvider,

 RevocationVerifier revocationVerifier)

public Token validate(String encodedToken)

The SecurityTokensValidator provides two constructors. The first one creates a
SecurityTokensValidator instance, which uses default VerificationCertProvider and
RevocationVerifier, that is VerificationCertProviderWS and TRLCache. It accepts three
parameters:

 stsAddress: address of the STS.

 trustStoreFile, trustStorePass: trust store file path and password. The trust store
contains the CA certificate chain (the issuer of the STS server certificate) or the STS
server certificate. The trust store is needed to validate the STS certificate when
establishing the secure connection with the server.

The second constructor creates a SecurityTokensValidator instance using the provided
VerificationCertProvider and RevocationVerifier. It accepts two parameters:

 verifCertProvider: an instance of VerificationCertProvider which is needed to
obtain STS's signing certificate for verifying tokens signature.

 revocationVerifier: an instance of RevocationVerifier which is needed to check the
token revocation status.

The method validate decodes and validates the given encoded token and returns the Token

object. From the Token object the service can get the token’s payload.

3.5.2.1. VerificationCertProvider Implementations

The security-tokens-client module provides two implementations of the
VerificationCertProvider interface:

 VerificationCertProviderP12: retrieves the requested signing certificate from a local
trust store. The trust store is maintained manually by the administrator, who obtains
the signing certificate(s) and imports it into the trust store. No connection with the STS
is required.

 VerificationCertProviderWS: retrieves the requested signing certificate from the STS
by calling its RESTful API, and caches it locally. Afterwards, the certificates are
retrieved from the local cache.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

16

3.5.2.2. RevocationVerifier Implementations

The security-tokens-client module provides two implementations of RevocationVerifier

interface:
 TRLCache: maintains a local TLR (Token Revocation List) cache. During the

initialization, it downloads the full TRL, then it periodically pulls delta TRLs with the
recent changes (tokens revoked since the last update). Moreover, it periodically cleans
up the TRL cache (i.e., it removes all expired tokens from the list). The tokens
revocation status is checked against the local TRL copy. This approach is fast - the
validation can be accomplished locally. However, the disadvantages are time lag
between token revocation and client local cache, and complexity of the token
revocation list synchronization.

 OnlineRevocationVerifier: checks token revocation status by calling the STS RESTful
API for each token. This approach is most accurate - there is no time lag between token
revocation and client local cache. The disadvantage is that it requires a call to the STS
for each validation that takes some time, causes a lot of network traffic and load on the
STS.

3.5.3. Security Tokens CLI Shell

The security-tokens-client provides a command-line application, which can be used for
manually obtaining security tokens, decoding and validating them, checking if a specific token
is revoked, printing the TRL. The application can be started from the command line (as shown
below) with the following parameters: sts-address, truststore-file, truststore-pass,
keystore-file, and keystore-pass. The last two parameters are optional, and are needed
for obtaining security tokens.

java -cp libs/* org.specs.pkitokens.client.ConsoleClient \

 --sts-address=https://localhost:8443/security-tokens-service \

 --truststore-file=sts-truststore.jks --truststore-pass=password \

 --keystore-file=security-tokens-client-cli.jks --keystore-pass=password

When started, the application provides the following commands:

obtain <username> <password> <sla-id>

validate <token>

isRevoked <token-id>

printTRL

exit

3.5.4. Security Tokens Servlet Filter

The security-tokens-client library provides a Java servlet filter called SecurityTokensFilter,

which can be plugged into any Java Web application or Java RESTful web service. The filter
intercepts every HTTP request before it is processed, checks if a security token is present,
decodes and validates the token and puts the Token object into HttpServletRequest object
from where the Token is available to servlets processing the request, which are able to get
information stored in the token.

The filter can also be used for authorization, using an XACML authorization engine. The filter
extracts a set of claims from the token, creates a XAML access control decision request, sends
it to the Policy Decision Point (PDP) and enforces the access decision received from the PDP -
allows or denies the request.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

17

The filter can be deployed in a web application deployment descriptor file (web.xml). First,
the filter is declared as shown below:

<filter>

 <filter-name> SecurityTokensFilter </filter-name>
 <filter-class>org.specs.pkitokens.client.SecurityTokensFilter</filter-class>

 <init-param>

 <param-name>configFile</param-name>

 <param-value>security-tokens-filter-config.xml</param-value>

 </init-param>

</filter>

Then the filter is mapped to a specific servlet or URL pattern, as follows:

<filter-mapping>

 <filter-name>SecurityTokensFilter</filter-name>

 <servlet-name>Jersey REST Services</servlet-name>

 <dispatcher>REQUEST</dispatcher>

</filter-mapping>

3.6. Testing

The following tables present several unit tests executed for the Security Tokens mechanism.

Test ID security-tokens-core:CertUtilsTest

Test objective
Test CertUtils utility methods for reading PrivateKey object from a
PEM format, reading X509Certificate object from a PEM format,
converting X509Certificate object to a PEM format.

Verified
requirements

/

Inputs PEM file containing test private key and certificate.
Expected results All operations execute successfully.
Outputs None.
Comments All operations executed successfully.

Test ID security-tokens-core:CompressUtilsTest

Test objective
Test CompressUtils utility methods for compressing and
decompressing data.

Verified
requirements

ENF_TOK_R4, ENF_TOK_R8

Inputs String object with test data.

Expected results
Test data is first compressed and then decompressed. The
decompressed data must be identical to the source data.

Outputs None.
Comments Everything as expected.

Test ID security-tokens-core:JacksonSerializer

Test objective
Test JacksonSerializer functionality for
serialization/deserialization to/from JSON

Verified
requirements

ENF_TOK_R3, ENF_TOK_R8

Inputs A test Java object

Expected results
Test object is serialized to JSON. The object deserialized from that
JSON must be equal to the source object.

Outputs None.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

18

Comments Everything as expected.

Test ID security-tokens-core:TokenSignerTest

Test objective
Create TokenSigner object, load signing key and certificate from a
Java key store.

Verified
requirements

ENF_TOK_R7

Inputs Key store with test signing key and certificate.
Expected results All operations execute successfully.
Outputs None.
Comments All operations executed successfully.

Test ID security-tokens-core:TokenTest

Test objective

Create a security token (Token object) with some test claims, sign
it with TokenSigner using test signing key and get the encoded
token. Decode and validate the encoded token and compare
decoded Token object with source Token object.

Verified
requirements

ENF_TOK_R7, ENF_TOK_R8

Inputs Key store with test signing key and certificate.

Expected results
The token's signature is valid, decoded Token object is identical to
the source Token object.

Outputs None.
Comments All operations executed successfully.

Test ID security-tokens-service:TokensResourceTest

Test objective
Test REST API for issuing tokens and retrieving list of issued
tokens.

Verified
requirements

ENF_TOK_R3

Inputs Key store with test signing key and certificate.
Expected results Issued token is valid and contains correct claims.
Outputs None.
Comments All operations executed successfully.

Test ID security-tokens-service:RevocationListResourceTest

Test objective
Test REST API for revoking tokens and generating token
revocation list.

Verified
requirements

ENF_TOK_R5, ENF_TOK_R6

Inputs Key store with test signing key and certificate.

Expected results
The token is successfully revoked, the generated token revocation
list contains the revoked token.

Outputs None.
Comments All operations executed successfully.

Test ID security-tokens-service:CertificatesResourceTest
Test objective Test REST API for retrieving signing certificate.
Verified
requirements

ENF_TOK_R1, ENF_TOK_R8

Inputs Key store with test signing key and certificate.
Expected results The certificate returned by the service is valid and matches the test

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

19

signing certificate.
Outputs None.
Comments All operations executed successfully.

Test ID security-tokens-client:VerificationCertProviderP12Test

Test objective
Create a VerificationCertProviderP12 object and test retrieving
signing certificate.

Verified
requirements

ENF_TOK_R4

Inputs Key store with test signing key and certificate.

Expected results
The certificate returned by the VerificationCertProviderP12
matches the certificate in the test key store.

Outputs None.
Comments All operations executed successfully.

Test ID security-tokens-client:VerificationCertProviderWSTest

Test objective
Create a VerificationCertProviderWS object and test retrieving
signing certificate.

Verified
requirements

ENF_TOK_R4

Inputs None.

Expected results
The certificate returned by the VerificationCertProviderWS
matches the test-signing certificate.

Outputs None.
Comments Requires mock Security Tokens Service.

Test ID security-tokens-client:TRLCacheTest

Test objective
Create a TRLCache object and test maintaining local token
revocation list cache functionality. Request a new token, revoke it
and test if the token appears in the token revocation list cache.

Verified
requirements

ENF_TOK_R4

Inputs None.
Expected results The revoked token appears in the token revocation list cache.
Outputs None.
Comments Requires mock Security Tokens Service.

Test ID security-tokens-client:TokenRetrieverTest

Test objective
Create a TokenRetriever object and obtain security token for test
subject.

Verified
requirements

ENF_TOK_R3, ENF_TOK_R4, ENF_TOK_R7

Inputs
Trust store with Security Tokens Service certificate, key store with
the client certificate and private key.

Expected results
The obtained token is valid and contains correct set of claims for
specified subject.

Outputs None.
Comments Requires mock Security Tokens Service.

Test ID security-tokens-client:TokenValidatorTest
Test objective Create a TokenValidator object and validate an encoded test token.
Verified ENF_TOK_R4, ENF_TOK_R8

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

20

requirements

Inputs
Trust store with Security Tokens Service certificate, test token in
an encoded form.

Expected results The encoded token is successfully decoded and validated.
Outputs None.
Comments Requires mock Security Tokens Service.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

21

4. The Credential Service mechanism

The Credential Service mechanism is devoted to storing and managing credentials belonging
to the SPECS Owner and needed to access the resources offered by external CSPs. The
mechanism, moreover, enables to share securely these credentials with the set of SPECS
Platform’s core components that need them to automatically access those resources (e.g., the
Broker, which needs credentials to acquire resources from Amazon).

The Credential Service mechanism is offered by the Credential Service component of the
SPECS Vertical Layer, which includes the following components:

 the Credential Manager: stores and manages the credentials provided by the SPECS
Owner;

 the Credential Management Application: enables the SPECS Owner to manage
credentials and to assign them to components;

 the Credential Client: enables the SPECS core components that need credentials to
acquire and use them.

In order to use the Credential Service mechanism, a SPECS component must integrate the
Credential Client and implement a predefined interface. The Credential Management
Application component offers the Credentials API, discussed in Annex B, which provides the
functionalities needed to manage credentials and associate existing credentials with
components.
The source code of the Credential Service mechanism can be found on the project’s Bitbucket
repository at [8][9].
In the next subsections, the behaviour of the mechanism is dealt with. Moreover, we report
the status of development activities, present the organization of repositories of source code,
provide with guidelines for installation and usage, and present tests executed for verifying the
quality of the code.

4.1. Behaviour

In this section, we briefly describe the behaviour of the Credential Service mechanism and
present the updated architecture, motivating the changes that have been made as compared
to the previous version. The integration of the mechanism into the SPECS framework will be
presented in the documents of the integration task T1.5, at the end of the project.

The current version of the Credential Service mechanism relies upon the Vault project [10], a
tool for securely accessing secrets. According to the Vault definition, a secret is defined as
“anything that you want to tightly control access to, such as API keys, passwords, certificates,
and more”. Vault provides features such as secure secret storage, dynamic secret generation,
and secret leasing and revocation, in addition to enabling the encryption of data before they
are stored elsewhere.

From the architecture point of view, Vault is based on a Server (the Vault Server) that offers
an API (the Vault API), which clients interact with. Vault’s internal components (responsible
for auditing, authentication, policies management etc.) are protected by a Barrier, which
ensures that only encrypted data is sent outward, and that data is verified and decrypted on
the way in. Inside the Barrier, secrets are managed by a Secret Backend, while a Credential
Backend is used to authenticate users that are connecting to Vault: after authentication, a

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

22

client token is returned, to be used for future requests. The token identifies users; ACL policies
are associated with a token when the token is generated and are used for authorization.

Located outside the Barrier, an untrusted Storage Backend is used to store encrypted secrets
(so that they are available across restart). When the Vault Server is started, the data in the
Storage Backend is first decrypted, and then all the configured audit, credential and secret
backend are loaded (Vault unsealing process).

Given the features of the Vault solution, we decided to reuse its tools for the implementation
of the Credential Service mechanism. As previously mentioned, the SPECS platform needs to
store secrets (i.e., credentials) and to share them with some of the core components, in order,
for example, to enable the access to External CSPs for the acquisition of new cloud
services/resources. Hence, the SPECS Owner, who is the holder of the credentials needed to
access external resources, should be able to communicate such credentials to the components
that actually perform the access, in order to automate the acquisition and use of the
resources.

In order to enable this behaviour, we integrated the Vault solution into the SPECS platform. In
particular, we integrated the Vault Server and the Vault Storage Backend in the Credential
Manager component. The configuration and deployment of the Vault Server and of the Vault
Storage Backend within the Credential Manager component is automated by a suitable Chef
recipe, whose execution is triggered by the SPECS Owner at the start-up of the SPECS
platform. In this phase, the SPECS Owner is also responsible for the initialization and
unsealing of the Vault Server. In fact, when a Vault Server is launched, it starts in a sealed
state, in that it is configured to know where and how to access the physical storage, but does
not know how to decrypt its content. Unsealing is the process of constructing the master key
necessary to read the decryption key to decrypt the data, thus allowing access to the Vault.
The master key is obtained by the SPECS Owner during the initialization phase, together with
a root token, needed to generate the authentication tokens used to communicate with the
Vault Server. Note that this confidential information is displayed to the SPECS Owner only
once, through a web interface, and it is neither stored by SPECS or transmitted anywhere else.
It is the SPECS Owner’s responsibility to store it securely.

After the Vault initialization and unsealing, the Credential Service can be started. This is
accomplished through the installation and configuration of the Credential Management
Application, which offers a Web interface to the SPECS Owner for the management of
credentials and the communication with Vault.

The Credential Service architecture is presented in Figure 2, which shows the main
components.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

23

Figure 2: Credential Service Architecture

The figure shows (i) the Credential Management Application, exposing the Credentials API
and used by the SPECS Owner to manage credentials, (ii) the Credential Manager component,
including the Vault Server and the Vault Storage Backend, and (iii) the generic SPECS core
component, which needs credentials to carry out its tasks (e.g., the Secure Provisioning
component). Such component, has shown, includes a Credential Client component, which
must be installed on it in order to enable the access to the Vault API.

The Credential Client component exposes an API (the Credential Client API) used by the
Credential Management Application to notify the component about the assignment of
credentials, and to provide it with the authentication token for the communication with the
Credential Manager. In fact, as previously mentioned, in order to communicate with the
Credential Manager (i.e., the Vault Server) a token is needed; this is generated by the SPECS
Owner via the Credential Management Application when configuring the component for
credentials usage. Note that even the Credential Management Application needs an
authentication token to invoke the Vault API; this is generated at the set-up of the Credential
Service mechanism, after the initialization of Vault.

By means of the Credential Management Application, the SPECS Owner can:

 Add new credentials;
 Configure a component for credentials usage;
 Assign existing credentials to a component;
 Initialize Credential Service.

These represent the main use cases related to the Credential Service mechanism (see Figure
3) and are the basic operations that can be done by the SPECS Owner, who administers the
platform and is the only one devoted to assigning and distributing credentials to components.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

24

Figure 3: Credential Service mechanism use cases

The above mentioned functionalities rely upon the Credentials API, which enables to:

 Initialize and unseal the Vault Server;
 Add new credentials to the Credential Manager at the SPECS Owner’s path;
 Generate tokens for components, so that they can authenticate and access the

Credential Manager (i.e., the Vault Server);
 Assign credentials to components by making them available at the component’s path in

Vault.

In order to store new credentials, the SPECS Owner interacts with the Credential Management
Application, which in turn invokes the Vault API exposed by the Credential Manager to add
new credentials. Then the credentials are stored at the SPECS Owner’s path.

The SPECS core components that need the Credential Service mechanism must be configured
properly. At the start-up of the platform, the SPECS Owner triggers the execution of a recipe
stored in the Chef Server that installs the component along with the Credential Client. Later,
when credentials must be assigned to the component, to complete its set-up, the SPECS Owner
generates an authentication token for the component through the Credential Management
Application interface. Then such token is provided to the component via the Credential Client
API exposed by the running Credential Client, and will be used for subsequent
communications with the Credential Manager.

When the SPECS Owner has to assign credentials to a component that has been previously
configured in the above-discussed way, the following process is carried out. First, the
credentials to assign are copied to the component’s path. This is handled by the Credential
Management Application, which accesses the Credential Manager to retrieve the credentials
and to copy them to the component’s path. Then, the Credential Management Application
notifies the assignment of such credentials to the Credential Client of the interested core
component via the exposed Credential Client API. Once retrieved, the credentials are stored in
the internal memory of the component and used for resources acquisition.

It is worth pointing out that components receive the credentials through the Credentials API
and there is no means to directly share such credentials with other components (there is no
API enabled to output the obtained credentials).

4.2. Status of development activities

In Table 4, we synthetically report the requirements covered by the Credential Service
components.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

25

Credential
Service
Mechanism

SPECS
Components

Requirements
Credential
Client

Credential
Manager

Credential Management
Application

ENF_CRED_R1 - - -

ENF_CRED_R2 X X X

ENF_CRED_R3 X X X

ENF_CRED_R4 X X X
ENF_CRED_R5 X X X

Table 4. SPECS Components related to the Credential Service mechanism and related requirements

There are 5 requirements associated to Credential Service mechanism, one of which has been
deprecated since it is already covered by the Secure Provisioning component. Remaining
requirements are all covered by the final prototype. The following table presents a validation
of the mechanism’s design in terms of explaining how each requirement associated to the
mechanism has been covered.

REQ_ID Requirement Description
ENF_CRED_R1 Target service

authentication schemes

support

Deprecated – The authentication procedures
required by supported CSPs are carried out
by the Secure provisioning component.

ENF_CRED_R2 Access control policies to

the credentials usage

In the developed solution, credentials are
assigned to components by the SPECS Owner
and copied to a specific Vault path that can be
accessed only with an authentication token.

ENF_CRED_R3 Multiple credentials for

the same target service

The Credential Service mechanism allows to
assign credentials to a component associated
with a certain account. Hence, a component
devoted to the acquisition of a target service
can be invoked with different credentials
belonging to different accounts.

ENF_CRED_R4 Credentials usage

auditing

The SPECS Credential Service mechanism
envisions the invocation of the Auditing
component whenever credentials are
assigned to a component. Moreover, when a
component (like the Secure Provisioning
component) requests the access to a target
service with assigned credentials, this will be
logged by the Auditing component as well.

ENF_CRED_R5 Disjoint credentials data

management and storage

In the SPECS Credential Service mechanisms,
credentials are stored encrypted in the Vault
Credential Backend. When assigned to a
component, credentials are copied to its
internal memory thus reducing the risk of
compromise.

Table 5. Requirements for the Security Tokens mechanism

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

26

In Table 6, we report the current status of development activities of all SPECS components
associated to the Credential Service mechanism. Note that the Credential Client component
and the Credential Management Application substitute the original Credential Service
component (thought as independent component), now deprecated. Moreover, the Credential
Store component designed in D4.4.1 is currently integrated in the Credential Manager (it is
implemented by the Vault Secret Backend). All these components are currently available.

Mechanism Artifacts under development Status

Credential
Service

component: credential-manager Completed
component: credential-client Completed

component: credential-application Completed
Table 6. Credential Service implementation status

4.3. Repository

The Credential Service mechanism implementation is made up of three modules, representing
respectively the Credential Manager, the Credential Management Application and the
Credential Client. The final prototype of the mechanism is available on the project’s Bitbucket
repository [8]. Its organization is presented in the following subsection.

4.4. Installation

In this section, we describe how to install and configure the Credential Service mechanism.
The installation requires the following steps:

- Installation and configuration of the Credential Manager;
- Installation of the Credential Management Application;
- Configuration of the generic component that needs credentials with a Credential Client

for communication with the Credential Manager.
The details of each step are reported in the next subsections.

4.4.1. Installing the Credential Manager

Installing the Credential Manager means instantiating and configuring both the Vault Server
and the Vault Storage Backend. This procedure is accomplished by using a Chef Recipe that
allows to automate the whole flow of operations, and to store in a Chef Databag all the data
needed by the other components to call the Vault API (e.g. the IP address of the machine
hosting the Credential Manager). Once the execution of the recipe has completed its
operations, the component gets running and offers its functionalities to the other components.

Prerequisites:

 Java 7

4.4.2. Installing the Credential Management Application

The installation of the Credential Management Application, which provides the Credentials
API and is able to contact any component that has been configured to use credentials stored
into the Credential Manager, is accomplished by running a Chef Recipe that allows to
automate the whole flow of operations. Once the execution of the recipe has completed, the
component gets properly running.

Prerequisites:

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

27

 Java 7

4.4.3. Installing a Credential Client on a SPECS component

As said in Section 4.1, in order to enable a SPECS component to use credentials, it is necessary
to install and configure a Credential Client on it. More precisely, the Credential Client
component must be installed as a dependency of the existing Java project related to the SPECS
component.
Actually, this is not the only action needed. Indeed, credentials are represented by different
sets of key-value pairs depending on the specific provider, and components must be allowed
to manage correctly the supported sets of credentials (i.e., the supported providers). To this
aim, in the current Credential Service mechanism implementation, a DataModel project has
been created. This project must be edited to add support for a new set of credentials to store
in and retrieve from the Credential Manager, and must be included as a dependency by the
core component project, along with the Credential Client project.
The steps needed to install both these projects are illustrated in the following paragraph.

Prerequisites:

 Git client;
 Maven;
 Java 7;
 Java web container;
 Java code of the existing core component.

In order to import the DataModel project, it is necessary to:

 clone the DataModel git repository [11];
 convert it into a Maven project;
 execute the ‘maven install’ command in order to execute tests and to generate the

artifact;
When using the Eclipse IDE, these steps are detailed as follows:

 Import the project from git as a “general project”;
 right click on the project, click on “configure”, then click on “Convert to Maven Project”;
 right click on the project, click on “Run as”, then click on “Maven install”.

Once the project has been properly configured in the IDE, it has to be included as dependency
by the core component project. This can be achieved by adding the following lines into the
<dependencies> tag of the core component pom file:

<dependency>

 <groupId>eu.specs-project.utility</groupId>

 <artifactId>data-model</artifactId>

 <version>0.1-SNAPSHOT</version>

</dependency>

To download and generate the artifact of the Credential Client, here are the general steps:

 clone the git repository [8];
 convert it into a Maven project;
 execute the ‘maven install’ command in order to execute tests and to generate the

artifact;
When using the Eclipse IDE, these steps are detailed as previously described for the
DataModel project.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

28

Once the project has been properly configured in the IDE, even this project must be included
as a dependency of the core component project. This can be achieved by adding the following
lines into the <dependencies> tag of the core component pom file:

<dependency>

 <groupId>specs-utility-credential-client</groupId>

 <artifactId>specs-utility-credential-client</artifactId>

 <version>0.0.1-SNAPSHOT</version>

</dependency>

4.5. Usage

In the previous section, we showed how to install the Credential Client and the DataModel
projects as dependencies of the generic core component project. In this section, we provide
some details on the implementation of the functionalities needed to enable the component to
(i) receive the token for the communication with the Vault Server and to (ii) be notified about
credentials assignment.

The steps that are mandatory to make the component able to access credentials stored into
the Vault Server are the following:

 Inside the DataModel project, it is necessary to:
o add a new class inside the package eu.specs.credentials.<component_name>,

which contains a property for each piece of credential needed by the
component itself, and the related get and set methods. The class has to be a Java
Bean. This procedure has to be repeated for each set of credentials needed by
the component.

 Inside the component project, it is necessary to:

o add a servlet mapped at the URL:
<ip_address_of_core_component>/credentialClientToken,
able to handle HTTP POST requests. The servlet must invoke the static method
setToken provided by the class ComponentServletManagment, whose signature
is defined as:

add public static HttpServletResponse setToken(HttpServletRequest req,

HttpServletResponse resp);

o add a servlet mapped at the URL:
<ip_address_of_core_component>/credentialClientCredentialIdentifier,
able to handle HTTP POST requests. The servlet must invoke the static method
setCredentials() provided by the class ComponentServletManagment, whose
signature is defined as:

public static HttpServletResponse setCredentials(HttpServletRequest req,

HttpServletResponse resp)

o implement the interface defined inside the CredentialClient project that defines
the method “storeCredentials”, whose signature is defined as:

public void setCredential(HashMap<String, String> hashmap);

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

29

This method receives as input parameter a HashMap containing all the values
(stored in Vault Server) associated to the keys useful to make the generic
component full working. Here the developer has to write the code useful to
store the credentials, so that its component can use them when needed.

o create an instance of the implemented interface, get an instance of the class
ComponentManagerSingleton and call its setInterface method, that receives
the implemented interface as parameter.
It is necessary to remark the fact that this interface and the singleton enable the
component to get the credentials stored into the Vault Server; in fact, the
credentials are retrieved from the VaultServer by the CredentialClient and
passed to the component using the implementation of the provided interface.

4.6. Testing

The following tables present several unit tests executed for the Credential Service mechanism.

Test ID testSecretEntity

Test objective
The goal is to verify that the entity Secret is correctly created and
that the setting and getting methods works fine.

Verified
requirements

ENF_CRED_R2

Inputs Id and String of Secret
Expected results Secret object with id and secret setted
Outputs none
Comments All operations executed successfully

Test ID testSetComponentManager

Test objective
The goal is to verify that the object ComponentManager is correctly
implemented and the constructor works fine.

Verified
requirements

ENF_CRED_R2

Inputs
Expected results A not null ComponentManager
Outputs none
Comments All operations executed successfully

Test ID testComponentActionsReceiveToken

Test objective

The goal is to verify that the method receiveToken of the class
ComponentActions is called correctly and works fine.
To test this method an HttpServletRequest is created and the key
and token parameters are setted on it.

Verified
requirements

ENF_CRED_R2

Inputs Key and Token parameters
Expected results Returns response code 200 OK
Outputs none

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

30

Comments All operations executed successfully

Test ID testComponentActionsReceiveEucalyptusCredential

Test objective

The goal is to verify that the method receiveCredentials of the class
ComponentActions is called correctly and works fine.
To test this method an HttpServletRequest is created and the Type
parameter equals to “eucalyptus” is setted.
Morover a Virtual Interface is created at the path
(“/v1/secret/owner/component_name/secret_name”) to emulate
the Vault server.

Verified
requirements

ENF_CRED_R2

Inputs Type parameter

Expected results
Returns response code 200 OK
Number of read credentials equals to five

Outputs none
Comments All operations executed successfully

Test ID testComponentActionsReceiveAmazonCredential

Test objective

The goal is to verify that the method receiveCredentials of the class
ComponentActions is called correctly and works fine.
To test this method an HttpServletRequest is created and the Type
parameter equals to “amazon” is setted.
Moreover a Virtual Interface is created at the path
“/v1/secret/owner/component_name/secret_name” to emulate
the Vault server.

Verified
requirements

ENF_CRED_R2

Inputs Type parameter

Expected results
Returns response code 200 OK
Number of read credentials equals to three

Outputs none
Comments All operations executed successfully

Test ID testInit

Test objective
The goal is to verify that the Vault server is initialized correctly.

Verified
requirements

ENF_CRED_R5

Inputs None
Expected results It returns both the key and the root token
Outputs
Comments All operations executed succesfully

Test ID testUnseal

Test objective
The goal is to verify that the Vault server is correctly unsealed.

Verified
requirements

ENF_CRED_R5

Inputs Unseal key parameter
Expected results Returns the response code 200 ok

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

31

Outputs none
Comments All operations executed successfully

Test ID testConfigureOwnerComponent

Test objective
The goal is to verify that the action correctly updates a new owner
policy, creates a new owner token and sends it to the application

Verified
requirements

ENF_CRED_R2

Inputs
Owner Component parameter, Owner path parameter, Root token
parameter

Expected results Returns the response code 200 ok
Outputs none
Comments All operations executed successfully

Test ID testConfigureGenericComponent

Test objective
The goal is to verify that the action correctly updates a new
generic component policy, creates a new generic component token
and sends it to the application

Verified
requirements

ENF_CRED_R2

Inputs
Generic Component parameter, Generic Component path
parameter, Root token parameter

Expected results Returns the response code 200 ok

Outputs none

Comments All operations executed succesfully

Test ID testWriteCredentials

Test objective
The goal is to verify that the action correctly store credentials in
the vault server at the owner path

Verified
requirements

ENF_CRED_R5

Inputs Provider parameter, Username Parameter, keys parameter
Expected results Returns the response code 200 ok
Outputs
Comments All operations executed succesfully

Test ID testAddToken

Test objective
The goal is to verify that the method receiveToken of the class
ComponentActions is called correctly and works fine.

Verified
requirements

ENF_CRED_R2

Inputs Key and Token parameters
Expected results Returns the response code 200 ok
Outputs
Comments All operations executed succesfully

Test ID testAssignSecret

Test objective
The goal is to verify that the Assign action correctly copy the
credentials from the owner path to relative component path

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

32

Verified
requirements

ENF_CRED_R2

Inputs Providers parameter, Username parameter, Component parameter
Expected results Returns the response code 200 ok
Outputs
Comments All operations executed succesfully

Test ID testNotify

Test objective
The goal is to verify that the action correctly notify the component
credential client

Verified
requirements

ENF_CRED_R2

Inputs Component parameter, Username parameter, Provider parameter
Expected results Returns the response code 200 ok
Outputs
Comments All operations executed succesfully

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

33

5. Conclusions

This document presents the final implementation of the secure interactions mechanisms,
namely Security Tokens and Credential Service. As already reported in D4.4.1, in SPECS the
secure interaction mechanisms specifically tackle two different aspects encountered when
dealing with cloud application security, namely service-to-service authentication and
credential data management. It is worth to highlight that the authorization aspects where
taken in consideration by both components and, in fact, the security token mechanism
implemented an identity-based authorization mechanism, implicitly associated to the issue of
security tokens while the credential manager allows the configuration of security policies,
based on the definition of Access Control List, that can be easily set up at installation time.

While the Security Tokens mechanism was already fully developed and implemented at
month 12, the implementation of the Credential Service mechanism has been substantially
revised to include powerful existing tools for credential management. The Credential Service
is used by the Broker component only once and off-line, during the set-up, when a new
instance of resources need to be provisioned; for this reason, this component is not critical
from a performance point of view and there was no need to benchmark it, as done for almost
all SPECS components.

In conclusion, this document reports on the current version and presents all implementation
and usage details, in addition to an updated validation scenario, which refines the one
presented in Deliverable 5.1.2 and that will be used for integration by Task 1.5. The two
components are available on the SPECS bitbucket repository.

Secure Provisioning of Cloud Services based on SLA Management

SPECS Project – Deliverable 4.4.2

34

6. Bibliography

[1] M. Jones, J. Bradley, N. Sakimura, “JSON Web Token (JWT) draft-ietf-oauth-json-web-
token-25”, 2014. [Online]. Available: https://tools.ietf.org/html/draft-ietf-oauth-json-
web-token-25.

[2] M. Jones, J. Hildebrand, “JSON Web Encryption (JWE) draft-ietf-jose-json-web-encryption-
31”, 2014. [Online]. Available: https://tools.ietf.org/html/draft-ietf-jose-json-web-
encryption-31.

[3] M. Jones, J. Bradley, N. Sakimura, “JSON Web Signature (JWS) draft-ietf-jose-json-web-
signature-31”, 2014. [Online]. Available: https://tools.ietf.org/html/draft-ietf-jose-
json-web-signature-31.

[4] SPECS, “SPECS Utility Security Tokens Wiki”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-utility-security-tokens/wiki/Home.

[5] SPECS, “SPECS Utility Security Tokens”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-utility-security-tokens

[6] “Apache Tomcat”, 2014. [Online]. Available: http://tomcat.apache.org/.

[7] MySQL, “Download MySQL Community Server”, Oracle Corporation, 2014. [Online].
Available: http://dev.mysql.com/downloads/mysql/.

[8] SPECS, “SPECS Credentials Service”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-utility-credential-client

[9] SPECS, “SPECS Credentials Service”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-utility-credential-management-application

[10] “Vault Project”, HashiCorp. [Online]. Available: https://vaultproject.io

[11] SPECS, “SPECS Utility Data Model”, 2015. [Online]. Available:
https://bitbucket.org/specs-team/specs-utility-data-model

https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-25
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-25
https://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
https://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-31
https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-31
https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-31
https://bitbucket.org/specs-team/specs-utility-security-tokens/wiki/Home
https://bitbucket.org/specs-team/specs-utility-security-tokens
http://tomcat.apache.org/
http://dev.mysql.com/downloads/mysql/
https://bitbucket.org/specs-team/specs-utility-credential_manager
https://bitbucket.org/specs-team/specs-utility-credential-management-application
https://vaultproject.io/
https://bitbucket.org/specs-team/specs-utility-data-model

