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Executive Summary

The security objective is set to reduce the security risks as much as possible by
defining security functions and enablers. This document, D4.2, builds upon the
security functions, mechanisms, and techniques that are described in D4.1 [D4.1]
and provides their further developments within WP4 to meet the requirements
enabling more secure and reliable networks than those that we have today. These
functions, mechanisms and techniques include the Authentication, Access Controls
(Capability-Based Access Control and Multi-Level Security) Cryptographic function,
Key Management and Resiliency aspects of security. The deliverable overall provides
the relevant specifications and analysis, the design aspects, Proof of Concept
implementations (PoC), and related PoC tests.

Given the guidelines stated in the introduction section of this deliverable, therefore, in
the following sections of the deliverable we provide, to a certain extent, the description
of the following aspects in relation to all of the security functions specified above:

 The scenarios for application of specified security functions/enablers

« The specification of relevant functions and their designs into modular components
 The software architecture block and sequence diagrams

 The relevant policies to realise the functionality of each security component

 The interfaces and interactions with other components

 The code and configuration of components

e The implementation and realisation of components for PoC experimentation
purposes

» Identification of tests to be conducted for PoC

« Component-level PoC tests conducted in-house at each partner’s premises and the
results obtained.

Future directions are also specified to further the work in each of the activities within
the WP4 tasks and to provide the implemented security functions and enablers for
integration and tests to WP6. Given the above aspects, we tried to build the case for
“ease of use” and “ease of configuration” of security components for their installation
and integration in WP6 scenarios.
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1. Introduction

This deliverable will provide initial specifications, design, and implementations of
innovative security functions and reliability enablers. It covers the functions and
enablers described in D4.1 [D4.1] and the derived security mechanisms and functions
developed within WP4 to enable more secure and reliable networks than those that
we have today. These mechanisms and functions include the authentication, access
control, encryption, and self-healing aspects to be utilised in RINA-based networks.
The deliverable describes in each section the specification, design, the analysis, and
Prof of Concept (PoC) implementations of these mechanisms and functions; addressing
the security requirements of the scenarios analysed in D2.1 [D2.1]. At the end of each
section, we draw the next steps for the specific function.

1.1. Specification and System Design

One of the major objectives of the PRISTINE project is to develop and evaluate the
concepts, the architecture, functions and mechanisms for deploying and providing
end-to-end security. WP2 deliverables described the overall PRISTINE reference
architecture. Subsequently, deliverable D4.1 provided the overall PRISTINE functional
security architecture and specifies each of the main security functions and the
interactions among them. This deliverable presents the specification and system
design by mapping and decomposing the functional security architecture and entities
proposed in D4.1 into relevant components and system modules.

In this deliverable, we provide the following;:
« Firstly, the software architecture in terms of block diagrams where possible for each
component in terms of functions and internal/external interactions.

+ Secondly, further decomposition of each of the components into modules of an
implementation structure.

« Thirdly, the policies, code, files, and modules are organised in the development
environment to build the component/modules considering modularity and their
repetitive use and installation.

1.2. Implementation Tasks

Protecting the network and its resources (i.e., user data, management data and
computing resources) from failures and attacks to disrupt the communication service

12
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are the main security objectives. Deliverable 4.1 provided the RINA security solution,
the functions and the relevant enablers to achieve the above objectives. These functions
and enablers included: Authentication, Access Control, Secure Channel and SDU
Protection, Key Management functions, monitoring and countermeasures for reducing
the security risks and combating the threats. D4.1 deliverable also looked at network
resiliency and availability in RINA. In this deliverable, we provide the following in
relation to the PoC implementation:

Six different authentication approaches were proposed in D4.1. Three of these are
selected for design and implementation, namely AuthNNone (a simple policy with
no authentication); AuthNPassword (a shared secret associated with the application
name); and AuthNAsymmetricKey (a public key cryptography-based policy).

In D4.1, a DAF-based Capability Based Access Control model was explained and
selected for design and implementation in PRISTINE. Further details of applying this
approach to RINA and the implementation course are given in this deliverable.

In D4.1, multiple architectures to achieve Multi-Level Security (MLS) were presented
and thoroughly discussed. Two common components are needed for these architectures
namely “Crypto tunnelling device” and “Boundary Protection Component - BPC” were
identified. We established that MLS-enabled network with only crypto tunnelling
is possible, but limited to Multiple Single Levels. BPC allows applications on
otherwise separate networks to communicate, subject to configured constraints. In this
deliverable, we establish the implementation scenarios for two cases using the above
components.

SDU protection is to protect the integrity and confidentiality of traffic when passed on
to an underlying IPC Process. The required SDU protection algorithms/policies that
are used and applied are described, implemented and reported in this deliverable.

Two architectural options (Centralised and Distributed) were suggested in D4.1 for
assuming the role of Key Server as the security sensitive entity. We further refined these
options and will discuss these choices in the next version of this deliverable.

We introduced a risk assessment methodology in D4.1 for combating threats and
vulnerabilities in RINA. We identified a comprehensive set of threats to the RINA
assets, their impacts, the threat scenarios, the likelihood occurrence of each scenario,
security risks and the associated Security Controls to reduce the risks to an acceptable
level. We identified that a number of threats can be reduced by performing monitoring
actions. A range of techniques and a variety of applications can be used to monitor
and collect information for detecting and assessing vulnerabilities and attacks. These

13
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techniques and monitoring tools, their relevance, and their applications to the
identified threats will be reported in the next deliverable.

Maintaining the network resiliency in the case of failures and attacks and ensuring
high-availability of the network for providing assumed services are set as the main
objectives for RINA. In this deliverable, implementation scenarios for improving
routing resiliency are explained. Routing software specification and implementation
are also described. We also look at how Load Balancing can be achieved in RINA.

The implemented components and related protocols are subject to experimentations
for different purposes. In addition to the engineering counterparts of the functional
entities, a set of adaptors may also be required to implement and interface to the testbed
and, furthermore, a set of tools, such as monitoring and analysis tools are required to
assist the testing activities.

1.3. Proof-of-Concept Experimentations

Proof-of-Concept experimentations are the essential aspect of PRISTINE work to the
end of fulfilling overall project objectives. In PRISTINE, experimentation activities are
carried out in realistic and possibly in simulated network environments, as appropriate
to the aspect of the PRISTINE work under test and the experimentation objectives.

Evidently, the type of the experimentation environment (testbed or simulation) affects
the nature of the releases coming out from the WP activities. For WP4 prototype
releases, PRISTINE security solution is developed to apply in generic engineering
environment according to the selected implementation technologies. This type of
release is set for experimenting in testbeds and use in WP6 use-cases.

1.3.1. Experimentation Categories

As for their objectives, experimentation activities can fall under the following a number
of recognised categories:

« Functional verification and validation experiments - the former is aiming at
assessing feasibility of implementation and proving the correct functionality and
the latter is for meeting the set requirements (defined in WP2) and validity of
specifications.

« Integration experiments - is aiming at verifying that the developed components/
sub-systems function properly when they are put together. This also allows us to
validate the developed system against functional specifications and requirements.

14
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« Performance assessment experiments - aiming at assessing the behaviour of
the aspect under test in a variety of network operations and environment set-
ups and conditions. Behaviour can be assessed in terms of scalability, stability,
sensitivity and yielded benefits/incurred cost; as such, corresponding experiments
or simulation studies could be carried out.

Obviously, experimentation objectives are restricted by the capabilities of the
experimentation environment. As such, some performance assessment experiments
can only be carried out in a simulated networking environment, and not in a limited
testbed environment. And, functional verification experiments better be carried out in
a realistic environment for exhibiting the correct functionality of the system under test
from network operation perspectives.

From a WP4 perspective, given that implementation activities are experimentation
driven, experimentation focus poses the requirement that, in addition to PRISTINE
functional security aspects, appropriate tools may need to be used as required for
fulfilling experimentation objectives.

In summary, WP4 produces prototype releases of components subjecting them to
component-level functional verification/validation tests in the testbeds as well as
providing appropriate interfaces facilitating integration to WP6 use-cases for further
PoC experimentation.

1.3.2. Test Groups and Structure of Test Campaigns
We can divide the tests in three distinct groups:

« Component-Level Tests: these tests are conducted in-house at each partner’s
permises. The emphasis on these tests is set to perform functional validation and
verification and performance assessment of individual components, algorithms, and
processes. These tests are conducted in-house at WP4 for security components,
normally with no interactions with other PRISTINE system components.

« Integration Tests for use cases: These tests are performed to validate and verify
the integrated components coming from the technical WPs inter-work and function
together (including middleware, interfaces, applications, etc.). These tests will be
conducted in WP6, in a defined location, realising use-case scenarios.

+ System Level Tests: The tests are conducted to prove the functionality and validating
the correct behaviour of the entire network system collectively. These tests also
determine whether the overall performance objectives of the proposed system is
realised. These tests will also be conducted in WP6.
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The PoC experimentation activities can use a common structure/template where
possible, along the following lines:

« Objectives: Outlining the aspects under test (specified component, mechanism,
algorithm, protocol) and the particular goals and benefits of experimentation.

« Performance Metrics: Specifying the metrics inherent to the particular functional
aspect under test that quantify the experimentation objectives such as processing
time, overhead, etc. are described. These metrics can be measured, through probes
or through test tools.

« Controlled Variables: Specifying the configuration parameters of the aspect under
test. The performance metrics will be calculated as a function of these configuration
parameters.

« Uncontrolled Variables: Identifying the parameters of the external environment
where the aspect under test is to operate affecting its behaviour and/or its
performance. Such parameters are the topology, volume of traffic, etc.

« Experimentation Environment: Providing the platform and the set-up environment
upon which the experimentation is to be carried out including the modules, the
platform and required test tools, their capabilities and interactions.

« Test Campaigns: This is to specify the tests to be carried out in achieving the
specified objectives. Each of the tests aims at verifying/assessing a particular
aspect of the behaviour/performance of the functional aspect under test (quantified
by appropriate metrics) in a variety of test cases (quantified by appropriate
combinations of uncontrolled variables) as a function of its configuration
parameters (quantified by appropriate controlled variables). Tests are aggregated
in test suites according to the general category they fall in.
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2. Authentication of IPC Processes

One of the first measures to implement for securing a distributed system is
authentication. DIFs are securable containers, therefore in order to verify the identity
of IPC Processes that want to join a DIF, proper authentication policies must be put
in place. Such policies can range from no authentication (for trusted environments in
which security is not a concern) to sophisticated policies that exploit cryptographic
techniques for more hostile environments. Even within a single DIF, different regions
of the DIF may use different authentication policies depending on the properties of the
N-1 DIFs the IPC Processes are relaying on, as shown in the example of Figure 1, “Multi-
provider DIF configuration”. The multi-provider DIF on top is floating over multiple
N-1 DIFs: the access DIF, allowing customers to connect to the Provider 1’s IPC Process
(IPCP) at the border router; or the Provider 1 Regional DIF connecting together all the
IPCPs in the Provider 1’s border routers facing customers. Flows between IPCP A and
IPCP B go over the N-1 DIF called access DIF, which is shared between the provider and
its customers. Due to this shared nature, IPCPs A and B will probably use authentication
policies that rely on strong cryptographic techniques, which also generate secure keys
to encrypt the data exchanged over the access DIF. However, IPCP B and IPCP C use the
Provider 1 Regional DIFto communicate. Since this DIF is in full control of the provider
(joining it requires getting physical access to a provider facility), authentication may
not be required at all or may be very simple (a shared password approach for example).

- - MM
[ @ Multi-provider DIF @ @ ]

AccessDIF

[ Provider 1 Regional DIF ] [ ]

P2P DIF

P2P DIF

I I 1 i I
P2P DIF I P2P DIFI — P2P DIF P2P DIF [PZP DIF]
Customer Interior [ i ] [
Border _J ) f— — T
Router Router Border Interior Provider 1 Backbone DIF Interior Border
Router Router Router Router
P2P DIF P2P DIF
Border Interior Border
Router Router Router
< > & »i & »
T~ Cd Y N Cd Y Ll
Customer network Provider 1 network Provider 2 network

Figure 1. Multi-provider DIF configuration

Therefore, the authentication policies used by an IPCP may depend on the
requirements of the DIF, the characteristics of the N-1 DIF or the type of system the
IPC Process is executing on (host, interior router or border router). The goal of D4.2
with regards to authentication is to describe a few authentication policies that are
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representative of the full solution space; provide an initial specification of such policies;
implement them at the IRATT RINA implementation leveraging PRISTINE’s SDK; and
validate its correct operation. D4.2 has focussed on the draft description of three of the
authentication policies introduced in [D4.1], namely:

« AuthNone. The null case in which authentication is not required.

« AuthNPassword. The two IPC Processes authenticate by proving they know a
previously shared password.

« AuthNAssymetricKey (RSA). The two IPC Processes use cryptographic
techniques and Public Key Infrastructure for authentication purposes. As a result
of the authentication procedure, an encryption key is generated for the application
connection and encryption is enabled.

2.1. Specification and Design of the Authentication Function

Authentication is part of the Common Application Connection Establishment Phase
(CACEP) that takes place between two IPCPs (and application processes in general) as
illustrated in Figure 2, “Authentication between APs when establishing an application
connection”. All the messages required for authentication are exchanged after the
M_CONNECT message (which initiates the application connection setup procedure)
and before the M_CONNECT _R message (which completes the application connection
setup procedure).

1) 2)

M_CONNECT (srcName, destName, credentials, proto,,
syntax version)

— 00—

DIF

Optional messages exchanging authentication
information

Appl.
Process
B

Appl.
Process
B

Appl.
Process

Appl.
Process
A

DIF

M_CONNECT_R (result, reason, options) Appl

(—'@_ Process

Application data transfer phase, processes
exchange data using an application protocol

Appl.
Process

Appl.
Process
B

Appl.
Process
A

DIF DIF

Figure 2. Authentication between APs when establishing an application connection

The messages exchanged during authentication belong to the authentication policy
and can use any syntax that the authors of the policy consider appropriate. One of
the potential options is to re-use the CDAP syntax, but without keeping the CDAP
semantics. That is, authentication messages can re-use the message format defined
in the CDAP specification (operation code, object name, object value, etc.), without
interpreting the values of the message fields the same way as CDAP does (since the
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messages are just authentication exchanges and not operations on the RIB). As it
will be seen later in the PoC implementation description, this approach simplifies the
implementation since all the CDAP message parsing and generation machinery can be
re-used.

2.1.1. Specification of Three Authentication Policies

The three policies leverage the 'AuthPolicy’ field present in the CDAP M_CONNECT
message. This field allows the party that initiates the application connection
establishment to request a specific version of a particular authentication policy. The
'AuthPolicy' field has three attributes:

« Name: a string that uniquely identifies the authentication policy name.
« Versions: an array of string specifying the versions of the policy supported by the
party that requests the establishment of the application connection.

« Options: an optional opaque attribute that carries extra policy-specific
information.

For the sake of brevity and clarity in the description of the specifications, we’ll refer
to "IPCP A" as the IPC Process that initiates the application connection request, and
"IPCP B" as the IPC Process that is the target of the application connection request.
Note that these specifications are not specific to a DIF and can be re-used by any type
of DAF that considers these policies appropriate for its authentication requirements.

2.1.1.1. AuthNone Policy

Figure 3, “Workflow of AuthNone policy” illustrates the workflow of this authentication
policy. IPCP A populates the 'AuthPolicy’ field with the following data:

« Name: PSOC_authentication-none.
» Versions: 1 (only supported version as of now).
« Options: empty.

Initiator of application Target of application
connection connection

M_CONNECT \PCP
AuthPolicy.name = PSOC_authentication-none B

AuthPolicy.version = 1

-
r g

oJe)

M_CONNECT R ‘

Figure 3. Workflow of AuthNone policy
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Upon receiving the M_ CONNECT message, IPCP B decides if the authentication policy
is appropriate. If it is, it replies right away with a successful M_ CONNECT_R message.

2.1.1.2. AuthNPassword Policy

Figure 4, “Workflow of AuthNPassword policy” illustrates the workflow of this
authentication policy. It is based on a pre-shared password that both parties need to
obtain before authenticating. The same password could be shared by all DIF members,
or different passwords could be used. IPCP A populates the 'AuthPolicy' field with the
following data:

« Name: PSOC_authentication-password.

« Versions: 1 (only supported version as of now).

« Options: empty.

Initiator of application Target of application
connection M_CONNECT connection
AuthPolicy.name = PSOC_authentication-

@ password
AuthPolicy.version = 1 =

\1/ - Generate random
, f;\ challenge string
. < \
XOR challenge string CHALLENGE REQUEST

with password,

compute MD5 hash, random challenge string

return reply f?\ >
e XOR password with
CHALLENGE REPLY random c,ha||eng|§,-Y
XORed random challenge compute MD5 hash,
B m compare with reply
= S

M_CONNECT_R

Figure 4. Workflow of AuthNPassword policy

Upon receiving the M_ CONNECT message, IPCP B decides if the authentication policy
is appropriate. If it is, it generates a random string of a certain length (which has to
match the password length in order not to weaken the strength of the authentication,
based on XORing the password with the random string). Once the string is generated,
IPCP B creates a CDAP M_WRITE message with the information below, and sends it
to IPCP A.

+ Opcode: M_WRITE.
« Object class: challenge request.

« Object value: <type> = string, <value> = <the random string generated by IPCP
B>.
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Once IPCP A receives the message, it XORs the random string with the password,
computes the MD5 hash of the result and sends the hashed value back to IPCP B in the
following message.

+ Opcode: M_WRITE.
+ Object class: challenge reply.

+ Object value: <type> = string, <value> = <random string XORed with password>.

Once IPCP B receives the message, it XORs the random challenge with the password,
applies the MD5 hash and compares the result with the value received from IPCP
A. If the values are the same, the authentication is successful and the IPCP invokes
the DIF/DAF access control policy (which will end up sending an M_CONNECT_R
message back to IPCP A if successful). If not, authentication fails and IPCP B sends an
M_RELEASE CDAP message back to IPCP A.

2.1.1.3. AuthNAssymetricKey (RSA) Policy

Figure 5, “Workflow of AuthNAssymetricKey (RSA) policy” illustrates the workflow
of this authentication policy. It is inspired by the SSH2 Transport [RFC4253] and
Authentication [RFC4252] protocols. The policy has two differentiated phases: in the
first phase both parties securely negotiate a shared secret using the Diffie-Hellman
(DH) key exchange method [DH]. This shared secret is then used to generate an
encryption key to encrypt all the communication between both parties. DH is used
in ephemeral mode (new shared secret generated for each application connection),
with the advantage of generating shared secrets on the fly in a secure way; at the cost
of one extra round trip time (RTT). An alternative to this approach would be to use
a pre-shared secret, thus avoiding the RTT consumed by the DH key exchange but
complicating the shared secret management and distribution (must be distributed in a
secure way, should be updated after a certain period of time, etc.)

During the second phase both parties use PKI, specifically RSA, to authenticate its peer.
The policy assumes the same RSA key pair for both IPCPs (A and B), but could also be
modified to support different RSA key pairs for each party. During the authentication
phase both IPCPs authenticate each other.
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Figure 5. Workflow of AuthNAssymetricKey (RSA) policy

IPCP A generates a DH key pair of length 256 bytes using pre-defined values of the
parameters 'p' and 'g' required by the DH scheme ('p' and 'g' are not secret and typically
take tens of seconds to be generated, therefore they must be static for a practical
solution). Then IPCP A populates the 'AuthPolicy' field with the following data:

« Name: PSOC_authentication-ssh2.
« Versions: 1 (only supported version as of now).

« Options: <list of supported Key exchange algorithms (only DH), list of supported
encryption algorithms (AES128 and AES256), list of supported MAC algorithms
(MD5 and SHA1), generated DH public key>

Upon receiving the M_ CONNECT message, IPCP B decides if the authentication policy
is appropriate. If it is, it checks the algorithms proposed by the client, and selects one
of them for each category. If there are multiple options, IPCP B selects the first one
that it supports (IPCP A must send the list of algorithms sorted by preference). After
that, IPCP B generates a DH key pair, and combines it with IPCP A’s DH public key
to generate a shared secret. Then the secret is hashed to generate the encryption key
(with the MDs5 algorithm [RFC1321] if the encryption key is 16 bytes long, or with the
SHA-256 algorithm [sha2] if the encryption key is 32 bytes long). Then IPCP B enables
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decryption, sends the following message to IPCP A and enables encryption (in this
sequence, to avoid race conditions).

+ Opcode: M_WRITE.
+ Object class: Ephemeral Diffie-Hellman exchange.

+ Object value: <Key exchange algorithm (only DH), encryption algorithm, MAC
algorithms, generated DH public key>

When IPCP A receives the message, it uses IPCP B’s DH public key to generate the
shared secret, and after that the encryption key using the same approach as described
before. Then IPCP A enables both encryption and decryption. From now on, all
communication between A and B over the N-1 flow will be encrypted. After encryption
is setup, IPCP A generates a random byte array of the same length of the DH shared
secret (256 bytes). It then encrypts this number with the RSA public key, using Optimal
Asymmetric Encryption Padding (OAEP), and sends it to IPCP B using the following
message.

« Opcode: M_WRITE.
« Object class: Client challenge.

+ Object value: <Client random challenge encrypted with RSA key>

IPCP B receives the message, decrypts the array of bytes with the RSA private key and
XORs the result with the shared secret generated via the DH exchange. It then computes
a 16 bytes hash of the result using the MDj5 algorithm. IPCP B also generates a random
byte array of 256 bytes and encrypts it with the RSA public key. Both values are sent
back to the client using the following message.

e Opcode: M_WRITE.
« Object class: Client challenge reply and server challenge.

« Object value: <Client challenge combined with shared secret and hashed, Server
random challenge encrypted with RSA key>.

When IPCP A receives the message, it XORs the client challenge that it had previously
generated with the shared secret and computes the MD5 hash of the result. This value is
compared with the value received form IPCP B. If they match IPCP B has proved it has
the RSA private key and is therefore authenticated, if not IPCP A sends an M_ RELEASE
messate to IPCP B. Assuming a successful authentication, now IPCP A tries to decrypt
the random challenge sent by IPCP B using the private key, XORs the result with the
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shared secret and computes the MD5 hash of the result. The value is delivered to IPCP
B using the following message.

« Opcode: M_WRITE.
« Object class: Server challenge reply.

« Object value: <Server challenge combined with shared secret and hashed>.

Upon receiving the message IPCP B XORs the server challenge that it had previously
generated with the shared secret and computes the MD5 hash of the result. This value
is compared with the value received form IPCP A. If they match IPCP A has proved it
has the RSA private key and is therefore authenticated. If authentication is successful
IPCP B invokes the DIF/DAF access control policy (which will end up sending an
M_CONNECT_R message back to IPCP A if successful). If not, authentication fails and
IPCP B sends an M_ RELEASE CDAP message back to IPCP A.

2.1.2. Interfaces and Interactions with Other Components

Figure 6, “Interaction between different application components” shows, at an
abstract level, the main application components that are related to the authentication
procedures and the main interactions amongst them. The image is not proposing any
implementation design, it is just purely for a better understanding of authentication in
the context of the DIF/DAF theory (multiple implementation strategies are possible).

. e ™
@cunty Manager ~ RIB Daemon r CACEP/CDAP state
( Authentication Policy -
Authentication Policy CACEP/CDAP state
Type = , machine, id = 1
AuthNPassword Send/receive \_ . Y.
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P iy = |, .~ Read/write security|
Security Context, id e context r SDUP policy set, id =
Securtty C;) mextid= e »{ SDUP policy set, id =
Read security 1
\ / context
- J
Read/write from N-1
v flow

Figure 6. Interaction between different application components

There are three main components that are relevant to an application’s authentication:
the Security Manager, the RIB Daemon and the SDU Protection module.

« SDU Protection module: Protects/unprotects the data coming in/out an N-1
flow. Must be configured with the right policies and policy parameters (encryption
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algorithm, encryption key, etc.). The SDU Protection module configuration can be
different for each different N-1 flow, and is owned by the Security Manager. The SDU
Protection module can query a security profile to learn the operations that must be
applied to incoming and outgoing SDUs.

« RIB Daemon. Receives incoming SDUs from SDU protection, which are CDAP
messages targeting one or more RIB objects. The RIB Daemon is also the
responsible for establishing an application connection to a remote application
(encapsulating the CDAP and CACEP state machines). Before starting the
application connection request, the RIB Daemon must query the Security Manager
to obtain support of the relevant authentication policy module associated to the
application connection. Any authentication-related messages received between
M_CONNECT and M_CONNECT _R will be delivered to the authentication policy
for its processing.

« Security Manager. Hosts all the authentication policy instances supported by the
application, as well as the current security contexts (for each allocated N-1 flow).
The authentication policy is in charge of initializing and populating the security
profile associated with a particular N-1 flow with the relevant data (algorithms, key
material, protection policies, etc). The authentication policy interacts with the RIB
Daemon to send/receive authentication-related messages.

2.2. Implementation of the Authentication Function for PoC

The three authentication policies previously specified in this document have been
implemented in librina, so that they can be used by an IPC Process but also by
other application processes that follow the DAF model. The high-level design of the
implementation roughly follows the model described in the previous section, taking
into account the particularities of the IRATI RINA implementation: the IPC Process’s
SDU Protection module is located at the kernel, while the RIB Daemon and the Security
Manager are at user-space. This makes the implementation design a bit more complex
than what is explained in the high level model, since the security context state must
be split between user-space and the kernel, while configuration of the SDU Protection
module requires asynchronous messaging (via Netlink sockets).

2.2.1. Authentication-related SDK

When the IPC Process Daemon is created, it instantiates all the supported
authentication policies and stores them in the Security Manager component by
type. Each authentication policy must inherit from the IAuthPolicySet abstract class
presented below.
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class IAuthPolicySet : public IPolicySet {
public:
enum AuthStatus {

IN_PROGRESS, SUCCESSFULL, FAILED

+

IAuthPolicySet(const std::string& type_);
virtual ~IAuthPolicySet() { };

/// get auth_policy
virtual AuthPolicy get_auth_policy(int session_id,
const AuthSDUProtectionProfile& profile) = 0;

/// initiate the authentication of a remote AE. Any values originated
/// from authentication such as sesion keys will be stored in the
/// corresponding security context
virtual AuthStatus initiate_authentication(const AuthPolicy& auth_policy,
const AuthSDUProtectionProfile& profile,
int session_id) = 0;

/// Process an incoming CDAP message
virtual int process_incoming_message(const CDAPMessage& message,
int session_id) = 0;

//Called when encryption has been enabled on a certain port, if the call
//to the Security Manager's "enable encryption" was asynchronous
virtual AuthStatus encryption_enabled(int port_id) = 0;

// The type of authentication policy
std::string type;
i

The policy has to implement the following main operations:

« get_auth_policy. Invoked by the RIB Daemon when it has to initiate an
application connection with a remote application entity, in order to obtain the values
for the AuthPolicy field of the CDAP M_CONNECT message.

« initiate_authentication. Invoked by the RIB Daemon when it receives an
application conncetion request (CDAP M_CONNECT message) from a remote
application entity. This operation returns SUCCESS if authentication is successful,
FAILURE if it fail or IN PROGRESS if more messages need to be exchanged.

« process_incoming message. Invoked by the RIB Daemon when it receives an
authentication-related message. Return type is the same than the former operation.
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« encryption_enabled. Callback informing about the result of an "enable
encryption” call to the Security Manager, in case this operation is asynchronous (as
it is the case of the IPC Process, which involves sending a Netlink message to the
kernel and getting the response back asynchronously).

2.2.2. Configuration of the Security Manager

The work reported in D4.2 has unified the configuration of the Security Manager and
updated the format of the configuration file. The following code snippet shows an
example configuration.

"securityManager" : {
"newFlowAccessControlPolicy" : {
"name" : "default",
"version" : "O"
3
"difMemberAccessControlPolicy" : {
"name" : "default",
"version" : "@"
}
"authSDUProtProfiles" : {
"default" : {
"authPolicy" : {
"name" : "PSOC_authentication-sshrsa",
"version" : "1",
"parameters" : [ {
"name" : "keyExchangeAlg",
"value" : "EDH"
b {
"name" : "keystore",
"value" : "/usr/local/irati/etc/private_key.pem"
b {
"name" : "keystorePass",
"value" : "test"

31

3

"encryptPolicy" : {
"name" : "default",
"version" : "1",
"parameters" : [ {

"name" : "encryptAlg",

"value" : "AES128"
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boA{

"name" : "macAlg",
"value" : "SHA1"
b o{
"name" : "compressAlg",
"value" : "default"
}1
}
"TTLPolicy" : {
"name" : "default",
"version" : "1",
"parameters" : [ {
"name" : "initialvalue",
"value" : "50"
}1

}
"ErrorCheckPolicy" : {

"name" : "CRC32",
"version" : "1"

}
"specific" : [ {
"underlyingDIF" : "100",
"authPolicy" : {
"name" : "PSOC_authentication-none",
"version" : "1"
}

b Ap
"underlyingDIF" : "110",

"authPolicy" : {
"name" : "PSOC_authentication-password",
"version" : "1",
"parameters" : [ {
"name" : "password",
"value" : "kf05j.al234.afok"
31
}
"TTLPolicy" : {
"name" : "default",
"version" : "1",
"parameters" : [ {
"name" : "initialvalue",
"value" : "50"
31
}
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"ErrorCheckPolicy" : {
"name" : "CRC32",
"version" : "1"

31

The first two fields are dedicated to the configuration of the new member access control
policy (executed after successful authentication of a remote IPCP) and the new flow
access control policy (executed when there is an incoming flow allocation request for an
application registered in the IPCP). After that there is the configuration of the policies
that can vary depending on the N-1 DIF supporting this IPCP. These policies are:
authentication, encryption, error check and TTL. The Security Manager configuration
provides a default and specific sets of these policies (the default set is used whenever
no N-1 DIF specific policy is specified).

2.2.3. AuthNone Policy

The implementation of the AuthNone policy is trivial. The get__auth_ policy operation
returns an AuthPolicy object populated with the information described in the policy
sepecification. The initiate_authentication policy just checks for the correct policy
names and version, and returns SUCCESS. The process_incoming message and
the encryption_ enabled operations are not used and therefore just return FAILURE
(they should not be called). The snippet below shows an example of the AuthNone
policy configuration.

{
"authPolicy" : {
"name" : "PSOC_authentication-none",
"version" : "1"

}

2.2.4. AuthNPassword Policy

The get_auth_policy operation returns an AuthPolicy object populated with the
information described in the policy sepecification. The initiate_authentication
policy checks for the correct policy names and version, generates a random string of

29



Deliverable-4.2 (1st version)

the same length as the password, asks the RIB Daemon to send a CDAP message to
the remote IPCP and returns IN PROGRESS. The process_incoming_message
operation processes the two different messages involved in this policy: the challenge
message and the challenge request message, as described by the policy specification.

The encryption_enabled operation is not used and therefore just returns FAILURE
(it should not be called). The snippet below shows an example of the AuthPassword
policy configuration.

{
"authPolicy" : {
"name" : "PSOC_authentication-password",
"version" : "1",
"parameters" : [ {
"name" : "password",
"value" : "kf05j.a1234.afok"
31
}

2.2.5. AuthNAssymetricKey (RSA) Policy

Since a number of cryptographic operations have to be performed by this
authentication policy, it needs to rely on a well-accepted implementation of these
functions. The openSSL liberypto library [openssl] has been chosen as a provider of
cryptographic functions for the user-space IRATI daemons, due to its widespread use
and completeness of the implementation. In particular, this policy uses the following
facilities provided by libcrypto: Diffie-Hellman key and shared secret generation, MD5
and SHA-256 hash functions, loading RSA keys from PEM files, RSA public key
encryption and private key decryption.

The get_auth_policy operation returns an AuthPolicy object populated with the
information described in the policy specification (including the DH public key). The
initiate_ authentication policy checks for the correct policy names and version,
selects the algorithms to be used for encryption, generates the DH key-set and the
shared secret (with associated encryption key). Once this is done it asks the Security
Manager to enable decryption on the N-1 port (which is an asynchronous operation).

The enable_encryption operation is invoked when the kernel has replied to an
enable encryption request. It considers three cases: IPCP B had asked to enable
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decryption, IPCP B had asked to enable encryption or IPCP A had asked to enable
both encryption and decryption. In the first case the policy sends a "DH exchange
message" to IPCP A, with IPCP B’s DH public key. In the second case a condition
variable is updated (notifying that encryption is completely setup). In the last case IPCP
A generates the challenge byte array, encrypts it with the public RSA key and sends it
to IPCP B.

The process_incoming_message operation processes the four different messages
involved in this policy: the DH exchange message, the client challenge message, the
client challenge reply message with server challenge and the server challenge reply
message.

« DH exchange message. IPCP A computes the shared secret and encryption key,
requesting both encryption and decryption to be enabled for the related N-1 port in
the kernel. Once the answer is obtained IPCP A proceeds as explained in the last
paragraph.

» Client challenge message. IPCP B decrypts the challenge with the private RSA
key, XORs it with the shared secret and computes the MD5 hash. It also generates
a random byte array (the server challenge) and sends both values back to IPCP A.

+ Client challenge reply and server challenge. IPCP A XORs the client challenge
that was sent to IPCP B with the shared secret, computes the MD5 hash and
compares it with the client challenge reply. If they are equal IPCP B has been
successfully authenticated, if not an M_RELEASE is sent to IPCP B and the
operation returns FAILURE. In the case when both values were equal, IPCP A
decrypts the server challenge with the private RSA key, XORs it wit the shared secret,
computes the MD5 hash and sends it to IPCP B.

» Server challenge reply. The received challenge reply is verified following the
usual procedure described in the former paragraph, resulting in a successful or failed
authentication of IPCP A (the operation returns SUCCESS or FAILED accordingly).

The snippet below shows an example of the AuthNAssymetricKey (RSA) policy
configuration, as well as of the associated encryption policy that must be activated
for the N-1 port. The authentication policy needs to be populated with information
on the key exchange algorithm (right now only Diffie Hellman on Ephemeral mode is
supported), the location of the file with the RSA key, and the password to be able to
read the RSA key from the file, since it is encrypted (NOTE: this feature is still missing
in the PoC as of D4.2 writing, but will be implemented in short; until then keys are
stored in the clear).
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{
"authPolicy" : {
"name" : "PSOC_authentication-sshrsa",
"version" : "1",
"parameters" : [ {
"name" : "keyExchangeAlg",
"value" : "EDH"
b {
"name" : "keystore",
"value" : "/usr/local/irati/etc/private_key.pem"
b {
"name" : "keystorePass",
"value" : "test"
11
}
"encryptPolicy" : {
"name" : "default",
"version" : "1",
"parameters" : [ {
"name" : "encryptAlg",
"value" : "AES128"
bo{
"name" : "macAlg",
"value" : "SHA1"
b {
"name" : "compressAlg",
"value" : "default"
11
}

2.3. Component-Level PoC Tests for Authentication

The experimental scenario used to verify the correct operation of the AuthNPassword
and the AuthNAssymetricKey(RSA) authentication policies is shown in Figure 7,
“Authentication policies verification scenario”. A normal DIF consisting of three IPCPs
operates over two shim DIFs over Ethernet. IPCP test3.IRATI is configured to use the
AuthNPassword authentication policy by default, with an Error Check (CRC) and TTL
policies but without an encryption policy. IPCP test2.IRATI is configured to use the
AuthNAssymetricKey(RSA) authentication policy by default, with Encryption, Error
Check and TTL policies. However, it is also instructed to use the AuthNPassword
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authentication policy and no encryption for N-1 flows over the N-1 DIF called
"100". IPCP test3.IRATI is configured to use always the AuthNAssymetricKey(RSA)
authentication policy with Encryption, Error Check and TTL policies.

App AuthPasswd authentication AuthNAsymetric Key App
rec-cl No encryption /ﬁ Encryption recs
@ @ “normal.DIF” @]
/s ~
shim DIFover80210  (CAu | |AS0R Shim DIF over 80210~
“100” “110”
\ J ------- \; L;;\l-lz); --------- l J VLAN 110

Host 1 Router

Figure 7. Authentication policies verification scenario

2.3.1. AuthNPassword Policy

The following traces are the output of capturing the Ethernet packets at the ethi.100
interface of the system Host 1 with the Linux utility tcpdump. ARP request and response
correspond to the ARP request and reply issued by the shim DIF when the IPC Process
test3.IRATI requests a flow allocation to the IPC Process test2.IRATI.

M_CONNECT message reflects test3.IRATI sending an M_CONNECT message
to test2.IRATI, requesting a new connection to be opened using the
'PSOC_authentication_password' authentication policy with version '1'.

IPCP test2.IRATI replies with a challenge request message, providing the random
string that test3.IRATI XORs with the password and sends back to IPCP test2.IRATI in
a challenge reply message, as depicted by Challenge request and response messages.

Authentication is successful and IPCP test2.IRATI replies with an M_ CONNECT_R
message, as shown in M_CONNECT_R message. Then the enrollment procedure
continues with more message exchanges between both IPCPs.

2.3.2. AuthNAssymetricKey (RSA) Policy

The following traces are the output of capturing the Ethernet packets at the ethi.110
interface of the system Host 2 with the Linux utility tcpdump. ARP request and
response correspond to the ARP request and reply issued by the shim DIF when the
IPC Process test1.IRATI requests a flow allocation to the IPC Process test2.IRATI.
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M_CONNECT message reflects testi.IRATI sending an M_CONNECT message
to test2.IRATI, requesting a new connection to be opened using the
'PSOC_authentication-ssh2' authentication policy with version '1'. The DH public key
is also provided as part of the options field in the AuthPolicy field options.

IPCP test2.IRATI replies with the Ephemeral Diffie-Hellman exchange message,
providing its DH public key to test1.IRATI. From now on, all messages are encrypted, as
shown by the trace of the next packet in EDH exchange and encrypted client challenge
message.

Since the communication is encrypted, showing the log of tcpdump is not very
illustrative. IPCP test1.IRATI log shows the log of IPCP test1.IRATI (the one that
initiated the application connection). The sequence of messages shows how test1.IRATI
i) receives the Ephemeral DH exchange message form test2.IRATI; ii) generates the
encryption key; iii) enables encryption and decryption; iv) sends the Client challenge
message; v) receives the Client challenge reply and Server challenge message; vi) sends
the Server challenge reply message and vii) receives an M_CONNECT_R message
indicating that the application connection has been successfully established.

2.4. Next Steps for Authentication Activity

The authentication policies developed within WP4 will be used in the first iteration of
experimental activities that are reported in [D6.1]. Feedback from these experiments
will be incorporated into WP4 for further refinement. In addition to this, the research
and development activities related to authentication during the second iteration of
PRISTINE will tackle two main topics:

« The specification and development of an authentication policy inspired by the
TLS Handshake protocol [RFC5246], which uses certificates to authenticate both
parties. This authentication policy will be associated with an encryption policy
equivalent to the TLS record protocol [RFC5246].

« The investigation of authentication in the context of a DIF, after the IPC Process has
successfully joined the DIF.

o Once the IPCP has authenticated with a DIF member, what should it do if it wants
to create application connections with other DIF members in order to exchange
layer management information? Should it use the same authentication policy
used to join the DIF or can this requirement be relaxed?

o IPCPs can request the allocation of layer management flows to peer IPCPs
(dedicated to the exchange of layer management information via CDAP), and
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also data transfer flows, which are dedicated to carry user traffic over EFCP.
Therefore no application connection is setup over data transfer flows but, should
there be some form of authentication anyway over those flows? Otherwise, how
can the IPCP that is a target of a data transfer flow be sure about the identity of
the requestor of the flow?
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3. Capability-based Access Control

Capability based Access Control (CBAC) is the approach to access control adopted for
the PRISTINE project, as decribed in D4.1. CBAC is defined to simplify administration
of permissions for a large number of users. It could be implemented as either the
classical Role Based Access Control (RBAC) or in the advanced Attribute Based Access
Control (ABAC). The capability is computed based on the role, in case of RBAC, or
attributes of the user, in case of ABAC.

RBAC models categorize users based on similar needs and group them into roles.
Permissions are assigned to roles rather than to individual users. The objective is
to reduce the number of assignments. The more users and permissions a single role
captures, the greater the administrative efficiency gains. Ideally, users should be
assigned permissions which at any point in time represent a true reflection of current
business rules, risk-mitigating precautions and context-related security measures.

The ABAC approach defines a capability or authorization token as one of the attributes
of the entity that requires access to a certain resource in the system. Whereas RBAC
provides coarse-grained, predefined and static access control configurations, ABAC
offers fine-grained rules which are evaluated dynamically in real-time.

In the scope of this work, we study the application of ABAC to RINA. ABAC is based on
token generation that designates an object and grants the subject (i.e. the holder of the
token) authority to perform actions on that object. It defines the name for identifying
the object and the set of access rights for that object. The token could be seen as a ticket,
if a subject possesses this ticket it has the proof of the holder’s rights to access the object.

As depicted in Figure 8, “Attribute Based Access Control System Architecture”, the
ABAC system generates a token which will then be used, along with environment and
resources attributes, as input to the AC policy to decide whether to permit or deny
access.

36



Deliverable-4.2 (1st version)
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Figure 8. Attribute Based Access Control System Architecture

3.1. Access Control Scenarios

Access Control in PRISTINE is a crucial step that must be performed in different
scenarios where requestors (subjects) would like to access to resources (objects). These
scenarios are as follows:

« When an AP needs to access another AP’s resources in the same DAF. In this case
the peer AP should execute the AC function to permit or deny the requesting AP to
access the requested objects.

« When an IPC Process requests to join a DIF, a check on the authorization rights of
the requesting IPCP is needed.

« When an IPCP initiates the execution of remote operations on the objects of a peer’s
IPCP RIB.

The scenarios stated above may be processed in different ways and several AC policies
could be applied for each case. In the scope of this deliverable, we will consider the first
scenario. Note that most of the described procedures can be adapted to other scenarios.
The remaining two scenarios will be specified and reported in the next WP4 deliverable
(D4.3). In the following section, we will provide the specification and the design of the
access control system for the first scenario.

3.2. Specification and Design of CBAC'’s at DAF-Level

We assume that any Distributed AP (DAP) acts as the subject that is is required to
be authorized to proceed with some actions on the resources (objects) of other DAPs.
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Objects concern the data and contents of the RIB within the DAP. Basically, the access
control system will provide the corresponding capabilities to allow the requesting
DAP to get access to the required resources. Figure 9, “AC System Architecture
Block Diagram” shows the CBAC functional blocks and the interactions with RINA
components. These blocks are explained below.

Management
DAF

DAF ocz

Figure 9. AC System Architecture Block Diagram

The originating DAP or the requestor: The service or application process
requesting the RIB resources of the peer service. In our example DAP1

The receiver DAP: The service or application process having the requested RIB
objects, e.g. a printing service. In our example DAP2.

The Management Agent (MA): The Management Agent is implemented as an
Application Process (AP). Basically, here, it is responsible for providing the system with
the needed access control data if it is not available in the AC Local Manager.

3.2.1. Access Control Mangers' Functions

3.2.1.1. The Master AC Manager

The AC master is the block responsible for storing the needed access control data
including the authorization profiles of the different DAPs and the AC policies or rules
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that will be used then in the access control procedure. This entity operates in the
same domain as the Distributed Management System (DMS)and could function in
centralized or descentralized/replicated manner. It can be accessed via the DMS.

The information that must be stored in the AC Master block is the Authorisation
Profiles.

3.2.1.2. The Local AC Manager

The AC Local Manager is the block implementing and enforcing the access control
policy locally in the system that AP operates. The input to this block is the access control
information that is requested from the AC Master via the MA (Management Agent).
The output will be the AC decision and the eventual AC parameters that will be used
in the AC procedure.

3.2.2. Authorisation Profiles
Profiles are stored in the RIB of the Master AC manager. They include:

o Profile name

Profile type Generic_Profile for a given DAP, or Specific_Profile.

Profile groups that the DAP belongs to

Allowed objects description: Name, properties, accounting.

In the access control architecture we will define four profiles that correspond to
DAPs, RIBs, DAFs, and USERs. Those profiles will be stored by the AC Manager
Master. Each of them will be specified with a set of attributes. We define an attribute
“group” that is assigned to different USERs or DAPs having similar access rights to
different RIB objects.

In the case of DAPs, we define two groups and roles:

« S_GROUP: assigned to DAP servers that are able to execute certain services such as
executing a program, providing certain services to other group called C_GROUP.

« C_GROUP: assigned to DAP Clients that will be asking for certain services from
other DAPs. C_GROUP DAPs might be used by USERs requesting access to services
offered by the DAF.

« We also define two roles: Management Agent and Application.

In the case of Users, we also define two groups and roles:
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« A_Group for Users with high access rights such as Administrators.
« U_Group for users that are customers of the offered services in the DAF.

« We also define two roles USERACCESSONEHOUR, USERACCESSUNLIMITED.

3.2.2.1. Example Profiles

An example of defined profiles is given below. Consider a network NET1 where the
RINA-enabled System1 has a DAF named DAF1 with two applications: DAP1and DAP2.
A Network Zone is defined as a network (NET1) under a single administrator. DAP1
application would like to access RIB information of DAP2. In this example DAP1 will
play the role of Client to DAP2 which play the role of Server. Here, RoleD1is a client role.
We consider that these DAPs possess certificates. We consider User1 that uses DAP1 to
access to services of DAF1. Some of the services are requesting access to the RIB2 of
DAP2. We consider DAP3 and DAP4 as other application processes of the DAF1.

The authorisation profiles of DAF1, DAP1, User1, and RIB2 for this example are defined
below:

<DAF profile starts>

{System “Name”: Systeml

DAF “Name”: DAF1

DAP « DAF » : DAF1

DAP “Network zone”: NET1

DAF “Certificate”: CERTIFDAF1

DAF « creation date » : dd/mm/yyyy

DAF “end date” : dd/mm/yyyy

DAF “Ressources “: {RIB1, RIB2, ..others}
DAF “Services”: { DAP2, DAP3, DAP4}

DAF “other profile information”: AddFunction

}
<DAF Profile ends>

<DAP profile starts>

{DAP “Name”: DAP1

DAP « DAF » : DAF1

DAP “group”: C_Group

DAP “Role”: Application

DAP “Password”: DPWD

DAP “Network zone”: NET1

DAP “Certificate”: CERTIFDAP1

DAP « creation date » : dd/mm/yyyy
DAP “end date” : dd/mm/yyyy
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DAP “Ressources “: {RIB_Public, RIB_Private, others}
DAP “other profile information”: AddFunction

}
<DAP Profile ends>

<RIB profile starts>

{RIB “Name”: RIB2

RIB « DAF » : DAF1

RIB “DAP”: DAP2

RIB “Password”: RPWD

RIB “Network zone”: NET1

RIB “Certificate”: CERTIFRIB2

RIB « creation date » : dd/mm/yyyy

RIB “end date” : dd/mm/yyyy

RIB “other profile information”: AddFunction

}
<RIB Profile ends>

<USER profile starts>

{USER“”Name”: User1l

USER « DAF » : {DAF1, DAF2}

USER “DAP”: DAP1

USER “Role”: USERACCESSONEHOUR

USER “Password”: UPWD

USER “Certificate”: CERTIFUser1l

USER “other profile information”: AddFunction

}
<USER Profile ends>

3.2.3. Access Control Policies

Attribute evaluation enables effective policy-based authorization. In the
architecture shown in Figure 9, “AC System Architecture Block Diagram”, we define
two policies: PERMIT and DENY Policies. Consider the following three examples:

Example 1:

A Policy states that "all DAPs belonging to the DAF1 should have read access to RIB
information located in a network zone NET1 made available to applications of the same
DAF and running in the same network zone NET1 as the DAP.

An access request evaluation based on the following attributes and attribute values
should therefore return PERMIT:
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Subject's "DAF"="DAF1"

Subject's "Network Zone"="NET1"

Subject’s “Call_TokenFunction(Subject = DAP1, Object=RIB2)” = “Authorise”
Action="read"

Resource "type"="RIB Information"

Resource "Network Zone"="NET1"

Note that “Call_TokenFunction(Object=RIB) “ in this example is the function that is
called by the DAP2 which is applying the access control policy for requesting access to
the RIB information by DAP1. If the result of this called Function is not authorized,
then the applied policy will be “Not Permit”.

Example 2:

A Policy states that a user1 (defined in the profile earlier) in DAF1 of network zone
NET1 requesting read access to the RIB2 resource of DAP2 in DAP1 but only for one
hour will return PERMIT.

Subject's "DAF"="DAF1"

Subject’s “DAP”= “DAP1”

Subject's "Network Zone"="NET1"

Subject’s “Call_TokenFunction(Subject =Userl1, Object=RIB2)” = *“Authorise”
Action="read"

Resource "type"="RIB2"

Ressource “DAP"= “DAP2"

Ressource “DAF”= “DAF1”

Resource "Network Zone"="NET1"

Example 3:

A Policy states that a user1 (defined in the profile earlier) in DAF1 of network zone
NET1requesting read access to RIB2 resource of DAP2 for an unlimited time will return
DENY.

Subject's "DAF"="DAF1"

Subject’s “DAP”= “DAP1”

Subject's "Network Zone"="NET1"

Subject’s “Call_TokenFunction(Subject =Userl1, Object=RIB2)” = “Authorise”
Action="read"

Resource "type"="RIB2"

Ressource “DAP”= “DAP2”

Ressource “DAF”= “DAF1”

42



Deliverable-4.2 (1st version)

Resource "Network Zone"="NET1"

In this example Call_TokenFunction will return Not Authorized, as User1 role is
defined with the access for only one hour and the requested access in this example is
for unlimited access.

3.2.4. Interfaces and Interactions with Other Components

Figure 10, “DAP interactions with the Management DAF level” shows the AC procedure
performed between two DAPs. It illustrates the interaction between RINA components.
Each system has a MA (with its respective RIB and RIB daemon) in order to ensure
the access to the Master AC Manager. The interaction between the MAs and Manager
is based on CDAP messages.

Management DAF

IPCManager
. 2) Acces

T = )
DAF
1) Access Request (parameters..) exocule
O

3) Get AC nfo from RIB

|4) Run AC policy

D

Figure 10. DAP interactions with the Management DAF level
3.2.4.1. Sequence Diagram and Interactions

Figure 11, “Sequence Diagram of the AC components’ interaction” shows the sequence
diagram of our scenario, illustrates these details, showing the interaction between the
different components of the AC system.

Upon receiving the request from the originating DAP, the AC check procedure is
launched on the destination DAP side:

1. The Local AC Manager requests the authorization profiles and AC policies or rules
from the RIB Daemon of the Management Agent.
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2. Ifthe required information is not found in the local RIB, the MA RIB daemon should
request it via CDAP from the AC Manager Master.

3. The Local AC Manager, located in the IPC Manager of the destination system,
generates the Token, loads the policies and then inputs them to the Policy Decision
Point (PDP). It should be noted that functions of PDP and PEP are described in the
next section.

4. The PDP will output the AC decisions to the destination DAP.

5. The Policy Enforcement Point (PEP) enforces the decision and, if needed, performs
an additional accounting check.

IPC Manager Daemon
AC Local Manager RIB-Deamon
DAP1 DAP2 Master AC
Manager

l:cess Request{AP1, AP2/Printer, Write, 2H)
Authentication Access Request(DAP1, DAP2/Printef
Granted , Write, 2H) Profiles Request
(DAP1,DAP2] Profiles Request

(DAP1,DAPZ]
Profiles Response

Profiles Response

Policies Request Policies Request

Policies Response

_ Policies Response

Verify Profiles,
capabilities, AC
policies,

Token Generation

ACOK[AP1, AP1Capabilities)

ACgranted

Output
AC
Granted

Resource
Usage
Accounting

Secure Data Exchange via (N-1) DIF

Figure 11. Sequence Diagram of the AC components’ interaction
3.2.4.2. Inputs and outputs

Figure 12, “Inputs and outputs of the AC system” depicts the detailed specification of
inputs/outputs of the different blocks of the architecture.

There are three actors:

« The Local AC Manager: this takes as inputs the Authorization profiles and the AC
policies. This information should come from the RIB Daemon of the Management
Agent. As the output, the Local AC Manager gives the AC Decision. There are three
blocks inside the Local AC Manager :
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o PDP: the Policy Decision Point is the decision block where the system checks the
profiles and the capabilities applying the AC policies in order to decide whether
to permit or deny the access to the RIB resources. The inputs to this block are
mainly the policies and the generated token. The output is the AC decision

o Token Generation: This block is responsible of generating the token used
afterwards in the PDP. The procedure of token generation will be detailed later.

o AC Policies Loader: This module is in charge of loading the AC policies or rules
from MA RIB Daemon. If the information is not found in the local RIB, the

Master AC Manager is requested to provide it.

« The DAP processes AC via its PEP block which is responsible for ensuring the RIB
Daemon respects the policy rules and changes its behaviour in accordance to the

policies when needed. The input to this block is the AC decision.

« The AC Master Manager responds to the requests. The RIB daemon of the MA sends

CDAP messages to the AC Master Manager.
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Local AC Manager
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Agent -
\L. f]‘ ™ Policies/Rules m
Policies/Rules Loader
PDP
RIB
Daemon Authorization Token m
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\

RIB
Daemon

Figure 12. Inputs and outputs of the AC system
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3.3. CBAC Implementation for PoC

The different AC components will be implemented in the IPC Manager block. As shown
in Figure 13, “Implementation Scenario of CBAC RINA for component-level PoC tests”,
we consider in our implementation three machines to implement a DAF Level with two
DAPs DAP1 and DAP2. A separate machine will be used to run the AC Manager Master
and store the system profiles, i.e. the DAP, RIB, DAF and user profiles, as described in
previous sections.

Message exchange will be implemented between the and the AC Master Manager to
request the needed profile on access control request basis. It is the DAF Management
layer.

Message exchange will be implemented between DAP1 and DAP2 to exchange the
access control requests and replies.

Specific interfaces from RINA implementation will be used (Netlink socket).

— ystem
_——
Profiles

ACManager Master
Lo
&
Machine L C"Q’
Of//
G
of Policy Decision
# MAZ2 vm’
o
| AC Manager Local '|
DAP2
DAPL | RIB Access Request

Machine 2
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Figure 13. Implementation Scenario of CBAC RINA for component-level PoC tests

3.4. Component-level PoC Tests for Access Control

We consider two test scenarios as the initial work.

In scenario 1, DAP2 will be a streaming Video Server or a file transfer server. DAP1 will
try to access the Video streaming service where the video is stored in RIB2 of DAP2.
We consider DAP1 profile with a PERMIT Policy and we’ll show the start of the video
streaming or file transfer service.
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In Scenario2, DAP1 profile corresponds to a PERMIT Policy but for 2 minutes
Streaming or file transfer, the test will show the streaming video or file transfer that
stops after 2 minutes.

In our experiments we’ll measure the time for access control service by making the
decision by the Master AC Manager then by the Local AC Manager. We will also
stress the AC Master with several requests to see how the AC system is able to handle
important requests of AC.

3.5. Next Steps for CBAC Activity

The CBAC architecture has been defined to provide a complete description of the
requested features. In this deliverable, detailed technical specifications and the relevant
interfaces are provided. The interaction between the AC actors and internal RINA
components have been provided in the sequence diagram.

In the next steps, we plan to implement different AC modules and then schedule the
integration with the other components in the scope of WP6.

More precisely, important steps will be to synchronize with WP5 regarding the
addition of the profiles defined here in the system profiles information base and
the communication interfaces between DAP elements of the DAF and the DAF
Management where the AC Master Manager interacts and see in WP6 how it is possible
to integrate our proposed CBAC into RINA architecture.
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4. Multi-Level Security

Multi-Level Security (MLS), as described in D4.1 [D4.1], refers the protection of data or
“objects” that can be classified at various sensitivity levels, from processes or “subjects”
who may be cleared at various trusted levels. A strict definition of MLS includes a formal
model of classification levels for data and clearance levels for users, together with rules
to prevent inappropriate access by users to data that is at a higher classification level
than their clearance. Such a model is appropriate in many high assurance applications,
and is often mandated in government and military contexts by policy. Such models
typically make it difficult to share data effectively. However, a growing number of
initiatives are aimed at situations where data sharing is a key requirement, and only
moderate assurance is required. In these cases, MLS models and solutions may either
be dictated by policy or are being considered to provide higher assurance than in
current applications. However, such models and solutions are generally not flexible
enough for the data sharing requirements.

In D4.1 [D4.1], we proposed a number of MLS architectures that enable secure data
sharing to be achieved on the common RINA infrastructure. There are two components
that are needed to create these MLS architectures: Communications security and
Boundary Protection Components (BPC).

Communications security protects the end-to-end transfer of data between IPC/
application processes. This is needed to ensure that data cannot be inappropriately read
from the communication channel (e.g. via eavesdropping or accidental leakage), and
that data at different classification levels is not inappropriately mixed.

To make an MLS system practical it is generally necessary to allow for at least some
capability to send data from a high system to a low system, e.g. to allow higher cleared
users to send emails to lower cleared users. This capability needs to be carefully
controlled to prevent accidental or deliberate release of sensitive information by users
or malicious code. The BPC is used to control such a flow of data, to ensure that data
transferred from the high system is actually at a suitable classification level for the low
system. It may also control data imported to sensitive network, e.g. check for malware.

In the remainder of this section we consider current techniques for implementing
communications security and boundary protection and how these could apply to RINA.
We then specify the components required to implement both communications security
and boundary protection in a RINA network.
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4.1. MLS Scenarios

4.1.1. MLS Communications Security

Communications security enables sensitive data to be sent over untrusted network
by cryptographically protecting the confidentiality and integrity of data. This ensures
that the data cannot be inappropriately read from the communication channel and
that data at different classification levels is not inappropriately mixed. It also includes
authentication of the end points to ensure that they are suitable for accepting the data
being communicated, based on its classification level.

Communication solutions in current networks can be characterised by the layer of
the Open Systems Interconnection (OSI) stack at which they operate, as described in
D4.1 [D4.1], and whether they are so-called "bump in the wire" or "bump in the stack"
[RFC4301] solutions. "Bump in the wire" solutions are hardware devices designed to
sit between an end device and an untrusted network. As these are bespoke solutions
built from scratch to provide communications security (and nothing else), they can be
produced to very high levels of assurance. However, the additional devices required can
be expensive and take up space. "Bump in the stack" solutions are generally software
solutions designed to integrate into existing end devices. The assurance achievable
in these is fundamentally limited by the device and the software into which they are
integrated, however, they do not take up additional physical space and can be a lot
cheaper. In addition, the assurance achievable can be enough for many commercial and
less stringent defence and government situations.

4.1.2. Boundary Protection Component

The Communications Security component described above protects sensitive data from
being inappropriately accessed by separating data at different classifications. However,
an MLS network using only communications security is very constrained, as it very hard
to share data between systems at different levels. The only means of sharing data is via
manual transfer. For example, if a user on a High system wishes to share some data
with a user who only has access to a Low system, the only way this is possible is for the
High user to manually enter it into the Low system. If they needed to send the same
information to multiple users at multiple levels, they would have to replicate this action
for each level.

Therefore to make an MLS system practical it is generally necessary to allow for at
least some "write down" capability, i.e. some means of enabling data sharing between
systems at different classifications. For example, this would allow higher cleared users
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to share data that is no longer considered sensitive or that has had its sensitive
parts removed with lower cleared users. Clearly, this “write down” facility needs to be
carefully controlled to prevent accidental or deliberate release of sensitive information
by users or malicious code, and this is where “Trusted Downgrade” and “Boundary
Protection Component” (BPC or “Guard”) products are used.

Trusted Downgrade is typically a facility provided within MLS operating systems that
allows highly trusted users, and perhaps applications, to modify the labels on data in
special cases. This facility would typically be protected to high assurance levels so that
the risk of malicious code exploiting it is very low.

Where formal, and trusted, labelling is not present (i.e. in most MLS approaches
described in D4.1), there is no Trusted Downgrade as such, but the ability to make data
available from higher classified systems to lower classified systems is often required.
BPCs are used to control such an information exchange, to ensure that data transferred
from the high system is actually at a suitable classification level for the low system.
They provide assured data flow between networks of differing sensitivity, enabling
Low classified data residing on a High classified system to be moved to another Low
classified system.

There are five main methods of boundary protection used to prevent accidental or
deliberate release of sensitive information: manual transfer, label checking, deep
content inspection, content modification and user-sanctioned export. Note that
although some of these methods have similar functionality to a firewall, the difference
is that a BPC is an assured solution that must be effective in providing control over
information exchange even when under attack or when it fails.

Manual transfer requires a person to check the true classification level of the data
to be transferred, and to re-enter the data (perhaps suitably sanitised) into the low
classification system manually. Clearly, this is a costly and inefficient solution. It is also
subject to human error, depending on how complex the data is.

Although formal, and trusted, labels may not exist, other, informal, labels may be
used to check the content. Examples of labels include simple text strings, such
as classification statements in Microsoft Word document headers, or slightly more
structured labelling of Word documents as provided by Purple Penelope [Gollmann]
Where such labels exist, a BPC can simply search for them and ensure that release
rules are adhered to. For example, DeepSecure XML Guard [DeepSec] uses embedded
security labels within XML data objects. This can be effective against accidental release
of sensitive data, but as the labels are not trustworthy, users or malicious code could
deliberately mislabel data to bypass the protection. Therefore, the level of assurance
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provided is quite low. Such label checking approaches are also application specific, and
are likely to require BPCs to be constantly updated and added to as applications are
modified and new ones are added over time.

Another BPC approach uses deep content inspection, where all of the data is inspected
to determine, through some knowledge of the data semantics, what its classification
level is and/or that it does not contain hidden data. Techniques include keyword
searching of text in e-mails or documents, or the analysis of images to detect hidden
data. For example, Nexus Watchman [Nexor] determines the classification of a message
based upon a weighted hit-word count of the message content. Clearly, deep content
inspection is highly application-specific, with the same consequent issues as for label
checking. In addition, the reliability of, and hence level of assurance in, such methods
is generally quite low. They can be somewhat effective against accidental release of
sensitive data and deliberate release of sensitive data by unsophisticated attackers
or malicious code. However, more sophisticated attackers and code can generally get
around the inspection, especially if they can obtain or infer the content inspection
rules. As an example, consider an attacker that wishes to export a sensitive text
document. The BPC may have a text keyword checker, but the attacker could bypass
this by scanning the document and sending the image instead. A more sophisticated
BPC may have optical character recognition (e.g. [MAGEN]), but the image could
be manipulated by the attacker to make this fail (e.g. CAPTCHAs [Gollmann]). The
attacker could also revert to some proprietary (to the attacker) method of encoding
text in an image file, or even to hiding the text in redundant parts of a real image
(steganography). A BPC that blocks all images may also not help, as the attacker could
encode the text in an innocuous text document, by, for example, manipulating white
space [Mansor]. Essentially, there is an arms race with the attacker having almost
limitless ways to defeat content inspection mechanisms as they are developed, and
there is no “silver bullet” technical solution here. A final issue is that these approaches
are processor intensive and can add a delay into the release of data. This can be
particularly problematic for large volumes of and/or real-time data, such as video
streaming.

Content modification aims to modify content to remove potential ways in which
sensitive data can be leaked within it. Generally, these techniques concentrate on
the protocols used to transport the data, rather than the data itself, and are aimed
at limiting or eliminating the possibility of covert channels. In other words, content
modification is applied to situations in which the data itself is perfectly legitimate and
releasable, but an attacker or malicious code is using manipulation of the transport
protocol to sneak data through a BPC (see QinetiQ Sybard® ICA Guard [Sybard]). A
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“protocol break” BPC is a common approach, where the BPC acts as a proxy for the
protocol. It will terminate the protocol and re-encode protocol messages according to
its own rules and interpretation of the original message. It may also manipulate the
timing and/or size of protocol messages (e.g. adding delays, padding or even sending
“dummy” messages) to protect against these potential covert channels ([Zhiyong] for
example). Such approaches are quite effective against use of the protocols to leak data,
even by sophisticated attackers and malicious code, but of course do not prevent the
payload data itself being used to leak data (the problems associated with deep content
inspection as detailed above still apply). Protocol break BPCs can be very effective in
protecting the integrity of the high system from messages sent from the low system.
In particular, malformed protocol messages and buffer overflows can be effectively
stripped out by this approach (both of which are very common forms of attack).

User-sanctioned export abandons the idea of the BPC doing any checking of the data.
Instead, it simply makes sure that an end user has to authorise its release, and that this
fact is securely recorded in a way that cannot be repudiated by this user at a later date.
The aim is to place the onus on the user to check the data, and to act as a deterrent to the
user accidentally or deliberately releasing information they know they should not, or
are just not sure of the provenance of. Of course, this cannot prevent the release of such
data, but aims to make it less likely by using the threat of future legal or disciplinary
action against the source of an identified leak. Its main advantages are that it is a generic
approach suitable (in theory at least — see below) for any data and application, and that
it is quite effective against malicious code as it guarantees that a real user is involved and
not code masquerading as one. However, more sophisticated malicious code that is able
to “piggy-back” onto legitimate user communications cannot easily be stopped. Even if
the user is able to see and check the data the BPC receives, through some sort of trusted
channel, it may be hard or impossible for them to check for modifications made by
malicious code (e.g. hidden data). In addition, machine-to-machine communications
cannot be supported, and in practice many types of data flow are impractical with this
approach. An example is voice data, as, although it is possible for a user to sanction the
setup of a VoIP session, it is impractical for them to sanction the release of each voice
data packet.

Note that a special form of boundary protection can be provided by one-way data
diodes. This allows data to flow from a low to a high system and prevents any possible
covert channels in the opposite direction. Of course, this does not allow "write down",
but can be useful in some cases to allow a more automated flow of information into a
high system. Such diodes can be produced to very high levels of assurance [LinkDD],
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but in practice can only be used to mirror data from low to high systems rather than
allowing any kind of application to application transfer.

Some BPC approaches may require the decryption of protected content to allow
checking at the boundary, but this isn’t ideal as it complicates key management and
introduces a point of vulnerability. An alternative is to do all checking before the content
is encapsulated, and then filter at the boundary on the metadata/labels. But this may
be complicated and expensive to do as it needs to be replicated at all places that create
content, and is also likely to be less assured as it spreads the security controls out
to all application locations rather than in one highly assured BPC. Essentially, the
production of metadata/labels now needs to be highly assured, but this is done by users
and applications that are difficult to assure.

4.2. Achieving MLS Communications Security in RINA

For a RINA MLS network, several approaches to communications security are possible.
Communications security could be applied by the application itself; alternatively, the
“bump in the stack” or “bump in the wire” approaches could be used. Examples of these
three approaches are discussed below. In each example we consider an MLS network
as shown in Figure 14, “Example MLS scenario”, with data at two classification levels:
High and Low. Each Application Process (AP) and IPC Process (IPCP) is cleared to
access data at either High (shown as red in the figures); or Low (shown as green in the
figures). Each DIF and DAF has a classification level of either High or Low. IPCPs and
APs are only able to enrol in a DAF or DIF for which they have the appropriate clearance
level, i.e. an IPCP cleared to High can only enrol in a DIF classified at High and an IPCP
cleared to Low can only enrol in a DIF classified at Low. The following examples only
consider a single AP in each system. However, in practice, multiple APs could use the
same IPCP in the underlying DIF to send their data. In the following diagrams, a black
box labelled “Z” is used to show where the communications security is applied when
sending the PDU and removed when receiving the PDU.
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Figure 14. Example MLS scenario

4.2.1. Application-level

Communications Security can be implemented in the applications (AP-1 and AP-2 in
Figure 14, “Example MLS scenario”). AP-1 encrypts the application data before it is
packaged into SDUs to be sent over RINA. The SDU remains encrypted while it is
sent over the RINA network. Once it has been received at the destination application
(AP-2), it is decrypted. This allows fine-grained protection to be applied to the data,
i.e. protection can be applied to just the data that is classified as High and any data
that is Low can be sent in the clear. If multiple APs in High System 1 were to send data
via IPCP-1, the data from each AP would be protected with different keys and hence be
cryptographically separated even if the N-1 DIF aggregates SDUs before relaying them.
Since this option is implemented at the application, it does not rely on RINA to protect
the data; the data is sent as if it were plaintext data.

4.2.2. Bump in the Stack

Communications security can be implemented in RINA as a “bump in the stack”
solution where the cryptographic protection is applied in the end device, i.e. the system
that is sending the data. There are two options for applying protection: it can be applied
at the DAF, as shown in Figure 15, ““Bump in the stack” at the DAF” or at the N-level
DIF, as shown in Figure 16, ““Bump in the stack” at the DIF”.
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Figure 15. “Bump in the stack” at the DAF

In the “bump in the stack” at the DAF architecture, shown in Figure 15, ““Bump in the
stack” at the DAF”, SDUs are protected by the sending application process (AP-1) before
passing it to IPCP-1 in the N-level DIF. This has the advantage that data from multiple
APs sent over the same DIF will be protected with different security parameters and so
will be cryptographically separated.
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Figure 16. “Bump in the stack” at the DIF

Alternatively, the protection can be applied as “bump in the stack” at the N-level DIF,
shown in Figure 16, ““Bump in the stack” at the DIF”. In this option, AP-1 transfers
the SDU to the underlying IPCP (IPCP-1) in the clear and IPCP-1 applies protection
to the SDU before sending it to IPCP-5. Both options would have the same effect of
protecting the SDU end to end from the sending High System to the receiving High
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System. However, in this latter option, SDUs sent from multiple APs on High System 1
will be protected using the same security parameters by IPCP-1 if they are sent over the
same flow and so data from different applications may not be separated. Therefore, this
option is more scalable in terms of processing, as all application flows can be protected
using the same IPCP flow. However, there is no specific protection for each of the
individual application flows using the same IPCP.

Both of these options can be implemented using a SDU Protection policy that
cryptographically protects every outgoing SDU. The specification of the SDU Protection
Module and how it fits in RINA, as well as examples of SDU Protection policies for
encrypting SDUs are considered in Section 5.

4.2.3. Bump in the Wire

When data classified at High is sent over DIFs that are also classified at High, the
SDUs do not need to be protected. This is because the network is trusted and all IPCPs
receiving the data are cleared to read it. However, if High application data is sent over
a DIF classified at Low, it needs to be protected to ensure that it is not mixed with Low
data and that it cannot be read by application processes that are not cleared to access it.
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High DAF Hﬂ
I | Crypto | I
4 )
\_ High N-level DIF i Y,
' )
IPGP-5 IPCP-6 IPGP i IPCP-8 IPCP-9 Per: PEF:
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Figure 17. “Bump in the wire” solution

(1113

In the scenario shown in Figure 17, ““Bump in the wire” solution”, AP-1 sends the SDU
to IPCP-1, which then forwards it to IPCP-2 via IPCP-5 and IPCP-6. Since all of these
IPCPs are cleared to the same level, the SDU does not need to be encrypted. IPCP-2 then
forwards to SDU to IPCP-3. Although IPCP-3 is cleared to High, the underlying DIF that
will transport the SDU is only cleared to Low and is therefore untrusted. Consequently,
IPCP-2 must encrypt the SDU before sending it over the Low N-1-level DIF. IPCP-3
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can decrypt the SDU before sending it to IPCP-4, as the N-1 DIF is classified at High.
In this way, the SDU is only protected where it is sent over an untrusted DIF, which
prevents multiple layers on encryption being unnecessarily applied to the SDU. It also
means that only nodes that have IPCPs at multiple levels need to apply protection to
SDUs. Here, protection at the IPCP flow level is more scalable, as fewer instances of
IPCPs are involved in applying protection, which reduces both the processing cost and
the amount of security parameters exchanged. However, it has the associated cost of
losing protection at application flow granularity.

Achieving this “bump in the wire” communications security scenario requires policies
for Authentication and SDU Protection. An authentication policy is needed to ensure
that IPCPs only enrol in DIFs that they are cleared to, e.g. an IPCP cleared to Low cannot
enrol in a DIF classified at High. This ensures that all IPCPs enrolled in a DIF are cleared
to the same level and means that the clearance level of an IPCP can be inferred from
the DIF in which it is enrolled. Therefore once an IPCP has enrolled in a DIF, it can
communicate with any IPCPs in the same DIF without needing to verify their clearance
level.

The Authentication policy is also needed by the SDU Protection Module to negotiate
security parameters for the flow, e.g. the cryptographic algorithms, session keys, which
are stored in the security context. The same security parameters are used for all SDUs

1113

sent over the same flow, e.g. sent from IPCP-2 to IPCP-3 in Figure 17, ““Bump in
the wire” solution”. Several of the authentication policies described in D4.1 would be
suitable here. For example, AuthNPassword could be used where only IPCPs that are
cleared to High have a valid password for enrolling in a High DIF. Section 2 specifies
the Authentication Module and example authentication policies that could be used in

an implementation of “bump in the wire” communications security.

To implement the “bump in the wire” configuration, a cryptographic SDU Protection
policy is needed to encrypt PDUs before they are sent over an untrusted DIF. The
policy should only encrypt SDUs sent over flows through an underlying DIF that is at
a lower classification level; flows through an underlying DIF at the same classification
level should be left in the clear. There are two ways that this could be achieved. The
first is to use the Manager and Management Agent in the Distributed Management
System (DMS), described in D5.1[D5.1], to configure the SDU Protection policy for each
flow. Each time a new flow is established from a High DIF to a Low DIF, the Manager
configures the SDU Protection policy to encrypt SDUs sent over the flow. Alternatively,
a customised SDU Protection Policy could be used that can decide whether to apply
encryption to a PDU based on the classification of both the PDU and the flow. This
latter option will specified below.
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4.2.4. Specification and Design of the Bump in the Wire Solution

Here we specify the SDU Protection policy, which we call the ‘M LS Encryption Policy’,
needed to implement the “bump in the wire” MLS architecture shown in Figure 17,
““Bump in the wire” solution”. The policy is implemented in the SDU Protection Module
of IPCPs that apply protection to and remove protection from SDUs that are sent over
an untrusted underlying DIF, e.g. IPCP-2 and IPCP-3 in Figure 17, ““Bump in the wire”
solution”.

Figure 18, “Block diagram of how MLS encryption policy fits in RINA” illustrates how
the custom MLS Encryption Policy fits within the RINA IPCP. The RINA components
involved are the SDU Protection Module, RMT and the Authentication Module.

SDU Protection Module

RMT

+ =1l

MLS Encryption Policy PDU Serialization

——Protected SDU

L J

F Y
Security Parameters

Authentication Module

Security Context

-——Security Parameter Authentication Policy

Figure 18. Block diagram of how MLS encryption policy fits in RINA

During the enrolment process, the Authentication Module, described in Section
2, authenticates the IPC process joining the DIF. Only IPCPs that successfully
authenticate can enrol in the DIF. Its Authentication Policy defines the authentication
mechanism used to authenticate the joining IPCP. It also updates the SDU Protection
Module’s Security Context with any security parameters, e.g. key material and
cryptographic algorithms, which may be negotiated as part of the authentication
process. These security parameters are negotiated per flow, so that an IPCP has a
different set of keys for each IPCP within the DIF. The security parameters are not tied
to the Application Process sending the SDUs, so that SDU s belonging to different APs
sent over the same flow will use the same security parameters.

When a PDU is to be sent from this IPCP to the underlying flow, RMT passes PDUs from
DTP instances to the appropriate (N-1)-ports. Its serialisation task invokes the SDU
Protection Module, described in Section 5, which applies protection to outgoing PDUs
according to its SDU Protection policy. MLS Encryption Policy is an SDU Protection
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Policy that implements the “bump in the wire” Communications Security scenario

described above. It applies encryption to outgoing PDUs that are to be sent over a flow

at a lower classification level. The Security Context contains the configuration data and

security parameters needed by the SDU Protection policy, e.g. the encryption key and

encryption algorithm to apply.

4.2.5. Interaction of Components with SDU Protection Policy

Figure 19, “Sequence diagram showing the interactions when the SDU is sent over

an untrusted underlying DIF” shows the sequence of interactions between the RINA

components when applying the MLS Encryption policy to an SDU being sent over an

untrusted DIF.
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Figure 19. Sequence diagram showing the interactions

when the SDU is sent over an untrusted underlying DIF

1. When an SDU is to be written to the underlying flow, it is passed to RMT. RMT
looks up the port to be used to send the PDU to the destination address in the PDU
Forwarding Table (PFT) via pft_nhop.

2. The PFT returns the port ID of the next hop

3. RMT sends the PDU to be serialised by calling pdu_serialize

4. PDU Serialization then invokes the SDU Protection Module, which applies the MLS
Encryption policy. This policy determines that the PDU needs to be protected, as it

is to be sent over an untrusted DIF

5. The MLS Encryption policy obtains the necessary security parameters, e.g. the

session encryption key and encryption algorithm, from the Security Context that is

established during authentication.
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6. The Security Context returns the security parameters for the flow that the PDU will

be sent over.

7. The MLS Encryption Policy applies protection to the PDU using the security

parameters

8. The serialized and protected PDU is then returned to RMT.

9. RMT then sends the PDU to the KFA

10.The KFA write the PDU to the outgoing port to be passed to the underlying IPCP

Figure 20, “Sequence diagram showing the interactions when the SDU is sent over

a trusted underlying DIF” shows the sequence of interactions between the RINA

components when applying the MLS Encryption policy to an SDU being sent over a

trusted DIF.
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Figure 20. Sequence diagram showing the interactions

when the SDU is sent over a trusted underlying DIF

1. When an SDU is to be written to the underlying flow, it is passed to RMT. RMT
looks up the port to be used to send the PDU to the destination address in the PDU
Forwarding Table (PFT) via pft_nhop.

2. The PFT returns the port ID of the next hop

3. RMT sends the PDU to be serialised by calling pdu_serialize

4. PDU Serialization then invokes the SDU Protection Module, which applies the
MLS Encryption policy. This policy determines that the PDU does not need to be

protected, as it to be sent over a trusted underlying flow

5. The SDU without protection is returned to PDU Serialization
6. The serialized PDU is then returned to RMT.
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7. RMT then sends the PDU to the KFA
8. The KFA write the PDU to the outgoing port to be passed to the underlying IPCP

Figure 21, “Sequence diagram showing the interactions when the SDU is received from
an underlying DIF” shows the sequence of interactions between the RINA components
when applying the MLS Encryption policy when an SDU is received from an untrusted
DIF and forwarded over a trusted DIF. The SDU received from the N-1 DIF is decrypted
before being forwarded over the trusted DIF in the clear (i.e. without encryption).
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Figure 21. Sequence diagram showing the interactions
when the SDU is received from an underlying DIF

1. When an SDU is received by the underlying flow, the N-1 IPCP identifies the port
to which the SDU should be forwarded and calls the KFA to send the SDU

2. The KFA posts the SDU to the RMT instance associated with the flow by calling
rmt_receive

3. RMT sends the PDU to be deserialised by calling pdu_deserialize

4. PDU Serialization then invokes the SDU Protection Module by calling sdup_ verify,
which applies the MLS Encryption policy.

5. The MLS Encryption policy obtains the necessary security parameters, e.g. the
session encryption key and encryption algorithm, from the Security Context that is
established during authentication.
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6. The Security Context returns the security parameters for the flow from which the
PDU was received.

7. The MLS Encryption policy uses the security parameters to verify and remove the
protection from the SDU, e.g. to decrypt it

8. The deserialized and decrypted PDU is then returned to RMT.

9. RMT looks up the port to be used to send the PDU to the destination address in the
PDU Forwarding Table (PFT) via pft_nhop.

10.The PFT returns the port ID of the next hop
11.RMT sends the PDU to be serialised by calling pdu_ serialize

12.PDU Serialization then invokes the SDU Protection Module, which applies the
MLS Encryption policy. This policy determines that the PDU does not need to be
protected, as it to be sent over a trusted underlying flow

13.The SDU without protection is returned to PDU Serialization
14.The serialized PDU is then returned to RMT.
15.RMT then sends the PDU to the KFA

16.The KFA writes the PDU to the outgoing port to be passed to the underlying IPCP

4.3. Achieving BPC in RINA

Two options for achieving the BPC functionality in RINA have been identified. These
options will be discussed in the next version of this deliverable.
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4.4. MLS Implementation for PoC

4.4.1. Communications Security

The IRATI stack, described in D2.3 [D2.3] is an implementation of the RINA IPC model
for a Linux-based Operating System. The functionalities of the IPC Process have been
partitioned between the user and kernel spaces in order to enable the prototype to
achieve and adequate level of performance and functionality. The shim IPC Processes
and the data transfer and data transfer control parts of the IPC Process are implemented
in kernel space, while the layer management functions of the IPC Process and the local
IPC Manager are implemented in user space.

The software architecture of the SDU Protection Module and how it fits into the IRATI
stack is described in Section 5. The MLS Encryption policy specified in Section 4.1 will
be implemented as an SDU Protection policy and integrated with the SDU Protection
Module in the IRATT stack.

4.4.2. Boundary Protection Component

The BPC PoC implementation will be discussed in the next version of this deliverable.
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4.5. Component-Level PoC Tests for MLS

4.5.1. Test Environment

The MLS test environment consists of a Debian-based virtual machine (VM) image
with the latest stable build of the IRATI stack installed. The VM image is hosted in
VirtualBox, which is running on a Windows machine.

4.5.2. Tests to be Performed

Testing of the implementations will focus on component-level verification of the
MLS Encryption Policy and the BPC. These tests aim to evaluate whether or not the
implementations of the MLS components operate without error and according to their
specifications. This is to prove the correct functionality of the implementation. The
following tests will be performed to verify the implementation.

Table 1. Verification test of MLS Encryption policy

Test Identifier: SUITE_MLS/TRT/Crypto/1

Type of Test Component-level
Functionality Verification

Version 1.0

Reference to Requirements D2.1 [D2.1], Section 3.2 -
security

Test Summary:

This test is for assessing the functionality of the
Communications Security component when data classified at
High is sent over a DIF classified at Low.

Objectives: To verify that the SDUs are encrypted when
sending data over an untrusted network

Experimentation Environment:
Test location: MLS Testbed.
Topology: see Figure 17, ““Bump in the wire” solution”

Traffic Load: User traffic will be produced by Traffic
Generators.
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Other RINA components used: SDU Protection Module

Test Procedure:

Initial Conditions:

+ Controlled variables: controlled sending of data classified
at High

« Uncontrolled variables: N/A
Checks to be performed in the test:

« Verify that the data is successfully encrypted by the MLS
policy at IPCP-2

« Verify that the data is successfully decrypted by the MLS
policy at IPCP-3

Verdict Criteria:

Expected results:

» The data must be encrypted by IPCP-2 prior to sending it
over the DIF classified at Low.

« The data must be decrypted by IPCP-3.

Metrics: N/A

Results/Comments:

N/A

Table 2. Verification test of the BPC functionality

Test Identifier: SUITE_MLS/TRT/BPC/1

Type of Test Component-level
Functionality Verification

Version 1.0

Reference to Requirements D2.1 [D2.1], Section 3.2 -
security

Test Summary:
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This test is to verify the functionality of the BPC component
when data classified at High is sent to an application classified
at Low.

Objectives: To verify that only the SDUs containing sensitive
data are blocked by the BPC

Experimentation Environment:
Test location: MLS Testbed.
Topology: see ???

Traffic Load: User traffic will be produced by the two
application processes

Other RINA components used: all - the BPC application under
test will run over a RINA network

Test Procedure:

Initial Conditions:

« Controlled variables: classification of the data sent

« Uncontrolled variables: N/A
Checks to be performed in the test:

« Verify that data classified at High is blocked

« Verify that the data classified at Low is forwarded to the
Low application

Verdict Criteria:

Expected results:

« Data sent from the High application to the Low application
that is classified at High should be blocked by the BPC.

« Data sent from the High application to the Low application
that is classified at Low should be forwarded by the BPC.

Metrics: N/A

Results/Comments:
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\ N/A

4.6. Next Steps for MLS Activities

This deliverable defines the two components needed to achieve an MLS architecture
in RINA: communications security to protect the end-to-end transfer of data between
IPC/Application Processes; and a boundary protection component to provide assured
data flow between IPC/Application Processes of differing sensitivity. Detailed technical
specifications of both components and how they fit in the RINA architecture are
provided. The interactions between the MLS components and RINA components have
been defined in sequence diagrams.

The next step for the Communications Security component is to implement the
MLS Encryption policy according to the specification of the SDU Protection Module
in Section 5. The policy will then be integrated with the SDU Protection Module
implementation. Further work will also be done in WP5 to investigate how the Manager
and Management Agent can be used to configure RINA components, e.g. the SDU
Protection Module, when setting up Communications Security in an MLS network.
Strategies for the Manager that enable to network to be automatically configured will
be defined.

The next step for the Boundary Protection Component is to implement the BPC at the
DAF-level as described in Section 4.4.2. Two applications that send and receive data
over RINA will also be implemented. The BPC implementation and two applications
will then be integrated with the RINA network installed on the TRT testbed, described
in Section 4.5.1.
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5. Cryptographic Functions and Enablers

The SDU Protection module is a part of the IPC Process (IPCP) data path. The SDU
Protection function is executed before the SDU is handed over to the underlying IPCP.
When data are handled between IPCPs of different DIFs, SDU Protection is applied. It
is intended to apply selected protective mechanisms to outgoing SDUs at the sending
side and check incoming SDU at the receiving side. This is the last or the first operation
applied, respectively. It aims to provide a level of protection depending on the applied
policy. All the functionality of SDU protection is represented as a policy. Thus there
is not a predefined common mechanism. SDU protection performs a transformation
from SDU to protected SDU when the SDU is sent from the IPCP. It performs a
transformation from protected SDU to SDU when the SDU is received by the IPCP.
According to the overall RINA specifications, SDU protection can perform variety of
functions, namely: i) lifetime limiting, ii) error checking, iii) data integrity protection,
iv) data encryption, but also data compression or other two-way manipulations that
may depend on the N-1 flow used. SDU Protection depends on a policy that is specific
to each (N-1)-flow. SDU Protection can be used to create a secure channel between two
IPCPs, though it is not excluded that SDU Protection may apply the same policy to all
(N-1) flows thus creating shared security for whole N-DIF.

It is important to highlight that a DIF uses SDU protection to protect itself from
untrusted N-1 DIFs (distributed applications -DAFs- that really care about protection
should use their own SDU Protection policies). Securing communications in RINA is
implemented via the SDU protection module. As its name suggests, the security is
applied to Service Data Units (SDU). The SDU denotes a data block that is exchanged
between IPCPs on a single RINA node. This follows the idea that DIFs are network areas
that are independent of other possible DIFs.

A SDU is a unit of data that has been passed down from an IPCP to a lower IPCP and
that has not yet been encapsulated into a protocol data unit (PDU) by the lower layer.
It is a set of data that is sent by a user of the services of a given layer, and is transmitted
semantically unchanged to a peer service user.

SDU protection is the part of the RINA specifications that provides functions for
securing data transfer between communicating IPCPs. SDU protection is applied as
the last operation on data before leaving the current IPCP. These data are packaged
in SDUs. Each SDU is processed separately according to the specific SDU Protection
context associated with each flow. Thus SDU protection is applied on a per-flow basis.
SDU context is associate with flows to define which policy is to be applied to all SDUs
of the flow. Currently, three different SDU Protection Policies are defined:
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1. Null SDU Protection is a policy that performs no transformation - this protection
mechanism is in general applicable to ShimDIFs, where protective mechanisms
related to a particular communication technology or protocol are used.

2. Basic SDU Protection is a policy that applies fundamental protective
mechanisms. These mechanisms include time life limiting (TTL) and error checking
(CRO).

3. Cryptographic SDU Protection relies on the implementation of the following
four key SDU protection mechanisms that applies to every SDU:

« SDU Lifetime method deals with limiting maximum lifetime of each SDU to
avoid its unlimited circulating in a network. As a part of this mechanism, replay
detection is provided.

« SDU Compression method specifies methods of compressing data in order to
reduce the data size or to add entropy to the data when encryption is to be
applied.

« SDU Encryption method specifies which method to use for securing content by
applying cryptographic encryption.

« SDU Integrity method specifies which algorithm to use for computing
cryptographic hash of the content in order to enable detection of changes of the
SDU content.

Suitable methods are well known for implementing all four SDU protection
mechanisms. SDU protection mechanisms define profiles that provide a particular
algorithm and its possible parameters. SDU Protection is located at the boundaries of
the IPCP. For each SDU, the module knows to which N-1 flows this SDU has to be
written to or has been read from. It is this possible to associate SDU Protection contexts
to N-1 flows. SDU is sent to underlying DIF using specified port. The SDU protection
policy proposed in this section does not assume that the underlying N-1
flow is reliable. For this reason, protected SDUs need to carry enough additional
information for receiver to successfully decrypt them.

5.1. Cryptographic Concepts used in SDU Protection Policy

This section provides a description of concepts, methods, algorithms, etc that are used
in the design, specification and implementation of the SDU Protection module.
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5.1.1. Replay Detection

Replay detection is implemented using a replay window mechanism as specified in
[RFC2401]. Each crypto block is numbered using a sequence number to support
replay detection. This sequence number must be protected by appropriate integrity
mechanism. In short, replay detection works by checking duplication of SDUs and by
discarding SDUs which are too old. Both of these conditions can be realized using SDU
numbering.

5.1.2. Ciphering Modes

It is not possible to use stream ciphering modes for this particular encryption policy as
these depend on reliable data delivery. Instead, block ciphering modes are suitable in
this case. CTR encryption using a counter value is an efficient method used for creating
a secure channel over an unreliable data delivery service. Algorithms such as DES,
3DES and AES can be used in this mode. There are two considerations that must be
followed to apply this mode correctly:

« The same secret key and counter must not be reused for encrypting different
messages

« An integrity check is necessary to protect a message from modification

5.1.3. HMAC

A Hash-based Message Authentication Code (HMAC) is a function for calculating
message authentication code that involves a secret cryptographic key. HMAC is usually
used for ensuring message integrity and in key derivation functions.

HMAC is defined (according to [RFC2401]) as follows:
HMAC(K, m) = H(K XOR opad , H(K XOR ipad , m))

where

« H is a cryptographic hash function, e.g. SHA-1,
« K is a secret key adjusted to block size of H (either padded or hashed),
« m is the message to be authenticated, and

« opad and ipad are the outer and inner padding, respectively.
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5.1.4. Diffie-Hellman Key Exchange

The Diffie-Hellman (DH) method of secret key exchange is based on existence of the
following equation:

ghab = (X_b)”a MOD p = (X_a)"b MOD p

X_a
X_b

gha MOD p
gAb MOD p

Wherein, p is a large prime number, g is generator and a,b are secret random
numbers private to each party. An initiator sends message (p,g,X_a) toa
responder, which selects its secret b to compute X_b as its response. Both
parties can then compute the same shared g/fab secret key.

5.1.5. Keying Material

The key generation mechanism described in this section stems from an adaptation of
IKE methods, as described in RFC 4306 [RFC4306]. Each party p needs three write
keys, namely:

+ session key used for encryption (  K_enc/p ). The size of this key depends on the
cipher algorithm used. Usual values are 56bits, 64bits, 80obits, 128bits, 192bits, or
256bits.

« session key used for hashing ( K_dig/p ). The general rule is that the key length
for message integrity checking should be the same as the length of the key used for
message encryption.

« session key used as nonce for counter generation (  K_seq”p ). The length of this
key depends on the block size of the encryption cipher used. This is because, the
counter is obtained by concatenating a sequence number and counter key. Typical
block sizes are 64bits, 96bits, 128bits or 192bits.

These write keys are generated from the single Master Secret Key K_master that
needs to be provided at the initialization of the secure channel. Let PRF(K,S) be a
pseudo-random function, e.g. based on SHA-256 algorithm, negotiated by both parties
as a part of security context of the secure channel. According to IKEv2, keying material
can be generated in the following way. First, shared secret K_seed is computed
from Master Secret Key = K_master and random generated values N_i and N_j :

K_seed = PRF(N_i | N_r, K_master)
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where

« N_i and N_r are random nonce values generated by initiator and responder,
respectively,

« K_master is a Master Secret Key that can be exchanged using DH method or can
be a pre-shared key.

Note that while K_master must be kept secret by communicating parties, nonce
values N_i and N_r may be sent as plaintext. Computed secret  K_seed is the
key derivation key used for computing a collection of session write keys using PRFA
+(K,S) function. This computation consists of a chain of PRF function applications
defined as follows:

PRFA+ = T 1 | T 2 |

where

« T_1 = PRF(K,s | 0x1 )
« T_i+1 = PRF(K, T_i | S | Ox(i+1))

Function = PRFA+(K,S)  generates blocks of data enjoying pseudorandom
properties. These blocks thus can be used as session keys. Computing all necessary
keying material is performed by applying ~ PRF+ function until there is enough data,
which depends on the key sizes of the algorithms used for encryption, hashing and
counter generation. Mapping T_1i blocks to keys is straightforward. Each key takes
as many bits from T_3i  blocks as necessary. The computation ends when all keys
have assigned values. The computation of writing keys for the initiator and responder
is defined as follows:

» For initiator:

(K_enchri | K_dignhi | K_seqg”hi) PRFA+(K_seed, N_i | N_r )
« For responder:

(K_encAr | K_dignhr | K_seg”r) = PRFA+(K_seed, N_r | N_i )

Using the above defined equations both communicating parties are able to generate all
the keying material knowing a common secret key and two nonces. These nonces can
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be generated by each party and exchanged during the connection establishment and
authentication phase.

5.1.6. Counter Mode

Ciphers can be used in various ciphering modes. However, only the Counter Mode is
initially considered for the proposed SDU Protection Policy. The counter mode allows
for an efficient implementation that provides an efficient method for encrypting and
decrypting high-speed data. It relies on the quality of the cipher and the uniqueness
of the counter value. The counter value consists of a sequence number and a nonce
based on a sequence key. This provides the advantage that each encrypted block is
independent of other blocks, which works well if data delivery is not reliable. For
reliable data transport, this mode adds a little overhead represented by the necessity to
maintain a sequence number counter with specific properties - the counter must not be
repeatedly used with the same key. The counter length must be equal to the block-size
of the cipher algorithm used for data encryption. The method for counter computation
varies with block-size. The counter is computed using the following recipe:

counter = K_seq | uint32(seq_num) | uint32(0x0)

The counter can be used with different block sizes. Current cipher suites support blocks
of length 64, 96, 128 and 192.

5.1.7. Selecting algorithms for SDU Protection Policy

The designed SDU Protection policy based on cryptographic methods provides a secure
communication channel that meets requirements identified in D4.1. This is achieved
by combining four mechanisms for controlling PDU lifetime, offering the possibility to
encrypt SDU content, protecting SDU from unauthorised modifications and reducing
the size of SDU by applying compression. Encryption and integrity mechanisms secure
the communication. The strength of the security measures applied depends on the
combination of the methods used for encryption and integrity protection. The following
table shows the possible combinations and their properties in terms of the security
provided as defined in the presented SDU Protection Policy. More information on the
status of individual algorithms can be found at [ngenc]. In the table, algorithms are
classified into three groups:

 Avoid: algorithms that do not provide an adequate security level against modern
threats. It is recommended that these algorithms should not be used in application
relying on strong security requirements.
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» Legacy: algorithms provide a marginal but acceptable security level. These

algorithms can be used if there is not better option. For these algorithms there are

techniques that help to mitigate the security problems and thus increate a level of

security provided to acceptable.

 Acceptable: algorithms provide adequate security.

Table 3. Message integrity algorithms:

Algorithm Status (possible mitigation)
MDs5 avoid

HMAC-MDj5 legacy

Ripemd160 legacy

SHA1 legacy (short key lifetime)
HMAC-SHA1 acceptable

SHA256 acceptable

SHA384 acceptable

SHA512 acceptable
Table 4. Message encryption algorithms:

Algorithm Status

Aes acceptable

Des avoid

3Des legacy (short key lifetime)
Rc2 avoid

The strength of the algorithm is relative to a security level expressed in bits [NIST SP

800-131].

Algorithm Security Level
Aes-128 128

Aes-192 192

Aes-256 256

Des 56

3Des 80 (112)

Rc2 40
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Algorithm Security Level
SHA1 80

SHA256 128

SHA384 192

SHA512 256

Different classes of applications requires different levels of security. The following are
different application classes:

Application Class Minimum security level
Low < 64

Medium <128

High < 256

Extreme > 256

Achieving a higher security level means performing more computations. Thus the
correct application level should be considered with respect to not only security but also
costs.

According to the given classification of algorithms the combination of security
algorithms for integrity and encryption is classified considering the least security level
provided. This means that for achieving the High security level, AES-256 and SHA512
combination should be selected.

5.2. Specification and Design of the SDU Protection
Component

5.2.1. Software Architecture of the SDU Protection Component

This section provides a software architecture in block diagrams and in terms of the
functions and workflows at a high-level level, specifically for SDU protection and how
it works and fits into the IRATI RINA implementation. SDU Protection functions
are invoked from the PDU serialization and deserialization module. Serialization/
deserialization (SerDes) tasks are part of RMT that operates over PDUs. The block
diagram showing the context of SDU Protection is in Figure 22, “SDU Protection Block
Diagram”.
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Figure 22. SDU Protection Block Diagram

SDU Protection is realized using SDU Protection Policies. Thus, to integrate into
the IPCP architecture, the SDU Protection container is specified which provides an
interface between RMT and the instantiated policies. Also this container implements
the necessary management functions enabling policy initialization and update if
necessary.

The overall functionality of SDU Protection is split into two operations:

« SDU Protection - For serialized PDU (sPDU or SDU), it computes a protected SDU
(pSDU) that can be sent through the port of the underlying IPCP. It uses the SDU
Protection policy associated with the SDU’s N-1 flow to perform all the necessary
operations on the serialized PDU.

« SDU Verification - For protected SDUs received from the underlying IPCP it
computes the serialized PDU and provides it to RMT for further processing. If
validation fails, it provides a reason and further diagnostic information.

SDU Protection workflows are simple. There is a workflow for each direction of
processing. Figure 23, “SDU Protection Workflow Diagram” provides a visualization of
both workflows.

76



Deliverable-4.2 (1st version)

Validate Start
Read protected S0OU

Read saralized PDU l
Is there SC for
l POU?
Is there SC for yes
PDU?
yes

—

l

l Select 8C for PDU Salect default SC

Select 5C for POU Selact default 5C Validate PDU wsing

l | selected SC B
Protect PDU using L l

selected 5C
failed

l Validation resuft —_——

\White protecied SDU pas3

o Generate diagnostic
Wirite profected SOU nfammabion

L d

End [ok) :I | Endf{error) }

Figure 23. SDU Protection Workflow Diagram

e The SDU Protection workflow starts with a serialized PDU that is provided by
the SerDes Module. To process the serialized PDU, SDU Protection has to find
the Security Context associated with the PDU’s flow. Applying SDU Protection is
done according to the information provided by the Security Context. This contains
information on the methods for TTL computation, content protection, data integrity
computation, or compression and their parameters, such as encryption and integrity
keys. If a Security Context is not found for the flow, then the default Security Context
is used. This default Security Context provides TTL-based lifetime control and CRC
calculation for data integrity computation.

e The SDU Verification starts to process new incoming (protected) SDUs. For this
SDU, the Security Context needs to be retrieved in order to apply correct SDU
validation function. If found, parameters and methods for validating protected SDU
are taken from Security Context found by using the identified flow as a key. If a
Security Context cannot be found then the default Security Context is used. Note that
this may lead to an error if communicating parties have not properly synchronized
their security contexts. Applying methods from the Security Context yields to a
serialized PDU if SDU passes all validation steps. If some of the validation steps fail,
then an error is reported and additional diagnostics information is provided.
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5.2.2. SDU Protection Interfaces

The SDU  Protection Container defines two  interfaces, namely,

SduProtectionControl and SduProtectionData . The first interface contains
functions to modify the security settings of N-1 flows. The second interface is used to
handle data to be protected or verified by the SDU protection module. Because SDU
protection resides at the bottom of the IPCP, it can distinguish the SDUs using the
outbound/inbound port. Thus all operations are related to a port object defined by
means of the port id and N-1 DIF. The SduPort structure is defined as follows:

struct {
uint32 dif_id;
uint32 port_id;
} SduPort;

The SduProtectionControl interface provides a way of specifying which policy
will be used with the SduPort and of setting up a newly instantiated policy with the
necessary parameters. The interface is defined as follows:

enum { SDUPPS_ACTIVE, SDUPPS_KEY_MISSING, SDUPPS_LNONCE_MISSING,
SDUPPS_RNONCE_MISSING } SduProtectionPolicyStatus;
interface {

SduProtectionResult ResetSduPortProtection(in SduPort port_id)

SduProtectionResult SetSduPortProtection(in SduPort port_id, in
SduProtectionPolicy policy)

SduProtectionResult GetSduPortProtection(in SduPort port_id, out
SduProtectionPolicy policy, out SduProtectionPolicyStatus status)

SduProtectionResult SetSduPolicyAttribute(in SduPort port_id, in
string name, in byte[] value)

SduProtectionResult GetSduPolicyAttribute(in SduPort port_id, in
string name, out byte[] value)

SduProtectionResult ApplySduPortProtection9in SduPort port_id)

} SduProtectionControl;

« ResetSduPortProtection removes all information associated with the port id.
This function should be called when a flow is deallocated. After calling this function
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all information related to SDU Protection is removed and the SDU Protection
module uses the default policy for all subsequent SDUs.

« SetSduPortProtection associates specified SDU protection policy settings to the
specified port id. Setting an SDUProtectionPolicy creates a new instance of the
policy, but this policy is not used until it is fully initialized.

+ GetSduPortProtection gets information about the SDU Protection Policy
associated with the specified port id.

« SetSduPolicyAttribute sets the Sdu Protection Policy attribute of the given name.

« GetSduPolicyAttribute gets the Sdu Protection Policy attribute of the given
name.

« ApplySduPortProtection applies changes to settings of the SDU Protection
Policy. This function serves for updating policy methods according to settings
performed by SetSduPolicyAttribute.

The SduProtectionData interface is defined as follows:

interface {
SduProtectionResult ProtectSDU(in SduPort port_id, in SduData in_sdu,
out ProtectedSdu out_sdu);

SduProtectionResult VerifySDU(in SduPort port_id, in ProtectedSdu
in_sdu, out SduData out_sdu);

} SduProtectionData;

The meaning of SduProtectionData operations are as follows:

« ProtectSDU performs protective operations according to the SduPolicy assigned
to the SduPort oninput SduData . The result is provided in ProtectedSdu.

« VerifySDU verifies provided ProtectedSdu accordingto the SduPolicy instance
associated with the SduPort .

5.2.3. Report of SDU Protection Operations: The Results and
Error Codes

To report the result of SDU Protection operations and specify possible errors, the
following enumeration is defined.

enum { SDUP_SUCCESS,
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SDUP_HMAC_VERIFICATON_ERROR,
SDUP_DECRYPTION_ERROR,
SDUP_COMPRESSION_ERROR,

SDUP_FLOW_NOT_FOUND,
SDUP_FLOW_EXISTS,

SDUP_KEY_TOO_SHORT,
SDUP_NO_ROOM,

SDUP_ACCESS_DENIED,
SDUP_OTHER_ERROR,
} SduProtectionResult

where

« SDUP_SUCCESS represents that no error occurred during SDU Protection
operation

« SDUP_HMAC_VERIFICATON_ERROR represents the case when the
message digest field and computed digest of the SDU differ. This can represent a
situation when the SDU was modified in transit

« SDUP_DECRYPTION_ERROR stands for an error found during decryption of
SDU protected data,

« SDUP_COMPRESSION_ERROR represents any error that occurred during
decompression of SDU data. This may occur if different methods were used for
compression and decompression of the data

« SDUP_FLOW_NOT_FOUND for operations specified for a flow. It means that
the specified flow does not exist.

« SDUP_FLOW_EXISTS is used when the specified flow already exists. It cannot
be create twice.

« SDUP_KEY_TOO_SHORT means that the provided key is too short.

« SDUP_NO_ROOM informs that SDU Protection module has not available
resources to complete the requested operation.

« SDUP_ACCESS_DENIED means that the operation cannot be completed
because access was denied.

« SDUP_OTHER_ERROR represents other errors that can occurs during
verification of SDU.
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5.3. SDU Protection Policies

SDU Protection performs operations as specified in the SDU protection policy set for
the communication port. Two policies are defined.

5.3.1. Basic SDU Protection Policy: Simple CRC and TTL

Name: SDUP-CRC-TTL
Title: Simple CRC and TTL

Brief Description: This policy computes or checks the CRC on the SDU using the
specified CRC polynomial. It also computes and checks TTL.

Domain of Applicability: This module might be used in a DIF with a lower layer
subject to bursty errors and when no additional SDU protection is necessary. Therefore,
only error checking and lifetime limiting will be provided by this policy. Because this
policy does not require advanced configuration, it is often used as a default SDU
protection policy.

Constraints and Assumptions: This module depends on the characteristics of well-
chosen CRC polynomials. A CRC of n-bits is able to detect all 1 and 2 bit errors, all odd
numbers of errors and all errors with a burst less than n bits in length, and will only
fail to detect 1 in 2" n other patterns of errors. A CRC of n-bits should not be used with
PDUs with length greater than 2" (n-1).

Policy Specifications: This policy computes CRC-16 and maintains TTL. Therefore
it prepends two fields to any SDU.

CRC value is an n-bit unsigned integer representing the computed CRC value using

the CRC-16-ANSI algorithm. This value is computed over SDU content including the
TTL value. Thus, the TTL value should be determined first. The TTL value is an 8-bit
unsigned value representing a number of hops remaining.

The structure of protected SDU is defined as:

struct {
byte[CRC_LEN] crc;
uintl6 ttl;
Pdu pdu;

} CrcTtlSdu

Management Elements
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This module expose the following management elements that are used for setting the
policy:

« string PolynomialName : a name of polynomial used for CRC calculation

e uint16 ITTL : an initial value of TTL
The module also contain common counters exposed through management elements:

« uint64 SentSDUs : total number of sent SDUs
« uint64 SentOctects : total number of sent octets
« uint64 ReceivedSDUs : total number of received SDUs

« uint64 ReceivedOctets : total number of received octets.

uint64 ReceivedErrors : number of SDUs containing error

Outbound Specification:

When processing a new PDU from RMT’s serialization module, this policy calculates
a CRC for the PDU and adds a TTL value. Then the SDU is passed to the (N-1)-DIF
through the specified destination port.

Inbound Specification:

When processing an incoming SDU, this policy first calculates the CRC and compares
it with the values in the incoming SDU. Then the policy checks TTL. If both checks
succeed then the content of the SDU is relayed to RMT’s deserialization for further
processing.

5.3.2. Cryptographic SDU Protection Policy: AES Counter Mode

Name: SDUP-CRYPTO-AES-CTR
Title: Cryptographic SDU Protection Policy based on AES Counter Mode

Brief description: This policy protects SDUs by using cryptographic algorithms to
prevent eavesdropping and tampering. Because of the way the SDU Protection Policy
processes data, only counter-mode is supported. In this policy the AES algorithm
is provided in two lengths: either 128 or 256. This is similar to AES utilization in
TLS [RFC3268]. For message integrity MD5 or SHA1 in different key lengths can be
selected.

Domain of Applicability: This module might be used in a DIF with a lower layer
that does not provide any security measures and when the security measures should be
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provided for the current DIF. Note that this kind of security represents IPCP to IPCP
protection and not AE to AE protection. By applying this protection the size of SDU
increases by 24—28 bytes (depending on the HMAC algorithm applied).

Constraints and Assumptions: This policy provides cryptographic algorithms
to prevent eavesdropping and tampering. It can be configured with predefined
combinations of encryption and integrity algorithms to provide the required security
and computation costs.

AES-CTR has many properties that make it an attractive encryption algorithm for
use in high-speed networking. AES-CTR uses the AES block cipher to create a stream
cipher. Data is encrypted and decrypted by XORing it with the key stream produced by
AES-encrypting sequential counter block values. AES-CTR is easy to implement, and
AES-CTR can be pipelined and parallelized. AES-CTR also supports key stream pre-
computation.

The security considerations for the use of AES-CTR are known from IPSec [RFC3686]
and TLS/DTLS [modagugu]:

« Counter blocks must not be used more than once with a given key. This means that
sequence number must not be used twice with the same key to encrypt different data.

+ Pre-shared key is supported as encryption keys are generated from the master key,
which itself is not used for encryption. Thus, because for each connection there
are different pair of keys, counter blocks generated by client and server can safely
overlap.

+ Message integrity mechanisms must be employed because, as with other stream
ciphers, data forgery is trivial without a message integrity mechanism.

The maximum number of SDUs that can be encrypted using the keys depends on the
size of sequence number. As this value is set to 64-bits, it represents 2”64 SDUs. Once
the sequence number is about to rollover, the Flow Allocator Instance managing the
flow will create another EFCP connection with different cep-ids, preventing the rollover
from happening. This operation is transparent to the SDU Protection module.

5.3.2.1. Specification:

This policy extends the SDU with new fields necessary for holding information related
to cryptographic protection of the transmitted data.

The structure of protected SDU is defined as follows:
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struct {

uint64 seqg_num;
byte [HMAC_LENGTH] mac;
byte [PDU_SIZE] payload;

} SduCryptoAesCtr;

HMAC_LENGTH is either 20 bytes for the SHA-1-based HMAC or 16 bytes for the MD5-
based HMAC. The length of 'payload’ corresponds to the PDU size, as using AES-CTR
does not require padding.

Management Elements: This module exposes the following management elements

that are used for setting the policy:

string CipherSpecification: specifies which cipher suite to use. Possible
values are AES-128-CTR, AES-256-CTR.

string MacSpecification: message authentication code algorithms can be
specified by selecting from one of the possible options: HMAC-MD5-128, HMAC-
MD5-96, HMAC-SHA1-160, HMAC-SHA1-96

string MasterKey : a string representing the Master key used for generating read
and write keys for encryption as well as for HMAC computation.

string LocalNonce : a local NONCE value used for generating keys

string RemoteNonce : a remote NONCE value used for generating keys

The module also contain common counters exposed through management elements:

uint64 SentSDUs : total number of sent SDUs

uint64 SentOctects : total number of sent octets

uint64 ReceivedSDUs : total number of received SDUs
uint64 ReceivedOctets : total number of received octets.
uint64 ReceivedErrors : number of SDUs containing error

uint64 SequenceNumberCounter : a counter used as a source of sequence
numbers for outgoing SDUs

Outbound Specification: When processing a new PDU from RMT’s serialization

module, this policy encrypts the content of the plain SDU and then computes the
message integrity value of the encrypted SDU. Then the SDU is passed to the (N-1)-DIF

through the specified destination port.
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« Encryption: To encrypt a payload with AES-128-CTR, the encryptor sequentially
partitions the plaintext (PT) into 128-bit blocks. The final PT block MAY be less than
128-bits. This partitioning is denoted as: PT = PT[1] PT[2] .. PT[n] .Inorder
to encrypt, each PT block is XORed with a block of the key stream to generate the
ciphertext (CT). The keystream is generated via the AES encryption of each counter
block value, with each encryption operation producing 128-bits of key stream. The
encryption operation is performed as follows:

FOR i := 1 to n-1 DO
CT[i] := PT[i] XOR AES(CtrBlk)
CtrBlk := CtrBlk + 1

END

CT[n] := PT[n] XOR TRUNC(AES(CtrBlk))

The AES() function performs AES encryption with the fresh key. The TRUNC()
function truncates the output of the AES encrypt operation to the same length as the
final plaintext block, returning the leftmost bits.

The counter block (CtrBIk) is obtained as follows:

struct {
uint48 local_nonce; // low order 48-bits of LocalNonce string
uint64 seq_num;
uintl16 blk_ctr;
} CtrBlk;

« Message Integrity Computation: To compute message integrity, the selected
HMAC method is use. The MAC is computed for payload only. HMAC is defined
(according to RFC2104) as follows:

HMAC(K, m) = H(K XOR opad , H(K XOR ipad , m))

where

« H is a cryptographic hash function, e.g. SHA-1

« K is a secret key adjusted to block size of H (either padded or hashed), this key is
obtained from the master key using key generation method described in Section 6.

« m is the Sdu payload to be authenticated
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« opad and ipad are the outer and inner padding, respectively

Inbound Specification: When processing incoming SDU, this policy first calculates
the CRC and compares it with the values in the incoming SDU. Then the policy
checks the TTL. If both checks succeed then the content of SDU is relayed to RMT’s
deserialization for further processing.

« Decryption: Decryption is similar to encryption. The decryption of n ciphertext
blocks is performed as follows:

FOR i := 1 to n-1 DO
PT[i] := CT[i] XOR AES(CtrBlk)
CtrBlk := CtrBlk + 1

END

PT[n] := CT[n] XOR TRUNC(AES(CtrBlk))

The AES() and TRUNC( ) operateidentically as in the case of encryption. The counter
block is obtained as follows:

struct {
uint48 remote_nonce; // low order 48-bits of RemoteNonce string
uint64 seq_num;
uintl16 blk_ctr;

} CtrBlk;

+ Message Integrity Checking: To check the message integrity, the checker first
computes the integrity message using HMAC method defined in the Message
Integrity Computation section and then it compares the result with provided value
stored in SduCryptoAesCtr.mac.

5.3.3. Interdependencies with other components

The SDU Protection module requires that an SDU Protection Policy is selected for
every flow and also that, in the case of a Crypto-based SDU Protection policy, all four
methods are negotiated between the communicating parties and the master key and
two nonces are agreed. This SDU Protection depends on the authentication component
for obtaining the necessary information. It is the responsibility of the authentication
module to provide the negotiated data. SDU Protection defines a control interface that
can be used to set the SDU protection policy for each flow. This is described in the next
section. MLS, described in Section 4, will define a new policy for SDU Protection.
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5.3.4. Changes to the current IRATI stack for Integrating Other
Policies

Because SDU Protection is entirely specified as a policy, the RINA specifications do
not need to be modified. The IRATI stack currently has a hardcoded implementation
of SDU Protection, which implements the Basic SDU Protection policy described in
this document. This Basic SDU Protection policy is used as the default SDU Protection
Policy in PRISTINE. Since the IRATI implementation is hardcoded, in order to allow
the integration of other SDU Protection policies, a new mechanism enabling the
execution of SDU Protection functions as defined in the SDU Protection Security
Context needs to be implemented. Fortunately, since the SDU Protection functions are
called from the Serialization/Deserialization module, modifications are limited to this
module and SDU Protection is isolated from the rest of the IRATT stack.

5.4. Implementation of SDU Protection for PoC

The Proof of Concept implementation tests the feasibility of the use of the native
Linux Crypto API for SDU encryption and integration of the basic SDU protection
mechanism with the rest of the stack. Configuration of the implemented modules is
part of the security manager configuration of the IPCM, which is also described in the
Authentication part of this deliverable.

The following describes how to configure SDU Protection and the modifications made
to enable us to conduct PoC tests.

5.4.1. Configuration of SDU Protection

As was just mentioned the configuration of SDU Protection is possible from the IPC
Manager (IPCM) configuration file as part of the securityManager configuration
dictionary, specifically using the authSDUProtProfiles dictionary. Here we can
define the default profile as well as profiles to be used for specific N-1 DIFs. An example
of the relevant (ignoring authentication configuration for clarity) configuration looks
like this:

"authSDUProtProfiles" : {

"default" : {
"encryptPolicy" : {
"name" : "default",
"version" : "1",
"parameters" : [ {
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"name" "encryptAlg",
"value" "AES128"

b o{

"name" "macAlg",
"value" "SHA1"
}{
"name" "compressAlg",
"value" "default"
}1
}
"TTLPolicy" : {

"name" "default",

"version" "1,

"parameters" [ {

"name" "initialvalue",
"value" "50"

}1

}

"ErrorCheckPolicy" : {
"name" "CRC32",
"version" "

}

}
"specific" : [

{

"underlyingDIF" "110",

"TTLPolicy" {

"name" "default",
"version" "1,
"parameters" [ {
"name" "initialvalue",
"value" "50"
11

}

"ErrorCheckPolicy" : {
"name" "CRC32",
"version" "

}

}

1

The IPCM stores the parsed profiles in AuthSDUProtectionProfile objects that
contain PolicyConfig objects for policies defined by SDU Protection:
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class AuthSDUProtectionProfile {
public:
std::string to_string();
PolicyConfig authPolicy;

PolicyConfig encryptPolicy;
PolicyConfig crcPolicy;
PolicyConfig ttlPolicy;

Iy

This configuration gets to the kernel through a Netlink message as part of a
DIFConfiguration object. Finally in the kernel we store the profiles in the RMT
instance using the struct sdup_ config structure that points to the default profile
and contains a list of the specific profiles. The individual profiles use the struct
dup_ config_entry structure:

struct dup_config_entry {
// The N-1 dif_name this configuration applies to
string_t * n_1_dif_name;

// If NULL TTL is disabled,

// otherwise contains the TTL policy data
struct policy * ttl_policy;

u_int32_t initial_ttl_value;

// if NULL error_check is disabled,

// otherwise contains the error check policy
// data

struct policy * error_check_policy;

//Encryption-related fields
struct policy * encryption_policy;
bool enable_encryption;
bool enable_decryption;
string_t * encryption_cipher;
string_t * message_digest;
string_t * compress_alg;
struct buffer * key;

i
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5.4.2. Extending the IPCP Structure

In order to be able to access the newly added configuration, the struct
ipcp_instance_ops was extended with two new functions:

const struct name * (* dif_name)(struct ipcp_instance_data * data);
int (* enable_encryption)(struct ipcp_instance_data
* data,
bool enable_encryption,
bool
enable_decryption,
struct buffer * encrypt_key,
port_id_t port_id);

Where the dif _name function returns the name of the DIF that the IPCP is part of. This
is needed to identify which SDU Protection configuration should be used when using a
specific N-1 DIF IPCP. This was implemented for all current IPCP instance types.

And the enable_encryption function was implemented only for Normal IPCPS
and just calls the RMT function rmt_enable_encryption that will be described
later. This message is exported to the user space components through the
RINA_C_IPCP_ENABLE_ENCRYPTION_REQUEST Netlink message, and is
used from the SecurityManager during Enrollment.

5.4.3. Modifications of RMT Structure

As previously mentioned, the SDU Protection profiles are stored in the RMT instance
structure:

struct rmt {
struct sdup_config * sdup_conf;
i

This new data structure is managed by two new functions:

int rmt_sdup_config_set(struct rmt *
instance, struct sdup_config * sdup_conf)

static struct dup_config_entry * find_dup_config(struct sdup_config *
sdup_conf, string_t * n_1_dif_name)
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Where rmt_sdup_ config_set is used to replace the currently used SDU Protection
profiles with the newly provided ones. And the find_dup_ config function finds a
specific SDU Protection profile for the specified N-1 DIF.

Also previously mentioned is the rmt_enable_encryption function that
manipulates the SDU Protection encryption policy associated with the specified N-1
port. Using this function we can enable and disable both encryption and decryption of
SDUs separately, as well as change the encryption key.

The most significant change to the RMT implementation is in the creation of N-1 ports.
The struct rmt_n1_ port gained two new members:

struct rmt_nl1_port {

struct dup_config_entry * dup_config;
struct crypto_blkcipher * blkcipher;

ti

Where dup_config was explained earlier and blkcipher is a structure used by
Linux Crypto API for data encryption. This is here only for the purpose of the
PoC implementation and in the future both should be replaced with a single SDU
Protection Policy Data structure.

To propely initialize the updated rmt_ni_port structure, the ni_port_create
function now takes an additional parameter:

static struct rmt_nil_port * nl_port_create(port_id_t id, struct
ipcp_instance * nl_ipcp, struct dup_config_entry * dup_config)

This parameter is directly stored in the rmt_n1_port structure and it is also used to
initialize the crypto_blkcipher structure.

The new information stored in the rmt_nil_port structure is used in the
nl_port_write and rmt_receive functions, where they are passed to the SerDes
module as parameters.

5.4 4. Modifications to SerDes Module

The main part of SDU Protection mechanism is implemented in the SerDes module.
This is to have the PoC mechanism in one place and the TTL and CRC mechanism were
already present here.
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First of all TTL and CRC mechanism are no longer always on or always off controlled
by the kernel compilation; instead they use the configured SDU Protection profile. Both
mechanism are disabled by default, and can be enabled by defining the TTLPolicy and
ErrorCheckPolicy in the configuration profile. For now the ErrorCheckPolicy always
assumes the use of the CRC32 mechanism. The TTLPolicy can be further configured
by setting the initialValue parameter. The configured value is used as the initial TTL
value when serializing PDUs.

No other modifications were made to the TTL and CRC mechanisms, they still use the
same functions from the "du-protection.c" file and are still called after the PDU was
serialized, adding additional data to the front of the serialized PDU. And analogously
for deserialization.

The new mechanism added is SDU encryption. This mechanism is called after TTL and
before CRC mechanisms. Same as for TTL and CRC it’s enabled if the encryptPolicy
is defined in the configuration profile. For now the value of the encryptAlg parameter
is ignored and AES128, in ECB mode is always used. It’s important to note here that
this mode is not recommended for serious cryptographic work and was chosen just for
the PoC implementation for it’s simplicity. Support for the CTR and other modes will
be added later. The mechanism consists of two main parts:

« Sizerecalculation and padding. Since encryption interates over data in blocks of a set
size, we need to pad our data to a multiple of this block size. For now we implement
the PKCS#7 padding mechanism that appends N bytes of value N to the end of the
message.

« Encryption (and its opposite) is implemented as a new function in the "du-
protection.c" file and for now it simply encapsulates the function calls to the Linux
Crypto API.

int dup_encrypt_data(const char * src,
char * dst,
ssize_t src_size,
ssize_t dst_size,

struct crypto_blkcipher * blkcipher);

int dup_decrypt_data(const char * src,
char * dst,
ssize_t src_size,
ssize_t dst_size,

struct crypto_blkcipher * blkcipher);
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Logically the opposite operations happen in the reverse order during deserialization:

ErrorCheck

« Decryption

Padding removal

TTL check

Implementation of Hashed Message Authentication Codes was skipped for the purpose
of PoC since its functionality is similar to CRC. Continuing from the Proof of Concept,
implementation be modified to define policy sets in line with the rest of the kernel stack.
SDU Protection will then need to synchronize with Authentication and Enrollment.
Some of this was already done (enrollment can enable/disable the encryption and set
a new encryption key) but more work in this area is expected.

5.5. Next Steps for Cryptographic Activity: PoC Tests

The presented PoC implementation of SDU protection component consists of a
container providing a suitable environment for attaching SDU protection functions.
Implemented SDU protection component and a Crypto-based SDU Protection policy
provide necessary functions to establish a secure channel between two peer IPCPs
through the common underlying DIF.

Current PoC implementation aims to provide working SDU Protection component
integrated with IRATI network stack. When implementing PoC, some simplifications
were made. To complete implementation of Crypto-based SDU Protection Policy
the Hashed Message Authentication method for ensuring data integrity will be
implemented. Also, PoC implementation will be modified to define policy sets in
line with the rest of the kernel stack. SDU Protection will then need to cooperate
with Authentication and Enrollment components. Currently, SDU Protection is
configured along with Authentication from the IPC Manager (IPCM) configuration
file through authSDUProtProfiles, however some parameters of SDU Protection
need to be negotiated during Enrollment and so more work will be done in this
area. For cooperation with Authentication and Enrollment, SDU Protection specifies
management interface. Functions of this interface provide the means of setting SDU
Protection attributes as needed.

To test implemented SDU protection, basic Validation and Verification tests are
proposed followed by Performance Evaluation Tests.
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« Validation tests are focused on checking that SDU Protection PoC design comply
with the requirements. Requirements for SDU Protection are specified in RINA
documents as applying following functions to each SDU: i) lifetime limiting, ii) error
checking, iii) data integrity protection, iv) data content protection.

« Verification tests prove that the SDU Protection component consistently operates
without error according to its design specifications. Several unit tests will be created
to check that individual functions of SDU Protection component are error-free.
These unit tests will exercise functions by applying different arguments within the
acceptable range as well as outside this range and check their results.

Besides applying outcomes the tests to the SDU Protection implementation, the PoC
implementation will be adjusted to comply with the style of IRATI implementation.
After finishing PoC tests and refining the source code of SDU Protection component,
the implementation will be ready for the integration in IRATT distribution. This will
enable the possibility to define and realize use cases in WP6 and perform integration
tests.
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6. Key Management

Two architectural options (Centralised and Distributed) were suggested in D4.1 for
assuming the role of Key Server as the security sensitive entity. We further refined these
options and will discuss these choices in the next version of this deliverable.
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7. Resiliency and High Availability

This chapter details the work done on resiliency and high-availability in PRISTINE
T4.3. It covers two main aspects: the resilient routing policy and the application of load
balancing concepts to RINA.

Regarding resiliency, we decided to focus implementation efforts on the Loop-
Free Alternate routing policy and omit the implementation of the Flow Liveness
Detection policy. There are two reasons for this. Firstly, there is already a rudimentary
liveness detection mechanism present in the IRATI implementation. While it is not
implemented according to the structure proposed in D4.1 [D4.1] (in IRATTI it is a
function embedded in the Flow Allocator), its functions are still adequate to perform
resilient routing. Secondly, the Flow Loopback Detection policy would also require
some substantial changes to the Flow allocator, and will there be implemented as a part
of the RINA traffic generator (rina-tgen) [rina-tgen] development in WP6, Task 6.2.
This means that this function will be available at the DAF level, not the DIF policy level
as originally intended. The work regarding resilient routing is described in Section 7.1,
“Resilient Routing”

DAF Load Balancing was implemented for the main testing tool available in the
PRISTINE repository, namely rina-echo-time. It will be further extended to a
lightweight web server, NGINX in Task 4.3. The work regarding load balancing is
described in Section 7.2, “Load Balancing”

7.1. Resilient Routing

7.1.1. IRATI Routing and Forwarding Tables

As a starting point, the IRATI prototype implements a rudimentary link-state routing
policy based on the IS-IS protocol. Each IPCP maintains a graph representing its
current knowledge of the connectivity of the DIF, which is updated by distributing Flow
State Objects among IPCPs, which are kept in the Flow State Database (FSDB). Each
vertex of the graph represents an IPC Process while each edge represents an N-1 flow
between adjacent IPC Processes. Routes in the DIF are calculated by applying Dijkstra’s
Shortest Path algorithm to the graph. These routes are used to fill the PDU Forwarding
Table (PFT) with entries mapping an <address, QoS> pair to the list of N--1 ports that
have to be used to reach the next hop in the path towards the destination. Every IPC
Process computes its own PFT.
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Figure 24. Organisation of the routing component in the IRATI prototype.

The organisation of the IRATI routing policy implementation is shown in Figure 24,
“Organisation of the routing component in the IRATT prototype.”. The routing software
follows a modular design that is partitioned in three components:

« The Routing Manager: responsible for the communication between the Routing
Software module and the IPC Process which uses it.

« The Routing Policy: responsible for updating and maintaining the network graph. It
sends / receives updated network connectivity information using the CDAP Protocol
and changes the local representation graph when needed.

« The Routing Algorithm: responsible for computing the PFT from the network graph.

97



Deliverable-4.2 (1st version)

In the IRATI prototype, the routing table that is calculated from the FSDB consists of a
list of routing table entries, where each routing table entry maps a destination address
(for a certain QoS id) to a list of next-hop addresses. Multiple next-hops are possible
per destination address for multicast support, but the available routing implementation
does not use multicast routes, therefore the next-hops list of each routing table entry
contains just one element, the unicast next-hop for a destination. The calculated routing
table is passed to the Resource Allocator. Note that IRATI does not explicitly maintain
a routing table, its entries are only used as an intermediary result between the FSDB
and the PFT.

Starting from the routing table, the Resource Allocator computes the PDU forwarding
table (PFT), by mapping each next-hop address to a port-id. This calculated PFT
is modeled as a list of PDU forwarding table entries, where each entry maps a
destination address and QoS id to a list of port-ids, very similar to what happens for the
routing table. Multiple port-ids are possible per destination address to support sending
the PDUs to multiple next-hops simultaneously (necessary for applications that use
whatevercast communication).

The Routing component is an active component that performs the routing tasks based
on timers and other asynchronous events (e.g. N-1 flow up/down). As an example, the
default routing component starts by spawning different timer-driven tasks:

« A task to compute the routing table using a Shortest Path (SP) algorithm (Dijkstra
algorithm has been chosen in the current implementation).

A task to increment the age of the Flow State Objects (FSOs) received from the
neighbor, in order to remove stale entries.

« A task to propagate the FSOs stored in the FSDB.

Detailed information on the IRATT routing policy can be found in IRATI deliverable
D3.2 [IRATI-D32].

In order to support resilient routing, it is necessary to extend the current routing
entry model so that each next-hop can be associated with one or more alternate next-
hops (the Loop Free Alternates), to be used if the primary next-hop suddenly becomes
unreachable - e.g. because of link failure, or neighbor node/IPCP crash. The current
PDU forwarding table entry model also needs to be updated so that each port-id can
be associated with one or more alternate port-ids, to be used if the flow represented by
the primary port-id is unavailable.
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7.1.2. PRISTINE SDK: Limitations and Proposed Solutions for
Routing Policy

The current implementation of the IPC Process’s core functionalities requires some
modifications in order to fully support routing policies. Two obstacles have to be
addressed:

1) Currently, setting up a new N-1 flow between two IPCPs is very intertwined with
enrolling two IPCPs. There is no way to choose the connectivity graph for flows that
will be used for layer management. 2) The RIB daemon does not support fine-grained
control over the objects that are added to the RIB. For instance, FSOs have to be
propagated at a certain interval, but there is currently no way to specify a propagation
interval to the RIB daemon.

In order to overcome the first obstacle changes have to be performed to two main
components: enrollment and the N-1 flow manager, which is part of the resource
allocator implementation. Upon completion, enrollment currently sends all dynamic
information, such as the FSDB, to the new member of the DIF. Enrollment will
be modified to be marked as completed right before the sending of the dynamic
information. Then according to policy, one or more N-1 flows will be setup to other IPC
Processes in the DIF. This policy set will be implemented in the N-1 Flow Manager.
We envision a few implementations for this policy set, to be able to investigate their
advantages and disadvantages:

o Connect to all other IPCPs that share a common N-1 DIF

« Connect to a subset of the previous, with a fixed limit on the number of N-1 flows
that need to be established

« Use a distance metric with the address as input to select the N-1 flows to setup

+ Select the IPCPs to allocate an N-1 flow to in such a way that the graph is k-
connected.

The second obstacle will be tackled by extending the RIB daemon API. It will allow
specifying a policy set that manages subtrees of the RIB. In the case of the LFA routing
policy, this will be managing the FSDB; the propagation of FSOs at a certain interval,
the aging of FSOs, the removal of stale entries.

7.1.3. Loop Free Alternates Policy, the Updates

The original specification from D4.1 called for the Loop Free Alternates (LFA) policy
to listen to the following events: N-1 flow allocated N-1 flow deallocated N-1 flow up

99



Deliverable-4.2 (1st version)

N-1 flow down Flow State Database has changed Upon revision, we removed the flow
allocated and flow deallocated events to be accessed by a routing policy, in order to
control assigning flows for data transfer. Upon flow allocation, the new flow will not
automatically be announced to the routing policy. This allows to have explicit topology
control for the forwarding of PDU’s in a DIF. The revised LFA policy will therefore
only listen to the following events: N-1 flow up N-1 flow down Flow State Database has
changed

7.1.4. Routing Software Specification and Implementation

7.1.4.1. User Space, Interfaces

In IRATI, the API between the IPC Process core and the routing plugin is minimal
- the IRoutingPS abstract class. The key method exposed by this interface is
set_dif configuration(), that is invoked from the IPC Process core to start the Routing
component. The API minimality reflects the fact that routing in RINA is all policy.

The introduction of a resiliency algorithm does not modify the interface defined by the
IRoutingPS class, nor extend the overall interface between the IPC Process core (the
fixed/common part) and the plugins (the policies). Instead, an interface internal to the
Routing component - the IResiliencyAlgorithm abstract class - is added to abstract the
operation of a resiliency algorithm, in addition to the already existing internal interface
for the computation of the (initial) routing table.

The IResiliencyAlgorithm class exposes the extendRoutingTable method, which is used
to insert additional next hops (e.g. loop-free alternates) to the routing table computed
by the main routing algorithm.
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IRoutingPS

IRoutingAlgorithm

+set dif configuration DIFConfiguration cfg): void

+computeRoutingTable(int source, Graph g): RoutingTable

LinkStateRoutingPs DijkstraAlgorithm

data_model:  IRoutingComponent +computeRoutingTable(int source, Graph g): RoutingTable
db: FlowStateObjectDatabase

routing_alg:  IRoutingAlgorithm
resiliency_alg: IResiliencyAlgorithm

IResiliencyAlgorithm

+set_dif_configuration(DIFConfiguration cfg): void
+extendRoutingTablefint source. Graph g RoutingTable rt):
RoutingTable

LoopFreeAlternateAlgorithm

+extendRoutingTable(int source, Graph g, RoutingTable rt):
RoutingTable

Figure 25.
7.1.4.2. User/Kernel Interface, Data Structures

In the IRATI prototype (See Section 7.1.1, “IRATI Routing and Forwarding Tables”), the
Resource Allocator (RA) is implemented in userspace, while the RMT is implemented
in kernelspace. Upon receiving input from the Routing component (e.g. routing table),
the RA generates the corresponding configuration for the PDU fowarding policy
in the RMT component. This is implemented using a netlink message (currently
referred to as MOD_PFTE), sent by the RA to to the kernel in order to configure
RMT. The current data structures used to support routing and forwarding (in both
kernelspace and userspace) are, however, tied to a specific implementation, reflecting
the default routing policy and RMT policies. A PDUForwardingTableEntry userspace
data structure is used to hold an entry of the default RMT PDU forwarding policy, which
assumes destination-based routing/forwarding. A similar data structure exist in kernel
space to directly implement RMT PDU processing. Consequently, the current format of
the MOD_ PFTE message also reflects the structure of the PDUForwardingTableEntry.
However, PRISTINE research efforts in the routing and forwarding area envision
different policies for Routing, Resource Allocator and PDU forwarding. This results
in different requirements for the userspace and kernelspace data structures and the
MOD_ PFTE message.

First, we detail the format of the new MOD_ PFTE message. The format of this message
has to be flexible to support a wide range of possible routing policies, particularly
the ones we envision in PRISTINE’s scope. It should convey all the information
necessary to configure any PDU forwarding policy, independently of the specific policy
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implementation. The way the MOD_PFTE message is interpreted in particular, is
policy-implementation-specific.

The current format of the IRATI MOD_ PFTE message is

struct mod_pdufte_entry {
unsigned int destination_address;
unsigned int qgos_id;
list<unsigned int> port_ids;

struct mod_pdufte {
list<mod_pfte_entry> entries;

that is a list of PDU forwarding table entries.

For resilient routing, a format has been chosen to make it possible to support alternate
port-ids:

struct alt_port_ids {
list<unsigned int> alternatives;

struct mod_pfte_entry {
unsigned int destination_address;
unsigned int qos_id;
list<alt_port_ids> port_ids;

The port-ids contained in struct alt_port_ids are intended to be the different
alternatives, sorted in failover order.

Apart from T4.3, interaction with WP3 identified the following PRISTINE tasks that
will make direct use of this message in their research effort:

« T3.2 Multipath routing

« T3.3 Topological Addressing

For T3.2 multipath routing, the current format for struct mod_pdufte_entry is
sufficient, since the list of port-ids can be used to support the multiple paths.
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For the purpose of T3.3 topological addressing research, multiple formats have been
proposed.

For topological addressing

struct mod_pfte_entry {
unsigned int neighbor_address;
unsigned int port_id;

to support forwarding not based on destination address, but rather on topological
distance information.

For circuit-based switching;:

struct mod_pfte_entry {
unsigned int circuit_id;
list<unsigned int> port_ids;

where a circuit identifier is used in place of a destination address.
7.1.4.3. Kernel Space Software Structure

The current prototype provides a basic PDU forwarding table implementation, based
on a list of entries, where each entries contains a list of port-ids. In order to support
resilient routing, accordingly with what specified in the previous sections, the entry
data structure has to be extended so that each primary port-id (more than one port-ids
are present in case of multicast) in the list can have one or more alternate port-ids.

Currently, the policy set only contains the following behavioural policies (hooks):

int (* next_hop)(struct pft_ps * ps,

struct pci * pci,
port_id_t ** ports,
size_t * count);

/* Reference used to access the PFT data model. */
struct pft * dm;

and uses the dm to access the hard-coded PFT implementation contained in the pft.c
file. The PFT is implemented as a list of entries, where each entry maps a destination
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address to a list of next hops. However, the PFT implementation really depends on the
kind of forwarding table being used - a resilient forwarding table (to be used with LFA)
needs each entry to contain either a primary port-id and an alternate port-id. For this
reason, the policy set interface was extended to make it possible to keep the table in its
internal implementation - and consequently not hard-coded into the stack. In order for
this to be possible, it was also necessary to add further hooks in the policy set to support
update to the PFT internal implementation.

Note: a performance software implementation would make use of hashtables. Note:
a more robust implementation would (logically) separate pdu forwarding tables (and
ideally all data structures) per qos-id to minimise interactions of one qos-id with
another.

7.1.5. Initial PoC Evaluation of the LFA Policy

In order to explore the feasibility of the LFA policy in the context of the routing
implementation provided by the IRATI stack, an initial implementation of the LFA core
algorithm has been developed. It is scheduled to be integrated in the pristine-1.3 public
release.

In the following, the IPC process on which the routing and LFA computation happens
will be referred to as source node, while the term neighbor of a node will refer to another
node towards which the first node has a direct link (N-1 flow) in the DIF graph.

Finding LFA nodes requires the computation of the distance vector rooted in the source
node and and the distance vectors rooted at each of source node’s neighbors. A distance
vector rooted at node X maps each node Y in the DIF graph to the minimum distance
between X and Y.

The original Dijkstra implementation is structured in the following steps: Computation
of the distance vector (with predecessor information) for the specified root node Use
the predecessor information computed in step 1 to compute the next hop for the root
node towards all the other nodes

In the IRATI implementation, however, the two steps were tightly coupled, so it was
not possible to obtain the distance vector without computing the next-hops. For this
reason, some initial refactoring for the original implementation has been carried out to
allow faster computation of distance vectors (skipping next-hop computation, which is
not needed for LFA).

The following pseudocode outlines the implementation of LFA core algorithm - e.g. the
computation of LFA nodes for the source (local) node:

104



Deliverable-4.2 (1st version)

src_dist_vec ~ computeDistVec(graph, src_node)

foreach neigh in neighbors(src_node) {
neigh_dist_vecs[neigh] < computeDistVec(graph, neigh)

foreach node not in neighbors(src_node) {
foreach neigh in neighbors(src_node) {
if neigh_dist_vecs[neigh][node] < src_dist_vec[neigh] +
src_dist_vec[node] and neigh not in nexthops[node] {
add neigh to LFA node towards node

As the pseudocode reports, the algorithm is organized in two steps: Compute the
distance vector rooted at the source node and and the distance vector rooted at each
of the source node’s neighbors. This step requires as input the identifier of the source
node and the DIF graph. For each remote node (i.e. a node that is not a neighbor of the
source node, and this can be reachable over LFA nodes), try to see if some source node’s
neighbor - excluded the one that is already the next-hop towards the remote node -
satisfies the LFA inequality. If the condition holds, the neighbor is added as LFA node
for the remote node. This step requires as input the distance vectors computed at step
1 and the original routing table computed by the routing component (which contains
the next-hops towards each node).

The IRATI build infrastructure already provides a unit test infrastructure for the
routing algorithm, so that there is no need to setup a real scenario - with virtual
or physical machines running the stack - to verify the functionality of the routing
algorithms. The unit tests can be carried out by means of the make check commands
of the rinad software package.

Therefore, the already existing unit tests have been extended to also check the correct
functionality of the LFA algorithm.

The following test graph has been used for the LFA unit test, where the source node is
identified by “1”, and all the links have equal cost (1):
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Figure 26. Test topology for LFA algorithm

The make check command produces the following output (only the part relevant to the
test case described above is reported)

[...]

Dest: 2, Cost: 1, NextHops: [2, ]
Dest: 4, Cost: 1, NextHops: [4, ]
Dest: 3, Cost: 1, NextHops: [3, ]
Dest: 5, Cost: 2, NextHops: [2, ]
Dest: 6, Cost: 2, NextHops: [4, ]

Dest: 7, Cost: 2, NextHops: [3, ]

22984(1432291094 )#ipcp (DBG): Node 3 selected as LFA node towards the
destination node 5

22984(1432291094)#ipcp (DBG): Node 4 selected as LFA node towards the
destination node 5

22984(1432291094 )#ipcp (DBG): Node 3 selected as LFA node towards the
destination node 6

22984(1432291094)#ipcp (DBG): Node 2 selected as LFA node towards the
destination node 7

22984(1432291094)#ipcp (DBG): Node 4 selected as LFA node towards the
destination node 7

22984(1432291094)#ipcp[1].1lsr-tests (INFO):
getPDUTForwardingTable_MoreGraphEntriesLFA_True test passed

[...]

The first part of the output shows the routing table (next-hops) as normally computed
by the routing component. The second part reports the results of the LFA algorithm.
In this case: Neighbors 3 and 4 have been selected as LFA nodes for remote node 5.
Neighbor 3 as has been selected as LFA for remote node 6. Note that neighbor 2 (which
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is not the next-hop for remote node 6) does not satisfy the LFA condition. Neighbors 2
and 4 have been selected as LFA for remote node 7.

7.2. Load Balancing

In order for balancing the load between servers in a data centre scenario, currently an
additional entity/node is being used which is called Load Balancer (LBR). The LBR has
one or more public routable IP addresses and has one or more servers behind it. The
limitation behind this model is that the servers and LBR need to be in the same layer 2
domain. If one or more servers are not in the same layer 2 domain, then such servers
would not be able to see the addresses of clients they should be connected to. Therefore,
in order for LBR to connect with a server in other layer 2 domains, the packets have to
pass through a layer 3 node/router. RINA architecture does not have this limitation.
In RINA, servers can be placed anywhere. Application names are location and layer
independent; therefore servers can always see the client applications.

7.2.1. DAF-Based Load Balancing

Introducing additional standalone nodes such as LBR in the end-to-end path
might create some performance degradation specifically towards the delay and loss
experienced by traffic flows, possibly due to excessive processing and load at the
LBR. Moreover, in order to avoid a single point of failure and to further balance
the load, redundant/additional LBRs are normally deployed in the data centres. This
might make the LB a more costly solution and can be difficult to maintain. Unlike in
current architectures, load balancing in RINA based data centres is envisaged to be
implemented at the DAF level, rather than by deploying additional node/s. DAF based
load balancing will utilise a distributed application facility operating at various nodes
on the network, which will coordinate with the resources and can redirect network
traffic towards lightly loaded servers to make efficient use of resources.

7.2.2. Implementation of DAF-Based Load Balancing

Here, load balancing is defined as the process of workload distribution across multiple
available resources/servers. It tries to maximise resource scalability and availability,
and makes more efficient use of resources. The LBR distributes load/traffic among
more than one available instances of the same server. We envisaged that load balancing
can be deployed in a DAF in RINA. As a proof of concept, we initially conducted
an experiment using two instances of rina-Echo-Time server running on two distinct
virtual machines and one instance of rina-Echo-Time client running on a third
virtual machine. In this experiment, the LB-DAF is not implemented; however, a
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similar functionality was implemented in the rina-echo-time client application. In this
experiment, if a user on the client side wants to exchange 1000 packets with the server,
the load balancing function initiates two threads and exchanges 500 packets with each
server. We explain below how this experiment was conducted.

There are no changes made to the rina-echo-time application’s server side
implementation. On the client VM, the client side implementation of the application
code is modified to initiate two distinct flows with each server instance. The client
application process started two independent threads.

pthread_create ( &threadl, NULL, run_client, (void *) &argumentsl)
pthread_create ( &thread2, NULL, run_client, (void *) &arguments2)

Here, arguments1 and arguments2 are pointers to a structure holding all the runtime
arguments taken while executing the client application.

struct arguments {

string t_type; // test type (perf, ping)

string s_apn; // application process name for server
string c_apn; // application process name for client
string s_api; // application process instance for client
string c_api; // application process instance for server
string d_name; // The name of the DIF to register at
bool reg; // Register the application

boot qt; // Suppress some output

unsigned int cnt; // total number of packets to send
unsigned int sz; // size of packets to send

unsigned wt; // time to wait between packets;

int gp; // Gap of the retransmission window

int d_time; // Deallocate the flow after specified time

ti

The simple command to run the client is as follows:

#./rina-echo-time -c 200 --serverl-api 1 --clientl-api 1 --server2-api 2
--client2-api 2

It can also be given if we want client application instance 1 to be connected to server
application instance 2:
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#./rina-echo-time -c 200 --serverl-api 1 --clientl-api 2 --server2-api 2
--client2-api 1

Each thread initiated a flow with one server instance and started sending and receiving
echo messages. The run__client function was used to create an object of the Client class
and call its constructor and run function.

void *run_client (void *parameters)

{

struct arguments *args;

args = (struct arguments *) parameters;

Client c(args->t_type, args->d_name, args->c_apn, args->c_api, args-
>s_apn, args->s_api, args->qt, args->cnt, args->reg, args->sz, args->wt,
args->gp, args->d_time);

c.run( );
pthread_exit(NULL);
return NULL;

We also setup three virtual machines over a virtual LAN. These machines are named
as serverl, server2 and client. Each application is enrolled with the same DIF named
‘normal.DIF'. Application instance 1 for Echo Server started on server 1 and application
instance 2 for Echo Server started on server 2 VM. IPC processes named 'test1.IRATI',
'test2.IRATI' and 'test3.IRATI' were created on server 1, server 2 and client VMs
respectively. Each application instance is also registered at the respective IPC process.
All this is done in the ipcManager.conf file as follows:

“applicationToDIFMappings”: [ {
“encodedAppName” : “rina.utils.apps.echo.server-1--",
“difName” : “normal.DIF” },

“ipcProcessesToCreate” : [ {

“type” : “normal-ipc”,
“apName” : “testl1.IRATI”,
“apInstance” : “1”,
“difName” : “normal.DIF”,
“difToRegisterAt” : [“100"]
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After that, each IPC process is enrolled at mormal.DIF". This setup that is composed of

three VMs is shown in Figure 27, “Load Balancing Evaluation Experiment”.
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Figure 27. Load Balancing Evaluation Experiment

In this experiment, the connection initiation and load balancing have been carried out
at the Application Process (AP) level. So the AP must be aware of the process names and
instances of the servers in this case. The client AP requests for the flow allocation to each
server application instance. In this request (as per current librina API) the AP needs
to specify the app_name, app_instance, server_name, server_instance, DIF_name,
and QoS_spec. Each flow to the server is distinct and independent as can be seen from
the sequence numbers of packets for each flow in the log. In this way, it is the job of the
AP to put the received packets in order.

If we transfer the responsibility of the load balancing task to the DIF, then the DIF must
be aware of the number of instances of the servers and their locations. However, in the
current implementation of librina, the AP needs to specify the server instance.
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7.3. Next Steps for High Availability and Load Balancing
Activities

7.3.1. High availability

In order to move towards high availability (HA) of IPC processes and DIFs in a RINA
deployment, we performed an investigation into HA techniques used in GNU/Linux.
More specifically, we looked into Corosync and Heartbeat. After some investigation, we
found that these solutions do not translate to the recursive nature of RINA. The idea
of deploying an IPCP in a virtualised environment and then cloning this to different
systems broke down when trying to figure out how to do an implementation. The
conclusion is that in RINA, high-availability would be more naturally implemented by
using namespace resolution to anycast names. RINA envisioned namespace resolution
from the onset, where a name can either resolve to a single AP (unicast), a set of AP’s
(broadcast), a member of a set (anycast) or a subset of a set. The overall name is
therefore coined a 'whatevercast' name.

The current specification of whatevercast and multipoint flows is not very detailed.
The objective of the work in the final period of PRISTINE is therefore to get a full
specification of whatevercast, and a basic PoC implementation demonstrating the
benefits for resiliency (IPCPs in whatevercast groups).

7.3.2. Load Balancing

We will port NGINX web server and Chromium browser with librina in order to make
both of these work on RINA based systems. On the client side, we will implement a DAF
with a Chromium browser for load balancing and bandwidth aggregation exercises. On
the server side, we will use a NGINX web server in the same DAF. Please see Figure 28,
“DAF-Based Load Balancing Scenario”

There are two aspects to consider for load balancing in RINA:

1. Re-ordering of received packets if a client connects to multiple servers and
duplicated data packets from the servers are received by the client. This is the case
when there are multiple servers for the same service under a single administrative
domain e.g. www.google.ie and www.google.pk etc. The client application process
can choose the server/s to connect to. For example, if there are two file servers
having a specific file of size 2GB. The client may connect to both the servers and
request half of the file from server 1 and the other half from server 2. DAF-based
LB is application-specific load balancing and should be implemented in the client
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application too. Using this approach should reduce the load on servers, enhance
the throughput and aggregate the bandwidth if the flows adopt distinct paths.
Because, if the flows pass through a common intermediate node, then the available
capabilities at that node need to be shared among each flow that might cause
performance degradation.

2. Selection of server instance to connect to if multiple clients contend for the same
server. If a client does not give any server preference, e.g. it just wanted to access
google.com, then the DAF Manager should decide which server instance to connect
to and allocate a flow. By using this approach the DAF Manager has a better view
of allocations and could balance the load at servers and eventually clients can
experience better throughput.

End-to-End Communication

] [ ]
<. LB-DAF
°
(@)
g ¢T IPC IPCM ¢T IPC
Normal DIF Normal DIF
¢? IPC ¢T IPC
Shim IPC Shim IPC Shim IPC
Process SHIM-DIF Process SHIM-DIF Process
I |
Server 1 Server 2 Client machine

Figure 28. DAF-Based Load Balancing Scenario

The LB needs to be implemented at two steps, i.e., DAF and DIF levels. A DAF client AP
chooses which server instance it needs to connect to. The client may choose more than
one server to connect to in order to aggregate the bandwidth and balance the load. The
DAF is more tightly coupled with the AP therefore putting out-of-order packets in the
correct order can be done more effectively here. The DIF has to handle a lot more flows
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than the DAF, therefore it might become a bottleneck if it has to put the packets arriving
from multiple paths in order for a single AP. Moreover, packets may have to wait longer
in queues at the DIF while waiting for the packets delivered earlier than these packets.

The DIF is aware of the resources and number of instances of servers, therefore flow
allocation and resource reservation needs to be done over here.

Load balancing in RINA should enable applications to connect to the most lightly
loaded server. In order to do that, each instance of the server application must share
its load statistics with the DIF it is enrolled with. Then the LB DAF can decide which
server instance to connect to according to its load statistics.
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8. Summary and Conclusions

The security requirements are analysed in T2.1 and reported in D2.1 [D2.1]. The
PRISTINE reference framework was analysed in T2.2 and the results reported in D2.2
[D2.2] that included some of the security functions. D4.1 built on D2.2 and described
the concepts and high-level design of security functions, mechanisms, and techniques.
D4.2 provides further developments of these functions to meet the requirements
enabling more secure and reliable networks. Below summarises the work carried out
and reported in this deliverable related to these security functions mechanisms, and
techniques. The future works are also sated.

Authentication: This is defined as the process of verifying the identity of IPC
Processes that want to join a DIF. Six different authentication policies were proposed
in D4.1. Among them, three authentication policies namely: no authentication
required, authentication using asymmetric key, and authentication using password
were specified, developed, tested and reported in this deliverable. Further work, such as
developing other authentication policies inspired by the TLS handshake protocol and
the iterations of experimental activities, will be conducted in WP4 and WP6.

Capability Based Access Control: Three scenarios for the use of CBAC have been
specified in this deliverable. The scenario, when an AP needs to access other AP’s
resources in the same DAF, has been specified and implemented. Further work
needs to be conducted for the verification tests of this scenario and specification and
implementation of the other two scenarios namely: when an IPC Process requests to
join a DIF and when an IPCP execute remote operations on the objects of a peer’s IPCP
RIB.

Multi-Level Security: D4.1 reported a number of MLS architectures that enable secure
data sharing to be achieved on the common RINA infrastructure. There are two
components that are needed to create these MLS architectures: Communications
security and Boundary Protection Components (BPC). Design and specification of these
two components are reported in this deliverable. Implementation is under way and
the component tests will be conducted soon. The specification and implementation of
communication security is believed to be straight forward given the RINA architecture.
But regarding the BPC, enabling controlled sharing of data between classification
levels in a DIF is more difficult. It requires coordinated policies in several RINA
components. Deep content inspection is best performed at the application layer, i.e. the
DAF layer. However, it is not currently possible to do this in a way that is transparent
to applications, i.e. where the sending application does not sends its data directly to
the BPC.
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SDU Protection: The SDU Protection module is a part of the IPCP data path and
protection is applied prior to exchange of data between two IPCPs of different DIFs. In
this deliverable, a description of concepts, methods and algorithms used in the design,
specification and implementation of the SDU protection module have been given. The
software architecture, interfaces, and policies relevant to this component have been
described. Two SDU protection policies are defined: Basic policy (simple CRC and TTL)
and Cryptographic policy (AES Counter Mode). Both policies have been specified and
implemented. The deliverable also reports on the plan for PoC tests.

Resiliency and High Availability: Two relevant aspects, namely resilient routing
focusing on Loop-Free Alternate routing policy and load balancing focusing on DAF-
Based Load Balancing, have been covered in this deliverable. The LFA-based policy has
been specified, implemented and tested. High-availability of IPCPs and DIFs have also
been investigated and realised. Further work on extending the scope of high-availability
in terms of name resolution from anycast to whatevercast is envisaged. It is argued that
DAF-based Load Balancing is best suited to RINA. An initial implementation and PoC
evaluation have been conducted. Further tests are planned.

In summary, we will advance further towards the implementations and
experimentations of security components, especially on the subjects identified above,
conduct the foreseen in-house tests, and provide the modular security components to
WP6.
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A. Traces of Authentication Verification Experiments

A.1. AuthNPassword Policy Traces

ARP request and response

13:22:17.631753 00:16:3e:44:f0:00 (oui Unknown) > Broadcast, ethertype
Unknown (0x4305), length 64:

Ox0000: 0001 difo 060f 0001 0016 3ed44 fOOO 7465 .......... >D..te
OX0010: 7374 332e 4952 4154 492f 312f 2fff ffff st3.IRATI/1//...
0x0020: ffff ff74 6573 7432 2e49 5241 5449 2f31 ...test2.IRATI/1
0x0030: 2f2f //

13:22:17.643269 00:16:3e:44:f0:93 (oui Unknown) > 00:16:3e:44:f0:00 (oui
Unknown), ethertype Unknown (0x4305), length 64:

Ox0000: 0001 dife 060f 0002 0016 3e44 fO93 7465 .......... >D..te
0x0010: 7374 322e 4952 4154 492f 312f 2f00 163e st2.IRATI/1//..>
0x0020: 44f0 0074 6573 7433 2e49 5241 5449 2f31 D..test3.IRATI/1
0x0030: 2f2f //

M_CONNECT message

13:22:17.646113 00:16:3e€:44:f0:00 (oui Unknown) > 00:16:3e:44:f0:93 (ouil
Unknown), ethertype Unknown (0xd1f®), length 164:

OX0000: 99c6 ec95 3201 OGOO 1200 0100 OO OO ....2...........
0x0010: 4000 9100 0000 00O 0873 1000 1801 2a60 @........ S.... 7.
0x0020: 3200 3800 4800 5000 9201 210a 1c50 534f 2.8.H.P...!..PSO

0x0030: 435f 6175 7468 656e 7469 6361 7469 6f6e C_authentication
0x0040: 2d70 6173 7377 6f72 6412 0131 9a0l1 00a2 -password..l....
Ox0050: 010a 4d61 6e61 6765 6d65 6e74 aadl 0131 ..Management...1
Ox0060: b201 0b74 6573 7432 2e49 5241 5449 ba0l ...test2.IRATI..
Ox0070: 00c2 010a 4d61 6e61 6765 6d65 6e74 ca®l ....Management..
0x0080: 0131 d201 Ob74 6573 7433 2e49 5241 5449 .1...test3.IRATI
0x0090: da@l 00e® 0101

Challenge request and response messages

13:22:17.765556 00:16:3€:44:T0:93 (oui Unknown) > 00:16:3e:44:f0:00 (oui
Unknown), ethertype Unknown (O0xdi1f0), length 143:

0X0000: 8dcf 4327 3201 0000 1160 0160 0000 GO ..C'2...........
0x0010: 4000 7cO00 O0O0GO OCOO 0800 100c 1800 2all @.|........... *,
0Xx0020: 6368 616C 6C65 6€67 6520 7265 7175 6573 challenge.reques
0x0030: 7432 1163 6861 6Cc6C 656e 6765 2072 6571 t2.challenge.req
0Xx0040: 7565 7374 3800 4212 2al0 6661 3337 4a6e uest8.B.*.fa37Jn
OX0050: 6343 4872 7944 7362 7a6l1 4800 5000 9201 cCHryDsbzaH.P...
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OX0060:
0x0070:
OX0080:

020a 009%a 0100 a201 GGaa 0100 b201 00ba
0100 c201 00ca 0100 d201 00da 0100 e001

00

13:22:17.766324 00:16:3e:44:f0:00 (oui Unknown) > 00:16:3e:44:f0:93 (oui

Unknown), ethertype Unknown (0xd1f®), length 139:

OX0000:
0x0010:
0Ox0020:
0x0030:
Ox0040:
0Xx0050:
OxX0060:
0Xx0070:

0261
4000
6368
0f63
3800
4d6a
0100
00ca

afb2
7800
616¢C
6861
4212
1204
az201
0100

3201
0000
6Cc65
6c6C
2a10
4a0a
00aa
d201

0000
0000
6e67
656e
0do7
4800
0100
00da

M_CONNECT_R message

1200
0800
6520
6765
0302
5000
b201
0100

0100
100c
7265
2072
2040
9201
00ba
e001

0000
1800
706¢C
6570
0272
020a
0100
00

0000
2a0f
7932
6c79
7a41
009a
c201

13:22:17.770951 00:16:3e:44:f0:93 (oui Unknown) >

Unknown), ethertype Unknown (0xd1f®), length 133:

0Xx0000:
Ox0010:
0x0020:
Ox0030:
0x0040:
OX0050:
0Xx0060:
OX0070:

13:22:17.772301 00:16:3e:
Unknown), ethertype Unknown (0xd1f®), length 154:

0Xx0000:
Ox0010:
0x0020:
Ox0030:
0x0040:
OX0050:
0Xx0060:
OX0070:
0x0080:

a792
4000
3200
az201
31b2
0100
0101
49da

ce3f
4000
656e
6d61
206d
6c6C
3130
00a2
caol

b079
7200
3800
Qa4d
0106b
c201
31d2
0100

2c13
8700
726
7469
616e
6d65
3018
0100
00d2

3201
0000
4800
616e
7465
Qa4d
0106b
e0o1

3201
0000
6c6C
6f6e
6167
6e74
0048
aaol
0100

0000
00060
5000
6167
7374
616e
7465
01

1100
0873
9201
656d
332e
6167
7374

0100
1001
020a
656e
4952
656d
322e

0000
1801
009a
74aa
4154
656e
4952

0000
2a00
0100
0101
49ba
74ca
4154

44:f0:00 (oui Unknown) >

0000
0000
6d65
321e
656d
3800
0050
00b2
dao1l

1200
0800
6e74
2f64
656e
420b
0092
0100
00e0

0100
100e
2069
6166
742fF
3209
0102
ba01
0100

0000
1801
6e66
2f64
656e
0812
0ano0
00c2

0000
2al6
672
6166
726
1203
9a01
0100

@ X e e *,
challenge.reply2
.challenge.reply

.. .Management. ..
1...test3.IRATI.
..... Management.
..1...test2.IRAT

enrollment.infor
mation2./daf/daf
.management/enro
1llment8.B.2.....

A.1.1. AuthNAssymetrickey (RSA) Policy Traces

ARP request and response

19:17:39.606183 00:16:3e:44:f0:96 (oui Unknown) > Broadcast, ethertype
Unknown (0x4305), length 64:
0001 d1fo 060f 0001 0016 3ed44 fO96 7465
7374 312e 4952 4154 492f 312f 2fff ffff

OXx0000:
0X0010:

.......... >D..te
St1.IRATI/1//...
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OX0020:
0x0030:

ffff ff74 6573 7432 2e49 5241 5449 2f31

2f2f

...test2.IRATI/1
//

19:17:39.617567 00:16:3e:44:f1:93 (oui Unknown) > 00:16:3e:44:f0:96 (oui
Unknown), ethertype Unknown (0x4305), length 64:
0001 dife 060f 0002 0016 3e44 f193 7465
7374 322e 4952 4154 492f 312f 2f00 163e
44f0 9674 6573 7431 2e49 5241 5449 2f31

0Xx0000:
Ox0010:
0x0020:
Ox0030:

2f2f

M_CONNECT message

19:17:39.687501 00:16:3e:44:f0:96 (oui Unknown) >

Unknown), ethertype Unknown (0xd1f®), length 451:

OX0000:
0x0010:
0x0020:
0x0030:
Ox0040:
0Xx0050:
Ox0060:
0Xx0070:
Ox0080:
0Xx0090:
Ox00a0:
0Xx00b0o:
Ox00c0:
0Xx00do:
Ox00e0:
0x00f0:
0x0100:
0x0110:
0x0120:
0x0130:
0x0140:
0x0150:
0x0160:
0x0170:
Ox0180:
0x0190:
Ox01la0:
0x01b0O:

0d52
4000
3200
443
6e2d
4812
0764
2d89
480e
fode
7e3b
94c9
1455
db57
cf15
4c70
22f2
e42c
985a
9baa
038d
28e9
4142
Oa4d
010b
c201
31d2
0100

3d19
boo1
3800
5f61
7373
0641
6566
edee
e4d6
6231
c6ha
779
0890
9b5f
el35
a837
Qaof
52a3
0f42
f26a
5409
40d8
d5ca
616e
7465
Oa4d
010b
epo1l

3201
0000
4800
7574
6832
4553
6175
bb77
477b
8acl
£3c9
19fe
0f39
b6b9
c687
632e
d293
691
doob
2dc1
c828
9954
d5e4
6167
7374
616e
7465
01

0000
0000
5000
6865
1201
3132
6c74
9e7d
24e9
dez23
elad
6732
00fa
92b5
da2c
8c18
2446
d723
5622
7cc7
cdi4
7584
4b77
656d
322e
6167
7374

1000
0873
9201
6e74
311a
381a
2a80
8ae3
14fb
563b
482
a815
6fa0
2335
d708
91ch
9429
675f
8e25
€898
7c73
71bf
29bb
656e
4952
656d
312e

0100
1000
bfo2
6963
9f02
0453
02ae
0174
ad55
6e52
62e3
4191
ae2f
482a
36a6
5ddb
2361
99e0
8c58
2381
146
0c8d
ea9a
74aa
4154
656e
4952

0000
1801
0al8
6174
0ao3
4841
4dal
0268
a507
a993
72cl
971d
5103
5f14
3fad
8e2c
bdéc
e77b
f19e
922b
4e4c
5887
0100
0101
49ba
74ca
4154

0000
2a00
5053
696f
4544
3122
2cda
83ae
c2b9
2de7
6606
cO6¢C
arcl
49f6
cbéf
3267
9141
ddeo
150e
113
1fbb
1271
a201
31b2
0100
0101
49da

.......... >D..te
st2.IRATI/1//..>
D..testl.IRATI/1

00:16:3e:44:f1:93 (oui

R=.2...........
@ ....... S *

2.8.H.P....... PS
OC_authenticatio
n-ssh2..1..... ED

H..AES128..SHA1"
.default*...M.,.
- ...w. 3. the.
H...G{$....U....
Nbl1...#V;nR..-.

Lp.7C..... 1..,29
"o $F.)#a.l.A
.,R.0..#g_...{..
.Z.B..V".%.X....
A T I - S

.T..(..|s.FNL..
(.@..Tu.q...X..q
AB....Kw).......
.Management...1.
..test2.IRATI...
.. .Management. ..
1...testl.IRATI.

EDH exchange and encrypted client challenge message

19:17:39.797199 00:16:3e:44:f1:93 (oui Unknown) > 00:16:3e:44:f0:96 (oui

Unknown), ethertype Unknown (O0xdi1f0), length 441:
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0Xx0000:
Ox0010:
0x0020:
Ox0030:
0x0040:
Ox0050:
0Xx0060:
Ox0070:
0x0080:
Ox0090:
0x00a0:
OX00b0O:
0x00co:
0x00d0o:
0x00e0:
OXx00f0:
0x0100:
0x0110:
0x0120:
Ox0130:
0x0140:
Ox0150:
0x0160:
Ox0170:
0x0180:
0x0190:
0x01la0:
19:17:39.833505 00:16:3e:
Unknown), ethertype Unknown (0xd1f®), length 386:
OX0000:
0x0010:
Ox0020:
0x0030:
Ox0040:
0Xx0050:
Ox0060:
0x0070:
Ox0080:
0x0090:
Ox00a0:
0Xx00b0o:
Ox00co:
0x00do:
Ox00e0:
0x00f0:
Ox0100:

4666
4000
4570
2d48
6532
6669
616e
4812
002a
e740
2835
6d4b
fc7c
9c49
9cff
71de
0af3
41af
5131
f86a
00b4
3997
c670
3ef8
6259
a201
0100

30b2
4297
b812
7b65
8194
Cc766
94c1l
406¢C
008
bo21
7356
3d07
4b3a
a8ce
fac4
ade6
2194

18a0
a601l
6865
656¢C
2145
652d
6765
0641
8002
10ab
eaf8
263cC
f2eb
eeb6
0bd9
20f6
433d
d44de
9f19
7498
592f
6950
e04e
9d78
4a5e
O0aa
d201

24db
76Cc6
0309
c478
Oele
4ae2
cda8
03cc
231d
eecé6
2d11
3dfd
2852
cfbc
dsb2
162d
253e

3201
0000
6d65
6céed
7068
4865
3800
4553
béda
8d07
167
38a5
5721
e358
c9be
c660
6d81
6814
2aae
5155
4bb2
1736
da72
6022
4800
0100
00da

161b
e9%4e
7d3b
20ee
5714
fce6
29dc
ds61l
0849
9b39
fdod
f36f
f114
9482
05e7
98bf
8858

0000 1100
0000 0800
7261 6c20
616e 2065
656d 6572
6c6Cc 6d61
429b 0232
3132 381la
1287 fcbc
1832 f2ac
294b fdoc
1243 88e5
bo07 7e7d
2317 3284
783c 7ceb
ag906 e4c7
bed6 bafa
76b6 0681
bae5 ab7a
1cc8 9e29
0a50 cacf
ccda ccdl
7d3f 0685
dclc 1737
5000 9201
b201 GO0ba
0100 e001

0100
100c
4469
7863
616¢C
6e20
9802
0453
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IPCP test1.IRATI log

3242(1433265459)#1ibrina.cdap-manager (DBG): Waiting timeout 180000 to
receive a connection response

3242(1433265459)#ipcp[2].routing-ps-1link-state (DBG): flow allocation
waiting for enrollment

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through
portId 1:

12_M_WRITE

Object class: Ephemeral Diffie-Hellman exchange

Object name: Ephemeral Diffie-Hellman exchange

Object value: 0xf4a034d0

Scope: O

3242(1433265459)#1ibrina.security-manager (DBG): Generated encryption key
of length 16 bytes: 3ef06968c6f8698d6ed037ff4f197d62

3242(1433265459)#ipcp (DBG): Requesting the kernel to enable encryption on
port-id: 1

3242(1433265459)#1ibrina.nl-manager (DBG): NL msg RX. Fam: 25; Opcode:

42 _ENABLE_ENCRYPT_RESP; Sport: 0; Dport: 3242; Seqnum: 1433265397;
Response; SIPCP: 2; DIPCP: O

3242(1433265459)#1ibrina.nl-manager (DBG): NL msg TX. Fam: 25; Opcode:

41 ENABLE_ENCRYPT_REQ; Sport: 3242, Dport: 0; Segnum: 1433265397,
Request; SIPCP: 2, DIPCP: 2

3242(1433265459)#1ibrina.core (DBG): Added event of type
41_ENABLE_ENCRYPTION_RESPONSE and sequence number 1433265397 to events
gueue

3242(1433265459)#1ibrina.core (DBG): Waiting for message 3242

3242(1433265459)#rinad.event-loop (DBG): Got event of type
41_ENABLE_ENCRYPTION_RESPONSE and sequence number 1433265397

3242(1433265459)#1ibrina.security-manager (DBG): Encryption and decryption
enabled for port-id: 1

3242(1433265459)#1ibrina.syscalls (DBG): Invoking SYS_writeManagementSDU
(361)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Sent CDAP message of size 345
through port-id 1:

12_M_WRITE

Object class: Client challenge
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Object name: Client challenge
Object value: 0x93427b0
Scope: 0

3242(1433265459)#1ibrina.syscalls (DBG): Invoking SYS_readManagementSDU
(360)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through
portId 1:

12_M_WRITE

Object class: Client challenge reply and server challenge

Object name: Client challenge reply and server challenge

Object value: 0xf4a034d0o

Scope: 0

3242(1433265459)#1ibrina.security-manager (INFO): Remote peer successfully
authenticated

3242(1433265459)#1ibrina.syscalls (DBG): Invoking SYS_writeManagementSDU
(361)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Sent CDAP message of size 115
through port-id 1:

12_M_WRITE

Object class: Server challenge reply

Object name: Server challenge reply

Object value: 0xf4a02e08

Scope: 0

3242(1433265459)#1ibrina.syscalls (DBG): Invoking SYS_readManagementSDU
(360)

3242(1433265459)#1ibrina.cdap-manager (DBG): Connection response received

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through
portId 1:

1 M_CONNECT_R

Abstract syntax: 115

Authentication policy: Policy name: PSOC_authentication-ssh2

Supported versions: 1

Source AP name: test2.IRATI

Source AP instance: 1

Source AE name: Management

Destination AP name: testl.IRATI

Destination AP instance: 1

Destination AE name: Management

Invoke id: 1

Result: 0

Version: 1
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B. Updated LFA Policy

B.1. Narrative description of the Loop Free Alternates policy

B.1.1. The Flow State Database

The Flow State Database is the subset of the RIB that contains all the Flow State Objects
(FSOs) known by the IPC Process. It is used as an input to calculate the Routing Table.
The FSDB consists of the operations on FSOs received through CDAP messages.

B.1.1.1. RIB Objects:

Flow State Object (FSO)

The object exchanged between IPC Processes to disseminate the state of one N-1 flow
supporting the IPC Processes in the DIF. This is the RIB target object when the PDU
Forwarding Table Generator wants to send information about a single N-1 flow.

../fsdb/<address>/<neighbour_address>/<QoS> : flowstateobject

address /* The address of the IPC Process */
neighbour_address /* The address of the neighbour IPC Process */
QoS-cube /* The QoS of this N-1 flow */

B.1.2. Routing Table

Based on the FSDB, a graph of the connectivity in the DIF is constructed. From this
graph, a routing table can be calculated for every QoS cube in the DIF. However, in
this specification, only the shortest route is calculated using Dijkstra, using hop count
as the metric for distance. Apart from this, for every node, the Loop Free Alternates
are also calculated. Node Protecting Loop Free Alternates are preferred over Link
Protecting Loop Free Alternates. An example connectivity graph is shown in Figure B.1,
“An example connectivity graph”, and its corresponding routing table as calculated by
A is shown in Table B.1, “Routing table of IPC process with address A”. Note that from
A to B there are 2 N-1 flows with different QoS.
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Figure B.1. An example connectivity graph

Table B.1. Routing table of IPC process with address A

Destination Address Next Hop LFA
B B B
C E
D B E
E E B
F E B

B.1.3. PDU Forwarding Table

Based on the routing table, the PDU forwarding table is calculated in each node. In
essence, this is the mapping of the next hop on a port-id. In the example, suppose there
are 2 flows to B from A, with port-id 1 and 2, and there is one flow from A to E with
port-id 3. Then a generated forwarding table could look as follows:

Table B.2. Forwarding table of IPC process with address A

Destination Address Port-id LFA
B 2 1
C 2 3
D 1 3
E 3 1
F 3 2

This table is then consulted by the Relaying and Multiplexing Task (RMT) to decide on
what port-id the PDU should be written.
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B.1.4. Subscription and reaction to events

Upon initialization of the PFT, the PFT subscribes to certain events of the RIB
daemon. This makes the PDU Forwarding Table Generator completely event based.
The cooperation between these tasks in the IPC process is depicted in Figure B.2,
“Cooperation of tasks in the IPC process”. These events are:

« N-1flow up
« N-1flow down

» Flow State Database has changed

Apart from subscribing to these events, the PFT marks all objects in the FSDB to be
replicated upon changes.

B.1.4.1. N-1 flow up

When invoked

This is an event that indicates an N-1 flow is up again.
Action upon receipt

If there is a Delete_FSO timer corresponding with this flow, it is stopped. Else, a Flow
State Object is created, containing the address of the IPC process and the address of
the neighbour IPC process where the flow is allocated to. The QoS is set to the QoS of
the flow. The FSO is added to the FSDB unless there is already an FSO present with the
same addresses and the same QoS.

B.1.4.2. N-1 flow down

When invoked

This is an event that indicates an N-1 flow to a neighbour is down.
Action upon receipt

The Delete_FSO timer is started on this flow. Note that this time should be chosen
reasonably small.

B.1.4.3. Delete FSO expires

When invoked
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This is invoked when the Delete_ FSO timer fires.
Action upon receipt

The Flow State Object corresponding with this flow is deleted, unless there is another
neighbour flow with the same addresses and QoS present in the IPC process. If the port-
id of the flow is present in the forwarding table, the LFA is used until a new forwarding
table is generated.

B.1.4.4. Flow State DB has changed

When invoked

This is an event that indicates there was a change to the Flow State Database.
Action upon receipt

Upon this event, the routing table is re-calculated. If there is already a calculation
on-going it is stopped and restarted. After the routing table has been calculated, the
forwarding table is generated from it.

/ IPC Process\

Ve R PDU Forwarding Table Generator
| cvers y prm——
N-1 flow down Compute routing | |r Compute
N-1flow up table | forwarding table |
Changes to the FSDB _/| |‘ ) - PDU Forwarding
EE N — Table
RIB Daemon i Caleulate Loop
. ! Free Alternate
Invoke write | Lookup PDU Forwarding
r’ ______________ ™ operation on Fe=ssmssssssmssmssomes = table to select output N-1
| Pmpag:te | FsSO flow for each PDU
Inowledge I
| onneighor |
——————————————— o o 3

Incoming/outgoing CDAP messages from/to neighbor IPC Processes

Relaying and
Multiplexing Task

N-1Flows to nearest neighbors

Figure B.2. Cooperation of tasks in the IPC process

128



Deliverable-4.2 (1st version)

C. Updated FLD Policy

Flow Liveness Detection (FLD) detects if a flow between IPC processes is alive or not
by sending periodic messages. When FLD is present, the Flow Manager keeps two
additional states for the flow - i.e. UP and DOWN. FLD maintains a timer that is reset
upon reception of such a periodic message. The flow is declared DOWN if the timer
expires, otherwise it is declared UP.

C.1. Common elements

The procedures described in the remaining sections, rely on the following common
elements:

FLD elements:

Keepalive:
Timeout : Timer

FLD data:
port-id : Port-id
keepalive : Keepalive
interval : Int (milliseconds)

RIB objects:

../fld/<neighbour-address>-<address>/<connection-id>
Timeout : Double

../fld/<address>-<neighbour-address>/<connection-id>
Timeout : Double

A RIB object containing a timeout value - i.e. ../fld/<neighbour-address>-<address>/
<connection-id> - is periodically updated with a new timeout value on each
corresponding CDAP M_ WRITE. FLD subscribes to changes to this object and is thus
notified when it has been changed. The Keepalive timer is then restarted with the new
timeout value. If the Keepalive timer expires the FLD notifies the FMGR that the flow
is DOWN.
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C.2. Initialization

The Timeout value for the Keepalive timer has to be chosen depending on the DIF. Most
likely it will be a function of the Round Trip Time (RTT). For initialization of the FLD,
the following steps are followed:

 Firstly, FLD will subscribe to changes to the RIB object ../fld/<address>-
<neighbour-address>/<connection-id> through the RIB Daemon, where
<connection-id> is the connection-id that identifies the flow with the peering IPC
process.

 Secondly, FLD will ask the RIB Daemon to periodically, every Interval milliseconds,
replicate ../fld/<neighbour-address>-<address>/<connection-id> to the peer’s
RIB.

« Finally, the Keepalive timer is started.

C.3. FLD Behaviour

C.3.1. Keepalive_ Timer.expire
When invoked
Whenever the Keepalive timer expires.

Action upon invocation

The FMGR is notified that the flow should be declared DOWN.

C.3.2. Timeout_Changed.receive

When invoked
Upon changes to ../fld/<address>-<neighbour-address>/<connection-id>
Action upon receipt

The Keepalive timer is re-armed with the communicated timeout value.
Communicating a 0 timeout is allowed and implies declaring the flow as DOWN
immediately. This could be used for interrupting incoming traffic without deallocating
the flow.
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