
Deliverable-4.2 (1st version)
Initial Specification and Proof of Concept Implementation

of Innovative Security and Reliability Enablers
Deliverable Editor: Hamid Asgari, Thales UK Research & Technology

Publication date: 08-June-2015
Deliverable Nature: Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: PRogrammability In RINA for European Supremacy of

virTualIsed NEtworks
Website: www.ict-pristine.eu
Keywords: Security, DIF, DAF, IPC Process, access control,

authentication, SDU protection, resiliency
Synopsis: D4.2 describes the initial specifications and proof of

concept implementations of the security functions and
enablers developed within WP4 to enable networks that
are more secure and reliable than those we have today.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Ref. Ares(2015)3645348 - 04/09/2015

Deliverable-4.2 (1st version)

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Hamid Asgari, Thales UK Research & Technology
TRT: Sarah Haines, Hamid Asgari
FIT-BUT: Ondrej Rysavy, Ondrej Lichtner
i2CAT: Eduard Grasa
iMINDS: Sander Vrijders, Dimitri Staessens
IMT: Fatma Hrizi, Anis Laouiti, Hakima Chaouchi
TSSG: Ehsan Elahi, Micheal Crotty, Jason Barron
NXW: Vincenzo Maffione

Disclaimer

This document contains material, which is the copyright of certain PRISTINE

consortium parties, and may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the PRISTINE

consortium warrant that the information contained in this document is capable of

use, or that use of the information is free from risk, and accept no liability for loss or

damage suffered by any person using this information.

Deliverable-4.2 (1st version)

3

Executive Summary
The security objective is set to reduce the security risks as much as possible by

defining security functions and enablers. This document, D4.2, builds upon the

security functions, mechanisms, and techniques that are described in D4.1 [D4.1]

and provides their further developments within WP4 to meet the requirements

enabling more secure and reliable networks than those that we have today. These

functions, mechanisms and techniques include the Authentication, Access Controls

(Capability-Based Access Control and Multi-Level Security) Cryptographic function,

Key Management and Resiliency aspects of security. The deliverable overall provides

the relevant specifications and analysis, the design aspects, Proof of Concept

implementations (PoC), and related PoC tests.

Given the guidelines stated in the introduction section of this deliverable, therefore, in

the following sections of the deliverable we provide, to a certain extent, the description

of the following aspects in relation to all of the security functions specified above:

• The scenarios for application of specified security functions/enablers

• The specification of relevant functions and their designs into modular components

• The software architecture block and sequence diagrams

• The relevant policies to realise the functionality of each security component

• The interfaces and interactions with other components

• The code and configuration of components

• The implementation and realisation of components for PoC experimentation

purposes

• Identification of tests to be conducted for PoC

• Component-level PoC tests conducted in-house at each partner’s premises and the

results obtained.

Future directions are also specified to further the work in each of the activities within

the WP4 tasks and to provide the implemented security functions and enablers for

integration and tests to WP6. Given the above aspects, we tried to build the case for

“ease of use” and “ease of configuration” of security components for their installation

and integration in WP6 scenarios.

Deliverable-4.2 (1st version)

4

Table of Contents
Acronyms ... 8

1. Introduction ... 12

1.1. Specification and System Design .. 12

1.2. Implementation Tasks .. 12

1.3. Proof-of-Concept Experimentations ... 14

1.3.1. Experimentation Categories .. 14

1.3.2. Test Groups and Structure of Test Campaigns 15

2. Authentication of IPC Processes ... 17

2.1. Specification and Design of the Authentication Function 18

2.1.1. Specification of Three Authentication Policies 19

2.1.2. Interfaces and Interactions with Other Components 24

2.2. Implementation of the Authentication Function for PoC 25

2.2.1. Authentication-related SDK ... 25

2.2.2. Configuration of the Security Manager ... 27

2.2.3. AuthNone Policy .. 29

2.2.4. AuthNPassword Policy .. 29

2.2.5. AuthNAssymetricKey (RSA) Policy ... 30

2.3. Component-Level PoC Tests for Authentication ... 32

2.3.1. AuthNPassword Policy ... 33

2.3.2. AuthNAssymetricKey (RSA) Policy ... 33

2.4. Next Steps for Authentication Activity .. 34

3. Capability-based Access Control .. 36

3.1. Access Control Scenarios .. 37

3.2. Specification and Design of CBAC’s at DAF-Level 37

3.2.1. Access Control Mangers' Functions ... 38

3.2.2. Authorisation Profiles .. 39

3.2.3. Access Control Policies ... 41

3.2.4. Interfaces and Interactions with Other Components 43

3.3. CBAC Implementation for PoC .. 46

3.4. Component-level PoC Tests for Access Control .. 46

3.5. Next Steps for CBAC Activity ... 47

4. Multi-Level Security ... 48

4.1. MLS Scenarios .. 49

4.1.1. MLS Communications Security .. 49

4.1.2. Boundary Protection Component .. 49

4.2. Achieving MLS Communications Security in RINA 53

Deliverable-4.2 (1st version)

5

4.2.1. Application-level ... 54

4.2.2. Bump in the Stack ... 54

4.2.3. Bump in the Wire .. 56

4.2.4. Specification and Design of the Bump in the Wire Solution 58

4.2.5. Interaction of Components with SDU Protection Policy 59

4.3. Achieving BPC in RINA ... 62

4.4. MLS Implementation for PoC .. 63

4.4.1. Communications Security .. 63

4.4.2. Boundary Protection Component .. 63

4.5. Component-Level PoC Tests for MLS .. 64

4.5.1. Test Environment ... 64

4.5.2. Tests to be Performed .. 64

4.6. Next Steps for MLS Activities .. 67

5. Cryptographic Functions and Enablers ... 68

5.1. Cryptographic Concepts used in SDU Protection Policy 69

5.1.1. Replay Detection ... 70

5.1.2. Ciphering Modes .. 70

5.1.3. HMAC ... 70

5.1.4. Diffie-Hellman Key Exchange .. 71

5.1.5. Keying Material ... 71

5.1.6. Counter Mode ... 73

5.1.7. Selecting algorithms for SDU Protection Policy 73

5.2. Specification and Design of the SDU Protection Component 75

5.2.1. Software Architecture of the SDU Protection Component 75

5.2.2. SDU Protection Interfaces ... 78

5.2.3. Report of SDU Protection Operations: The Results and Error

Codes ... 79

5.3. SDU Protection Policies ... 81

5.3.1. Basic SDU Protection Policy: Simple CRC and TTL 81

5.3.2. Cryptographic SDU Protection Policy: AES Counter Mode 82

5.3.3. Interdependencies with other components 86

5.3.4. Changes to the current IRATI stack for Integrating Other Policies ... 87

5.4. Implementation of SDU Protection for PoC .. 87

5.4.1. Configuration of SDU Protection ... 87

5.4.2. Extending the IPCP Structure ... 90

5.4.3. Modifications of RMT Structure ... 90

5.4.4. Modifications to SerDes Module .. 91

5.5. Next Steps for Cryptographic Activity: PoC Tests 93

Deliverable-4.2 (1st version)

6

6. Key Management .. 95

7. Resiliency and High Availability .. 96

7.1. Resilient Routing .. 96

7.1.1. IRATI Routing and Forwarding Tables .. 96

7.1.2. PRISTINE SDK: Limitations and Proposed Solutions for Routing

Policy .. 99

7.1.3. Loop Free Alternates Policy, the Updates .. 99

7.1.4. Routing Software Specification and Implementation 100

7.1.5. Initial PoC Evaluation of the LFA Policy .. 104

7.2. Load Balancing ... 107

7.2.1. DAF-Based Load Balancing .. 107

7.2.2. Implementation of DAF-Based Load Balancing 107

7.3. Next Steps for High Availability and Load Balancing Activities 111

7.3.1. High availability ... 111

7.3.2. Load Balancing .. 111

8. Summary and Conclusions ... 114

References .. 116

A. Traces of Authentication Verification Experiments ... 119

B. Updated LFA Policy .. 125

C. Updated FLD Policy ... 129

Deliverable-4.2 (1st version)

7

List of Figures

1. Multi-provider DIF configuration ... 17

2. Authentication between APs when establishing an application connection 18

3. Workflow of AuthNone policy .. 19

4. Workflow of AuthNPassword policy .. 20

5. Workflow of AuthNAssymetricKey (RSA) policy ... 22

6. Interaction between different application components ... 24

7. Authentication policies verification scenario ... 33

8. Attribute Based Access Control System Architecture .. 37

9. AC System Architecture Block Diagram .. 38

10. DAP interactions with the Management DAF level ... 43

11. Sequence Diagram of the AC components’ interaction .. 44

12. Inputs and outputs of the AC system ... 45

13. Implementation Scenario of CBAC RINA for component-level PoC tests 46

14. Example MLS scenario ... 54

15. “Bump in the stack” at the DAF ... 55

16. “Bump in the stack” at the DIF .. 55

17. “Bump in the wire” solution ... 56

18. Block diagram of how MLS encryption policy fits in RINA 58

19. Sequence diagram showing the interactions when the SDU is sent over an

untrusted underlying DIF ... 59

20. Sequence diagram showing the interactions when the SDU is sent over a trusted

underlying DIF .. 60

21. Sequence diagram showing the interactions when the SDU is received from an

underlying DIF .. 61

22. SDU Protection Block Diagram .. 76

23. SDU Protection Workflow Diagram ... 77

24. Organisation of the routing component in the IRATI prototype. 97

25. ... 101

26. Test topology for LFA algorithm .. 106

27. Load Balancing Evaluation Experiment ... 110

28. DAF-Based Load Balancing Scenario ... 112

B.1. An example connectivity graph ... 126

B.2. Cooperation of tasks in the IPC process ... 128

Deliverable-4.2 (1st version)

8

Acronyms
ABAC

Attribute Based Access Control

AC

Access Control

ACM

Access Control Manager

AP

Application Process

BPC

Boundary Protection Component

CA

Certificate Authority

CACEP

Common Application Connection Establishment Protocol

CBAC

Capability Based Access Control

CDAP

Common Distributed Application Protocol

CRC

Cyclic Redundancy Check

CTR

Counter

DAF

Distributed Application Facility

DAP

Distributed Application Process

DH

Diffie-Hellman

DIF

Distributed IPC Facility

DMS

Distributed Management System

Deliverable-4.2 (1st version)

9

DTCP

Data Transfer Control Protocol

DTLS

Datagram Transport Layer Security

DTP

Data Transfer Protocol

EFCP

Error Flow Control Protocol

FA

Flow Allocator

FLD

Flow Liveness Detection

FSDB

Flow State Database

FSO

Flow State Object

HMAC

Hash-based Message Authentication Code

IRATI

"Investigating RINA as an Alternative to TCP/IP" project

KFA

Kernel Flow Allocator

IPC

Inter Process Communication

IPCM

Inter Process Communication Manager

IPCP

Inter Process Communication Process

LB

Load Balancing

LBR

Load Balancer

LFA

Loop Free Alternates

Deliverable-4.2 (1st version)

10

MA

Management Agent

MAC

Message Authentication Code

MD5

Message Digest algorithm

MLS

Multi Level Security

OAEP

Optimal Asymmetric Encryption Padding

OSI

Open Systems Interconnection

PCI

Protocol-Control-Information

PDP

Policy Decision Point

PDU

Protocol Data Unit

PEP

Policy Enforcement Point

PFT

PDU Forwarding Table

PKI

Public Key Infrastructure

PoC

Proof of Concept

RBAC

Role-Based Access Control

RIB

Resource Information Base

RINA

Recursive InterNetwork Architecture

RINASim

RINA Simulator

Deliverable-4.2 (1st version)

11

RMT

Relaying and Multiplexing Task

RSA

Encryption algorithm

RTT

Round Trip Time

SDU

Service Data Unit

SerDes

Serialisation/Deserialisation

SHA

Secure Hash Algorithm

SP

Shortest Path

TLS

Transport Later Security

TTL

Time To Live

VM

Virtual Machine

WP

Work Package

XML

eXtensible Markup Language

Deliverable-4.2 (1st version)

12

1. Introduction

This deliverable will provide initial specifications, design, and implementations of

innovative security functions and reliability enablers. It covers the functions and

enablers described in D4.1 [D4.1] and the derived security mechanisms and functions

developed within WP4 to enable more secure and reliable networks than those that

we have today. These mechanisms and functions include the authentication, access

control, encryption, and self-healing aspects to be utilised in RINA-based networks.

The deliverable describes in each section the specification, design, the analysis, and

Prof of Concept (PoC) implementations of these mechanisms and functions; addressing

the security requirements of the scenarios analysed in D2.1 [D2.1]. At the end of each

section, we draw the next steps for the specific function.

1.1. Specification and System Design

One of the major objectives of the PRISTINE project is to develop and evaluate the

concepts, the architecture, functions and mechanisms for deploying and providing

end-to-end security. WP2 deliverables described the overall PRISTINE reference

architecture. Subsequently, deliverable D4.1 provided the overall PRISTINE functional

security architecture and specifies each of the main security functions and the

interactions among them. This deliverable presents the specification and system

design by mapping and decomposing the functional security architecture and entities

proposed in D4.1 into relevant components and system modules.

In this deliverable, we provide the following:

• Firstly, the software architecture in terms of block diagrams where possible for each

component in terms of functions and internal/external interactions.

• Secondly, further decomposition of each of the components into modules of an

implementation structure.

• Thirdly, the policies, code, files, and modules are organised in the development

environment to build the component/modules considering modularity and their

repetitive use and installation.

1.2. Implementation Tasks

Protecting the network and its resources (i.e., user data, management data and

computing resources) from failures and attacks to disrupt the communication service

Deliverable-4.2 (1st version)

13

are the main security objectives. Deliverable 4.1 provided the RINA security solution,

the functions and the relevant enablers to achieve the above objectives. These functions

and enablers included: Authentication, Access Control, Secure Channel and SDU

Protection, Key Management functions, monitoring and countermeasures for reducing

the security risks and combating the threats. D4.1 deliverable also looked at network

resiliency and availability in RINA. In this deliverable, we provide the following in

relation to the PoC implementation:

Six different authentication approaches were proposed in D4.1. Three of these are

selected for design and implementation, namely AuthNNone (a simple policy with

no authentication); AuthNPassword (a shared secret associated with the application

name); and AuthNAsymmetricKey (a public key cryptography-based policy).

In D4.1, a DAF-based Capability Based Access Control model was explained and

selected for design and implementation in PRISTINE. Further details of applying this

approach to RINA and the implementation course are given in this deliverable.

In D4.1, multiple architectures to achieve Multi-Level Security (MLS) were presented

and thoroughly discussed. Two common components are needed for these architectures

namely “Crypto tunnelling device” and “Boundary Protection Component - BPC” were

identified. We established that MLS-enabled network with only crypto tunnelling

is possible, but limited to Multiple Single Levels. BPC allows applications on

otherwise separate networks to communicate, subject to configured constraints. In this

deliverable, we establish the implementation scenarios for two cases using the above

components.

SDU protection is to protect the integrity and confidentiality of traffic when passed on

to an underlying IPC Process. The required SDU protection algorithms/policies that

are used and applied are described, implemented and reported in this deliverable.

Two architectural options (Centralised and Distributed) were suggested in D4.1 for

assuming the role of Key Server as the security sensitive entity. We further refined these

options and will discuss these choices in the next version of this deliverable.

We introduced a risk assessment methodology in D4.1 for combating threats and

vulnerabilities in RINA. We identified a comprehensive set of threats to the RINA

assets, their impacts, the threat scenarios, the likelihood occurrence of each scenario,

security risks and the associated Security Controls to reduce the risks to an acceptable

level. We identified that a number of threats can be reduced by performing monitoring

actions. A range of techniques and a variety of applications can be used to monitor

and collect information for detecting and assessing vulnerabilities and attacks. These

Deliverable-4.2 (1st version)

14

techniques and monitoring tools, their relevance, and their applications to the

identified threats will be reported in the next deliverable.

Maintaining the network resiliency in the case of failures and attacks and ensuring

high-availability of the network for providing assumed services are set as the main

objectives for RINA. In this deliverable, implementation scenarios for improving

routing resiliency are explained. Routing software specification and implementation

are also described. We also look at how Load Balancing can be achieved in RINA.

The implemented components and related protocols are subject to experimentations

for different purposes. In addition to the engineering counterparts of the functional

entities, a set of adaptors may also be required to implement and interface to the testbed

and, furthermore, a set of tools, such as monitoring and analysis tools are required to

assist the testing activities.

1.3. Proof-of-Concept Experimentations

Proof-of-Concept experimentations are the essential aspect of PRISTINE work to the

end of fulfilling overall project objectives. In PRISTINE, experimentation activities are

carried out in realistic and possibly in simulated network environments, as appropriate

to the aspect of the PRISTINE work under test and the experimentation objectives.

Evidently, the type of the experimentation environment (testbed or simulation) affects

the nature of the releases coming out from the WP activities. For WP4 prototype

releases, PRISTINE security solution is developed to apply in generic engineering

environment according to the selected implementation technologies. This type of

release is set for experimenting in testbeds and use in WP6 use-cases.

1.3.1. Experimentation Categories

As for their objectives, experimentation activities can fall under the following a number

of recognised categories:

• Functional verification and validation experiments - the former is aiming at

assessing feasibility of implementation and proving the correct functionality and

the latter is for meeting the set requirements (defined in WP2) and validity of

specifications.

• Integration experiments - is aiming at verifying that the developed components/

sub-systems function properly when they are put together. This also allows us to

validate the developed system against functional specifications and requirements.

Deliverable-4.2 (1st version)

15

• Performance assessment experiments - aiming at assessing the behaviour of

the aspect under test in a variety of network operations and environment set-

ups and conditions. Behaviour can be assessed in terms of scalability, stability,

sensitivity and yielded benefits/incurred cost; as such, corresponding experiments

or simulation studies could be carried out.

Obviously, experimentation objectives are restricted by the capabilities of the

experimentation environment. As such, some performance assessment experiments

can only be carried out in a simulated networking environment, and not in a limited

testbed environment. And, functional verification experiments better be carried out in

a realistic environment for exhibiting the correct functionality of the system under test

from network operation perspectives.

From a WP4 perspective, given that implementation activities are experimentation

driven, experimentation focus poses the requirement that, in addition to PRISTINE

functional security aspects, appropriate tools may need to be used as required for

fulfilling experimentation objectives.

In summary, WP4 produces prototype releases of components subjecting them to

component-level functional verification/validation tests in the testbeds as well as

providing appropriate interfaces facilitating integration to WP6 use-cases for further

PoC experimentation.

1.3.2. Test Groups and Structure of Test Campaigns

We can divide the tests in three distinct groups:

• Component-Level Tests: these tests are conducted in-house at each partner’s

permises. The emphasis on these tests is set to perform functional validation and

verification and performance assessment of individual components, algorithms, and

processes. These tests are conducted in-house at WP4 for security components,

normally with no interactions with other PRISTINE system components.

• Integration Tests for use cases: These tests are performed to validate and verify

the integrated components coming from the technical WPs inter-work and function

together (including middleware, interfaces, applications, etc.). These tests will be

conducted in WP6, in a defined location, realising use-case scenarios.

• System Level Tests: The tests are conducted to prove the functionality and validating

the correct behaviour of the entire network system collectively. These tests also

determine whether the overall performance objectives of the proposed system is

realised. These tests will also be conducted in WP6.

Deliverable-4.2 (1st version)

16

The PoC experimentation activities can use a common structure/template where

possible, along the following lines:

• Objectives: Outlining the aspects under test (specified component, mechanism,

algorithm, protocol) and the particular goals and benefits of experimentation.

• Performance Metrics: Specifying the metrics inherent to the particular functional

aspect under test that quantify the experimentation objectives such as processing

time, overhead, etc. are described. These metrics can be measured, through probes

or through test tools.

• Controlled Variables: Specifying the configuration parameters of the aspect under

test. The performance metrics will be calculated as a function of these configuration

parameters.

• Uncontrolled Variables: Identifying the parameters of the external environment

where the aspect under test is to operate affecting its behaviour and/or its

performance. Such parameters are the topology, volume of traffic, etc.

• Experimentation Environment: Providing the platform and the set-up environment

upon which the experimentation is to be carried out including the modules, the

platform and required test tools, their capabilities and interactions.

• Test Campaigns: This is to specify the tests to be carried out in achieving the

specified objectives. Each of the tests aims at verifying/assessing a particular

aspect of the behaviour/performance of the functional aspect under test (quantified

by appropriate metrics) in a variety of test cases (quantified by appropriate

combinations of uncontrolled variables) as a function of its configuration

parameters (quantified by appropriate controlled variables). Tests are aggregated

in test suites according to the general category they fall in.

Deliverable-4.2 (1st version)

17

2. Authentication of IPC Processes

One of the first measures to implement for securing a distributed system is

authentication. DIFs are securable containers, therefore in order to verify the identity

of IPC Processes that want to join a DIF, proper authentication policies must be put

in place. Such policies can range from no authentication (for trusted environments in

which security is not a concern) to sophisticated policies that exploit cryptographic

techniques for more hostile environments. Even within a single DIF, different regions

of the DIF may use different authentication policies depending on the properties of the

N-1 DIFs the IPC Processes are relaying on, as shown in the example of Figure 1, “Multi-

provider DIF configuration”. The multi-provider DIF on top is floating over multiple

N-1 DIFs: the access DIF, allowing customers to connect to the Provider 1’s IPC Process

(IPCP) at the border router; or the Provider 1 Regional DIF connecting together all the

IPCPs in the Provider 1’s border routers facing customers. Flows between IPCP A and

IPCP B go over the N-1 DIF called access DIF, which is shared between the provider and

its customers. Due to this shared nature, IPCPs A and B will probably use authentication

policies that rely on strong cryptographic techniques, which also generate secure keys

to encrypt the data exchanged over the access DIF. However, IPCP B and IPCP C use the

Provider 1 Regional DIF to communicate. Since this DIF is in full control of the provider

(joining it requires getting physical access to a provider facility), authentication may

not be required at all or may be very simple (a shared password approach for example).

Figure 1. Multi-provider DIF configuration

Therefore, the authentication policies used by an IPCP may depend on the

requirements of the DIF, the characteristics of the N-1 DIF or the type of system the

IPC Process is executing on (host, interior router or border router). The goal of D4.2

with regards to authentication is to describe a few authentication policies that are

Deliverable-4.2 (1st version)

18

representative of the full solution space; provide an initial specification of such policies;

implement them at the IRATI RINA implementation leveraging PRISTINE’s SDK; and

validate its correct operation. D4.2 has focussed on the draft description of three of the

authentication policies introduced in [D4.1], namely:

• AuthNone. The null case in which authentication is not required.

• AuthNPassword. The two IPC Processes authenticate by proving they know a

previously shared password.

• AuthNAssymetricKey (RSA). The two IPC Processes use cryptographic

techniques and Public Key Infrastructure for authentication purposes. As a result

of the authentication procedure, an encryption key is generated for the application

connection and encryption is enabled.

2.1. Specification and Design of the Authentication Function

Authentication is part of the Common Application Connection Establishment Phase

(CACEP) that takes place between two IPCPs (and application processes in general) as

illustrated in Figure 2, “Authentication between APs when establishing an application

connection”. All the messages required for authentication are exchanged after the

M_CONNECT message (which initiates the application connection setup procedure)

and before the M_CONNECT_R message (which completes the application connection

setup procedure).

Figure 2. Authentication between APs when establishing an application connection

The messages exchanged during authentication belong to the authentication policy

and can use any syntax that the authors of the policy consider appropriate. One of

the potential options is to re-use the CDAP syntax, but without keeping the CDAP

semantics. That is, authentication messages can re-use the message format defined

in the CDAP specification (operation code, object name, object value, etc.), without

interpreting the values of the message fields the same way as CDAP does (since the

Deliverable-4.2 (1st version)

19

messages are just authentication exchanges and not operations on the RIB). As it

will be seen later in the PoC implementation description, this approach simplifies the

implementation since all the CDAP message parsing and generation machinery can be

re-used.

2.1.1. Specification of Three Authentication Policies

The three policies leverage the 'AuthPolicy' field present in the CDAP M_CONNECT

message. This field allows the party that initiates the application connection

establishment to request a specific version of a particular authentication policy. The

'AuthPolicy' field has three attributes:

• Name: a string that uniquely identifies the authentication policy name.

• Versions: an array of string specifying the versions of the policy supported by the

party that requests the establishment of the application connection.

• Options: an optional opaque attribute that carries extra policy-specific

information.

For the sake of brevity and clarity in the description of the specifications, we’ll refer

to "IPCP A" as the IPC Process that initiates the application connection request, and

"IPCP B" as the IPC Process that is the target of the application connection request.

Note that these specifications are not specific to a DIF and can be re-used by any type

of DAF that considers these policies appropriate for its authentication requirements.

2.1.1.1. AuthNone Policy

Figure 3, “Workflow of AuthNone policy” illustrates the workflow of this authentication

policy. IPCP A populates the 'AuthPolicy' field with the following data:

• Name: PSOC_authentication-none.

• Versions: 1 (only supported version as of now).

• Options: empty.

Figure 3. Workflow of AuthNone policy

Deliverable-4.2 (1st version)

20

Upon receiving the M_CONNECT message, IPCP B decides if the authentication policy

is appropriate. If it is, it replies right away with a successful M_CONNECT_R message.

2.1.1.2. AuthNPassword Policy

Figure 4, “Workflow of AuthNPassword policy” illustrates the workflow of this

authentication policy. It is based on a pre-shared password that both parties need to

obtain before authenticating. The same password could be shared by all DIF members,

or different passwords could be used. IPCP A populates the 'AuthPolicy' field with the

following data:

• Name: PSOC_authentication-password.

• Versions: 1 (only supported version as of now).

• Options: empty.

Figure 4. Workflow of AuthNPassword policy

Upon receiving the M_CONNECT message, IPCP B decides if the authentication policy

is appropriate. If it is, it generates a random string of a certain length (which has to

match the password length in order not to weaken the strength of the authentication,

based on XORing the password with the random string). Once the string is generated,

IPCP B creates a CDAP M_WRITE message with the information below, and sends it

to IPCP A.

• Opcode: M_WRITE.

• Object class: challenge request.

• Object value: <type> = string, <value> = <the random string generated by IPCP

B>.

Deliverable-4.2 (1st version)

21

Once IPCP A receives the message, it XORs the random string with the password,

computes the MD5 hash of the result and sends the hashed value back to IPCP B in the

following message.

• Opcode: M_WRITE.

• Object class: challenge reply.

• Object value: <type> = string, <value> = <random string XORed with password>.

Once IPCP B receives the message, it XORs the random challenge with the password,

applies the MD5 hash and compares the result with the value received from IPCP

A. If the values are the same, the authentication is successful and the IPCP invokes

the DIF/DAF access control policy (which will end up sending an M_CONNECT_R

message back to IPCP A if successful). If not, authentication fails and IPCP B sends an

M_RELEASE CDAP message back to IPCP A.

2.1.1.3. AuthNAssymetricKey (RSA) Policy

Figure 5, “Workflow of AuthNAssymetricKey (RSA) policy” illustrates the workflow

of this authentication policy. It is inspired by the SSH2 Transport [RFC4253] and

Authentication [RFC4252] protocols. The policy has two differentiated phases: in the

first phase both parties securely negotiate a shared secret using the Diffie-Hellman

(DH) key exchange method [DH]. This shared secret is then used to generate an

encryption key to encrypt all the communication between both parties. DH is used

in ephemeral mode (new shared secret generated for each application connection),

with the advantage of generating shared secrets on the fly in a secure way; at the cost

of one extra round trip time (RTT). An alternative to this approach would be to use

a pre-shared secret, thus avoiding the RTT consumed by the DH key exchange but

complicating the shared secret management and distribution (must be distributed in a

secure way, should be updated after a certain period of time, etc.)

During the second phase both parties use PKI, specifically RSA, to authenticate its peer.

The policy assumes the same RSA key pair for both IPCPs (A and B), but could also be

modified to support different RSA key pairs for each party. During the authentication

phase both IPCPs authenticate each other.

Deliverable-4.2 (1st version)

22

Figure 5. Workflow of AuthNAssymetricKey (RSA) policy

IPCP A generates a DH key pair of length 256 bytes using pre-defined values of the

parameters 'p' and 'g' required by the DH scheme ('p' and 'g' are not secret and typically

take tens of seconds to be generated, therefore they must be static for a practical

solution). Then IPCP A populates the 'AuthPolicy' field with the following data:

• Name: PSOC_authentication-ssh2.

• Versions: 1 (only supported version as of now).

• Options: <list of supported Key exchange algorithms (only DH), list of supported

encryption algorithms (AES128 and AES256), list of supported MAC algorithms

(MD5 and SHA1), generated DH public key>

Upon receiving the M_CONNECT message, IPCP B decides if the authentication policy

is appropriate. If it is, it checks the algorithms proposed by the client, and selects one

of them for each category. If there are multiple options, IPCP B selects the first one

that it supports (IPCP A must send the list of algorithms sorted by preference). After

that, IPCP B generates a DH key pair, and combines it with IPCP A’s DH public key

to generate a shared secret. Then the secret is hashed to generate the encryption key

(with the MD5 algorithm [RFC1321] if the encryption key is 16 bytes long, or with the

SHA-256 algorithm [sha2] if the encryption key is 32 bytes long). Then IPCP B enables

Deliverable-4.2 (1st version)

23

decryption, sends the following message to IPCP A and enables encryption (in this

sequence, to avoid race conditions).

• Opcode: M_WRITE.

• Object class: Ephemeral Diffie-Hellman exchange.

• Object value: <Key exchange algorithm (only DH), encryption algorithm, MAC

algorithms, generated DH public key>

When IPCP A receives the message, it uses IPCP B’s DH public key to generate the

shared secret, and after that the encryption key using the same approach as described

before. Then IPCP A enables both encryption and decryption. From now on, all

communication between A and B over the N-1 flow will be encrypted. After encryption

is setup, IPCP A generates a random byte array of the same length of the DH shared

secret (256 bytes). It then encrypts this number with the RSA public key, using Optimal

Asymmetric Encryption Padding (OAEP), and sends it to IPCP B using the following

message.

• Opcode: M_WRITE.

• Object class: Client challenge.

• Object value: <Client random challenge encrypted with RSA key>

IPCP B receives the message, decrypts the array of bytes with the RSA private key and

XORs the result with the shared secret generated via the DH exchange. It then computes

a 16 bytes hash of the result using the MD5 algorithm. IPCP B also generates a random

byte array of 256 bytes and encrypts it with the RSA public key. Both values are sent

back to the client using the following message.

• Opcode: M_WRITE.

• Object class: Client challenge reply and server challenge.

• Object value: <Client challenge combined with shared secret and hashed, Server

random challenge encrypted with RSA key>.

When IPCP A receives the message, it XORs the client challenge that it had previously

generated with the shared secret and computes the MD5 hash of the result. This value is

compared with the value received form IPCP B. If they match IPCP B has proved it has

the RSA private key and is therefore authenticated, if not IPCP A sends an M_RELEASE

messate to IPCP B. Assuming a successful authentication, now IPCP A tries to decrypt

the random challenge sent by IPCP B using the private key, XORs the result with the

Deliverable-4.2 (1st version)

24

shared secret and computes the MD5 hash of the result. The value is delivered to IPCP

B using the following message.

• Opcode: M_WRITE.

• Object class: Server challenge reply.

• Object value: <Server challenge combined with shared secret and hashed>.

Upon receiving the message IPCP B XORs the server challenge that it had previously

generated with the shared secret and computes the MD5 hash of the result. This value

is compared with the value received form IPCP A. If they match IPCP A has proved it

has the RSA private key and is therefore authenticated. If authentication is successful

IPCP B invokes the DIF/DAF access control policy (which will end up sending an

M_CONNECT_R message back to IPCP A if successful). If not, authentication fails and

IPCP B sends an M_RELEASE CDAP message back to IPCP A.

2.1.2. Interfaces and Interactions with Other Components

Figure 6, “Interaction between different application components” shows, at an

abstract level, the main application components that are related to the authentication

procedures and the main interactions amongst them. The image is not proposing any

implementation design, it is just purely for a better understanding of authentication in

the context of the DIF/DAF theory (multiple implementation strategies are possible).

Figure 6. Interaction between different application components

There are three main components that are relevant to an application’s authentication:

the Security Manager, the RIB Daemon and the SDU Protection module.

• SDU Protection module: Protects/unprotects the data coming in/out an N-1

flow. Must be configured with the right policies and policy parameters (encryption

Deliverable-4.2 (1st version)

25

algorithm, encryption key, etc.). The SDU Protection module configuration can be

different for each different N-1 flow, and is owned by the Security Manager. The SDU

Protection module can query a security profile to learn the operations that must be

applied to incoming and outgoing SDUs.

• RIB Daemon. Receives incoming SDUs from SDU protection, which are CDAP

messages targeting one or more RIB objects. The RIB Daemon is also the

responsible for establishing an application connection to a remote application

(encapsulating the CDAP and CACEP state machines). Before starting the

application connection request, the RIB Daemon must query the Security Manager

to obtain support of the relevant authentication policy module associated to the

application connection. Any authentication-related messages received between

M_CONNECT and M_CONNECT_R will be delivered to the authentication policy

for its processing.

• Security Manager. Hosts all the authentication policy instances supported by the

application, as well as the current security contexts (for each allocated N-1 flow).

The authentication policy is in charge of initializing and populating the security

profile associated with a particular N-1 flow with the relevant data (algorithms, key

material, protection policies, etc). The authentication policy interacts with the RIB

Daemon to send/receive authentication-related messages.

2.2. Implementation of the Authentication Function for PoC

The three authentication policies previously specified in this document have been

implemented in librina, so that they can be used by an IPC Process but also by

other application processes that follow the DAF model. The high-level design of the

implementation roughly follows the model described in the previous section, taking

into account the particularities of the IRATI RINA implementation: the IPC Process’s

SDU Protection module is located at the kernel, while the RIB Daemon and the Security

Manager are at user-space. This makes the implementation design a bit more complex

than what is explained in the high level model, since the security context state must

be split between user-space and the kernel, while configuration of the SDU Protection

module requires asynchronous messaging (via Netlink sockets).

2.2.1. Authentication-related SDK

When the IPC Process Daemon is created, it instantiates all the supported

authentication policies and stores them in the Security Manager component by

type. Each authentication policy must inherit from the IAuthPolicySet abstract class

presented below.

Deliverable-4.2 (1st version)

26

class IAuthPolicySet : public IPolicySet {

public:

 enum AuthStatus {

 IN_PROGRESS, SUCCESSFULL, FAILED

 };

 IAuthPolicySet(const std::string& type_);

 virtual ~IAuthPolicySet() { };

 /// get auth_policy

 virtual AuthPolicy get_auth_policy(int session_id,

 const AuthSDUProtectionProfile& profile) = 0;

 /// initiate the authentication of a remote AE. Any values originated

 /// from authentication such as sesion keys will be stored in the

 /// corresponding security context

 virtual AuthStatus initiate_authentication(const AuthPolicy& auth_policy,

 const AuthSDUProtectionProfile& profile,

 int session_id) = 0;

 /// Process an incoming CDAP message

 virtual int process_incoming_message(const CDAPMessage& message,

 int session_id) = 0;

 //Called when encryption has been enabled on a certain port, if the call

 //to the Security Manager's "enable encryption" was asynchronous

 virtual AuthStatus encryption_enabled(int port_id) = 0;

 // The type of authentication policy

 std::string type;

};

The policy has to implement the following main operations:

• get_auth_policy. Invoked by the RIB Daemon when it has to initiate an

application connection with a remote application entity, in order to obtain the values

for the AuthPolicy field of the CDAP M_CONNECT message.

• initiate_authentication. Invoked by the RIB Daemon when it receives an

application conncetion request (CDAP M_CONNECT message) from a remote

application entity. This operation returns SUCCESS if authentication is successful,

FAILURE if it fail or IN PROGRESS if more messages need to be exchanged.

• process_incoming_message. Invoked by the RIB Daemon when it receives an

authentication-related message. Return type is the same than the former operation.

Deliverable-4.2 (1st version)

27

• encryption_enabled. Callback informing about the result of an "enable

encryption" call to the Security Manager, in case this operation is asynchronous (as

it is the case of the IPC Process, which involves sending a Netlink message to the

kernel and getting the response back asynchronously).

2.2.2. Configuration of the Security Manager

The work reported in D4.2 has unified the configuration of the Security Manager and

updated the format of the configuration file. The following code snippet shows an

example configuration.

{

 "securityManager" : {

 "newFlowAccessControlPolicy" : {

 "name" : "default",

 "version" : "0"

 },

 "difMemberAccessControlPolicy" : {

 "name" : "default",

 "version" : "0"

 },

 "authSDUProtProfiles" : {

 "default" : {

 "authPolicy" : {

 "name" : "PSOC_authentication-sshrsa",

 "version" : "1",

 "parameters" : [{

 "name" : "keyExchangeAlg",

 "value" : "EDH"

 }, {

 "name" : "keystore",

 "value" : "/usr/local/irati/etc/private_key.pem"

 }, {

 "name" : "keystorePass",

 "value" : "test"

 }]

 },

 "encryptPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "encryptAlg",

 "value" : "AES128"

Deliverable-4.2 (1st version)

28

 }, {

 "name" : "macAlg",

 "value" : "SHA1"

 }, {

 "name" : "compressAlg",

 "value" : "default"

 }]

 },

 "TTLPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "initialValue",

 "value" : "50"

 }]

 },

 "ErrorCheckPolicy" : {

 "name" : "CRC32",

 "version" : "1"

 }

 },

 "specific" : [{

 "underlyingDIF" : "100",

 "authPolicy" : {

 "name" : "PSOC_authentication-none",

 "version" : "1"

 }

 }, {

 "underlyingDIF" : "110",

 "authPolicy" : {

 "name" : "PSOC_authentication-password",

 "version" : "1",

 "parameters" : [{

 "name" : "password",

 "value" : "kf05j.a1234.af0k"

 }]

 },

 "TTLPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "initialValue",

 "value" : "50"

 }]

 },

Deliverable-4.2 (1st version)

29

 "ErrorCheckPolicy" : {

 "name" : "CRC32",

 "version" : "1"

 }

 }]

 }

 }

 }

The first two fields are dedicated to the configuration of the new member access control

policy (executed after successful authentication of a remote IPCP) and the new flow

access control policy (executed when there is an incoming flow allocation request for an

application registered in the IPCP). After that there is the configuration of the policies

that can vary depending on the N-1 DIF supporting this IPCP. These policies are:

authentication, encryption, error check and TTL. The Security Manager configuration

provides a default and specific sets of these policies (the default set is used whenever

no N-1 DIF specific policy is specified).

2.2.3. AuthNone Policy

The implementation of the AuthNone policy is trivial. The get_auth_policy operation

returns an AuthPolicy object populated with the information described in the policy

sepecification. The initiate_authentication policy just checks for the correct policy

names and version, and returns SUCCESS. The process_incoming_message and

the encryption_enabled operations are not used and therefore just return FAILURE

(they should not be called). The snippet below shows an example of the AuthNone

policy configuration.

{

...

 "authPolicy" : {

 "name" : "PSOC_authentication-none",

 "version" : "1"

 },

...

2.2.4. AuthNPassword Policy

The get_auth_policy operation returns an AuthPolicy object populated with the

information described in the policy sepecification. The initiate_authentication

policy checks for the correct policy names and version, generates a random string of

Deliverable-4.2 (1st version)

30

the same length as the password, asks the RIB Daemon to send a CDAP message to

the remote IPCP and returns IN PROGRESS. The process_incoming_message

operation processes the two different messages involved in this policy: the challenge

message and the challenge request message, as described by the policy specification.

The encryption_enabled operation is not used and therefore just returns FAILURE

(it should not be called). The snippet below shows an example of the AuthPassword

policy configuration.

{

...

 "authPolicy" : {

 "name" : "PSOC_authentication-password",

 "version" : "1",

 "parameters" : [{

 "name" : "password",

 "value" : "kf05j.a1234.af0k"

 }]

 },

...

2.2.5. AuthNAssymetricKey (RSA) Policy

Since a number of cryptographic operations have to be performed by this

authentication policy, it needs to rely on a well-accepted implementation of these

functions. The openSSL libcrypto library [openssl] has been chosen as a provider of

cryptographic functions for the user-space IRATI daemons, due to its widespread use

and completeness of the implementation. In particular, this policy uses the following

facilities provided by libcrypto: Diffie-Hellman key and shared secret generation, MD5

and SHA-256 hash functions, loading RSA keys from PEM files, RSA public key

encryption and private key decryption.

The get_auth_policy operation returns an AuthPolicy object populated with the

information described in the policy specification (including the DH public key). The

initiate_authentication policy checks for the correct policy names and version,

selects the algorithms to be used for encryption, generates the DH key-set and the

shared secret (with associated encryption key). Once this is done it asks the Security

Manager to enable decryption on the N-1 port (which is an asynchronous operation).

The enable_encryption operation is invoked when the kernel has replied to an

enable encryption request. It considers three cases: IPCP B had asked to enable

Deliverable-4.2 (1st version)

31

decryption, IPCP B had asked to enable encryption or IPCP A had asked to enable

both encryption and decryption. In the first case the policy sends a "DH exchange

message" to IPCP A, with IPCP B’s DH public key. In the second case a condition

variable is updated (notifying that encryption is completely setup). In the last case IPCP

A generates the challenge byte array, encrypts it with the public RSA key and sends it

to IPCP B.

The process_incoming_message operation processes the four different messages

involved in this policy: the DH exchange message, the client challenge message, the

client challenge reply message with server challenge and the server challenge reply

message.

• DH exchange message. IPCP A computes the shared secret and encryption key,

requesting both encryption and decryption to be enabled for the related N-1 port in

the kernel. Once the answer is obtained IPCP A proceeds as explained in the last

paragraph.

• Client challenge message. IPCP B decrypts the challenge with the private RSA

key, XORs it with the shared secret and computes the MD5 hash. It also generates

a random byte array (the server challenge) and sends both values back to IPCP A.

• Client challenge reply and server challenge. IPCP A XORs the client challenge

that was sent to IPCP B with the shared secret, computes the MD5 hash and

compares it with the client challenge reply. If they are equal IPCP B has been

successfully authenticated, if not an M_RELEASE is sent to IPCP B and the

operation returns FAILURE. In the case when both values were equal, IPCP A

decrypts the server challenge with the private RSA key, XORs it wit the shared secret,

computes the MD5 hash and sends it to IPCP B.

• Server challenge reply. The received challenge reply is verified following the

usual procedure described in the former paragraph, resulting in a successful or failed

authentication of IPCP A (the operation returns SUCCESS or FAILED accordingly).

The snippet below shows an example of the AuthNAssymetricKey (RSA) policy

configuration, as well as of the associated encryption policy that must be activated

for the N-1 port. The authentication policy needs to be populated with information

on the key exchange algorithm (right now only Diffie Hellman on Ephemeral mode is

supported), the location of the file with the RSA key, and the password to be able to

read the RSA key from the file, since it is encrypted (NOTE: this feature is still missing

in the PoC as of D4.2 writing, but will be implemented in short; until then keys are

stored in the clear).

Deliverable-4.2 (1st version)

32

{

...

 "authPolicy" : {

 "name" : "PSOC_authentication-sshrsa",

 "version" : "1",

 "parameters" : [{

 "name" : "keyExchangeAlg",

 "value" : "EDH"

 }, {

 "name" : "keystore",

 "value" : "/usr/local/irati/etc/private_key.pem"

 }, {

 "name" : "keystorePass",

 "value" : "test"

 }]

 },

 "encryptPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "encryptAlg",

 "value" : "AES128"

 }, {

 "name" : "macAlg",

 "value" : "SHA1"

 }, {

 "name" : "compressAlg",

 "value" : "default"

 }]

 },

...

2.3. Component-Level PoC Tests for Authentication

The experimental scenario used to verify the correct operation of the AuthNPassword

and the AuthNAssymetricKey(RSA) authentication policies is shown in Figure 7,

“Authentication policies verification scenario”. A normal DIF consisting of three IPCPs

operates over two shim DIFs over Ethernet. IPCP test3.IRATI is configured to use the

AuthNPassword authentication policy by default, with an Error Check (CRC) and TTL

policies but without an encryption policy. IPCP test2.IRATI is configured to use the

AuthNAssymetricKey(RSA) authentication policy by default, with Encryption, Error

Check and TTL policies. However, it is also instructed to use the AuthNPassword

Deliverable-4.2 (1st version)

33

authentication policy and no encryption for N-1 flows over the N-1 DIF called

"100". IPCP test3.IRATI is configured to use always the AuthNAssymetricKey(RSA)

authentication policy with Encryption, Error Check and TTL policies.

Figure 7. Authentication policies verification scenario

2.3.1. AuthNPassword Policy

The following traces are the output of capturing the Ethernet packets at the eth1.100

interface of the system Host 1 with the Linux utility tcpdump. ARP request and response

correspond to the ARP request and reply issued by the shim DIF when the IPC Process

test3.IRATI requests a flow allocation to the IPC Process test2.IRATI.

M_CONNECT message reflects test3.IRATI sending an M_CONNECT message

to test2.IRATI, requesting a new connection to be opened using the

'PSOC_authentication_password' authentication policy with version '1'.

IPCP test2.IRATI replies with a challenge request message, providing the random

string that test3.IRATI XORs with the password and sends back to IPCP test2.IRATI in

a challenge reply message, as depicted by Challenge request and response messages.

Authentication is successful and IPCP test2.IRATI replies with an M_CONNECT_R

message, as shown in M_CONNECT_R message. Then the enrollment procedure

continues with more message exchanges between both IPCPs.

2.3.2. AuthNAssymetricKey (RSA) Policy

The following traces are the output of capturing the Ethernet packets at the eth1.110

interface of the system Host 2 with the Linux utility tcpdump. ARP request and

response correspond to the ARP request and reply issued by the shim DIF when the

IPC Process test1.IRATI requests a flow allocation to the IPC Process test2.IRATI.

Deliverable-4.2 (1st version)

34

M_CONNECT message reflects test1.IRATI sending an M_CONNECT message

to test2.IRATI, requesting a new connection to be opened using the

'PSOC_authentication-ssh2' authentication policy with version '1'. The DH public key

is also provided as part of the options field in the AuthPolicy field options.

IPCP test2.IRATI replies with the Ephemeral Diffie-Hellman exchange message,

providing its DH public key to test1.IRATI. From now on, all messages are encrypted, as

shown by the trace of the next packet in EDH exchange and encrypted client challenge

message.

Since the communication is encrypted, showing the log of tcpdump is not very

illustrative. IPCP test1.IRATI log shows the log of IPCP test1.IRATI (the one that

initiated the application connection). The sequence of messages shows how test1.IRATI

i) receives the Ephemeral DH exchange message form test2.IRATI; ii) generates the

encryption key; iii) enables encryption and decryption; iv) sends the Client challenge

message; v) receives the Client challenge reply and Server challenge message; vi) sends

the Server challenge reply message and vii) receives an M_CONNECT_R message

indicating that the application connection has been successfully established.

2.4. Next Steps for Authentication Activity

The authentication policies developed within WP4 will be used in the first iteration of

experimental activities that are reported in [D6.1]. Feedback from these experiments

will be incorporated into WP4 for further refinement. In addition to this, the research

and development activities related to authentication during the second iteration of

PRISTINE will tackle two main topics:

• The specification and development of an authentication policy inspired by the

TLS Handshake protocol [RFC5246], which uses certificates to authenticate both

parties. This authentication policy will be associated with an encryption policy

equivalent to the TLS record protocol [RFC5246].

• The investigation of authentication in the context of a DIF, after the IPC Process has

successfully joined the DIF.

◦ Once the IPCP has authenticated with a DIF member, what should it do if it wants

to create application connections with other DIF members in order to exchange

layer management information? Should it use the same authentication policy

used to join the DIF or can this requirement be relaxed?

◦ IPCPs can request the allocation of layer management flows to peer IPCPs

(dedicated to the exchange of layer management information via CDAP), and

Deliverable-4.2 (1st version)

35

also data transfer flows, which are dedicated to carry user traffic over EFCP.

Therefore no application connection is setup over data transfer flows but, should

there be some form of authentication anyway over those flows? Otherwise, how

can the IPCP that is a target of a data transfer flow be sure about the identity of

the requestor of the flow?

Deliverable-4.2 (1st version)

36

3. Capability-based Access Control

Capability based Access Control (CBAC) is the approach to access control adopted for

the PRISTINE project, as decribed in D4.1. CBAC is defined to simplify administration

of permissions for a large number of users. It could be implemented as either the

classical Role Based Access Control (RBAC) or in the advanced Attribute Based Access

Control (ABAC). The capability is computed based on the role, in case of RBAC, or

attributes of the user, in case of ABAC.

RBAC models categorize users based on similar needs and group them into roles.

Permissions are assigned to roles rather than to individual users. The objective is

to reduce the number of assignments. The more users and permissions a single role

captures, the greater the administrative efficiency gains. Ideally, users should be

assigned permissions which at any point in time represent a true reflection of current

business rules, risk-mitigating precautions and context-related security measures.

The ABAC approach defines a capability or authorization token as one of the attributes

of the entity that requires access to a certain resource in the system. Whereas RBAC

provides coarse-grained, predefined and static access control configurations, ABAC

offers fine-grained rules which are evaluated dynamically in real-time.

In the scope of this work, we study the application of ABAC to RINA. ABAC is based on

token generation that designates an object and grants the subject (i.e. the holder of the

token) authority to perform actions on that object. It defines the name for identifying

the object and the set of access rights for that object. The token could be seen as a ticket,

if a subject possesses this ticket it has the proof of the holder’s rights to access the object.

As depicted in Figure 8, “Attribute Based Access Control System Architecture”, the

ABAC system generates a token which will then be used, along with environment and

resources attributes, as input to the AC policy to decide whether to permit or deny

access.

Deliverable-4.2 (1st version)

37

Figure 8. Attribute Based Access Control System Architecture

3.1. Access Control Scenarios

Access Control in PRISTINE is a crucial step that must be performed in different

scenarios where requestors (subjects) would like to access to resources (objects). These

scenarios are as follows:

• When an AP needs to access another AP’s resources in the same DAF. In this case

the peer AP should execute the AC function to permit or deny the requesting AP to

access the requested objects.

• When an IPC Process requests to join a DIF, a check on the authorization rights of

the requesting IPCP is needed.

• When an IPCP initiates the execution of remote operations on the objects of a peer’s

IPCP RIB.

The scenarios stated above may be processed in different ways and several AC policies

could be applied for each case. In the scope of this deliverable, we will consider the first

scenario. Note that most of the described procedures can be adapted to other scenarios.

The remaining two scenarios will be specified and reported in the next WP4 deliverable

(D4.3). In the following section, we will provide the specification and the design of the

access control system for the first scenario.

3.2. Specification and Design of CBAC’s at DAF-Level

We assume that any Distributed AP (DAP) acts as the subject that is is required to

be authorized to proceed with some actions on the resources (objects) of other DAPs.

Deliverable-4.2 (1st version)

38

Objects concern the data and contents of the RIB within the DAP. Basically, the access

control system will provide the corresponding capabilities to allow the requesting

DAP to get access to the required resources. Figure 9, “AC System Architecture

Block Diagram” shows the CBAC functional blocks and the interactions with RINA

components. These blocks are explained below.

Figure 9. AC System Architecture Block Diagram

The originating DAP or the requestor: The service or application process

requesting the RIB resources of the peer service. In our example DAP1

The receiver DAP: The service or application process having the requested RIB

objects, e.g. a printing service. In our example DAP2.

The Management Agent (MA): The Management Agent is implemented as an

Application Process (AP). Basically, here, it is responsible for providing the system with

the needed access control data if it is not available in the AC Local Manager.

3.2.1. Access Control Mangers' Functions

3.2.1.1. The Master AC Manager

The AC master is the block responsible for storing the needed access control data

including the authorization profiles of the different DAPs and the AC policies or rules

Deliverable-4.2 (1st version)

39

that will be used then in the access control procedure. This entity operates in the

same domain as the Distributed Management System (DMS)and could function in

centralized or descentralized/replicated manner. It can be accessed via the DMS.

The information that must be stored in the AC Master block is the Authorisation

Profiles.

3.2.1.2. The Local AC Manager

The AC Local Manager is the block implementing and enforcing the access control

policy locally in the system that AP operates. The input to this block is the access control

information that is requested from the AC Master via the MA (Management Agent).

The output will be the AC decision and the eventual AC parameters that will be used

in the AC procedure.

3.2.2. Authorisation Profiles

Profiles are stored in the RIB of the Master AC manager. They include:

• Profile name

• Profile type Generic_Profile for a given DAP, or Specific_Profile.

• Profile groups that the DAP belongs to

• Allowed objects description: Name, properties, accounting.

In the access control architecture we will define four profiles that correspond to

DAPs, RIBs, DAFs, and USERs. Those profiles will be stored by the AC Manager

Master. Each of them will be specified with a set of attributes. We define an attribute

“group” that is assigned to different USERs or DAPs having similar access rights to

different RIB objects.

In the case of DAPs, we define two groups and roles:

• S_GROUP: assigned to DAP servers that are able to execute certain services such as

executing a program, providing certain services to other group called C_GROUP.

• C_GROUP: assigned to DAP Clients that will be asking for certain services from

other DAPs. C_GROUP DAPs might be used by USERs requesting access to services

offered by the DAF.

• We also define two roles: Management Agent and Application.

In the case of Users, we also define two groups and roles:

Deliverable-4.2 (1st version)

40

• A_Group for Users with high access rights such as Administrators.

• U_Group for users that are customers of the offered services in the DAF.

• We also define two roles USERACCESSONEHOUR, USERACCESSUNLIMITED.

3.2.2.1. Example Profiles

An example of defined profiles is given below. Consider a network NET1 where the

RINA-enabled System1 has a DAF named DAF1 with two applications: DAP1 and DAP2.

A Network Zone is defined as a network (NET1) under a single administrator. DAP1

application would like to access RIB information of DAP2. In this example DAP1 will

play the role of Client to DAP2 which play the role of Server. Here, RoleD1 is a client role.

We consider that these DAPs possess certificates. We consider User1 that uses DAP1 to

access to services of DAF1. Some of the services are requesting access to the RIB2 of

DAP2. We consider DAP3 and DAP4 as other application processes of the DAF1.

The authorisation profiles of DAF1, DAP1, User1, and RIB2 for this example are defined

below:

<DAF profile starts>

{System “Name”: System1

DAF “Name”: DAF1

DAP « DAF » : DAF1

DAP “Network zone”: NET1

DAF “Certificate”: CERTIFDAF1

DAF « creation date » : dd/mm/yyyy

DAF “end date” : dd/mm/yyyy

DAF “Ressources “: {RIB1, RIB2, …others}

DAF “Services”: { DAP2, DAP3, DAP4}

DAF “other profile information”: AddFunction

}

<DAF Profile ends>

<DAP profile starts>

{DAP “Name”: DAP1

DAP « DAF » : DAF1

DAP “group”: C_Group

DAP “Role”: Application

DAP “Password”: DPWD

DAP “Network zone”: NET1

DAP “Certificate”: CERTIFDAP1

DAP « creation date » : dd/mm/yyyy

DAP “end date” : dd/mm/yyyy

Deliverable-4.2 (1st version)

41

DAP “Ressources “: {RIB_Public, RIB_Private, others}

DAP “other profile information”: AddFunction

}

<DAP Profile ends>

<RIB profile starts>

{RIB “Name”: RIB2

RIB « DAF » : DAF1

RIB “DAP”: DAP2

RIB “Password”: RPWD

RIB “Network zone”: NET1

RIB “Certificate”: CERTIFRIB2

RIB « creation date » : dd/mm/yyyy

RIB “end date” : dd/mm/yyyy

RIB “other profile information”: AddFunction

}

<RIB Profile ends>

<USER profile starts>

{USER“Name”: User1

USER « DAF » : {DAF1, DAF2}

USER “DAP”: DAP1

USER “Role”: USERACCESSONEHOUR

USER “Password”: UPWD

USER “Certificate”: CERTIFUser1

USER “other profile information”: AddFunction

}

<USER Profile ends>

3.2.3. Access Control Policies

Attribute evaluation enables effective policy-based authorization. In the

architecture shown in Figure 9, “AC System Architecture Block Diagram”, we define

two policies: PERMIT and DENY Policies. Consider the following three examples:

Example 1:

A Policy states that "all DAPs belonging to the DAF1 should have read access to RIB

information located in a network zone NET1 made available to applications of the same

DAF and running in the same network zone NET1 as the DAP.

An access request evaluation based on the following attributes and attribute values

should therefore return PERMIT:

Deliverable-4.2 (1st version)

42

Subject's "DAF"="DAF1"

Subject's "Network Zone"="NET1"

Subject’s “Call_TokenFunction(Subject = DAP1, Object=RIB2)” = “Authorise”

Action="read"

Resource "type"="RIB Information"

Resource "Network Zone"="NET1"

Note that “Call_TokenFunction(Object=RIB) “ in this example is the function that is

called by the DAP2 which is applying the access control policy for requesting access to

the RIB information by DAP1. If the result of this called Function is not authorized,

then the applied policy will be “Not Permit”.

Example 2:

A Policy states that a user1 (defined in the profile earlier) in DAF1 of network zone

NET1 requesting read access to the RIB2 resource of DAP2 in DAP1 but only for one

hour will return PERMIT.

Subject's "DAF"="DAF1"

Subject’s “DAP”= “DAP1”

Subject's "Network Zone"="NET1"

Subject’s “Call_TokenFunction(Subject =User1, Object=RIB2)” = “Authorise”

Action="read"

Resource "type"="RIB2"

Ressource “DAP”= “DAP2”

Ressource “DAF”= “DAF1”

Resource "Network Zone"="NET1"

Example 3:

A Policy states that a user1 (defined in the profile earlier) in DAF1 of network zone

NET1 requesting read access to RIB2 resource of DAP2 for an unlimited time will return

DENY.

Subject's "DAF"="DAF1"

Subject’s “DAP”= “DAP1”

Subject's "Network Zone"="NET1"

Subject’s “Call_TokenFunction(Subject =User1, Object=RIB2)” = “Authorise”

Action="read"

Resource "type"="RIB2"

Ressource “DAP”= “DAP2”

Ressource “DAF”= “DAF1”

Deliverable-4.2 (1st version)

43

Resource "Network Zone"="NET1"

In this example Call_TokenFunction will return Not Authorized, as User1 role is

defined with the access for only one hour and the requested access in this example is

for unlimited access.

3.2.4. Interfaces and Interactions with Other Components

Figure 10, “DAP interactions with the Management DAF level” shows the AC procedure

performed between two DAPs. It illustrates the interaction between RINA components.

Each system has a MA (with its respective RIB and RIB daemon) in order to ensure

the access to the Master AC Manager. The interaction between the MAs and Manager

is based on CDAP messages.

Figure 10. DAP interactions with the Management DAF level

3.2.4.1. Sequence Diagram and Interactions

Figure 11, “Sequence Diagram of the AC components’ interaction” shows the sequence

diagram of our scenario, illustrates these details, showing the interaction between the

different components of the AC system.

Upon receiving the request from the originating DAP, the AC check procedure is

launched on the destination DAP side:

1. The Local AC Manager requests the authorization profiles and AC policies or rules

from the RIB Daemon of the Management Agent.

Deliverable-4.2 (1st version)

44

2. If the required information is not found in the local RIB, the MA RIB daemon should

request it via CDAP from the AC Manager Master.

3. The Local AC Manager, located in the IPC Manager of the destination system,

generates the Token, loads the policies and then inputs them to the Policy Decision

Point (PDP). It should be noted that functions of PDP and PEP are described in the

next section.

4. The PDP will output the AC decisions to the destination DAP.

5. The Policy Enforcement Point (PEP) enforces the decision and, if needed, performs

an additional accounting check.

Figure 11. Sequence Diagram of the AC components’ interaction

3.2.4.2. Inputs and outputs

Figure 12, “Inputs and outputs of the AC system” depicts the detailed specification of

inputs/outputs of the different blocks of the architecture.

There are three actors:

• The Local AC Manager: this takes as inputs the Authorization profiles and the AC

policies. This information should come from the RIB Daemon of the Management

Agent. As the output, the Local AC Manager gives the AC Decision. There are three

blocks inside the Local AC Manager :

Deliverable-4.2 (1st version)

45

◦ PDP: the Policy Decision Point is the decision block where the system checks the

profiles and the capabilities applying the AC policies in order to decide whether

to permit or deny the access to the RIB resources. The inputs to this block are

mainly the policies and the generated token. The output is the AC decision

◦ Token Generation: This block is responsible of generating the token used

afterwards in the PDP. The procedure of token generation will be detailed later.

◦ AC Policies Loader: This module is in charge of loading the AC policies or rules

from MA RIB Daemon. If the information is not found in the local RIB, the

Master AC Manager is requested to provide it.

• The DAP processes AC via its PEP block which is responsible for ensuring the RIB

Daemon respects the policy rules and changes its behaviour in accordance to the

policies when needed. The input to this block is the AC decision.

• The AC Master Manager responds to the requests. The RIB daemon of the MA sends

CDAP messages to the AC Master Manager.

Figure 12. Inputs and outputs of the AC system

Deliverable-4.2 (1st version)

46

3.3. CBAC Implementation for PoC

The different AC components will be implemented in the IPC Manager block. As shown

in Figure 13, “Implementation Scenario of CBAC RINA for component-level PoC tests”,

we consider in our implementation three machines to implement a DAF Level with two

DAPs DAP1 and DAP2. A separate machine will be used to run the AC Manager Master

and store the system profiles, i.e. the DAP, RIB, DAF and user profiles, as described in

previous sections.

Message exchange will be implemented between the and the AC Master Manager to

request the needed profile on access control request basis. It is the DAF Management

layer.

Message exchange will be implemented between DAP1 and DAP2 to exchange the

access control requests and replies.

Specific interfaces from RINA implementation will be used (Netlink socket).

Figure 13. Implementation Scenario of CBAC RINA for component-level PoC tests

3.4. Component-level PoC Tests for Access Control

We consider two test scenarios as the initial work.

In scenario 1, DAP2 will be a streaming Video Server or a file transfer server. DAP1 will

try to access the Video streaming service where the video is stored in RIB2 of DAP2.

We consider DAP1 profile with a PERMIT Policy and we’ll show the start of the video

streaming or file transfer service.

Deliverable-4.2 (1st version)

47

In Scenario2, DAP1 profile corresponds to a PERMIT Policy but for 2 minutes

Streaming or file transfer, the test will show the streaming video or file transfer that

stops after 2 minutes.

In our experiments we’ll measure the time for access control service by making the

decision by the Master AC Manager then by the Local AC Manager. We will also

stress the AC Master with several requests to see how the AC system is able to handle

important requests of AC.

3.5. Next Steps for CBAC Activity

The CBAC architecture has been defined to provide a complete description of the

requested features. In this deliverable, detailed technical specifications and the relevant

interfaces are provided. The interaction between the AC actors and internal RINA

components have been provided in the sequence diagram.

In the next steps, we plan to implement different AC modules and then schedule the

integration with the other components in the scope of WP6.

More precisely, important steps will be to synchronize with WP5 regarding the

addition of the profiles defined here in the system profiles information base and

the communication interfaces between DAP elements of the DAF and the DAF

Management where the AC Master Manager interacts and see in WP6 how it is possible

to integrate our proposed CBAC into RINA architecture.

Deliverable-4.2 (1st version)

48

4. Multi-Level Security

Multi-Level Security (MLS), as described in D4.1 [D4.1], refers the protection of data or

“objects” that can be classified at various sensitivity levels, from processes or “subjects”

who may be cleared at various trusted levels. A strict definition of MLS includes a formal

model of classification levels for data and clearance levels for users, together with rules

to prevent inappropriate access by users to data that is at a higher classification level

than their clearance. Such a model is appropriate in many high assurance applications,

and is often mandated in government and military contexts by policy. Such models

typically make it difficult to share data effectively. However, a growing number of

initiatives are aimed at situations where data sharing is a key requirement, and only

moderate assurance is required. In these cases, MLS models and solutions may either

be dictated by policy or are being considered to provide higher assurance than in

current applications. However, such models and solutions are generally not flexible

enough for the data sharing requirements.

In D4.1 [D4.1], we proposed a number of MLS architectures that enable secure data

sharing to be achieved on the common RINA infrastructure. There are two components

that are needed to create these MLS architectures: Communications security and

Boundary Protection Components (BPC).

Communications security protects the end-to-end transfer of data between IPC/

application processes. This is needed to ensure that data cannot be inappropriately read

from the communication channel (e.g. via eavesdropping or accidental leakage), and

that data at different classification levels is not inappropriately mixed.

To make an MLS system practical it is generally necessary to allow for at least some

capability to send data from a high system to a low system, e.g. to allow higher cleared

users to send emails to lower cleared users. This capability needs to be carefully

controlled to prevent accidental or deliberate release of sensitive information by users

or malicious code. The BPC is used to control such a flow of data, to ensure that data

transferred from the high system is actually at a suitable classification level for the low

system. It may also control data imported to sensitive network, e.g. check for malware.

In the remainder of this section we consider current techniques for implementing

communications security and boundary protection and how these could apply to RINA.

We then specify the components required to implement both communications security

and boundary protection in a RINA network.

Deliverable-4.2 (1st version)

49

4.1. MLS Scenarios

4.1.1. MLS Communications Security

Communications security enables sensitive data to be sent over untrusted network

by cryptographically protecting the confidentiality and integrity of data. This ensures

that the data cannot be inappropriately read from the communication channel and

that data at different classification levels is not inappropriately mixed. It also includes

authentication of the end points to ensure that they are suitable for accepting the data

being communicated, based on its classification level.

Communication solutions in current networks can be characterised by the layer of

the Open Systems Interconnection (OSI) stack at which they operate, as described in

D4.1 [D4.1], and whether they are so-called "bump in the wire" or "bump in the stack"

[RFC4301] solutions. "Bump in the wire" solutions are hardware devices designed to

sit between an end device and an untrusted network. As these are bespoke solutions

built from scratch to provide communications security (and nothing else), they can be

produced to very high levels of assurance. However, the additional devices required can

be expensive and take up space. "Bump in the stack" solutions are generally software

solutions designed to integrate into existing end devices. The assurance achievable

in these is fundamentally limited by the device and the software into which they are

integrated, however, they do not take up additional physical space and can be a lot

cheaper. In addition, the assurance achievable can be enough for many commercial and

less stringent defence and government situations.

4.1.2. Boundary Protection Component

The Communications Security component described above protects sensitive data from

being inappropriately accessed by separating data at different classifications. However,

an MLS network using only communications security is very constrained, as it very hard

to share data between systems at different levels. The only means of sharing data is via

manual transfer. For example, if a user on a High system wishes to share some data

with a user who only has access to a Low system, the only way this is possible is for the

High user to manually enter it into the Low system. If they needed to send the same

information to multiple users at multiple levels, they would have to replicate this action

for each level.

Therefore to make an MLS system practical it is generally necessary to allow for at

least some "write down" capability, i.e. some means of enabling data sharing between

systems at different classifications. For example, this would allow higher cleared users

Deliverable-4.2 (1st version)

50

to share data that is no longer considered sensitive or that has had its sensitive

parts removed with lower cleared users. Clearly, this “write down” facility needs to be

carefully controlled to prevent accidental or deliberate release of sensitive information

by users or malicious code, and this is where “Trusted Downgrade” and “Boundary

Protection Component” (BPC or “Guard”) products are used.

Trusted Downgrade is typically a facility provided within MLS operating systems that

allows highly trusted users, and perhaps applications, to modify the labels on data in

special cases. This facility would typically be protected to high assurance levels so that

the risk of malicious code exploiting it is very low.

Where formal, and trusted, labelling is not present (i.e. in most MLS approaches

described in D4.1), there is no Trusted Downgrade as such, but the ability to make data

available from higher classified systems to lower classified systems is often required.

BPCs are used to control such an information exchange, to ensure that data transferred

from the high system is actually at a suitable classification level for the low system.

They provide assured data flow between networks of differing sensitivity, enabling

Low classified data residing on a High classified system to be moved to another Low

classified system.

There are five main methods of boundary protection used to prevent accidental or

deliberate release of sensitive information: manual transfer, label checking, deep

content inspection, content modification and user-sanctioned export. Note that

although some of these methods have similar functionality to a firewall, the difference

is that a BPC is an assured solution that must be effective in providing control over

information exchange even when under attack or when it fails.

Manual transfer requires a person to check the true classification level of the data

to be transferred, and to re-enter the data (perhaps suitably sanitised) into the low

classification system manually. Clearly, this is a costly and inefficient solution. It is also

subject to human error, depending on how complex the data is.

Although formal, and trusted, labels may not exist, other, informal, labels may be

used to check the content. Examples of labels include simple text strings, such

as classification statements in Microsoft Word document headers, or slightly more

structured labelling of Word documents as provided by Purple Penelope [Gollmann]

Where such labels exist, a BPC can simply search for them and ensure that release

rules are adhered to. For example, DeepSecure XML Guard [DeepSec] uses embedded

security labels within XML data objects. This can be effective against accidental release

of sensitive data, but as the labels are not trustworthy, users or malicious code could

deliberately mislabel data to bypass the protection. Therefore, the level of assurance

Deliverable-4.2 (1st version)

51

provided is quite low. Such label checking approaches are also application specific, and

are likely to require BPCs to be constantly updated and added to as applications are

modified and new ones are added over time.

Another BPC approach uses deep content inspection, where all of the data is inspected

to determine, through some knowledge of the data semantics, what its classification

level is and/or that it does not contain hidden data. Techniques include keyword

searching of text in e-mails or documents, or the analysis of images to detect hidden

data. For example, Nexus Watchman [Nexor] determines the classification of a message

based upon a weighted hit-word count of the message content. Clearly, deep content

inspection is highly application-specific, with the same consequent issues as for label

checking. In addition, the reliability of, and hence level of assurance in, such methods

is generally quite low. They can be somewhat effective against accidental release of

sensitive data and deliberate release of sensitive data by unsophisticated attackers

or malicious code. However, more sophisticated attackers and code can generally get

around the inspection, especially if they can obtain or infer the content inspection

rules. As an example, consider an attacker that wishes to export a sensitive text

document. The BPC may have a text keyword checker, but the attacker could bypass

this by scanning the document and sending the image instead. A more sophisticated

BPC may have optical character recognition (e.g. [MAGEN]), but the image could

be manipulated by the attacker to make this fail (e.g. CAPTCHAs [Gollmann]). The

attacker could also revert to some proprietary (to the attacker) method of encoding

text in an image file, or even to hiding the text in redundant parts of a real image

(steganography). A BPC that blocks all images may also not help, as the attacker could

encode the text in an innocuous text document, by, for example, manipulating white

space [Mansor]. Essentially, there is an arms race with the attacker having almost

limitless ways to defeat content inspection mechanisms as they are developed, and

there is no “silver bullet” technical solution here. A final issue is that these approaches

are processor intensive and can add a delay into the release of data. This can be

particularly problematic for large volumes of and/or real-time data, such as video

streaming.

Content modification aims to modify content to remove potential ways in which

sensitive data can be leaked within it. Generally, these techniques concentrate on

the protocols used to transport the data, rather than the data itself, and are aimed

at limiting or eliminating the possibility of covert channels. In other words, content

modification is applied to situations in which the data itself is perfectly legitimate and

releasable, but an attacker or malicious code is using manipulation of the transport

protocol to sneak data through a BPC (see QinetiQ Sybard® ICA Guard [Sybard]). A

Deliverable-4.2 (1st version)

52

“protocol break” BPC is a common approach, where the BPC acts as a proxy for the

protocol. It will terminate the protocol and re-encode protocol messages according to

its own rules and interpretation of the original message. It may also manipulate the

timing and/or size of protocol messages (e.g. adding delays, padding or even sending

“dummy” messages) to protect against these potential covert channels ([Zhiyong] for

example). Such approaches are quite effective against use of the protocols to leak data,

even by sophisticated attackers and malicious code, but of course do not prevent the

payload data itself being used to leak data (the problems associated with deep content

inspection as detailed above still apply). Protocol break BPCs can be very effective in

protecting the integrity of the high system from messages sent from the low system.

In particular, malformed protocol messages and buffer overflows can be effectively

stripped out by this approach (both of which are very common forms of attack).

User-sanctioned export abandons the idea of the BPC doing any checking of the data.

Instead, it simply makes sure that an end user has to authorise its release, and that this

fact is securely recorded in a way that cannot be repudiated by this user at a later date.

The aim is to place the onus on the user to check the data, and to act as a deterrent to the

user accidentally or deliberately releasing information they know they should not, or

are just not sure of the provenance of. Of course, this cannot prevent the release of such

data, but aims to make it less likely by using the threat of future legal or disciplinary

action against the source of an identified leak. Its main advantages are that it is a generic

approach suitable (in theory at least – see below) for any data and application, and that

it is quite effective against malicious code as it guarantees that a real user is involved and

not code masquerading as one. However, more sophisticated malicious code that is able

to “piggy-back” onto legitimate user communications cannot easily be stopped. Even if

the user is able to see and check the data the BPC receives, through some sort of trusted

channel, it may be hard or impossible for them to check for modifications made by

malicious code (e.g. hidden data). In addition, machine-to-machine communications

cannot be supported, and in practice many types of data flow are impractical with this

approach. An example is voice data, as, although it is possible for a user to sanction the

setup of a VoIP session, it is impractical for them to sanction the release of each voice

data packet.

Note that a special form of boundary protection can be provided by one-way data

diodes. This allows data to flow from a low to a high system and prevents any possible

covert channels in the opposite direction. Of course, this does not allow "write down",

but can be useful in some cases to allow a more automated flow of information into a

high system. Such diodes can be produced to very high levels of assurance [LinkDD],

Deliverable-4.2 (1st version)

53

but in practice can only be used to mirror data from low to high systems rather than

allowing any kind of application to application transfer.

Some BPC approaches may require the decryption of protected content to allow

checking at the boundary, but this isn’t ideal as it complicates key management and

introduces a point of vulnerability. An alternative is to do all checking before the content

is encapsulated, and then filter at the boundary on the metadata/labels. But this may

be complicated and expensive to do as it needs to be replicated at all places that create

content, and is also likely to be less assured as it spreads the security controls out

to all application locations rather than in one highly assured BPC. Essentially, the

production of metadata/labels now needs to be highly assured, but this is done by users

and applications that are difficult to assure.

4.2. Achieving MLS Communications Security in RINA

For a RINA MLS network, several approaches to communications security are possible.

Communications security could be applied by the application itself; alternatively, the

“bump in the stack” or “bump in the wire” approaches could be used. Examples of these

three approaches are discussed below. In each example we consider an MLS network

as shown in Figure 14, “Example MLS scenario”, with data at two classification levels:

High and Low. Each Application Process (AP) and IPC Process (IPCP) is cleared to

access data at either High (shown as red in the figures); or Low (shown as green in the

figures). Each DIF and DAF has a classification level of either High or Low. IPCPs and

APs are only able to enrol in a DAF or DIF for which they have the appropriate clearance

level, i.e. an IPCP cleared to High can only enrol in a DIF classified at High and an IPCP

cleared to Low can only enrol in a DIF classified at Low. The following examples only

consider a single AP in each system. However, in practice, multiple APs could use the

same IPCP in the underlying DIF to send their data. In the following diagrams, a black

box labelled “Z” is used to show where the communications security is applied when

sending the PDU and removed when receiving the PDU.

Deliverable-4.2 (1st version)

54

Figure 14. Example MLS scenario

4.2.1. Application-level

Communications Security can be implemented in the applications (AP-1 and AP-2 in

Figure 14, “Example MLS scenario”). AP-1 encrypts the application data before it is

packaged into SDUs to be sent over RINA. The SDU remains encrypted while it is

sent over the RINA network. Once it has been received at the destination application

(AP-2), it is decrypted. This allows fine-grained protection to be applied to the data,

i.e. protection can be applied to just the data that is classified as High and any data

that is Low can be sent in the clear. If multiple APs in High System 1 were to send data

via IPCP-1, the data from each AP would be protected with different keys and hence be

cryptographically separated even if the N-1 DIF aggregates SDUs before relaying them.

Since this option is implemented at the application, it does not rely on RINA to protect

the data; the data is sent as if it were plaintext data.

4.2.2. Bump in the Stack

Communications security can be implemented in RINA as a “bump in the stack”

solution where the cryptographic protection is applied in the end device, i.e. the system

that is sending the data. There are two options for applying protection: it can be applied

at the DAF, as shown in Figure 15, ““Bump in the stack” at the DAF” or at the N-level

DIF, as shown in Figure 16, ““Bump in the stack” at the DIF”.

Deliverable-4.2 (1st version)

55

Figure 15. “Bump in the stack” at the DAF

In the “bump in the stack” at the DAF architecture, shown in Figure 15, ““Bump in the

stack” at the DAF”, SDUs are protected by the sending application process (AP-1) before

passing it to IPCP-1 in the N-level DIF. This has the advantage that data from multiple

APs sent over the same DIF will be protected with different security parameters and so

will be cryptographically separated.

Figure 16. “Bump in the stack” at the DIF

Alternatively, the protection can be applied as “bump in the stack” at the N-level DIF,

shown in Figure 16, ““Bump in the stack” at the DIF”. In this option, AP-1 transfers

the SDU to the underlying IPCP (IPCP-1) in the clear and IPCP-1 applies protection

to the SDU before sending it to IPCP-5. Both options would have the same effect of

protecting the SDU end to end from the sending High System to the receiving High

Deliverable-4.2 (1st version)

56

System. However, in this latter option, SDUs sent from multiple APs on High System 1

will be protected using the same security parameters by IPCP-1 if they are sent over the

same flow and so data from different applications may not be separated. Therefore, this

option is more scalable in terms of processing, as all application flows can be protected

using the same IPCP flow. However, there is no specific protection for each of the

individual application flows using the same IPCP.

Both of these options can be implemented using a SDU Protection policy that

cryptographically protects every outgoing SDU. The specification of the SDU Protection

Module and how it fits in RINA, as well as examples of SDU Protection policies for

encrypting SDUs are considered in Section 5.

4.2.3. Bump in the Wire

When data classified at High is sent over DIFs that are also classified at High, the

SDUs do not need to be protected. This is because the network is trusted and all IPCPs

receiving the data are cleared to read it. However, if High application data is sent over

a DIF classified at Low, it needs to be protected to ensure that it is not mixed with Low

data and that it cannot be read by application processes that are not cleared to access it.

Figure 17. “Bump in the wire” solution

In the scenario shown in Figure 17, ““Bump in the wire” solution”, AP-1 sends the SDU

to IPCP-1, which then forwards it to IPCP-2 via IPCP-5 and IPCP-6. Since all of these

IPCPs are cleared to the same level, the SDU does not need to be encrypted. IPCP-2 then

forwards to SDU to IPCP-3. Although IPCP-3 is cleared to High, the underlying DIF that

will transport the SDU is only cleared to Low and is therefore untrusted. Consequently,

IPCP-2 must encrypt the SDU before sending it over the Low N-1-level DIF. IPCP-3

Deliverable-4.2 (1st version)

57

can decrypt the SDU before sending it to IPCP-4, as the N-1 DIF is classified at High.

In this way, the SDU is only protected where it is sent over an untrusted DIF, which

prevents multiple layers on encryption being unnecessarily applied to the SDU. It also

means that only nodes that have IPCPs at multiple levels need to apply protection to

SDUs. Here, protection at the IPCP flow level is more scalable, as fewer instances of

IPCPs are involved in applying protection, which reduces both the processing cost and

the amount of security parameters exchanged. However, it has the associated cost of

losing protection at application flow granularity.

Achieving this “bump in the wire” communications security scenario requires policies

for Authentication and SDU Protection. An authentication policy is needed to ensure

that IPCPs only enrol in DIFs that they are cleared to, e.g. an IPCP cleared to Low cannot

enrol in a DIF classified at High. This ensures that all IPCPs enrolled in a DIF are cleared

to the same level and means that the clearance level of an IPCP can be inferred from

the DIF in which it is enrolled. Therefore once an IPCP has enrolled in a DIF, it can

communicate with any IPCPs in the same DIF without needing to verify their clearance

level.

The Authentication policy is also needed by the SDU Protection Module to negotiate

security parameters for the flow, e.g. the cryptographic algorithms, session keys, which

are stored in the security context. The same security parameters are used for all SDUs

sent over the same flow, e.g. sent from IPCP-2 to IPCP-3 in Figure 17, ““Bump in

the wire” solution”. Several of the authentication policies described in D4.1 would be

suitable here. For example, AuthNPassword could be used where only IPCPs that are

cleared to High have a valid password for enrolling in a High DIF. Section 2 specifies

the Authentication Module and example authentication policies that could be used in

an implementation of “bump in the wire” communications security.

To implement the “bump in the wire” configuration, a cryptographic SDU Protection

policy is needed to encrypt PDUs before they are sent over an untrusted DIF. The

policy should only encrypt SDUs sent over flows through an underlying DIF that is at

a lower classification level; flows through an underlying DIF at the same classification

level should be left in the clear. There are two ways that this could be achieved. The

first is to use the Manager and Management Agent in the Distributed Management

System (DMS), described in D5.1 [D5.1], to configure the SDU Protection policy for each

flow. Each time a new flow is established from a High DIF to a Low DIF, the Manager

configures the SDU Protection policy to encrypt SDUs sent over the flow. Alternatively,

a customised SDU Protection Policy could be used that can decide whether to apply

encryption to a PDU based on the classification of both the PDU and the flow. This

latter option will specified below.

Deliverable-4.2 (1st version)

58

4.2.4. Specification and Design of the Bump in the Wire Solution

Here we specify the SDU Protection policy, which we call the ‘MLS Encryption Policy’,

needed to implement the “bump in the wire” MLS architecture shown in Figure 17,

““Bump in the wire” solution”. The policy is implemented in the SDU Protection Module

of IPCPs that apply protection to and remove protection from SDUs that are sent over

an untrusted underlying DIF, e.g. IPCP-2 and IPCP-3 in Figure 17, ““Bump in the wire”

solution”.

Figure 18, “Block diagram of how MLS encryption policy fits in RINA” illustrates how

the custom MLS Encryption Policy fits within the RINA IPCP. The RINA components

involved are the SDU Protection Module, RMT and the Authentication Module.

Figure 18. Block diagram of how MLS encryption policy fits in RINA

During the enrolment process, the Authentication Module, described in Section

2, authenticates the IPC process joining the DIF. Only IPCPs that successfully

authenticate can enrol in the DIF. Its Authentication Policy defines the authentication

mechanism used to authenticate the joining IPCP. It also updates the SDU Protection

Module’s Security Context with any security parameters, e.g. key material and

cryptographic algorithms, which may be negotiated as part of the authentication

process. These security parameters are negotiated per flow, so that an IPCP has a

different set of keys for each IPCP within the DIF. The security parameters are not tied

to the Application Process sending the SDUs, so that SDU s belonging to different APs

sent over the same flow will use the same security parameters.

When a PDU is to be sent from this IPCP to the underlying flow, RMT passes PDUs from

DTP instances to the appropriate (N-1)-ports. Its serialisation task invokes the SDU

Protection Module, described in Section 5, which applies protection to outgoing PDUs

according to its SDU Protection policy. MLS Encryption Policy is an SDU Protection

Deliverable-4.2 (1st version)

59

Policy that implements the “bump in the wire” Communications Security scenario

described above. It applies encryption to outgoing PDUs that are to be sent over a flow

at a lower classification level. The Security Context contains the configuration data and

security parameters needed by the SDU Protection policy, e.g. the encryption key and

encryption algorithm to apply.

4.2.5. Interaction of Components with SDU Protection Policy

Figure 19, “Sequence diagram showing the interactions when the SDU is sent over

an untrusted underlying DIF” shows the sequence of interactions between the RINA

components when applying the MLS Encryption policy to an SDU being sent over an

untrusted DIF.

Figure 19. Sequence diagram showing the interactions

when the SDU is sent over an untrusted underlying DIF

1. When an SDU is to be written to the underlying flow, it is passed to RMT. RMT

looks up the port to be used to send the PDU to the destination address in the PDU

Forwarding Table (PFT) via pft_nhop.

2. The PFT returns the port ID of the next hop

3. RMT sends the PDU to be serialised by calling pdu_serialize

4. PDU Serialization then invokes the SDU Protection Module, which applies the MLS

Encryption policy. This policy determines that the PDU needs to be protected, as it

is to be sent over an untrusted DIF

5. The MLS Encryption policy obtains the necessary security parameters, e.g. the

session encryption key and encryption algorithm, from the Security Context that is

established during authentication.

Deliverable-4.2 (1st version)

60

6. The Security Context returns the security parameters for the flow that the PDU will

be sent over.

7. The MLS Encryption Policy applies protection to the PDU using the security

parameters

8. The serialized and protected PDU is then returned to RMT.

9. RMT then sends the PDU to the KFA

10.The KFA write the PDU to the outgoing port to be passed to the underlying IPCP

Figure 20, “Sequence diagram showing the interactions when the SDU is sent over

a trusted underlying DIF” shows the sequence of interactions between the RINA

components when applying the MLS Encryption policy to an SDU being sent over a

trusted DIF.

Figure 20. Sequence diagram showing the interactions

when the SDU is sent over a trusted underlying DIF

1. When an SDU is to be written to the underlying flow, it is passed to RMT. RMT

looks up the port to be used to send the PDU to the destination address in the PDU

Forwarding Table (PFT) via pft_nhop.

2. The PFT returns the port ID of the next hop

3. RMT sends the PDU to be serialised by calling pdu_serialize

4. PDU Serialization then invokes the SDU Protection Module, which applies the

MLS Encryption policy. This policy determines that the PDU does not need to be

protected, as it to be sent over a trusted underlying flow

5. The SDU without protection is returned to PDU Serialization

6. The serialized PDU is then returned to RMT.

Deliverable-4.2 (1st version)

61

7. RMT then sends the PDU to the KFA

8. The KFA write the PDU to the outgoing port to be passed to the underlying IPCP

Figure 21, “Sequence diagram showing the interactions when the SDU is received from

an underlying DIF” shows the sequence of interactions between the RINA components

when applying the MLS Encryption policy when an SDU is received from an untrusted

DIF and forwarded over a trusted DIF. The SDU received from the N-1 DIF is decrypted

before being forwarded over the trusted DIF in the clear (i.e. without encryption).

Figure 21. Sequence diagram showing the interactions

when the SDU is received from an underlying DIF

1. When an SDU is received by the underlying flow, the N-1 IPCP identifies the port

to which the SDU should be forwarded and calls the KFA to send the SDU

2. The KFA posts the SDU to the RMT instance associated with the flow by calling

rmt_receive

3. RMT sends the PDU to be deserialised by calling pdu_deserialize

4. PDU Serialization then invokes the SDU Protection Module by calling sdup_verify,

which applies the MLS Encryption policy.

5. The MLS Encryption policy obtains the necessary security parameters, e.g. the

session encryption key and encryption algorithm, from the Security Context that is

established during authentication.

Deliverable-4.2 (1st version)

62

6. The Security Context returns the security parameters for the flow from which the

PDU was received.

7. The MLS Encryption policy uses the security parameters to verify and remove the

protection from the SDU, e.g. to decrypt it

8. The deserialized and decrypted PDU is then returned to RMT.

9. RMT looks up the port to be used to send the PDU to the destination address in the

PDU Forwarding Table (PFT) via pft_nhop.

10.The PFT returns the port ID of the next hop

11.RMT sends the PDU to be serialised by calling pdu_serialize

12.PDU Serialization then invokes the SDU Protection Module, which applies the

MLS Encryption policy. This policy determines that the PDU does not need to be

protected, as it to be sent over a trusted underlying flow

13.The SDU without protection is returned to PDU Serialization

14.The serialized PDU is then returned to RMT.

15.RMT then sends the PDU to the KFA

16.The KFA writes the PDU to the outgoing port to be passed to the underlying IPCP

4.3. Achieving BPC in RINA

Two options for achieving the BPC functionality in RINA have been identified. These

options will be discussed in the next version of this deliverable.

Deliverable-4.2 (1st version)

63

4.4. MLS Implementation for PoC

4.4.1. Communications Security

The IRATI stack, described in D2.3 [D2.3] is an implementation of the RINA IPC model

for a Linux-based Operating System. The functionalities of the IPC Process have been

partitioned between the user and kernel spaces in order to enable the prototype to

achieve and adequate level of performance and functionality. The shim IPC Processes

and the data transfer and data transfer control parts of the IPC Process are implemented

in kernel space, while the layer management functions of the IPC Process and the local

IPC Manager are implemented in user space.

The software architecture of the SDU Protection Module and how it fits into the IRATI

stack is described in Section 5. The MLS Encryption policy specified in Section 4.1 will

be implemented as an SDU Protection policy and integrated with the SDU Protection

Module in the IRATI stack.

4.4.2. Boundary Protection Component

The BPC PoC implementation will be discussed in the next version of this deliverable.

Deliverable-4.2 (1st version)

64

4.5. Component-Level PoC Tests for MLS

4.5.1. Test Environment

The MLS test environment consists of a Debian-based virtual machine (VM) image

with the latest stable build of the IRATI stack installed. The VM image is hosted in

VirtualBox, which is running on a Windows machine.

4.5.2. Tests to be Performed

Testing of the implementations will focus on component-level verification of the

MLS Encryption Policy and the BPC. These tests aim to evaluate whether or not the

implementations of the MLS components operate without error and according to their

specifications. This is to prove the correct functionality of the implementation. The

following tests will be performed to verify the implementation.

Table 1. Verification test of MLS Encryption policy

Test Identifier: SUITE_MLS/TRT/Crypto/1

Type of Test Component-level

Functionality Verification

Version 1.0

Reference to Requirements D2.1 [D2.1], Section 3.2 -

security

Test Summary:

This test is for assessing the functionality of the

Communications Security component when data classified at

High is sent over a DIF classified at Low.

Objectives: To verify that the SDUs are encrypted when

sending data over an untrusted network

Experimentation Environment:

Test location: MLS Testbed.

Topology: see Figure 17, ““Bump in the wire” solution”

Traffic Load: User traffic will be produced by Traffic

Generators.

Deliverable-4.2 (1st version)

65

Other RINA components used: SDU Protection Module

Test Procedure:

Initial Conditions:

• Controlled variables: controlled sending of data classified

at High

• Uncontrolled variables: N/A

Checks to be performed in the test:

• Verify that the data is successfully encrypted by the MLS

policy at IPCP-2

• Verify that the data is successfully decrypted by the MLS

policy at IPCP-3

Verdict Criteria:

Expected results:

• The data must be encrypted by IPCP-2 prior to sending it

over the DIF classified at Low.

• The data must be decrypted by IPCP-3.

Metrics: N/A

Results/Comments:

N/A

Table 2. Verification test of the BPC functionality

Test Identifier: SUITE_MLS/TRT/BPC/1

Type of Test Component-level

Functionality Verification

Version 1.0

Reference to Requirements D2.1 [D2.1], Section 3.2 -

security

Test Summary:

Deliverable-4.2 (1st version)

66

This test is to verify the functionality of the BPC component

when data classified at High is sent to an application classified

at Low.

Objectives: To verify that only the SDUs containing sensitive

data are blocked by the BPC

Experimentation Environment:

Test location: MLS Testbed.

Topology: see ???

Traffic Load: User traffic will be produced by the two

application processes

Other RINA components used: all - the BPC application under

test will run over a RINA network

Test Procedure:

Initial Conditions:

• Controlled variables: classification of the data sent

• Uncontrolled variables: N/A

Checks to be performed in the test:

• Verify that data classified at High is blocked

• Verify that the data classified at Low is forwarded to the

Low application

Verdict Criteria:

Expected results:

• Data sent from the High application to the Low application

that is classified at High should be blocked by the BPC.

• Data sent from the High application to the Low application

that is classified at Low should be forwarded by the BPC.

Metrics: N/A

Results/Comments:

Deliverable-4.2 (1st version)

67

N/A

4.6. Next Steps for MLS Activities

This deliverable defines the two components needed to achieve an MLS architecture

in RINA: communications security to protect the end-to-end transfer of data between

IPC/Application Processes; and a boundary protection component to provide assured

data flow between IPC/Application Processes of differing sensitivity. Detailed technical

specifications of both components and how they fit in the RINA architecture are

provided. The interactions between the MLS components and RINA components have

been defined in sequence diagrams.

The next step for the Communications Security component is to implement the

MLS Encryption policy according to the specification of the SDU Protection Module

in Section 5. The policy will then be integrated with the SDU Protection Module

implementation. Further work will also be done in WP5 to investigate how the Manager

and Management Agent can be used to configure RINA components, e.g. the SDU

Protection Module, when setting up Communications Security in an MLS network.

Strategies for the Manager that enable to network to be automatically configured will

be defined.

The next step for the Boundary Protection Component is to implement the BPC at the

DAF-level as described in Section 4.4.2. Two applications that send and receive data

over RINA will also be implemented. The BPC implementation and two applications

will then be integrated with the RINA network installed on the TRT testbed, described

in Section 4.5.1.

Deliverable-4.2 (1st version)

68

5. Cryptographic Functions and Enablers
The SDU Protection module is a part of the IPC Process (IPCP) data path. The SDU

Protection function is executed before the SDU is handed over to the underlying IPCP.

When data are handled between IPCPs of different DIFs, SDU Protection is applied. It

is intended to apply selected protective mechanisms to outgoing SDUs at the sending

side and check incoming SDU at the receiving side. This is the last or the first operation

applied, respectively. It aims to provide a level of protection depending on the applied

policy. All the functionality of SDU protection is represented as a policy. Thus there

is not a predefined common mechanism. SDU protection performs a transformation

from SDU to protected SDU when the SDU is sent from the IPCP. It performs a

transformation from protected SDU to SDU when the SDU is received by the IPCP.

According to the overall RINA specifications, SDU protection can perform variety of

functions, namely: i) lifetime limiting, ii) error checking, iii) data integrity protection,

iv) data encryption, but also data compression or other two-way manipulations that

may depend on the N-1 flow used. SDU Protection depends on a policy that is specific

to each (N-1)-flow. SDU Protection can be used to create a secure channel between two

IPCPs, though it is not excluded that SDU Protection may apply the same policy to all

(N-1) flows thus creating shared security for whole N-DIF.

It is important to highlight that a DIF uses SDU protection to protect itself from

untrusted N-1 DIFs (distributed applications -DAFs- that really care about protection

should use their own SDU Protection policies). Securing communications in RINA is

implemented via the SDU protection module. As its name suggests, the security is

applied to Service Data Units (SDU). The SDU denotes a data block that is exchanged

between IPCPs on a single RINA node. This follows the idea that DIFs are network areas

that are independent of other possible DIFs.

A SDU is a unit of data that has been passed down from an IPCP to a lower IPCP and

that has not yet been encapsulated into a protocol data unit (PDU) by the lower layer.

It is a set of data that is sent by a user of the services of a given layer, and is transmitted

semantically unchanged to a peer service user.

SDU protection is the part of the RINA specifications that provides functions for

securing data transfer between communicating IPCPs. SDU protection is applied as

the last operation on data before leaving the current IPCP. These data are packaged

in SDUs. Each SDU is processed separately according to the specific SDU Protection

context associated with each flow. Thus SDU protection is applied on a per-flow basis.

SDU context is associate with flows to define which policy is to be applied to all SDUs

of the flow. Currently, three different SDU Protection Policies are defined:

Deliverable-4.2 (1st version)

69

1. Null SDU Protection is a policy that performs no transformation - this protection

mechanism is in general applicable to ShimDIFs, where protective mechanisms

related to a particular communication technology or protocol are used.

2. Basic SDU Protection is a policy that applies fundamental protective

mechanisms. These mechanisms include time life limiting (TTL) and error checking

(CRC).

3. Cryptographic SDU Protection relies on the implementation of the following

four key SDU protection mechanisms that applies to every SDU:

• SDU Lifetime method deals with limiting maximum lifetime of each SDU to

avoid its unlimited circulating in a network. As a part of this mechanism, replay

detection is provided.

• SDU Compression method specifies methods of compressing data in order to

reduce the data size or to add entropy to the data when encryption is to be

applied.

• SDU Encryption method specifies which method to use for securing content by

applying cryptographic encryption.

• SDU Integrity method specifies which algorithm to use for computing

cryptographic hash of the content in order to enable detection of changes of the

SDU content.

Suitable methods are well known for implementing all four SDU protection

mechanisms. SDU protection mechanisms define profiles that provide a particular

algorithm and its possible parameters. SDU Protection is located at the boundaries of

the IPCP. For each SDU, the module knows to which N-1 flows this SDU has to be

written to or has been read from. It is this possible to associate SDU Protection contexts

to N-1 flows. SDU is sent to underlying DIF using specified port. The SDU protection

policy proposed in this section does not assume that the underlying N-1

flow is reliable. For this reason, protected SDUs need to carry enough additional

information for receiver to successfully decrypt them.

5.1. Cryptographic Concepts used in SDU Protection Policy

This section provides a description of concepts, methods, algorithms, etc that are used

in the design, specification and implementation of the SDU Protection module.

Deliverable-4.2 (1st version)

70

5.1.1. Replay Detection

Replay detection is implemented using a replay window mechanism as specified in

[RFC2401]. Each crypto block is numbered using a sequence number to support

replay detection. This sequence number must be protected by appropriate integrity

mechanism. In short, replay detection works by checking duplication of SDUs and by

discarding SDUs which are too old. Both of these conditions can be realized using SDU

numbering.

5.1.2. Ciphering Modes

It is not possible to use stream ciphering modes for this particular encryption policy as

these depend on reliable data delivery. Instead, block ciphering modes are suitable in

this case. CTR encryption using a counter value is an efficient method used for creating

a secure channel over an unreliable data delivery service. Algorithms such as DES,

3DES and AES can be used in this mode. There are two considerations that must be

followed to apply this mode correctly:

• The same secret key and counter must not be reused for encrypting different

messages

• An integrity check is necessary to protect a message from modification

5.1.3. HMAC

A Hash-based Message Authentication Code (HMAC) is a function for calculating

message authentication code that involves a secret cryptographic key. HMAC is usually

used for ensuring message integrity and in key derivation functions.

HMAC is defined (according to [RFC2401]) as follows:

HMAC(K,m) = H(K XOR opad , H(K XOR ipad , m))

where

• H is a cryptographic hash function, e.g. SHA-1,

• K is a secret key adjusted to block size of H (either padded or hashed),

• m is the message to be authenticated, and

• opad and ipad are the outer and inner padding, respectively.

Deliverable-4.2 (1st version)

71

5.1.4. Diffie-Hellman Key Exchange

The Diffie-Hellman (DH) method of secret key exchange is based on existence of the

following equation:

g^ab = (X_b)^a MOD p = (X_a)^b MOD p

X_a = g^a MOD p

X_b = g^b MOD p

Wherein, p is a large prime number, g is generator and a , b are secret random

numbers private to each party. An initiator sends message (p,g,X_a) to a

responder, which selects its secret b to compute X_b as its response. Both

parties can then compute the same shared g^ab secret key.

5.1.5. Keying Material

The key generation mechanism described in this section stems from an adaptation of

IKE methods, as described in RFC 4306 [RFC4306]. Each party p needs three write

keys, namely:

• session key used for encryption (K_enc^p). The size of this key depends on the

cipher algorithm used. Usual values are 56bits, 64bits, 80bits, 128bits, 192bits, or

256bits.

• session key used for hashing (K_dig^p). The general rule is that the key length

for message integrity checking should be the same as the length of the key used for

message encryption.

• session key used as nonce for counter generation (K_seq^p). The length of this

key depends on the block size of the encryption cipher used. This is because, the

counter is obtained by concatenating a sequence number and counter key. Typical

block sizes are 64bits, 96bits, 128bits or 192bits.

These write keys are generated from the single Master Secret Key K_master that

needs to be provided at the initialization of the secure channel. Let PRF(K,S) be a

pseudo-random function, e.g. based on SHA-256 algorithm, negotiated by both parties

as a part of security context of the secure channel. According to IKEv2, keying material

can be generated in the following way. First, shared secret K_seed is computed

from Master Secret Key K_master and random generated values N_i and N_j :

K_seed = PRF(N_i | N_r, K_master)

Deliverable-4.2 (1st version)

72

where

• N_i and N_r are random nonce values generated by initiator and responder,

respectively,

• K_master is a Master Secret Key that can be exchanged using DH method or can

be a pre-shared key.

Note that while K_master must be kept secret by communicating parties, nonce

values N_i and N_r may be sent as plaintext. Computed secret K_seed is the

key derivation key used for computing a collection of session write keys using PRF^

+(K,S) function. This computation consists of a chain of PRF function applications

defined as follows:

PRF^+ = T_1 | T_2 | ...

where

• T_1 = PRF(K,s | 0x1)

• T_i+1 = PRF(K, T_i | S | 0x(i+1))

Function PRF^+(K,S) generates blocks of data enjoying pseudorandom

properties. These blocks thus can be used as session keys. Computing all necessary

keying material is performed by applying PRF+ function until there is enough data,

which depends on the key sizes of the algorithms used for encryption, hashing and

counter generation. Mapping T_i blocks to keys is straightforward. Each key takes

as many bits from T_i blocks as necessary. The computation ends when all keys

have assigned values. The computation of writing keys for the initiator and responder

is defined as follows:

• For initiator:

(K_enc^i | K_dig^i | K_seq^i) = PRF^+(K_seed, N_i | N_r)

• For responder:

(K_enc^r | K_dig^r | K_seq^r) = PRF^+(K_seed, N_r | N_i)

Using the above defined equations both communicating parties are able to generate all

the keying material knowing a common secret key and two nonces. These nonces can

Deliverable-4.2 (1st version)

73

be generated by each party and exchanged during the connection establishment and

authentication phase.

5.1.6. Counter Mode

Ciphers can be used in various ciphering modes. However, only the Counter Mode is

initially considered for the proposed SDU Protection Policy. The counter mode allows

for an efficient implementation that provides an efficient method for encrypting and

decrypting high-speed data. It relies on the quality of the cipher and the uniqueness

of the counter value. The counter value consists of a sequence number and a nonce

based on a sequence key. This provides the advantage that each encrypted block is

independent of other blocks, which works well if data delivery is not reliable. For

reliable data transport, this mode adds a little overhead represented by the necessity to

maintain a sequence number counter with specific properties - the counter must not be

repeatedly used with the same key. The counter length must be equal to the block-size

of the cipher algorithm used for data encryption. The method for counter computation

varies with block-size. The counter is computed using the following recipe:

counter = K_seq | uint32(seq_num) | uint32(0x0)

The counter can be used with different block sizes. Current cipher suites support blocks

of length 64, 96, 128 and 192.

5.1.7. Selecting algorithms for SDU Protection Policy

The designed SDU Protection policy based on cryptographic methods provides a secure

communication channel that meets requirements identified in D4.1. This is achieved

by combining four mechanisms for controlling PDU lifetime, offering the possibility to

encrypt SDU content, protecting SDU from unauthorised modifications and reducing

the size of SDU by applying compression. Encryption and integrity mechanisms secure

the communication. The strength of the security measures applied depends on the

combination of the methods used for encryption and integrity protection. The following

table shows the possible combinations and their properties in terms of the security

provided as defined in the presented SDU Protection Policy. More information on the

status of individual algorithms can be found at [ngenc]. In the table, algorithms are

classified into three groups:

• Avoid: algorithms that do not provide an adequate security level against modern

threats. It is recommended that these algorithms should not be used in application

relying on strong security requirements.

Deliverable-4.2 (1st version)

74

• Legacy: algorithms provide a marginal but acceptable security level. These

algorithms can be used if there is not better option. For these algorithms there are

techniques that help to mitigate the security problems and thus increate a level of

security provided to acceptable.

• Acceptable: algorithms provide adequate security.

Table 3. Message integrity algorithms:

Algorithm Status (possible mitigation)

MD5 avoid

HMAC-MD5 legacy

Ripemd160 legacy

SHA1 legacy (short key lifetime)

HMAC-SHA1 acceptable

SHA256 acceptable

SHA384 acceptable

SHA512 acceptable

Table 4. Message encryption algorithms:

Algorithm Status

Aes acceptable

Des avoid

3Des legacy (short key lifetime)

Rc2 avoid

The strength of the algorithm is relative to a security level expressed in bits [NIST SP

800-131].

Algorithm Security Level

Aes-128 128

Aes-192 192

Aes-256 256

Des 56

3Des 80 (112)

Rc2 40

Deliverable-4.2 (1st version)

75

Algorithm Security Level

SHA1 80

SHA256 128

SHA384 192

SHA512 256

Different classes of applications requires different levels of security. The following are

different application classes:

Application Class Minimum security level

Low ≤ 64

Medium ≤ 128

High ≤ 256

Extreme > 256

Achieving a higher security level means performing more computations. Thus the

correct application level should be considered with respect to not only security but also

costs.

According to the given classification of algorithms the combination of security

algorithms for integrity and encryption is classified considering the least security level

provided. This means that for achieving the High security level, AES-256 and SHA512

combination should be selected.

5.2. Specification and Design of the SDU Protection
Component

5.2.1. Software Architecture of the SDU Protection Component

This section provides a software architecture in block diagrams and in terms of the

functions and workflows at a high-level level, specifically for SDU protection and how

it works and fits into the IRATI RINA implementation. SDU Protection functions

are invoked from the PDU serialization and deserialization module. Serialization/

deserialization (SerDes) tasks are part of RMT that operates over PDUs. The block

diagram showing the context of SDU Protection is in Figure 22, “SDU Protection Block

Diagram”.

Deliverable-4.2 (1st version)

76

Figure 22. SDU Protection Block Diagram

SDU Protection is realized using SDU Protection Policies. Thus, to integrate into

the IPCP architecture, the SDU Protection container is specified which provides an

interface between RMT and the instantiated policies. Also this container implements

the necessary management functions enabling policy initialization and update if

necessary.

The overall functionality of SDU Protection is split into two operations:

• SDU Protection - For serialized PDU (sPDU or SDU), it computes a protected SDU

(pSDU) that can be sent through the port of the underlying IPCP. It uses the SDU

Protection policy associated with the SDU’s N-1 flow to perform all the necessary

operations on the serialized PDU.

• SDU Verification - For protected SDUs received from the underlying IPCP it

computes the serialized PDU and provides it to RMT for further processing. If

validation fails, it provides a reason and further diagnostic information.

SDU Protection workflows are simple. There is a workflow for each direction of

processing. Figure 23, “SDU Protection Workflow Diagram” provides a visualization of

both workflows.

Deliverable-4.2 (1st version)

77

Figure 23. SDU Protection Workflow Diagram

• The SDU Protection workflow starts with a serialized PDU that is provided by

the SerDes Module. To process the serialized PDU, SDU Protection has to find

the Security Context associated with the PDU’s flow. Applying SDU Protection is

done according to the information provided by the Security Context. This contains

information on the methods for TTL computation, content protection, data integrity

computation, or compression and their parameters, such as encryption and integrity

keys. If a Security Context is not found for the flow, then the default Security Context

is used. This default Security Context provides TTL-based lifetime control and CRC

calculation for data integrity computation.

• The SDU Verification starts to process new incoming (protected) SDUs. For this

SDU, the Security Context needs to be retrieved in order to apply correct SDU

validation function. If found, parameters and methods for validating protected SDU

are taken from Security Context found by using the identified flow as a key. If a

Security Context cannot be found then the default Security Context is used. Note that

this may lead to an error if communicating parties have not properly synchronized

their security contexts. Applying methods from the Security Context yields to a

serialized PDU if SDU passes all validation steps. If some of the validation steps fail,

then an error is reported and additional diagnostics information is provided.

Deliverable-4.2 (1st version)

78

5.2.2. SDU Protection Interfaces

The SDU Protection Container defines two interfaces, namely,

SduProtectionControl and SduProtectionData . The first interface contains

functions to modify the security settings of N-1 flows. The second interface is used to

handle data to be protected or verified by the SDU protection module. Because SDU

protection resides at the bottom of the IPCP, it can distinguish the SDUs using the

outbound/inbound port. Thus all operations are related to a port object defined by

means of the port id and N-1 DIF. The SduPort structure is defined as follows:

struct {

 uint32 dif_id;

 uint32 port_id;

} SduPort;

The SduProtectionControl interface provides a way of specifying which policy

will be used with the SduPort and of setting up a newly instantiated policy with the

necessary parameters. The interface is defined as follows:

enum { SDUPPS_ACTIVE, SDUPPS_KEY_MISSING, SDUPPS_LNONCE_MISSING,

 SDUPPS_RNONCE_MISSING } SduProtectionPolicyStatus;

interface {

 SduProtectionResult ResetSduPortProtection(in SduPort port_id)

 SduProtectionResult SetSduPortProtection(in SduPort port_id, in

 SduProtectionPolicy policy)

 SduProtectionResult GetSduPortProtection(in SduPort port_id, out

 SduProtectionPolicy policy, out SduProtectionPolicyStatus status)

 SduProtectionResult SetSduPolicyAttribute(in SduPort port_id, in

 string name, in byte[] value)

 SduProtectionResult GetSduPolicyAttribute(in SduPort port_id, in

 string name, out byte[] value)

 SduProtectionResult ApplySduPortProtection9in SduPort port_id)

} SduProtectionControl;

• ResetSduPortProtection removes all information associated with the port id.

This function should be called when a flow is deallocated. After calling this function

Deliverable-4.2 (1st version)

79

all information related to SDU Protection is removed and the SDU Protection

module uses the default policy for all subsequent SDUs.

• SetSduPortProtection associates specified SDU protection policy settings to the

specified port id. Setting an SDUProtectionPolicy creates a new instance of the

policy, but this policy is not used until it is fully initialized.

• GetSduPortProtection gets information about the SDU Protection Policy

associated with the specified port id.

• SetSduPolicyAttribute sets the Sdu Protection Policy attribute of the given name.

• GetSduPolicyAttribute gets the Sdu Protection Policy attribute of the given

name.

• ApplySduPortProtection applies changes to settings of the SDU Protection

Policy. This function serves for updating policy methods according to settings

performed by SetSduPolicyAttribute .

The SduProtectionData interface is defined as follows:

interface {

 SduProtectionResult ProtectSDU(in SduPort port_id, in SduData in_sdu,

 out ProtectedSdu out_sdu);

 SduProtectionResult VerifySDU(in SduPort port_id, in ProtectedSdu

 in_sdu, out SduData out_sdu);

} SduProtectionData;

The meaning of SduProtectionData operations are as follows:

• ProtectSDU performs protective operations according to the SduPolicy assigned

to the SduPort on input SduData . The result is provided in ProtectedSdu .

• VerifySDU verifies provided ProtectedSdu according to the SduPolicy instance

associated with the SduPort .

5.2.3. Report of SDU Protection Operations: The Results and
Error Codes

To report the result of SDU Protection operations and specify possible errors, the

following enumeration is defined.

enum { SDUP_SUCCESS,

Deliverable-4.2 (1st version)

80

 SDUP_HMAC_VERIFICATON_ERROR,

 SDUP_DECRYPTION_ERROR,

 SDUP_COMPRESSION_ERROR,

 SDUP_FLOW_NOT_FOUND,

 SDUP_FLOW_EXISTS,

 SDUP_KEY_TOO_SHORT,

 SDUP_NO_ROOM,

 SDUP_ACCESS_DENIED,

 SDUP_OTHER_ERROR,

} SduProtectionResult

where

• SDUP_SUCCESS represents that no error occurred during SDU Protection

operation

• SDUP_HMAC_VERIFICATON_ERROR represents the case when the

message digest field and computed digest of the SDU differ. This can represent a

situation when the SDU was modified in transit

• SDUP_DECRYPTION_ERROR stands for an error found during decryption of

SDU protected data,

• SDUP_COMPRESSION_ERROR represents any error that occurred during

decompression of SDU data. This may occur if different methods were used for

compression and decompression of the data

• SDUP_FLOW_NOT_FOUND for operations specified for a flow. It means that

the specified flow does not exist.

• SDUP_FLOW_EXISTS is used when the specified flow already exists. It cannot

be create twice.

• SDUP_KEY_TOO_SHORT means that the provided key is too short.

• SDUP_NO_ROOM informs that SDU Protection module has not available

resources to complete the requested operation.

• SDUP_ACCESS_DENIED means that the operation cannot be completed

because access was denied.

• SDUP_OTHER_ERROR represents other errors that can occurs during

verification of SDU.

Deliverable-4.2 (1st version)

81

5.3. SDU Protection Policies

SDU Protection performs operations as specified in the SDU protection policy set for

the communication port. Two policies are defined.

5.3.1. Basic SDU Protection Policy: Simple CRC and TTL

Name: SDUP-CRC-TTL

Title: Simple CRC and TTL

Brief Description: This policy computes or checks the CRC on the SDU using the

specified CRC polynomial. It also computes and checks TTL.

Domain of Applicability: This module might be used in a DIF with a lower layer

subject to bursty errors and when no additional SDU protection is necessary. Therefore,

only error checking and lifetime limiting will be provided by this policy. Because this

policy does not require advanced configuration, it is often used as a default SDU

protection policy.

Constraints and Assumptions: This module depends on the characteristics of well-

chosen CRC polynomials. A CRC of n-bits is able to detect all 1 and 2 bit errors, all odd

numbers of errors and all errors with a burst less than n bits in length, and will only

fail to detect 1 in 2^n other patterns of errors. A CRC of n-bits should not be used with

PDUs with length greater than 2^(n-1).

Policy Specifications: This policy computes CRC-16 and maintains TTL. Therefore

it prepends two fields to any SDU.

CRC value is an n-bit unsigned integer representing the computed CRC value using

the CRC-16-ANSI algorithm. This value is computed over SDU content including the

TTL value. Thus, the TTL value should be determined first. The TTL value is an 8-bit

unsigned value representing a number of hops remaining.

The structure of protected SDU is defined as:

struct {

 byte[CRC_LEN] crc;

 uint16 ttl;

 Pdu pdu;

} CrcTtlSdu

Management Elements

Deliverable-4.2 (1st version)

82

This module expose the following management elements that are used for setting the

policy:

• string PolynomialName : a name of polynomial used for CRC calculation

• uint16 ITTL : an initial value of TTL

The module also contain common counters exposed through management elements:

• uint64 SentSDUs : total number of sent SDUs

• uint64 SentOctects : total number of sent octets

• uint64 ReceivedSDUs : total number of received SDUs

• uint64 ReceivedOctets : total number of received octets.

• uint64 ReceivedErrors : number of SDUs containing error

Outbound Specification:

When processing a new PDU from RMT’s serialization module, this policy calculates

a CRC for the PDU and adds a TTL value. Then the SDU is passed to the (N-1)-DIF

through the specified destination port.

Inbound Specification:

When processing an incoming SDU, this policy first calculates the CRC and compares

it with the values in the incoming SDU. Then the policy checks TTL. If both checks

succeed then the content of the SDU is relayed to RMT’s deserialization for further

processing.

5.3.2. Cryptographic SDU Protection Policy: AES Counter Mode

Name: SDUP-CRYPTO-AES-CTR

Title: Cryptographic SDU Protection Policy based on AES Counter Mode

Brief description: This policy protects SDUs by using cryptographic algorithms to

prevent eavesdropping and tampering. Because of the way the SDU Protection Policy

processes data, only counter-mode is supported. In this policy the AES algorithm

is provided in two lengths: either 128 or 256. This is similar to AES utilization in

TLS [RFC3268]. For message integrity MD5 or SHA1 in different key lengths can be

selected.

Domain of Applicability: This module might be used in a DIF with a lower layer

that does not provide any security measures and when the security measures should be

Deliverable-4.2 (1st version)

83

provided for the current DIF. Note that this kind of security represents IPCP to IPCP

protection and not AE to AE protection. By applying this protection the size of SDU

increases by 24—28 bytes (depending on the HMAC algorithm applied).

Constraints and Assumptions: This policy provides cryptographic algorithms

to prevent eavesdropping and tampering. It can be configured with predefined

combinations of encryption and integrity algorithms to provide the required security

and computation costs.

AES-CTR has many properties that make it an attractive encryption algorithm for

use in high-speed networking. AES-CTR uses the AES block cipher to create a stream

cipher. Data is encrypted and decrypted by XORing it with the key stream produced by

AES-encrypting sequential counter block values. AES-CTR is easy to implement, and

AES-CTR can be pipelined and parallelized. AES-CTR also supports key stream pre-

computation.

The security considerations for the use of AES-CTR are known from IPSec [RFC3686]

and TLS/DTLS [modagugu]:

• Counter blocks must not be used more than once with a given key. This means that

sequence number must not be used twice with the same key to encrypt different data.

• Pre-shared key is supported as encryption keys are generated from the master key,

which itself is not used for encryption. Thus, because for each connection there

are different pair of keys, counter blocks generated by client and server can safely

overlap.

• Message integrity mechanisms must be employed because, as with other stream

ciphers, data forgery is trivial without a message integrity mechanism.

The maximum number of SDUs that can be encrypted using the keys depends on the

size of sequence number. As this value is set to 64-bits, it represents 2^64 SDUs. Once

the sequence number is about to rollover, the Flow Allocator Instance managing the

flow will create another EFCP connection with different cep-ids, preventing the rollover

from happening. This operation is transparent to the SDU Protection module.

5.3.2.1. Specification:

This policy extends the SDU with new fields necessary for holding information related

to cryptographic protection of the transmitted data.

The structure of protected SDU is defined as follows:

Deliverable-4.2 (1st version)

84

struct {

 uint64 seq_num;

 byte [HMAC_LENGTH] mac;

 byte [PDU_SIZE] payload;

} SduCryptoAesCtr;

HMAC_LENGTH is either 20 bytes for the SHA-1-based HMAC or 16 bytes for the MD5-

based HMAC. The length of 'payload' corresponds to the PDU size, as using AES-CTR

does not require padding.

Management Elements: This module exposes the following management elements

that are used for setting the policy:

• string CipherSpecification : specifies which cipher suite to use. Possible

values are AES-128-CTR, AES-256-CTR.

• string MacSpecification : message authentication code algorithms can be

specified by selecting from one of the possible options: HMAC-MD5-128, HMAC-

MD5-96, HMAC-SHA1-160, HMAC-SHA1-96

• string MasterKey : a string representing the Master key used for generating read

and write keys for encryption as well as for HMAC computation.

• string LocalNonce : a local NONCE value used for generating keys

• string RemoteNonce : a remote NONCE value used for generating keys

The module also contain common counters exposed through management elements:

• uint64 SentSDUs : total number of sent SDUs

• uint64 SentOctects : total number of sent octets

• uint64 ReceivedSDUs : total number of received SDUs

• uint64 ReceivedOctets : total number of received octets.

• uint64 ReceivedErrors : number of SDUs containing error

• uint64 SequenceNumberCounter : a counter used as a source of sequence

numbers for outgoing SDUs

Outbound Specification: When processing a new PDU from RMT’s serialization

module, this policy encrypts the content of the plain SDU and then computes the

message integrity value of the encrypted SDU. Then the SDU is passed to the (N-1)-DIF

through the specified destination port.

Deliverable-4.2 (1st version)

85

• Encryption: To encrypt a payload with AES-128-CTR, the encryptor sequentially

partitions the plaintext (PT) into 128-bit blocks. The final PT block MAY be less than

128-bits. This partitioning is denoted as: PT = PT[1] PT[2] … PT[n] . In order

to encrypt, each PT block is XORed with a block of the key stream to generate the

ciphertext (CT). The keystream is generated via the AES encryption of each counter

block value, with each encryption operation producing 128-bits of key stream. The

encryption operation is performed as follows:

FOR i := 1 to n-1 DO

 CT[i] := PT[i] XOR AES(CtrBlk)

 CtrBlk := CtrBlk + 1

END

CT[n] := PT[n] XOR TRUNC(AES(CtrBlk))

The AES() function performs AES encryption with the fresh key. The TRUNC()

function truncates the output of the AES encrypt operation to the same length as the

final plaintext block, returning the leftmost bits.

The counter block (CtrBlk) is obtained as follows:

struct {

 uint48 local_nonce; // low order 48-bits of LocalNonce string

 uint64 seq_num;

 uint16 blk_ctr;

 } CtrBlk;

• Message Integrity Computation: To compute message integrity, the selected

HMAC method is use. The MAC is computed for payload only. HMAC is defined

(according to RFC2104) as follows:

HMAC(K,m) = H(K XOR opad , H(K XOR ipad , m))

where

• H is a cryptographic hash function, e.g. SHA-1

• K is a secret key adjusted to block size of H (either padded or hashed), this key is

obtained from the master key using key generation method described in Section 6.

• m is the Sdu payload to be authenticated

Deliverable-4.2 (1st version)

86

• opad and ipad are the outer and inner padding, respectively

Inbound Specification: When processing incoming SDU, this policy first calculates

the CRC and compares it with the values in the incoming SDU. Then the policy

checks the TTL. If both checks succeed then the content of SDU is relayed to RMT’s

deserialization for further processing.

• Decryption: Decryption is similar to encryption. The decryption of n ciphertext

blocks is performed as follows:

FOR i := 1 to n-1 DO

 PT[i] := CT[i] XOR AES(CtrBlk)

 CtrBlk := CtrBlk + 1

END

PT[n] := CT[n] XOR TRUNC(AES(CtrBlk))

The AES() and TRUNC() operate identically as in the case of encryption. The counter

block is obtained as follows:

struct {

 uint48 remote_nonce; // low order 48-bits of RemoteNonce string

 uint64 seq_num;

 uint16 blk_ctr;

} CtrBlk;

• Message Integrity Checking: To check the message integrity, the checker first

computes the integrity message using HMAC method defined in the Message

Integrity Computation section and then it compares the result with provided value

stored in SduCryptoAesCtr.mac .

5.3.3. Interdependencies with other components

The SDU Protection module requires that an SDU Protection Policy is selected for

every flow and also that, in the case of a Crypto-based SDU Protection policy, all four

methods are negotiated between the communicating parties and the master key and

two nonces are agreed. This SDU Protection depends on the authentication component

for obtaining the necessary information. It is the responsibility of the authentication

module to provide the negotiated data. SDU Protection defines a control interface that

can be used to set the SDU protection policy for each flow. This is described in the next

section. MLS, described in Section 4, will define a new policy for SDU Protection.

Deliverable-4.2 (1st version)

87

5.3.4. Changes to the current IRATI stack for Integrating Other
Policies

Because SDU Protection is entirely specified as a policy, the RINA specifications do

not need to be modified. The IRATI stack currently has a hardcoded implementation

of SDU Protection, which implements the Basic SDU Protection policy described in

this document. This Basic SDU Protection policy is used as the default SDU Protection

Policy in PRISTINE. Since the IRATI implementation is hardcoded, in order to allow

the integration of other SDU Protection policies, a new mechanism enabling the

execution of SDU Protection functions as defined in the SDU Protection Security

Context needs to be implemented. Fortunately, since the SDU Protection functions are

called from the Serialization/Deserialization module, modifications are limited to this

module and SDU Protection is isolated from the rest of the IRATI stack.

5.4. Implementation of SDU Protection for PoC

The Proof of Concept implementation tests the feasibility of the use of the native

Linux Crypto API for SDU encryption and integration of the basic SDU protection

mechanism with the rest of the stack. Configuration of the implemented modules is

part of the security manager configuration of the IPCM, which is also described in the

Authentication part of this deliverable.

The following describes how to configure SDU Protection and the modifications made

to enable us to conduct PoC tests.

5.4.1. Configuration of SDU Protection

As was just mentioned the configuration of SDU Protection is possible from the IPC

Manager (IPCM) configuration file as part of the securityManager configuration

dictionary, specifically using the authSDUProtProfiles dictionary. Here we can

define the default profile as well as profiles to be used for specific N-1 DIFs. An example

of the relevant (ignoring authentication configuration for clarity) configuration looks

like this:

"authSDUProtProfiles" : {

 "default" : {

 "encryptPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

Deliverable-4.2 (1st version)

88

 "name" : "encryptAlg",

 "value" : "AES128"

 }, {

 "name" : "macAlg",

 "value" : "SHA1"

 }, {

 "name" : "compressAlg",

 "value" : "default"

 }]

 },

 "TTLPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "initialValue",

 "value" : "50"

 }]

 },

 "ErrorCheckPolicy" : {

 "name" : "CRC32",

 "version" : "1"

 }

 },

 "specific" : [

 {

 "underlyingDIF" : "110",

 "TTLPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "initialValue",

 "value" : "50"

 }]

 },

 "ErrorCheckPolicy" : {

 "name" : "CRC32",

 "version" : "1"

 }

 }

]

}

The IPCM stores the parsed profiles in AuthSDUProtectionProfile objects that

contain PolicyConfig objects for policies defined by SDU Protection:

Deliverable-4.2 (1st version)

89

class AuthSDUProtectionProfile {

public:

 std::string to_string();

 PolicyConfig authPolicy;

 PolicyConfig encryptPolicy;

 PolicyConfig crcPolicy;

 PolicyConfig ttlPolicy;

};

This configuration gets to the kernel through a Netlink message as part of a

DIFConfiguration object. Finally in the kernel we store the profiles in the RMT

instance using the struct sdup_config structure that points to the default profile

and contains a list of the specific profiles. The individual profiles use the struct

dup_config_entry structure:

struct dup_config_entry {

 // The N-1 dif_name this configuration applies to

 string_t * n_1_dif_name;

 // If NULL TTL is disabled,

 // otherwise contains the TTL policy data

 struct policy * ttl_policy;

 u_int32_t initial_ttl_value;

 // if NULL error_check is disabled,

 // otherwise contains the error check policy

 // data

 struct policy * error_check_policy;

 //Encryption-related fields

 struct policy * encryption_policy;

 bool enable_encryption;

 bool enable_decryption;

 string_t * encryption_cipher;

 string_t * message_digest;

 string_t * compress_alg;

 struct buffer * key;

};

Deliverable-4.2 (1st version)

90

5.4.2. Extending the IPCP Structure

In order to be able to access the newly added configuration, the struct

ipcp_instance_ops was extended with two new functions:

const struct name * (* dif_name)(struct ipcp_instance_data * data);

int (* enable_encryption)(struct ipcp_instance_data

 * data,

 bool enable_encryption,

 bool

 enable_decryption,

 struct buffer * encrypt_key,

 port_id_t port_id);

Where the dif_name function returns the name of the DIF that the IPCP is part of. This

is needed to identify which SDU Protection configuration should be used when using a

specific N-1 DIF IPCP. This was implemented for all current IPCP instance types.

And the enable_encryption function was implemented only for Normal IPCPS

and just calls the RMT function rmt_enable_encryption that will be described

later. This message is exported to the user space components through the

RINA_C_IPCP_ENABLE_ENCRYPTION_REQUEST Netlink message, and is

used from the SecurityManager during Enrollment.

5.4.3. Modifications of RMT Structure

As previously mentioned, the SDU Protection profiles are stored in the RMT instance

structure:

struct rmt {

 ...

 struct sdup_config * sdup_conf;

 ...

};

This new data structure is managed by two new functions:

int rmt_sdup_config_set(struct rmt *

 instance, struct sdup_config * sdup_conf)

static struct dup_config_entry * find_dup_config(struct sdup_config *

 sdup_conf, string_t * n_1_dif_name)

Deliverable-4.2 (1st version)

91

Where rmt_sdup_config_set is used to replace the currently used SDU Protection

profiles with the newly provided ones. And the find_dup_config function finds a

specific SDU Protection profile for the specified N-1 DIF.

Also previously mentioned is the rmt_enable_encryption function that

manipulates the SDU Protection encryption policy associated with the specified N-1

port. Using this function we can enable and disable both encryption and decryption of

SDUs separately, as well as change the encryption key.

The most significant change to the RMT implementation is in the creation of N-1 ports.

The struct rmt_n1_port gained two new members:

struct rmt_n1_port {

 ...

 struct dup_config_entry * dup_config;

 struct crypto_blkcipher * blkcipher;

};

Where dup_config was explained earlier and blkcipher is a structure used by

Linux Crypto API for data encryption. This is here only for the purpose of the

PoC implementation and in the future both should be replaced with a single SDU

Protection Policy Data structure.

To propely initialize the updated rmt_n1_port structure, the n1_port_create

function now takes an additional parameter:

static struct rmt_n1_port * n1_port_create(port_id_t id, struct

 ipcp_instance * n1_ipcp, struct dup_config_entry * dup_config)

This parameter is directly stored in the rmt_n1_port structure and it is also used to

initialize the crypto_blkcipher structure.

The new information stored in the rmt_n1_port structure is used in the

n1_port_write and rmt_receive functions, where they are passed to the SerDes

module as parameters.

5.4.4. Modifications to SerDes Module

The main part of SDU Protection mechanism is implemented in the SerDes module.

This is to have the PoC mechanism in one place and the TTL and CRC mechanism were

already present here.

Deliverable-4.2 (1st version)

92

First of all TTL and CRC mechanism are no longer always on or always off controlled

by the kernel compilation; instead they use the configured SDU Protection profile. Both

mechanism are disabled by default, and can be enabled by defining the TTLPolicy and

ErrorCheckPolicy in the configuration profile. For now the ErrorCheckPolicy always

assumes the use of the CRC32 mechanism. The TTLPolicy can be further configured

by setting the initialValue parameter. The configured value is used as the initial TTL

value when serializing PDUs.

No other modifications were made to the TTL and CRC mechanisms, they still use the

same functions from the "du-protection.c" file and are still called after the PDU was

serialized, adding additional data to the front of the serialized PDU. And analogously

for deserialization.

The new mechanism added is SDU encryption. This mechanism is called after TTL and

before CRC mechanisms. Same as for TTL and CRC it’s enabled if the encryptPolicy

is defined in the configuration profile. For now the value of the encryptAlg parameter

is ignored and AES128, in ECB mode is always used. It’s important to note here that

this mode is not recommended for serious cryptographic work and was chosen just for

the PoC implementation for it’s simplicity. Support for the CTR and other modes will

be added later. The mechanism consists of two main parts:

• Size recalculation and padding. Since encryption interates over data in blocks of a set

size, we need to pad our data to a multiple of this block size. For now we implement

the PKCS#7 padding mechanism that appends N bytes of value N to the end of the

message.

• Encryption (and its opposite) is implemented as a new function in the "du-

protection.c" file and for now it simply encapsulates the function calls to the Linux

Crypto API.

int dup_encrypt_data(const char * src,

 char * dst,

 ssize_t src_size,

 ssize_t dst_size,

 struct crypto_blkcipher * blkcipher);

int dup_decrypt_data(const char * src,

 char * dst,

 ssize_t src_size,

 ssize_t dst_size,

 struct crypto_blkcipher * blkcipher);

Deliverable-4.2 (1st version)

93

Logically the opposite operations happen in the reverse order during deserialization:

• ErrorCheck

• Decryption

• Padding removal

• TTL check

Implementation of Hashed Message Authentication Codes was skipped for the purpose

of PoC since its functionality is similar to CRC. Continuing from the Proof of Concept,

implementation be modified to define policy sets in line with the rest of the kernel stack.

SDU Protection will then need to synchronize with Authentication and Enrollment.

Some of this was already done (enrollment can enable/disable the encryption and set

a new encryption key) but more work in this area is expected.

5.5. Next Steps for Cryptographic Activity: PoC Tests

The presented PoC implementation of SDU protection component consists of a

container providing a suitable environment for attaching SDU protection functions.

Implemented SDU protection component and a Crypto-based SDU Protection policy

provide necessary functions to establish a secure channel between two peer IPCPs

through the common underlying DIF.

Current PoC implementation aims to provide working SDU Protection component

integrated with IRATI network stack. When implementing PoC, some simplifications

were made. To complete implementation of Crypto-based SDU Protection Policy

the Hashed Message Authentication method for ensuring data integrity will be

implemented. Also, PoC implementation will be modified to define policy sets in

line with the rest of the kernel stack. SDU Protection will then need to cooperate

with Authentication and Enrollment components. Currently, SDU Protection is

configured along with Authentication from the IPC Manager (IPCM) configuration

file through authSDUProtProfiles, however some parameters of SDU Protection

need to be negotiated during Enrollment and so more work will be done in this

area. For cooperation with Authentication and Enrollment, SDU Protection specifies

management interface. Functions of this interface provide the means of setting SDU

Protection attributes as needed.

To test implemented SDU protection, basic Validation and Verification tests are

proposed followed by Performance Evaluation Tests.

Deliverable-4.2 (1st version)

94

• Validation tests are focused on checking that SDU Protection PoC design comply

with the requirements. Requirements for SDU Protection are specified in RINA

documents as applying following functions to each SDU: i) lifetime limiting, ii) error

checking, iii) data integrity protection, iv) data content protection.

• Verification tests prove that the SDU Protection component consistently operates

without error according to its design specifications. Several unit tests will be created

to check that individual functions of SDU Protection component are error-free.

These unit tests will exercise functions by applying different arguments within the

acceptable range as well as outside this range and check their results.

Besides applying outcomes the tests to the SDU Protection implementation, the PoC

implementation will be adjusted to comply with the style of IRATI implementation.

After finishing PoC tests and refining the source code of SDU Protection component,

the implementation will be ready for the integration in IRATI distribution. This will

enable the possibility to define and realize use cases in WP6 and perform integration

tests.

Deliverable-4.2 (1st version)

95

6. Key Management

Two architectural options (Centralised and Distributed) were suggested in D4.1 for

assuming the role of Key Server as the security sensitive entity. We further refined these

options and will discuss these choices in the next version of this deliverable.

Deliverable-4.2 (1st version)

96

7. Resiliency and High Availability

This chapter details the work done on resiliency and high-availability in PRISTINE

T4.3. It covers two main aspects: the resilient routing policy and the application of load

balancing concepts to RINA.

Regarding resiliency, we decided to focus implementation efforts on the Loop-

Free Alternate routing policy and omit the implementation of the Flow Liveness

Detection policy. There are two reasons for this. Firstly, there is already a rudimentary

liveness detection mechanism present in the IRATI implementation. While it is not

implemented according to the structure proposed in D4.1 [D4.1] (in IRATI it is a

function embedded in the Flow Allocator), its functions are still adequate to perform

resilient routing. Secondly, the Flow Loopback Detection policy would also require

some substantial changes to the Flow allocator, and will there be implemented as a part

of the RINA traffic generator (rina-tgen) [rina-tgen] development in WP6, Task 6.2.

This means that this function will be available at the DAF level, not the DIF policy level

as originally intended. The work regarding resilient routing is described in Section 7.1,

“Resilient Routing”

DAF Load Balancing was implemented for the main testing tool available in the

PRISTINE repository, namely rina-echo-time. It will be further extended to a

lightweight web server, NGINX in Task 4.3. The work regarding load balancing is

described in Section 7.2, “Load Balancing”

7.1. Resilient Routing

7.1.1. IRATI Routing and Forwarding Tables

As a starting point, the IRATI prototype implements a rudimentary link-state routing

policy based on the IS-IS protocol. Each IPCP maintains a graph representing its

current knowledge of the connectivity of the DIF, which is updated by distributing Flow

State Objects among IPCPs, which are kept in the Flow State Database (FSDB). Each

vertex of the graph represents an IPC Process while each edge represents an N-1 flow

between adjacent IPC Processes. Routes in the DIF are calculated by applying Dijkstra’s

Shortest Path algorithm to the graph. These routes are used to fill the PDU Forwarding

Table (PFT) with entries mapping an <address, QoS> pair to the list of N--1 ports that

have to be used to reach the next hop in the path towards the destination. Every IPC

Process computes its own PFT.

Deliverable-4.2 (1st version)

97

Figure 24. Organisation of the routing component in the IRATI prototype.

The organisation of the IRATI routing policy implementation is shown in Figure 24,

“Organisation of the routing component in the IRATI prototype.”. The routing software

follows a modular design that is partitioned in three components:

• The Routing Manager: responsible for the communication between the Routing

Software module and the IPC Process which uses it.

• The Routing Policy: responsible for updating and maintaining the network graph. It

sends / receives updated network connectivity information using the CDAP Protocol

and changes the local representation graph when needed.

• The Routing Algorithm: responsible for computing the PFT from the network graph.

Deliverable-4.2 (1st version)

98

In the IRATI prototype, the routing table that is calculated from the FSDB consists of a

list of routing table entries, where each routing table entry maps a destination address

(for a certain QoS id) to a list of next-hop addresses. Multiple next-hops are possible

per destination address for multicast support, but the available routing implementation

does not use multicast routes, therefore the next-hops list of each routing table entry

contains just one element, the unicast next-hop for a destination. The calculated routing

table is passed to the Resource Allocator. Note that IRATI does not explicitly maintain

a routing table, its entries are only used as an intermediary result between the FSDB

and the PFT.

Starting from the routing table, the Resource Allocator computes the PDU forwarding

table (PFT), by mapping each next-hop address to a port-id. This calculated PFT

is modeled as a list of PDU forwarding table entries, where each entry maps a

destination address and QoS id to a list of port-ids, very similar to what happens for the

routing table. Multiple port-ids are possible per destination address to support sending

the PDUs to multiple next-hops simultaneously (necessary for applications that use

whatevercast communication).

The Routing component is an active component that performs the routing tasks based

on timers and other asynchronous events (e.g. N-1 flow up/down). As an example, the

default routing component starts by spawning different timer-driven tasks:

• A task to compute the routing table using a Shortest Path (SP) algorithm (Dijkstra

algorithm has been chosen in the current implementation).

• A task to increment the age of the Flow State Objects (FSOs) received from the

neighbor, in order to remove stale entries.

• A task to propagate the FSOs stored in the FSDB.

Detailed information on the IRATI routing policy can be found in IRATI deliverable

D3.2 [IRATI-D32].

In order to support resilient routing, it is necessary to extend the current routing

entry model so that each next-hop can be associated with one or more alternate next-

hops (the Loop Free Alternates), to be used if the primary next-hop suddenly becomes

unreachable - e.g. because of link failure, or neighbor node/IPCP crash. The current

PDU forwarding table entry model also needs to be updated so that each port-id can

be associated with one or more alternate port-ids, to be used if the flow represented by

the primary port-id is unavailable.

Deliverable-4.2 (1st version)

99

7.1.2. PRISTINE SDK: Limitations and Proposed Solutions for
Routing Policy

The current implementation of the IPC Process’s core functionalities requires some

modifications in order to fully support routing policies. Two obstacles have to be

addressed:

1) Currently, setting up a new N-1 flow between two IPCPs is very intertwined with

enrolling two IPCPs. There is no way to choose the connectivity graph for flows that

will be used for layer management. 2) The RIB daemon does not support fine-grained

control over the objects that are added to the RIB. For instance, FSOs have to be

propagated at a certain interval, but there is currently no way to specify a propagation

interval to the RIB daemon.

In order to overcome the first obstacle changes have to be performed to two main

components: enrollment and the N-1 flow manager, which is part of the resource

allocator implementation. Upon completion, enrollment currently sends all dynamic

information, such as the FSDB, to the new member of the DIF. Enrollment will

be modified to be marked as completed right before the sending of the dynamic

information. Then according to policy, one or more N-1 flows will be setup to other IPC

Processes in the DIF. This policy set will be implemented in the N-1 Flow Manager.

We envision a few implementations for this policy set, to be able to investigate their

advantages and disadvantages:

• Connect to all other IPCPs that share a common N-1 DIF

• Connect to a subset of the previous, with a fixed limit on the number of N-1 flows

that need to be established

• Use a distance metric with the address as input to select the N-1 flows to setup

• Select the IPCPs to allocate an N-1 flow to in such a way that the graph is k-

connected.

The second obstacle will be tackled by extending the RIB daemon API. It will allow

specifying a policy set that manages subtrees of the RIB. In the case of the LFA routing

policy, this will be managing the FSDB; the propagation of FSOs at a certain interval,

the aging of FSOs, the removal of stale entries.

7.1.3. Loop Free Alternates Policy, the Updates

The original specification from D4.1 called for the Loop Free Alternates (LFA) policy

to listen to the following events: N-1 flow allocated N-1 flow deallocated N-1 flow up

Deliverable-4.2 (1st version)

100

N-1 flow down Flow State Database has changed Upon revision, we removed the flow

allocated and flow deallocated events to be accessed by a routing policy, in order to

control assigning flows for data transfer. Upon flow allocation, the new flow will not

automatically be announced to the routing policy. This allows to have explicit topology

control for the forwarding of PDU’s in a DIF. The revised LFA policy will therefore

only listen to the following events: N-1 flow up N-1 flow down Flow State Database has

changed

7.1.4. Routing Software Specification and Implementation

7.1.4.1. User Space, Interfaces

In IRATI, the API between the IPC Process core and the routing plugin is minimal

- the IRoutingPS abstract class. The key method exposed by this interface is

set_dif_configuration(), that is invoked from the IPC Process core to start the Routing

component. The API minimality reflects the fact that routing in RINA is all policy.

The introduction of a resiliency algorithm does not modify the interface defined by the

IRoutingPS class, nor extend the overall interface between the IPC Process core (the

fixed/common part) and the plugins (the policies). Instead, an interface internal to the

Routing component - the IResiliencyAlgorithm abstract class - is added to abstract the

operation of a resiliency algorithm, in addition to the already existing internal interface

for the computation of the (initial) routing table.

The IResiliencyAlgorithm class exposes the extendRoutingTable method, which is used

to insert additional next hops (e.g. loop-free alternates) to the routing table computed

by the main routing algorithm.

Deliverable-4.2 (1st version)

101

Figure 25.

7.1.4.2. User/Kernel Interface, Data Structures

In the IRATI prototype (See Section 7.1.1, “IRATI Routing and Forwarding Tables”), the

Resource Allocator (RA) is implemented in userspace, while the RMT is implemented

in kernelspace. Upon receiving input from the Routing component (e.g. routing table),

the RA generates the corresponding configuration for the PDU fowarding policy

in the RMT component. This is implemented using a netlink message (currently

referred to as MOD_PFTE), sent by the RA to to the kernel in order to configure

RMT. The current data structures used to support routing and forwarding (in both

kernelspace and userspace) are, however, tied to a specific implementation, reflecting

the default routing policy and RMT policies. A PDUForwardingTableEntry userspace

data structure is used to hold an entry of the default RMT PDU forwarding policy, which

assumes destination-based routing/forwarding. A similar data structure exist in kernel

space to directly implement RMT PDU processing. Consequently, the current format of

the MOD_PFTE message also reflects the structure of the PDUForwardingTableEntry.

However, PRISTINE research efforts in the routing and forwarding area envision

different policies for Routing, Resource Allocator and PDU forwarding. This results

in different requirements for the userspace and kernelspace data structures and the

MOD_PFTE message.

First, we detail the format of the new MOD_PFTE message. The format of this message

has to be flexible to support a wide range of possible routing policies, particularly

the ones we envision in PRISTINE’s scope. It should convey all the information

necessary to configure any PDU forwarding policy, independently of the specific policy

Deliverable-4.2 (1st version)

102

implementation. The way the MOD_PFTE message is interpreted in particular, is

policy-implementation-specific.

The current format of the IRATI MOD_PFTE message is

struct mod_pdufte_entry {

 unsigned int destination_address;

 unsigned int qos_id;

 list<unsigned int> port_ids;

}

struct mod_pdufte {

 list<mod_pfte_entry> entries;

}

that is a list of PDU forwarding table entries.

For resilient routing, a format has been chosen to make it possible to support alternate

port-ids:

struct alt_port_ids {

 list<unsigned int> alternatives; /* First entry is the primary one */

}

struct mod_pfte_entry {

 unsigned int destination_address;

 unsigned int qos_id;

 list<alt_port_ids> port_ids;

}

The port-ids contained in struct alt_port_ids are intended to be the different

alternatives, sorted in failover order.

Apart from T4.3, interaction with WP3 identified the following PRISTINE tasks that

will make direct use of this message in their research effort:

• T3.2 Multipath routing

• T3.3 Topological Addressing

For T3.2 multipath routing, the current format for struct mod_pdufte_entry is

sufficient, since the list of port-ids can be used to support the multiple paths.

Deliverable-4.2 (1st version)

103

For the purpose of T3.3 topological addressing research, multiple formats have been

proposed.

For topological addressing

struct mod_pfte_entry {

 unsigned int neighbor_address;

 unsigned int port_id;

}

to support forwarding not based on destination address, but rather on topological

distance information.

For circuit-based switching:

struct mod_pfte_entry {

 unsigned int circuit_id;

 list<unsigned int> port_ids;

}

where a circuit identifier is used in place of a destination address.

7.1.4.3. Kernel Space Software Structure

The current prototype provides a basic PDU forwarding table implementation, based

on a list of entries, where each entries contains a list of port-ids. In order to support

resilient routing, accordingly with what specified in the previous sections, the entry

data structure has to be extended so that each primary port-id (more than one port-ids

are present in case of multicast) in the list can have one or more alternate port-ids.

Currently, the policy set only contains the following behavioural policies (hooks):

int (* next_hop)(struct pft_ps * ps,

 struct pci * pci,

 port_id_t ** ports,

 size_t * count);

/* Reference used to access the PFT data model. */

struct pft * dm;

and uses the dm to access the hard-coded PFT implementation contained in the pft.c

file. The PFT is implemented as a list of entries, where each entry maps a destination

Deliverable-4.2 (1st version)

104

address to a list of next hops. However, the PFT implementation really depends on the

kind of forwarding table being used - a resilient forwarding table (to be used with LFA)

needs each entry to contain either a primary port-id and an alternate port-id. For this

reason, the policy set interface was extended to make it possible to keep the table in its

internal implementation - and consequently not hard-coded into the stack. In order for

this to be possible, it was also necessary to add further hooks in the policy set to support

update to the PFT internal implementation.

Note: a performance software implementation would make use of hashtables. Note:

a more robust implementation would (logically) separate pdu forwarding tables (and

ideally all data structures) per qos-id to minimise interactions of one qos-id with

another.

7.1.5. Initial PoC Evaluation of the LFA Policy

In order to explore the feasibility of the LFA policy in the context of the routing

implementation provided by the IRATI stack, an initial implementation of the LFA core

algorithm has been developed. It is scheduled to be integrated in the pristine-1.3 public

release.

In the following, the IPC process on which the routing and LFA computation happens

will be referred to as source node, while the term neighbor of a node will refer to another

node towards which the first node has a direct link (N-1 flow) in the DIF graph.

Finding LFA nodes requires the computation of the distance vector rooted in the source

node and and the distance vectors rooted at each of source node’s neighbors. A distance

vector rooted at node X maps each node Y in the DIF graph to the minimum distance

between X and Y.

The original Dijkstra implementation is structured in the following steps: Computation

of the distance vector (with predecessor information) for the specified root node Use

the predecessor information computed in step 1 to compute the next hop for the root

node towards all the other nodes

In the IRATI implementation, however, the two steps were tightly coupled, so it was

not possible to obtain the distance vector without computing the next-hops. For this

reason, some initial refactoring for the original implementation has been carried out to

allow faster computation of distance vectors (skipping next-hop computation, which is

not needed for LFA).

The following pseudocode outlines the implementation of LFA core algorithm - e.g. the

computation of LFA nodes for the source (local) node:

Deliverable-4.2 (1st version)

105

src_dist_vec ← computeDistVec(graph, src_node)

foreach neigh in neighbors(src_node) {

 neigh_dist_vecs[neigh] ← computeDistVec(graph, neigh)

}

foreach node not in neighbors(src_node) {

 foreach neigh in neighbors(src_node) {

 if neigh_dist_vecs[neigh][node] < src_dist_vec[neigh] +

 src_dist_vec[node] and neigh not in nexthops[node] {

 add neigh to LFA node towards node

 }

 }

}

As the pseudocode reports, the algorithm is organized in two steps: Compute the

distance vector rooted at the source node and and the distance vector rooted at each

of the source node’s neighbors. This step requires as input the identifier of the source

node and the DIF graph. For each remote node (i.e. a node that is not a neighbor of the

source node, and this can be reachable over LFA nodes), try to see if some source node’s

neighbor - excluded the one that is already the next-hop towards the remote node -

satisfies the LFA inequality. If the condition holds, the neighbor is added as LFA node

for the remote node. This step requires as input the distance vectors computed at step

1 and the original routing table computed by the routing component (which contains

the next-hops towards each node).

The IRATI build infrastructure already provides a unit test infrastructure for the

routing algorithm, so that there is no need to setup a real scenario - with virtual

or physical machines running the stack - to verify the functionality of the routing

algorithms. The unit tests can be carried out by means of the make check commands

of the rinad software package.

Therefore, the already existing unit tests have been extended to also check the correct

functionality of the LFA algorithm.

The following test graph has been used for the LFA unit test, where the source node is

identified by “1”, and all the links have equal cost (1):

Deliverable-4.2 (1st version)

106

Figure 26. Test topology for LFA algorithm

The make check command produces the following output (only the part relevant to the

test case described above is reported)

[...]

Dest: 2, Cost: 1, NextHops: [2,]

Dest: 4, Cost: 1, NextHops: [4,]

Dest: 3, Cost: 1, NextHops: [3,]

Dest: 5, Cost: 2, NextHops: [2,]

Dest: 6, Cost: 2, NextHops: [4,]

Dest: 7, Cost: 2, NextHops: [3,]

22984(1432291094)#ipcp (DBG): Node 3 selected as LFA node towards the

 destination node 5

22984(1432291094)#ipcp (DBG): Node 4 selected as LFA node towards the

 destination node 5

22984(1432291094)#ipcp (DBG): Node 3 selected as LFA node towards the

 destination node 6

22984(1432291094)#ipcp (DBG): Node 2 selected as LFA node towards the

 destination node 7

22984(1432291094)#ipcp (DBG): Node 4 selected as LFA node towards the

 destination node 7

22984(1432291094)#ipcp[1].lsr-tests (INFO):

 getPDUTForwardingTable_MoreGraphEntriesLFA_True test passed

[...]

The first part of the output shows the routing table (next-hops) as normally computed

by the routing component. The second part reports the results of the LFA algorithm.

In this case: Neighbors 3 and 4 have been selected as LFA nodes for remote node 5.

Neighbor 3 as has been selected as LFA for remote node 6. Note that neighbor 2 (which

Deliverable-4.2 (1st version)

107

is not the next-hop for remote node 6) does not satisfy the LFA condition. Neighbors 2

and 4 have been selected as LFA for remote node 7.

7.2. Load Balancing

In order for balancing the load between servers in a data centre scenario, currently an

additional entity/node is being used which is called Load Balancer (LBR). The LBR has

one or more public routable IP addresses and has one or more servers behind it. The

limitation behind this model is that the servers and LBR need to be in the same layer 2

domain. If one or more servers are not in the same layer 2 domain, then such servers

would not be able to see the addresses of clients they should be connected to. Therefore,

in order for LBR to connect with a server in other layer 2 domains, the packets have to

pass through a layer 3 node/router. RINA architecture does not have this limitation.

In RINA, servers can be placed anywhere. Application names are location and layer

independent; therefore servers can always see the client applications.

7.2.1. DAF-Based Load Balancing

Introducing additional standalone nodes such as LBR in the end-to-end path

might create some performance degradation specifically towards the delay and loss

experienced by traffic flows, possibly due to excessive processing and load at the

LBR. Moreover, in order to avoid a single point of failure and to further balance

the load, redundant/additional LBRs are normally deployed in the data centres. This

might make the LB a more costly solution and can be difficult to maintain. Unlike in

current architectures, load balancing in RINA based data centres is envisaged to be

implemented at the DAF level, rather than by deploying additional node/s. DAF based

load balancing will utilise a distributed application facility operating at various nodes

on the network, which will coordinate with the resources and can redirect network

traffic towards lightly loaded servers to make efficient use of resources.

7.2.2. Implementation of DAF-Based Load Balancing

Here, load balancing is defined as the process of workload distribution across multiple

available resources/servers. It tries to maximise resource scalability and availability,

and makes more efficient use of resources. The LBR distributes load/traffic among

more than one available instances of the same server. We envisaged that load balancing

can be deployed in a DAF in RINA. As a proof of concept, we initially conducted

an experiment using two instances of rina-Echo-Time server running on two distinct

virtual machines and one instance of rina-Echo-Time client running on a third

virtual machine. In this experiment, the LB-DAF is not implemented; however, a

Deliverable-4.2 (1st version)

108

similar functionality was implemented in the rina-echo-time client application. In this

experiment, if a user on the client side wants to exchange 1000 packets with the server,

the load balancing function initiates two threads and exchanges 500 packets with each

server. We explain below how this experiment was conducted.

There are no changes made to the rina-echo-time application’s server side

implementation. On the client VM, the client side implementation of the application

code is modified to initiate two distinct flows with each server instance. The client

application process started two independent threads.

pthread_create (&thread1, NULL, run_client, (void *) &arguments1)

pthread_create (&thread2, NULL, run_client, (void *) &arguments2)

Here, arguments1 and arguments2 are pointers to a structure holding all the runtime

arguments taken while executing the client application.

struct arguments {

string t_type; // test type (perf, ping)

string s_apn; // application process name for server

string c_apn; // application process name for client

string s_api; // application process instance for client

string c_api; // application process instance for server

string d_name; // The name of the DIF to register at

bool reg; // Register the application

boot qt; // Suppress some output

unsigned int cnt; // total number of packets to send

unsigned int sz; // size of packets to send

unsigned wt; // time to wait between packets;

int gp; // Gap of the retransmission window

int d_time; // Deallocate the flow after specified time

};

The simple command to run the client is as follows:

#./rina-echo-time -c 200 --server1-api 1 --client1-api 1 --server2-api 2

 --client2-api 2

It can also be given if we want client application instance 1 to be connected to server

application instance 2:

Deliverable-4.2 (1st version)

109

#./rina-echo-time -c 200 --server1-api 1 --client1-api 2 --server2-api 2

 --client2-api 1

Each thread initiated a flow with one server instance and started sending and receiving

echo messages. The run_client function was used to create an object of the Client class

and call its constructor and run function.

void *run_client (void *parameters)

{

 struct arguments *args;

 args = (struct arguments *) parameters;

 Client c(args->t_type, args->d_name, args->c_apn, args->c_api, args-

>s_apn, args->s_api, args->qt, args->cnt, args->reg, args->sz, args->wt,

 args->gp, args->d_time);

 c.run();

 pthread_exit(NULL);

 return NULL;

}

We also setup three virtual machines over a virtual LAN. These machines are named

as server1, server2 and client. Each application is enrolled with the same DIF named

'normal.DIF'. Application instance 1 for Echo Server started on server 1 and application

instance 2 for Echo Server started on server 2 VM. IPC processes named 'test1.IRATI',

'test2.IRATI' and 'test3.IRATI' were created on server 1, server 2 and client VMs

respectively. Each application instance is also registered at the respective IPC process.

All this is done in the ipcManager.conf file as follows:

“applicationToDIFMappings”: [{

“encodedAppName” : “rina.utils.apps.echo.server-1--”,

“difName” : “normal.DIF” }, ……..

“ipcProcessesToCreate” : [{

……..

“type” : “normal-ipc”,

“apName” : “test1.IRATI”,

“apInstance” : “1”,

“difName” : “normal.DIF”,

“difToRegisterAt” : [“100”]

} ………

Deliverable-4.2 (1st version)

110

After that, each IPC process is enrolled at 'normal.DIF'. This setup that is composed of

three VMs is shown in Figure 27, “Load Balancing Evaluation Experiment”.

Figure 27. Load Balancing Evaluation Experiment

In this experiment, the connection initiation and load balancing have been carried out

at the Application Process (AP) level. So the AP must be aware of the process names and

instances of the servers in this case. The client AP requests for the flow allocation to each

server application instance. In this request (as per current librina API) the AP needs

to specify the app_name, app_instance, server_name, server_instance, DIF_name,

and QoS_spec. Each flow to the server is distinct and independent as can be seen from

the sequence numbers of packets for each flow in the log. In this way, it is the job of the

AP to put the received packets in order.

If we transfer the responsibility of the load balancing task to the DIF, then the DIF must

be aware of the number of instances of the servers and their locations. However, in the

current implementation of librina, the AP needs to specify the server instance.

Deliverable-4.2 (1st version)

111

7.3. Next Steps for High Availability and Load Balancing
Activities

7.3.1. High availability

In order to move towards high availability (HA) of IPC processes and DIFs in a RINA

deployment, we performed an investigation into HA techniques used in GNU/Linux.

More specifically, we looked into Corosync and Heartbeat. After some investigation, we

found that these solutions do not translate to the recursive nature of RINA. The idea

of deploying an IPCP in a virtualised environment and then cloning this to different

systems broke down when trying to figure out how to do an implementation. The

conclusion is that in RINA, high-availability would be more naturally implemented by

using namespace resolution to anycast names. RINA envisioned namespace resolution

from the onset, where a name can either resolve to a single AP (unicast), a set of AP’s

(broadcast), a member of a set (anycast) or a subset of a set. The overall name is

therefore coined a 'whatevercast' name.

The current specification of whatevercast and multipoint flows is not very detailed.

The objective of the work in the final period of PRISTINE is therefore to get a full

specification of whatevercast, and a basic PoC implementation demonstrating the

benefits for resiliency (IPCPs in whatevercast groups).

7.3.2. Load Balancing

We will port NGINX web server and Chromium browser with librina in order to make

both of these work on RINA based systems. On the client side, we will implement a DAF

with a Chromium browser for load balancing and bandwidth aggregation exercises. On

the server side, we will use a NGINX web server in the same DAF. Please see Figure 28,

“DAF-Based Load Balancing Scenario”

There are two aspects to consider for load balancing in RINA:

1. Re-ordering of received packets if a client connects to multiple servers and

duplicated data packets from the servers are received by the client. This is the case

when there are multiple servers for the same service under a single administrative

domain e.g. www.google.ie and www.google.pk etc. The client application process

can choose the server/s to connect to. For example, if there are two file servers

having a specific file of size 2GB. The client may connect to both the servers and

request half of the file from server 1 and the other half from server 2. DAF-based

LB is application-specific load balancing and should be implemented in the client

Deliverable-4.2 (1st version)

112

application too. Using this approach should reduce the load on servers, enhance

the throughput and aggregate the bandwidth if the flows adopt distinct paths.

Because, if the flows pass through a common intermediate node, then the available

capabilities at that node need to be shared among each flow that might cause

performance degradation.

2. Selection of server instance to connect to if multiple clients contend for the same

server. If a client does not give any server preference, e.g. it just wanted to access

google.com, then the DAF Manager should decide which server instance to connect

to and allocate a flow. By using this approach the DAF Manager has a better view

of allocations and could balance the load at servers and eventually clients can

experience better throughput.

Figure 28. DAF-Based Load Balancing Scenario

The LB needs to be implemented at two steps, i.e., DAF and DIF levels. A DAF client AP

chooses which server instance it needs to connect to. The client may choose more than

one server to connect to in order to aggregate the bandwidth and balance the load. The

DAF is more tightly coupled with the AP therefore putting out-of-order packets in the

correct order can be done more effectively here. The DIF has to handle a lot more flows

Deliverable-4.2 (1st version)

113

than the DAF, therefore it might become a bottleneck if it has to put the packets arriving

from multiple paths in order for a single AP. Moreover, packets may have to wait longer

in queues at the DIF while waiting for the packets delivered earlier than these packets.

The DIF is aware of the resources and number of instances of servers, therefore flow

allocation and resource reservation needs to be done over here.

Load balancing in RINA should enable applications to connect to the most lightly

loaded server. In order to do that, each instance of the server application must share

its load statistics with the DIF it is enrolled with. Then the LB DAF can decide which

server instance to connect to according to its load statistics.

Deliverable-4.2 (1st version)

114

8. Summary and Conclusions
The security requirements are analysed in T2.1 and reported in D2.1 [D2.1]. The

PRISTINE reference framework was analysed in T2.2 and the results reported in D2.2

[D2.2] that included some of the security functions. D4.1 built on D2.2 and described

the concepts and high-level design of security functions, mechanisms, and techniques.

D4.2 provides further developments of these functions to meet the requirements

enabling more secure and reliable networks. Below summarises the work carried out

and reported in this deliverable related to these security functions mechanisms, and

techniques. The future works are also sated.

Authentication: This is defined as the process of verifying the identity of IPC

Processes that want to join a DIF. Six different authentication policies were proposed

in D4.1. Among them, three authentication policies namely: no authentication

required, authentication using asymmetric key, and authentication using password

were specified, developed, tested and reported in this deliverable. Further work, such as

developing other authentication policies inspired by the TLS handshake protocol and

the iterations of experimental activities, will be conducted in WP4 and WP6.

Capability Based Access Control: Three scenarios for the use of CBAC have been

specified in this deliverable. The scenario, when an AP needs to access other AP’s

resources in the same DAF, has been specified and implemented. Further work

needs to be conducted for the verification tests of this scenario and specification and

implementation of the other two scenarios namely: when an IPC Process requests to

join a DIF and when an IPCP execute remote operations on the objects of a peer’s IPCP

RIB.

Multi-Level Security: D4.1 reported a number of MLS architectures that enable secure

data sharing to be achieved on the common RINA infrastructure. There are two

components that are needed to create these MLS architectures: Communications

security and Boundary Protection Components (BPC). Design and specification of these

two components are reported in this deliverable. Implementation is under way and

the component tests will be conducted soon. The specification and implementation of

communication security is believed to be straight forward given the RINA architecture.

But regarding the BPC, enabling controlled sharing of data between classification

levels in a DIF is more difficult. It requires coordinated policies in several RINA

components. Deep content inspection is best performed at the application layer, i.e. the

DAF layer. However, it is not currently possible to do this in a way that is transparent

to applications, i.e. where the sending application does not sends its data directly to

the BPC.

Deliverable-4.2 (1st version)

115

SDU Protection: The SDU Protection module is a part of the IPCP data path and

protection is applied prior to exchange of data between two IPCPs of different DIFs. In

this deliverable, a description of concepts, methods and algorithms used in the design,

specification and implementation of the SDU protection module have been given. The

software architecture, interfaces, and policies relevant to this component have been

described. Two SDU protection policies are defined: Basic policy (simple CRC and TTL)

and Cryptographic policy (AES Counter Mode). Both policies have been specified and

implemented. The deliverable also reports on the plan for PoC tests.

Resiliency and High Availability: Two relevant aspects, namely resilient routing

focusing on Loop-Free Alternate routing policy and load balancing focusing on DAF-

Based Load Balancing, have been covered in this deliverable. The LFA-based policy has

been specified, implemented and tested. High-availability of IPCPs and DIFs have also

been investigated and realised. Further work on extending the scope of high-availability

in terms of name resolution from anycast to whatevercast is envisaged. It is argued that

DAF-based Load Balancing is best suited to RINA. An initial implementation and PoC

evaluation have been conducted. Further tests are planned.

In summary, we will advance further towards the implementations and

experimentations of security components, especially on the subjects identified above,

conduct the foreseen in-house tests, and provide the modular security components to

WP6.

Deliverable-4.2 (1st version)

116

References
• [D2.1] Diego Lopez, Editor. PRISTINE Consortium. Deliverable

2.1. Use Cases and Requirements Analysis. May 2014.

Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/

pristine_d21-usecases-and-requirements_draft.pdf, accessed June 2015.

• [D2.2] Eduard Grasa, Editor, PRISTINE Consortium. Deliverable 2.2. PRISTINE

Reference Framework. June 2014. Available online: http://ict-pristine.eu/wp-

content/uploads/2013/12/pristine_d22-ref-framework_draft.pdf, accessed June

2015.

• [D2.3] Francesco Salvestrini, Editor. PRISTINE Consortium. Deliverable

2.3. Proof of Concept of the Software Development Kit. January 2015.

Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-

d23.pdf, accessed June 2015.

• [D4.1] Hamid Asgari, Editor. PRISTINE Consortium. Deliverable

4.1. Draft Conceptual and High-Level Engineering Design of

Innovative Security and Reliability Enablers. September 2014. Available

online: http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-

and-reliability-enablers_draft.pdf, accessed June 2015.

• [D5.1] Sven van der Meer, Editor. PRISTINE Consortium. Deliverable D5.1.

Draft specification of common elements of the management framework.

June 2014. Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/

pristine_d51-common-management-elements_draft.pdf, accessed June 2015.

• [D6.1] Miguel Angel Puente, Editor. PRISTINE Consortium. Deliverable

D6.1. First iteration trials plan for System-level integration and validation.

March 2015. Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/

pristine_d61_first_iteration_trials_plan_v1_0-1.pdf, accessed June 2015

• [DeepSec] Deep Secure XML Guard Brochure, http://www.deep-secure.com/wp-

content/uploads/2014/06/xml-guard-brochure1.pdf, accessed June 2015.

• [DH] Diffie, W.; Hellman, M. (1976). "New directions in cryptography" (PDF). IEEE

Transactions on Information Theory 22 (6): pp. 644–654. Available online: http://

ee.stanford.edu/~hellman/publications/24.pdf, accessed June 2015.

• [Gollmann] D. Gollmann, “Computer Security”, Second Edition, John Wiley & Sons,

November 2005.

• [IRATI-D32] Francesco Salvestrini, Editor. IRATI Consortium. Deliverable 3.2.

Second Phase Integrated RINA Prototype over Ethernet for a UNIX-like OS. August

http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d21-usecases-and-requirements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d21-usecases-and-requirements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d22-ref-framework_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d22-ref-framework_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d23.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d23.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-and-reliability-enablers_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-and-reliability-enablers_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d61_first_iteration_trials_plan_v1_0-1.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d61_first_iteration_trials_plan_v1_0-1.pdf
http://www.deep-secure.com/wp-content/uploads/2014/06/xml-guard-brochure1.pdf
http://www.deep-secure.com/wp-content/uploads/2014/06/xml-guard-brochure1.pdf
http://ee.stanford.edu/~hellman/publications/24.pdf
http://ee.stanford.edu/~hellman/publications/24.pdf

Deliverable-4.2 (1st version)

117

2014. Available online: http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-

v1.0.pdf, accessed June 2015.

• [LinkDD] “Interactive Link Data Diode – Connectivity Without

Compromise”, Datasheet. Available online: http://www.baesystems.com/

download/BAES_156410/interactive-link-brochure, accessed June 2015.

• [MAGEN] “MAGEN – the big cover-up: Masking technology developed

in the Haifa Research Lab protects confidential data from

unauthorized people.” Available online: http://www.research.ibm.com/haifa/

info/200904_MAGEN.shtml, accessed June 2015.

• [Mansor] S. Mansor, et al., “Analysis of Natural Language Steganography”,

International Journal of Computer Science and Security (IJCSS), Vol. 3: Issue 2, pp.

113-125, 2009.

• [modagugu] N. Modadugu, E. Rescorla. AES Counter Mode Cipher Suites for TLS

and DTLS. June 2006. Internet-Draft. Available online: https://tools.ietf.org/html/

draft-ietf-tls-ctr-01, accessed June 2015.

• [netlink] Linux Programmer’s Manual, http://man7.org/linux/man-pages/man7/

netlink.7.html, accessed June 2015.

• [Nexor] Nexor Watchman Datasheet, http://nexor.co.uk/sites/default/files/Nexor

%20Datasheet%20-%20Nexor%20Watchman%207.0.pdf, accessed June 2015.

• [ngenc] Next generation encryption. Cisco Systems. April 2014.

Available online: http://www.cisco.com/web/about/security/intelligence/

nextgen_crypto.html, accessed June 2015.

• [rina-tgen] RINA traffic generator. Available online: http://github.com/irati/

traffic-generator, accessed June 2015.

• [openssl] OpenSSL libcrypto API. Available online: https://wiki.openssl.org/

index.php/Libcrypto_API, accessed June 2015.

• [RFC1321] R. Rivest, "The MD5 Message-Digest Algorithm", RFC 1321, IETF, April

1992. Available online: https://www.ietf.org/rfc/rfc1321.txt, accessed June 2015.

• [RFC2401] S. Kent, "Security Architecture for the Internet Protocol", RFC 2401,

IETF, November 1998. Available online: https://www.ietf.org/rfc/rfc2401.txt,

accessed June 2015.

• [RFC3268] P. Chown, "Advanced Encryption Standard (AES) Ciphersuites for

Transport Layer Security (TLS)", RFC 3268, IETF, June 2002. Available online:

http://tools.ietf.org/rfc/rfc3268.txt, accessed June 2015.

http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
http://www.baesystems.com/download/BAES_156410/interactive-link-brochure
http://www.baesystems.com/download/BAES_156410/interactive-link-brochure
http://www.research.ibm.com/haifa/info/200904_MAGEN.shtml
http://www.research.ibm.com/haifa/info/200904_MAGEN.shtml
https://tools.ietf.org/html/draft-ietf-tls-ctr-01
https://tools.ietf.org/html/draft-ietf-tls-ctr-01
http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netlink.7.html
http://nexor.co.uk/sites/default/files/Nexor%20Datasheet%20-%20Nexor%20Watchman%207.0.pdf
http://nexor.co.uk/sites/default/files/Nexor%20Datasheet%20-%20Nexor%20Watchman%207.0.pdf
http://www.cisco.com/web/about/security/intelligence/nextgen_crypto.html
http://www.cisco.com/web/about/security/intelligence/nextgen_crypto.html
http://github.com/irati/traffic-generator
http://github.com/irati/traffic-generator
https://wiki.openssl.org/index.php/Libcrypto_API
https://wiki.openssl.org/index.php/Libcrypto_API
https://www.ietf.org/rfc/rfc1321.txt
https://www.ietf.org/rfc/rfc2401.txt
http://tools.ietf.org/rfc/rfc3268.txt

Deliverable-4.2 (1st version)

118

• [RFC3686] R. Housley, "Using Advanced Encryption Standard (AES) Counter Mode

With IPsec Encapsulating Security Payload (ESP)", RFC 3686, IETF, January 2004.

Available online: https://www.ietf.org/rfc/rfc3686.txt, accessed June 2015.

• [RFC4252] T. Ylonen, C. Lonvick, "The Secure Shell Authentication protocol", RFC

4252, IETF, January 2006. Available online: http://tools.ietf.org/rfc/rfc4252.txt,

accessed June 2015.

• [RFC4253] T. Ylonen, C. Lonvick, "The Secure Shell Transport Layer protocol", RFC

4253, IETF, January 2006. Available online: http://tools.ietf.org/rfc/rfc4253.txt,

accessed June 2015.

• [RFC4301] S. Kent, K. Seo, “Security Architecture for the Internet Protocol”, RFC

4301, IETF, December 2005. Available online: http://tools.ietf.org/rfc/rfc4301.txt,

accessed June 2015.

• [RFC4306] C. Kaufman, "Internet Key Exchange (IKEv2) Protocol", RFC 4306,

IETF, December 2005. Available online: https://www.ietf.org/rfc/rfc4306.txt,

accessed June 2015.

• [RFC5246] T. Dierks, E. Rescola, "The Transport Layer Security (TLS) Protocol

Version 1.2", RFC 5246, IETF, August 2008. Available online: https://www.ietf.org/

rfc/rfc5246.txt, accessed June 2015.

• [sha2] John Bryson, Patrick Gallagher, Approvers. "Secure Hash standards", FIPS

180-4. National Institute of Standards and Technology (NIST). March 2012.

Available online: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf,

accessed June 2015.

• [Sybard] Sybard® ICA Guard, Datasheet, QinetiQ, 2008.

Available online: http://www.boldonjames.com/assets/downloadableFiles/

sybard_ica_guard.pdf, accessed June 2015.

• [virtualbox] The VirtualBox User Manual, https://www.virtualbox.org/manual/

UserManual.html, accessed June 2015 .

• [Zhiyong] C. Zhiyong et al., "Integrated Covert Channel Countermeasure Model in

MLS Networks", IEEE International Conference on Information Engineering and

Computer Science, pp. 1-4, 2009, Dec. 2009.

https://www.ietf.org/rfc/rfc3686.txt
http://tools.ietf.org/rfc/rfc4252.txt
http://tools.ietf.org/rfc/rfc4253.txt
http://tools.ietf.org/rfc/rfc4301.txt
https://www.ietf.org/rfc/rfc4306.txt
https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5246.txt
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.boldonjames.com/assets/downloadableFiles/sybard_ica_guard.pdf
http://www.boldonjames.com/assets/downloadableFiles/sybard_ica_guard.pdf
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html

Deliverable-4.2 (1st version)

119

A. Traces of Authentication Verification Experiments

A.1. AuthNPassword Policy Traces

ARP request and response

13:22:17.631753 00:16:3e:44:f0:00 (oui Unknown) > Broadcast, ethertype

 Unknown (0x4305), length 64:

 0x0000: 0001 d1f0 060f 0001 0016 3e44 f000 7465 >D..te

 0x0010: 7374 332e 4952 4154 492f 312f 2fff ffff st3.IRATI/1//...

 0x0020: ffff ff74 6573 7432 2e49 5241 5449 2f31 ...test2.IRATI/1

 0x0030: 2f2f //

13:22:17.643269 00:16:3e:44:f0:93 (oui Unknown) > 00:16:3e:44:f0:00 (oui

 Unknown), ethertype Unknown (0x4305), length 64:

 0x0000: 0001 d1f0 060f 0002 0016 3e44 f093 7465 >D..te

 0x0010: 7374 322e 4952 4154 492f 312f 2f00 163e st2.IRATI/1//..>

 0x0020: 44f0 0074 6573 7433 2e49 5241 5449 2f31 D..test3.IRATI/1

 0x0030: 2f2f //

M_CONNECT message

13:22:17.646113 00:16:3e:44:f0:00 (oui Unknown) > 00:16:3e:44:f0:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 164:

 0x0000: 99c6 ec95 3201 0000 1200 0100 0000 0000 2...........

 0x0010: 4000 9100 0000 0000 0873 1000 1801 2a00 @........s....*.

 0x0020: 3200 3800 4800 5000 9201 210a 1c50 534f 2.8.H.P...!..PSO

 0x0030: 435f 6175 7468 656e 7469 6361 7469 6f6e C_authentication

 0x0040: 2d70 6173 7377 6f72 6412 0131 9a01 00a2 -password..1....

 0x0050: 010a 4d61 6e61 6765 6d65 6e74 aa01 0131 ..Management...1

 0x0060: b201 0b74 6573 7432 2e49 5241 5449 ba01 ...test2.IRATI..

 0x0070: 00c2 010a 4d61 6e61 6765 6d65 6e74 ca01 Management..

 0x0080: 0131 d201 0b74 6573 7433 2e49 5241 5449 .1...test3.IRATI

 0x0090: da01 00e0 0101

Challenge request and response messages

13:22:17.765556 00:16:3e:44:f0:93 (oui Unknown) > 00:16:3e:44:f0:00 (oui

 Unknown), ethertype Unknown (0xd1f0), length 143:

 0x0000: 8dcf 4327 3201 0000 1100 0100 0000 0000 ..C'2...........

 0x0010: 4000 7c00 0000 0000 0800 100c 1800 2a11 @.|...........*.

 0x0020: 6368 616c 6c65 6e67 6520 7265 7175 6573 challenge.reques

 0x0030: 7432 1163 6861 6c6c 656e 6765 2072 6571 t2.challenge.req

 0x0040: 7565 7374 3800 4212 2a10 6661 3337 4a6e uest8.B.*.fa37Jn

 0x0050: 6343 4872 7944 7362 7a61 4800 5000 9201 cCHryDsbzaH.P...

Deliverable-4.2 (1st version)

120

 0x0060: 020a 009a 0100 a201 00aa 0100 b201 00ba

 0x0070: 0100 c201 00ca 0100 d201 00da 0100 e001

 0x0080: 00 .

13:22:17.766324 00:16:3e:44:f0:00 (oui Unknown) > 00:16:3e:44:f0:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 139:

 0x0000: 0261 afb2 3201 0000 1200 0100 0000 0000 .a..2...........

 0x0010: 4000 7800 0000 0000 0800 100c 1800 2a0f @.x...........*.

 0x0020: 6368 616c 6c65 6e67 6520 7265 706c 7932 challenge.reply2

 0x0030: 0f63 6861 6c6c 656e 6765 2072 6570 6c79 .challenge.reply

 0x0040: 3800 4212 2a10 0d07 0302 2040 0272 7a41 8.B.*......@.rzA

 0x0050: 4d6a 1204 4a0a 4800 5000 9201 020a 009a Mj..J.H.P.......

 0x0060: 0100 a201 00aa 0100 b201 00ba 0100 c201

 0x0070: 00ca 0100 d201 00da 0100 e001 00

M_CONNECT_R message

13:22:17.770951 00:16:3e:44:f0:93 (oui Unknown) > 00:16:3e:44:f0:00 (oui

 Unknown), ethertype Unknown (0xd1f0), length 133:

 0x0000: a792 b079 3201 0000 1100 0100 0000 0000 ...y2...........

 0x0010: 4000 7200 0000 0000 0873 1001 1801 2a00 @.r......s....*.

 0x0020: 3200 3800 4800 5000 9201 020a 009a 0100 2.8.H.P.........

 0x0030: a201 0a4d 616e 6167 656d 656e 74aa 0101 ...Management...

 0x0040: 31b2 010b 7465 7374 332e 4952 4154 49ba 1...test3.IRATI.

 0x0050: 0100 c201 0a4d 616e 6167 656d 656e 74ca Management.

 0x0060: 0101 31d2 010b 7465 7374 322e 4952 4154 ..1...test2.IRAT

 0x0070: 49da 0100 e001 01 I......

13:22:17.772301 00:16:3e:44:f0:00 (oui Unknown) > 00:16:3e:44:f0:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 154:

 0x0000: ce3f 2c13 3201 0000 1200 0100 0000 0000 .?,.2...........

 0x0010: 4000 8700 0000 0000 0800 100e 1801 2a16 @.............*.

 0x0020: 656e 726f 6c6c 6d65 6e74 2069 6e66 6f72 enrollment.infor

 0x0030: 6d61 7469 6f6e 321e 2f64 6166 2f64 6166 mation2./daf/daf

 0x0040: 206d 616e 6167 656d 656e 742f 656e 726f .management/enro

 0x0050: 6c6c 6d65 6e74 3800 420b 3209 0812 1203 llment8.B.2.....

 0x0060: 3130 3018 0048 0050 0092 0102 0a00 9a01 100..H.P........

 0x0070: 00a2 0100 aa01 00b2 0100 ba01 00c2 0100

 0x0080: ca01 00d2 0100 da01 00e0 0100

A.1.1. AuthNAssymetricKey (RSA) Policy Traces

ARP request and response

19:17:39.606183 00:16:3e:44:f0:96 (oui Unknown) > Broadcast, ethertype

 Unknown (0x4305), length 64:

 0x0000: 0001 d1f0 060f 0001 0016 3e44 f096 7465 >D..te

 0x0010: 7374 312e 4952 4154 492f 312f 2fff ffff st1.IRATI/1//...

Deliverable-4.2 (1st version)

121

 0x0020: ffff ff74 6573 7432 2e49 5241 5449 2f31 ...test2.IRATI/1

 0x0030: 2f2f //

19:17:39.617567 00:16:3e:44:f1:93 (oui Unknown) > 00:16:3e:44:f0:96 (oui

 Unknown), ethertype Unknown (0x4305), length 64:

 0x0000: 0001 d1f0 060f 0002 0016 3e44 f193 7465 >D..te

 0x0010: 7374 322e 4952 4154 492f 312f 2f00 163e st2.IRATI/1//..>

 0x0020: 44f0 9674 6573 7431 2e49 5241 5449 2f31 D..test1.IRATI/1

 0x0030: 2f2f

M_CONNECT message

19:17:39.687501 00:16:3e:44:f0:96 (oui Unknown) > 00:16:3e:44:f1:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 451:

 0x0000: 0d52 3d19 3201 0000 1000 0100 0000 0000 .R=.2...........

 0x0010: 4000 b001 0000 0000 0873 1000 1801 2a00 @........s....*.

 0x0020: 3200 3800 4800 5000 9201 bf02 0a18 5053 2.8.H.P.......PS

 0x0030: 4f43 5f61 7574 6865 6e74 6963 6174 696f OC_authenticatio

 0x0040: 6e2d 7373 6832 1201 311a 9f02 0a03 4544 n-ssh2..1.....ED

 0x0050: 4812 0641 4553 3132 381a 0453 4841 3122 H..AES128..SHA1"

 0x0060: 0764 6566 6175 6c74 2a80 02ae 4da1 2cda .default*...M.,.

 0x0070: 2d89 e4ee bb77 9e7d 8ae3 0174 0268 83ae -....w.}...t.h..

 0x0080: 480e e4d6 477b 24e9 14fb ad55 a507 c2b9 H...G{$....U....

 0x0090: f04e 6231 8ac1 d023 563b 6e52 a993 2de7 .Nb1...#V;nR..-.

 0x00a0: 7e3b c6ba f3c9 e14d 48f2 62e3 72c1 6606 ~;.....MH.b.r.f.

 0x00b0: 94c9 f779 19fe 6732 a815 4191 971d c06c ...y..g2..A....l

 0x00c0: 1455 0890 0f39 00fa 6fa0 ae2f 5103 a7c1 .U...9..o../Q...

 0x00d0: db57 9b5f b6b9 92b5 2335 482a 5f14 49f6 .W._....#5H*_.I.

 0x00e0: cf15 e135 c687 da2c d708 36a6 3f2d cb6f ...5...,..6.?-.o

 0x00f0: 4c70 a837 632e 8c18 91cb 5ddb 8e2c 3267 Lp.7c.....]..,2g

 0x0100: 22f2 0a9f d293 2446 9429 2361 bd6c 9141 ".....$F.)#a.l.A

 0x0110: e42c 52a3 6f91 d723 675f 99e0 e77b dd00 .,R.o..#g_...{..

 0x0120: 985a 0f42 d00b 5622 8e25 8c58 f19e 150e .Z.B..V".%.X....

 0x0130: 9baa f26a 2dc1 7cc7 e898 2381 922b 11f3 ...j-.|...#..+..

 0x0140: 038d 5409 c828 cd14 7c73 1f46 4e4c 1fbb ..T..(..|s.FNL..

 0x0150: 28e9 40d8 9954 7584 71bf 0c8d 5887 1271 (.@..Tu.q...X..q

 0x0160: 4142 d5ca d5e4 4b77 29bb ea9a 0100 a201 AB....Kw).......

 0x0170: 0a4d 616e 6167 656d 656e 74aa 0101 31b2 .Management...1.

 0x0180: 010b 7465 7374 322e 4952 4154 49ba 0100 ..test2.IRATI...

 0x0190: c201 0a4d 616e 6167 656d 656e 74ca 0101 ...Management...

 0x01a0: 31d2 010b 7465 7374 312e 4952 4154 49da 1...test1.IRATI.

 0x01b0: 0100 e001 01

EDH exchange and encrypted client challenge message

19:17:39.797199 00:16:3e:44:f1:93 (oui Unknown) > 00:16:3e:44:f0:96 (oui

 Unknown), ethertype Unknown (0xd1f0), length 441:

Deliverable-4.2 (1st version)

122

 0x0000: 4666 18a0 3201 0000 1100 0100 0000 0000 Ff..2...........

 0x0010: 4000 a601 0000 0000 0800 100c 1800 2a21 @.............*!

 0x0020: 4570 6865 6d65 7261 6c20 4469 6666 6965 Ephemeral.Diffie

 0x0030: 2d48 656c 6c6d 616e 2065 7863 6861 6e67 -Hellman.exchang

 0x0040: 6532 2145 7068 656d 6572 616c 2044 6966 e2!Ephemeral.Dif

 0x0050: 6669 652d 4865 6c6c 6d61 6e20 6578 6368 fie-Hellman.exch

 0x0060: 616e 6765 3800 429b 0232 9802 0a03 4544 ange8.B..2....ED

 0x0070: 4812 0641 4553 3132 381a 0453 4841 3122 H..AES128..SHA1"

 0x0080: 002a 8002 b6da 1287 fcbc 9614 0c0f 422d .*............B-

 0x0090: e740 10ab 8d07 1832 f2ac baab 5540 7b90 .@.....2....U@{.

 0x00a0: 2835 eaf8 f167 294b fd0c db8c 073a b637 (5...g)K.....:.7

 0x00b0: 6d4b 263c 38a5 1243 88e5 08f0 2691 b845 mK&<8..C....&..E

 0x00c0: fc7c f2eb 5721 b007 7e7d c60c f05d e17d .|..W!..~}...].}

 0x00d0: 9c49 ee56 e358 2317 3284 7651 4358 88a9 .I.V.X#.2.vQCX..

 0x00e0: 9cff 0bd9 c9be 783c 7ceb 4721 27db d2ec x<|.G!'...

 0x00f0: 71de 20f6 c660 a906 e4c7 4988 aaa3 1096 q....`....I.....

 0x0100: 0af3 433d 6d81 bed6 bafa 93aa 425f 140a ..C=m.......B_..

 0x0110: 41af d44e 6814 76b6 0681 5877 af63 68bc A..Nh.v...Xw.ch.

 0x0120: 5131 9f19 2aae bae5 ab7a d447 c3cd 1815 Q1..*....z.G....

 0x0130: f86a 7498 5155 1cc8 9e29 22d3 7b10 fd53 .jt.QU...)".{..S

 0x0140: 00b4 592f 4bb2 0a50 cacf 49bc bfd9 2d18 ..Y/K..P..I...-.

 0x0150: 3997 6950 1736 cc4a ccd1 7291 5608 89d0 9.iP.6.J..r.V...

 0x0160: c670 e04e da72 7d3f 0685 5701 4d7d 3839 .p.N.r}?..W.M}89

 0x0170: 3ef8 9d78 6022 dc1c 1737 3268 e014 e914 >..x`"...72h....

 0x0180: 6259 4a5e 4800 5000 9201 020a 009a 0100 bYJ^H.P.........

 0x0190: a201 00aa 0100 b201 00ba 0100 c201 00ca

 0x01a0: 0100 d201 00da 0100 e001 00

19:17:39.833505 00:16:3e:44:f0:96 (oui Unknown) > 00:16:3e:44:f1:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 386:

 0x0000: 30b2 24db 161b 631f ec4d 67ad 44a0 8675 0.$...c..Mg.D..u

 0x0010: 4297 76c6 e94e 40f6 6617 4d2c bf8e 7b5e B.v..N@.f.M,..{^

 0x0020: b812 0309 7d3b 9d36 e8db 857d fd6f bb40 };.6...}.o.@

 0x0030: 7b65 c478 20ee 26ac 83d8 5137 7671 d0eb {e.x..&...Q7vq..

 0x0040: 8f94 0e0e 5714 bd0e 54e9 e9e6 e6ca ebe7 W...T.......

 0x0050: c766 4ae2 fce6 898e a26b 9237 9454 3e75 .fJ......k.7.T>u

 0x0060: 94c1 cda8 29dc c0da 42e4 6139 2c74 a4cb )...B.a9,t..

 0x0070: 406c 03cc d861 953f 1077 b33a 197e ecee @l...a.?.w.:.~..

 0x0080: f008 231d 0849 b72c 0f40 2ad6 00ff 8f42 ..#..I.,.@*....B

 0x0090: b921 eec6 9b39 9612 b0ba ff73 624f b948 .!...9.....sbO.H

 0x00a0: 7356 2d11 fd9d 2f9b 2d35 43d3 28fb 32df sV-.../.-5C.(.2.

 0x00b0: 3d07 3dfd f36f 878c 7139 bf81 8792 afe2 =.=..o..q9......

 0x00c0: 4b3a 2852 f114 1fc6 c1a7 b41b e821 7cd3 K:(R.........!|.

 0x00d0: a8ce cfbc 9482 862a a92e 3bda b0c6 06b2 *..;.....

 0x00e0: fac4 d8b2 05e7 b30e 7dfb f17b 10ee 44cb }..{..D.

 0x00f0: ade6 162d 98bf c843 de6e c70f 0d07 d731 ...-...C.n.....1

 0x0100: 2194 253e 8858 ca53 29af c0f4 a7b2 3607 !.%>.X.S).....6.

Deliverable-4.2 (1st version)

123

 0x0110: b589 f711 ecbc ec87 50f2 d072 f91f 6d8a P..r..m.

 0x0120: 6d3d b99e a5ea f43b 29ce 7653 6f9e a079 m=.....;).vSo..y

 0x0130: e28e b885 cae4 36eb 03d8 0458 fb17 afdc 6....X....

 0x0140: 7997 dac9 4b87 801f e77a a373 6c00 46cc y...K....z.sl.F.

 0x0150: 5f9c c00a 54ef 0e8f e3b1 54dd a8fc 07f6 _...T.....T.....

 0x0160: d165 5233 9126 dc9b 0b38 8385 2770 2dd4 .eR3.&...8..'p-.

 0x0170: b349 0783

IPCP test1.IRATI log

3242(1433265459)#librina.cdap-manager (DBG): Waiting timeout 180000 to

 receive a connection response

3242(1433265459)#ipcp[2].routing-ps-link-state (DBG): flow allocation

 waiting for enrollment

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through

 portId 1:

12_M_WRITE

Object class: Ephemeral Diffie-Hellman exchange

Object name: Ephemeral Diffie-Hellman exchange

Object value: 0xf4a034d0

Scope: 0

3242(1433265459)#librina.security-manager (DBG): Generated encryption key

 of length 16 bytes: 3ef06968c6f8698d6ed037ff4f197d62

3242(1433265459)#ipcp (DBG): Requesting the kernel to enable encryption on

 port-id: 1

3242(1433265459)#librina.nl-manager (DBG): NL msg RX. Fam: 25; Opcode:

 42_ENABLE_ENCRYPT_RESP; Sport: 0; Dport: 3242; Seqnum: 1433265397;

 Response; SIPCP: 2; DIPCP: 0

3242(1433265459)#librina.nl-manager (DBG): NL msg TX. Fam: 25; Opcode:

 41_ENABLE_ENCRYPT_REQ; Sport: 3242; Dport: 0; Seqnum: 1433265397;

 Request; SIPCP: 2; DIPCP: 2

3242(1433265459)#librina.core (DBG): Added event of type

 41_ENABLE_ENCRYPTION_RESPONSE and sequence number 1433265397 to events

 queue

3242(1433265459)#librina.core (DBG): Waiting for message 3242

3242(1433265459)#rinad.event-loop (DBG): Got event of type

 41_ENABLE_ENCRYPTION_RESPONSE and sequence number 1433265397

3242(1433265459)#librina.security-manager (DBG): Encryption and decryption

 enabled for port-id: 1

3242(1433265459)#librina.syscalls (DBG): Invoking SYS_writeManagementSDU

 (361)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Sent CDAP message of size 345

 through port-id 1:

12_M_WRITE

Object class: Client challenge

Deliverable-4.2 (1st version)

124

Object name: Client challenge

Object value: 0x93427b0

Scope: 0

3242(1433265459)#librina.syscalls (DBG): Invoking SYS_readManagementSDU

 (360)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through

 portId 1:

12_M_WRITE

Object class: Client challenge reply and server challenge

Object name: Client challenge reply and server challenge

Object value: 0xf4a034d0

Scope: 0

3242(1433265459)#librina.security-manager (INFO): Remote peer successfully

 authenticated

3242(1433265459)#librina.syscalls (DBG): Invoking SYS_writeManagementSDU

 (361)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Sent CDAP message of size 115

 through port-id 1:

12_M_WRITE

Object class: Server challenge reply

Object name: Server challenge reply

Object value: 0xf4a02e08

Scope: 0

3242(1433265459)#librina.syscalls (DBG): Invoking SYS_readManagementSDU

 (360)

3242(1433265459)#librina.cdap-manager (DBG): Connection response received

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through

 portId 1:

1_M_CONNECT_R

Abstract syntax: 115

Authentication policy: Policy name: PSOC_authentication-ssh2

Supported versions: 1

Source AP name: test2.IRATI

Source AP instance: 1

Source AE name: Management

Destination AP name: test1.IRATI

Destination AP instance: 1

Destination AE name: Management

Invoke id: 1

Result: 0

Version: 1

Deliverable-4.2 (1st version)

125

B. Updated LFA Policy

B.1. Narrative description of the Loop Free Alternates policy

B.1.1. The Flow State Database

The Flow State Database is the subset of the RIB that contains all the Flow State Objects

(FSOs) known by the IPC Process. It is used as an input to calculate the Routing Table.

The FSDB consists of the operations on FSOs received through CDAP messages.

B.1.1.1. RIB Objects:

Flow State Object (FSO)

The object exchanged between IPC Processes to disseminate the state of one N-1 flow

supporting the IPC Processes in the DIF. This is the RIB target object when the PDU

Forwarding Table Generator wants to send information about a single N-1 flow.

../fsdb/<address>/<neighbour_address>/<QoS> : flowstateobject

 address /* The address of the IPC Process */

 neighbour_address /* The address of the neighbour IPC Process */

 QoS-cube /* The QoS of this N-1 flow */

B.1.2. Routing Table

Based on the FSDB, a graph of the connectivity in the DIF is constructed. From this

graph, a routing table can be calculated for every QoS cube in the DIF. However, in

this specification, only the shortest route is calculated using Dijkstra, using hop count

as the metric for distance. Apart from this, for every node, the Loop Free Alternates

are also calculated. Node Protecting Loop Free Alternates are preferred over Link

Protecting Loop Free Alternates. An example connectivity graph is shown in Figure B.1,

“An example connectivity graph”, and its corresponding routing table as calculated by

A is shown in Table B.1, “Routing table of IPC process with address A”. Note that from

A to B there are 2 N-1 flows with different QoS.

Deliverable-4.2 (1st version)

126

Figure B.1. An example connectivity graph

Table B.1. Routing table of IPC process with address A

Destination Address Next Hop LFA

B B B

C B E

D B E

E E B

F E B

B.1.3. PDU Forwarding Table

Based on the routing table, the PDU forwarding table is calculated in each node. In

essence, this is the mapping of the next hop on a port-id. In the example, suppose there

are 2 flows to B from A, with port-id 1 and 2, and there is one flow from A to E with

port-id 3. Then a generated forwarding table could look as follows:

Table B.2. Forwarding table of IPC process with address A

Destination Address Port-id LFA

B 2 1

C 2 3

D 1 3

E 3 1

F 3 2

This table is then consulted by the Relaying and Multiplexing Task (RMT) to decide on

what port-id the PDU should be written.

Deliverable-4.2 (1st version)

127

B.1.4. Subscription and reaction to events

Upon initialization of the PFT, the PFT subscribes to certain events of the RIB

daemon. This makes the PDU Forwarding Table Generator completely event based.

The cooperation between these tasks in the IPC process is depicted in Figure B.2,

“Cooperation of tasks in the IPC process”. These events are:

• N-1 flow up

• N-1 flow down

• Flow State Database has changed

Apart from subscribing to these events, the PFT marks all objects in the FSDB to be

replicated upon changes.

B.1.4.1. N-1 flow up

When invoked

This is an event that indicates an N-1 flow is up again.

Action upon receipt

If there is a Delete_FSO timer corresponding with this flow, it is stopped. Else, a Flow

State Object is created, containing the address of the IPC process and the address of

the neighbour IPC process where the flow is allocated to. The QoS is set to the QoS of

the flow. The FSO is added to the FSDB unless there is already an FSO present with the

same addresses and the same QoS.

B.1.4.2. N-1 flow down

When invoked

This is an event that indicates an N-1 flow to a neighbour is down.

Action upon receipt

The Delete_FSO timer is started on this flow. Note that this time should be chosen

reasonably small.

B.1.4.3. Delete_FSO expires

When invoked

Deliverable-4.2 (1st version)

128

This is invoked when the Delete_FSO timer fires.

Action upon receipt

The Flow State Object corresponding with this flow is deleted, unless there is another

neighbour flow with the same addresses and QoS present in the IPC process. If the port-

id of the flow is present in the forwarding table, the LFA is used until a new forwarding

table is generated.

B.1.4.4. Flow State DB has changed

When invoked

This is an event that indicates there was a change to the Flow State Database.

Action upon receipt

Upon this event, the routing table is re-calculated. If there is already a calculation

on-going it is stopped and restarted. After the routing table has been calculated, the

forwarding table is generated from it.

Figure B.2. Cooperation of tasks in the IPC process

Deliverable-4.2 (1st version)

129

C. Updated FLD Policy

Flow Liveness Detection (FLD) detects if a flow between IPC processes is alive or not

by sending periodic messages. When FLD is present, the Flow Manager keeps two

additional states for the flow - i.e. UP and DOWN. FLD maintains a timer that is reset

upon reception of such a periodic message. The flow is declared DOWN if the timer

expires, otherwise it is declared UP.

C.1. Common elements

The procedures described in the remaining sections, rely on the following common

elements:

FLD elements:

Keepalive:

 Timeout : Timer

FLD data:

 port-id : Port-id

 keepalive : Keepalive

 interval : Int (milliseconds)

RIB objects:

../fld/<neighbour-address>-<address>/<connection-id>

Timeout : Double

../fld/<address>-<neighbour-address>/<connection-id>

Timeout : Double

A RIB object containing a timeout value - i.e. ../fld/<neighbour-address>-<address>/

<connection-id> - is periodically updated with a new timeout value on each

corresponding CDAP M_WRITE. FLD subscribes to changes to this object and is thus

notified when it has been changed. The Keepalive timer is then restarted with the new

timeout value. If the Keepalive timer expires the FLD notifies the FMGR that the flow

is DOWN.

Deliverable-4.2 (1st version)

130

C.2. Initialization

The Timeout value for the Keepalive timer has to be chosen depending on the DIF. Most

likely it will be a function of the Round Trip Time (RTT). For initialization of the FLD,

the following steps are followed:

• Firstly, FLD will subscribe to changes to the RIB object ../fld/<address>-

<neighbour-address>/<connection-id> through the RIB Daemon, where

<connection-id> is the connection-id that identifies the flow with the peering IPC

process.

• Secondly, FLD will ask the RIB Daemon to periodically, every Interval milliseconds,

replicate ../fld/<neighbour-address>-<address>/<connection-id> to the peer’s

RIB.

• Finally, the Keepalive timer is started.

C.3. FLD Behaviour

C.3.1. Keepalive_Timer.expire

When invoked

Whenever the Keepalive timer expires.

Action upon invocation

The FMGR is notified that the flow should be declared DOWN.

C.3.2. Timeout_Changed.receive

When invoked

Upon changes to ../fld/<address>-<neighbour-address>/<connection-id>

Action upon receipt

The Keepalive timer is re-armed with the communicated timeout value.

Communicating a 0 timeout is allowed and implies declaring the flow as DOWN

immediately. This could be used for interrupting incoming traffic without deallocating

the flow.

	Deliverable-4.2 (1st version)
	Table of Contents
	Acronyms
	1. Introduction
	1.1. Specification and System Design
	1.2. Implementation Tasks
	1.3. Proof-of-Concept Experimentations
	1.3.1. Experimentation Categories
	1.3.2. Test Groups and Structure of Test Campaigns

	2. Authentication of IPC Processes
	2.1. Specification and Design of the Authentication Function
	2.1.1. Specification of Three Authentication Policies
	2.1.1.1. AuthNone Policy
	2.1.1.2. AuthNPassword Policy
	2.1.1.3. AuthNAssymetricKey (RSA) Policy

	2.1.2. Interfaces and Interactions with Other Components

	2.2. Implementation of the Authentication Function for PoC
	2.2.1. Authentication-related SDK
	2.2.2. Configuration of the Security Manager
	2.2.3. AuthNone Policy
	2.2.4. AuthNPassword Policy
	2.2.5. AuthNAssymetricKey (RSA) Policy

	2.3. Component-Level PoC Tests for Authentication
	2.3.1. AuthNPassword Policy
	2.3.2. AuthNAssymetricKey (RSA) Policy

	2.4. Next Steps for Authentication Activity

	3. Capability-based Access Control
	3.1. Access Control Scenarios
	3.2. Specification and Design of CBAC’s at DAF-Level
	3.2.1. Access Control Mangers' Functions
	3.2.1.1. The Master AC Manager
	3.2.1.2. The Local AC Manager

	3.2.2. Authorisation Profiles
	3.2.2.1. Example Profiles

	3.2.3. Access Control Policies
	3.2.4. Interfaces and Interactions with Other Components
	3.2.4.1. Sequence Diagram and Interactions
	3.2.4.2. Inputs and outputs

	3.3. CBAC Implementation for PoC
	3.4. Component-level PoC Tests for Access Control
	3.5. Next Steps for CBAC Activity

	4. Multi-Level Security
	4.1. MLS Scenarios
	4.1.1. MLS Communications Security
	4.1.2. Boundary Protection Component

	4.2. Achieving MLS Communications Security in RINA
	4.2.1. Application-level
	4.2.2. Bump in the Stack
	4.2.3. Bump in the Wire
	4.2.4. Specification and Design of the Bump in the Wire Solution
	4.2.5. Interaction of Components with SDU Protection Policy

	4.3. Achieving BPC in RINA
	4.4. MLS Implementation for PoC
	4.4.1. Communications Security
	4.4.2. Boundary Protection Component

	4.5. Component-Level PoC Tests for MLS
	4.5.1. Test Environment
	4.5.2. Tests to be Performed

	4.6. Next Steps for MLS Activities

	5. Cryptographic Functions and Enablers
	5.1. Cryptographic Concepts used in SDU Protection Policy
	5.1.1. Replay Detection
	5.1.2. Ciphering Modes
	5.1.3. HMAC
	5.1.4. Diffie-Hellman Key Exchange
	5.1.5. Keying Material
	5.1.6. Counter Mode
	5.1.7. Selecting algorithms for SDU Protection Policy

	5.2. Specification and Design of the SDU Protection Component
	5.2.1. Software Architecture of the SDU Protection Component
	5.2.2. SDU Protection Interfaces
	5.2.3. Report of SDU Protection Operations: The Results and Error Codes

	5.3. SDU Protection Policies
	5.3.1. Basic SDU Protection Policy: Simple CRC and TTL
	5.3.2. Cryptographic SDU Protection Policy: AES Counter Mode
	5.3.2.1. Specification:

	5.3.3. Interdependencies with other components
	5.3.4. Changes to the current IRATI stack for Integrating Other Policies

	5.4. Implementation of SDU Protection for PoC
	5.4.1. Configuration of SDU Protection
	5.4.2. Extending the IPCP Structure
	5.4.3. Modifications of RMT Structure
	5.4.4. Modifications to SerDes Module

	5.5. Next Steps for Cryptographic Activity: PoC Tests

	6. Key Management
	7. Resiliency and High Availability
	7.1. Resilient Routing
	7.1.1. IRATI Routing and Forwarding Tables
	7.1.2. PRISTINE SDK: Limitations and Proposed Solutions for Routing Policy
	7.1.3. Loop Free Alternates Policy, the Updates
	7.1.4. Routing Software Specification and Implementation
	7.1.4.1. User Space, Interfaces
	7.1.4.2. User/Kernel Interface, Data Structures
	7.1.4.3. Kernel Space Software Structure

	7.1.5. Initial PoC Evaluation of the LFA Policy

	7.2. Load Balancing
	7.2.1. DAF-Based Load Balancing
	7.2.2. Implementation of DAF-Based Load Balancing

	7.3. Next Steps for High Availability and Load Balancing Activities
	7.3.1. High availability
	7.3.2. Load Balancing

	8. Summary and Conclusions
	References
	A. Traces of Authentication Verification Experiments
	A.1. AuthNPassword Policy Traces
	A.1.1. AuthNAssymetricKey (RSA) Policy Traces

	B. Updated LFA Policy
	B.1. Narrative description of the Loop Free Alternates policy
	B.1.1. The Flow State Database
	B.1.1.1. RIB Objects:

	B.1.2. Routing Table
	B.1.3. PDU Forwarding Table
	B.1.4. Subscription and reaction to events
	B.1.4.1. N-1 flow up
	B.1.4.2. N-1 flow down
	B.1.4.3. Delete_FSO expires
	B.1.4.4. Flow State DB has changed

	C. Updated FLD Policy
	C.1. Common elements
	C.2. Initialization
	C.3. FLD Behaviour
	C.3.1. Keepalive_Timer.expire
	C.3.2. Timeout_Changed.receive

