

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 1 / 24

MOMOCS

M o d e l d r i v e n M o d e r n i s a t i o n o f
C o m p l e x S y s t e m s

D E L I V E R A B L E # D 3 2
M E T H O D O L O G Y S T A N D A R D S

 Dissemination Level: Public

 Work package: WP3

 Lead Participant: SOFT

 Contractual Delivery Date: M10

 Document status: Final

 Preparation Date: 30th June, 2007 Month

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 2 / 24

INDEX

1 SCOPE .. 4
1.1 PURPOSE OF THE DOCUMENT ... 4
1.2 DOCUMENT STRUCTURE... 4

2 OVERVIEW ... 5
2.1 BACKGROUND CONCEPTS ... 5

2.1.1 Software life cycle model... 5
2.1.2 Software process model... 6

2.2 A MODELLING APPROACH... 7
2.2.1 UML Profiles... 10

3 SPEM... 12
3.1 DESCRIPTION.. 13
3.2 TERMINOLOGY ... 16
3.3 SPEM AND OTHER APPROACHES .. 20

4 CONCLUSION... 22

5 ANNEXES... 23
5.1 REFERENCE DOCUMENTS ... 23

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 3 / 24

INDEX OF FIGURES
Figure 1: Layers of modelling [SPEM]... 9
Figure 2: Example of UML Profile [FaM04] .. 11
Figure 3: SPEM conceptual model.. 13
Figure 4: SPEM metamodel .. 15
Figure 5: ProCube activity icon... 16
Figure 6: ProCube role icon .. 17
Figure 7: ProCube phase icon ... 17
Figure 8: ProCube step icon .. 18
Figure 9: ProCube workdefinition icon... 18
Figure 10: ProCube workproduct icon .. 19

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 4 / 24

1 Scope

1.1 Purpose of the Document

The purpose of this document is to introduce the main background concepts of

software process engineering and to provide a detailed description of the OMG

standard used to formalize the Xirup methodology: the Software Process

Engineering Metamodel (SPEM). In addition, basics of meta-modelling and UML

profiling are given in order to help in understanding the approach for XIRUP meta-

model specification.

The document is strongly linked with D31 where the Xirup process is formally

described through SPEM diagrams. The meta-model presented in D41 is specified

with MOF and it is also presented in this document. UML2 Profiles are described in

order to illustrate the metamodel implementation with UML2 Profiles.

1.2 Document Structure

This document is organised as follows.

Section 2 presents a brief explanation of the “software life cycle” and the software

process” models. It also describes the Meta-model Facility (MOF) frameworks and

UML profiles, which are used to specify SPEM.

Section 3 describes SPEM providing rationale behind its choice in MOMOCS project.

Section 4 highlights the conclusions reached.

Section 5 summarises the bibliography consulted for writing the present deliverable.

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 5 / 24

2 Overview

This section presents a brief explanation of the “software life cycle” and the

“software process” models for what regards software process engineering. Finally, it

offers a short description of Meta-model Facility (MOF) framework and UML

profiles, which are used to specify SPEM.

2.1 Background concepts

Before considering some process engineering concepts we should first define what a

“software process” is: [CERN] states that “a software process is the set of actions,

tasks and procedures involved in producing a software system, throughout its life

cycle”. Modelling the software process facilitates its management with the support of

process management tools.

2.1.1 Software life cycle model

A software life cycle model is either a descriptive or prescriptive characterization of

how software is or should be developed [SCA01].

A descriptive model describes the history of how a particular software system was

developed.

A prescriptive model prescribes how a new software system should be developed.

Prescriptive models are used as guidelines or frameworks to organize and structure

how software development activities should be performed, and in what order.

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 6 / 24

Typically, it is easier and more common to articulate a prescriptive life cycle model

for how software systems should be developed. This is possible since most such

models are intuitive or well reasoned. This means that many details that describe

how a software system is built in practice can be ignored, generalized, or deferred for

later consideration. This, of course, should raise concern for the relative validity and

robustness of such life cycle models when developing different kinds of application

systems, in different kinds of development settings, using different programming

languages, with differentially skilled staff, etc. However, prescriptive models are also

used to package the development tasks and techniques for using a given set of

software engineering tools or environment during a development project.

Descriptive life cycle models, on the other hand, characterize how particular software

systems are actually developed in specific settings. As such, they are less common

and more difficult to articulate for an obvious reason: one must observe or collect

data throughout the life cycle of a software system, a period of elapsed time often

measured in years [SCA01].

2.1.2 Software process model

In contrast to software life cycle models, software process models often represent a

networked sequence of activities, objects, transformations, and events that embody

strategies for accomplishing software evolution. Such models can be used to develop

more precise and formalized descriptions of software life cycle activities. Their

power emerges from their utilization of a sufficiently rich notation, syntax, or

semantics, often suitable for computational processing [SCA01].

The software process is a process with special features, which are derived from the

particular complexity of the resulting software products. In a company or in an

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 7 / 24

application domain, processes in different projects usually follow certain common

patterns, because good practices are formally recognised, or because of the existence

of some standards. The representation of a software process model allows to describe

these common features and promotes homogeneity.

The software process is based on a lifecycle model, and involves all necessary

elements (technologies, personnel, artefacts, procedures, etc.) that are related with

the activities in a software product life.

Note that the software process has to consider two interrelated processes: Production

process (development and maintenance of software) and Management process

(planning and control of resources that are required for the production process).

Modeling the software process facilitates its understanding and communication,

support for its management, quality assurance, and the availability of support tools.

Recently, it becomes common to accept the coexistence of different software process

models or the need to customize generic software process models for the

development of applications in concrete domains. This has largely motivated the

definition of process modeling languages such as SPEM by OMG or SEMDM

(ISO/IEC 24744 standard). These standards should facilitate the availability of tools

to specify and manage software processes.

2.2 A modelling approach
UML (Unified Modeling Language) represents the killer-language that permitted to

move from code-oriented to model-oriented software production techniques.

The need to specify more formally UML gave rise in OMG to the definition of

languages that allow the specification of modeling languages. This need has been

reinforced by the recognition that UML is not the only possible modeling language in

the software development landscape. The result has been the MOF (Meta Object

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 8 / 24

Facility) [BEZ04]. To avoid a variety of different non-compatible meta-models being

defined and independently evolving (data warehouse, workflow, software process,

etc.), there was an urgent need for a global integration framework for all meta-

models in the software development area. To this end, a language for defining meta-

models was provided, i.e. a meta-meta-model (layer M3 in Figure 1) while each

meta-model defines a language for describing a specific domain of interest (layer M2

in Figure 1).

For example, UML addresses the need to model the artifacts of object-oriented

software systems. Some other meta-models may address domains like legacy

systems, data warehouses, software process, organization, tests, quality of service,

party management, etc. Each is important and their numbers keep growing. They are

defined as separate components and many relationships exist between them [BEZ04].

MOF defines a four layer metadata architecture, which can be applied to SPEM as

depicted in Error! Reference source not found.. The lower layer (M0) represents a

concrete project, which is an instance of a concrete process model (in M1 layer). The

process model is specified using a language, such as SPEM. The specification of this

language is in M2 layer. And it is specified using a language of M3 layer (MOF in this

case).

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 9 / 24

Figure 1: Layers of modelling [SPEM]

More concretely, the SPEM specification is structured as a UML profile (see next

section) and provides a complete MOF-based meta-model for software process

engineering. Thus, it permits to formally describe a full-fledge software development

methodology and consequently, a complete software modernization set of methods

as required by Xirup.

Specified by UML2 Infrastructure, MOF provides a comprehensive approach for

defining new modelling languages. In the context of XIRUP, MOF is used for

definition of XIRUP metamodel, which is presented in [D41].

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 10 / 24

2.2.1 UML Profiles

As presented above, MOF is common way for definition of new modelling concepts.

However, for implementing this concept a solid methodological and modelling tool

support is required. The UML Profiles presented in this section provides an approach

that help to implement new concepts on the already established, well-developed

standard basis. In our approach, the XIRUP metamodel represents the language

concepts, while UML Profiles are used for implementing them on the UML2 basis.

UML Profiles is the extension mechanism for UML modelling. This mechanism is

also a basis for customisation Modelling Tool, like Objecteering by Softeam. The

UML Profiles allows implementing new modelling concepts and functionalities

based on the standard modelling functionalities provided by tools. UML elements

and diagrams can be specialized for implementing new modelling languages. This

customisation can be done to reduce complexity of UML or reduce the scope of the

modelling for a concrete usage. For example, for the requirements definition UML

foresees Use-Case diagrams and Sequence Diagrams. The users that specify

requirement may be provided with a restricted GUI for working with these concrete

diagrams only. For users specifying conceptual models a dedicated interface and

restrictive language can be specified for helping to implement a specific

methodology.

UML can easily be customized by using a set of extension mechanisms that UML

itself provides in order to build new metamodel. More precisely, the Profiles package

included in UML 2.0 defines a set of UML artifacts that allows the specification of an

MOF model to deal with the specific concepts and notation required in particular

application domains (e.g., real-time, business process modelling, finance, etc.) or

implementation technologies (such as .NET, J2EE, or CORBA). The profiling

mechanism allows to customize any MOF-like metamodel and not only UML-

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 11 / 24

defined ones. On the same manner, a UML Profile can also define another UML

Profile.

UML Profiles are defined in terms of three basic mechanisms: stereotypes, constraints,

and tagged values [FaM04].

Figure 2: Example of UML Profile [FaM04]

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 12 / 24

3 SPEM

SPEM is a metamodel for defining processes and their components. A tool based on

SPEM would be a tool for process authoring and customizing. The actual enactment

of processes—that is, planning and executing a project using a process described

with SPEM, is not in the scope of this model [SPEM]. However, some tools can take

as input processes that have been specified with SPEM, and manage them (for

instance, ProCube).

A guiding principle for SPEM has been simplicity in the following sense: “The

standard wants to accommodate a large range of existing and described software development

processes, and not exclude them by having too many features or constraints” [SPEM].

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 13 / 24

3.1 Description

SPEM considers a software development process as collaboration between abstract

active entities called process roles, which perform operations called activities on

concrete, tangible entities called work products [SPEM]. This is represented in the

UML diagram in 4.

Figure 3: SPEM conceptual model

These three basic elements are refined to provide the SPEM metamodel, which is

shown in the diagram in Error! Reference source not found.4.

The core idea is that different roles act upon one another or collaborate by

exchanging products and triggering the execution for certain activities.

The global goal of the software process is to lead a set of products and artefacts to a

well-defined state [CCCC06].

A WorkDefinition describes the execution, the operations performed, and the

transformations enacted on some Work Products by the roles. It can also be

decomposed reflexively, generating a set of subworks. The WorkDefinition has four

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 14 / 24

specializations, respectively Activity, Iteration, Phase and LifeCycle: an Activity can be

divided into Steps while a LifeCycle is a sequence of Phases and Iterations.

A ProcessPerformer is the role that is the unique responsible for a certain

WorkDefinition; on the other side, a set of ProcessRoles has the possibility to assist

the main role to perform an Activity.

SPEM also defines two major concepts, Process and Discipline. A Process corresponds

to the root of a process model from which a tool can do the transitive closing of a

complete process. A Discipline allows, within the process, to partition activities

according to a common “theme”. The output products of each of the activities of a

discipline must be categorized under this same theme [CCCC06].

Diagram 5 shows the main elements that facilitate the description of a process using

SPEM; the highlighted meta-objects relates to the elements just described in the

above paragraphs.

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 15 / 24

Figure 4: SPEM metamodel

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 16 / 24

3.2 Terminology

Taking into account the [SPEM], a complete description of metamodel elements is

given in the following bullets. In some cases, such elements are presented along with

their corresponding ProCube graphical representation in order to enforce the link

with D31 where Xirup methodology is introduced just with ProCube diagrams.

• Activity: A Work Definition describing what a Process Role performs.

Activities are the main element of work.

Figure 5: ProCube activity icon

• Dependency: A Dependency is a process-specific relationship between

process Model Elements.

• Discipline: A Discipline is a process package organized from the perspective

of one of the software engineering disciplines: Configuration Management,

Analysis & Design, and so forth.

• Guidance: Guidance is a Model Element associated with the major process

definition elements, which contains additional descriptions such as

techniques, guidelines and UML profiles, procedures, standards, templates of

work products, examples of work products, definitions, and so on.

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 17 / 24

• Iteration: An Iteration is a large-grained Work Definition that represents a set

of Activities focusing on a portion of the system development that results in a

release (internal or external) of the software product.

• Model Element: An element describing one aspect of a software engineering

process.

• Process Role: A Model Element describing the roles, responsibilities and

competencies of an individual carrying out Activities within a Process, and

responsible for certain Work Products.

Figure 6: ProCube role icon

• Phase: A high-level Work Definition, bounded by a Milestone.

Figure 7: ProCube phase icon

• Process: A Process is a complete description of a software engineering process,

in term of Process Performers, Process Roles, Work Definitions, Work

Products, and associated Guidance.

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 18 / 24

• Process Component: A Process Component is a coherent grouping of process

Model Elements organized from a given vantage point such as a discipline, for

example, testing, or the production of some specific work product, for

example, requirements management.

• Process Performer: A Process Performer is a Model Element describing the

owner of Work Definitions. Process Performer is used for Work Definitions

that cannot be associated with individual Process Roles, such as a Life Cycle

or a Phase.

• Step: An atomic and fine-grained Model Element used to decompose

Activities. Activities are partially ordered sets of Steps.

Figure 8: ProCube step icon

• Work Definition: A Model Element of a process describing the execution, the

operations performed, and the transformations enacted on the Work Products

by the roles. Activity, Iteration, Phase, and Lifecycle are kinds of work

definition.

Figure 9: ProCube workdefinition icon

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 19 / 24

• Work Product: A Work Product is a description of a piece of information or

physical entity produced or used by the activities of the software engineering

process. Examples of work products include models, plans, code, executables,

documents, databases, and so on.

Figure 10: ProCube workproduct icon

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 20 / 24

3.3 SPEM and other approaches

There are other proposals for the specification of development processes.

ISO has defined the Software Engineering Metamodel for Development

Methodologies (SEMDM) [ISO 24744]. The purpose of this standard is to provide a

comprehensive meta-model for the specification of all the concepts necessary for

modelling and creating methodologies. It can be used to generate and underpin a

unique methodology or used in a method engineering context to create endeavour-

specific methodologies. This meta-model relies on the use of powertypes

[GonHen06] as its underpinning conceptual architecture, which is different from the

OMG instantiation-linked multi-layer architecture (usually denoted as M0, M1, M2

and M3 levels). Three layers are used in ISO/IEC 24744: endeavour (where people

work), method (where practices are determined) and meta-model (where practices

are formally defined).

The use of powertypes is claimed to solve some inconsistencies that may appear

when using MOF. Powertype metamodelling intends to consider both the

perspective of software developers (users of methodologies) and method engineers

(users of metamodels and creators of methodologies), in an integrated way. This is

done by allowing to define pairs of classes to model method-level concepts (for

instance, TaskKind) and project-level concepts (such as Task). Each of these pairs

composes a powertype pattern that ties together both concepts and, at the same time,

allows for independent usage. [HenGon05].

Although from a theoretical point of view the new ISO standard based on

powertypes could be superior, there are no tools supporting it. This is an important

reason to consider the use of SPEM instead, as it is widely available. In concrete, in

the Momocs project one of the partners is distributing a tool, called ProCube, which

allows to specify processes and enact them.

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 21 / 24

Another interesting framework is the Eclipse Process Framework (EPF). EPF aims at

producing a customizable software process engineering framework, with exemplary

process content and tools, supporting a broad variety of project types and

development styles. EPF has several advantages with respect to similar tools such as

a wider acceptance, because it is open software supported by Eclipse Foundation, its

greater functionality, and better adaptability. In fact, there are plans to adopt SPEM

2.0 once this is released.

The associated tool, EPF Composer, provides an environment for defining, tailoring,

managing, and communicating development processes. It facilitates the creation of a

process by defining who does what, when, and how. It can also provide guidance,

templates, and other supporting material and publish the information as a website

on a corporate intranet.

By separating the method content, which defines the roles, work products, tasks, and

associated guidance from the process, which defines the phases, iterations, activities,

and tasks in the context of a work breakdown structure, one can reuse content across

projects, phases, and iterations, tailoring the life cycle to meet the specific needs of

the project team. This approach effectively supports top-down process definition

(phases, iterations, and activities), bottom-up process definition (roles, work

products, and tasks), or a combination of the two.

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 22 / 24

4 Conclusion

The SPEM metamodel has several strong points and a few week points that make it

suitable to describe XIRUP and the MOMOCS approach.

SPEM weak points are related to its complexity and the fact that semantics is only

partially formalised. For example the ProcessPerformer [BEN05] is not formally

defined. SPEM also lack enactment and planning support. All these limitations do

not seem serious enough to advise against using SPEM in MOMOCS.

On the other hand there are several characteristics of SPEM that make it a good fit for

the description of XIRUP. SPEM is compliant to MOF and can be extended with

UML2.0 elements for detailed process definition. It enjoys wide support from OMG

and is the elective choice by industry (ORACLE, MacroMedia and others) when it is

necessary to model complex processes.

SPEM has thus been chosen for describing XIRUP in D31.

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 23 / 24

5 Annexes

5.1 Reference Documents
[SCA01] “Process Models in Software Engineering”,Walt Scacchi, Institute for

Software Research, University of California, Irvine-February 2001

[BER04] ”Applying The Basic Principles of Model Engineering to The Field of

Process Engineering” Jean Bézivin and Erwan Breton, October 2004

[SPEM] “Software Process Engineering Metamodel Specification” Version 1.1

formal/05-01-06, January 2005

http://www.omg.org/docs/formal/05-01-06.pdf

[ISO 24744] “Software Engineering Metamodel for Development Methodologies

(SEMDM)”, ISO/IEC 24744

[CERN] http://ipt.web.cern.ch/IPT/Papers/Sopron94/CSCproceedings_11.html

[OST87] “Software processes are software too”, ICSE’87, L. Osterweil Monterey, Ca

[BEZ04] “In Search of a Basic Principle for Model Driven Engineering” Jean Bèzivin,

October 2004

Deliverable Number: D32
Preparation Date: 30th June, 2007

Project Number: IST-2006- 034466
Project Start Date: 1st September, 2006
Project Duration: 24 months

DISSEMINATION LEVEL: PUBLIC 24 / 24

[FaM04] “An Introduction to UML Profiles”, Lidia Fuentes-Fernández and Antonio

Vallecillo-Moreno, October 2004

[CCCC06] “Towards a rigorous process modeling with SPEM”, Benoit Combemale,

Xavier Crégut, Alain Caplain, Bernard Coulette, ICEIS April 25, 2006

www.combemale.net/research/phd/2006/iceis250406-CCCC-poster401.pdf

[BEN05] Bendraou, R., Gervais, M.-P., and Blanc, X. (2005). Uml4spm : A uml2.0-

based metamodel for software process modelling. In MoDELS’05, volume 3713,

pages 17–38. Springer-Verlag.

[GonHen06] Cesar Gonzalez-Perez, Brian Henderson-Sellers: A powertype-based

metamodelling framework. Software and System Modeling 5(1): 72-90 (2006)

[HenGon05] Brian Henderson-Sellers, Cesar Gonzalez-Perez: The Rationale of

Powertype Powertype-based Metamodelling to Underpin nderpin Software D

Development evelopment Methodologies. APCCM 2005: 7-16

