
D7e

Public access to interactive SAL system

Date: 17 December 2010

Dissemination level: Public

SEMAINE D7e

ICT project contract no. 211486

Project title
SEMAINE
Sustained Emotionally coloured Machine-human Interaction
using Nonverbal Expression

Contractual date of
delivery

31 December 2010

Actual date of delivery 17 December 2010

Deliverable number D7e

Deliverable title Public access to interactive SAL system

Type Demonstrator

Number of pages 70

WP contributing to the
deliverable

WP 1, WP7

Responsible for task Marc Schröder (schroed@dfki.de)

Author(s)
Marc Schröder, Elisabetta Bevacqua, Florian Eyben, Hatice
Gunes, Mark ter Maat, Sathish Pammi, Etienne de Sevin, Michel
Valstar, Martin Wöllmer

EC Project Officer Philippe Gelin

page 2 of 70 ICT FP7 Contract no. 211486

mailto:schroed@dfki.de

SEMAINE D7e

Table of Contents
 Executive Summary..5
1 Introduction.. 6

1.1 The purpose of the present report... 6
2 SEMAINE-3.1: The final Sensitive Artificial Listener system.. 7

2.1 New in version 3.1.. 7
2.2 Installation.. 7
2.3 Running the system...8

2.3.1 Windows..8
2.3.2 All platforms... 8

2.4 License.. 9
2.5 Developer documentation... 9
2.6 Mailing list..9
2.7 Background Information...9

3 Configuring the SEMAINE system and its components.. 11
3.1 System manager and java component runner... 11

3.1.1 ComponentRunner.. 11
3.1.2 Java config file.. 11
3.1.3 Embedded ActiveMQ..13
3.1.4 User presence interpreter.. 13
3.1.5 Pointers to other config files... 14

3.2 Character config file... 14
3.3 State info config file... 14
3.4 Dialog manager config file... 14
3.5 Listener behaviour.. 15
3.6 Speech input component configurations...16
3.7 Video input component configurations...17
3.8 MARY TTS configuration.. 18

4 Configuring the message-oriented middleware ActiveMQ.. 19
4.1 Connecting to an external ActiveMQ server...19
4.2 Embedded ActiveMQ... 19
4.3 Configuring ActiveMQ... 20
4.4 Changing the port of an embedded ActiveMQ broker..20

5 SEMAINE Component Architecture..21
5.1 Analysis of user behaviour..21

5.1.1 Feature extractors.. 22
5.1.2 Analysers...24
5.1.3 Fusion components... 27

5.2 Dialogue management.. 27
5.2.1 Interpreters.. 27
5.2.2 Action proposers... 28

5.3 Generation of agent behaviour..29
5.3.1 Direct branch...30
5.3.2 Prepare-and-trigger branch... 31

6 Protocol for the Player in SEMAINE...32

page 3 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

6.1 Data flow...32
6.2 Command messages..32
6.3 Callback messages.. 33
6.4 Error conditions.. 34

7 Standard and pre-standard representation formats in the SEMAINE system................................35
7.1 Feature vectors..36

7.1.1 Details... 36
7.2 EMMA.. 38

7.2.1 Details... 38
7.2.2 Verbal information.. 39
7.2.3 Emotion-related information...39
7.2.4 Non-verbal information...40

7.3 EmotionML...43
7.4 SemaineML...44
7.5 SSML.. 44
7.6 FML.. 44
7.7 BML..45
7.8 Player data...47

8 State information defined in the SEMAINE system.. 48
8.1 User State..49
8.2 Agent State..52
8.3 Dialog State...56
8.4 Context State...56

9 Building emotion-oriented systems with the SEMAINE API..58
9.1 Hello world... 59
9.2 Emotion mirror... 63
9.3 A game driven by emotional speech: The swimmer's game... 64

10 API documentation... 69
10.1 Java API: Javadoc... 69
10.2 C++ API: Doxygen... 70

page 4 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

Executive Summary

This report marks the final release of the Sensitive Artificial Listener system, SEMAINE-3.1. We
desribe how the system has been made available, how it can be installed, and how it can be con-
figured.

The contents of this report are a snapshot of the live documentation on the software development
website http://semaine.opendfki.de.

By providing this software package and appropriate documentation, we fulfil the key aim of the SE-
MAINE project to provide a reusable software platform for future research on real-time interactive
Embodied Conversational Agents with emotional and non-verbal competence.

page 5 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/

SEMAINE D7e

1 Introduction
This report marks the final release of the Sensitive Artificial Listener system, SEMAINE-3.1.

The project's software release practice goes beyond what had been promised in the grant agreement
in two ways.

First, the original work plan previewed a release of the system to the public only at the end of the
project's lifetime. Instead, the consortium has followed a continuous release pattern starting with the
SEMAINE-1.0 early integration system after the first project year, and continuing throughout the
project's lifetime. This way, it is ensured that the released software packages are complete and suffi-
ciently easy to use.

Second, in the grant agreement the consortium had expressed the aim to make the majority of com-
ponents available as open source software, but had anticipated that two components (speech recog-
nition and video input components) could be made available as closed-source software under a re-
search license only. In fact, it has been possible to release the speech recognition software as open
source as well; the video input components are available as closed-source freeware, which means
that use is not restricted exclusively to research purposes.

We have distributed the demonstrators via the open source hosting platform sourceforge.net for the
open source part of the system (see http://sourceforge.net/projects/semaine/), and as a Windows in-
staller package for the closed-source part (see http://semaine.opendfki.de/wiki/SEMAINE-3.1). Ac-
cording to sourceforge download statistics, the various versions of the package have been down-
loaded more than 1,000 times since February 2010.

1.1 The purpose of the present report

This report addresses the need to document the multiple aspects of the SEMAINE system that can
be configured. The documentation is maintained on the wiki of the software development website
http://semaine.opendfki.de, so as to be easy to find and update.

This report provides a snapshot of the documentation as it is available at the end of the project. We
hope that the SEMAINE system will continue to be used and developed beyond the lifetime of the
project; the infrastructure needed for this to happen is in place.

page 6 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/
http://semaine.opendfki.de/wiki/SEMAINE-3.1
http://sourceforge.net/projects/semaine/

SEMAINE D7e

2 SEMAINE-3.1: The final Sensitive Artificial Listener system
(from http://semaine.opendfki.de/wiki/SEMAINE-3.1)

Sensitive Artificial Listeners (SAL) are virtual dialogue partners who, despite their very limited
verbal understanding, intend to engage the user in a conversation by paying attention to the user's
emotions and non-verbal expressions. The SAL characters have their own emotionally defined per-
sonality, and attempt to drag the user towards their dominant emotion, through a combination of
verbal and non-verbal expression.

 The SEMAINE project has created an open-source implementation of fully autonomous SAL char-
acters. It combines state-of-the-art emotion-oriented technology into a real-time interactive system.
The SAL characters register your voice from a microphone, using a combination of speech recogni-
tion and vocal emotion recognition. They perceive your facial expressions and head movements
through a video camera. They express themselves through a virtual animated face and a synthetic
expressive voice. This video illustrates the concept.

2.1 New in version 3.1

This is essentially a cleanup release of the full SAL system. Its main emphasis is on improving the
stability and performance, and simplifying the configuration of the system in order to make it easier
to reuse the systm in whole or in part for scientific research in real-time interactive, emotionally
aware Embodied Conversational Agents.

This version of the system has the following new feature:

• User presence is detected automatically, based on face and voice detection.
• Embedded middleware: The middleware ActiveMQ is now started as part of the java com-

ponents; no need to start a separate ActiveMQ server anymore.

Apart from this, all components have received minor improvements under the surface.

In total, 28 issues have been fixed: http://semaine.opendfki.de/query?status=closed&group=resolu-
tion&milestone=3.1

2.2 Installation

As a pre-condition for installing and running the SEMAINE-3.1 system, make sure that you have
suitable hardware and that you have installed the Required Software.

The open source parts of the system can be downloaded from the SEMAINE sourceforge project
page. You can choose among two packages, each around 950 MB. (The files are so large because it
includes four high-quality TTS voices as well as vocal emotion recognition models, which need a
lot of space.)

• SEMAINE-3.1-windows includes binary versions of the full SEMAINE-3.1 system: the
System manager component, the dialogue components, the speech synthesizer MARY TTS,
the Greta agent components, the Opensmile speech analysis components, and the mes-
sage-oriented middleware ActiveMQ.

• SEMAINE-3.1-source includes the source code for: the System manager component, the
dialogue components, and the Opensmile speech analysis components, as well as binary ver-
sions of the speech synthesizer MARY TTS, the message-oriented middleware ActiveMQ

page 7 of 70 ICT FP7 Contract no. 211486

http://sourceforge.net/projects/semaine/files/
http://sourceforge.net/projects/semaine/files/
http://semaine.opendfki.de/wiki/SEMAINE-3.1-Dependencies
http://semaine.opendfki.de/wiki/SEMAINE-3.0-Hardware
http://semaine.opendfki.de/query?status=closed&group=resolution&milestone=3.1
http://semaine.opendfki.de/query?status=closed&group=resolution&milestone=3.1
http://semaine.opendfki.de/wiki/SEMAINE-3.0
http://www.youtube.com/watch?v=munqOlj3mNw
http://www.semaine-project.eu/
http://semaine.opendfki.de/wiki/SEMAINE-3.1

SEMAINE D7e

and all dependencies needed to compile the code. It can be used to compile the system from
source under Linux, Mac and Windows.

To run the full audio-visual SEMAINE-3.1 system, the windows package is required. The system
can run on a single, fast machine (tested on a laptop with a 2.53 GHz Core2Duo CPU with 4 GB
RAM), or you can set up SEMAINE-3.1 as a distributed system.

The Video analysis components are distributed as closed-source freeware: SEMAINE Visual
Components. Watch out for the Camera driver requirements if you are using a Firewire camera. If
installed in the default location, the start.bat script will notice that the video analysis components
are installed and will try to run them. Since they are computationally heavy, you may need an addi -
tional computer to run them.

The SEMAINE-3.1 system will work without the video analysis components, but will then not be
able to pick up the same amount of information from the user.

2.3 Running the system

2.3.1 Windows

In its simplest form, the system can be run on a single (fast) Windows machine by installing all sys-
tem components on the same computer as described above. The system is then run by starting the
following batch file:

SEMAINE-3.1\start.bat

This will start all installed components. If the system does not start correctly, double-check that you
have met all the requirements.

To stop all components of the system, call

SEMAINE-3.1\stop.bat

The system with windows and java open source components runs OK on a Core2Duo with 2.53
GHz and 4 GB RAM. When the video analysis components are added, the system is running but
very slow. Therefore, it is recommended to run SEMAINE-3.1 as a distributed system on several
computers.

2.3.2 All platforms

Whereas the video input and output components are available for Windows only, there is a configur-
ation of the system that runs on all platforms -- the speech2speech system, with only speech input
and speech output.

This system can be started as follows.

• In one shell, start the java components as
SEMAINE-3.1/bin/semaine-speech2speech.sh (or .bat);

• In a second shell, start opensmile as
SEMAINE-3.1/bin/run_components/start_component_tum.opensmile
(linux/mac) or SEMAINE-3.1\Opensmile\start_openSMILE.bat (windows).

page 8 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/SEMAINE-3.0-Distributed
http://semaine.opendfki.de/wiki/SEMAINE-3.1-Dependencies
http://semaine.opendfki.de/wiki/SEMAINE-3.1-Dependencies#Camera
http://www.dfki.de/~schroed/SEMAINE-3.0/Semaine%20Video%20Analysis.msi
http://www.dfki.de/~schroed/SEMAINE-3.0/Semaine%20Video%20Analysis.msi
http://semaine.opendfki.de/wiki/SEMAINE-3.0-Distributed

SEMAINE D7e

In this configuration the java components are started with a different config file, which loads a stack
of audio-only output components in java.

2.4 License

The SEMAINE API for Java and C++, the SEMAINE dialogue components (in Java), and the
speech synthesizer MARY TTS are distributed under the GNU Lesser General Public License
(LGPL), version 3. The speech synthesis voices for the SAL agents are distributed under the Creat -
ive Commons ShareAlike - No Derivatives license.

The 3D agent animation software Greta and the speech analysis software Opensmile are distributed
under the GNU General Public License (GPL) .

The separately installable SEMAINE Video components for camera image analysis come as a free-
ware binary.

2.5 Developer documentation

With some effort you can build the components from source.

Detailed documentation of the SEMAINE API is available in a number of documents:

• A Journal article in Advances in Human-Machine Interaction The SEMAINE API: Towards
a standards-based framework for building emotion-oriented systems;

• the deliverable report D1d Final SAL system
• the deliverable report D1c First full-scale SAL system
• section 3 of the deliverable report D1b: First integrated system
• Javadoc is available for the Java version of the SEMAINE API
• Doxygen is available for the C++ version of the SEMAINE API

2.6 Mailing list

There is a public SEMAINE-users mailing list at https://lists.sourceforge.net/lists/listinfo/semaine-
users. Feel free to ask questions there.

2.7 Background Information

Detailed information on the system and the underlying software architecture can be found in the fol -
lowing set of public project deliverable reports:

• D1d Final SAL system
• D2b Final feature extraction
• D3c Human behaviour interpreter
• D4b Final dialogue manager
• D5b Multimodal generation component

See also the slightly older set of reports on SEMAINE-2.0, which contain complementary informa-
tion.

Furthermore, information about the data collected in the project can be found in the following re-
ports:

page 9 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/SEMAINE-2.0#reports
http://semaine.sourceforge.net/SEMAINE-3.0/D5b%20Multimodal%20generation%20component.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D4b%20Final%20dialogue%20manager.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D3c%20Human%20behaviour%20interpreter.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D2b%20Final%20feature%20extraction.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D1d%20Final%20SAL%20system.pdf
https://lists.sourceforge.net/lists/listinfo/semaine-users
https://lists.sourceforge.net/lists/listinfo/semaine-users
http://semaine.sourceforge.net/SEMAINE-3.1/doxygen
http://semaine.sourceforge.net/SEMAINE-3.1/javadoc
http://semaine.sourceforge.net/SEMAINE-1.0/D1b%20First%20integrated%20system.pdf
http://semaine.sourceforge.net/SEMAINE-2.0/D1c%20First%20full-scale%20SAL%20system.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D1d%20Final%20SAL%20system.pdf
http://dx.doi.org/10.1155/2010/319406
http://dx.doi.org/10.1155/2010/319406
http://semaine.opendfki.de/wiki/SEMAINE-3.1-Compile
http://www.gnu.org/licenses/gpl.html
http://mary.dfki.de/download/by-nd-3.0.html
http://mary.dfki.de/download/by-nd-3.0.html
http://www.gnu.org/licenses/lgpl-3.0-standalone.html
http://www.gnu.org/licenses/lgpl-3.0-standalone.html

SEMAINE D7e

• D6b Statistical analysis of data from initial labelled database and recommendations for an
economical coding scheme

• D7b Public access to labelled data

page 10 of 70 ICT FP7 Contract no. 211486

http://semaine.sourceforge.net/SEMAINE-2.0/D7b%20Public%20access%20to%20labelled%20data.pdf
http://semaine-project.eu/D6b_labelled_data.pdf
http://semaine-project.eu/D6b_labelled_data.pdf

SEMAINE D7e

3 Configuring the SEMAINE system and its components
(see http://semaine.opendfki.de/wiki/ConfiguringSEMAINE for latest version)

Many aspects of the SEMAINE system can be influenced through configuration files. It suffices to
change these values in the respective configuration file, and to restart the system, in order to modify
the system behaviour. In particular, it is not necessary to recompile the source code for these
changes to take effect.

3.1 System manager and java component runner

The java part of the SEMAINE system if highly flexibly configurable. Whereas in C++, different
executables provide a hard-coded bundle of components, the presence of reflection in Java makes it
possible to define the configuration of a given java process in a configuration file, and to load the
actual components at runtime.

Therefore, a single entry point exists for all Java components in the SEMAINE API: the eu.se-
maine.system.ComponentRunner.

3.1.1 ComponentRunner

The simplest way to start the component runner is through a simple script file, such as the start
scripts semaine-speech2face.sh and semaine-speech2face.bat. In addition to the memory available
to the java process and the configuration settings for ActiveMQ, the ComponentRunner main meth-
od requires the user to provide as a command line parameter the configuration file to use. The syn-
tax of that file is described in the following.

3.1.2 Java config file

The key place for the configuration of the Java subsystem is a system config file, such as SE-
MAINE-3.1/java/config/speech2face.config.

The java config file lists the components to be loaded, can contains any system properties that may
be accessed by the java components. In particular, it points to additional config files.

The following configuration settings can be set directly in the main java configuration file.

• semaine.components lists the components to be loaded. It is usually a multi-line entry
with one component class listed per line. The following is the entry from speech2face.-
config:

semaine.components = \
 |eu.semaine.components.meta.SystemManager| \
 |eu.semaine.components.dialogue.interpreters.EmotionInterpreter| \
 |eu.semaine.components.dialogue.interpreters.TurnTakingInterpreter| \
 |eu.semaine.components.dialogue.interpreters.UtteranceInterpreter| \
 |eu.semaine.components.dialogue.interpreters.NonVerbalInterpreter| \
 |eu.semaine.components.dialogue.interpreters.AgentMentalStateInterpreter| \
 |eu.semaine.components.dialogue.actionproposers.UtteranceActionProposer| \
 |eu.semaine.components.dialogue.test.TestGui| \
 |eu.semaine.components.mary.SpeechPreprocessor| \
 |eu.semaine.components.mary.SpeechBMLRealiser| \
 |eu.semaine.components.mary.QueuingSpeechPreprocessor| \

page 11 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/browser/tags/3.1.0/java/config/speech2face.config
http://semaine.opendfki.de/browser/tags/3.1.0/java/config/speech2face.config
http://semaine.opendfki.de/wiki/ConfiguringActiveMQ
http://semaine.opendfki.de/browser/tags/3.1.0/bin/semaine-speech2face.bat
http://semaine.opendfki.de/browser/tags/3.1.0/bin/semaine-speech2face.sh
http://semaine.opendfki.de/wiki/ConfiguringSEMAINE

SEMAINE D7e

 |eu.semaine.components.mary.QueuingSpeechBMLRealiser| \
 |eu.semaine.components.control.ParticipantControl| \
 |eu.semaine.components.MessageLogComponent($semaine.messagelog.topic,
$semaine.messagelog.messageselector)| \
 |eu.semaine.components.emotion.EmotionFusion| \
 |eu.semaine.components.nonverbal.NonverbalFusion| \
 |eu.semaine.components.testing.StateLogger| \
 |eu.semaine.components.testing.AgentBehaviourObserver| \
 |eu.semaine.components.dialogue.interpreters.UserPresenceInterpreter| \

A minimalistic semaine.components entry is found in semaine-message-log-
ger-only.config:

semaine.components = \
 |eu.semaine.components.meta.SystemManager| \
 |eu.semaine.components.MessageLogComponent($semaine.messagelog.topic,
$semaine.messagelog.messageselector)| \

The meaning of the lines is the following:

 |eu.semaine.components.meta.SystemManager| \

This line instantiates an object of the class eu.semaine.components.meta.SystemMan-
ager using the default constructor with no arguments.

The following line instantiates eu.semaine.components.MessageLogComponent with a
constructor taking two string arguments:

 |eu.semaine.components.MessageLogComponent($semaine.messagelog.topic,
$semaine.messagelog.messageselector)| \

It would be possible to provide literal string values as parameters to the constructor inline; here,
however, the values are prefixed by the special character $, which indicates that the actual values
are to be read from property entries in the file; this way it is possible to change the system configur-
ation by commenting / uncommenting entries in the config file.

Show messages in all topics:
semaine.messagelog.topic = semaine.data.> \
 semaine.callback.>

Show only dialog state messages:
#semaine.messagelog.topic = semaine.data.state.dialog

Show all messages, i.e. periodic and event-based ones:
#semaine.messagelog.messageselector =
Show only event-based messages:
semaine.messagelog.messageselector = event IS NOT NULL

The mechanism for instantiating components with a flexible number of string parameters in the
constructor is generic. It is used here with the MessageLogComponent.

• semaine.messagelog.topic is a configuration setting for the message log compon-
ent to indicate the list of topics or topic hierarchies for which messages should be sent to the
log mechanism.

page 12 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

• semaine.messagelog.messageselector is a configuration setting for the message
log component to filter messages before sending them to the log mechanism. The syntax is
the JMS message selector syntax .

• semaine.systemmanager.gui is a boolean property which determines whether the
system manager will show a system monitor GUI or not.

If the system monitor gui is shown, it will display a message flow graph. As the system becomes
more complex, this graph will be increasingly difficult to read. In order to simplify the graph, the
following settings can be used to hide unnecessary detail.

• semaine.systemmanager.hide.components provides a list of component names
which should not be shown in the message flow graph. The names must match what the
component's getName() method returns.

• semaine.systemmanager.hide.topics provides the same functionality for Top-
ics: any topic listed here will not be shown in the message flow graph.

• semaine.systemmanager.gui.topics_to_ignore_when_sorting can be
used to exclude certain topics when computing the layout of the components in the message
flow graph.

The java components use jog4j for logging. log4j can be extensively configured using a specific
configuration file.

• semaine.log provides the location of log4j configuration file to use. If semaine.log
is not set, the file log4j.properties is used which is in the same directory as the main
java config file. For the config files shipping with SEMAINE, this is SEMAINE-
3.1/java/config/log4j.properties. The system property log4j.logger.semaine can be
used to override the log output specification of the semaine log messages; for example,

java -Dlog4j.logger.semaine=DEBUG,stderr ...

will log semaine message of level DEBUG or higher to standard error. This is useful for temporarily
starting the system with a different log setting from the default without having to change the
log4.properties configuration file.

3.1.3 Embedded ActiveMQ

• semaine.use.embedded.broker is a boolean property which determines whether the
java process will start an embedded ActiveMQ broker. If this is set to true, the ActiveMQ
message-oriented middleware will be part of the java process; if it is set to false, an external
ActiveMQ server must be started. See also ConfiguringActiveMQ.

3.1.4 User presence interpreter

A number of settings for the user presence interpreter component can be used to tweak how the
presence or absence of a user is computed. For voice activity, face detection, and system utterances,
thresholds can be set in milliseconds; only when times exceed these thresholds will the state of user
presence change. The following are the values currently used in the speech2face.config file:

For the user presence interpreter, set the thresholds (in milliseconds)
which need to be exceeded before a certain event impacts user presence:
semaine.UserPresence.threshold.voiceAppeared = 1000

page 13 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/ConfiguringActiveMQ
http://semaine.opendfki.de/browser/tags/3.1.0/java/config/log4j.properties
http://semaine.opendfki.de/browser/tags/3.1.0/java/config/log4j.properties
http://download.oracle.com/javaee/1.4/api/javax/jms/Message.html

SEMAINE D7e

semaine.UserPresence.threshold.voiceDisappeared = 20000
semaine.UserPresence.threshold.faceAppeared = 0
semaine.UserPresence.threshold.faceDisappeared = 3000
semaine.UserPresence.threshold.systemStoppedSpeaking = 10000
semaine.UserPresence.threshold.externalUserPresence = 60000

These values mean that voice activity needs to go on for at least one second before a user is deemed
present, whereas face presence triggers user presence immediately; if the face disappears for more
than three seconds, of the voice disappears for more than 20 seconds, the user is deemed absent.
User absence decisions are suspended while the system is speaking and for 10 seconds after the sys-
tem has finished speaking. If an external source determines user presence (such as a gui control),
this value is respected for 60 seconds.

3.1.5 Pointers to other config files

Several config file entries identify specific configuration files to be used in different contexts:

• semaine.character-config points to the character config file (see below)

• semaine.stateinfo-config points to the state information config file (see below)

• semaine.DM-config points to the dialogue manager config file (see below).

3.2 Character config file

The character config file (e.g., SEMAINE-3.1/java/config/character-config.xml) contains the defini-
tion of the characters' properties, including the TTS voices they can use, their emotional predisposi-
tions, and their propensity to take the turn.

In a future version this file may also refer to the facial models that should be used for the visual ap-
pearance of the character, as well as any other character properties.

3.3 State info config file

The stateinfo config file (e.g., SEMAINE-3.1/java/config/stateinfo.config) is the backbone of com-
municating state information between the system components. It defines the short names of any in-
formation items – anything the system knows about the current state of the user, the agent, the dia-
log, and the context –, and defines how they are encoded and decoded in XML for communicating
state within the system. For more details, see StateInfo.

In order to use a new information item in the code, it is sufficient to add it to the stateinfo.config file
and make sure all producers and consumers of this information use the revised stateinfo.config file.

C++ components that use state information currently expect stateinfo.config to be in the same folder
as the executable binary.

3.4 Dialog manager config file

The dialog manager config file (e.g., SEMAINE-3.1/java/config/DM.config) identifies the dialogue
templates that are used to drive the verbal behaviour of the agents. By adding or removing template
files from the entry “template_files”, the user can change the dialog strategies used.

page 14 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/browser/tags/3.1.0/java/config/DM.config
http://semaine.opendfki.de/wiki/StateInfo
http://semaine.opendfki.de/browser/tags/3.1.0/java/config/stateinfo.config
http://semaine.opendfki.de/browser/tags/3.1.0/java/config/character-config.xml

SEMAINE D7e

For example, depending on the intended steps when changing from one character to another, exactly
one of the following three config files should be included in the templates list. After finishing a dia -
log with one of the SAL characters:

• /eu/semaine/components/dialogue/data/templates/CharChangeModeratorEval.xml will bring
up a moderator character asking evaluation questions about the user's perception of the qual-
ity of the interaction, and then introduce the next character;

• /eu/semaine/components/dialogue/data/templates/CharChangeModerator.xml will bring up
the moderator character who will directly introduce the next character;

• /eu/semaine/components/dialogue/data/templates/CharChange.xml will directly change from
one character to the next without showing the moderator as intermediary.

The paths shown are interpreted as classpath locations, i.e. the respective files are expected to be in
one of the jar files loaded when starting the system or as substructures in a directory that is included
in the classpath when starting the system.

3.5 Listener behaviour

An xml file is used to configure the listener behaviour system. It is located in SEMAINE-
3.0/Greta/listener/ASconfig.xml. It contains entries such as:

 <character name="Poppy" mimicry="0.5" backchannel="0.5" noutterance="1">
 <respondTo head="true" face="true" acoustic="true"/>
 </character>

For each character it defines the probability of generating mimicry, response backchannel (based on
the agent's mental state) and utterances.

In order to switch off mimicry, set the mimicry attribute to 0 and the backchannel to 1. Conversely,
to generate only mimicry behaviour, set the mimicry attribute to 1 and the backchannel to 0. Keep
them at 0.5 for a similar quantity of mimicry and reponse backchannels.

The utterance attribute allows you to block the utterances coming from the dialogue manager. It is
not a mandatory tag and if it is not there it is automatically set at 1 (all sentences are let through).

The agent's responsiveness to head, face or acoustic signals is determined by the attributes of the
<respondsTo> element. Setting an attribute to "true" means that the listener intent planner generates
signals for a certain modality (head, face, acoustic). This tag can be used without looking into the
rules.

The individual rules that trigger and determine listener behaviour are quite straightforward. They
describe the signals the agent reacts to and how. They are located in SEMAINE-
3.0/Greta/listener/rulesfile.xml. For example:

 <rule name="trigger-AU12">
 <usersignals>
 <usersignal id="1" name="AU12" modality="face"/>
 </usersignals>
 <backchannels probability="1.0" priority="2">
 <mimicry probability="0.6">
 <mimicry_signal name="mouth=smile" modality="face"/>
 </mimicry>
 <response_reactive probability="0.4"/>
 </backchannels>

page 15 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

 </rule>

This rule is triggered when the AU12 is detected. It can generate a signal of mimicry (that will be a
smile on the face modality) or a response backchannel. The probabilities in the rules should be ig -
nored: they are not used anymore since the action selection has been implemented.

So, in order to avoid that an agent responds to a signal, it suffices to just delete the associated rule.

3.6 Speech input component configurations

The technical details of the opensmile system are determined by a config file such as SEMAINE-
3.0/Opensmile/conf/opensmileSemaine3a.conf or c++/src/tum/auxiliary/conf/opensmileSemaine3a. -
conf (in the source release or the SVN trunk version). The actual config file used is included in the
call to Opensmile's SEMAINExtract executable, e.g. in SEMAINE-3.0/Opensmile/se-
maine-openSMILE-win5-run.bat (for Windows XP systems) and SEMAINE-3.0/Opensmile/se-
maine-openSMILE-win6-run.bat (for Windows Vista and above) or in bin/se-
maine-openSMILE-run.bat (in the source release or the SVN trunk version).

The top-level configuration file includes several other configuration files, which cover individual
sub-tasks. Comments in the file explain which includes need to be enabled in order to run which
configuration. A few most important examples are illustrated here:

• Voice activity detector

Two voice activity detectors exist. A simple detector which used a fixed signal energy threshold can
be enabled via the configuration file opensmileSemaineVADsimple.conf. The threshold for the
RMS frame energy must be adjusted in the file opensmileSemaineVADsimple.conf to your setup by
changing the “threshold = xxxx” option in the section [turn:cTurnDetector]. Typical values range
from 0.001 to 0.1.

The advanced, self adapting voice activity detector is configured via opensmileSemaineVAD2.conf.
Details are found in the D2b report. If the agent voice from the speakers causes problems (feed-
back), after the system is running for a certain time, uncomment the line “alwaysRejectAgent = 1”
(remove the “;”) in the section [vad:cRnnVad] in opensmileSemaineVAD2.conf.

• Speech recognition

By default the single stream HMM only recogniser is enabled. On faster systems one may want to
try the multi-stream LSTM/HMM hybrid architecture. This can be enabled by uncommenting the
line

;\{opensmileSemaineASRms.conf}

in opensmileSemaine3a.conf. Be sure to disable the single stream recogniser by commenting out the
line which includes opensmileSemaineASR.conf.

To disable the speech recognition (words and non-linguistics), comment out both opensmileSemai-
neASR.conf and opensmileSemaineASRms.conf.

• Emotion recognition

The emotion recognition is split to three configuration files: feature extraction (e.g.
conf_B/opensmileSemaineEmoftAc.conf for feature Set B – see D3c for details on the feature sets),
dimensional emotion recognition (e.g. conf_B/opensmileSemaineEmoBling.conf for acoustic and

page 16 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

linguistic features or conf_B/opensmileSemaineEmoBsel.conf for acoustic features only), and de-
tection of the user's level of interest (e.g. conf_B/opensmileSemaineIntB.conf). To disable either the
dimensional affect recognition or the interest recognition, comment out the corresponding line. If
both are disabled the line including the emotion feature extraction configuration should also be
commented out.

Note: The feature extraction, dimensional affect recognition and interest detection configuration
files from different feature sets (A, B, and C) may not be mixed.

Futher, the SEMAINExtract executable supports the command-line options -noWords, -noNon-
verbals, and -noInterest, to selectively disable the semaine components and their functionality as
they appear in the GUI (Note, that the information is still computed and displayed in the
openSMILE debug output, however it is not sent to the semaine system if the component is disabled
– on the other hand, if the extraction of certain things is disabled in the opensmileSemaine3a.conf
file, the the information will not be sent, even if the sender component is enabled and thus still vis-
ible).

3.7 Video input component configurations

The video input components, when installed, can be configured using C:\Program Files\iBUG\Se-
maine Video Components\videoConfig.cfg. Among other things, this config file determines whether
a USB or Firewire camera is used.

Below all options are listed in the format of the config file, with their default settings:

 # -- Visualisation: ON / OFF.
visualisation=ON

This determines whether a visualisation of the face detection, 2D-head motion, eye detection, face
normalisation, and detected facial points is shown. N.B. If you set smallvisualisation below, not all
this information will be displayed because of the lack of screen real estate.

-- Set cameraNr if you use OpenCV. Default is 0. Only useful if you have
multiple cameras attached to your machine
cameranr=0

-- The directory with all video models
modeldir=C:\Program Files\iBUG\Semaine Video Components\models\
-- Size of visualisation. ON= small, OFF = big
smallvisualisation=ON
-- Grabbertype: set to 0 for OpenCV, 1 for cmu1394
grabbertype=0

N.B. You should test yourself whether your camera works with opencv. The cmu1394 driver sup-
ports most firewire cameras.

-- turning on the nod-shake analysis module
nodshake=ON
-- turning on the 5D emotion analysis module from head gestures
nodshakedimaff=ON
-- turning on the head tilt analysis module
tilt=ON
-- turning on the LBP-based AU detection module
laud=ON
-- turning on the face registeration module

page 17 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

useFaceRegistration=ON
-- turning on the search for profile face module
searchProfileFace=ON
-- turning on the user presence module
useUserPresence=OFF

N.B. This userPresence module is superseded by a java component. It's only here for backwards
compatibility.

-- Parameter used by nod/shake detector (window-width)
nodshakewindowSize=20
-- Turn facial point tracking on/off
facialPointTracking=OFF
-- Set data directory for facial point tracker
trackdir=c:\temp

N.B. Unless you have an incredibly powerful machine, tracking will not work because the frame
rate will be too low, and thus the appearance changes between frames too high.

3.8 MARY TTS configuration

The folder SEMAINE-3.1/MARY contains a full installation of the MARY TTS text-to-speech
framework, release 4.2.0 . Voices that ship with the release are the four voices for the SAL charac-
ters and a generic US English voice for the moderator character Greta.

It is possible to use the mary-component-installer to install and uninstall languages and
voices into this instance of MARY TTS:

SEMAINE-3.1\MARY\bin\mary-component-installer.bat (windows)

SEMAINE-3.1/MARY/bin/mary-component-installer (linux/mac)

It is advisable to only install the voices that are needed, because more voices mean a higher memory
footprint and longer startup times. In order to use the new voices, the java config file needs to point
to a properly configured character config file. The SVN repository contains as an example a multi-
lingual character config file, at tags/3.1.0/java/config/character-config-multilingual.xml.

The speech synthesis components are configured using a number of configuration files in SE-
MAINE-3.1/MARY/conf. The most important config file is marybase.config; its most important
setting is “cache = false”. In order to switch on TTS caching to speed up the system, change this to
“cache = true”.

page 18 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/browser/tags/3.1.0/java/config/character-config-multilingual.xml
http://semaine.opendfki.de/wiki/ConfiguringSEMAINE#Characterconfigfile
http://mary.opendfki.de/wiki/4.2.0
http://mary.dfki.de/

SEMAINE D7e

4 Configuring the message-oriented middleware ActiveMQ
(see http://semaine.opendfki.de/wiki/ConfiguringActiveMQ for latest version)

Communication in the SEMAINE API passes via ActiveMQ , an open-source message-oriented
middleware which implements the Java Message Service (JMS) specification .

We use the publish-subscribe model of JMS for communicating, which is based on the notion of a
Topic: components can publish (send) messages to a Topic or subscribe to the topic to receive mes-
sages sent to that Topic. In other words, it is a flexible mechanism for n-to-m communication. To
establish a communication between two components, it is sufficient for them to use the same Topic
name.

ActiveMQ uses a broker -- a messaging server to which all components connect. In previous ver-
sions of the SEMAINE API, the activemq server had to be started separately; as of SEMAINE-3.1,
there is the option of creating an embedded broker as part of the java process. The main java config
file provides a boolean property semaine.use.embedded.broker through which the use of
an embedded broker can be switched on or off (see ConfiguringSEMAINE#EmbeddedActiveMQ).

4.1 Connecting to an external ActiveMQ server

Let us first assume that activemq runs as a separate server. In that case, all components will connect
to the activemq server via a URL. By default, the ActiveMQ server uses the "OpenWire" protocol
(which for activemq is bound to the protocol prefix tcp:// and port 61616, so that a connection to
an activemq server on the local machine corresponds to the URL:

tcp://localhost:61616

This setting can be provided as a global setting to the SEMAINE API as follows:

For java:

java -Djms.url=tcp://localhost:61616 ...

For C++:

for Mac / Linux:
export CMS_URL=tcp://localhost:61616

rem for Windows:
set CMS_URL=tcp://localhost:61616

4.2 Embedded ActiveMQ

If a SEMAINE java process is configured to run an embedded activemq server as part of the java
process itself, the communication between the components in that process and the activemq server
will be done in memory, which improves performance.

For all other components in the system, nothing changes: they will connect ot this embedded act-
ivemq broker in the same way as they connect to an external activemq broker.

page 19 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/ConfiguringSEMAINE#EmbeddedActiveMQ
http://java.sun.com/products/jms/docs.html
http://activemq.apache.org/
http://semaine.opendfki.de/wiki/ConfiguringActiveMQ

SEMAINE D7e

4.3 Configuring ActiveMQ

All communication in the SEMAINE API passes via ActiveMQ. Since SEMAINE is a real-time
system, it is essential to carefully configure ActiveMQ. For the embedded case, there is an Act-
iveMQ configuration file included in the java classpath: tags/3.1.0/java/src/eu/semaine/jms/act-
ivemq.xml. We also provide a reference config file to use (or start from) when running an external
ActiveMQ server, in tags/3.1.0/doc/activemq.xml (tested with ActiveMQ 5.4.1 and 5.3.0).

The key problem to be aware of is producer flow control . When a producer is too fast for one of the
consumers, the default behaviour of ActiveMQ is to block the producer in the send method until
there is enough free space for the slow consumer to receive additional messages. In practice, that
looks as if the system had locked up. To avoid this, we configure constantPendingMes-
sageLimitStrategy to keep only the 1000 newest messages for each consumer and to discard
the rest.

4.4 Changing the port of an embedded ActiveMQ broker

The usual way to change the port on which an ActiveMQ broker listens for connections would be to
change the transportConnector setting in the activemq.xml config file. However, to simplify
the configuration of embedded brokers, we use the following convention.

If the system property jms.url is present on a java process which is configured to use the embed-
ded broker, the port given in the value of that property is used for the embedded broker to listen to
connections from external clients.

For example, starting a java process with

java -Djms.url=tcp://localhost:61617 -Dsemaine.use.embedded.broker=true
eu.semaine.system.ComponentRunner ...

allows other components to connect to activemq via port 61617.

page 20 of 70 ICT FP7 Contract no. 211486

http://activemq.apache.org/producer-flow-control.html
http://semaine.opendfki.de/browser/tags/3.1.0/doc/activemq.xml
http://semaine.opendfki.de/browser/tags/3.1.0/java/src/eu/semaine/jms/activemq.xml
http://semaine.opendfki.de/browser/tags/3.1.0/java/src/eu/semaine/jms/activemq.xml

SEMAINE D7e

5 SEMAINE Component Architecture
(see http://semaine.opendfki.de/wiki/ComponentArchitecture for latest version)

This page documents how the SEMAINE components are organised into a system. Starting from a
conceptual message flow graph, we explain which components exist and via which JMS Topics they
communicate.

Conceptually, the message flow graph in SEMAINE looks as follows.

The following subsections describe the three main parts of the system in more detail: analysis of
user behaviour, dialogue management, and generation of agent behaviour.

5.1 Analysis of user behaviour

User behaviour is first represented in terms of low-level audio and video features, then in terms of
individual analysis results, and then fused together before the dialog model's “current best guess” of
the user state is updated.

More details about the analysis of user behaviour can be found in SEMAINE deliverable reports
D2b and D3c.

page 21 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/ComponentArchitecture
http://semaine.opendfki.de/attachment/wiki/ComponentArchitecture/MessageFlowGraph.png

SEMAINE D7e

5.1.1 Feature extractors

Feature extractors are modality-specific. They produce feature vectors as key-value pairs, which are
typically produced at a fixed frame rate (e.g., every 10 ms for audio features, and for every video
frame for video features). The following Topics are currently used.

Topic Description

semaine.data.analysis.features.voice

* F0frequency [0, 600] (fundamental frequency
in Hz)

* voiceProb [0, 1] (probability that the current
frame is harmonic)

* RMSenergy [0, 1] (energy of the signal
frame)

* LOGenergy [-100, 0] (energy of the signal
frame, in dB)

(more upon request...!)

semaine.data.analysis.features.video.facedetection

* xPositionTopLeft [0,xCameraResolution]
(top left corner of the bounding box of the face
detected)

* yPositionTopLeft [0, yCameraResolution]
(top left corner of the bounding box of the face
detected)

* width [0,xCameraResolution] (width of the
bounding box of the face detected)

* height [0,yCameraResolution] (height of the
bounding box of the face detected)

(all 0 if no face detected)
semaine.data.analysis.features.video.facialpoints xRightOuterEyeCorner

yRightOuterEyeCorner
xLeftOuterEyeCorner

page 22 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

yLeftOuterEyeCorner
xRightInnerEyeCorner
yRightInnerEyeCorner
xLeftInnerEyeCorner
yLeftInnerEyeCorner
xRightInnerBrowCorner
yRightInnerBrowCorner
xLeftInnerBrowCorner
yLeftInnerBrowCorner
xRightOuterBrowCorner
yRightOuterBrowCorner
xLeftOuterBrowCorner
yLeftOuterBrowCorner
xRightUpperEyelid
yRightUpperEyelid
xLeftUpperEyelid
yLeftUpperEyelid
xRightLowerEyelid
yRightLowerEyelid
xLeftLowerEyelid
yLeftLowerEyelid
xRightNostril
yRightNostril
xLeftNostril
yLeftNostril
xRightMouthCorner
yRightMouthCorner
xLeftMouthCorner
yLeftMouthCorner
xUpperLip
yUpperLip
xLowerLip
yLowerLip
xChin
yChin
xNose
yNose
xRightPupil
yRightPupil
xLeftPupil
yLeftPupil

semaine.data.analysis.features.video.2dheadmotio
n

* motionDirection [-π, π] (angle of the motion)

* motionMagnitudeNormalised [0, large
number] (pixels per frame)

page 23 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

* motionX [-large number, large number]
(pixels per frame)

* motionY [-large number, large number]
(pixels per frame)

semaine.data.analysis.features.video.faceappears
semaine.data.analysis.features.video.geomfacs
semaine.data.analysis.features.video.lbpfacs

5.1.2 Analysers

Analysers produce three types of information: the verbal content recognised; the user's non-verbal
behaviour; and the user's emotions. Analysers represent their output as EMMA messages (Johnston
et al., 2009), i.e. the specific analysis output is accompanied by a time stamp and a confidence.

Topic Description
semaine.data.state.user.emma.words verbal content recognised

semaine.data.state.user.emma.nonverbal.voice

voice analysis includes:

* voice activity detection

* stylised pitch movements

* non-verbal vocalizations

semaine.data.state.user.emma.nonverbal.face

face analysis includes:

* face presence

* facial expression encoded in Action Units
semaine.data.state.user.emma.nonverbal.head head gestures such as nods, shakes etc.
semaine.data.state.user.emma.emotion.voice emotion as recognised from the voice
semaine.data.state.user.emma.emotion.face emotion as recognised from the face
semaine.data.state.user.emma.emotion.head emotion as recognised from head movements
Verbal content is represented directly in EMMA. For example:

<emma:emma version="1.0"
 xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:sequence emma:offset-to-start=”12345” emma:duration=”110”>
 <emma:interpretation
 emma:offset-to-start="12345"
 emma:tokens="bla"
 emma:confidence="0.3"/>
 <emma:interpretation

page 24 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

 emma:offset-to-start="12390"
 emma:tokens="bloo"
 emma:confidence="0.4"/>
 </emma:sequence>
</emma:emma>

The output of the voice activity detection (VAD) / the speaking detector looks like this. It needs no
confidence. The Speaking Analyser (part of the TumFeatureExtractor) outputs messages when the
user starts or stops speaking. These messages are low-level messages, created directly from the
VAD output, smoothed only over 3 frames. Thus, some thresholds must be applied in other com-
ponents to reliably detect continuous segments where the user is speaking and avoid false alarms.

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">

 <semaine:speaking xmlns:semaine="http://www.semaine-
project.eu/semaineml" statusChange="start"/>

 </emma:interpretation>
</emma:emma>

Possible values for /emma:emma/emma:interpretation/semaine:speaking/@statusChange : start,
stop

Stylised pitch movements are represented as follows:

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:duration="444"
emma:confidence="0.3">

 <semaine:pitch xmlns:semaine="http://www.semaine-project.eu/semaineml"
direction="rise"/>

 </emma:interpretation>
</emma:emma>

Possible values for /emma:emma/emma:interpretation/semaine:pitch/@direction : rise, fall, rise-fall,
fall-rise, high, mid, low

User gender is encoded as shown here:

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">

 <semaine:gender name="female" xmlns:semaine="http://www.semaine-
project.eu/semaineml"/>

 </emma:interpretation>
</emma:emma>

Possible values of /emma:emma/emma:interpretation/semaine:gender/@name : male, female, un-
known

Non-verbal user vocalizations such as laugh, sigh etc. are encoded as shown in the following ex-
ample:

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">

page 25 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

 <semaine:vocalization xmlns:semaine="http://www.semaine-
project.eu/semaineml" name="(laughter)"/>

 </emma:interpretation>
</emma:emma>

Values of /emma:emma/emma:interpretation/semaine:vocalization/@name are currently
“(laughter)”, “(sigh)” and (breath)”.

Whether there is a face present is encoded as follows:

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">

 <semaine:face-present xmlns:semaine="http://www.semaine-
project.eu/semaineml" statusChange="start"/>

 </emma:interpretation>
</emma:emma>

Possible values for /emma:emma/emma:interpretation/semaine:face-present/@statusChange : start,
stop

Any action units recognised from the user's face are encoded such that a separate confidence can
be given for each action unit. Example:

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:group>
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">
 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML">
 <bml:face au="1"/>
 </bml:bml>
 </emma:interpretation>
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.4">
 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML">
 <bml:face au="2"/>
 </bml:bml>
 </emma:interpretation>
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.2">
 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML">
 <bml:face au="4"/>
 </bml:bml>
 </emma:interpretation>
 </emma:group>
</emma:emma>

Head gestures such as nods or shakes are represented as follows:

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:duration="444"
emma:confidence="0.3">

 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML">
 <bml:head type="NOD" start="12.345" end="12.789"/>
 </bml:bml>

 </emma:interpretation>
</emma:emma>

page 26 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

Possible values for /emma:emma/emma:interpretation/bml:bml/bml:head/@type: NOD, SHAKE,
TILT-LEFT, TILT-RIGHT, APPROACH, RETRACT. Left and right are defined subject centred (i.e.
left is left for the user).

For all emotion messages, the information is encoded using the latest draft of the EmotionML
standard (Schröder et al., 2010) as the payload of an EMMA container. For example:

<emma:emma xmlns:emma="http://www.w3.org/2003/04/emma" version="1.0">
 <emma:interpretation>
 <emo:emotion xmlns:emo="http://www.w3.org/2009/10/emotionml"
 dimension-
set="http://www.example.com/emotion/dimension/FSRE.xml">
 <emo:dimension confidence="0.905837" name="arousal" value="0.59999996"/>
 <emo:dimension confidence="0.97505563" name="valence" value="0.42333332"/>
 <emo:dimension confidence="0.9875278" name="unpredictability"
value="0.29333335"/>
 <emo:dimension confidence="0.96318215" name="potency" value="0.31333336"/>
 <intensity confidence=”0.94343144” value=”0.04”/>
 </emo:emotion>
 </emma:interpretation>
</emma:emma>

5.1.3 Fusion components

All non-verbal analyses are combined by a NonverbalFusion component; all emotion analyses are
combined by an EmotionFusion component, which computes the fused positions on emotion dimen-
sions as a sum of individual positions weighted by the respective confidences.

Topic Description

semaine.data.state.user.emma.nonverbal
consolidated non-verbal behaviour from all available
modalities

semaine.data.state.user.emma.emotion
consolidated and fused emotion analysis based on
information from all available modalities

5.2 Dialogue management

The dialogue management is performed by interpreters and action proposers operating on “state” in -
formation, i.e. the system's “current best guess” regarding the state of the user, the agent itself and
their dialogue.

More information about the dialogue management can be found in SEMAINE deliverable report
D4b.

5.2.1 Interpreters

Interpreters take both the analysis results and the existing state information into account when mak-
ing various interpretations, leading to various state updates. Analyses are thresholded by confidence
– only analyses with a sufficiently high confidence lead to a state update.

• EmotionInterpreter updates the user's emotion state based on the fused emotion analyses;

• NonVerbalInterpreter updates the user's nonverbal state based on the fused non-verbal ana-
lyses;

page 27 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

• UtteranceInterpreter updates the user state with respect to the words spoken by the user, tak-
ing the current dialogue state into account;

• TurnTakingInterpreter takes decisions on the agent's intention to take the turn, based on cur-
rent user, dialogue and agent state, and updates dialog and agent state accordingly;

• AgentMentalStateInterpreter updates the agent's mental state based on user behaviour.

State information is kept in three Topics:

Topic Description
semaine.data.state.user.behaviour all “current best guess” information about the user
semaine.data.state.agent the current state of the agent

semaine.data.state.dialog
all “current best guess” information regarding the state of the
dialog

The state information is accessed via a short name and encoded in XML according to a stateinfo. -
config file -- see StateInfo for details.

5.2.2 Action proposers

There are currently two action proposer components.

• UtteranceActionProposer is simultaneously proposer and action selection for verbal utter-
ances. It selects suitable utterances from the available set of utterances for the current char-
acter, based on the current state information, and triggers the most suitable one when the
agent has a turn-taking intention. This component manages the two output cues, see below.

• ListenerIntentPlanner proposes possible timing and meaning of reactive listener backchan-
nels, as well as non-verbal mimicry by the agent while being a listener. It uses user and
agent state information to trigger and select both reactive (meaning-based) and mimicry (be-
haviour-based) backchannels.

A dedicated (listener) ActionSelection component makes sure that the amount of listener actions
stays moderate, and in particular holds back any backchannel intentions while the agent is currently
producing a verbal utterance.

Candidate actions are produced to the following Topics.

Topic Description

semaine.data.action.candidate.function
candidate actions described in terms of the function or
meaning of what is to be expressed

semaine.data.action.candidate.behaviour
candidate actions described in terms of concrete
behaviours

semaine.data.action.selected.function
selected actions described in terms of the function or
meaning of what is to be expressed

semaine.data.action.selected.behaviour
selected actions described in terms of concrete
behaviours

The format of candidate and selected actions is identical. Actions in Topics *.function are encoded
in FML. This includes verbal utterances like the following:

<?xml version="1.0" encoding="UTF-8"?><fml-apml version="0.1">

page 28 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/StateInfo

SEMAINE D7e

 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML" id="bml_uap_3">
 <bml:speech id="speech_uap_3" language="en-GB" text="Is that so? Tell me
about it." voice="activemary">
 <ssml:mark xmlns:ssml="http://www.w3.org/2001/10/synthesis"
name="speech_uap_3:tm1"/>Is<ssml:mark
xmlns:ssml="http://www.w3.org/2001/10/synthesis"
name="speech_uap_3:tm2"/>that<ssml:mark
xmlns:ssml="http://www.w3.org/2001/10/synthesis" name="speech_uap_3:tm3"/>so?
<ssml:mark xmlns:ssml="http://www.w3.org/2001/10/synthesis"
name="speech_uap_3:tm4"/>Tell<ssml:mark
xmlns:ssml="http://www.w3.org/2001/10/synthesis"
name="speech_uap_3:tm5"/>me<ssml:mark
xmlns:ssml="http://www.w3.org/2001/10/synthesis"
name="speech_uap_3:tm6"/>about<ssml:mark
xmlns:ssml="http://www.w3.org/2001/10/synthesis"
name="speech_uap_3:tm7"/>it.<ssml:mark
xmlns:ssml="http://www.w3.org/2001/10/synthesis" name="speech_uap_3:tm8"/>
 </bml:speech>
 </bml:bml>
 <fml:fml xmlns:fml="http://www.mindmakers.org/fml" id="fml_uap_3">
 <fml:performative end="speech_uap_3:tm4" id="tag1" importance="1"
start="speech_uap_3:tm2" type="like"/>
 <fml:emotion end="speech_uap_3:tm4" id="tag2" importance="1"
start="speech_uap_3:tm2" type="small-surprise"/>
 <fml:performative end="speech_uap_3:tm6" id="tag3" importance="1"
start="speech_uap_3:tm4" type="agree"/>
 </fml:fml>
</fml-apml>

Reactive backchannels are also encoded in FML:

<fml-apml>
 <fml xmlns="http://www.mindmakers.org/fml" id="fml1">
 <backchannel end="1.8" id="b0" importance="1.0" start="0.0"
type="understanding"/>
 <backchannel end="1.8" id="b1" importance="1.0" start="0.0"
type="disagreement"/>
 <backchannel end="1.8" id="b2" importance="1.0" start="0.0" type="belief"/>
 </fml>
</fml-apml>

Mimicry backchannels are encoded in BML:

<bml xmlns="http://www.mindmakers.org/projects/BML">
 <head end="1.8" id="s1" start="0.0" stroke="1.0">
 <description level="1" type="gretabml">
 <reference>head=head_shake</reference>
 </description>
 </head>
</bml>

5.3 Generation of agent behaviour

Any agent actions must be generated in terms of low-level player data before they can be rendered.
In addition to the direct generation branch, the current architecture now also supports a prepare-and-
trigger branch.

page 29 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

More information about the generation of agent can be found in SEMAINE deliverable report D5b.

5.3.1 Direct branch

In the direct branch, a selected action is converted into player data using the following intermediate
steps.

• SpeechPreprocessor computes the accented syllables and any phrase boundaries as anchors
to which any gestural behaviour can be attached. It reads from Topicvs semaine.data.ac-
tion.selected.function and semaine.data.action.selected.behaviour, and writes its results to
semaine.data.action.selected.speechpreprocessed. Whereas conceptually this processing step
could work with purely symbolic specification of prosody-based anchor points, the current
implementation of the behaviour planner component requires absolute timing information.
For this reason the output of the SpeechPreprocessor already contains the detailed timing in-
formation.

• BehaviourPlanner determines suitable behaviour elements based on the intended
function/meaning of the action. It uses character-specific behaviour lexicons to map FML to
BML. It reads from semaine.data.action.selected.speechpreprocessed and writes to se-
maine.data.synthesis.plan.

• SpeechBMLRealiser carries out the actual speech synthesis, i.e. the generation of audio data.
It reads from semaine.data.synthesis.plan; it writes a BML message including the speech
timings to semaine.data.synthesis.plan.speechtimings, and the binary audio data including a
file header to semaine.data.synthesis.lowlevel.audio.

• BehaviorRealizer reads from semaine.data.synthesis.plan.speechtimings and se-
maine.data.action.selected.behaviour, and produces the low-level video features in Topics
semaine.data.synthesis.lowlevel.video.FAP and semaine.data.synthesis.lowlevel.video.BAP.
In addition, it sends two types of information to Topic semaine.data.synthesis.lowlevel.com-
mand: (1) the information which modalities form part of a given animation as identified by a
unique content ID; and (2) the trigger commands needed to start playing back the animation.

• PlayerOgre is the audiovisual player component. It reads the lowlevel player data from top-
ics semaine.data.synthesis.lowlevel.audio, semaine.data.synthesis.lowlevel.video.FAP and
semaine.data.synthesis.lowlevel.video.BAP. A unique content ID is used to match the vari-
ous parts of a multimodal animation to be rendered. Two types of information are received
via the Topic semaine.data.synthesis.lowlevel.command: the information which modalities
are expected to be part of a given animation / content ID; and the trigger to start playing the
animation. The Player sends callback messages to the topic semaine.callback.output.Anima-
tion, to inform about the preparation or playback state of the various animations it receives.

An example of a callback message is the following:

<callback xmlns="http://www.semaine-project.eu/semaineml">
 <event data="Animation" id="fml_lip_70" time="1116220" type="start"
contentType="utterance"/>
</callback>

Possible event types are “ready”, “start”, “end”, as well as “stopped” and “deleted”.

The contentType parameter describes the type of the animation. Possible content types are "utter-
ance", "listener-vocalisation", "visual-only" and "content-type".

page 30 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

5.3.2 Prepare-and-trigger branch

The prepare-and-trigger branch replicates the processing pipeline of the direct branch, but using dif-
ferent Topics:

• QueuingSpeechPreprocessor reads from semaine.data.action.prepare.function and se-
maine.data.action.prepare.behaviour, and writes to semaine.data.action.prepare.speechpre-
processed;

• BehaviorPlannerPrep reads from semaine.data.action.prepare.speechpreprocessed and writes
to semaine.data.synthesis.prepare;

• QueuingSpeechBMLRealiser reads from semaine.data.synthesis.prepare and writes to se-
maine.data.synthesis.prepare.speechtimings and semaine.data.synthesis.lowlevel.audio;

• BehaviorRealizerPrep reads from semaine.data.synthesis.prepare.speechtimings and se-
maine.data.action.prepare.behaviour and writes to semaine.data.synthesis.lowlevel.video.-
FAP, semaine.data.synthesis.lowlevel.video.BAP and semaine.data.synthesis.lowlevel.com-
mand.

The difference to the direct branch is at the two ends of the processing pipeline. At the input end,
the UtteranceActionProposer feeds into semaine.data.prepare.function candidate utterances that the
current character may perform in the near future. At the output end, the BehaviorRealizerPrep sends
the content-level description to the player but it does not send the trigger commands. Instead, when
the player has received all necessary parts of a given animation, it sends a “ready” callback message
which is then registered by the UtteranceActionProposer. When its utterance selection algorithm de-
termines that the selected utterance already exists in prepared form in the player, all it needs to do is
send a trigger command directly from UtteranceActionPoposer to semaine.data.synthesis.lowlevel.-
command, which then starts the playback of the prepared animation without any further delay. If no
prepared version of the selected utterance is available, e.g. because it was unexpected that this utter-
ance was selected, or because the preparation has not completed yet, the utterance is generated us-
ing the direct branch.

The prepare-and-trigger branch is used only for full utterances. Listener actions are so short and fast
to generate that they always use the direct branch.

Since both branches are technically completely independent, this architecture scales well to multiple
computers: it is easy to run the direct branch on one computer and the prepare-and-trigger branch on
a different computer if they jointly would over-stretch the CPU resources of a single PC.

page 31 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

6 Protocol for the Player in SEMAINE
(see http://semaine.opendfki.de/wiki/PlayerProtocol for latest version)

Any player component in SEMAINE must follow the following protocol so that it supports ahead-
of-time preparation of possible utterances. The player must keep a collection of "Animations"
which can be played by a "playCommand".

This protocol is currently implemented by two players: The audio-visual Windows native Player-
Ogre using the Greta agent, and the speech-only player in Java class QueuingAudioPlayer.

6.1 Data flow

Low-level player data is sent to the player via the Topics

 semaine.data.synthesis.lowlevel.*

currently

 semaine.data.synthesis.lowlevel.audio
 semaine.data.synthesis.lowlevel.video.FAP
 semaine.data.synthesis.lowlevel.video.BAP

Incoming messages have the following properties:

• a message type specific to the payload format (currently: BytesMessage for audio, TextMes-
sage for FAP and BAP).

• a data type (obtained by message.getDatatype()) identifying the type of message (current
values are "AUDIO", "FAP" and "BAP").

• a content ID and a content creation time (obtained by message.getContentID() and mes-
sage.getContentCreationTime()) which are used to assemble an Animation, to match data
and command messages, and to identify the content item in callback and log messages.

• optionally, a contentType, such as "utterance" or "listener-vocalisation".

The idea is that a unit of player data (an "Animation") is assembled in the player from the individual
data items that are coming in (currently, AUDIO, FAP and BAP). Certain data types are optional
(currently: AUDIO). A message can either contain the complete data of the given type (currently the
case for AUDIO) or it can contain a chunk of data (currently the case for FAP and BAP). A chunk
contains information about its position in the Animation; it can be dynamically added even if the
Animation is already playing.

6.2 Command messages

There are two types of command messages: messages with data typesdataInfoandplayCommand.

• Data info commands: For a given content ID, define the data types that must be present in
the Animation: HASAUDIO, HASFAP and HASBAP. Each can be 0 for "not needed" or 1
for "needed".

• Player commands: For a given content ID, define the playback conditions. This includes the
following aspects:

page 32 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/browser/trunk/java/src/eu/semaine/components/mary/QueuingAudioPlayer.java
http://semaine.opendfki.de/wiki/PlayerProtocol

SEMAINE D7e

• STARTAT: when to start the playback of the Animation (in milliseconds from the moment
when the Animation becomes ready);

• PRIORITY: the priority of the Animation in case of competing Animations;

• LIFETIME: the lifetime of the Animation, counting from the moment when the animation
becomes ready. When the lifetime is exceeded and the animation has not started playing, it
will be marked as "dead" and removed.

Commands are sent to topic

 semaine.data.synthesis.lowlevel.command

and have the data type dataInfofor data info commands and playCommand for player start
trigger commands.

For every content ID, a playCommand is required in order to play that animation. Without a match-
ing playCommand, an animation will never be played.

A command has the following format:

• its content ID is identical to the content ID of the Animation for which it defines playback
conditions;

• message format is TextMessage; the text consists of space-separated key-value pairs, one
pair per line, where the keys are strings and the values are floating point numbers.

The following features are used:

• for playCommand:

• STARTAT (0 means start at the moment when all required parts are present, a positive num-
ber means milliseconds after that condition is met)

• LIFETIME (in milliseconds from the moment the animation is triggered; -1 means it will
never expire)

• PRIORITY (a value between 0 and 1, where 0 is the lowest and 1 the highest possible prior-
ity)

• for dataInfo:

• HASAUDIO (a binary feature, 0 means the Animation does not have audio, 1 means the An-
imation has audio data)

• HASFAP (a binary feature, 0 means the Animation does not have FAP data, 1 means the An-
imation has FAP data)

• HASBAP (a binary feature, 0 means the Animation does not have BAP data, 1 means the
Animation has BAP data)

Every player command must contain all features of its respective type.

6.3 Callback messages

Event-based callback messages are sent when certain conditions are met for a given Animation. The
messages go to Topic

 semaine.callback.output.Animation

page 33 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

and have the following format:

<callback xmlns="http://www.semaine-project.eu/semaineml">
 <event id="CONTENT_ID" contentType="CONTENT_TYPE" time="META_TIME"
type="EVENT_TYPE"/>
</callback>

where content ID and meta time are like before, and type is one of the following:

• ready means the Animation has received all required data, so it is ready for playing back.
This event is triggered independently of the question whether a command has been received
or not.

• deleted means the Animation was removed before it started playing, e.g. because it has
exceeded its lifetime in the output queue.

• start means the Animation has started playing.

• stopped means the Animation was stopped while playing but before it was finished, e.g.
because a request to change character was received.

• end means the Animation has finished playing.

The contentType attribute is present only if the incoming messages had a content type, and re-
produces that content type.

6.4 Error conditions

The content ID must be unique for the lifetime of a system. This leads to the following error condi-
tions.

It is an error condition...

• if a data chunk is received for an Animation that has already been discarded (because it fin-
ished playing, or exceeded its lifetime in the queue);

• if data is received for a data type that does not form chunks;

• if a playCommand is received for a content ID that has been started already, or that is
already discarded;

An error condition should be reported as a WARN log message, and otherwise ignored.

It is not an error condition...

• if a second playCommand is received after an animation has become ready but before it star-
ted playing. In this case, the new priority etc. overwrites the previous values.

page 34 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

7 Standard and pre-standard representation formats in the
SEMAINE system
(see http://semaine.opendfki.de/wiki/RepresentationFormats for latest version)

In view of future interoperability and reuse of components, the SEMAINE API aims to use standard
representation formats where that seems possible and reasonable. For example, results of analysis
components can be represented using EMMA (Extensible Multi-Modal Annotation), a Wold Wide
Web Consortium (W3C) Recommendation. Input to a speech synthesiser can be represented using
SSML (Speech Synthesis Markup Language), also a W3C Recommendation. Several other relevant
representation formats are not yet standardised, but are in the process of being specified. This in-
cludes the Emotion Markup Language EmotionML, used for representing emotions and related
states in a broad range of contexts, and the Behaviour Markup Language BML, which describes the
behaviour to be shown by an Embodied Conversational Agent (ECA). Furthermore, a Functional
Markup Language FML is under discussion, in order to represent the planned actions of an ECA on
the level of functions and meanings. By implementing draft versions of these specifications, the SE-
MAINE API can provide hands-on input to the standardisation process, which may contribute to
better standard formats.

On the other hand, it seems difficult to define a standard format for representing the concepts inher-
ent in a given application's logic. To be generic, such an endeavour would ultimately require an on-
tology of the world. In the current SEMAINE system, which does not aim at any sophisticated reas-
oning over domain knowledge, a simple custom format named SemaineML is used to represent
those pieces of information that are required in the system but which cannot be adequately represen-
ted in an existing or emerging standard format. It is conceivable that other applications built on top
of the SEMAINE API may want to use a more sophisticated representation such as the Rich De-
scription Format RDF to represent domain knowledge, in which case the API could be extended ac-
cordingly.

Whereas all of the aforementioned representation formats are based on the Extensible Markup Lan-
guage XML, there are a number of data types that are naturally represented in different formats.
This is particularly the case for the representations of data close to input and output components. At
the input end, low-level analyses of human behaviour are often represented as feature vectors. At
the output end, the input to a player component is likely to include binary audio data or player-spe-
cific rendering directives.

The following table gives an overview of the representation formats currently supported in the SE-
MAINE API. The row headings link to pages describing the respective representation format.

Type of data Representation format Standardisation status
Low-level input features string or binary feature vectors ad hoc
Analysis results EMMA W3C Recommendation
Emotions and related states EmotionML W3C Working Draft
Domain knowledge SemaineML ad hoc
Speech synthesis input SSML W3C Recommendation
Functional action plan FML very preliminary
Behavioural action plan BML draft specification
Low-level output data binary audio, player commands player-dependent

page 35 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/PlayerData
http://semaine.opendfki.de/wiki/BML
http://semaine.opendfki.de/wiki/FML
http://semaine.opendfki.de/wiki/SSML
http://semaine.opendfki.de/wiki/SemaineML
http://semaine.opendfki.de/wiki/EmotionML
http://semaine.opendfki.de/wiki/EMMA
http://semaine.opendfki.de/wiki/FeatureVectors
http://semaine.opendfki.de/wiki/RepresentationFormats

SEMAINE D7e

7.1 Feature vectors

Feature vectors can be represented in an ad hoc format. In text form, the feature vectors consist of
straightforward key-value pairs – one feature per line, values preceding features.

0.000860535 rmsEnergy
12.6699 logEnergy
-2.59005e-05 rmsEnergy-De
-0.0809427 logEnergy-De
...

As feature vectors may be sent very frequently (e.g., every 10 ms in the SEMAINE system), com-
pact representation is a relevant issue. For this reason, a binary representation of feature vectors is
also available. In binary form, the feature names are omitted, and only feature values are being
communicated. The first four bytes represent an integer containing the number of features in the
vector; the remaining bytes contain the float values one after the other.

7.1.1 Details

In all Topic names, we ommit the prefix “semaine.data.”.

Type of
information

Topic Sending frequency
List of feature names + value
range

frontal face
detection

analysis.features.video.facedetection cameraFrameRate

* xPositionTopLeft
[0,xCameraResolution] (top left
corner of the bounding box of
the face detected)
* yPositionTopLeft [0,
yCameraResolution] (top left
corner of the bounding box of
the face detected)
* width [0,xCameraResolution]
(width of the bounding box of
the face detected)
* height [0,yCameraResolution]
(height of the bounding box of
the face detected)
* (all 0 if no face detected)

head motion
analysis.features.video.2dheadmotio
n

cameraFrameRate

* motionDirection [-π, π] (angle
of the motion)
* motionMagnitudeNormalised
[0, large number] (pixels per
frame)
* motionX [-large number, large
number] (pixels per frame)
* motionY [-large number, large
number] (pixels per frame)

facial points analysis.features.video.facialpoints cameraFrameRate xRightOuterEyeCorner
yRightOuterEyeCorner
xLeftOuterEyeCorner

page 36 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

yLeftOuterEyeCorner
xRightInnerEyeCorner
yRightInnerEyeCorner
xLeftInnerEyeCorner
yLeftInnerEyeCorner
xRightInnerBrowCorner
yRightInnerBrowCorner
xLeftInnerBrowCorner
yLeftInnerBrowCorner
xRightOuterBrowCorner
yRightOuterBrowCorner
xLeftOuterBrowCorner
yLeftOuterBrowCorner
xRightUpperEyelid
yRightUpperEyelid
xLeftUpperEyelid
yLeftUpperEyelid
xRightLowerEyelid
yRightLowerEyelid
xLeftLowerEyelid
yLeftLowerEyelid
xRightNostril
yRightNostril
xLeftNostril
yLeftNostril
xRightMouthCorner
yRightMouthCorner
xLeftMouthCorner
yLeftMouthCorner
xUpperLip
yUpperLip
xLowerLip
yLowerLip
xChin
yChin
xNose
yNose
xRightPupil
yRightPupil
xLeftPupil
yLeftPupil

speech
features

analysis.features.voice microphoneFrameRate * F0frequency [0,600]
(fundamental frequency in Hz)
* voiceProb [0,1] (probability
that the current frame is
harmonic)
* RMSenergy [0, 1] (energy of
the signal frame)

page 37 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/log/?revs=0-1
http://semaine.opendfki.de/log/?revs=0%2C600

SEMAINE D7e

* LOGenergy [-100,0] (energy
of the signal frame, in dB)
* (more upon request...!)

7.2 EMMA

The Extensible Multimodal Annotation Language EMMA, a W3C Recommendation, is “an XML
markup language for containing and annotating the interpretation of user input”. As such, it is a
wrapper language that can carry various kinds of payload representing the interpretation of user in-
put. The EMMA language itself provides, as its core, the <emma:interpretation> element,
containing all information about a single interpretation of user behaviour. Several such elements can
be enclosed within an <emma:one-of> element in cases where more than one interpretation is
present. An interpretation can have an emma:confidence attribute, indicating how confident the
source of the annotation is that the interpretation is correct; time-related information such
asemma:start,!emma:end, andemma:duration, indicating the time span for which the interpretation
is provided; information about the modality upon which the interpretation is based, through the
emma:medium and emma:mode attributes; and many more.

The following listing shows an example EMMA document carrying an interpretation of user beha-
viour represented using EmotionML. The interpretation refers to a start time. It can be seen that the
EMMA wrapper elements and the EmotionML content are in different XML namespaces, so that it
is unambiguously determined which element belongs to which part of the annotation.

<emma:emma xmlns:emma="http://www.w3.org/2003/04/emma" version="1.0">
 <emma:interpretation emma:start="123456789">
 <emotion xmlns="http://www.w3.org/2009/10/emotionml" dimension-
set="http://www.example.com/emotion/dimension/FSRE.xml">
 <dimension name="arousal" value="0.23"/>
 <dimension name="valence" value="0.62"/>
 </emotion>
 </emma:interpretation>
</emma:emma>

EMMA can also be used to represent Automatic Speech Recognition (ASR) output, either as the
single most probable word chain or as a word lattice, using the< emma:lattice >element.

7.2.1 Details

Skeleton for all EMMA documents:

All EMMA documents MUST have a top-level element, and SHOULD have at least one element.
That interpretation SHOULD a time stamp, given in its attribute "emma:offset-to-start", and MAY
have a confidence, given in the attribute "emma:confidence".

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">
 my annotation
 </emma:interpretation>
</emma:emma>

page 38 of 70 ICT FP7 Contract no. 211486

https://semaine.opendfki.de/search?q=emma%3Alattice
http://semaine.opendfki.de/wiki/EmotionML

SEMAINE D7e

If the document contains a single annotation, the element SHOULD be a direct child of . A se-
quence of interpretations can be represented using the element, as for keywords spotted. A collec-
tion of interpretations with different probabilities can be represented using the element, as e.g. for
interest.

For the individual types of content / payload, we use by default the same representation as for the
"current best guess" user state, unless there are reasons speaking against it.

We distinguish verbal information, emotion-related information, and non-verbal information.

7.2.2 Verbal information

Type of information Topic
keywords spotted state.user.emma.words

Keywords

<emma:emma version="1.0"
 xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:sequence emma:offset-to-start=”12345” emma:duration=”110”>
 <emma:interpretation
 emma:offset-to-start="12345"
 emma:tokens="bla"
 emma:confidence="0.3"/>
 <emma:interpretation
 emma:offset-to-start="12390"
 emma:tokens="bloo"
 emma:confidence="0.4"/>
 </emma:sequence>
</emma:emma>

7.2.3 Emotion-related information

Type of information Topic
emotion state.user.emma.emotion.(modality)
interest state.user.emma.emotion.(modality)

Emotion

The global user emotion is represented using the five dimensions intensity, arousal, valence, unpre-
dictability and potency.

<?xml version="1.0" encoding="UTF-8"?><emma:emma
xmlns:emma="http://www.w3.org/2003/04/emma" version="1.0">
 <emma:interpretation>
 <emotion xmlns="http://www.w3.org/2009/10/emotionml" dimension-
set="http://www.example.com/emotion/dimension/FSRE.xml">
 <intensity confidence="0.30086732" value="0.4115755"/>
 <dimension confidence="0.9518124" name="arousal" value="0.1852386"/>
 <dimension confidence="0.2734806" name="valence" value="0.7791835"/>
 <dimension confidence="0.22194415" name="unpredictability"
value="0.09359175"/>
 <dimension confidence="0.2912501" name="potency" value="0.050632834"/>
 </emotion>

page 39 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

 </emma:interpretation>
</emma:emma>

Interest

User interest is represented using a custom vocabulary of interest-related category labels: bored,
neutral, and interested. The confidence is used to indicate the extent to which each of the three cat-
egories is recognised.

<?xml version="1.0" encoding="UTF-8"?><emma:emma
xmlns:emma="http://www.w3.org/2003/04/emma" version="1.0">
 <emma:interpretation>
 <emotion xmlns="http://www.w3.org/2009/10/emotionml" category-
set="http://www.semaine-project.eu/emo/category/interest.xml">
 <category confidence="0.6955442" name="bored"/>
 </emotion>
 <emotion xmlns="http://www.w3.org/2009/10/emotionml" category-
set="http://www.semaine-project.eu/emo/category/interest.xml">
 <category confidence="0.24825269" name="neutral"/>
 </emotion>
 <emotion xmlns="http://www.w3.org/2009/10/emotionml" category-
set="http://www.semaine-project.eu/emo/category/interest.xml">
 <category confidence="0.6315944" name="interested"/>
 </emotion>
 </emma:interpretation>
</emma:emma>

7.2.4 Non-verbal information

Type of information Topic
head movement state.user.emma.nonverbal.head
user speaking state.user.emma.nonverbal.voice
pitch direction state.user.emma.nonverbal.voice
gender state.user.emma.nonverbal.voice
nonverbal vocalizations state.user.emma.nonverbal.voice
face presence state.user.emma.nonverbal.face
action units state.user.emma.nonverbal.face

Head movement

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:duration="444"
emma:confidence="0.3">

 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML">
 <bml:head type="NOD" start="12.345" end="12.789"/>
 </bml:bml>

 </emma:interpretation>
</emma:emma>

page 40 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

The payload format is the same as for user state -- here it is below emma:interpretation, there it is
below semaine:user-state.

Note that the proposal includes the redundant specification of time: start time is in emma:interpreta-
tion/@emma:offset-to-start (in milliseconds), and in bml:head/@start (in seconds). End time is giv-
en indirectly by emma:interpretation/@emma:duration (in milliseconds), and directly through
bml:head/@end (in seconds). Experience will tell whether this double representation is useful.

Possible values for /emma:emma/emma:interpretation/bml:bml/bml:head/@type: NOD, SHAKE,
TILT-LEFT, TILT-RIGHT, APPROACH, RETRACT. Left and right are defined subject centred (i.e.
left is left for the user).

User speaking

The output of the voice activity detection (VAD) / the speaking detector looks like this. It needs no
confidence. The Speaking Analyser (part of the TumFeatureExtractor) outputs messages when the
user starts or stops speaking. These messages are low-level messages, created directly from the
VAD output, smoothed only over 3 frames. Thus, some thresholds must be applied in other com-
ponents to reliably detect continuous segments where the user is really speaking.

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">

 <semaine:speaking xmlns:semaine="http://www.semaine-
project.eu/semaineml" statusChange="start"/>

 </emma:interpretation>
</emma:emma>

Possible values for /emma:emma/emma:interpretation/semaine:speaking/@statusChange : start,
stop

Pitch direction

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:duration="444"
emma:confidence="0.3">

 <semaine:pitch xmlns:semaine="http://www.semaine-project.eu/semaineml"
direction="rise"/>

 </emma:interpretation>
</emma:emma>

The core difference with the user state is that here we have a start and a duration.

Possible values for /emma:emma/emma:interpretation/semaine:pitch/@direction : rise, fall, rise-fall,
fall-rise, high, mid, low

Gender

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">

page 41 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

 <semaine:gender name="female" xmlns:semaine="http://www.semaine-
project.eu/semaineml"/>

 </emma:interpretation>
</emma:emma>

Possible values of /emma:emma/emma:interpretation/semaine:gender/@name : male, female, un-
known

Nonverbal vocalisations

Any non-verbal vocalizations produced by the user.

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">

 <semaine:vocalization xmlns:semaine="http://www.semaine-
project.eu/semaineml" name="(laughter)"/>

 </emma:interpretation>
</emma:emma>

Possible values for /emma:emma/emma:interpretation/semaine:vocalization/@name : (laughter),
(sigh), (breath)

Face presence

Whether there is a face currently present.

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">

 <semaine:face-present xmlns:semaine="http://www.semaine-
project.eu/semaineml" statusChange="start"/>

 </emma:interpretation>
</emma:emma>

Possible values for /emma:emma/emma:interpretation/semaine:face-present/@statusChange : start,
stop

Action units

Any action units recognised from the user's face.

<emma:emma version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
 <emma:group>
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.3">
 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML">
 <bml:face au="1"/>
 </bml:bml>
 </emma:interpretation>

page 42 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.4">
 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML">
 <bml:face au="2"/>
 </bml:bml>
 </emma:interpretation>
 <emma:interpretation emma:offset-to-start="12345" emma:confidence="0.2">
 <bml:bml xmlns:bml="http://www.mindmakers.org/projects/BML">
 <bml:face au="4"/>
 </bml:bml>
 </emma:interpretation>
 </emma:group>
</emma:emma>

Possible values for /emma:emma/emma:interpretation/bml:bml/bml:face/@au : a single integer
number

7.3 EmotionML

The Emotion Markup Language EmotionML is, as of October 2010, a public Working Draft at the
W3C.

The SEMAINE API is one of the first pieces of software to implement EmotionML. It is our inten-
tion to provide an implementation report as input to the W3C standardisation process in due course,
highlighting any problems encountered with the current draft specification in the implementation.

EmotionML aims to make concepts from major emotion theories available in a broad range of tech-
nological contexts. Being informed by the affective sciences, EmotionML recognises the fact that
there is no single agreed representation of affective states, nor of vocabularies to use. Therefore, an
emotional state<emotion>can be characterised using four types of descriptions: <category>,
<dimension>, <appraisal> and <action-tendency>. Furthermore, the vocabulary used
can be identified. The EmotionML markup the example on the EMMA page uses a dimensional
representation of emotions, using the dimension set “FSRE.xml”, out of which two dimensions are
annotated: arousal and valence.

EmotionML is aimed at three use cases: 1. Human annotation of emotion-related data; 2. automatic
emotion recognition; and 3. generation of emotional system behaviour. In order to be suitable for all
three domains, EmotionML is conceived as a “plug-in” language that can be used in different con-
texts. In the SEMAINE API, this plug-in nature is applied with respect to recognition, centrally held
information, and generation, where EmotionML is used in conjunction with different markups.
EmotionML can be used for representing the user emotion currently estimated from user behaviour,
as payload to an EMMA message. It is also suitable for representing the centrally held information
about the user state, the system's “current best guess” of the user state independently of the analysis
of current behaviour. Furthermore, the emotion to be expressed by the system can also be represen-
ted by EmotionML. In this case, it is necessary to combine EmotionML with the output languages
FML, BML and SSML.

page 43 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/EMMA
http://www.w3.org/TR/2010/WD-emotionml-20100729/

SEMAINE D7e

7.4 SemaineML

A number of custom representations are needed to represent the kinds of information that play a role
in the SEMAINE demonstrator systems. Currently, this includes the centrally held beliefs about the
user state, the agent state, and the dialogue state. Most of the information represented here is do-
main-specific and does not lend itself to easy generalisation or reuse. The following shows an ex-
ample of a dialogue state representation, focused on the specific situation of an agent-user dialogue
targeted in the SEMAINE system.

<dialog-state xmlns="http://www.semaine-project.eu/semaineml" version="0.0.1">
 <speaker who="agent"/>
 <listener who="user"/>
</dialog-state>

7.5 SSML

The Speech Synthesis Markup Language SSML is a well-established W3C Recommendation sup-
ported by a range of commercial text-to-speech (TTS) systems. It is the most established of the rep-
resentation formats described in this section. The main purpose of SSML is to provide information
to a TTS system on how to speak a given text. This includes the possibility to add <emphasis> on
certain words, to provide pronunciation hints via a <say-as> tag, to select a <voice> which is
to be used for speaking the text, or to request a <break> at a certain point in the text. Furthermore,
SSML provides the possibility to set markers via the SSML <mark> tag. The following shows an
example SSML document that could be used as input to a TTS engine. It requests a female US Eng-
lish voice; the word “wanted” should be emphasised, and there should be a pause after “then”.

<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"
 xml:lang="en-US">
 <voice gender="female">
 And then <break/> I <emphasis>wanted</emphasis> to go.
 </voice>
</speak>

7.6 FML

The functional markup language FML is still under discussion. Its functionality being needed never-
theless, a working language FML-APML was created as a combination of the ideas of FML with
the former Affective Presentation Markup Language APML. The following shows an example
FML-APML document which contains the key elements. An <fml-apml> document contains a
<bml> section in which the <speech> content contains <ssml:mark> markers identifying
points in time in a symbolic way. An <fml> section then refers to those points in time to represent
the fact, in this case, that an announcement is made and that the speaker herself is being referred to
between marks s1:tm2 and s1:tm4. This information can be used, for example, to generate rel-
evant gestures when producing behaviour from the functional descriptions.

The representations in the <fml> section are provisional and are likely to change as consensus is
formed in the community.

<fml-apml version="0.1">
 <bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">
 <speech id="s1" language="en-US" text="Hi, I'm Poppy."

page 44 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

 ssml:xmlns="http://www.w3.org/2001/10/synthesis">
 <ssml:mark name="s1:tm1"/>
 Hi,
 <ssml:mark name="s1:tm2"/>
 I'm
 <ssml:mark name="s1:tm3"/>
 Poppy.
 <ssml:mark name="s1:tm4"/>
 </speech>
 </bml>
 <fml xmlns="http://www.mindmakers.org/fml" id="fml1”>
 <performative id="p2" type="announce" start="s1:tm1" end="s1:tm4"/>
 <world id="w1" ref_type="person" ref_id="self" start="s1:tm2" end="s1:tm4"/>
 </fml>
</fml-apml>

For the conversion from FML to BML, information about pitch accents and boundaries is useful for
the prediction of plausible behaviour time-aligned with the macro-structure of speech. In our current
implementation, a speech preprocessor computes this information using TTS technology. The in-
formation is added to the end of the <speech> section as shown below. This is an ad hoc solution
which should be reconsidered in the process of specifying FML.

<fml-apml version="0.1">
 <bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">
 <speech id="s1" language="en_US" text="Hi, I'm Poppy."
 ssml:xmlns="http://www.w3.org/2001/10/synthesis">
 <ssml:mark name="s1:tm1"/>
 Hi,
 <ssml:mark name="s1:tm2"/>
 I'm
 <ssml:mark name="s1:tm3"/>
 Poppy.
 <ssml:mark name="s1:tm4"/>
 <pitchaccent id="xpa1" start="s1:tm1" end="s1:tm2"/>
 <pitchaccent id="xpa2" start="s1:tm3" end="s1:tm4"/>
 <boundary id="b1" time="s1:tm4"/>
 </speech>
 </bml>
 <fml xmlns="http://www.mindmakers.org/fml" id="fml1”>
 <performative id="p2" type="announce" start="s1:tm1" end="s1:tm4"/>
 <world id="w1" ref_type="person" ref_id="self" start="s1:tm2" end="s1:tm4"/>
 </fml>
</fml-apml>

7.7 BML

The aim of the Behaviour Markup Language BML is to represent the behaviour to be realised by an
Embodied Conversational Agent. BML is at a relatively concrete level of specification, but is still in
draft status. A standalone BML document is partly similar to the <bml> section of an FML-APML
document; however, whereas the <bml> section of FML-APML contains only a <speech> tag, a
BML document can contain elements representing expressive behaviour in the ECA at a broad
range of levels, including <head>, <face>, <gaze>, <body>, <speech> and others. The fol-
lowing shows an example of gaze and head nod behaviour added to the example from FML.

<bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">

page 45 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/FML
http://semaine.opendfki.de/wiki/FML
http://semaine.opendfki.de/wiki/FML

SEMAINE D7e

 <speech id="s1" language="en_US" text="Hi, I'm Poppy."
 ssml:xmlns="http://www.w3.org/2001/10/synthesis">
 <ssml:mark name="s1:tm1"/>
 Hi,
 <ssml:mark name="s1:tm2"/>
 I'm
 <ssml:mark name="s1:tm3"/>
 Poppy.
 <ssml:mark name="s1:tm4"/>
 <pitchaccent id="xpa1" start="s1:tm1" end="s1:tm2"/>
 <pitchaccent id="xpa2" start="s1:tm3" end="s1:tm4"/>
 <boundary id="b1" time="s1:tm4"/>
 </speech>
 <gaze id="g1" start="s1:tm1" end="s1:tm4">
 ...
 </gaze>
 <head id="h1" start="s1:tm3" end="s1:tm4" type="NOD">
 ...
 </head>
</bml>

While creating an audio-visual rendition of the BML document, we use TTS to produce the audio
and the timing information needed for lip synchronisation. Whereas BML in principle previews a
<lip> element for representing this information, we are uncertain how to represent exact timing
information with it in a way that preserves the information about syllable structure and stressed syl-
lables. For this reason, we currently use a custom representation based on the MaryXML format
from the MARY TTS system to represent the exact timing of speech sounds. The following shows
the timing information for the word “Poppy”, which is a two-syllable word of which the first one is
the stressed syllable.

<bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">
 <speech id="s1" language="en_US" text="Hi, I'm Poppy."
 ssml:xmlns="http://www.w3.org/2001/10/synthesis"
 mary:xmlns="http://mary.dfki.de/2002/MaryXML">
 ...
 <ssml:mark name="s1:tm3"/>
 Poppy.
 <mary:syllable stress="1">
 <mary:ph d="0.092" end="1.011" p="p"/>
 <mary:ph d="0.112" end="1.123" p="A"/>
 <mary:ph d="0.093" end="1.216" p="p"/>
 </mary:syllable>
 <mary:syllable>
 <mary:ph d="0.141" end="1.357" p="i"/>
 </mary:syllable>
 <ssml:mark name="s1:tm4"/>
 ...
</bml>

The custom format we use for representing timing information for lip synchronisation clearly de-
serves to be revised towards a general BML syntax, as BML evolves.

page 46 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

7.8 Player data

Player data is currently treated as unparsed data. Audio data is binary, whereas player directives are
considered to be plain text. This works well with the current MPEG-4 player we use but may need
to generalised as other players are integrated into the system.

page 47 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

8 State information defined in the SEMAINE system
(see http://semaine.opendfki.de/wiki/StateInfo for latest version)

The SEMAINE system needs to maintain various kinds of state information: the context, such as-
which character is currently active, and whether or not there is a user present; the agent's mental
state; the agent's interpretation of the user's behavioural and emotional state; and the state of the dia -
logue.

In a Message-Oriented Middleware (MOM) it is not straightforward to preserve a centrally held
state in such a way that several components can access it, because a MOM does not provide a
shared memory. One option for implementing distributed access to state information would have
been a specialised information repository component; however, this would have required each com-
ponent to send and receive a message every time that it wants to access a certain information.

The solution implemented in the SEMAINE API is of a different kind. A specialised class State-
Receiver is keeping track of state-related messages; it parses incoming messages and saves the
information in a local information repository. That means, every component has local access to its
own copy of the latest state information. Since the local copies are updated through the same state-
related messages, they are updated in synchrony. Looking up a certain piece of information is thus
as easy as accessing a local variable.

An important challenge in this kind of setup is to make the encoding-decoding link between the rep -
resentation of information in XML-based messages, and a unique “short name” by which compon-
ents can access the information. For example, the dialogue state information that the agent does not
have the turn at the moment is encoded as follows:

<semaine:dialog-state xmlns:semaine=”http://www.semaine-project.eu/semaineml”>
 <semaine:agent believesHasTurn=”false”/>
</semaine:dialog-state>

The component, on the other hand, should be able to access this information independently of the
representation format, e.g. through a short name such as agentHasTurn.

If the link between message format and short name were hard-coded in the program code, it would
not allow users to flexibly reuse the state information mechanism in novel domains and applica-
tions, which would be incompatible with the SEMAINE API's ambition to be a reusable framework.
Therefore, we have developed and implemented a mechanism that allows developers to represent
this relationship in a configuration file, using namespace-aware XPath expressions. XPath is a
formalism for navigating through XML documents to access information. In the above example, the
information whether or not the agent belives it has the turn can be accessed by going to the element
<dialog-state> in the namespace http://www.semaine-project.eu/semaineml,
then to the child element <agent> in the same namespace, and finally by accessing the value of
the attribute believesHasTurn. In XPath, this can be encoded as:

/semaine:dialog-state/semaine:user/@believesHasTurn

where the namespace prefix semaine is bound to the namespace http://www.se-
maine-project.eu/semaineml. By associating this XPath expression with a short name
userHasTurn, it is possible to provide the relation in a configuration file.

page 48 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/StateInfo

SEMAINE D7e

XPath in its general form is a very powerful framework which is intended only for accessing in-
formation in existing XML documents. It is not originally intended to be used for the generation of
documents. However, by using only the subset of navigating to elements and accessing attribute
values or textual content, we can reuse the XPath expressions also for the generation of XML docu-
ments and thus for encoding the information.

As a result, we have a fully configurable mechanism for encoding and decoding state information.
The current content of the configuration file is at trunk/java/config/stateinfo.config. It can be seen
that both the relation between short names and XPath expressions and the namespace prefixes can
be given in the configuration file, providing full flexibility for future extensions.

The following tables aim to give a complete account of the meaning of state information currently
defined.

These are the “current best guess” information we have on anything we know anything about.
Short name is what can be used in StateReceiver.getCurrentBestGuess() to obtain
the latest value of that variable. XPath is the XPath expression used for extracting the information
from messages. Possible values is a data type and, as applicable, a value range or a list of values –
e.g., “float: [0,1[” or “string: a lot, a little, not really” or “boolean”. Definition is the meaning of the
information, in human-readable terms.

The following namespace prefixes are used in the XPath expressions.

Prefix Namespace URI
semaine http://www.semaine-project.eu/semaineml
bml http://www.mindmakers.org/projects/BML
emotion http://www.w3.org/2009/10/emotionml

8.1 User State

Topic: state.user.behaviour

Short name XPath Possible values Definition

headGesture
/semaine:user-
state/bml:bml/bml:head/@type

string: NOD,
SHAKE, TILT-
LEFT, TILT-
RIGHT,
APPROACH,
RETRACT

User is currently
performing the
given head gesture
(note that TILT-
LEFT and TILT-
RIGHT is left and
right from the user's
perspective.

headGestureStarted
/semaine:user-
state/bml:bml/bml:head/@start

float: [0, very
large number]

time when the user
started with the
gesture, since the
system last got
ready, in seconds

headGestureStopped /semaine:user-
state/bml:bml/bml:head/@end

float: [0, very
large number]

time when the user
stopped the gesture,
since the system
last got ready, in

page 49 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/browser/trunk/java/config/stateinfo.config

SEMAINE D7e

seconds

facialExpression
/semaine:user-
state/bml:bml/bml:face/@shape

string: SMILE,
FROWN,
RAISED_EYEB
ROWS
(placeholder for
a better
solution!!)

simplified
categorisation of
facial expressions

facialActionUnits
/semaine:user-
state/bml:bml/bml:face/@au

string: space-
separated list of
action unit
identifiers

action units
detected in the face

facialExpressionStarted
/semaine:user-
state/bml:bml/bml:face[@shape]/
@start

float: [0, very
large number]

time when the user
started with the
gesture, since the
system last got
ready, in seconds

facialExpressionStopped
/semaine:user-
state/bml:bml/bml:face[@shape]/
@end

float: [0, very
large number]

time when the user
stopped the gesture,
since the system
last got ready, in
seconds

facialActionUnitsStarted
/semaine:user-
state/bml:bml/bml:face[@au]/@s
tart

float: [0, very
large number]

time when the user
started with the
gesture, since the
system last got
ready, in seconds

facialActionUnitsStopped
/semaine:user-
state/bml:bml/bml:face[@au]/@
end

float: [0, very
large number]

time when the user
stopped the gesture,
since the system
last got ready, in
seconds

pitchDirection
/semaine:user-
state/semaine:pitch/@direction

string: rise, fall,
rise-fall, fall-rise,
high, mid, low

abstraction of the
pitch contour, if the
pitch values exceed
a certain threshold
(tbd)

speaking
/semaine:user-
state/semaine:speaking/@status

boolean: true,
false

whether the user is
currently speaking

vocalization
/semaine:user-
state/semaine:vocalization/@na
me

string:
(laughter), (sigh)

a non-verbal
vocalisation
produced by the
user

facePresent
/semaine:user-
state/semaine:face-
present/@status

boolean: true,
false

whether a face is
currently present

page 50 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

interest

/semaine:user-
state/emotion:emotion[@dimensi
on-set='http://www.semaine-
project.eu/emo/dimension/interes
t.xml']/emotion:dimension[@na
me='interest']/@value

float: [0, 1]

the degree to which
the user seems to be
bored (<0.5), or
interested (>0.5)

valence

/semaine:user-
state/emotion:emotion[@dimensi
on-
set='http://www.example.com/e
motion/dimension/FSRE.xml']/e
motion:dimension[@name='vale
nce']/@value

float: [0, 1]
negative (<0.5) or
positive (>0.5)

arousal

/semaine:user-
state/emotion:emotion[@dimensi
on-
set='http://www.example.com/e
motion/dimension/FSRE.xml']/e
motion:dimension[@name='arou
sal']/@value

float: [0, 1]

below average
arousal (<0.5) or
higher than average
arousal (>0.5)

potency

/semaine:user-
state/emotion:emotion[@dimensi
on-
set='http://www.example.com/e
motion/dimension/FSRE.xml']/e
motion:dimension[@name='pote
ncy']/@value

float: [0, 1]
out of control
(<0.5) or in control
(>0.5)

unpredictability

/semaine:user-
state/emotion:emotion[@dimensi
on-
set='http://www.example.com/e
motion/dimension/FSRE.xml']/e
motion:dimension[@name='unpr
edictability']/@value

float: [0, 1]

predictable situation
(<0.5) or
unpredictable
situation (>0.5)

intensity
/semaine:user-
state/emotion:emotion/emotion:i
ntensity/@value

float: [0, 1]
how intense the
emotion is, globally

emotion-quadrant

/semaine:user-
state/emotion:emotion[@categor
y-set='http://www.semaine-
project.eu/emo/category/four-
quadrants.xml']/emotion:categor
y/@name

string:
positiveActive,
negativeActive,
positivePassive,
negativePassive,
neutral

userUtterance
/semaine:user-
state/semaine:userutterance/@utt
erance

string
A list (seperated
with spaces) of all
the detected words

page 51 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

userUtteranceStartTime
/semaine:user-
state/semaine:userutterance/@sta
rttime

float: [0, inf]
The starting time of
the detected words

userUtteranceFeatures
/semaine:user-
state/semaine:userutterance/@fea
tures

string

A list (separated
with spaces) of all
the detected
linguistic features
that are extracted
from the detected
words

gender
/semaine:user-
state/semaine:gender/@name

string: male,
female, unknown

The user's gender.

8.2 Agent State

Topic: state.agent

Short name XPath
Possible
values

Definition

needToSpeak
Suggestion: /semaine:agent-
state/semaine:needtospeak/@value

int: [-100,
100]

A value that describes
how eager the agent
wants to speak.
Values below 0
indicate the agent
wants to be silent,
values above 0
indicate that the agent
wants to speak. A
higher or a lower
value increases the
strength of this.

turnTakingIntention
Suggestion: /semaine:agent-
state/semaine:turntakingintention/
@value

String:
startSpeaking,
stopSpeaking

Describes the turn
taking intention of the
agent, if the agent
wants to start
speaking or if it wants
to stop.

agentUtterance
/semaine:agent-
state/semaine:agentutterance/@utt
erance

String

The text currently
spoken by the agent,
be it as a speaker or
as a listener. empty or
empty string if agent
is currently not
speaking.

agentUtteranceStartTime
/semaine:agent-
state/semaine:agentutterance/@sta
rttime

long

the system time at
which the
agentUtterance
started.

page 52 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

agentHead
/semaine:agent-
state/semaine:agent-
head/@behaviour

The behaviour
currently
shown by the
agent, be it as
a speaker or
as a listener.
empty or
empty string
if agent is
currently not
showing any
behaviour on
this modality.

agentHeadStartTime
/semaine:agent-
state/semaine:agent-
head/@starttime

long
the system time at
which the behaviour
started.

agentFace
/semaine:agent-
state/semaine:agent-
face/@behaviour

The behaviour
currently
shown by the
agent, be it as
a speaker or
as a listener.
empty or
empty string
if agent is
currently not
showing any
behaviour on
this modality.

agentFaceStartTime
/semaine:agent-
state/semaine:agent-
face/@starttime

long
the system time at
which the behaviour
started.

agentGaze
/semaine:agent-
state/semaine:agent-
gaze/@behaviour

The behaviour
currently
shown by the
agent, be it as
a speaker or
as a listener.
empty or
empty string
if agent is
currently not
showing any
behaviour on
this modality.

agentGazeStartTime /semaine:agent-
state/semaine:agent-

long the system time at
which the behaviour

page 53 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

gaze/@starttime started.

agentGesture
/semaine:agent-
state/semaine:agent-
gesture/@behaviour

The behaviour
currently
shown by the
agent, be it as
a speaker or
as a listener.
empty or
empty string
if agent is
currently not
showing any
behaviour on
this modality.

agentGestureStartTime
/semaine:agent-
state/semaine:agent-
gesture/@starttime

long
the system time at
which the behaviour
started.

agentTorso
/semaine:agent-
state/semaine:agent-
torso/@behaviour

The behaviour
currently
shown by the
agent, be it as
a speaker or
as a listener.
empty or
empty string
if agent is
currently not
showing any
behaviour on
this modality.

agentTorsoStartTime
/semaine:agent-
state/semaine:agent-
torso/@starttime

long
the system time at
which the behaviour
started.

agreement

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/commu
nicative-
functions.xml']/emotion:dimension
[@name='agreement']/@value

float: [0, 1]

bipolar scale (neutral
point: 0.5)
disagreement-
agreement

acceptance /semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/commu
nicative-
functions.xml']/emotion:dimension

float: [0, 1] bipolar scale (neutral
point: 0.5) refusal-
acceptance

page 54 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

[@name='acceptance']/@value

belief

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/commu
nicative-
functions.xml']/emotion:dimension
[@name='belief']/@value

float: [0, 1]
bipolar scale (neutral
point: 0.5) disbelief-
belief

liking

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/commu
nicative-
functions.xml']/emotion:dimension
[@name='liking']/@value

float: [0, 1]
bipolar scale (neutral
point: 0.5) disliking-
liking

understanding

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/commu
nicative-
functions.xml']/emotion:dimension
[@name='understanding']/@value

float: [0, 1]

bipolar scale (neutral
point: 0.5) no-
understanding -
understanding

interest

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/commu
nicative-
functions.xml']/emotion:dimension
[@name='interest']/@value

float: [0, 1]
bipolar scale (neutral
point: 0.5) no-interest
- interest

anger

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/listener-
meanings.xml']/emotion:dimensio
n[@name='anger']/@value

float: [0, 1]
unipolar scale (0 =
not present, 1 =
intensely present)

sadness

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/listener-
meanings.xml']/emotion:dimensio
n[@name='sadness']/@value

float: [0, 1]
unipolar scale (0 =
not present, 1 =
intensely present)

amusement

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/listener-
meanings.xml']/emotion:dimensio
n[@name='amusement']/@value

float: [0, 1]
unipolar scale (0 =
not present, 1 =
intensely present)

page 55 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

happiness

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/listener-
meanings.xml']/emotion:dimensio
n[@name='happiness']/@value

float: [0, 1]
unipolar scale (0 =
not present, 1 =
intensely present)

contempt

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/listener-
meanings.xml']/emotion:dimensio
n[@name='contempt']/@value

float: [0, 1]
unipolar scale (0 =
not present, 1 =
intensely present)

anticipation

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/listener-
meanings.xml']/emotion:dimensio
n[@name='anticipation']/@value

float: [0, 1]
bipolar scale (neutral
point: 0.5) low-to-
high anticipation

solidarity

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/listener-
meanings.xml']/emotion:dimensio
n[@name='solidarity']/@value

float: [0, 1]
bipolar scale (neutral
point: 0.5) low-to-
high solidarity

antagonism

/semaine:agent-
state/emotion:emotion[@dimensio
n-set='http://www.semaine-
project.eu/emo/dimension/listener-
meanings.xml']/emotion:dimensio
n[@name='antagonism']/@value

float: [0, 1]
bipolar scale (neutral
point: 0.5) low-to-
high antagonism

8.3 Dialog State

Topic: state.dialog

Short name XPath Possible values Definition

userTurnState
/semaine:dialog-
state/semaine:user/@believesHasTurn

boolean: true, false

agentTurnState
/semaine:dialog-
state/semaine:agent/@believesHasTurn

String: speaking, listening,
expectingAnswer

convState
/semaine:dialog-
state/semaine:agent/@convState

String: listening, asking

8.4 Context State

Topic: state.context

Short name XPath Possible values Definition

page 56 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

userPresent
/semaine:situational-
context/semaine:user/@statu
s

string: present,
absent

whether there is currently a user
ready to interact with the system

character
/semaine:situational-
context/semaine:character/@
name

string: Poppy,
Prudence, Obadiah,
Spike, Moderator

the name of the character who is
currently the active character in
the system.

nextCharacter
/semaine:situational-
context/semaine:character/@
next

string: Poppy,
Prudence, Obadiah,
Spike

only used with
character='Moderator' -- the name
of the next character that the
moderator should introduce

dialogContext
/semaine:situational-
context/semaine:dialog-
context/@name

string:
AnnounceNextCha
racter,
Introduction,
Questions

only used with
character='Moderator' -- the type
of dialog the moderator should
perform

page 57 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

9 Building emotion-oriented systems with the SEMAINE API
(see http://semaine.opendfki.de/wiki/BuildingSystems for latest version)

The SEMAINE API is the component integration middleware created for the SEMAINE project,
serving as the integration layer for system components in SEMAINE.

The SEMAINE API uses a message-oriented middleware (MOM) for all communication in the sys-
tem. As a result, all communication is asynchronous, which decouples the various parts of the sys-
tem. The actual processing is done in “components”, which communicate with one another over
“Topics” below the named Topic hierarchysemaine.data.*. Each component has its own “meta mes-
senger”, which interfaces between the component and a central system manager. When a compon-
ent is started, its meta messenger registers with the system manager over a special meta communic-
ation channel, the Topicsemaine.meta. At registration time, the meta messenger describes the com-
ponent in terms of the data Topics that it sends data to and that it receives data from; if the compon-
ent is an input or output component (in the sense of the user interface), that status is communicated
as well. The system manager is keeping track of the components that have been registered, and
checks at regular intervals whether all components are still alive by sending a “ping”. In reply to
such a ping, each meta messenger confirms the respective component's status and sends debug in-
formation such as the average time spent processing incoming requests. The system manager keeps
track of the information about registered components, and sends global meta messages informing
all components that the overall system is ready or, if a component has an error or is stalled, that the
system is not ready. Also, the system manager resets a global timer to zero when the system be-
comes ready. All components use this global time via their meta messenger, and thus can meaning-
fully communicate about timing of user and system events even across different computers with po-
tentially unsynchronised hardware clocks.

A centralised logging functionality uses the Topics below semaine.log.*. By convention, mes-
sages are sent to semaine.log.<component>.<severity>, e.g. the Topic semaine.lo-
g.UtteranceInterpreter.debug would be used for debug messages of component Utter-
anceInterpreter. The severities used are “debug”, “info”, “warn” and “error”. Through this design, it
is possible for a log reader to subscribe, e.g., to all types of messages from one component, or to all
messages from all components that have at least severity “info”, etc. Furthermore, a configurable
message logger can optionally be used to log certain messages in order to follow and trace them.
Notably, it is possible to read log messages in one central place, independently of the computer, op-
erating system or programming language used by any given component.

The following figure illustrates this system architecture. Components communicate with each other
via Topics in the semaine.data hierarchy (indicated by black arrows). Meta information is
passed between each component's meta messenger and the system manager via the semaine.-
meta Topic (grey arrows). Optionally, components can write log messages, and a message logger
can log the content messages being sent; a configurable log reader can receive and display a config-
urable subset of the log messages (dashed grey arrows).

page 58 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/BuildingSystems

SEMAINE D7e

Optionally, a system monitor GUI visualises the information collected by the system manager as a
message flow graph. Input components are placed at the bottom left, output components at the bot-
tom right, and the other components are sorted to the extent possible based on the data input/output
relationships, along a half-circle from left to right. Component B comes later in the graph than com-
ponent A if A's output is an input to B or if there is a sequence of components that can process A's
output into B's input. This criterion is overly simplistic for complex architectures, especially with
circular message flows, but is sufficient for simple quasi-linear message flow graphs. If a new com-
ponent is added, the organisation of the flow graph is recomputed. This way, it is possible to visual-
ise message flows without having to pre-specify the layout.

The following pages present three emotion-oriented example systems, in order to corroborate the
claim that the SEMAINE API is easy to use for building new emotion-oriented systems out of new
and/or existing components. Source code is provided in order to allow the reader to follow in detail
the steps needed for using the SEMAINE API. The code is written in Java, and can be obtained
from the SEMAINE sourceforge page [57]. The SEMAINE API parts of the code would look very
similar in C++.

The source code for these examples is included in the SVN repository and in the source release
package of SEMAINE-3.0.

9.1 Hello world

The “Hello” example realises a simple text-based interactive system. The user types arbitrary text;
an analyser component spots keywords, and deduces an affective state from them; and a rendering
component outputs an emoticon corresponding to this text. Despite its simplicity, the example is in-
structive because it displays the main elements of an emotion-oriented system.

The input component simply reads one line of text at a time, and sends it on. It has an input device
(line 4) and a Sender writing TEXT data to the Topic semaine.data.hello.text (line 3). In

page 59 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/attachment/wiki/BuildingSystems/API-architecture.png

SEMAINE D7e

its constructor, the component registers itself as an input component (l. 7), and registers its sender
(l. 8). Its act() method, which is automatically called every 100 ms while the system is running,
checks for new input (l. 12), reads it (l. 13), and sends it to the Topic (l. 14).

 1 public class HelloInput extends Component {
 2
 3 private Sender textSender = new Sender("semaine.data.hello.text", "TEXT",
getName());;
 4 private BufferedReader inputReader = new BufferedReader(new
InputStreamReader(System.in));
 5
 6 public HelloInput() throws JMSException {
 7 super("HelloInput", true/*is input*/, false);
 8 senders.add(textSender);
 9 }
10
11 @Override protected void act() throws IOException, JMSException {
12 if (inputReader.ready()) {
13 String line = inputReader.readLine();
14 textSender.sendTextMessage(line, meta.getTime());
15 }
16 }
17 }

As a simplistic central processing component, the HelloAnalyser makes emotional judgements
about the input. It registers a Receiver (l. 7) for the Topic that HelloInput writes to, and sets up (l. 3)
and registers (l. 8) an XML Sender producing data of type EmotionML. Whenever a message is re-
ceived, the method react() is called (l. 11). It receives (l. 13) and analyses (l. 14-17) the input
text, and computes values for the emotion dimensions arousal and valence from the text. Finally, it
creates an EmotionML document (l. 18) and sends it (l. 19).

 1 public class HelloAnalyser extends Component {
 2
 3 private XMLSender emotionSender = new
XMLSender("semaine.data.hello.emotion", "EmotionML", getName());
 4
 5 public HelloAnalyser() throws JMSException {
 6 super("HelloAnalyser");
 7 receivers.add(new Receiver("semaine.data.hello.text"));
 8 senders.add(emotionSender);
 9 }
10
11 @Override protected void react(SEMAINEMessage m) throws JMSException {
12 int arousalValue = 0, valenceValue = 0;
13 String input = m.getText();
14 if (input.contains("very")) arousalValue = 1;
15 else if (input.contains("a bit")) arousalValue = -1;
16 if (input.contains("happy")) valenceValue = 1;
17 else if (input.contains("sad")) valenceValue = -1;
18 Document emotionML = createEmotionML(arousalValue, valenceValue);
19 emotionSender.sendXML(emotionML, meta.getTime());
20 }
21
22 private Document createEmotionML(int arousalValue, int valenceValue) {
23 Document emotionML = XMLTool.newDocument(EmotionML.ROOT_ELEMENT,
EmotionML.namespaceURI);
24 Element emotion =

page 60 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

XMLTool.appendChildElement(emotionML.getDocumentElement(), EmotionML.E_EMOTION);
25 Element dimensions = XMLTool.appendChildElement(emotion,
EmotionML.E_DIMENSIONS);
26 dimensions.setAttribute(EmotionML.A_SET, "arousalValence");
27 Element arousal = XMLTool.appendChildElement(dimensions,
EmotionML.E_AROUSAL);
28 arousal.setAttribute(EmotionML.A_VALUE, String.valueOf(arousalValue));
29 Element valence = XMLTool.appendChildElement(dimensions,
EmotionML.E_VALENCE);
30 valence.setAttribute(EmotionML.A_VALUE, String.valueOf(valenceValue));
31 return emotionML;
32 }
33 }

As the SEMAINE API does not yet provide built-in support for standalone EmotionML documents,
the component uses a generic XMLSender (l. 3) and uses the XMLTool to build up the EmotionML
document (l. 23-30).

Valence
- 0 +

Arousal + 8-(8- |8-)
0 :-(:- |:-)
- *-(*- |*-)

The output of the Hello system should be an emoticon representing an area in the arousal-valence
plane as shown in the Table above. The EmoticonOutput component registers an XML Receiver (l.
5) to the Topic that the HelloAnalyser sends to. Whenever a message is received, the react()
method is called (l. 8), which analyses the XML document in terms of EmotionML markup (l. 10-
12), and extracts the arousal and valence values (l. 14-15). The emotion display is rendered as a
function of these values (l. 17-19).

 1 public class EmoticonOutput extends Component {
 2
 3 public EmoticonOutput() throws JMSException {
 4 super("EmoticonOutput", false, true /*is output*/);
 5 receivers.add(new XMLReceiver("semaine.data.hello.emotion"));
 6 }
 7
 8 @Override protected void react(SEMAINEMessage m) throws
MessageFormatException {
 9 SEMAINEXMLMessage xm = (SEMAINEXMLMessage) m;
10 Element dimensions = (Element) xm.getDocument().getElementsByTagNameNS(
 EmotionML.namespaceURI,
EmotionML.E_DIMENSIONS).item(0);
11 Element arousal = XMLTool.needChildElementByTagNameNS(dimensions,
EmotionML.E_AROUSAL,
 EmotionML.namespaceURI);
12 Element valence = XMLTool.needChildElementByTagNameNS(dimensions,
EmotionML.E_VALENCE,
 EmotionML.namespaceURI);
13
14 float a = Float.parseFloat(arousal.getAttribute(EmotionML.A_VALUE));
15 float v = Float.parseFloat(valence.getAttribute(EmotionML.A_VALUE));
16
17 String eyes = a > 0.3 ? "8"/*active*/ : a < -0.3 ? "*"/*passive*/ :
":"/*neutral*/;

page 61 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

18 String mouth = v > 0.3 ? ")"/*positive*/ : v < -0.3 ? "("/*negative*/ :
"|"/*neutral*/;
19 System.out.println(eyes+"-"+mouth);
20 }
21 }

In order to build a system from the components, a configuration file is created. It includes the Sys-
temManager component as well as the three newly created components. Furthermore, it requests a
visible system manager GUI providing a message flow graph.

semaine.components = \
 |eu.semaine.components.meta.SystemManager| \
 |eu.semaine.examples.hello.HelloInput| \
 |eu.semaine.examples.hello.HelloAnalyser| \
 |eu.semaine.examples.hello.EmoticonOutput|

semaine.systemmanager.gui = true

The system is started in the same way as all Java-based SEMAINE API systems:

activemq; java eu.semaine.system.ComponentRunner example-hello.-
config

The following figure shows a screenshot of the resulting message flow graph. As the communica-
tion passes via the middleware ActiveMQ, the system would behave in the exact same way if the
four components were started as separate processes, on different machines, or if some of them were
written in C++ rather than Java.

page 62 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/attachment/wiki/HelloWorld/hello-flowgraph.png

SEMAINE D7e

9.2 Emotion mirror

The Emotion mirror is a variant of the Hello system. Instead of analysing text and deducing emo-
tions from keywords, it uses the openSMILE speech feature extraction and emotion detection for in-
terpreting the user's emotion. The output is rendered using the same EmoticonOutput component
from the Hello system.

Only one new component is needed to build this system. EmotionExtractor has an emotion Sender
(l. 2 and l. 7) just like the HelloAnalyser had, but uses an EMMA Receiver (l. 6) to read from the
topic that the Emotion detection component from the SEMAINE system publishes to (see Compon-
entArchitecture). Upon reception of an EMMA message, the method react() is called (l. 10). As
the only receiver registered by the component is an EMMA receiver, the message can be directly
cast into an EMMA message (l. 11) which allows for comfortable access to the document structure
to extract emotion markup (l. 12-13). Where emotion markup is present, it is inserted into a stan-
dalone EmotionML document (l. 16-18) and sent to the output Topic (l. 19).

 1 public class EmotionExtractor extends Component {
 2 private XMLSender emotionSender = new
XMLSender("semaine.data.hello.emotion", "EmotionML", getName());
 3
 4 public EmotionExtractor() throws JMSException {
 5 super("EmotionExtractor");
 6 receivers.add(new EmmaReceiver("semaine.data.state.user.emma"));
 7 senders.add(emotionSender);
 8 }
 9
10 @Override protected void react(SEMAINEMessage m) throws JMSException {
11 SEMAINEEmmaMessage emmaMessage = (SEMAINEEmmaMessage) m;
12 Element interpretation = emmaMessage.getTopLevelInterpretation();
13 List<Element> emotionElements =
emmaMessage.getEmotionElements(interpretation);
14 if (emotionElements.size() > 0) {
15 Element emotion = emotionElements.get(0);
16 Document emotionML = XMLTool.newDocument(EmotionML.ROOT_ELEMENT,
EmotionML.namespaceURI);
17 emotionML.adoptNode(emotion);
18 emotionML.getDocumentElement().appendChild(emotion);
19 emotionSender.sendXML(emotionML, meta.getTime());
20 }
21 }
22 }

The config file contains only the components SystemManager, EmotionExtractor and EmoticonOut-
put. As the SMILE component is written in C++, it needs to be started as a separate process as doc-
umented in the SEMAINE wiki documentation SEMAINE-3.0. The resulting message flow graph is
shown in the following figure.

page 63 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/SEMAINE-3.0
http://semaine.opendfki.de/wiki/ComponentArchitecture
http://semaine.opendfki.de/wiki/ComponentArchitecture
http://semaine.opendfki.de/wiki/HelloWorld

SEMAINE D7e

9.3 A game driven by emotional speech: The swimmer's game

The third example system is a simple game application in which the user must use emotional speech
to win the game. The game scenario is as follows. A swimmer is being pulled backwards by the
stream towards a waterfall. The user can help the swimmer to move forward towards the river bank
by cheering him up through high-arousal speech. Low arousal, on the other hand, discourages the
swimmer and drives him more quickly to the waterfall.

page 64 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/attachment/wiki/EmotionMirror/mirror-flowgraph.png

SEMAINE D7e

The system requires the openSMILE components as in the Emotion mirror system; a component
computing the swimmer's position as time passes, and considering the user's input; and a rendering
component for the user interface. Furthermore, we will illustrate the use of TTS output in the SE-
MAINE API by implementing a commentator providing input to the speech synthesis component of
the SEMAINE system.

The PositionComputer combines a react() and an act() method. Messages are received via an
EMMA receiver and lead to a change in the internal parameter position (l. 22). The act()
method implements the backward drift (l. 29) and sends regular position updates (l. 30) as a plain-
text message.

 1 public class PositionComputer extends Component {
 2 private Sender positionSender =
 new Sender("semaine.data.swimmer.position", "TEXT", getName());
 3 private float position = 50;
 4
 5 public PositionComputer() throws JMSException {
 6 super("PositionComputer");
 7 receivers.add(new EmmaReceiver("semaine.data.state.user.emma"));
 8 senders.add(positionSender);
 9 }
10
11 @Override protected void react(SEMAINEMessage m) throws
MessageFormatException {
12 SEMAINEEmmaMessage emmaMessage = (SEMAINEEmmaMessage) m;
13 Element interpretation = emmaMessage.getTopLevelInterpretation();
14 List<Element> emotionElements =
emmaMessage.getEmotionElements(interpretation);
15

page 65 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/attachment/wiki/SwimmersGame/swimmers-game-ui.png

SEMAINE D7e

16 for (Element emotion : emotionElements) {
17 Element dimensions = XMLTool.getChildElementByTagNameNS(emotion,
EmotionML.E_DIMENSIONS,
 EmotionML.namespaceURI);
18 if (dimensions != null) {
19 Element arousal = XMLTool.needChildElementByTagNameNS(dimensions,
EmotionML.E_AROUSAL,
 EmotionML.namespaceURI);
20 float arousalValue =
Float.parseFloat(arousal.getAttribute(EmotionML.A_VALUE));
21 // Arousal influences the swimmer's position:
22 position += 10*arousalValue;
23 }
24 }
25 }
26
27 @Override protected void act() throws JMSException {
28 // The river slowly pulls back the swimmer:
29 position -= 0.1;
30 positionSender.sendTextMessage(String.valueOf(position), meta.getTime());
31 }
32 }

The SwimmerDisplay implements the user interface shown above. Its messaging part consist of a
simple text-based Receiver (l. 5) and an interpretation of the text messages as single float values (l.
10).

 1 public class SwimmerDisplay extends Component {
 2
 3 public SwimmerDisplay() throws JMSException {
 4 super("SwimmerDisplay", false, true/*is output*/);
 5 receivers.add(new Receiver("semaine.data.swimmer.position"));
 6 setupGUI();
 7 }
 8
 9 @Override protected void react(SEMAINEMessage m) throws JMSException {
10 float percent = Float.parseFloat(m.getText());
11 updateSwimmerPosition(percent);
12 String message = percent <= 0 ? "You lost!" : percent >= 100 ? "You
won!!!" : null;
13 if (message != null) {
 ...
 }
 }
 ...
 }

Due to the separation of position computer and swimmer display, it is now very simple to add a
Commentator component that generates comments using synthetic speech, as a function of the cur-
rent position of the swimmer. It subscribes to the same Topic as the SwimmerDisplay (l. 7), and
sends BML output (l. 2) to the Topic serving as input to the speech synthesis component of the SE-
MAINE system. Speech output is produced when the game starts (l. 18-20) and when the position
meets certain criteria (l. 13-14). Generation of speech output consists in the creation of a simple
BML document with a <speech> tag enclosing the text to be spoken (l. 25-28), and sending that
document (l. 29).

 1 public class Commentator extends Component {

page 66 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

 2 private BMLSender bmlSender = new BMLSender("semaine.data.synthesis.plan",
getName());
 3 private boolean started = false;
 4
 5 public Commentator() throws JMSException {
 6 super("Commentator");
 7 receivers.add(new Receiver("semaine.data.swimmer.position"));
 8 senders.add(bmlSender);
 9 }
10
11 @Override protected void react(SEMAINEMessage m) throws JMSException {
12 float percent = Float.valueOf(m.getText());
13 if (percent < 30 /*danger*/) say("Your swimmer needs help!");
14 else if (percent > 70 /*nearly there*/) say("Just a little more.");
15 }
16
17 @Override protected void act() throws JMSException {
18 if (!started) {
19 started = true;
20 say("The swimmer needs your support to reach the river bank. Cheer him
up!");
21 }
22 }
23
24 private void say(String text) throws JMSException {
25 Document bml = XMLTool.newDocument(BML.ROOT_TAGNAME, BML.namespaceURI);
26 Element speech = XMLTool.appendChildElement(bml.getDocumentElement(),
BML.E_SPEECH);
27 speech.setAttribute("language", "en-US");
28 speech.setTextContent(text);
29 bmlSender.sendXML(bml, meta.getTime());
30 }
31 }

The complete system consists of the Java components SystemManager, PositionComputer, Swim-
merDisplay, Commentator, SpeechBMLRealiser and SemaineAudioPlayer, as well as the external
C++ component openSMILE. The resulting message flow graph is shown in the following figure.

page 67 of 70 ICT FP7 Contract no. 211486

SEMAINE D7e

page 68 of 70 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/attachment/wiki/SwimmersGame/swimmers-game-flowgraph.png

SEMAINE D7e

10 API documentation
A documented Application Programming Interface is the basis for software reuse. SEMAINE-3.1
comes with online documentation of both the Java and the C++ version of the API.

Both APIs are very much aligned to be as similar as possible, but of course there are some differ-
ences in practical syntax, so it is important to provide appropriate documentation for both.

10.1 Java API: Javadoc

The Java API documentation uses the de-facto standard javadoc, and can be found at http://se-
maine.sourceforge.net/SEMAINE-3.1/javadoc. The following screenshot illustrates the basic idea.

page 69 of 70 ICT FP7 Contract no. 211486

http://semaine.sourceforge.net/SEMAINE-3.1/javadoc
http://semaine.sourceforge.net/SEMAINE-3.1/javadoc

SEMAINE D7e

10.2 C++ API: Doxygen

The C++ API documentation uses the documentation tool Doxygen, and can be found at http://se-
maine.sourceforge.net/SEMAINE-3.1/doxygen/. The following screenshot illustrates the basic idea.

page 70 of 70 ICT FP7 Contract no. 211486

http://semaine.sourceforge.net/SEMAINE-3.1/doxygen/
http://semaine.sourceforge.net/SEMAINE-3.1/doxygen/

	Executive Summary
	1 Introduction
	1.1 The purpose of the present report

	2 SEMAINE-3.1: The final Sensitive Artificial Listener system
	2.1 New in version 3.1
	2.2 Installation
	2.3 Running the system
	2.3.1 Windows
	2.3.2 All platforms

	2.4 License
	2.5 Developer documentation
	2.6 Mailing list
	2.7 Background Information

	3 Configuring the SEMAINE system and its components
	3.1 System manager and java component runner
	3.1.1 ComponentRunner
	3.1.2 Java config file
	3.1.3 Embedded ActiveMQ
	3.1.4 User presence interpreter
	3.1.5 Pointers to other config files

	3.2 Character config file
	3.3 State info config file
	3.4 Dialog manager config file
	3.5 Listener behaviour
	3.6 Speech input component configurations
	3.7 Video input component configurations
	3.8 MARY TTS configuration

	4 Configuring the message-oriented middleware ActiveMQ
	4.1 Connecting to an external ActiveMQ server
	4.2 Embedded ActiveMQ
	4.3 Configuring ActiveMQ
	4.4 Changing the port of an embedded ActiveMQ broker

	5 SEMAINE Component Architecture
	5.1 Analysis of user behaviour
	5.1.1 Feature extractors
	5.1.2 Analysers
	5.1.3 Fusion components

	5.2 Dialogue management
	5.2.1 Interpreters
	5.2.2 Action proposers

	5.3 Generation of agent behaviour
	5.3.1 Direct branch
	5.3.2 Prepare-and-trigger branch

	6 Protocol for the Player in SEMAINE
	6.1 Data flow
	6.2 Command messages
	6.3 Callback messages
	6.4 Error conditions

	7 Standard and pre-standard representation formats in the SEMAINE system
	7.1 Feature vectors
	7.1.1 Details

	7.2 EMMA
	7.2.1 Details
	7.2.2 Verbal information
	Keywords

	7.2.3 Emotion-related information
	Emotion
	Interest

	7.2.4 Non-verbal information
	Head movement
	User speaking
	Pitch direction
	Gender
	Nonverbal vocalisations
	Face presence
	Action units

	7.3 EmotionML
	7.4 SemaineML
	7.5 SSML
	7.6 FML
	7.7 BML
	7.8 Player data

	8 State information defined in the SEMAINE system
	8.1 User State
	8.2 Agent State
	8.3 Dialog State
	8.4 Context State

	9 Building emotion-oriented systems with the SEMAINE API
	9.1 Hello world
	9.2 Emotion mirror
	9.3 A game driven by emotional speech: The swimmer's game

	10 API documentation
	10.1 Java API: Javadoc
	10.2 C++ API: Doxygen

