
NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 1 of 49

NEXOF-RA

NESSI Open Framework – Reference Architecture

IST- FP7-216446

Deliverable D14.1

Methodology to Write Instantiation Guidelines for the NEXOF
Reference Architecture

Due date of deliverable: 30/06/2010

Actual submission date: 13/07/2010

Francisco Pérez-Sorrosal
Ricardo Jiménez-Péris
Marta Patiño-Martínez

Date: 14/07/2010

This work is licensed under the Creative Commons Attribution 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter
to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

This work is partially funded by EU under the grant of IST-FP7-216446.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 2 of 49

Change History

Version Date Status Author (Partner) Description

0.1 17/06/2010 Francisco Pérez
Sorrosal

First Version

0.2 28/06/2010 Francisco Pérez
Sorrosal, Ricardo
Jiménez Peris,
Marta Patiño
Martínez

Evelyn and Angelo’s
comments addressed

Integration of the
Guidelines for HA and
Scalability in E-SOA as
example

1.0 13/07/2010 Ricardo Jiménez
Peris, Marta Patiño
Martínez

Final version

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 3 of 49

EXECUTIVE SUMMARY

This deliverable describes a methodology to write instantiation guidelines for
architectural domains of the NEXOF Reference Architecture (NEXOF-RA). The
methodology can be used for both documenting the instantiation process of
current domains addressed by the reference architecture as well as for new
domains that might be added in the future to the reference architecture. The
deliverable also provides a full example of instantiation guidelines developed for
the High Availability and Scalability domain of the ESOA top-level pattern.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 4 of 49

Document Information

IST Project
Number

FP7 – 216446 Acronym NEXOF-RA

Full title NESSI Open Framework – Reference Architecture

Project URL http://www.nexof-ra.eu

EU Project officer Arian Zwegers

Deliverable Number D14.1 Title Methodology to Write Instantiation Guidelines
for the NEXOF Reference Architecture

Work package Number WP-4 Title Methodology to Write Instantiation Guidelines
for the NEXOF Reference Architecture

Date of delivery Contractual 30/06/2010 Actual 30/06/2010

Status Version 1.0 Final 

Nature Report  Demonstrator  Other 

Abstract
(for dissemination)

Keywords Instantiation guidelines

Internal reviewers Angelo Gaeta (MOMA)

 Evelyn Pfeuffer (Siemens)

Authors (Partner) Francisco Pérez-Sorrosal (UPM), Ricardo Jiménez-Peris (UPM), Marta
Patiño-Martínez (UPM)

Responsible
Author

Ricardo Jiménez-Peris Email rjimenez@fi.upm.es

Partner UPM Phone +34 656 68 29 48

http://www.nexof-ra.eu/

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 5 of 49

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 5

1 INTRODUCTION ... 6

1.1 This Methodology is Not… .. 7

2 METHODOLOGY ... 8

2.1 Description of the Intention .. 9

2.2 Identification of Functional Aspects/Requirements Addressed 9

2.3 Description of the Functional Patterns ... 10

2.4 Provision of an Instantiation Process for Obtaining a Functional
Architecture/s .. 11

2.5 Identification of the Non-Functional Aspects/Requirements Addressed .. 12

2.6 Description of the Non-Functional Patterns Addressed 12

2.7 Provision of a Process for Selecting the Non-Functional Crosscutting
patterns ... 14

2.7.1 Techniques to Evaluate Non-Functional Quantitative Attributes 16

3 CONCLUSION ... 18

APPENDIX A: INSTANTIATION GUIDELINES FOR HIGH AVAILABILITY AND SCALABILITY

IN E-SOA .. 19

Context and Intent .. 19

Pattern Categorization .. 20

Generic Replication Patterns Domain ... 23

Multi-Tier Replication Patterns Domain ... 24

Database Replication Patterns Domain .. 25

Helper/Low Level Replication Patterns Domain .. 26

Instantiation Process .. 28

Phase 1: Confront Pattern Assumptions with Initial Architecture 30

Phase 2: Pattern Selection Through Trade-Off Analysis 34

Phase 3: Evaluation of Quantitative Requirements Fulfilment................... 42

The Role of ATAM in the Instantiation Process for HA and Scalability
Properties ... 45

ACRONYMS .. 47

REFERENCES ... 48

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 6 of 49

1 INTRODUCTION

Defining the architecture of a system or defining architectural extensions to
existing systems are the core tasks performed by software architects. When
performing these tasks, the architects have to take some important decisions
that will have some long lasting effects on the resulting systems. The decisions
taken (or not taken) by the architects in this phase will be very difficult to catch
up later in the subsequent phases of the software development process.

The decisions to take have to do mainly with two different elements: functional
and non-functional requirements. Both kinds of requirements address as a
whole, the needs and demands to be fulfilled in each specific context (e.g. E-
SOA, IoS, etc.).

Functional requirements are related specifically to the required system
functionality that must be provided at the end of the design process of any
system architecture or architectural extension. In order to fulfil these
requirements, the architect has to combine different architectural blocks (i.e.
functional patterns) in order to provide as outcome, one or more architectural
configurations addressing the required functionality. This process has to be
done taking into account and respecting the relationships that can be set up
between those patterns. This/these architecture/s are termed functional
architecture/s.

However, how architects achieve security, scalability, maintainability, high
availability, etc. in the system architecture is one of the most difficult key points
to materialize for guaranteeing the success of a project. So, with regard non-
functional requirements (a.k.a. quality attributes), the architect has to be very
focused in how to accommodate the cross-cutting patterns that allow to fulfil
them in the functional system architecture/s.

The process of instantiating architectures is complex, especially in the case of
reference architectures such as the NEXOF Reference Architecture (NEXOF-
RA). The evolving nature of this kind of architectures requires adding
extensions to the core reference architecture, for example when a new
application context/domain appears. This characteristic is called “Extendability”
in NEXOF-RA (See Section 2.2.2 in D6.3 [NRM]).

The methodology presented in this document, establishes the steps that should
be performed in order to write instantiation guidelines for different domains of
the reference architecture either existing ones or future extensions of the
NEXOF-RA. The methodology tackles on how to instantiate a given architecture
taking into account both, functional and non-functional requirements. In this
way, the instantiation guidelines resulting from applying this methodology can
be document how NEXOF-RA can be used by system architects as an entry
point to understand particular contexts and architectural extensions.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 7 of 49

1.1 This Methodology is Not…

It is important to note that the goal of this methodology is NOT to describe the
NEXOF Reference Architecture NOR describe the instantiation of any particular
NEXOF-RA compliant platforms/infrastructures (NCIs/NCPs). Additional
information about these two topics can be found in the document that describes
the architectural framework and principles D7.2c [AFP] and in the deliverable
D6.3 that explains the reference model [NRM].

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 8 of 49

2 METHODOLOGY

When a new application context arises (e.g. E-SOA, Internet of Services), the
current elements and mechanisms (standards, abstract and concrete
components, pattern catalogue etc.) provided by the NEXOF-RA, may be not
sufficient to address the new requirements (both functional and non-functional)
introduced by the new context. When this occurs, it is necessary to extend the
NEXOF-RA. In order to not to turn this process into chaos, a set of guidelines
for extending the NEXOF-RA architecture must be provided.

In order to write the guidelines that describe a new context or extension to
NEXOF-RA in terms of architecture (called architectural extension) and how can
NEXOF-compliant solutions be instantiated from them, the following key points
are advised to be addressed:

1. Describe the intention of the application context or architectural
extension provided (Section 2.1).

2. Identify the functional aspects addressed by the new
context/extension (Section 2.2).

3. Introduce the functional patterns that allow fulfilling the functional
aspects addressed by the new context/extension (Section 2.3).

4. Provide an instantiation process to help the architect in selecting
and combining the functional patterns provided in order to derive
one or more functional architectures (Section 2.4).

5. Identify the non-functional aspects addressed (Section 2.5).

6. Introduce the non-functional crosscutting patterns that allow
fulfilling the non-functional aspects (Section 2.6).

7. Provide an instantiation process to help/guide the architect in
selecting the non-functional cross-cutting patterns for the new
context taking into account their applicability on the functional
architecture/s obtained in point 4 (Section 2.7).

It is recommended to provide the guidelines for the new context or architectural
extension in a separate document addressing the required points from the
seven described above. The first one is mandatory, and its goal is to act as an
entry/link point to the reader in order to understand the intention of the context
or architectural extension that is going to be provided. The rest of the points can
be divided in two parts; points from 2 to 4 are related to the functionality
provided by the context/extension, whilst points from 5 to 7 are related to non-
functional aspects.

The guidelines for a particular context or architectural extension may not need
to address all the points provided above. For example, if a new context or
extension is related exclusively to non-functional aspects (e.g. security), the
guidelines will include only points 1, 5, 6 and 7. Moreover, the order of the two
parts is not mandatory either. If an architect considers that the non-functional
aspects guide better the description of a particular context, is free to re-organize
the functional and non-functional parts.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 9 of 49

The next sections include the description of the contents that each one of the
previous points should address.

2.1 Description of the Intention

The goal and intent of the application context or architectural extension that is
going to be introduced must be described and motivated here. As the new
context or extension is going to provide new additional elements for the
NEXOF-RA (e.g. new patterns, standards etc.), these additions needs to be
justified in terms of business and/or technical requirements.

An example of the kind of content/description that should be provided in this
section can be found in the description of the context for Enterprise Service
Oriented Architectures described in the E-SOA pattern [E-SO] (Section 2):

“The current market context is characterized by continuous growth, rapid
changes and product and service innovations that require enterprises to
respond rapidly to adapt their business processes. The success of an
enterprise is, then, tied to its ability to suddenly embrace new business
requirements. This ability is mostly related to IT. Agility and adaptability
of IT systems are the most pressing issues of contemporary IT.

…

As a result, enterprises need to factor the system in reusable functionality
and make it easier to compose them to meet business requirements.
This requires to have self-contained functionality that are as much
independent as possible from other functionality. When functionality
grows, it becomes a fundamental issue to well design, organize and
share them to help their effective reuse.

For these types of “in-flux” operations, a loosely coupled architecture is
required because it helps to reduce the overall complexity and
dependencies. Such an architectural style makes the application
landscape more agile, enables quicker change, and reduces risk. The
concept of service-oriented architectures aims at providing exactly these
types of features.”

Descriptions of scenarios such as the ones found in the deliverable D10.1 [RR]
relative to requirements may also be useful in order to strengthen the
introduction of the new application context or extension.

2.2 Identification of Functional Aspects/Requirements Addressed

The new context extension may introduce additional functionalities (a.k.a.
functional requirements/aspects) to the current ones identified in the NEXOF-
RA. In principle, the functionalities must be specified by referring to the
concerns and functionalities captured by the NEXOF-RA Model [AFP, NRM],
i.e. Services, Messaging, Discovery, Composition, Analysis, Presentation,
Management, Security, Resources.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 10 of 49

When describing the functionalities addressed, it is possible to reference the
identified business requirements (See Section 2.1). This fact reinforces the
need for the new context or extension that is being introduced.

If the functionalities provided in the new application context are radically
different and do not fit in any of the current concerns provided by the NEXOF-
RA model, the architect might decide to introduce a new concern in the model if
she considers that is strictly necessary.

2.3 Description of the Functional Patterns

In this point, the functional patterns that are going to be included in the new
context or extension are introduced and described.

On one side, this implies the description of the functional patterns in separate
documents as it is described in D7.2c, “Definition of the Architectural
Framework and Principles” [AFP]. Each one of these documents contextualizes
a particular pattern, providing information about the problem that addresses, the
assumptions it requires, relationships with the functional requirements identified
in the Section 2.2, related standards, the architectural solution it provides, etc.

On the other hand, it is interesting to provide a high level view of how all the
patterns provided fit together. This can be done through one or more diagrams
that include the patterns (joint with the relationships between them), the
functionalities they are addressing and how the patterns and the relationships
are related. The following diagram (Figure 1) is an example of this kind of
diagrams for the Service concern in the Enterprise SOA context:

Execution of Service

Component

<<include>>

Creation of Service

Component

Design of Service

Component

Implementation of

Service Component

<<include>>

Promote to Service

Component of

Legacy Application

<<include>>

Enterprise

SOA

Designer

and Runtime

Tools for E-SOA

isPartOf [Designer

Tool , Runtime]

Cloud migration

enabled by OSGi

isPartOf [Service Runtime]

Multi-Tier

Transactional

Service Runtime

OSGi SCA

Container

isPartOf [Runtime]

Front End

 in E-SOA

Figure 1 Patterns, functionalities and their relationships in the E-SOA context

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 11 of 49

In this diagram, the patterns related to the Services concern are depicted as
blue boxes and the relationships between them as dotted arrows categorized
with the relationships for functional patterns described in D7.2c. The
functionalities addressed are depicted as ovals. Finally, the black arrows relate
the patterns with the functionalities.

At least one top-level pattern should be introduced in order to provide an entry
point to the new context or extension of the architecture. In the previous figure,
the top-level pattern Enterprise SOA provides the entry point. The rest of the
functional patterns (abstract and implementation) can be related to the top-level
pattern/s (and among themselves), following the relationships in D7.2c. In the
previous figure, the Designer and Runtime Tools for E-SOA, OSGi SCA
Container and Cloud Migration Enabled by OSGi patterns are related to the
Enterprise SOA pattern through the isPartOf[component] relationship. As it is
described in D7.2c, this implies that the solution provided by these patterns has
to satisfy all the requirements that the set of components specified between
brackets must meet in the Enterprise SOA pattern. The same applies for the
Multi-Tier Transactional Service Runtime and the Front End in E-SOA patterns
with regard to the Designer and Runtime Tools for E-SOA pattern.

2.4 Provision of an Instantiation Process for Obtaining a Functional
Architecture/s

Once the functional patterns for the application context have been categorized,
a process for deriving architectures that fulfil the functional requirements of the
new context is necessary. The goal of the process is to help architects in
instantiating functional architectures for the application context using the
elements provided by the existing current NEXOF-RA and the new patterns
provided in the previous point.

The exact steps provided by the instantiation process depend on the concrete
context that is being described. However, some steps can be highlighted for all
the contexts, as is described in the following paragraphs.

First of all, it is useful to find the driving principle that will guide the process. The
process can be driven by the requirements specified for the final system or the
quality attributes to be instantiated or by any other criteria decided by the
architect that became of interest/utility for understanding the instantiation
process.

The process has to take also into account that some of the functional patterns
introduced may refine some already existing components or patterns of the
current NEXOF-RA or can be related with each other in order to form new
building blocks that jointly address in a better way some of the functionalities
(collection of patterns). In order to better understand the possible architectural
choices, their description can be done with diagrams based on the pattern
categorization done in the previous point and other categorizations already
existing in the NEXOF-RA that can be used by this context or extension being
described.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 12 of 49

Moreover, the existing trade-offs of the architectural choices must be described
and analyzed, exhibiting the pros and cons of each one of them.

Finally, a method for the quantitative evaluation of the resulting architecture/s
should be provided or suggested. For example, in NEXOF-RA assessment and
validation activities for architectural decisions have been based on a common
foundation that is the Architectural Trade-off Analysis Method (ATAM) [KKC00].

The outcome after this point is a functional architecture or architectures that
address/es the functional requirements of the new context. The next points will
take into consideration the impact of non-functional aspects on this functional
architecture/s.

2.5 Identification of the Non-Functional Aspects/Requirements
Addressed

After taking into account the functional properties of the application context or
architectural extension, then the non-functional aspects, if they are required to
be addressed by the extension, must be presented. As it has been done with
the functional aspects in Section 2.2, here there are described the non-
functional aspects/attributes that the architectural extension promotes.

When possible, it is desirable to refer to the business requirements or scenarios
identified in Section 2.1 that the non-functional aspects are going to address. In
this way, it is reinforced the need for the new context or extension that is being
introduced.

For example, Section “Context and Intent” of Appendix A describes the
instantiation guidelines for two particular non-functional aspects required by
current E-SOA infrastructures, High Availability and Scalability.

If the non-functional aspects addressed in the new application context or
extension are radically different and do not fit in any of the current concerns
provided by the NEXOF-RA model, the architect might decide to introduce a
new concern in the model if she considers that is strictly necessary.

2.6 Description of the Non-Functional Patterns Addressed

At this point the non-functional patterns are introduced and described. This
pattern description must be done reflecting the existing mechanisms provided
by the NEXOF-RA (See D7.2c [AFP]) with regard crosscutting patterns.

The way of describing the non-functional crosscutting patterns depends on the
concrete context that is being described. However, some key points are going
to be described and illustrated in the following paragraphs.

First of all, it should be identified at least one functional pattern where the non-
functional crosscutting patterns are applicable to. This pattern will provide the
hook to where the non-functional crosscutting patterns in this context can be
applied.

Then, it is also interesting to introduce a pattern categorization with regard the
non-functional aspects identified and the problems that they aim to solve. This

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 13 of 49

categorization will help the architects in understanding the set of crosscutting
patterns as a whole.

The following figure (Figure 2) presents a fraction of the diagram that
categorizes the non-functional cross-cutting patterns related to high availability
and scalability in the context of Enterprise SOA (See Section “Pattern
Categorization” in Appendix A. More specifically, it depicts the problems and
patterns in the Multi-Tier Replication Domain. Instead of presenting directly all
the patterns related to high availability and scalability, the document has
identified different sub-domains in order to better categorize all the patterns and
present them to the user in a clear way. Other domains in which the patterns
have been categorized in this context are the Generic Replication Domain, the
Database Replication Domain and the Helper Patterns Domain.

Figure 2 HA and Scalability patterns in E-SOA

In this case, the Multi-Tier Transactional Service Runtime pattern (depicted in
green) is the functional pattern –offering a concrete architectural approach-
where the non-functional crosscutting patterns in this domain (in white) can be
applied. From this point on, the diagram can be interpreted with the help of the
instructions found in D7.2c as follows1.

The Multi-Tier Transactional Service Runtime pattern specializes/extends an
architectural approach described as a pattern the literature [GHJV95,
BMRS+96], in this case the Multi-Tier/Layers pattern (in red). The gray-box
under the green box represents the main problem that the non-functional
crosscutting patterns presented aim to solve and can be seen as a domain for
categorizing different solutions; in this case, the replication of transactional
multi-tier runtimes. The solutionsAreApplicableTo relationship –expressed
through the line ended with a black dot- that links the problem with the
functional pattern, describes that the solutions to this problem are applicable to
the Multi-Tier Transactional Service Runtime pattern in order to extend it with

1
 The concrete semantics of the relationships and boxes depicted in the figure are the tools defined in D7.2

to describe non-functional crosscutting pattern descriptions.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 14 of 49

the additional non-functional features provided by the crosscutting patterns. The
complete explanation of the pattern categorization in the sub-domain depicted
in this diagram can be found in [IGHAS].

2.7 Provision of a Process for Selecting the Non-Functional
Crosscutting patterns

After point 4 described in Section 2.4, the architects are able to build
architectures that address the functional aspects of the new application context,
the so-called functional architectures. At this point, the crosscutting patterns
introduced in Section 2.6 can be applied in order to enhance the architectures
with non-functional aspects.

As it happens with functional aspects, the way of describing the process for
instantiating the non-functional crosscutting patterns depend on the concrete
context that is being described. However, some steps can be highlighted for all
the contexts, as is described in the following paragraphs.

First of all, some of the initial functional architectures that are the outcome of
Section 2.4 can be discarded taking into account some of the non-functional
requirements of the desired system. For example, if one of the non-functional
requirements for the system is maintainability and we have two functional
architectures as result of Section 2.4, being one of them monolithic and the
other based on a microkernel approach, the architect can automatically discard
the monolithic solution. If this step can be introduced in the process, many of
the resulting functional architectures can be filtered.

Moreover, the assumptions of the non-functional crosscutting patterns must be
taken into account when they are going to be applied to the functional
architecture/s, in order to properly accommodate them. In this case, this step
filters those non-functional patterns that cannot be applied.

As occurs with functional patterns, it must be considered that non-functional
cross-cutting patterns may refine some already existing components or patterns
of the current NEXOF-RA or can be related to each other to address collectively
a set of non-functional requirements. Therefore, the existing trade-offs of the
different alternatives that have been identified must be described and analyzed,
exhibiting the pros and cons that may arise on the resulting functional
architecture/s enhanced with the non-functional patterns.

It is also important to take into account the priority of the non-functional
requirements to fulfil when selecting the non-functional patterns or building
blocks, because the selection of a pattern for achieving a particular non-
functional requirement may affect further selection of other patterns.

Finally, as multiple alternative architectures can be obtained at the end of this
process, it will be necessary to apply one or more evaluation methods for
evaluating the most critical/relevant quantitative attributes of the resulting
architectures. This will enable the architect to take an informed decision
regarding the architectural choices and justify the final architecture chosen.
There are three main options/techniques to evaluate the quantitative
requirements of a system:

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 15 of 49

1. Analytically

2. Through simulations

3. Implementing prototypes and/or Proofs of Concept (PoC)

Each one of them is described in the next subsection.

As example, in Appendix A is described the process designed for the
instantiation guidelines for high availability and scalability in the context of
Enterprise SOA (See Section “Instantiation Process”). The next figure (Figure 3)
offers an illustrative schema of the instantiation process.

Figure 3 Instantiation process of the HA and Scalability Instantiation Guidelines

The phases described aim at guiding architects in the process of selecting the
most appropriate HA and scalability patterns for the desired Enterprise SOA
system obtaining in the end, an enhanced functional architecture. If the high
level architecture is too complex, is recommended first to split it in several
subsystems in order to derive the right high available and/or scalable
architecture for each one of them. The phases of the instantiation process can
be sum up as follows:

1. Confront the assumptions made by the different patterns in terms of
architecture (e.g. a multi-tier architecture or the use of a database
component) against the initial functional architecture to be enriched with
high availability and/or scalability. This will help the architect in selecting
the most appropriate pattern domain/s described in the document.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 16 of 49

2. Given a pattern domain and the prioritization of the non-functional
requirements for the architecture to be instantiated in this phase, a trade-
off analysis is performed to select the most appropriate pattern from the
domain.

3. For some applications, some of the non-functional requirements are
expressed quantitatively (e.g. response time below 10 ms). After
improving the architecture to deal with qualitative non-functional
requirements, it is needed to evaluate whether the architecture will fulfil
as well the quantitative non-functional requirements.

At the end of phase 3, if all the input requirements can be fulfilled, the process
is completed. Otherwise, it will be necessary for the architect to re-think and re-
structure the initial architecture passed as input and return to phase 1.

2.7.1 Techniques to Evaluate Non-Functional Quantitative Attributes

These are the three main techniques used in the evaluation of architectures
with regard to quantitative attributes.

2.7.1.1 Analytical Evaluation

The goal of this step is to compare analytically alternative system architectures
in terms of the non-functional attributes. In order to do so, it is required the
construction of analytical (i.e. mathematical) models that provide an analytical
quantification of the different evaluated non-functional attributes for each
system architecture being evaluated. An analytical model has a number of
parameters and then yields a quantitative value of the non-functional attributes
it evaluates such as scale-out, etc.

For instance, in [JPAK03] provides an analytical model for estimating the scale-
out for database replication protocols that takes three parameters, number of
replicas, workload (fraction of read-only queries) and ratio between the cost of
fully executing and update transaction and simply installing the resulting
updates, and yields the scale-out of the replicated database.

2.7.1.2 Evaluation Through Simulations

A simulation is another technique that can be used for evaluating quantitatively
system architectures. It consists in simulating the environment partially or totally
and evaluate the architecture in the simulated environment. A simulation
represents key features of the architecture and environment and provides an
approximation of the quantitative evaluation of some non-functional attributes.

This technique can be used when one or more of the following situations are
presented to the architect:

 If is too expensive in terms of time and/or money to fully implement a
prototype in order to evaluate it.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 17 of 49

 If the environment of the prototype is too complex, too expensive too
lengthy (i.e. the simulation covers months or years of execution) or
unfeasible to reproduce.

 If is too risky to test the prototype in the real environment (e.g. safety or
economical reasons).

An example of simulation can be found in [BJPQ+05, BJPQ+08] where a
simulation is used to evaluate different quorum systems in the context of P2P
Networks based on distributed hash tables (DHTs). In this case is the difficulty
that was overcome by means of the simulation was the lack of availability of a
large scale environment (1000s of nodes) to evaluate the quorum protocols.
The simulator was built in order to enable the evaluation of the protocols in
large virtual P2P networks with 1000s of nodes. The simulator is in charge of
emulating each quorum algorithm (i.e. the quorum messages, etc.), routing the
messages among simulated nodes, simulating joins and leaves, failures and
keeping track of the different metrics necessary to perform a performance
comparison of each algorithm.

2.7.1.3 Prototypes and Proofs of Concept (PoC) Evaluation

The last method proposed to evaluate the architectures is by building
prototypes. This process requires more work and resources than the others
because it is necessary to implement and evaluate the key components of the
architecture. Prototypes are a key concept for Proof of Concepts (PoCs) of
NEXOF-RA. The goal of a PoC is “on the validation of patterns’ claim about
quality attributes” and is defined as “a (set of) software artefact(s) used to
validate some patterns of the NEXOF-RA.” [PPSC]. By means of a
prototype/PoC it becomes possible to run one or more evaluation campaigns
that measure quantitatively the value of different quality attributes under
different configurations, enabling the comparison of the quality attributes across
different architectural alternatives and also to measure the quality attributes for
a single architecture to validate whether the architectural approach will be able
to satisfy a particular set of non-functional requirements, for instance, attain a
particular response time for a service or a particular scale-out in a distributed
architecture.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 18 of 49

3 CONCLUSION

This document has presented a methodology that provides the steps to write
instantiation guidelines for architectural domains in the NEXOF Reference
Architecture (NEXOF-RA). The methodology is flexible enough to address
different cases of instantiation. Appendix A provides a full developed example of
instantiation guidelines that have been produced using the proposed
methodology for two non-functional properties, High Availability and Scalability,
for Enterprise Service-Oriented Architectures.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 19 of 49

APPENDIX A: INSTANTIATION GUIDELINES FOR HIGH AVAILABILITY AND

SCALABILITY IN E-SOA

This appendix shows a complete example of Instantiation Guidelines document
generated by the methodology described earlier in this document. The
instantiation guidelines address two non-functional aspects -High Availability
and Scalability- in the E-SOA context. These guidelines follow the steps 1, 5, 6
and 7 found in the methodology described in Section 2 of this document.

Context and Intent

Defining the architecture of a system is the main task performed by software
architects. When performing this task, the architect has to take some important
decisions that will have some long lasting effects on the resulting systems. The
decisions taken (or not taken) by the architects in this phase will be very difficult
to catch up later in the subsequent phases of the software development
process. The most part of difficulties that arise when defining architectures are
related to quality attributes rather than functional requirements. So, the architect
has to be very focused in how to accommodate the expected non-functional
requirements (a.k.a. quality attributes) in the final system architecture. It's how
do architects achieve security, how do they achieve scalability, maintainability,
high availability, etc. in the system what are the most difficult key points to
achieve for guaranteeing the success of many projects. At those points is where
there are raised a lot of difficult decisions to be taken.

High availability (HA) and scalability are two of the most important requirements
to take into account when designing architectures for modern information
systems such as Enterprise SOA-based systems or Internet of Services
applications. High availability implies the ability to tolerate failures of individual
parts of a system (or the whole system itself) and perform recovery while, at the
same time, continue to provide service. Scalability means that the system is
able to react to increasing loads by incrementally adding system resources
without increasing the response time of individual requests.

Currently, there is a large set of applications in any professional -e.g. banking,
customer relationship management (CRM), supply chain management, etc.- or
entertainment area -e.g. social applications such as Twitter or Facebook, online
games etc.- deployed in Service-Oriented or Cloud Architectures, requiring HA
and scalability. High availability is required because these applications must be
available 24/7 in order to provide the required services to their clients. On the
other hand, scalability is needed because of the continuous growth and decay
of the client base of these applications, what requires the underlying runtime to
be scalable and elastic.

Both requirements, scalability and availability, can be addressed by replication.
Replication is a well-known technique that consists in introducing redundancy in
the critical parts of a system. In current architectures, it is commonly
implemented by running a critical system (e.g. a database management
system) on multiple nodes. When replication is implemented in this way, it is
said that each node contains a replica of the system. In this way, it becomes

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 20 of 49

possible to tolerate failures of individual replicas as the replicas in other nodes
can take over, and allows for splitting the work triggered by client requests
among the different replicas. Many replication solutions are either designed for
availability or for scalability, but some can fulfil both purposes.

However, replication has the challenging task of replica control to maintain
consistency. Moreover, most high-throughput information systems have strong
consistency requirements that demand that replicas are always consistent
(replicated data should have the same state at all replicas) in order to achieve
replication transparency.

The guidelines described in this document help software architects in deciding
the HA and scalability patterns that best fit with the requirements of the
Enterprise SOA-based architectures that need to design, taking into account the
different trade-offs that are present or may arise. In this way, once the most
appropriate pattern/s has/have been selected, each pattern template document
will guide the architect in applying its contents to the final architecture. Finally,
the guidelines also offer an overview of the different existing methods to
evaluate quantitatively the enhanced architectures with HA and scalability.

Pattern Categorization

The following set of patterns addresses high availability and scalability
requirements in current system architectures. The patterns provided are defined
at such a level of abstraction that allows them to be adapted to a very wide
range of system configurations, which in the end allows fulfilling the non-
functional requirements specified by the architects.

Figure 4 presents the set of patterns and problems related to high availability
and scalability and how they are interrelated taking into account the
relationships described in D7.2c [AFP].

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 21 of 49

Figure 4 Set of patterns for high availability and scalability

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 22 of 49

The Multi-Tier Transactional Service Runtime pattern (depicted in green) can be
seen as the root of the diagram. It is a functional pattern described in the
NEXOF-RA that represents the architectural choice where the HA and
scalability non-functional crosscutting patterns described can be applied. These
patterns are depicted as white boxes and form the core of these guidelines. In
order to help in the pattern categorization, we have added to the figure several
grey boxes that represent those problems that the patterns aim to solve (See
D7.2c). Finally, the patterns depicted in red represent cited patterns from the
literature that have been related to NEXOF-RA patterns, but not described
within the RA [GHJV95, BMRS+96].

For the sake of clarity, we are going to classify the HA and scalability non-
functional crosscutting patterns (white boxes) in four different domains. The
following are the domains identified for the set of patterns shown above:

1. Generic replication patterns. This domain of patterns describes well-
known generic replication techniques applicable to many components
requiring mainly high availability.

2. Patterns related to multi-tier replication. In this domain are included
those patterns related to replication of multi-tier architectures.

3. Patterns related to database replication. In this domain are included
the different alternatives to implement database replication.

4. Helper/low level patterns supporting replication. Finally, these
patterns are used by the other patterns to implement/complement certain
features.

Each one of the first three domains contains alternative patterns that solve a
specific problem (e.g. Database Replication). Depending on the pattern, it can
sometimes be combined with other patterns in other domains (e.g. Vertical
Replication pattern can be combined with Passive Replication [PVPJ06]).
Finally, the fourth domain includes helper patterns that can be used by the other
domains of patterns. The following subsections describe all the pattern sub-
domains and their relationships, but first of all we are going to describe a
general overview of the pattern domains in Figure 4 with the help of the
relationships described in D7.2c.

The Multi-Tier Transactional Service Runtime pattern (green) specializes/
extends an architectural approach described as a pattern the literature, in this
case the Multi-Tier/Layers pattern (in red). The grey box connected to this
pattern represents the main problem that the non-functional crosscutting
patterns presented aim to solve, i.e., the replication of transactional multi-tier
runtimes. The solutionsAreApplicableTo relationship states that the solutions to
this problem are applicable to the Multi-Tier Transactional Service Runtime
pattern in order to extend it with the additional non-functional features provided
by the crosscutting patterns.

The Replication of Transactional Multi-Tier Service Runtime problem is linked to
the “Helper/low level patterns supporting replication” domain through the

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 23 of 49

solutionsUse and solutionsMayUse relationships established to two pattern of
this domain, i.e. the Transparent Replication Proxy and the Generic Group
Communication patterns respectively. These relationships express that the
pattern the arrow is pointing must be or may be used by any of the solutions
specified to the problem respectively.

We have categorized the solutions to this first problem –expressed through the
canBeSolved relationship- under the domain “Patterns related to multi-tier
replication.” In this domain there is a grey box expressing a sub-problem
termed as DBReplication. This problem contextualizes the domain “Patterns
related to database replication.”

Finally, the two patterns that form the “Generic replication patterns” domain
are not linked to any problem or pattern because they can be applied
independently or in combination to other patterns in other domains to those
components requiring replication.

Generic Replication Patterns Domain

The following figure presents the patterns in this domain.

The patterns in this domain are not linked to any problem or pattern because
they can be applied independently or in combination to other patterns in other
domains to those components requiring replication.

The patterns include:

 Active Replication: This pattern describes a technique based on
redundancy used for masking errors and achieving high availability of
critical components using a group or replicas. The pattern requires that
all the (deterministic) requests be delivered to all the component replicas
in order to be processed. In the end, taking into account the outputs
received from the replicas, a consensus algorithm is used in order to
decide on the output.

 Passive Replication: This pattern describes a technique based on
redundancy used for masking errors and achieving high availability of
critical components using a group or replicas. The pattern requires that
one of the replicas, called primary, handles the input requests and the
rest of them act as a backups in case that primary fails. That’s because
this pattern is also known as primary-backup.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 24 of 49

Multi-Tier Replication Patterns Domain

The following figure presents the patterns in this domain and how they are
interrelated.

In the patterns above, the following two patterns represent the context where
the rest of the patterns are applicable:

 Multi-Tier Transactional Service Runtime: This pattern describes the
architecture of a multi-tier service runtime based on the Layers pattern.
As it is shown in Figure 4, this pattern represents the starting point in
which to apply the high availability and scalability patterns described in
these guidelines.

 Layers: This is a well-know architectural pattern that “helps to structure
applications that can be decomposed into groups of subtasks in which
each group of subtasks is at a particular level of abstraction” [BMRS+96].

The rest of the patterns show the different alternatives to perform replication in
multi-tier architectures (canBeSolved relationships). Two different domains can
be distinguished. The replication of a single tier is represented by the sub-
domain composed by the Session Replication with Multi-Tier Coordination
pattern –that represents the replication of the middle/business tier- and the DB
Replication Box, which represents the different alternatives to solve the problem
of performing the replication of the data tier (DB Replication Domain).

 Session Replication with Multi-Tier Coordination: The Session
Replication pattern is commonly used to achieve availability and
scalability in the application server tier. The Multi-Tier Coordination
pattern is useful to track executions that cross tier boundaries in a multi-
tier architecture.

 DB Replication: This box represents the DB Replication patterns
presented in Section “Database Replication Patterns Domain” (See
Figure 4).

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 25 of 49

The other sub-domain contains the patterns that perform replication of several
tiers:

 Horizontal Replication with Replication Awareness: The Horizontal
Replication pattern provides high availability and scalability for
applications deployed on multi-tier architectures by replicating each tier
independently. The Replication Awareness pattern helps in introducing
awareness of replication in the different tiers when the Horizontal
Replication pattern is used.

 Vertical Replication: The Vertical Replication pattern aims at providing
high availability and scalability for applications deployed on multi-tier
architectures using only one replication protocol at the application server
tier.

With regard to the other relationships described in D7.2c, two of them are used.
Both, Vertical Replication and Horizontal Replication patterns mayUse the
Session Replication with Multi-Tier Coordination pattern in order to provide
session replication for the clients of the resulting architecture. Moreover, the
Horizontal Replication pattern must use (uses relationship) a replication solution
provided in the DB Replication domain.

Database Replication Patterns Domain

The following figure presents the patterns in this domain and how they are
interrelated.

The requiresSolving relationship that departs from the DB Replication problem
to the Writeset Extraction problem states that this problem must be addressed
by the solutions of the DB Replication problem. It also marks the distinction of
two different sub-domains in the figure above. The first sub-domain covers the
patterns related to writeset extraction in databases. A writeset represents the
data accessed and updated in the context of a transaction. When performing
database replication, the replicas where these changes were produced must
extract these data and send them to the rest of the replicas. The patterns in this

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 26 of 49

sub-domain present different alternatives for extracting that information and
have been categorized using the canBeSolved relationship and an additional
problem box (Writeset Extraction based on Standard DB Interfaces):

 Trigger Writeset Extraction: This pattern describes a solution for
writeset extraction based on the trigger mechanism, a standard method
in database management systems that can be used in database
replication.

 Log Mining Writeset Extraction: This pattern describes a solution for
writeset extraction based on the log mining mechanism, a standard
method in database management systems that can be used in database
replication.

 Writeset Extraction Based on Extended DB Interfaces: This pattern
describes a solution for writeset extraction based on the implementation
of an extended interface that can be used in database replication.

The second sub-domain covers the different alternatives to perform database
replication that have been also categorized through canBeSolved relationships
and an additional problem box (Middleware-Based DB Replication). These are
basically the following:

 Black-Box Database Replication: This pattern describes a replication
mechanism for databases outside the database kernel that does not
need to access the database code.

 Gray-Box Database Replication: This pattern describes an efficient
replication mechanism for databases outside the database kernel that
requires access to the source code.

 White-Box Database Replication: This pattern describes an efficient
replication mechanism for databases implemented in the database kernel
that requires access to the source code.

Finally, the last pattern does not form a sub-domain by itself, and presents a
technique applicable to some of the patterns in the Database Replication sub-
domain in order to improve the maintainability of the implemented solutions.
This has been expressed through mayUse relationships that depart from the
gray-box and black-box DB replication approaches.

 Reflective Database Replication: This pattern allows independent
design and implementation of DBMS servers and replication protocols,
allowing pluggable modules with different consistency and availability
trade-offs, while at the same time fostering more efficient and
maintainable implementations.

 Helper/Low Level Replication Patterns Domain

The following figure presents the patterns in this helper domain and how they
are interrelated.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 27 of 49

In here, three sub-domains can be also identified. The first one includes the
well-known proxy pattern and a specialization that provides replication
transparency to the clients (specified through a specializes/extends
relationship):

 Proxy: This is a well-know design pattern that “makes the clients of a
component communicate to a representative rather than to the
component itself. Introducing such a placeholder can serve many
purposes, including enhanced efficiency, easier access and protection
from unauthorized access” [BMRS+96].

 Transparent Replication Proxy: The Transparent Replication Proxy
pattern is a specialization of the well-known Proxy pattern. It can be used
in clients when the server part is replicated in order to provide them
replication transparency and transparent failover.

The second sub-domain includes the patterns for performing the discovery of
replicas. The requiresSolving relationship that departs from the Transparent
Replication Proxy pattern to the Replica Discovery problem means that this
pattern requires one of the following patterns in order to solve the replica
discovery problem:

 Registry-Based Replica Discovery: The replica discovery pattern
decouples the client from the particular set of nodes where the replicated
service is running. With this pattern, clients look up connection
information in well-known registry or registries that are kept updated with
the current list of available replicas.

 Multicast-Based Replica Discovery: This replica discovery pattern
decouples the client from the particular set of nodes where the replicated
service is running. Following the Multicast-Based Replica Discovery
pattern, a multicast service must be used.

Finally, the last pattern can be considered part of a sub-domain that has to do
with the communication among replicas:

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 28 of 49

 Generic Group Communication: This pattern defines a generic
interface that may be used to wrap multiple group communication
toolkits.

The Multicast-Based Replica Discovery pattern described above mayUse this
pattern if the solution requires using several group communication systems.

Instantiation Process

This section helps system and application architects in order to derive the
proper system architecture with regard two main non-functional
aspects/requirements, high availability and scalability, when they are critical for
that particular architecture.

This is achieved by means of an instantiation process. This process provides to
the architects a set of steps to follow –the different phases of the process- in
order to enhance an architecture that lacks one or both of these requirements
by means of applying the most appropriate patterns from the set of patterns
described in the previous section taking into account the existing trade-offs. In
the end, the aim is to fulfil the non-functional requirements for the resulting
architecture without disrupting the functional requirements.

In order to make the instantiation process less subjective and more reliable, the
architect can configure (if possible) a group of experts in order to assess the
instantiation process. From this point on, this group will be known as the
evaluation/assessment team.

Taking this into account, from this point on, the main prerequisites for an
architect before continuing reading, is to have as input parameters for the
process both, 1) the list of requirements (both functional and non-functional)
and 2) a first functional architecture of the desired resulting system. That is,
once a system architect has compiled and discussed with the stakeholders the
requirements for the specific resulting system, she/he requires to instantiate the
NEXOF-RA for producing a first functional architecture (or maybe more that
one) for the system he wants to build, taking into account in the design process
the functional aspects to fulfil. In addition to these two prerequisites, a set of
operative scenarios can be useful in order to contextualize some of the
requirements in the list and prepare tests for their validation.

As the initial architecture(s) only addresses functional requirements, still does
not address the high availability and scalability. The following phases will guide
her/him in the process of selecting the most appropriate HA and scalability
patterns for the desired system obtaining in the end an enhanced architecture
with these two non-functional requirements. If the high level functional
architecture is too complex, is recommended first to split it in several
subsystems in order to derive the right high available and/or scalable
architecture for each one of them. The phases can be sum up as follows:

1. Confront the assumptions made by the different patterns in terms of
architecture (e.g. a multi-tier architecture or the use of a database
component) against the initial functional architecture to be enriched with
high availability and/or scalability. This will help the architect in selecting

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 29 of 49

the most appropriate pattern domain/s described in Section “Pattern
Categorization”.

2. Given a pattern domain and the prioritization of the non-functional
requirements for the architecture to be instantiated in this phase, a trade-
off analysis is performed to select the most appropriate pattern from the
domain.

3. For some applications, some of the non-functional requirements are
expressed quantitatively (e.g. response time below 10 ms). After
improving the functional architecture to deal with qualitative non-
functional requirements, it is needed to evaluate whether the architecture
will fulfil as well the quantitative non-functional requirements. Three
different methodologies are proposed to achieve this evaluation with an
increasing level of accuracy and effort: 1) analytical evaluations; 2)
simulations and 3) proofs of concept.

At the end of phase 3, if all the input requirements can be fulfilled, the process
is completed. Otherwise, it will be necessary for the architect to re-think and re-
structure the initial architecture passed as input and return to phase 1.

The next figure (Figure 5) offers an illustrative schema of the whole process and
the following sections offer the details on the three main phases.

Figure 5 Schema of the instantiation process

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 30 of 49

Phase 1: Confront Pattern Assumptions with Initial Architecture

The following figure specifies the input and output elements in this phase:

As it is shown in Figure 5, this is the entry point to the instantiation process of
the high available and/or scalable architecture.

The two input parameters are:

1. Initial List of Driving Architectural Requirements. It is the list of
requirements (both, functional and non-functional) for the system to be
built. It must be configured in the different project meetings with the
involved stakeholders. In this list must be identified what are the non-
functional quality attributes to take into account and the quantitative
requirements for those that are critical and measurable. It is also
important to involve the stakeholders in the prioritization of these
elements in the list in order to know the most important non-functional
attributes that the resulting architecture must fulfil. In order to obtain the
requirements, ATAM’s step 5 –“Generate Quality Attribute Utility Tree”-
may be used. In this step the involved stakeholders (mainly customer
representatives, the architect/s and project managers), identify, prioritize
and refine the quality attributes that are required to accomplish the
project goals. The output is what is called in ATAM a utility tree that
corresponds to our list of driving architectural requirements. Utility trees
are a mechanism that allows translating the business requirements of the
system into quality attribute scenarios and helps in concretize and
prioritize them.

2. Initial High Level Functional Architecture. It describes an initial
proposal for the architecture of the system developed by the architect. In
order to build it, she/he has taken into the functional requirements of the
stakeholders but still has not taken into account the non-functional
requirements related to high availability and scalability. If the initial
architecture is too large, it is recommended to divide it into different
subsystems and apply the steps of the instantiation process on each one
of them.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 31 of 49

At the end of this phase, the architect will have identified the main pattern
domain from which select the most appropriate patterns (See Section “Pattern
Categorization”).

In order to share to share a common base of knowledge, it is necessary to offer
to the evaluation team an overall view of the initial system in conception. So,
first of all, the architect must present the requirements identified by the
stakeholders.

Once the requirements have been presented, it will be necessary to
contextualize them on top of the initial architecture, taking into account their
priorities. This means to identify the critical hot spots or components where
those requirements impact the architecture. In order to do this, the architect
may describe to the evaluation team the proposed global initial architecture at
the proper level of detail, focussing on how he plans to address the business
drivers, for example, high availability, time to market, integrability,
interoperability or security. For this purpose, the proper level of detail means for
example a block/component diagram identifying the main architectural elements
related to the system functionality and maybe how are planned to be deployed.

After presenting the overall view, as this process addresses just high availability
and scalability, the architect will offer an overview of the architecture focusing
mainly on which parts of the architecture he thinks will affected by these two
requirements. At the same time, the architect may also present where the other
driving architectural requirements (e.g., security, modifiability, interoperability,
integrability) may impact on the achievement of high availability and scalability
for the functional architectural elements presented before.

At this point, if the architect or any other member of the evaluation team detects
that conflicts may arise with other requirements, he can also offer his opinion to
the other members starting an open discussion.

After presenting and discussing the requirements on top of the initial
architecture, it is necessary to identify and/or define the new additional
structures/architectural approaches for the system that will be critical to allow it
to grow/scale and be high available. An implicit requirement of this task is try to
keep the architecture adaptable smoothly to further changes that may arise.
However, once they have been defined, these approaches will not be analyzed
in detail at this point.

Finally, in order to obtain the required output for this first phase of the
instantiation process (i.e. the main pattern domain for the initial architecture) the
architect must check the current structural requirements of the initial
architecture (joint with the ones introduced by the architectural approaches
identified with the evaluation team in the previous step), against the technical
functional/structural requirements that imply the use of HA and scalability
patterns. In order to guide the architect in this task, we have developed the
simple diagram shown in Figure 6.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 32 of 49

Figure 6 Diagram for selecting the pattern domains

If the main domain obtained is either Multi-Tier or DB, maybe it is necessary to
check if it can be combined with any other pattern of the Generic Replication
domain. The diagram in Figure 7 helps in deciding if patterns of the Generic
Replication domain are also required in the resulting architecture.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 33 of 49

Figure 7 Diagram for deciding if the Generic Rep. Domain is also applicable

Finally, the following diagram (Figure 8) helps in deciding if the domain of
Helper Replication patterns is also applicable:

Figure 8 Diagram for deciding if the Helper/Lower Level Rep. Domain is also
applicable

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 34 of 49

Phase 2: Pattern Selection Through Trade-Off Analysis

The second phase is shown graphically in the next figure extracted from Figure
5:

This phase consists in using the list of desired qualitative requirements for the
target system in order to select the most appropriate patterns from the domains
identified in phase 1. The architect must perform the selection of pattern/s
comparing this list with the non-functional quality attributes offered by the
patterns. At the end of this process, the initial proposed architecture will be
enhanced by applying the identified high availability and scalability patterns.
Depending on the sensivity points and tradeoffs identified, it is possible to
obtain more than one enhanced architecture (produced by applying different
patterns) ready to be validated in phase 3.

The first task that the architect must perform is to filter just those attributes of
the input list of quality attributes that are related to or can be affected by high
availability and scalability.

The list of qualitative input requirements can be potentially long and use
different terminology. For the sake of helping the architects in comparing the
input requirements, we have identified in each one of the high availability and
scalability patterns that quality attributes affected2. The following is a list
describing each one of them:

 Scalability. This term refers to a desirable property of a system or a
process, which indicates its ability to either handle growing amounts of
work in a graceful manner, or to be readily enlarged. There are basically
two ways of scaling a system: scale-up and scale-out. Scale-up refers to
the ability of single node system to increase its computing/storage
capacity (i.e. increase its throughput) adding more resources, such as
CPUs, memory, disks, etc. On the other hand, scale-out means the
ability of a distributed system to increase its computing/storage capacity

2
 The NEXOF-RA quality model provides an extensive list of quality attributes that can be taking into

account when instantiating NEXOF-based architectures.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 35 of 49

by adding more nodes. The patterns included in this set of patterns allow
improving the architecture of a system by means of scale-out.

 Availability. It refers to the proportion of time in which a system is
operational, and satisfies its specification. It is quantified as the uptime
divided the uptime + downtime. Most of the patterns of this set of
patterns contribute to improve availability by means of replication.

 Applicability. In the context of software architectural patterns refers to
the number and strength of assumptions that must be taken into account
in order to apply the pattern. For example, if it is required the source
code of one or several components in order to implement an architectural
solution using the pattern. This is an important quality attribute for non-
functional patterns related to high availability and scalability. The system
architects can use it in order to decide among different architectural
patterns (solutions), analyzing how this attribute affects the system
requirements with regard to the trade-offs identified in the different
patterns under consideration.

 Maintainability. This term refers to the ease with which maintenance of
a functional unit of a system (or the whole system) can be performed in
accordance with prescribed requirements.

 Replication Transparency. A term used to refer to the ability of a
replicated system to hide the clients the underlying replication process
and possible Failovers. This is a well-known term that has been adopted
from distributed systems terminology. Replication transparency is a
desirable feature in many replicated systems. It is taken into
consideration in all the patterns that involve data/state replication to
achieve high-available and/or scalable solutions.

 Performance. A quantification of the goodness of the service provided
by a system. Performance involves metrics such as response time,
throughput, reliability, etc.

Each individual pattern affects one or more of these non-functional quality
attributes either in a positive, neutral or negative way (See Section 4 in each
pattern template), so the architect will have to balance the desired requirements
for the final architecture against the quality attributes of each pattern and select
the one/s that he believes is/are more appropriate/s. Then, the next task is to
adapt the initial architecture with the architectural changes implied by the
pattern/s selected, producing an enhanced architecture ready to be validated
quantitatively in step 3. Each pattern includes the required assumptions
(Section 5 in the pattern template) and the rules to follow (Section 6 in the
pattern template) in order to guide the architect in transforming the current
architecture into the one enhanced with the pattern features.

Along this process of architecture enhancement, the highest priority quality
attributes drive the process of selecting the patterns. The output of applying the
patterns to the initial architecture is a set of sensivity points, tradeoff points,
risks and non-risks identified for each of the resulting enhanced architecture/s.
Sensivity points are properties of one or more components and their

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 36 of 49

relationships that are critical for achieving a particular quality. For example the
availability of a system may be highly correlated to the reliability of a particular
communication channel. Tradeoffs arise in the architecture “when a parameter
of an architectural construct is host to more than one sensitivity point where the
measurable quality attributes are affected differently by changing that
parameter”. For example, when increasing the speed of the previous
communication channel, we can improve the throughput but we can reduce the
reliability. Both, sensivity points and tradeoffs are usually translated into risks
that affect the architecture.

Before passing the enhanced architecture/s to the validation performed in the
third phase of the instantiation process, the results obtained should be checked
against well-known topologies, anti-patterns, best practices etc. for high
availability and scalability described in the existing bibliography (e.g. [Tate02,
AF09]) to identify potential issues. In this way, the risks and potential issues
identified can be used to discard certain resulting enhanced architectures
derived from this phase, avoiding the corresponding evaluations.

So, last but not least, it is also important to start to identify and discuss what will
be the metrics related with high availability and scalability that will be taken into
account, identify the points in each enhanced architecture/s where they will be
obtained, and any existing standards/models/approaches for meeting them.

The following sub-sections offer to the architects the trade-offs to take into
account in each pattern domain related to high availability and scalability (See
Section “Pattern Categorization”).

Trade-offs for the Generic Replication Pattern Domain

The main goal of these two general patterns (Active Replication and Passive
Replication patterns) is to provide high availability to critical components of an
infrastructure by means of redundancy. They use several replicas of the critical
component in order to mask failures, keeping the system online. In the following
paragraphs, the trade-offs related to quality attributes are discussed.

With regard to performance, in case of the Active Replication pattern, the
performance of the system is not altered by the pattern, so it is does not imply
any trade-off. The overhead introduced by this pattern in terms of time penalty
is low because it does not introduces any synchronization overhead among the
replicas in both, error-free and failure scenarios. Considering the trade-offs with
regard applicability –that is, the number and strength of assumptions that must
be taken into account in order to apply the pattern- the Active Replication
pattern restricts a little bit the applicability, because it is only applicable to
stateless components or stateful components that behave deterministically.
Finally, with regard to maintainability, the Active Replication pattern introduces a
low complexity when implementing the replicated system solutions. Just a
distributor is necessary to spread the request to all the replicas and a
comparator to collect the responses. These components can be embedded in
all the replicas of the critical component, being active in only one of them.

However, when using the Passive Replication pattern with stateful components

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 37 of 49

the performance can be affected depending on the implementation. If the
primary replica sends to the backups the system state each time it is changed
and must wait for receiving an acknowledgement message from the backup
replicas in order to continue processing requests (synchronization), the
performance can be affected negatively. If asynchronous messages are used
for this purpose from the primary to the backups, the performance should not be
altered. In this case the pattern can be applied to both kinds (stateful and
stateless) of components without restrictions. Finally, the trade-offs related to
maintainability are also minimal because only a Coordinator component is
required in order to assign the roles of primary and backups in the set of
replicas. This component can be embedded in all the replicas being only active
in the replica chosen as primary.

Trade-offs for the Database Replication Pattern Domain

The patterns for database replication require either the use of standard DB
interfaces (e.g. Black-Box and White-Box DB Replication patterns) or the
implementation of some minimal interface within the DB (Gray-Box DB
Replication pattern) in order to extract the data to be replicated into a set of
replicas (called writesets). This first sub-domain of patterns related to writeset
extraction includes the following trade-offs.

The Trigger Writeset Extraction pattern relies on the facilities provided by the
trigger mechanisms included in almost all relational databases, both commercial
and open-source or commercial, what impacts positively the pattern applicability
Moreover, the internals of the target database does not need to be modified in
order to implement the writeset extraction what can be taken into account
because improves the maintainability of the solution. However, this mechanism
was not originally implemented for writeset extraction, what impacts negatively
the performance of the implemented solutions. Triggers are heavyweight and
when activated frequently as in the case of writeset extraction they consume
excessive computing resources.

The Log Mining Writeset Extraction pattern shares the same trade-offs as the
previous pattern. In this case, the log mining mechanism is not as common as
triggers, but the most important relational databases include them tools to
inspect the log. Also, in this case, implementing this pattern does not require
modifying the internals of the database component. The performance of the
solutions can be impacted negatively because is expensive in terms of
computing resources consumption to extract the writesets with this mechanism
(it is not devoted to this function).

On the other hand, the Writeset Extraction Based on Extended DB Interfaces
pattern offers a great performance in writeset extraction/injection. This pattern
implements a well-defined interface in the database code, to access the
writesets of transactions. The ad-hoc implementations of this pattern, is what

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 38 of 49

allows increasing the performance of the solutions with regard the other two
patterns. However, this is also the reason why the applicability is restricted.
Unfortunately, most database vendors do not offer this interface as a de facto
feature in their products. In this way, this pattern can be only applied to those
databases that provide the source code of the internals, what restricts the
applicability mainly to open-source databases. However, once the interface is
provided, the maintainability of the final solution is not affected, because the
replication middleware that the interface is not affected by the changes
produced in the database internals.

With regard to the database replication patterns, i.e. Black-Box, Gray-Box and
White-Box Database Replication, the following trade-offs apply.

In general, the shared feature that the three patterns allow achieving is high
availability. This is done by means of replicating the databases that contain the
critical data. However, each pattern affects other attributes in different ways.

The Black-Box DB Replication offers a modest degree of scalability. This is
because the writeset extraction must be performed using standard mechanisms
(See Trigger Writeset Extraction and Log Mining Writeset Extraction patterns
above). These mechanisms are too heavy-weight, resulting in saving very low
computing capacity when using asymmetric update transaction processing and
therefore this pattern allows low scalability for update workloads. However,
because of the use of these writeset extraction patterns, the applicability of the
pattern is high. So, this pattern can be applied to any standard database that
provides either triggers or log mining and does not require access to the DB
source code. Moreover, the solutions that implement this pattern are highly
maintainable. Only the DB replication code (e.g. an external middleware) needs
to be updated and it is independent of changes in the underlying database
system.

In contrast, the next pattern -White-Box DB Replication- offers a very high
degree of scalability. This is because the implemented solutions use the
Writeset Extraction Based on Extended DB Interfaces pattern, so the writeset
extraction is performed very efficiently. This allows to attain a low ratio between
the cost of fully executing a transaction and only applying the updates for it,
what enables to scale update workloads. However, the applicability is limited.
This is mainly due to two reasons; first, it requires the DB source code to be
available. Because of this fact, the pattern can be applied mainly in open-source
databases. In commercial databases, the writeset extraction interface must be
ordered on demand to the specific database vendor; and second, it requires
modifying large sections of the DB code. This is not a trivial task and requires
highly skilled engineers. Finally, maintainability is difficult because it requires
keeping consistent the DB code with respect the DB kernel, what is a very
expensive task.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 39 of 49

Finally, the Gray-Box DB Replication also offers a very high degree of
scalability. It also uses the Writeset Extraction Based on Extended DB
Interfaces pattern, what increases the efficiency of writeset extraction compared
to the two other writeset extraction patterns. As this pattern requires
implementing the interfaces for writeset extraction in the database, the
applicability is also limited mainly to open-source databases. On the other hand,
with regard to the White-Box DB Replication pattern, the required extensions on
the DB kernel are quite localized and small, what makes it quite feasible in most
cases. This also contributes to the maintainability of the solutions implemented
with this pattern. With this pattern, only the DB replication code (e.g. an external
middleware outside the DB kernel) needs to be updated. Only the writeset
extraction mechanism needs to be introduced/adapted in the DB kernel
accordingly in order to be coherent with the rest of the system.

The goal of the Reflective Database Replication pattern is to use multiple
instances of the database running on different nodes coordinated by pluggable
DB replication protocols that can be specified depending on the application
requirements (e.g. consistency constraints). This pattern can be used in
combination with the Black-Box or the Gray-Box DB Replication patterns. So, in
this case the degree of scalability, applicability and maintainability will depend
on the chosen database replication pattern and the replication protocol
implemented. Therefore, the main advantage of applying this pattern in
combination with the other two patterns is related to maintainability, since it
contributes to decouple the replication protocols from the underlying replication
infrastructure.

Trade-offs for the Multi-Tier Replication Pattern Domain

The patterns in this domain are related to the replication of the main important
tiers of multi-tier architectures (See Multi-Tier Transactional Service Runtime
pattern). These tiers are the middle-tier (a.k.a. business or application server
tier) and the data-tier (a.k.a. database tier). If only one tier is replicated, the
other tier becomes a single point of failure for the multi-tier architecture what
affects the availability of the solutions. So, most solutions will require replicating
both tiers.

The tiers can be replicated independently or as a whole. The trade-offs of the
patterns related to the independent replication of the database tier have been
commented in the previous section. The other options provided by the patterns
in this domain are discussed in the following paragraphs.

The first pattern related to high availability and scalability to be discussed is the
Session Replication with Multi-Tier Coordination pattern. This pattern is related
to the replication of the middle-tier. The main goal of the pattern is to enhance

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 40 of 49

the availability and scalability of the client sessions in the middle-tier for
applications deployed in multi-tier service platforms. In order to attain high
availability, the pattern results to a replication approach that replicates session
information across the middle tier in a cluster of application servers that share a
common database. In the coordination process performed at the application
server level, the replicas use the database tier as persistent storage for
coordination information. Different application servers might serve different
clients leading to load-distribution, and thus, potential for scalability. The pattern
encapsulates the replication logic for the session components in the application
server, what results in a good applicability since implementations can be based
on the use of standard databases. Of course, the source code of the application
server must be available to perform the required modifications. The
maintainability is considered neutral since it does not require maintaining
database code. It requires only maintaining the replication code within the
application server.

The next pattern, the Horizontal Replication with Replication Awareness,
provides a replication approach that replicates the middle and data tiers
independently. In principle, this allows to attain high availability and scalability of
both tiers, but it requires to perform extra work in order to each tier be aware of
the replication of the other. As the replication of each tier is independent, it
becomes absolutely necessary to perform a coordination of the replication of
the elements in each tier in order to guarantee the consistency of the solution.
However, this additional processing time can affect negatively the performance,
and thus the scalability. In order to mitigate this, transactions can be processed
following the read-one write-all (ROWA) strategy and asymmetric update
processing, what reduces redundancy of transaction processing across
replicas. The approach can encapsulate the replication logic of the two tiers in
the application server, what results in a good applicability since the solutions
can be based on standard databases. However, the use of standard databases
may affect negatively the performance (e.g. using Black-Box DB Replication
pattern). If the performance penalty at the database level wants to be avoided,
the Gray-Box approach (or the White-Box if available) should be used. The
maintainability is considered negative since the solution requires maintaining
both, the implementation of application server and database replication
mechanisms.

Another option is presented in the Vertical Replication pattern. This pattern
presents a holistic replication approach that replicates all tiers simultaneously.
As in the previous pattern, the aim is to enhance high availability and scalability
of middle and data tiers. The solutions can also use transactions processed
following the read-one write-all (ROWA) strategy and asymmetric update
processing in order to improve the scalability. This reduces redundancy of
transaction processing across replicas. In contrast to the previous approach,
only one replication mechanism is required. The approach encapsulates the
replication logic in the application server, what results in a high applicability
since standard databases can be used. The maintainability is considered

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 41 of 49

neutral since it does not require maintaining database code, but still requires
maintaining the replication code within the application server.

Trade-offs for the Helper/Lower Level Replication Pattern Domain

As high availability and scalability are common requirements in current service-
oriented applications, many system architectures are being replicated in order
to achieve them. The patterns in this domain contribute/help in achieving
simplify or guarantee other requirements in replicated architectures related
closely to high availability and scalability, so their trade-offs are discussed in the
following paragraphs.

For example, it is very important that applications could run on the replicated
architecture transparently. This means that the application should not be aware
about if the underlying infrastructure is replicated or not. The Transparent
Replication Proxy pattern helps in achieving this task. It is a specialization of the
well-known Proxy pattern that allows clients to transparently tolerate node
crashes, attaining high availability. It basically includes the required logic to
mask the failures to the clients. It can be used also to improve scalability,
because the proxy can connect transparently to the most appropriate replica in
each case. For example, the client can be redirected to that replica that is less
loaded when client request arrive. The applicability of the pattern can be
considered very high, because this pattern can be applied to the client side of
any component susceptible to be replicated (e.g. application servers, databases
etc.). The maintainability of the transparent proxies is considered neutral, since
in many cases it is necessary both, to update the proxy code and to coordinate
the underlying replication mechanism for components in order to tolerate their
crashes.

Another important task in replicated systems is the communication among the
replicas. Point-to-point communication can be used in many cases, but it is not
always the best option, for example when considering cluster of replicas running
in local area networks (LANs). Moreover, point-to-point and ad-hoc protocols
contribute to increase the complexity of the system. Group communication is a
coordination paradigm that eases the development of multi-participant
applications. Currently there are a lot of group communication toolkits in the
market. However, each toolkit offers a different interface, which differs from
every other interface in subtle syntactic and semantic aspects, impacting the
design of applications using these features. To solve this problem, the Generic
Group Communication pattern defines a generic interface that may be used to
wrap multiple toolkits decoupling the application from the specific toolkits. As
the pattern provides a generic interface in order to manage group
communication, it contributes to the enhancement of the applicability of
solutions implementing this pattern, In this way, any application that require
group communication functionality just has to access a single common interface
that hides the specific interfaces of particular group communication toolkits.
Maintainability is also considered enhanced. When an application using the
generic group communication interface requires a specific group communication

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 42 of 49

toolkit, the changes required in the current implementation are avoided. The
only changes in source code are related to the adaptation of the toolkit
functionality to the generic interface.

Finally, in replicated systems, it is also necessary that the clients would be able
to locate the list of currently available replicas of a particular service or
component. The replica discovery patterns help in this task, decoupling the
client from the particular set of nodes where the replicated service/component is
running. These are the trade-offs of the two patterns proposed.
Both patterns, Registry-Based Replica Discovery and Multicast-Based Replica
Discovery contribute to the transparency of the replicated infrastructures. With
regard to the applicability, in both patterns can be considered as high, because
they are useful in order to locate any component susceptible to be replicated
(e.g. application servers, databases etc.). Due to the multicast requirements,
the Multicast-Based Replica Discovery pattern offers more performance when is
used in local area environments, but it can also be used in WANs. Moreover,
this pattern does not incur in single points of failure, because the discovery
mechanism is implemented in all the replicas. On the other hand, the Registry-
Based Replica Discovery provides a central repository that includes all the
information of the available replicas. In this case, the information can be
collected using push or pull mechanisms depending on the application
requirements. This pattern is more suitable for WAN environments (but it can be
used also in local environments) because the replicas can refer to a single
component across the Internet in order to find the available replicas of a service
or component. However, if the registry itself is not replicated, it becomes a
single point of failure. The registry can store the information about the replicas
in a persistent storage in order to improve durability. All these tasks increase
the maintainability of the solutions that implement this pattern, what can be
avoided using the multicast-based approach.

Phase 3: Evaluation of Quantitative Requirements Fulfilment

Finally, the third phase of the process is shown graphically in the following
figure:

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 43 of 49

This third phase of the process consists in checking if the resulting alternatives
of high available and scalable architectures obtained in phase 2, fulfil the
quantitative input requirements. Most part of the quality attributes of the patterns
for high availability and scalability can be quantified in some way or another. For
example we can quantify performance in terms of the number of completed
transactions per second (Tx/Sec).

There are three main techniques to evaluate the quantitative requirements of a
system (See Section 2.7.1 of the methodology for writing instantiation
guidelines):

1. Analytically

2. Using simulations

3. Implementing prototypes and Proofs of Concept (PoC)

After performing the required evaluation/s we’ll get results confirming or not the
quantitative requirements. If the results are good enough with regard the input
requirements, the process is finished. On the other hand, if the non-functional
quantitative requirements are not going to be fulfilled with the resulting
architecture, it is recommended to check the initial high-level system
architecture used as input in the first phase of the process in order to be re-
thought and re-structured.

The following subsections show of how High Availability and Scalability can be
evaluated in the resulting architectures using the techniques described in
Section 2.7.1 of the methodology for writing instantiation guidelines.

Evaluating High Availability

A system that is high available ensures that it will continue being operational
(running/processing information) during a period (in which it is said that the
system is uptime) with a high degree of probability. When a failure occurs, the
system is said to be downtime.

A common way to express availability is to denote it as the percentage that a
system is uptime and running in a given year. The mean time between failures
(MTBF) measures the elapsed time between failures produced in an uptime and
running system. This measure assumes that the system under test is recovered
when it fails. In contrast, the mean time to failure (MTTF) does not assume this.
In order to measure high availability, simulations and analytical techniques are
basically used. Through these techniques not only the system can be
described, but also the environment can be recreated, simulating failures and
recoveries of the system under test in order to measure MTBF/MTTF. It is not
possible to use prototypes to measure parameters such as MTBF/MTTF. Of
course this is due to that running forever a system in a testing environment is
neither affordable nor a realistic approach for stakeholders. However,
prototypes can be used in order to apply and test architectural choices and
solutions that imply patterns related to redundancy for system

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 44 of 49

availability/recoverability, such as the ones described in the PoCs of NEXOF-
RA related to high availability and scalability [FPP]. For example, one of the
PoCs validates three different patterns for writeset extraction. Writeset
extraction is a process that allows extract database data from a DBMS in order
to provide high availability. So, this PoC evaluates different architectural choices
by means of prototypes of each one of them in top of different DBMSs,
measuring the quality attributes affected (i.e. performance, applicability and
maintainability). The results of the PoC show that there is a trade-off between
applicability and maintainability, and performance when applying the different
patterns proposed by means of prototypes.

Evaluating Scalability

Scalability is “a desirable property of a system … which indicates its ability to
either handle growing amounts of work in a graceful manner, or to be readily
enlarged” [NG].

In order to measure scalability, a common measure used is the relative
throughput of the distributed system with respect the original centralized
systems. For example, in transactional systems, the throughput is measured as
the number of transactions that the system is capable to process per second
(Tx/sec). The analytical techniques, simulations, prototypes and PoCs can be
used to evaluate the scalability of a system.

For example, in [JPAK03] is described an analytical study that shows the
scalability limits of full data replication in databases with eager techniques in
update-everywhere database clusters using symmetric and asymmetric
processing. Update-everywhere means that all the replicas can process update
transactions. Eager means in this case to propagate changes produced by each
transaction in a replica, before the transaction commits. In symmetric
processing all update transactions are completely executed in all the replicas,
whilst in asymmetric processing an update transaction is first executed at one
replica and the changes are replicated and applied in the rest of them without
processing the complete sentence.

Also in [SPJK07] is described an analytical evaluation of partial replication in
databases with respect to full replication. In order to do so, a mathematical
model for quantifying the scale-out [NG] (i.e. how many times the replicated
system increases the performance of a non replicated system) has been built.

PoCs related to high availability and scalability [FPP] have already been used in
the context of NEXOF-RA to evaluate the scalability of architectural choices in
the E-SOA. In these PoCs, several prototypes have been built in order to
evaluate the scalability properties when applying several patterns from the set
of patterns found in Section “Pattern Categorization”, to certain non-replicated
systems and architectures. One of the PoCs validates the Vertical Replication
pattern combined with the Session Replication pattern applied in a multi-tier
architecture in terms of scalability, availability, applicability and maintainability.
In order to do so, a prototype of the multi-tier system has been implemented
and deployed in several nodes. The prototype includes a replication protocol

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 45 of 49

implementation at the level of the application server replicas, which inject the
persistent changes in standard database replicas. In the PoC results is shown
that despite the good scalability provided by the replication both, the Session
Replication and the Vertical Replication pattern, trade-off applicability and
maintainability due to they require the modification of the application server in
order to introduce the replication logic. Therefore, the trade-off lies between
applicability and maintainability, and scalability, performance and availability.

Finally, there are two PoCs that validate the replication of the database layer
(accessed by an E-SOA web application) through the Gray-Box DB Replication
pattern in two different environments: LANs and WANs. In both contexts, the
validation is done in terms of availability, scalability, applicability and
maintainability over a DBMS prototype that includes a replication middleware
and extracts transaction writesets using extended interfaces, deployed in
several nodes. The results of the PoCs in the two different environments show
improvements in availability, scalability and performance of the replicated
system with respect to a centralized approach, but also imply trading-off
applicability and maintainability, since the Gray-Box Database Replication
pattern requires an extended database interface that typically requires access
to the database code.

The Role of ATAM in the Instantiation Process for HA and Scalability
Properties

Certain steps and parts of the Architectural Trade-off Analysis Method (ATAM)
[KKC00] have been taken into account in this process (being integrated or
adapted) in order to make it more robust. ATAM methodology was originally
developed to assist architectural decisions by taking into account the quality
attributes early in the design process. ATAM is one of the most used industrial
practices in order to evaluate software architectures.

The adoption of ATAM is motivated by the fact that, as other Scenario-based
evaluation techniques3, it fits well in the architecture definition phase where
these guidelines are included. Moreover, despite the steps that describe ATAM
are numbered sequentially, ATAM is not a waterfall process, so they are
used/suggested/adapted in the process described in Section “Instantiation
Process” when required.

The following features and steps of ATAM described in the paragraphs below
have been taken into account in the instantiation process.

In the first phase of the process (Section “Phase 1: Confront Pattern
Assumptions with Initial Architecture”), in addition to the utility tree, two
additional steps of the ATAM methodology can help the architect to accomplish
this step; ATAM’s step 3, “Present the Architecture”, and step 4, “Identify
Architectural Approaches”.

3
 A review and comparison among five well-adopted scenario based evaluation techniques (i.e. SAAM,

ATAM, CBAM, ALMA, FAAM) is provided in [IHO02].

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 46 of 49

The third step of ATAM can help the architect in presenting the architecture to
the evaluation team, whilst the fourth step may help the architect in identifying
possible architectural approaches and styles that can be applied to the initial
architecture presented. ATAM states that these approaches and styles
“represent the architecture’s means of addressing the highest priority quality
attributes; that is, the means of ensuring that the critical requirements are met in
a predictable way [BMRS+96, SG96]”. So, in the case of this guidelines, the
main critical requirements will be related to HA and scalability.

When filtering the quality attributes in the second phase of the instantiation
process (Section “Phase 2: Pattern Selection Through Trade-Off Analysis”), the
ATAM methodology offers an extensive characterization and categorization of
quality attributes that may help the architect in identifying those ones related to
high availability and scalability.

Finally, in ATAM’s step 6 “Analyze Architectural Approaches” is stated: “the key
though to keep in mind is the need to establish some link between the
architectural decisions that have been made and the quality attribute
requirements that need to be satisfied”. This step of ATAM can be used in the
second phase of the process in order to check if the all the requirements have
been taken into account in the enhanced architecture/s that is/are the output of
that phase.

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 47 of 49

ACRONYMS

ATAM: Architectural Trade-off Analysis Method

DB: Database

DBMS: Database Management System

E-SOA: Enterprise Service-Oriented Architecture

HA: High Availability

IoS: Internet of Services

LAN: Local Area Network

NCI: NEXOF Compliant Infrastructure

NCP: NEXOF Compliant Platform

NEXOF-RA: NEXOF Reference Architecture

MTBF: Mean Time Between Failures

MTTF: Mean Time To Failures

PoC: Proof of Concept

WAN: Wide Area Network

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 48 of 49

REFERENCES

[NG] NEXOF-RA WP-6, Glossary - The NEXOF Glossary. NEXOF
Deliverables, available at http://www.nexof-ra.eu/?q=node/187

[NRM] NEXOF-RA WP-6, Deliverable 6.3 - The NEXOF Reference Model
V3.0. NEXOF Deliverables

 [ESO] NEXOF-RA WP-7, Enterprise SOA Pattern. NEXOF Deliverables

[AFP] NEXOF-RA WP-7, Deliverable 7.2c - Definition of an Architectural
Framework & Principles. NEXOF Deliverables

[PPSC] NEXOF-RA WP-8. D8.0 - Processes, Principles and Selection
Criteria behind PoC. NEXOF Deliverables

[FPP] NEXOF-RA WP-8. D8.1 – First Phase PoCs. NEXOF Deliverables

[RR] NEXOF-RA WP-10, Deliverable 10.1 - Requirements Report. NEXOF
Deliverables

[KKC00] R. Kazman, M. Klein, P. Clements. ATAM: Method for Architecture
Evaluation. Technical Report, CMU/SEI 2000-TR-004 ESC-TR-2000-04. August
2000, available at http://www.sei.cmu.edu/reports/00tr004.pdf

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns –
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995

[BMRS+96] F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal.
Pattern-Oriented Software Architecture - A System of Patterns. Wiley, 1996

[PVPJ06] F. Perez-Sorrosal, J. Vuckovic, M. Patiño-Martínez, R. Jiménez-Peris.
Highly Available Long Running Transactions and Activities for J2EE
Applications. IEEE Int. Conf. on Distributed Computing Systems (ICDCS), 2006

[SPJK07] D. Serrano, M. Patiño-Martinez, R. Jimenez-Peris, B. Kemme.
Boosting Database Replication Scalability through Partial Replication and 1-
Copy-Snapshot-Isolation. 13th IEEE Pacific Rim Dependable Computing Conf.,
2007

[SG96] Shaw, M. and Garlan, D. Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River, NJ: Prentice-Hall, 1996

[Tate02] B. A. Tate. Bitter Java. Manning, 2002

[AF09] M. L. Abbot and M. T. Fisher. The Art of Scalability: Scalable Web
Architecture, Processes, and Organizations for the Modern Enterprise. Addison-
Wesley Professional, 2009

[JPAK03] R. Jiménez-Peris, M. Patiño-Martínez, G. Alonso, and B. Kemme. Are
Quorums an Alternative for Data Replication? ACM Transactions on Database
Systems (TODS), Vol. 28, N. 3, pp. 257-294, ACM Press. Sept. 2003

[BJPQ+08] Roberto Baldoni, Ricardo Jimenez-Peris, Marta Patiño-Martınez,
Leonardo Querzoni, Antonino Virgillito. Dynamic Quorums for DHT-based
Enterprise Infrastructures. Journal of Parallel and Distributed Computing
(JPDC). Vol. 68. pp. 1235-1249. 2008

http://www.nexof-ra.eu/?q=node/187
http://www.sei.cmu.edu/reports/00tr004.pdf

NEXOF-RA • FP7-216446 •template version 2.0• Database Replication • 0.5 • Page 49 of 49

[BJPQ+05] R. Baldoni, R. Jiménez-Peris, M. Patiño-Martínez, L. Querzoni and
A. Virgillito. Dynamic Quorums for DHT-based P2P Networks. 4th IEEE Int.
Symp. on Network Computing and Applications (NCA). Cambridge, MA, USA.
July 2005

[IHO02] M. Ionita, D. Hammer, H. Obbink: Scenario Based Software
Architecture Evaluation Methods: An Overview. Workshop on Methods and
Techniques for Software Architecture Review and Assessment at the
International Conference on Software Engineering, Orlando, Florida, USA. 2002

