

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 1 of 34

NEXOF-RA

NESSI Open Framework – Reference Architecture

IST- FP7-216446

Deliverable D7.2b
Definition of an architectural framework & principles

Piero Corte
Debora Desideri

Due date of deliverable: 30/11/2009

Actual submission date: 30/11/2009

This work is licensed under the Creative Commons Attribution 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter
to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

This work is partially funded by EU under the grant of IST-FP7-216446.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 2 of 34

Change History

Version Date Status Author
(Partner)

Description

0.1 10/11/2009 Draft Debora

Desideri,

Piero

Corte

First draft

0.2 19/11/2009 Draft Debora

Desideri,

Piero

Corte

1 SECTION THE SPECIFICATION PROCESS

The NEXOF-RA Project has adopted a top-down production process to better
support the production of a set of inter-related patterns. Starting from the
production of top-level patterns, i.e. the most general and abstract patterns,
other patterns are produced with respect to other already-committed patterns.
This way, the problem they address and the context where they are applicable
are clearly and well-defined. This approach makes the verification of the
consistency of the overall set of patterns as well as the instantiation of concrete
architectures easier and more controllable.

The next figure gives a very high-level description of the pattern development
process.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 3 of 34

Figure 11: Patterns Development Process

When an architectural issue, related to SOA infrastructures, is identified, the
NEXOF-RA Project expert people start working on the elaboration of new
architectural patterns. This activity is performed within the research tracks of
the Project and can be supported by means of external contributors (i.e.
Investigation Teams). Contributors must use the pattern template document to
produce the pattern description document.

After new patterns have been produced, they are submitted to the specification
development workgroup (WP7) to check their relationships to the other patterns
of the specification, the compliancy to the pattern template and the consistency
of functionality requirements and assumptions with respect to the stated

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 4 of 34

relationships. This checking action is called ―formal verification‖ though it is not
based on any formal logic. It mainly deals with constraints on the format of the
pattern description and takes it apart from the content validation that evaluates
the quality of the pattern’s architectural choices. If the formal verification is not
ok, WP7’s feedback is returned to team working on the elaboration of the
pattern, where an update version of the pattern will be elaborated. This cycle
can be repeated several times till the pattern succeeds WP7 verification.

Once WP7 verification is achieved, those patterns that address challenging
architectural problems of SOA Infrastructure design are selected to be validated
through proof-of-concept actions. In any case all the patterns are submitted to
the NEXOF-RA Architectural Board (AB) for the validation of the content. In this
phase, the pattern is evaluated with respect to its architectural design added-
value, originality and innovation. If it is validated by the architectural board, the
pattern will be added to the NEXOF-RA Specification, otherwise the pattern and
the negative feedbacks will be returned back to the development team for
further improvements.

To better explain the above process, next figure depicts all the various states a
pattern can be during its development process.

Figure 12: Pattern States

As shown by the previous figure, a pattern can be in one of the following states:

 in-conception: to refer to a pattern that has been identified and qualified

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 5 of 34

only by means of the architectural problem it addresses. The architectural
solution proposed by a pattern in this state has not been elaborated yet.

 in-elaboration: to refer to a pattern that is under development. A draft of the
architectural solution proposed by a pattern in this state is available.

 formally-consistent: to refer to a pattern that has been already elaborated
and has succeeded the formal verification.

 proved-by-poc: to refer to a pattern that has been successfully proved by a
proof-of-concept action.

 part-of-the-specification: to refer to a pattern that has succeeded the
formal verification and has received the final approbation of the NEXOF-RA
Architectural Board to be part of the NEXOF-RA Specification.

 modified to add POC in the process

0.3 23/11/2009 Draft Debora

Desideri,

Piero

Corte

Section Relationships to Components Catalogue, Relationships to Standards Catalogue

changed

0.4 23/11/2009 Draft Debora

Desideri

Minor changes

0.5 23/11/2009 Draft Piero

Corte

Document review

0.6 30/11/2009 Debora

Desideri,

Piero

Corte

Review according Evelyn comments

0.7 30/11/2009 Final Debora

Desideri,

Piero

Corte

Appendix A removed

Review according Vanessa comments

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 6 of 34

EXECUTIVE SUMMARY

This deliverable is dedicated to lay the principles and the baseline for the
creation of NEXOF-RA Specification. It mainly fixes rules and restrictions for the
formal aspects of the specification, such as the format, the structure and its
development approach. As far as it concerns architectural solutions, this
document does not state any restricted principle, since it is well-known that
NEXOF Reference Architecture is domain and technology independent. A part
from the restriction on the very general domain of SOA Infrastructures, any
concern, problem and solution related to this domain generally is interesting for
the project.

In the first section this document provides a description of what the NEXOF
Reference Architecture is, what it is useful for and what its overall structure is.
This section if fundamental to understand all the principles and baseline
introduced afterwards.

The second section gives a list of principles used for the development of the
specification. They have been selected as guidelines for the specification
process in order to produce an open and easily evolvable specification.

The third section is dedicated to the introduction of the idea of constructional
patterns as the basic mechanism (baseline) that is used to develop the overall
specification.

Finally, the last section is devoted to the description of the Pattern Development
Process. This process is a part of the overall specification process and covers
the development of each individual pattern.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 7 of 34

Document Information

IST Project
Number

FP7 – 216446 Acronym NEXOF-RA

Full title NESSI Open Framework – Reference Architecture

Project URL http://www.nexof-ra.eu

EU Project officer Arian Zwegers

Deliverable Number D7.2b Title Definition of an architectural framework &
principles

Work package Number WP7 Title NEXOF Reference Architecture Specification

Date of delivery Contractual 30/11/2009 Actual 30/11/2009

Status Version 0.7, dated 30/11/2009

Nature Report Demonstrator Other

Abstract
(for dissemination)

Keywords NEXOF-RA Specification, Architectural Pattern, SOA

Internal reviewers Evelyn Pfeuffer

 Vanessa Stricker

Authors (Partner) Piero Corte, Debora Desideri

Responsible
Author

Piero Corte Email piero.corte@eng.it

Partner Engineering Phone 0039 06 49201416

http://www.nexof-ra.eu/

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 8 of 34

 TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 5

1 THE NEXOF REFERENCE ARCHITECTURE SPECIFICATION 6

1.1 What NEXOF Reference Architecture is ... 6

1.2 The Purpose of the Reference Architecture .. 7

1.3 The Structure of the Reference Architecture ... 8

2 SPECIFICATION PRINCIPLES .. 11

3 SPECIFICATION BASELINE ... 12

3.1 What is a NEXOF-RA Pattern? ... 13

3.2 Collection of related patterns .. 14

3.2.1 Extends Relationship .. 14

3.2.2 IsPartOf Relationship ... 15

3.2.3 ComplementsWith Relationship ... 17

3.2.4 CompetesWith Relationship ... 18

3.2.5 IsApplicableTo Relationship ... 19

3.3 Type of patterns: functional and cross-cutting .. 19

3.4 Pattern representation and description ... 19

3.4.1 Pattern id-card .. 20

3.4.2 Problem description.. 20

3.4.3 Functional requirements ... 21

3.4.4 Non-functional qualities (quality attributes) 21

3.4.5 Assumptions ... 22

3.4.6 Solution .. 24

3.4.7 Relationships to other patterns ... 25

3.4.8 Relationships to Components Catalogue ... 25

3.4.9 Relationships to Standards Catalogue ... 26

3.4.10 Application examples ... 26

3.4.11 References ... 26

4 THE SPECIFICATION PROCESS .. 27

REFERENCES ... 31

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 9 of 34

2 THE NEXOF REFERENCE ARCHITECTURE SPECIFICATION

This section gives a brief explanation of NEXOF Reference Architecture before
focusing on the specification. This is necessary to clearly present what the
NEXOF-RA Specification is. Furthermore, it will be described how NEXOF
Reference Architecture is expected to be used.. The last subsection presents
the structure of the NEXOF Reference Architecture and introduces the NEXOF-
RA Specification by describing it with respect to the other parts too.

2.1 What NEXOF Reference Architecture is

An initial characterization of NEXOF Reference Architecture is the following:
―NEXOF Reference Architecture is a set of instruments designed to help the
construction of well-architected distributed SOA software infrastructures‖. This
initial characterization shifts the focus towards one of the most fundamental
questions: ―what is a distributed SOA infrastructure?‖ The answer to this
question is the key to fully understand what NEXOF Reference Architecture is,
the type of instruments it is composed of and how it helps constructing these
kind of software systems.

SOA is not a specific technology or predefined solution but rather a paradigm or
architectural style that is used to improve the scalability and decentralization
within distributed, heterogeneous, cross-business-domains IT environments. It
is an approach to deal with an environment in which processes and systems are
becoming more and more complex and IT landscapes are rapidly changing.
SOA aims at closing the gap between business and IT in these environments in
order to flexibly and efficiently exploit business opportunities.

Characteristics of a deployed service-oriented system are unique within each
business company. Therefore there is not a one sized SOA solution that fits all
situations and a SOA solution needs to be adapted for each individual context.
However, a SOA solution is always characterized by the usage of technologies
and platforms that specifically support the creation, execution, and evolution of
services.

Like all other software system architectures, Service-Oriented Architectures can
be captured by means of models, specifications and accompanying material.
Based on these instruments a concrete implementation can be built.

The term ―software system architecture‖ traditionally addresses the
organizational structure of all elements that are part of a software system [3].
However, a software system can be differentiated into different types of
elements, whose structure can be described by different architecture
documents. A system provides an operational environment that allows for the
deployment of applications and processes. Accordingly these systems can be
divided into the infrastructure and the operative elements that can be deployed
in order to focus on business objectives.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 10 of 34

Figure 1: Architecture terminology in the NEXOF context

The SOA paradigm introduces the notion of a specific infrastructure on which
services can be deployed and executed in a distributed manner. The NEXOF-
RA Project will produce the reference architecture for such kind of
infrastructures. The project only addresses the architecture of the infrastructure.
Concrete applications and services are not in the focus since the reference
architecture should be domain independent and open. The infrastructure
architecture addresses the hardware infrastructure architecture as well as the
software infrastructure architecture. Thus, this infrastructure, the NEXOF-RA
Infrastructure can be perceived as an operating environment for services and
service-oriented applications.

Concluding, the ―NEXOF Reference Architecture is a construction kit that
will aid system architects in the construction of specific architectures of
SOA Infrastructures‖. If the architecture of a SOA Infrastructure follows the
suggestions from NEXOF Reference Architecture, it will be called a NEXOF
Compliant Infrastructure (NCI). Based on this NCI, instances of service-based
systems can be built, which from now on are called NEXOF Compliant System
(NCS).

2.2 The Purpose of the Reference Architecture

The NEXOF Reference Architecture does not provide a typical system
architecture description but define a meta-level description providing a set of
different alternatives from which concrete solutions can be derived as it is
shown in the next figure.

NEXOF
Compliant

System
Architecture

NEXOF
Compliant

Architecture
Specification

NEXOF
Reference

Architecture

NEXOF
Compliant

System

NEXOF
Compliant

Infrastructure

NEXOF
Compliant
Platform

federates

NEXOF
Compliant

Architecture

has

derived_from

concrete level reference level

has

describes_a

is_part_of

Specifications
non-tangible

characteristics
Implementations

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 11 of 34

NEXOF Reference Architecture is domain independent and will be
accompanied with a sound methodology and tools to be properly instantiated
within different contexts for a broad range of end-user communities (including
Large, Medium, and Small Enterprises), and by means of different technologies.

The design of a NEXOF Compliant Infrastructure starts with the identification of
the requirements addressing the needs and demands to be fulfilled in each
specific context. These requirements address both the functional and non-
functional properties of the system to be built and deployed. The system
architect then matches these requirements to the propreties of the reference
elements captured in the Reference Architecture. Through this matching, the
architect will select, and combine patterns to design the architecture of the
system to be built and deployed.

Several different system architectures, that are NEXOF Compliant
Architectures, can be derived from the NEXOF Reference Architecture. A
NEXOF Compliant Architecture can be the architecture of several service-based
software systems that are NEXOF Compliant Systems. According to this
approach, NEXOF Reference Architecture will allow the building of a NEXOF
Compliant Infrastructure.

2.3 The Structure of the Reference Architecture

The NEXOF Reference Architecture is composed of several parts as shown in
the next figure, capturing the information necessary to design service-oriented
software systems.

NEXOF Reference Architecture

NEXOF Compliant Architecture description

NEXOF Compliant Infrastructure

(property of)

Design

Activity

Requirements,
needs, demands

(produces)

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 12 of 34

Figure 2: The NEXOF Reference Architecture Structure

The main constituents of the Reference Architecture are:

 The Guidelines and Principles: these captures the principles underlying
the construction of the framework, the set of reference-properties associated
with each of the components and patterns in the NEXOF Reference
Architecture, and the guidelines used to instantiate a specific system
architecture according to its requirements

 The Reference Architecture Model: this is the Conceptual Model which
describes the essential entities that constitute service-based systems, as
well as the relationships between these entities and the key elements in the
context. In addition, it contains also the NEXOF-RA Glossary [8] which
defines the terms used across the whole NEXOF-RA Project. This glossary
has been built and will be maintained under the auspices of the NEXOF-RA
Architecture Board in which representatives of all NESSI Strategic Projects
are included

 The Reference Architecture Specification: This contains three collections:

o The NEXOF-RA Standards Catalogue: the standards referred to in the
Reference Architecture are described in this catalogue. Each standard is
linked to the relevant elements of the Guidelines and Principles as well
as to the concepts it addresses

o The NEXOF-RA Component Catalogue: the level of granularity
considered in the Reference Architecture is that of components, which
roughly correspond to coherent sets of functionality delivered as software
products or software components which can be configured separately.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 13 of 34

This catalogue groups both abstract descriptions of components (e.g. an
UDDI registry) and product or software-based components (e.g. the
jUDDI library). Each description refers to the standards it implements, the
concepts it addresses, as well as its behavioural characteristics

o The Pattern Ensemble: the actionable part of the Reference Architecture
is represented by the patterns, which define various ways of realizing
some functionality by associating components and other patterns in a
defined manner.

The NEXOF-RA Specification defines a system of patterns (cf. Alexander, C.
[3], and Buschmann et al. [5],[1]) that includes three types of patterns: top-level
patterns which describe the characteristics of SOA platform families, abstract
design patterns which refer to abstract components and patterns, and
implementation design patterns which refer to at least one concrete component.
Relationships between patterns (e.g. ―extends‖ or ―isPartOf‖) are explicitly
described. Each pattern description also refers to the standards it implements,
the concerns it addresses, as well as its behavioural characteristics.

The conceptual view plays a decisive role within the creation of the
specifications itself as well as in the design of NEXOF Compliant Architectures
since it allows the communication about the relevant components on a higher
abstraction level. It is important to understand on a conceptual level what has to
be specified as well as the general relationships between those elements. This
conceptual view will be captured by the NEXOF Reference Architecture Model
comprising also the glossary which represents the terminological definitions.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 14 of 34

3 SPECIFICATION PRINCIPLES

The NEXOF-RA Specification is developed using a semi-formal approach, i.e.
its parts (software architecture patterns) are provided by mixing natural
language descriptions and UML specification techniques. While this approach
lacks some of the rigor of a formal specification method, it offers the advantages
of being more intuitive and pragmatic for most system architects and
practitioners.

The following items summarize the principles followed to build the NEXOF-RA
Specification:

 Modularity — This principle of strong cohesion and loose coupling is
applied to group parts of the specification into different categories (i.e. SOA
Domains). Describing architectural problems in terms of patterns adheres to
the concept of modularity especially since components included in these
pattern will be separated by well-defined interfaces.

 Layering — Layering is applied to separate top-level architectures
descriptions (i.e. architectural patterns) from the more specific and detailed
parts (i.e. design and implementation architectures descriptions).
Furthermore, the concept of layering can be found in different patterns as
architectural choices to address specific problems.

 Partitioning — Partitioning is used to organize conceptual areas (i.e. SOA
concerns) within the same layer. All concerns that have been identified in
the model will be addressed by patterns of all layers.

 Extensibility — The NEXOF Reference Architecture is developed in a way
that it can be easily extended and enhanced. In particular, the specification
will be constituted of related parts. These relationships will make possible to
have parts that refine others or provide an alternative solution to others. This
way, it will be always possible to extend the specification by adding new
parts without affecting the already included ones.

 Reuse — It is possible to add new parts to the specification by reusing parts
that are already included into it.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 15 of 34

4 SPECIFICATION BASELINE

One of the fundamental principles of software engineering that is largely used
when designing a software system is known as the ―separation of concerns‖. In
short, this principle states that a larger problem is more effectively solved when
decomposed into a set of smaller and independent problems or concerns. This
gives software engineers the option of partitioning solution logic into
capabilities, each designed to solve an individual concern. Related capabilities
can be grouped into units of solution logic. The main benefit to solving problems
this way is that a number of the solution logic units can be designed to solve
immediate concerns while still remaining agnostic to the greater problem. This
provides the constant opportunity for us to reuse the capabilities within those
units to solve other problems as well.

The approach adopted in NEXOF-RA Project is also based on the separation of
concerns principle. NEXOF-RA Project objective is to address the problem of
specifying SOA-based software system architectures by partitioning the overall
solution into several pieces of designing solution: patterns. In particular, we
recognize the need for a development methodology to develop large-scale
complex systems and, at the same time, learn from the experiences of other
systems designers in solving recurring design problems.

Usually a pattern, as it stands, describes the architecture of a system,
providing details about which parts the system is composed of, the role of these
parts, how these parts are integrated and cooperate, forces and consequences,
and guidelines for implementation [3]. Furthermore the solution provided by a
pattern is given in terms of architectural choices and statements that claim how
these architectural choices affect the quality attributes of a system that is
compliant to such a pattern. NEXOF-RA Project approach is also focused on
how to compose these patterns together to develop complete systems
[13][14]. A complete system cannot, nor will ever, be built from a single pattern.
It is the integration and composition of patterns that makes a whole system.

A pattern can be considered as a design element with interfaces (i.e. the
interfaces of the system it describes), in this sense it can be used to represent
the system it describes. For this reason, our approach will adopt patterns as first
class design elements. I.e. they can be used in the designing of a system as
any other design element: class, module, component etc. These kinds of
patterns are called constructional-patterns. This way, patterns can be
designed as a composition of other patterns. Accordingly, ―a pattern describes a
system that is designed through the composition of systems described by other
patterns‖.

Specifying a pattern as a design element leverages the value of a pattern to a
higher design level that hides later design details and preserves consistency
with lower levels.

Patterns constitute the mechanism that WP7 has chosen to develop the
NEXOF-RA Specification. In particular the constructional-pattern-based
approach adopted in the NEXOF Reference Architecture constitutes the proper

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 16 of 34

answer to fulfil the architectural specification principles described in the
previous section.

4.1 What is a NEXOF-RA Pattern?

A NEXOF-RA Pattern is the description of the architecture/design
/implementation of a system. In particular it provides a description of:

 the solution, i.e. the components the system is composed of, the role and
the functionalities of these components, how these components are
integrated and cooperates

 the problem that the solution is designed for and the context where the
solution is applicable (forces)

 the consequences of its application, i.e. how the application of the pattern
affects the property of the system or more general the trade-off evaluation of
its quality attributes.

In NEXOF Reference Architecture we take apart patterns in three levels of
abstraction:

 Top-level patterns: they are architectural patterns. They express a
fundamental structural organization schema for a complete service based
platform. It provides a set of predefined subsystems or components,
specifies their responsibilities, and includes rules and guidelines for
organizing the relationships between them [1]. Architectural patterns are a
means of documenting architecture for complex and heterogeneous
systems, thus helping to manage the application complexity.

 Abstract patterns: they are design patterns. They provide a schema for
refining the subsystems or components of a software system or the
relationship between them [1]. It describes a commonly recurring structure of
communicating components that solves a general design problem within a
particular context [5].

 Implementation patterns: they are idioms. They are low-level patterns
specific to a technology: standard, programming language, product. An
idiom describes how to implement particular aspects of components or the
relationships between them using the features of a given technology.

With respect to this general classification the NEXOF-RA Specification will
result in a consistent collection of constructional architectural/design/idiom
patterns.

The top-level patterns play a particular role in the application of the design
methodology as they define different classes (or families) of SOA platforms that
will be implemented. The principle of independence from application domains
implies that the NEXOF Reference Architecture must allow the instantiation of
NEXOF Compliant Architectures for many different application domains, such
as enterprise systems, manufacturing systems, real-time systems, sensor
networks, and automotive communications. In essence, the properties of
Service-Based Systems used for each of these applications is different enough

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 17 of 34

from the others that it constitutes an own system type. However, once the top
level pattern has been identified, its association with abstract and
implementation design patterns follows a strict structure of dependencies and
refinements.

4.2 Collection of related patterns

Most pattern definitions do not - at least not explicitly - emphasize the many
relationships that exist among patterns. Understanding and using individual
patterns as isolated islands without considering their connections to other
patterns may help to resolve localized problems, but rarely more. Such isolation
means that large-scale design problems persist, small-scale problems recur
without resolution, and the architectural vision of the overall system remains
unclear to developers. Acting both globally and effectively with individual
patterns becomes hard in the absence of such an all-encompassing vision. For
this reason, the NEXOF-RA Project approach also aims at producing a pattern
map to show relationships between all the patterns produced.

Therefore each pattern must provide the relationships that the proposed pattern
has got with other patterns, so that they can be used to scale beyond point
solutions, to address larger and more sophisticated problem spaces.

Here after are reported all the kinds of identified relationships.

4.2.1 Extends Relationship

The "extends" relationship can be used to define a pattern as a refinement of
another one.

Formally, a pattern R extends a pattern P (R extends P) when:

 R meets the functional requirements of P,

 R assumptions are a subset of P assumptions and

 R makes different architectural choices from P.

It follows that R can be used anywhere P can be used (not vice versa).

A graphical representation of the ―extends‖ relationship can be seen in the
picture sotto.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 18 of 34

Figure 3: Extends relationship example

4.2.2 IsPartOf Relationship

The ―isPartOf‖ relationship can be used when a pattern is composed of other
patterns.

Formally, a pattern R isPartOf a pattern P with respect to a set of components
Ci of P (R isPartOf[C1,C2,…] P) when

 R provides an architectural solution for such set of components.

This implies that the solution provided by the pattern R has to satisfy all the
requirements that such set of components must meet in P.

Hereafter two examples of the application of ―isPartOf‖ relationship are shown.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 19 of 34

Figure 4: isPartOf relationship example 1: R isPartOf[C] P

Figure 4 shows a pattern R that isPartOf a pattern P with respect to a
component C part of the solution described by P (R isPartOf[C] P).

While the component C in the pattern P is a black box component, the pattern R
provides an architectural solution for the component C. In general several
patterns describing the architectural solution of a same component C in a
different way can exist.

In this example the required and provided interfaces of the pattern R are the
same of the required and provided interfaces of the component C. More in
general the functionality provided by R must ―cover‖ the functionality provided
by C, this means that the interfaces can be different but it is explicitly stated
which functionalities of R corresponds to (by means of specialization or
composition relationships) each functionality of C. As far as it concerns the
functionality required, in general the functionality required by R can be less then
those required by C, this means that R requires less constraints then C on the
context where it can be applicable.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 20 of 34

Figure 5: isPartOf relationship example 2: R isPartOf[C1,C2] P

Figure 5 shows the ―isPartOf‖ relationships with respect to 2 different
components, in particular a pattern R that isPartOf a pattern P with respect to
the components C1 and C2 that are part of the solution described by P (R
isPartOf[C1,C2] P).

In this case, the required and provided interfaces of the R must correspond to
the functionalities that C1 and C2 together require and provide to the rest of the
components in P respectively.

4.2.3 ComplementsWith Relationship

The ―complementsWith‖ relationship is used to state when two patterns
describe two architectural solutions that are well-designed to be jointly applied
into the design of an overall system.

Formally a pattern R complementsWith a pattern P in the context of a pattern Q
(R complementsWith[Q] P) when

 a pattern Q exists and

 P isPartOf[C1] Q,

 R isPartOf[C2] Q and

 P and R are strongly recommended to be used concurrently to realize Q.

In other words, R and P provide two specific and complementary parts of the
solution of Q.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 21 of 34

Figure 6: complementsWith relationship example: R complementsWith[Q] P

4.2.4 CompetesWith Relationship

The ―competesWith” relationship shows that instances of two patterns should
not be used together, that is, they provide architectural solutions that should not
be concurrently used into the design of an overall system..

Formally a pattern R competesWith a pattern P in the context of a pattern Q (R
competesWith[Q] P) when:

 a pattern Q exists and

 P isPartOf[C1] Q,

 R isPartOf[C2] Q but

 P and R cannot be used concurrently to realize Q.

In other words, R and P provide two mutually exclusive part refinements of the
solution of Q.

Figure 7: competesWith relationship example: R competesWith [Q] P

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 22 of 34

4.2.5 IsApplicableTo Relationship

The ―isApplicableTo‖ relationship is used when a pattern can be ―applicable to‖
the design solution provided by another pattern.

Formally, a pattern R is applicable to a pattern P (R isApplicableTo P) when:

 The architectural solution provided by P fulfils the assumptions stated by R.

Within the NEXOF-RA Specification this relationship occurs when it is explicitly
stated between two patterns or it can be inferred when the matching between
the design solution of one pattern and the assumption of another occurs.

This relationship is very powerful. It allows the development of cross-cutting
patterns that can be applied recursively to other patterns, keeping orthogonal
and minimal the NEXOF-RA Specification, but still capable to produce several
different architectural solutions.

4.3 Type of patterns: functional and cross-cutting

Patterns within the NEXOF-RA Specification can be classified also according to
the following categories:

 Functional / Non-Functional Patterns;;

 Cross-Cutting / Non-Cross-Cutting Patterns;

A Functional Pattern provides an architectural solution to a software system that
is mainly characterized (constrained) by its functionality requirements, i.e.the
functionalities it must provide. As a consequence, the NEXOF-RA Specification
is expected to contain more Functional Patterns that provide different
architectural solutions to the same set of functional requirements (problem).

A Cross-Cutting Pattern is a pattern that is applicable to other patterns (see
above the isApplicableTo relationship section). Basically, it provides a means
(the guidelines) to transform and enhance the architectural solution provided by
another pattern. By definition, all those patterns that are not applicable to others
are Non-Cross-Cutting Patterns. A Cross-Cutting Pattern can be either a
Functional Pattern or a Non-Functional Pattern.

A Non-Functional Pattern is a Cross-Cutting Pattern that is specifically design to
transform the architectural solution of other patterns (those it can be applied to)
to improve some of its quality attributes.

4.4 Pattern representation and description

The main parts that describe a NEXOF-RA Pattern are the following:

 pattern id-card

 problem description

 functional requirements

 non-functional qualities (quality attributes)

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 23 of 34

 assumptions

 solution

 relationships to other patterns

 relationships to Components Catalogue

 relationships to Standards Catalogue

 application examples

 references

Here after a detailed description of each part is reported.

4.4.1 Pattern id-card

This part is intended to provide some description elements that are useful to
identify and classify the proposed pattern.

In particular, the identified description elements are the following:

 Name: it should convey the essence of the pattern briefly.

 Abstract: it contains a short description of the pattern.

 Credits: it is the list of persons and projects that have provided the patter.

 Level: it provides the level of abstraction of the pattern. The possible values
are ―Top-Level‖ (Architectural Patterns), ―Abstract‖ (Design Patterns),
―Implementation‖ (Idioms) (see section 4.1).

 Type: it provides the type of the pattern. The possible values are
―Functional‖, ―Functional-Cross-Cutting‖, ―Non-Functional-Cross-Cutting‖
(see section 4.3).

 Key Concerns: it expresses which functional concerns (see [7] for more
details) the pattern covers. The possible values are Services, Messaging,
Discovery, Composition, Analysis, Presentation, Management, Security,
Resources. If the pattern is ―Non-Functional‖, the key concern is empty.

 Contact: it provides the contact person for the pattern.

4.4.2 Problem description

This section is intended to describe the problem statement for which the pattern
is expected to provide a solution. It can be described by reducing the problem to
sub-problems and by highlighting the major difficulties and criticisms there are
in conceiving the solution. A scenario that illustrates the design problem and
how the pattern solve the problem can also be presented to help understand the
more abstract description of the other sections. This section can also provide a
description of the situations (context) in which the problem occurs, extending
the plain problem-solution dichotomy.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 24 of 34

4.4.3 Functional requirements

This section is intended to specify the functionalities provided by the (sub-
)system designed by the proposed pattern. Such functionalities must be
described by UML use case diagrams together with a textual description.

The functionalities must be specified by referring those captured by the NEXOF-
RA Model [7] .

The functionalities described in this section correspond to the provided
functionalities of the overall (sub-)system and must be reflected in the ―Solution‖
section.

Moreover if this pattern is related to other patterns (i.e. it states relationships
with other patterns in its ―Relationships to other patterns‖ section) the content of
this section must be worked out with respect to the constraints imposed by the
kind of relationships the pattern states.

Names play a fundamental role in describing functionalities, that is they are
canonical references to the functionalities of the SOA Infrastructure
functionalities as captured by the NEXOF-RA Model [7].

Any functionality renaming, decomposition and/or specialization must be clearly
captured and described in this section by introducing the new functionalities and
properly relating them to those coming from the model or the related patterns.

If the proposed pattern is a ―Not-Functional‖ one, this part can be empty.

4.4.4 Non-functional qualities (quality attributes)

This section is intended to provides an evaluation of the quality attributes
affected by the (sub-)system covered by the proposed pattern. For each quality
attribute it must be indicated if the pattern affects positively (+) or negatively (-)
the attribute. The fully described list of admitted quality attributes can be found
in the ―Quality Model for NEXOF-RA Pattern Designing report‖ [9]. Such a
document is open and new attributes can be added if needed.

E.g.:

Availability +

Adaptation to new operating
environments (Portability)

-

Performance (efficiency) -

Scalability +

Security +

Table 1: Non-functional qualities

Moreover this section must provide a detailed description about how the design
choices stated by the pattern affect the quality attributes listed above. Design
choices are performed to meet specific design goals such as: Decomposition,
Replication, Compression, Abstraction, Resource Sharing, Self-Monitoring,

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 25 of 34

etc…These design goals, also referred as design operators [10], are very
important because they do represent the principles that help the architect
decompose the system into components and connectors that achieve desired
quality attributes. Applying these principles transforms the architectural design
of a system into one that is functionally equivalent but which exhibits different
quality attributes. They apply to the component view of the architecture and
effectively affect a subset of quality attributes, some positively and some
negatively. Hereafter some examples of basic correspondence of design goals
and the quality attributes they affect are provided [12]:

 Decomposition (Modularity) improves Scalability, Modifiability, Integrability,
Portability, and Reusability, and also influences Performance and Buildability

 Replication improves Reliability, influences Performance and negatively
affects Modifiability, Portability, Buildability and Reusability

 Compression improves Performance, influences Buildability and negatively
affects Scalability and Modifiability

 Abstraction (Contracts) improves Modifiability and Portability, and
negatively affects Performance

 Resource Sharing improves Modifiability, Portability, influence Performance
and Reusability

Other correspondences can concern design goals that deal with connectors[11]
(the way components interact). Some examples are:

 Client-Server: improves Performances and Resource efficiency, and
negatively affects Modifiability

 Peer-to-Peer : improves Performances and negatively affects Modifiability

 Publish-Subscribe: improves Modifiability, and negatively affects
Performances

Note that the examples just provided are intended to be neither exhaustive nor
precise. They only aim to give a rough idea of what kind of architectural
decision (design goals) should be explicated in a pattern and the effects on the
quality attributes.

4.4.5 Assumptions

This section is intended to precisely describe the context where the proposed
pattern can be applicable. It must provide the functionalities and the non-
functional properties the pattern assumes to be respectively offered and met by
the other parts of the system before it makes sense to apply the pattern. The
functionalities must be selected from the RA Model [7], the non-functional
properties must be expressed according to the ―Quality Model for NEXOF-RA
Pattern Designing report‖ [9]. The functionalities described in this section
correspond to the required functionalities of the overall (sub-)system and must
be reflected in the ―Solution‖ section.

In most cases this is sufficient.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 26 of 34

In case of a Cross-cutting pattern (both ―Functional-Cross-cutting‖ and ―Non-
Functional-Cross-Cutting‖), this section must also provide the basic pattern
which the proposed pattern is applicable to.

For instance, suppose you want to provide a pattern P that aims to show how to
improve scalability on a multi-tiered pattern. This section should introduce the
architecture of the basic pattern (next picture) the pattern P can be applied to.

Figure 8: Multi-tiered pattern example

Then the Solution section must show how to modify it to improve scalability.

The following picture (that is only an example that should be contained in the
Solution section) shows a pattern P that describes how to modify the multi-
tiered pattern to improve its scalability.

Figure 9: Scalability pattern applied to a multi-tired pattern

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 27 of 34

4.4.6 Solution

This part is intended to contain the design solution proposed by the pattern to
solve the problem and fulfil the requirements. It contains statements and
diagrams to communicate the final solution.

Several diagrams that show how the (sub-)system addressed by the pattern is
designed, must be provided. They must clearly capture and describe the
following aspects:

 Which are the components that participate to the realization of the sub-
system? In case a concrete implementation (e.g. a product) exists for
some of them, the description of these implementations can also be
added and reported in the section ―Relationships to Components
Catalogue‖.

 How are the provided functionalities of the (sub-)system decomposed
and allocated to the different participant components? In case
functionalities are compliant to a specific standard, it is also important to
specify such a standard and report it in section ―Relationships to
Standards Catalogue‖.

 How are the components inter-connected and how do they inter-operate
to realize the provided functionalities of the sub-system and, eventually,
how do they access its required functionalities? If communication is
compliant to some standard, it is important to specify such a standard
and report it in section ―Relationships to Standards Catalogue‖.

Hereafter a diagram that shows how a pattern can be expressed by using UML
is depicted.

Figure 10: use UML to describe a pattern

The above diagram shows the architectural choices made by the pattern to
design the ―subsystem P‖. It introduces the components and their provided and
required interfaces. It also shows how the components are inter-connected. A
description of how the different components collaborate to realize the provided
functionalities should be also given.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 28 of 34

Note that the functionalities of the interface IProvided must correspond to those
addressed in the section ―Functional requirements‖.

The functionalities of the interface IRequired must correspond to those stated
in the section ―Assumptions‖.

Summarizing this section must contain the following diagrams and information:

 A component diagram showing the pattern as a black box component and its
provided and required interfaces.

 A component diagram showing which are the components of the (sub-
)system and how the components are inter-connected.

 The description of each component of the (sub-)system and of its provided
and required interfaces in a sub-section called Components Descriptions

 The description of how the different components collaborate to realize the
provided functionalities of the overall (sub-)system in a sub-section called
Functionalities description. Sequence diagrams must be designed for
describing each provided functionalities of the (sub-)system.

4.4.7 Relationships to other patterns

This section is intended to provide the relationships that the proposed pattern
has got with other patterns, so that they can be used to scale beyond point
solutions, to address larger and more sophisticated problem spaces. The
admitted relationships are the following:

 Extends relation;

 PartOf relation;

 ComplementsWith;

 CompetesWith;

 IsApplicableTo.

See section 4.2 for a detailed explanation of each relationship.

4.4.8 Relationships to Components Catalogue

This section is intended to provide references to the building blocks of the
component catalogue [see section 2.3] of the NEXOF Reference Architecture,
that can be used to implement some of the components, interfaces and
connections of this pattern. This catalogue groups both abstract descriptions of
components (e.g. an UDDI registry) as well as product or software-based
(concrete) components (e.g. the jUDDI library).

However the patterns will be the main sources to the development of the
component catalogue The catalogue will contain all the abstract and concrete
components promoted by the patterns. Hence, until the first version of the
catalogue will not be released, the pattern has to provide the complete
description of the components it candidates to be part of the catalogue. This
contribution is also required when the catalogue will be available but it does not
contain the needed components.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 29 of 34

This section is parted into two subsections, specifically dedicated to abstract
and concrete components.

The concrete components section provides references to specific
implementations and short descriptions of the main features of such
implementations. It must also contain the relationship between each
implementation and an abstract component of the catalogue.

The abstract components section introduces all the abstract descriptions of
the concrete components. They are relevant only when they are related to one
or more concrete components. Each abstract component is presented through a
short description of its main features.

NOTE: each concrete component must correspond to an abstract one and this
fact must be clearly stated.

4.4.9 Relationships to Standards Catalogue

This section is intended to provide references to the standards used to
implement some of the components, interfaces and connections of the
proposed pattern.

The standards listed in this section will contribute to the development of the
standards catalogue [see section 2.3] of the NEXOF Reference Architecture.

4.4.10 Application examples

This part is optional. It is intended to provide examples of the pattern found in a
real system.

4.4.11 References

This section is intended to provide list of initiatives, technologies and other kind
of sources related to the pattern (not necessarily used in the pattern).

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 30 of 34

5 THE SPECIFICATION PROCESS

The NEXOF-RA Project has adopted a top-down production process to better
support the production of a set of inter-related patterns. Starting from the
production of top-level patterns, i.e. the most general and abstract patterns,
other patterns are produced with respect to other already-committed patterns.
This way, the problem they address and the context where they are applicable
are clearly and well-defined. This approach makes the verification of the
consistency of the overall set of patterns as well as the instantiation of concrete
architectures easier and more controllable.

The next figure gives a very high-level description of the pattern development
process.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 31 of 34

Figure 11: Patterns Development Process

When an architectural issue, related to SOA infrastructures, is identified, the
NEXOF-RA Project expert people start working on the elaboration of new
architectural patterns. This activity is performed within the research tracks of the
Project and can be supported by means of external contributors (i.e.
Investigation Teams). Contributors must use the pattern template document1 to
produce the pattern description document.

After new patterns have been produced, they are submitted to the specification
development workgroup (WP7) to check their relationships to the other patterns

1
 It can be downloaded at http://www.nexof-ra.eu/?q=rep/term/12

http://www.nexof-ra.eu/?q=rep/term/12

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 32 of 34

of the specification, the compliancy to the pattern template and the consistency
of functionality requirements and assumptions with respect to the stated
relationships. This checking action is called ―formal verification‖ though it is not
based on any formal logic. It mainly deals with constraints on the format of the
pattern description and takes it apart from the content validation that evaluates
the quality of the pattern’s architectural choices. If the formal verification is not
ok, WP7’s feedback is returned to team working on the elaboration of the
pattern, where an update version of the pattern will be elaborated. This cycle
can be repeated several times till the pattern succeeds WP7 verification.

Once WP7 verification is achieved, those patterns that address challenging
architectural problems of SOA Infrastructure design are selected to be validated
through proof-of-concept actions. In any case all the patterns are submitted to
the NEXOF-RA Architectural Board (AB) for the validation of the content. In this
phase, the pattern is evaluated with respect to its architectural design added-
value, originality and innovation. If it is validated by the architectural board, the
pattern will be added to the NEXOF-RA Specification, otherwise the pattern and
the negative feedbacks will be returned back to the development team for
further improvements.

To better explain the above process, next figure depicts all the various states a
pattern can be during its development process.

Figure 12: Pattern States

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 33 of 34

As shown by the previous figure, a pattern can be in one of the following states:

 in-conception: to refer to a pattern that has been identified and qualified
only by means of the architectural problem it addresses. The architectural
solution proposed by a pattern in this state has not been elaborated yet.

 in-elaboration: to refer to a pattern that is under development. A draft of the
architectural solution proposed by a pattern in this state is available.

 formally-consistent: to refer to a pattern that has been already elaborated
and has succeeded the formal verification.

 proved-by-poc: to refer to a pattern that has been successfully proved by a
proof-of-concept action.

 part-of-the-specification: to refer to a pattern that has succeeded the
formal verification and has received the final approbation of the NEXOF-RA
Architectural Board to be part of the NEXOF-RA Specification.

NEXOF-RA • FP7-216446 • D7.2b • Version 0.7, dated 30/11/2009 • Page 34 of 34

REFERENCES

[1] [Buschmann et al. 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, &
M. Stal. Pattern-Oriented Software Architecture: A Pattern System. Addison-
Wesley, Boston, 1996.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, November 1994.

[3] Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I.; Angel,
S. A Pattern Language. Oxford, University Press, New York, 1977.

[4] Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-Oriented
Software Architecture. A System of Patterns. Volume 1. John Wiley & Sons Ltd,
1996.

[5] [Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, & J. Vlissides. Design
Patterns: Elements of Object-Oriented Software. Addison-Wesley, Boston, 1995.

[6] [Riehle 1997] D. Riehle. "Composite Design Patterns." Proceedings of Object-
Oriented Programming, Systems, Languages and Applications, OOPSLA '97, pp.
218–228, Atlanta, GA, October 1997.

[7] RA Model V2.0, http://www.nexof-ra.eu

[8] NEXOF-RA Glossary, http://www.nexof-ra.eu/?q=node/187

[9] Quality Model for NEXOF-RA Pattern Designing report, http://www.nexof-ra.eu

[10] Software Architecture in Practise. Bass L., Clemens P., Kazman R. 1998.
Reading, MA: Addison-Wesley

[11] Toward Deriving Software Architectures From Quality Attributes, Rick Kazman,
Len Bass, Rick Kazman, Thomas R. Miller, Lt Col, 1994

[12] Architectural Patterns Revisited – A Pattern. Language. Paris Avgeriou. Uwe
Zdun. In Proceedings of the 10th European Conference on Pattern Languages of
Programs (EuroPLoP 2005), 2005

[13] Sherif M. Yacoub; Hany H. Ammar Pattern-Oriented Analysis and Design:
Composing Patterns to Design Software Systems, Addison-Wesley, 2003.

[14] Thomas Erl. http://www.soaprinciples.com/, 2007-2008

http://www.nexof-ra.eu/
http://www.nexof-ra.eu/?q=node/187
http://www.nexof-ra.eu/
http://www.soaprinciples.com/

